arm
Arm® Cortex-A520Core

Revision: rOp1

Software Optimization Guide

Non-Confidential Issue 1.2

Copyright © 2023 Arm Limited (or its affiliates). PJDOC-1505342170-671342
All rights reserved.

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342

Issue 1.2
Arm® Cortex-A520 Core
Software Optimization Guide
Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Release information
Document history
Issue Date Confidentiality Change
1.0 28 February 2022 Confidential First release for rOpO
1.1 271 July 2022 Confidential Firstrelease for rOpl
1.2 29 May 2023 Non- Second release for
Confidential rOpl

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation
of the information contained in this document may be protected by one or more patents or pending
patent applications. No part of this document may be reproduced in any form by any means without
the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise
to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not
use or permit others to use the information for the purposes of determining whether implementations
infringe any third party patents.

THISDOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents,
copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TOTHE EXTENT NOT PROHIBITED BY LAW, INNO EVENT WILL ARM BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT,
EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations
to assure that this document or any portion thereof is not exported, directly or indirectly, in violation
of such export laws. Use of the word “partner” in reference to Arm's customers is not intended to
create or refer to any partnership relationship with any other company. Arm may make changes to this
document at any time and without notice.

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 2 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

This document may be translated into other languages for convenience, and you agree that if there is
any conflict between the English version of this document and any translation, the terms of the English
version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of 1
(orits affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in
this document may be the trademarks of their respective owners. Please follow Arm's trademark
usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.
(LES-PRE-20348)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject
to license restrictions in accordance with the terms of the agreement entered into by Arm and the
party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on Arm®
Cortex-A520 Core, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey:
https://developer.arm.com/documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that
can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future issue
of this document. To report offensive language in this document, email terms@arm.com.

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 3of 77

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com/
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Cortex-A520 Core Software Optimization Guide

1

11
1.2
1.3
1.3.1
1.3.2
1.4

2
21

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

PJDOC-1505342170-671342

Issue 1.2
Contents
Introduction
Product revision status
INEENAEA QUAIENCE..........oo s 6
CONVENTIONS. ...t 6
G OSSATY .o s e 6
TypPOographiCal CONVENTIONS ..o 7
AAAITIONA] FEAUINEG ... es oo 8
Overview 9
PIDEIINE OVEIVIEWoooo e 10
Instruction characteristics 12
INSErUCLION TADIES ... 12
Branch INSTFUCTIONS ... 12
Arithmetic and 10gICal INSEIUCTIONS ... 13
Divide and multiply INSTrUCTIONS ...t 15
Pointer authentication iINSErUCtIONS.............ccooooiiviveciiooeriee e 16
Miscellaneous data-processing inStruCtions..............ccooooovcoeceoeeccoeeeeceeeeeeeeeeeeeeee e 17
LOAA INSTIUCTIONSooo s 18
SEOF@ INSTIUCTIONS ..ooovo et 20
TaAZ AL PIrOCESSING ..ot es s es s es s 22
Tag load INSEIUCTIONS............ooeeeeeeeee e 22
Tag SEOrE INSTIUCTIONS ...t 22
FP scalar data processing inStruCtioNs ... 24
FP scalar miscellaneous iNStrUCLIONS ... 25
FP scalar 0ad iNSTrUCTIONS. ... 26
FP scalar store iNStrUCLIONS.............ccoooiriveeeiieeecseee s 27
ASIMD INteZEI INSTIUCTIONS ...t 29
ASIMD FP data processing instructions 34
ASIMD BFloat16 (BF16) instructions 37
ASIMD miscellaneous instructions 38
ASIMD load instructions 40
ASIMD store instructions 43

3.21

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 4 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342

Issue 1.2

3.22 Cryptography extensions

328 CRC .o
3.24 SVE Predicate inStructions.................cooorvvvviionnrrcecciseeesseeee s
3.25 SVE INteger inNStruCtioNS...........ccoooooooeeeeeeceeeeeeeeeeeeeeeeeeee e
3.26 SVE FP data processing inStructions ...
3.27 SVEBFI0at16 (BF16) iNSTrUCLIONS ..o
3.28 SVE L0ad iNSTrUCLIONSoovoocee s
3.29 SVE Store iNStrUCIONS ...
3.30 SVE Miscellaneous inStruCtioNnsoo....ccrrvevcciieenneeeesseseeseciseees s
3.31 SVE Cryptography inStruCtions..............ccoooooeoecoeeeceeeeceeeeeceeeeeeeeeeeeeeeeee s

4 Special considerations

4.1 [SSUE CONSTIAINTS ...oooo s
4.2 INSErUCEION FUSION..........oooo s
4.3 Branch instruction alignment ...
4.4 Load / Store AlIZNMENT ...
4.5 Ab64 low latency pointer forwarding ...
4.6 AUT RET fOrWarAiNG ...
4.7 SIMD MAC fOrWardiNG........coooeeeeeeeeeeeeeeeeeeeeeeeeeeee e
4.8 Memory Tagging EXtENSIONS ...
4.9 MEMONY FOULINES ...t
4.10 Cache maintenance OPerations ...
4.11 Cache acCess ateNCIEs........co e
412 ShAr@A VPU ...
4,13 AESencryption/ decryption ...

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Introduction

1 Introduction

1.1 Product revision status

The rmpn identifier indicates the revision status of the product described in this book, for
example, r1p2, where:
rm Identifies the major revision of the product, for example, r1.

pn Identifies the minor revision or modification status of the product, for
example, p2.

1.2 Intended audience

This document is for system designers, system integrators, and programmers who are
designing or programming a System-on-Chip (SoC) that uses an Arm core.

1.3 Conventions

The following subsections describe conventions used in Arm documents.

1.3.1 Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the
Arm meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

Terms and abbreviations

This document uses the following terms and abbreviations.

Convention Use

ALU Arithmetic and Logical Unit

ASIMD Advanced SIMD

FP Floating-point

GPR General Purpose Register

SQRT Square Root

SVE Scalable Vector instruction Extension (SVE or SVE2)
VPR Vector Processing Register; FP/ASIMD/SVE registers

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 6 of 77

https://developer.arm.com/glossary

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Introduction

Convention

VPU Vector Processing Unit

1.3.2 Typographical conventions

Convention Use

italic Citations.

bold Interface elements, such as menu names.
Signal names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and
program names, and source code.
monospace Language keywords when used outside example code.
bold
monospace A permitted abbreviation for acommand or option. You can enter the
underline underlined text instead of the full command or option name.
<and> Encloses replaceable terms for assembler syntax where they appear in
code or code fragments.
For example:
MRC pl5, 0, <Rd>, <CRn>, <CRm>, <Opcode 2>
SMALL Terms that have specific technical meanings as defined in the Arm®
CAPITALS Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION

SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead
to system failure or damage.

Requirements for the system. Not following these requirements might
result in system failure or damage.

Warning
.@ Requirements for the system. Not following these requirements will
result in system failure or damage.
Danger
}o Animportant piece of information that needs your attention.

Note

A useful tip that might make it easier, better, or faster to perform a
task.

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page7 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Introduction

Convention Use
A reminder of something important that relates to the information you
arereading.
Remember

1.4 Additional reading

This document contains information that is specific to this product. See the following
documents for other relevant information:

Table 1-1 Arm publications

Document name Document ID Licensee only Y/N

Arm® Architecture Reference DDI 0487 N
Manual for A-profile architecture
profile

Arm® Cortex-A520 Core Technical 102517 N
Reference Manual

Arm® Cortex-A520 Core 102518 Y
Configuration and Integration
Manual

o Armtests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot guarantee the
% quality of its documents when used with any other PDF reader.

Note Adobe PDF reader products can be downloaded at http://www.adobe.com.

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 8 of 77

http://www.adobe.com/

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342

Issue 1.2
Overview

2 Overview

Cortex-A520 Core is a high-efficiency, low-power product that implements the Arm®v9.2-A
architecture. The Arm®v9.2-A architecture extends the architecture defined in the Arm®v8-A
architectures up to Arm®v8.7-A.

The key features of Cortex-A520 Core are:

Implementation of the Arm®v9.2-A Aé64 instruction set
AArché4 Execution state at all Exception levels, ELOto EL3

Separate L1 data and instruction side memory systems with a Memory Management
Unit (MMU)

In-order pipeline with direct and indirect branch prediction

Generic Interrupt Controller (GIC) CPU interface to connect to an external interrupt
distributor

Generic Timer interface that supports a 64-bit count input from an external system
counter

Implementation of the Reliability, Availability, and Serviceability (RAS) Extension

128-bit Scalable Vector Extension (SVE) and SVE2 SIMD instruction set, offering
Advanced SIMD (ASIMD) and floating-point (FP) architecture support

Support for the optional Cryptographic Extension, which is licensed separately
Activity Monitoring Unit (AMU)

Dual/Single Core configuration option: Cortex-A520 cores can be grouped into dual-
core complexes or instantiated as single-core complexes. Dual-core complexes share
the L2 cache and VPU, while single-core complexes have a dedicated L2 cache and VPU.
Figure 1 highlights the VPU pipelines shared between Cortex-A520 cores in a complex.

Configurable vector datapath size: The size of the vector datapaths can be 2x64 or
2x128-bit. The selected option applies to all cores in the complex. Figure 1 highlights
the VPU pipelines that are only instantiated for a 2x128-bit configuration.

This document describes the elements of Cortex-A520 Core micro-architecture that influence
the software performance so that software and compilers can be optimized accordingly.

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 9 of 77

Arm® Cortex-A520 Core Software Optimization Guide

PJDOC-1505342170-671342

Issue 1.2
Overview
[] [] []
2.1 Pipeline overview
IFO IF1 IF2 DEO DE1 DE2 ISS EX1 EX2 EX3 WR RET

| Fetch |—>| Decode |—> —>| ALUO |
—>| ALU1 |
—>| Branch |
—>| DIV |
—>| Load/Store |
—>| Load |
—>| MAC |
—>| PAC |

g VO VI V2 V3 V4 V5 RC
&
r-r-—-——----="-""-""="—""—"""=""=""=""="=—"—"=—"="""="""="""=""=""="=""="—=""== hl
S —— .
—:—:—>| Crypto0 | .
| |
[l [
. VALUO | L
i Lo
-1:—>| VMACO | Lo
] Q) !
_LL.| VMC | g
¥ & 3
e LS
—,—'—H' Crypto1 | <! © |
L 3
: ! N [
oy VALU1 S
rhy @
1y o | : |
o VMACT | S
|

|| kmmmmmmmmmmmmmmmmmmmmmmme=d |
\TTTTTTTTTTTTTToTooTooToToooIoIoR i

Figure 1 Cortex-A520 Core pipeline

The execution pipelines support different types of operations, as shown in the following table.

Pipeline Instructions

ALUO, Arithmetic and logic
ALU1
Branch Branch

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 100of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Overview

Pipeline Instructions

CryptoO Cryptography
Supports 1x128-bit operation.
This pipeline is shared for dual core configuration.

Present only for implementations configured with Cryptographic
Extensions enabled.

Cryptol Cryptography
Supports 1x128-bit operation.
This pipeline is shared for dual core configuration.

Present only for implementations configured with Cryptographic
Extensions enabled and a Vector datapath size of 2x128-bit.

DIV Integer scalar division (iterative)

Load/Store Load and store
Load Load

MAC Multiply accumulate
PAC Pointer Authentication

VALUO Addition, logic and shift for ASIMD, FP, Neon, and SVE
Supports 2x64-bit or 1x128-bit operations.
This pipeline is shared for dual core configuration.

VALU1 Addition, logic and shift for ASIMD, FP, Neon, and SVE

Supports 2x64-bit or 1x128-bit operations.

This pipeline is shared for dual core configuration.

Present only for implementations configured with a Vector datapath
size of 2x128-bit.

VMACO Multiply accumulate for ASIMD, FP, Neon, and SVE

Supports 2x64-bit or 1x128-bit operations.

This pipeline is shared for dual core configurations.

VMAC1 Multiply accumulate for ASIMD, FP, Neon, and SVE
Supports 2x64-bit or 1x128-bit operations.
This pipeline is shared for dual core configurations.

Present only for implementations configured with a Vector datapath
size of 2x128-bit configurations.

VMC Cryptography and iterative multi cycle instruction (e.g. bit permutation,
division, and square root)

Supports 2x64-bit or 1x128-bit operations.
This pipeline is shared for dual core configurations.

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 110f 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

3 Instruction characteristics

3.1 Instruction tables

This chapter describes high-level performance characteristics for most Armv9-A instructions.
A series of tables summarize the effective execution latency and throughput (instruction
bandwidth per cycle), pipelines utilized, and special behaviors associated with each group of
instructions. Utilized pipelines correspond to the execution pipelines described in chapter 2.

[n the tables below:

e [xec Latency is the minimum latency seen by an operation dependent on an instruction
in the described group.

e [oad Latency is the minimum latency seen by an operation dependent on the load. It is
assumed the memory access hits in the L1 Data Cache.

e [Execution Throughput is maximum throughput (in instructions per cycle) of the specified
instruction group that can be achieved in the entirety of Cortex-A520 Core
microarchitecture.

The Vector datapath size may affect the operation of ASIMD, FP, Neon, and SVE instructions.
In such cases the Exec Latency and Execution Throughput will be defined with two value, “A,B”. A
is for a 2x128-bit configuration or a non-Q or scalar form of a 2x64-bit configuration. Bis for a
2x64-bit configuration.

3.2 Branch Instructions

Table 3-1 AArché64 Branch instructions

Instruction Group AArché4 Exec Execution Utilized
Instruction Latency Throughput Pipeline

Branch, immed B - 1 Branch

Branch, register BR,RET - 1 Branch

Branch and link, BL 1 1 Branch

immed

Branch and link, BLR 1 1 Branch

register

Compare and CBZ, CBNZ, - 1 Branch

branch TBZ, TBNZ

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 12 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized
Instruction Latency Throughput Pipeline

Branch, immed B - 1 Branch

Branch, register BX - 1 Branch

Branch and link, BL, BLX 1 1 Branch

immed

Branch and link, BLX 1 1 Branch

register

Compare and CBZ,CBNZ - 1 Branch

branch

3.3 Arithmetic and logical instructions

Table 3-2 AArché64 Arithmetic and logical instructions

Instruction Group AArché64 Exec Execution Utilized
Instruction Latency Throughput Pipeline
Arithmetic, basic ADD, ADC, 1 2 ALU
SUB, SBC
Arithmetic, basic, ADDS, 1 2 ALU
flagset (U SUBS
ADCS, SBCS 1 1

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 13 0f 77

Instruction Group

Arm® Cortex-A520 Core Software Optimization Guide

AArch64
Instruction

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Utilized
Pipeline

Exec Execution
Latency Throughput

Arithmetic, extend ADD{S}, 10 2 ALU
and shift SUB({S}
Conditional CCMN, 1 1 ALU
compare CCMP
Conditional select CSEL, 1 2 ALU
CSING,
CSINV,
CSNEG
Logical, basic AND({S}, 1 2 ALU
BIC{S}, EOR,
ORR
Logical, shift AND({S}, 1 2 ALU
BIC{S},
EON, EOR,
ORN, ORR
Notes:

1. Latency=2 whenthe dependency is on Rm.

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

3.4 Divide and multiply instructions

Integer divides are performed using an iterative algorithm and block any subsequent divide
operations until complete. Early termination is possible, depending upon the data values.

Table 3-3 AArch64 Divide and multiply instructions?

Instruction Group AArché4 Exec Execution Utilized
Instruction Latency Throughput Pipeline
Divide, W-form SDIV?, UDIV 12 1/12 DIV
Divide, X-form SDIV, UDIV 20 1/20 DIV
Multiply MADD, 3 1 MAC
accumulate, W-form MSUB
MUL 3 1
Multiply MADD, 4 1/2 MAC
accumulate, X-form MSUB, MUL
Multiply accumulate SMADDL, 2 1 MAC
long SMSUBL,
UMADDL,
UMSUBL
Multiply high SMULH, 6 1/4 MAC
UMULH
Notes:

1. Thereis a dedicated forwarding path in the accumulate portion of the unit that allows
the result of one MAC operation to be used as the accumulate operand of a following
MAC operation with no interlock. Thanks to this, a typical sequence of multiply-
accumulate instructions can issue one every 2 cycles). Accumulator forwarding is not
supported for consumers of 64 bit multiply high operations.

2. Latency and throughput numbers given for SDIV and UDIV are the worst-case values.
Early termination is possible, depending upon the data values (for example, degenerate
cases such as divide by zero). Integer divides are performed using an iterative algorithm
and block any subsequent divide operations until complete. The number of cycles
needed to execute these instructions can be calculated using the formula [N + bits/4]
(N=3for UDIV, N=4for SDIV, i.e. signed division takes one more cycle than unsigned
division).

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 150f 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

3.5 Pointer authentication instructions

Table 3-4 AArché64 Pointer authentication instructions

Instruction Group AArché64 Exec Execution Utilized

Instruction Latency Throughput Pipeline
Authenticate data AUTDA, - 1 PAC
address AUTDB,

AUTDZA,

AUTDZB
Authenticate AUTIA, 5 1 PAC
instruction address AUTIB,

AUTIAL1716,

AUTIB1716,

AUTIASP,

AUTIBSP,

AUTIAZ,

AUTIBZ,

AUTIZA,

AUTIZB
Branch and link, BLRAA, 1 1 Branch,
register, with BLRAAZ, PAC
pointer BLRAB,
authentication BLRABZ
Branch, register, BRAA, - 1 Branch,
with pointer BRAAZ, PAC
authentication BRAB,

BRABZ
Branch, return, with RETA, RETB - 1 Branch
pointer
authentication
Compute pointer PACDA, 5 1 PAC
authentication code PACDB,
for data address PACDZA,

PACDZB
Compute pointer PACGA 5 1 PAC
authentication code,
using generic key
Compute pointer PACIA, 5 1 PAC
authentication code PACIB,
for instruction PACIZA,
address PACIZB

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 16 of 77

Arm® Cortex-A520 Core Software Optimization Guide

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized
Instruction Latency Throughput Pipeline
PACIAL1/1,
PACIB1716,
PACIAZ,
PACIASP,
PACIBSP,
PACIBZ
Load register, with LDRAA, 2 2 PAC
pointer LDRAB
authentication,
offset
Load register, with LDRAA, 2 1 PAC
pointer LDRAB
authentication, pre-
indexed
Strip pointer XPACD, 5 1/5 PAC
authentication code XPACI,
XPACLRI

3.6 Miscellaneous data-processing instructions

Instruction Group

AArché4
Instruction

Exec
Latency

Table 3-5 AArch64 miscellaneous data-processing instructions

Execution
Throughput

Utilized
Pipeline

Address generation

ADR, ADRP

ALU

Bitfield extract

EXTR

olil

ALU

Bitfield move, basic

SBFM,
SBFIZ,
SBFX,

SXTH,
SXTW,
UBFM,
UBFIZ,
UBFX,
UXTH

2]

ALU

Bitfield move, insert

BFM

ALU

Convert floating-
point condition flags

AXFLAG,
XAFLAG

1/2

ALU

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 17 of 77

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Arm® Cortex-A520 Core Software Optimization Guide

Utilized
Pipeline

Execution
Throughput

AArché64 Exec
Instruction Latency

Instruction Group

Flag manipulation SETFS, 2 1/2 ALU
instructions SETF16
RMIF, 1 1
CFINV 1/2
Count leading CLS,CLZ 1 2 ALU
Move immed MOVN, 1 2 ALU
MOVK,
MOVZ
Reverse bits/bytes REV, 1 2 ALU
REV16,
REV32
RBIT 2 2
Variable shift ASRV, LSLV, 1 2 ALU
LSRV, RORV
Notes:

1. Latency=1for ROR (immediate) alias of EXTR
2. Latency=1for LSL (immediate), LSR (immediate) and UXTB aliases of UBFM

Latency=1 for SXTB and ASR (immediate) aliases of SBFM

3.7 Load instructions
The latencies shown in Table 3-6 assume the memory access hits in the Level 1 Data Cache.
Base register updates are done in parallel to the operation.

Table 3-6 AArché4 Load instructions

Instruction Group

AArché4
Instruction

Load
Latency

Execution
Throughput

Utilized
Pipeline

Load register, literal LDR, 2 Load/Store,
LDRSW, Load
PRFM

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 18 of 77

Instruction Group

Arm® Cortex-A520 Core Software Optimization Guide

AArch64
Instruction

Load
Latency

Execution
Throughput

PJDOC-1505342170-671342

Issue 1.2
Instruction characteristics

Utilized
Pipeline

Load register, LDUR, 2 2 Load/Store,
unscaled immed LDURB, Load
LDURH,
LDURSB,
LDURSH,
LDURSW,
PRFUM
Load register, LDR, LDRB, 2 2 Load/Store,
immed post-index LDRH, Load
LDRSB,
LDRSH,
LDRSW
Load register, LDR, LDRB, 2 2 Load/Store,
immed pre-index LDRH, Load
LDRSB,
LDRSH,
LDRSW
Load register, LDTR, 2 2 Load/Store,
immed unprivileged LDTRB, Load
LDTRH,
LDTRSB,
LDTRSH,
LDTRSW
Load register, LDR, LDRB, 2 2 Load/Store,
unsigned immed LDRH, Load
LDRSB,
LDRSH,
LDRSW,
PRFM
Load register, LDR, LDRB, 2 2 Load/Store,
register offset, basic LDRH, Load
LDRSB,
LDRSH,
LDRSW,
PRFM
Load register, LDR, 2 2 Load/Store,
register offset, scale LDRSWY, Load
by 4/8 PRFM
Load register, LDRH, 2 2 Load/Store,
register offset, scale LDRSH Load
by 2

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 19 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group AArché64 Load Execution Utilized

Instruction Latency Throughput Pipeline
Load register, LDR, LDRB, 2 2 Load/Store,
register offset, LDRH, Load
extend LDRSB,

LDRSH,

LDRSWY,

PRFM
Load register, LDR, 2 2 Load/Store,
register offset, LDRSW, Load
extend, scale by 4/8 PRFM
Load register, LDRH, 2 2 Load/Store,
register offset, LDRSH Load
extend, scale by 2
Load pair, signed LDP, LDNP 2 2 Load/Store,
immed offset, Load
normal, W-form
Load pair, signed LDP, LDNP 2 2 Load/Store,
immed offset, Load
normal, X-form
Load pair, signed LDPSW 2 2 Load/Store,
immed offset, Load
signed words
Load pair, immed LDP 2 1 Load/Store,
post-index or Load
immed pre-index,
normal, W-form
Load pair, immed LDP 2 1 Load/Store,
post-index or Load
immed pre-index,
normal, X-form
Load pair, immed LDPSW 2 1 Load/Store,
post-index, signed Load
words

3.8 Store instructions

Base register updates are done in parallel to the operation.

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200f 77

Instruction Group

Arm® Cortex-A520 Core Software Optimization Guide

Table 3-7 AArché4 Store instructions

AArch64

Instruction

Execution
Throughput

Exec
Latency

PJDOC-1505342170-671342

Issue 1.2
Instruction characteristics

Utilized
Pipeline

Store register, STUR, - 1 Load/Store
unscaled immed STURB,

STURH
Store register, STR,STRB, - 1 Load/Store
immed post-index STRH
Store register, STR,STRB, - 1 Load/Store
immed pre-index STRH
Store register, STTR, - 1 Load/Store
immed unprivileged STTRB,

STTRH
Store register, STR, STRB, - 1 Load/Store
unsigned immed STRH
Store register, STR, STRB, - 1 Load/Store
register offset, basic STRH
Store register, STR - 1 Load/Store
register offset,
scaled by 4/8
Store register, STRH - 1 Load/Store
register offset,
scaled by 2
Store register, STR, STRB, - 1 Load/Store
register offset, STRH
extend
Store register, STR - 1 Load/Store
register offset,
extend, scale by 4/8
Store register, STRH - 1 Load/Store
register offset,
extend, scale by 1
Store pair, immed STP,STNP - 1 Load/Store
offset
Store pair, immed STP - 1 Load/Store
post-index
Store pair, immed STP - 1 Load/Store
pre-index

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 21 0of77

Arm® Cortex-A520 Core Software Optimization Guide

3.9 Tag data processing

Table 3-8 AArch64 Tag data processing instructions

PJDOC-1505342170-671342

Issue 1.2

Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized
Instruction Latency Throughput Pipeline

Arithmetic, ADDG, 2 2 ALU

immediate to logical SUBG

address tag

Insert Random Tags IRG 3 1/3 ALU

Insert Tag Mask GMI 2 2 ALU

Subtract Pointer SUBP 2 2 ALU

Subtract Pointer, SUBPS 2 2 ALU

flagset

3.10 Tag load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache.

Table 3-9 AArch64 Tag load instructions

Instruction Group AArché64 Load Execution Utilized
Instructions Latency Throughput Pipeline
Load allocation tag LDG 2 2 Load/Store,
Load
Load multiple LDGM 2 1/4 Load/Store,
allocation tags Load

3.11 Tag store instructions

Base register updates are done in parallel to the operation.

Table 3-10 AArché4 Tag store instructions

AArché64 Exec
Instruction Latency

Execution
Throughput

Instruction Group

Utilized
Pipeline

Store allocation tags STG - 1

to one or two
granules, post-index ST2G 1/2

Load/Store

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 22 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized

Instruction Latency Throughput Pipeline

Store allocation tags STG - 1 Load/Store
toone or two

granules, pre-index ST2G 1/2

Store allocation tags STG - 1 Load/Store
toone or two

granules, signed ST2G 1/2

offset

Store allocation tag STZG - 1 Load/Store
toone or two

granules, zeroing, STZ2G 1/2

post-index

Store Allocation Tag STZG - 1 Load/Store
toone or two

granules, zeroing, STZ2G 1/2

pre-index

Store allocation tag STZG - 1 Load/Store
to two granules,

zeroing, signed STZ2G 1/2

offset

Store allocation tag STGP - 1 Load/Store

and reg pair to
memory, post-Index

Store allocation tag STGP - 1 Load/Store
and reg pair to
memory, pre-Index

Store allocation tag STGP - 1 Load/Store
and reg pair to
memory, signed
offset

Store multiple STGM - 1 Load/Store
allocation tags

Store multiple STZGM - 1 Load/Store
allocation tags,
zeroing

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 23 0of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

3.12FP scalar data processing instructions

Table 3-11 AArché4 FP data processing instructions

Instruction Group AArch64 Exec Execution Utilized
Instruction Latency Throughput Pipeline
FP absolute value FABS, FABD 4 2 VALU
FP arithmetic FADD, 4 2 VALU
FSUB
FP compare FCCMP{E}, 5 1/5 VALU
FCMP{E} 1 1
FP divide, H-form 1 FDIV 8 2/5 VMC
FP divide, S-form ! FDIV 13 2/10 VMC
FP divide, D-form * FDIV 22 2/19 VMC
FP min/max FMIN, 4 2 VALU
FMINNM,
FMAX,
FMAXNM
FP multiply FMUL, 4 2 VMAC
FNMUL
FP multiply FMADD, 4 2 VMAC
accumulate FMSUB,
FNMADD,
FNMSUB
FP negate FNEG 4 2 VALU
FP roundto integral FRINTA, 4 2 VALU
FRINTI,
FRINTM,
FRINTN,
FRINTP,
FRINTX,
FRINTZ,
FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z
FPselect FCSEL 3 1 VALU
FP square root, H- FSQRT 11 2/5 VMC
form
FP square root, S- FSQRT 14 2/9 VMC
form

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 24 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized
Instruction Latency Throughput Pipeline
FP square root, D- FSQRT 25 2/19 VMC
form
Notes:

1. Floating-point division operations may finish early if the divisor is a power of two
(normal with a zero trailing significand).

3.13 FP scalar miscellaneous instructions

Table 3-12 AArché64 FP miscellaneous instructions

Instruction Group AArché64 Exec Execution Utilized

Instruction Latency Throughput Pipeline
FP convert, from SCVTF, 4 2 VALU
gentovecreg UCVTF
FP convert, from FCVTAS, 4 1 VALU
vecto genreg FCVTAU,

FCVTMS,

FCVTMU,

FCVTNS,

FCVTNU,

FCVTPS,

FCVTPU,

FCVTZS,

FCVTZU
FP convert, FJCVTZS 4 1 VALU
Javascript from vec
togenreg
FP convert, from FCVT, 4 2 VALU
vectovecreg FCVTXN
FP move, immed FMOV 3 2 VALU
FP move, register FMOV 3 1 VALU
FP transfer, from FMOV 3 2 VALU
gentovecreg
FP transfer, from FMOV 3 1 VALU
vecto genreg

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 250f 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342

3.14 FP scalar load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache.

Base register updates are done in parallel to the operation.

Table 3-13 AArché4 FP load instructions

Issue 1.2

Instruction characteristics

Instruction Group AArché64 Load Execution Utilized
Instruction Latency Throughput Pipeline

Load vector reg, LDR 3 2 Load/Store,

literal, S/D/Q forms Load

Load vector reg, LDUR 3 2 Load/Store,

unscaled immed Load

Load vector reg, LDR 3 2 Load/Store,

immed post-index Load

Load vector reg, LDR 3 2 Load/Store,

immed pre-index Load

Load vector reg, LDR 3 2 Load/Store,

unsigned immed Load

Load vector reg, LDR 3 2 Load/Store,

register offset, basic Load

Load vector reg, LDR 3 2 Load/Store,

register offset, Load

scale, S/D-form

Load vector reg, LDR 3 2 Load/Store,

register offset, Load

scale, H/Q-form

Load vector reg, LDR 3 2 Load/Store,

register offset, Load

extend

Load vector reg, LDR 3 2 Load/Store,

register offset, Load

extend, scale, S/D-

form

Load vector reg, LDR 3 2 Load/Store,

register offset, Load

extend, scale, H/Q-

form

Load vector pair, LDP, LDNP 3 1 Load/Store,

immed offset, S/D- Load

form

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 26 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group AArché64 Load Execution Utilized
Instruction Latency Throughput Pipeline

Load vector pair, LDP, LDNP 3 1 Load/Store,

immed offset, Q- Load

form

Load vector pair, LDP 3 1 Load/Store,

immed post-index, Load

S/D-form

Load vector pair, LDP 3 1 Load/Store,

immed post-index, Load

Q-form

Load vector pair, LDP 3 1 Load/Store,

immed pre-index, Load

S/D-form

Load vector pair, LDP 3 1 Load/Store,

immed pre-index, Load

Q-form

3.15 FP scalar store instructions

Base register updates are done in parallel to the operation.

Table 3-14 AArché64 FP Store instructions

Instruction Group AArché64 Exec Execution Utilized

Instructions Latency Throughput Pipeline

Store vector reg, STUR - 1 Load/Store
unscaled immed,
B/H/S/D-form

Store vector reg, STUR - 1 Load/Store
unscaled immed, Q-

form

Store vector reg, STR - 1 Load/Store

immed post-index,
B/H/S/D-form

Store vector reg, STR - 1 Load/Store
immed post-index,

Q-form

Store vector reg, STR - 1 Load/Store

immed pre-index,
B/H/S/D-form

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 27 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized
Instructions Latency Throughput Pipeline

Store vector reg, STR - 1 Load/Store

immed pre-index,

Q-form

Store vector reg, STR - 1 Load/Store

unsigned immed,
B/H/S/D-form

Store vector reg, STR - 1 Load/Store
unsigned immed, Q-

form

Store vector reg, STR - 1 Load/Store

register offset,
basic, B/H/S/D-
form

Store vector reg, STR - 1 Load/Store
register offset,
basic, Q-form

Store vector reg, STR - 1 Load/Store
register offset,
scale, H-form

Store vector reg, STR - 1 Load/Store
register offset,
scale, S/D-form

Store vector reg, STR - 1 Load/Store
register offset,
scale, Q-form

Store vector reg, STR - 1 Load/Store
register offset,
extend, B/H/S/D-
form

Store vector reg, STR - 1 Load/Store
register offset,
extend, Q-form

Store vector reg, STR - 1 Load/Store
register offset,
extend, scale, H-
form

Store vector reg, STR - 1 Load/Store
register offset,
extend, scale, S/D-
form

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 28 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized

Instructions Latency Throughput Pipeline

Store vector reg, STR - 1 Load/Store
register offset,
extend, scale, Q-
form

Store vector pair, STP,STNP - 1 Load/Store
immed offset, S-
form

Store vector pair, STP,STNP - 1 Load/Store
immed offset, D-
form

Store vector pair, STP,STNP 2 1/2 Load/Store
immed offset, Q-
form

Store vector pair, STP - 1 Load/Store
immed post-index,
S-form

Store vector pair, STP - 1 Load/Store
immed post-index,
D-form

Store vector pair, STP 2 1/2 Load/Store
immed post-index,
Q-form

Store vector pair, STP - 1 Load/Store
immed pre-index, S-
form

Store vector pair, STP - 1 Load/Store
immed pre-index, D-
form

Store vector pair, STP 2 1/2 Load/Store
immed pre-index,
Q-form

3.16 ASIMD Integer instructions

Table 3-15 AArch64 ASIMD Integer instructions

Instruction Group AArché64 Exec Execution Utilized

Instruction Latency Throughput Pipeline

ASIMD absolute diff SABD, UABD 3 2,1 VALU

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 29 of 77

Instruction Group

Arm® Cortex-A520 Core Software Optimization Guide

AArch64
Instruction

Exec
Latency

PJDOC-1505342170-671342

Issue 1.2

Instruction characteristics

Execution
Throughput

Utilized
Pipeline

ASIMD absolute diff
accum

SABA, UABA

2/7.1/7

VALU

ASIMD absolute diff
accum long

SABAL(2),
UABAL(2)

1/2,1/4

VALU

ASIMD absolute diff
long

SABDL(2),
UABDL(2)

21

VALU

ASIMD arith, basic

ABS, ADD,
NEG,
SHADD,
SHSUB, SUB,
UHADD,
UHSUB,

21

VALU

ASIMD arith, basic,
long, saturate

SADDL(2),
SADDW(2),
SSUBL(2),
SSUBW(2),
UADDL(2),
UADDW(2),
USUBL(2),
USUBW(2)

2,1

VALU

ASIMD arith,
complex

ADDHN(2),
RSUBHN(2),
SQABS,
SQADD,
SQNEG,
SQSUB,
SUBHN(2),
SUQADD,
UQADD,
UQSUB,
USQADD

2,1

RADDHN(2)

2/5,1/5

SRHADD,
URHADD

2,1

VALU

ASIMD arith, pair-
wise

ADDP,
SADDLP,
UADDLP

2,1

VALU

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 300f 77

Arm® Cortex-A520 Core Software Optimization Guide

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group AArch64 Exec Execution Utilized

Instruction Latency Throughput Pipeline
ASIMD arith, ADDV, 1 VALU
reduce, 4H/4S SADDLYV,

UADDLV
ASIMD arith, ADDV 1 VALU
reduce
ASIMD arith, SADDLYV, 1 VALU
reduce UADDLV
ASIMD compare CMEQ, 2,1 VALU

CMGE,

CMGT,

CMHI,

CMHS,

CMLE,CMLT
ASIMD compare CMTST 2,1 VALU
test
ASIMD dot product SDOT, UbOT 2,1 VMAC
ASIMD dot product SUDOQOT, 2,1 VMAC
using signed and UsboT
unsigned integers
ASIMD logical AND, BIC, 2,1 VALU

EOR, MOV,

MVN, NOT,

ORN, ORR
ASIMD matrix SMMLA, 2,1 VALU
multiply-accumulate UMMLA,

USMMLA
ASIMD max/min, SMAX, 2,1 VALU
basic and pair-wise SMAXP,

SMIN,

SMINP,

UMAX,

UMAXP,

UMIN,

UMINP
ASIMD max/min, SMAXYV, 1 VALU
reduce, 4H/4S SMINV,

UMAXYV,

UMINV

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 0f 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized
Instruction Latency Throughput Pipeline
ASIMD max/min, SMAXV, 4 1 VALU
reduce, 8B/8H SMINV,
UMAXV,
UMINV
ASIMD max/min, SMAXV, 4 1 VALU
reduce, 16B SMINV,
UMAXV,
UMINV
ASIMD multiply MUL, 4 2.1 VMAC
SQDMULH,
SQRDMULH
ASIMD multiply MLA, MLS 4 2.1 VMAC
accumulate
ASIMD multiply SQRDMLAH, 4 1 VMAC
accumulate high, D- SQRDMLSH
form
ASIMD multiply SQRDMLAH, 4 1 VMAC
accumulate high, Q- SQRDMLSH
form
ASIMD multiply SMLAL(2), 4 2.1 VMAC
accumulate long SMLSL(2),
UMLAL(2),
UMLSL(2)
ASIMD multiply SQDMLAL(2), 4 2.1 VMAC
accumulate SQDMLSL(2)
saturating long
ASIMD PMUL, 4 2.1 VALU
multiply/multiply PMULL(2)
long (8x8)
polynomial, D-form
ASIMD PMUL, 4 2.1 VALU
multiply/multiply PMULL(2)
long (8x8)
polynomial, Q-form
ASIMD multiply SMULL(2), 4 2.1 VMAC
long UMULL(2),
SQDMULL(2)
ASIMD pairwise SADALP, 6 2/5,1/5 VALU
add and accumulate UADALP
long

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 320f 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized

Instruction Latency Throughput Pipeline
ASIMD shift SRSRA, 8 2/5,1/5 VALU
accumulate URSRA

SSRA, USRA 3 2.1
ASIMD shift by SHL, SHLL(2), 3 2.1 VALU
immed, basic SSHLL(2),

SSHR,

SXTL(2),

USHLL(2),

USHR,

UXTL(2)
ASIMD shift by SHRN(2), 4 2.1 VALU
immed, basic
ASIMD shift by SLI, SRI 3 2.1 VALU
immed and insert,
basic
ASIMD shift by RSHRN(2), 4 2.1 VALU
immed, complex SQRSHRN(2),

SQRSHRUN(

2), SQSHL{U},

SQSHRN(2),

SQSHRUN(2),

UQRSHRN(2)

, UQSHL,

UQSHRN(2),
ASIMD shift by SSHL, USHL, 3 2.1 VALU
register, basic SRSHL,

SRSHR,

URSHL,

URSHR
ASIMD shift by SQRSHL, 4 2.1 VALUE
register, complex SQSHL,

UQRSHL,

UQSHL

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 330f 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

3.17 ASIMD FP data processing instructions

Table 3-16 AArch64 ASIMD Floating-point instructions

Instruction Group AArch64 Exec Execution Utilized

Instruction Latency Throughput Pipeline
ASIMD FP absolute FABS, FABD 4 2.1 VALU
value/difference
ASIMD FP arith, FABD, 4 2.1 VALU
normal FADD,

FSUB,

FADDP
ASIMD FP compare FACGE, 3 21 VALU

FACGT,

FCMEQ,

FCMGE,

FCMGT,

FCMLE,

FCMLT
ASIMD FP complex FCADD 4 2.1 VMAC
add
ASIMD FP complex FCMLA 4 2.1 VMAC
multiply add
ASIMD FP convert, FCVTL(2) 4 2.1 VALU
long (F16to F32)
ASIMD FP convert, FCVTL(2) 4 2.1 VALU
long (F32 to F64)
ASIMD FP convert, FCVTN(2) 4 2.1 VALU
narrow (F32 to F16)
ASIMD FP convert, FCVTN(2), 4 2.1 VALU
narrow (Fé64to F32) FCVTXN(2)
ASIMD FP convert, FCVTAS, 4 2.1 VALUE
other, D-form F32 FCVTAU,
and Q-form Fé4 FCVTMS,

FCVTMU,

FCVTNS,

FCVTNU,

FCVTPS,

FCVTPU,

FCVTZS,

FCVTZU,

SCVTF,

UCVTF

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 34 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized

Instruction Latency Throughput Pipeline
ASIMD FP convert, FCVTAS, 4 2.1 VALU
other, D-form F16 FCVTAU,
and Q-form F32 FCVTMS,

FCVTMU,

FCVTNS,

FCVTNU,

FCVTPS,

FCVTPU,

FCVTZS,

FCVTZU,

SCVTF,

UCVTF
ASIMD FP convert, FCVTAS, 4 2.1 VALU
other, Q-formF16 VCVTAU,

FCVTMS,

FCVTMU,

FCVTNS,

FCVTNU,

FCVTPS,

FCVTPU,

FCVTZS,

FCVTZU,

SCVTF,

UCVTF
ASIMD FP divide, FDIV 8 2/5 VMC
D-form, F16
ASIMD FP divide, FDIV 13 2/10 VMC
D-form,F321
ASIMD FP divide, FDIV 8 1/5 VMC
Q-form,F16 1t
ASIMD FP divide, FDIV 13 1/10 VMC
Q-form,F321
ASIMD FP divide, FDIV 22 1/19 VALU
Q-form, F64
ASIMD FP max/min, FMAX, 4 2.1 VALU
normal FMAXNM,

FMIN,

FMINNM
ASIMD FP max/min, FMAXP, 4 2.1 VALU
pairwise FMAXNMP,

FMINP,

FMINNMP

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 350f77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized

Instruction Latency Throughput Pipeline

ASIMD FP max/min, FMAXYV, 4 1 VALU
reduce FMAXNMV,
FMINV,

FMINNMV

ASIMD FP max/min, FMAXYV, 4 1 VALU
reduce, Q-form F16 FMAXNMV,
FMINV,

FMINNMV

ASIMD FP multiply FMUL, 4 2,1 VMAC
FMULX

ASIMD FP multiply FMLA, 4 2.1 VMAC
accumulate FMLS

ASIMD FP multiply FMLAL(2), 4 2.1 VMAC
accumulate long FMLSL(2)

ASIMD FP negate FNEG 4 2,1 VALU

ASIMD FP round, FRINTA, 4 2.1 VALU
D-form F32 and Q- FRINTI,

form Fé64 FRINTM,
FRINTN,
FRINTP,
FRINTX,
FRINTZ,

FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z

ASIMD FP round, FRINTA, 4 2.1 VALU
D-form F16 and Q- FRINTI,
form F32 FRINTM,
FRINTN,
FRINTP,
FRINTX,
FRINTZ,
FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 36 0of 77

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Arm® Cortex-A520 Core Software Optimization Guide

Instruction Group AArché64 Exec Execution Utilized

Instruction Latency Throughput Pipeline
ASIMD FP round, FRINTA, 4 2.1 VALU
Q-form F16 FRINTI,

FRINTM,

FRINTN,

FRINTP,

FRINTX,

FRINTZ,

FRINT32X,

FRINT64X,

FRINT327Z,

FRINT64Z
ASIMD FP square FSQRT 8 2/5 VMC
root, D-form, F16
ASIMD FP square FSQRT 12 2/9 VMC
root, D-form, F32
ASIMD FP square FSQRT 8 1/5 VMC
root, Q-form, F16
ASIMD FP square FSQRT 12 1/9 VMC
root, Q-form, F32
ASIMD FP square FSQRT 22 1/19 VMC
root, Q-form, F64

Notes:

1. Floating-point division operations may finish early if the divisor is a power of two.

3.18 ASIMD BFloat16 (BF16) instructions

Table 3-17 AArch64 ASIMD BFloat16 (BF16) instructions

Instruction Group AArché64 Exec Execution Utilized
Instruction Latency Throughput Pipeline
ASIMD convert, BFCVTN, 4 2.1 VALU
F32toBF16 BFCVTN2
ASIMD dot product BFDOT 10 2,1 VMAC,
VALU
ASIMD matrix BFMMLA 14,15 1,1/2 VMAC,
multiply accumulate VALU
ASIMD multiply BFMLALB, 4 2.1 VMAC
accumulate long BFMLALT

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 77

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Arm® Cortex-A520 Core Software Optimization Guide

Instruction Group AArché64 Exec Execution Utilized

Instruction Latency Throughput Pipeline
Scalar convert, F32 BFCVT 4 21 VALU
toBF16

3.19 ASIMD miscellaneous instructions

Table 3-18 AArch64 ASIMD miscellaneous instructions

Instruction Group AArch64 Exec Execution Utilized
Instruction Latency Throughput Pipeline
ASIMD bit reverse RBIT 3 2,1 VALU
ASIMD bitwise BIF, BIT, 3 2.1 VALU
insert BSL
ASIMD count CLS, CLZ, 3 2.1 VALU
CNT
ASIMD duplicate, DUP 3 1 VALU
genreg
ASIMD duplicate, DUP 3 2.1 VALU
element
ASIMD extract EXT 3 2.1 VALU
ASIMD extract XTN 4 2.1 VALU
narrow
ASIMD extract SQXTN(2), 4 2.1 VALU
narrow, saturating SQXTUN(2),
UQXTN(2)
ASIMD insert, INS 4 2.1 VALU
element to element
ASIMD move, FP FMOV 3 2.1 VALU
immed
ASIMD move, MOV, 3 2.1 VALU
integer immed MVNI
ASIMD reciprocal FRECPE, 4 2,1 VMAC
estimate, D-form FRECPX,
F32 and Fo4 FRSQRTE,
URECPE,
URSQRTE

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 38 of 77

Arm® Cortex-A520 Core Software Optimization Guide

Instruction Group

AArch64
Instruction

Exec
Latency

PJDOC-1505342170-671342

Execution
Throughput

Issue 1.2
Instruction characteristics

Utilized
Pipeline

ASIMD reciprocal FRECPE, 4 2,1 VMAC
estimate, D-form FRECPX,
F16 and Q-form FRSQRTE,
F32 URECPE,
URSQRTE
ASIMD reciprocal FRECPE, 4 2,1 VMAC
estimate, Q-form FRECPX,
F16 FRSQRTE,
URECPE,
URSQRTE
ASIMD reciprocal FRECPS, 4 2,1 VMAC
step FRSQRTS
ASIMD reverse REV16, 3 21 VALU
REV32,
REV64
ASIMD table TBL 4 2,1 VALU
lookup, 1 table regs
ASIMD table TBL 8 2/5 VALU
lookup, 2 table regs
ASIMD table TBL 12 1/5 VALU
lookup, 3 table regs
ASIMD table TBL 16 1/9 VALU
lookup, 4 table regs
ASIMD table lookup TBX 8 2/5 VALU
extension, 1 table
reg
ASIMD table lookup TBX 12 1/5 VALU
extension, 2 table
reg
ASIMD table lookup TBX 16 1/9 VALU
extension, 3 table
reg
ASIMD table lookup TBX 20 1/13 VALU
extension, 4 table
reg
ASIMD transfer, UMQV, 3 1 VALU
elementto genreg SMOV
ASIMD transfer, INS 3 1 VALU
genregtoelement

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 39 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized
Instruction Latency Throughput Pipeline

ASIMD transpose TRN1Z, 3 2,1 VALU
TRN2

ASIMD unzip/zip UZP1, 3 2.1 VALU
UZP2, ZIP1,
ZIP2

3.20 ASIMD load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache.

Base register updates are done in parallel to the operation.

Table 3-19 AArché4 load instructions

Instruction Group AArché4 Load Execution Utilized
Instruction Latency Throughput Pipeline

ASIMD load, 1 LD1 3 2 Load/Store,

element, multiple, 1 Load

reg, D-form

ASIMD load, 1 LD1 3 2 Load/Store,

element, multiple, 1 Load

reg, Q-form

ASIMD load, 1 LD1 3 1 Load/Store

element, multiple, 2

reg, D-form

ASIMD load, 1 LD1 3 1 Load/Store

element, multiple, 2

reg, Q-form

ASIMD load, 1 LD1 4 1/2 Load/Store

element, multiple, 3

reg, D-form

ASIMD load, 1 LD1 4 1/2 Load/Store

element, multiple, 3

reg, Q-form

ASIMD load, 1 LD1 4 1/2 Load/Store

element, multiple, 4

reg, D-form

ASIMD load, 1 LD1 4 1/2 Load/Store

element, multiple, 4

reg, Q-form

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page400f 77

Arm® Cortex-A520 Core Software Optimization Guide

Instruction Group

AArch64
Instruction

Load

Latency

PJDOC-1505342170-671342

Execution
Throughput

Issue 1.2
Instruction characteristics

Utilized
Pipeline

ASIMD load, 1 LD1 2 Load/Store
element, one lane,

B/H/S

ASIMD load, 1 LD1 2 Load/Store,
element, one lane, D Load
ASIMD load, 1 LD1R 2 Load/Store,
element, all lanes, Load
D-form, B/H/S

ASIMD load, 1 LD1R 2 Load/Store,
element, all lanes, Load
D-form, D

ASIMD load, 1 LD1R 2 Load/Store,
element, all lanes, Load
Q-form

ASIMD load, 2 LD2 1 Load/Store
element, multiple,

D-form, B/H/S

ASIMD load, 2 LD2 1/2 Load/Store
element, multiple,

Q-form, B/H/S

ASIMD load, 2 LD2 1 Load/Store
element, multiple,

Q-form, D

ASIMD load, 2 LD2 1/2 Load/Store
element, one lane,

B/H

ASIMD load, 2 LD2 1/2 Load/Store
element, one lane, S

ASIMD load, 2 LD2 1/2 Load/Store
element, one lane, D

ASIMD load, 2 LD2R 1 Load/Store
element, all lanes,

D-form, B/H/S

ASIMD load, 2 LD2R 1 Load/Store
element, all lanes,

D-form, D

ASIMD load, 2 LD2R 1 Load/Store
element, all lanes,

Q-form

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page410f77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group AArché64 Load Execution Utilized

Instruction Latency Throughput Pipeline

ASIMD load, 3 LD3 5 1/3 Load/Store
element, multiple,
D-form, B/H/S

ASIMD load, 3 LD3 5 1/3 Load/Store
element, multiple,
Q-form, B/H/S

ASIMD load, 3 LD3 5 1/3 Load/Store
element, multiple,

Q-form, D

ASIMD load, 3 LD3 5 1/3 Load/Store
element, one lane,

B/H

ASIMD load, 3 LD3 5 1/3 Load/Store
element, one lane, S

ASIMD load, 3 LD3 5 1/3 Load/Store
element, one lane, D

ASIMD load, 3 LD3R 4 1/2 Load/Store

element, all lanes,
D-form, B/H/S

ASIMD load, 3 LD3R 4 1/2 Load/Store
element, all lanes,

D-form, D

ASIMD load, 3 LD3R 4 1/2 Load/Store

element, all lanes,
Q-form, B/H/S

ASIMD load, 3 LD3R 4 1/2 Load/Store
element, all lanes,

Q-form, D

ASIMD load, 4 LD4 5 1/3 Load/Store

element, multiple,
D-form, B/H/S

ASIMD load, 4 LD4 5 1/3 Load/Store
element, multiple,
Q-form, B/H/S

ASIMD load, 4 LD4 5 1/4 Load/Store
element, multiple,
Q-form, D

ASIMD load, 4 LD4 6 1/4 Load/Store
element, one lane,
B/H

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 42 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group AArché64 Load Execution Utilized
Instruction Latency Throughput Pipeline

ASIMD load, 4 LD4 6 1/4 Load/Store

element, one lane, S

ASIMD load, 4 LD4 6 1/4

element, one lane, D

ASIMD load, 4 LD4R 4 1/2 Load/Store

element, all lanes,

D-form, B/H/S

ASIMD load, 4 LD4R 4 1/2 Load/Store

element, all lanes,

D-form, D

ASIMD load, 4 LD4R 4 1/2 Load/Store

element, all lanes,

Q-form, B/H/S

ASIMD load, 4 LD4R 4 1/2 Load/Store

element, all lanes,

Q-form, D

3.21 ASIMD store instructions

Base register updates are done in parallel to the operation.

Table 3-20 AArch64 ASIMD store instructions

Instruction Group

AArch64
Instruction

Exec Execution Utilized

ASIMD store, 1
element, multiple, 1
reg, D-form

ST1

Latency Throughput Pipeline
- 1 Load/Store

ASIMD store, 1
element, multiple, 1
reg, Q-form

ST1

- 1 Load/Store

ASIMD store, 1
element, multiple, 2
reg, D-form

ST1

- 1 Load/Store

ASIMD store, 1
element, multiple, 2
reg, Q-form

ST1

- 1/2 Load/Store

ASIMD store, 1
element, multiple, 3
reg, D-form

ST1

- 1/3 Load/Store

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 43 0of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized
Instruction Latency Throughput Pipeline

ASIMD store, 1 ST1 - 1/3 Load/Store

element, multiple, 3

reg, Q-form

ASIMD store, 1 ST1 - 1/2 Load/Store

element, multiple, 4

reg, D-form

ASIMD store, 1 ST1 - 1/4 Load/Store

element, multiple, 4

reg, Q-form

ASIMD store, 1 ST1 - 1 Load/Store

element, one lane,

B/H/S

ASIMD store, 1 ST1 - 1 Load/Store

element, one lane, D

ASIMD store, 2 ST2 - 1 Load/Store

element, multiple,
D-form, B/H/S

ASIMD store, 2 ST2 - 1/2 Load/Store
element, multiple,
Q-form, B/H/S

ASIMD store, 2 ST2 - 1/2 Load/Store
element, multiple,
Q-form, D

ASIMD store, 2 ST2 - 1 Load/Store
element, one lane,
B/H/S

ASIMD store, 2 ST2 - 1 Load/Store
element, one lane, D

ASIMD store, 3 ST3 - 1/4 Load/Store
element, multiple,
D-form, B/H/S

ASIMD store, 3 ST3 - 1/6 Load/Store
element, multiple,
Q-form, B/H/S

ASIMD store, 3 ST3 - 1/3 Load/Store
element, multiple,
Q-form, D

ASIMD store, 3 ST3 - 1/2 Load/Store
element, one lane,
B/H/S

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 44 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group AArché64 Exec Execution Utilized
Instruction Latency Throughput Pipeline

ASIMD store, 3 ST3 - 1/2 Load/Store

element, one lane, D

ASIMD store, 4 ST4 - 1/4 Load/Store

element, multiple,
D-form, B/H/S

ASIMD store, 4 ST4 - 1/8 Load/Store
element, multiple,
Q-form, B/H/S

ASIMD store, 4 ST4 - 1/4 Load/Store
element, multiple,
Q-form, D

ASIMD store, 4 ST4 - 1/2 Load/Store
element, one lane,
B/H/S

ASIMD store, 4 ST4 - 1/2 Load/Store
element, one lane, D

3.22 Cryptography extensions

Table 3-21 AArché64 Cryptography instructions

Instruction Group AArché64 Execution Utilized
Instruction Throughput Pipeline
Crypto AES ops AESD, AESE, 3 2,1 Crypto
AESIMC,
AESMC
Crypto polynomial PMULL (2) 4 2 VMC
(64x64) multiply
long
Crypto SHA1 hash SHA1H 3 1,1/2 VALU
acceleration op
Crypto SHA1 hash SHA1C, 4 2 VMC
acceleration ops SHA1M,
SHA1P
Crypto SHA1 SHA1SUOQ, 3 2 VMC
schedule SHA1SU1
acceleration ops

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page450f 77

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Arm® Cortex-A520 Core Software Optimization Guide

AArch64 Exec
Instruction Laten

Utilized
Pipeline

Execution
Throughput

Instruction Group

cy

Crypto SHA256 SHA256H, 2 VMC
hash acceleration SHA256H2
ops
Crypto SHA256 SHA256SUO, 2 VMC
schedule SHA2565U1
acceleration ops
Crypto SHA512 SHA512H, 1/9 VMC
hash acceleration SHA512H2,
ops SHA512SU0,
SHA512SU1
Crypto SHA3 ops BCAX, EORS3, 2,1 | VALU
XAR
Crypto SHA3 ops RAX1 1/9 | VMC
RAX1
Crypto SM3 ops SM3PARTW1, 9 1/9 VMC
SM3PARTW?2,
SM3SS1,
SM3TT1A,
SM3TT1B,
SM3TT2A,
SM3TT2B
Crypto SM4 ops SMA4E, 9 1/9 VMC
SM4EKEY
3.23 CRC

Table 3-22 AArch64 CRC instructions

Instruction Group AArché64 Exec Execution Utilized
Instruction Latency Throughput Pipeline

CRC checksum ops CRC32, 2 1 MAC
CRC32C

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page460of 77

Arm® Cortex-A520 Core Software Optimization Guide

3.24 SVE Predicate instructions

Table 3-23 SVE Predicate instructions

PJDOC-1505342170-671342

Issue 1.2

Instruction characteristics

Instruction Group SVE Exec Execution Utilized
Instruction Latency Throughput Pipeline
Loop control, based BRKA, 2 1 ALU
on predicate BRKB
Loop control, based BRKAS, 2 1 ALU
on predicate and BRKBS
flag setting
Loop control, BRKN, 2 1 ALU
propagating BRKPA,
BRKPB
Loop control, BRKNS, 2 1 ALU
propagating and flag BRKPAS,
setting BRKPBS
Loop control, based WHILEGE, 2 1 ALU
on GPR WHILEGT,
WHILEH],
WHILEHS,
WHILELE,
WHILELO,
WHILELS,
WHILELT,
WHILERW,
WHILEWR
Loop terminate CTERMEQ, 1 1 ALU
CTERMNE
Predicate counting ADDPL, 1 2 ALU
scalar ADDVL,
RDVL,

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 47 of 77

Instruction Group

Arm® Cortex-A520 Core Software Optimization Guide

SVE
Instruction

PJDOC-1505342170-671342

Exec Execution
Latency Throughput

Issue 1.2

Instruction characteristics

Utilized
Pipeline

CNTB,
CNTH,
CNTW,
CNTD,

DECB,
DECH,
DECW,
DECD,
INCB,
INCH,
INCW,
INCD,

SQDECS,
SQDECH,
SQDECWY,
SQDECD,
SQINCB,
SQINCH,
SQINCW,
SQINCD,
UQDECSB,
UQDECH,
UQDECW,
UQDECD,
UQINCB,
UQINCH,
UQINCW,
UQINCD

ALU

Predicate counting
scalar, active
predicate

CNTP,
DECP, INCP

ALU

Predicate counting
scalar, active
predicate,
saturating, 64-bit

SQDECP,
SQINCP,
UQDECP,
UQINCP

9 1/3,1/6

ALU

Predicate counting
scalar, active
predicate,
saturating, 32-bit

SQDECP,
SQINCP,

3 1/3,1/6

UQDECP,
UQINCP

ALU

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 48 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group SVE Exec Execution Utilized
Instruction Latency Throughput Pipeline
Predicate counting SQDECP, 4 2,1 ALU
vector, active SQINCP,
predicate, UQDECP,
saturating UQINCP
Predicate logical AND, BIC, 2 1 ALU
EOR, MOV,
NAND,
NOR, NOT,
ORN, ORR
Predicate logical, ANDS, BICS, 2 1 ALU
flag setting EORS,
MOV,
NANDS,
NORS,
NOTS,
ORNS,
ORRS
Predicate reverse REV 2 1 ALU
Predicate select SEL 2 1 ALU
Predicate set PFALSE, 2 1 ALU
PTRUE
Predicate PTRUES 2 1 ALU
set/initialize, set
flags
Predicate find PFIRST, 2 1 ALU
first/next PNEXT
Predicate test PTEST 2 1 ALU
Predicate transpose TRN1, 2 1 ALU
TRN2
Predicate unpack PUNPKHI, 2 1 ALU
and widen PUNPKLO
Predicate zip/unzip ZIP1,ZIP2, 2 1 ALU
UZP1,
UzZP2
Notes:

1. Instructions with dependencies may be co-issue.

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 49 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

3.25 SVE Integer instructions

Table 3-24 SVE integer instructions

Instruction Group SVE Instruction Execution Utilized

Throughp Pipeline
ut

Arithmetic, absolute SABD, UABD 3 2,1 VALU
diff

Arithmetic, absolute SABA, UABA o) 1/2,1/4 VALU
diff accum

Arithmetic, absolute SABALB, 6 1/2,1/4 VALU
diff accum long SABALT,
UABALB,
UABALT

Arithmetic, absolute SABDLB, 3 21 VALU
diff long SABDLT,
UABDLB,
UABDLT

Arithmetic, basic ABS, 3 2,1 VALU

ADD, ADR,
CNOT, NEG,
SHADD, SHSUB,
SHSUBR,

SRHADD, SUB,
UADDWSB,
UADDWT,
UHADD,
UHSUB,
UHSUBR,

URHADD,
SUBHNB, 4
SUBHNT,

SUBR,
USUBWB,
USUBWT

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 500f 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group SVE Instruction Execution Utilized

Throughp Pipeline
ut

Arithmetic, basic SADDLB, 4 21 VALU
SADDLBT,
SADDLT,
SADDWB,
SADDWT,
SSUBLB,
SSUBLRBT,
SSUBLT,
SSUBLTB,
SSUBWS,
SSUBWT,
UADDLB,
UADDLT,
USUBLB,
USUBLT,

Arithmetic, complex ADDHNB, 4 2,1 VALU
ADDHNT,

SQABS, SQADD,
SQNEG, SQSUB,

SQSUBR,
SUQADD,
UQADD,
UQSUB,
UQSUBR,
USQADD,
RADDHNSB, 8 2/5,1/5
RADDHNT,
RSUBHNB,
RSUBHNT
Arithmetic, large ADCLB, ADCLT, 4 2,1 VALU
integer SBCLB, SBCLT
Arithmetic, pairwise ADDP 3 2,1 VALU
add
Arithmetic, pairwise SADALP, 7 2/5,1/5 VALU
add and accum long UADALP
Arithmetic, shift ASR, ASRR, LSL, 3 2,1 VALU
LSLR, LSR, LSRR
Arithmetic, shift and USRA 4 2,1 VALU
accumulate

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page510f 77

Arm® Cortex-A520 Core Software Optimization Guide

Instruction Group

SVE Instruction

Exec
Laten

cy

PJDOC-1505342170-671342

Execution
Throughp

ut

Issue 1.2
Instruction characteristics

Utilized
Pipeline

Arithmetic, shift and
accumulate complex

SRSRA,
URSRA,

2/51/5

VALU

SSRA

2,1

Arithmetic, shift by
immediate

SHRNB, SHRNT,
SSHLLB,
SSHLLT,
USHLLB,
USHLLT

2,1

VALU

Arithmetic, shift by
immediate and
insert

SLI, SRI

2,1

VALU

Arithmetic, shift
complex

RSHRNB,
RSHRNT,
SQRSHL,
SQRSHLR,
SQRSHRNSB,
SQRSHRNT,
SQRSHRUNB,
SQRSHRUNT,
SQSHL,
SQSHLR,
SQSHLU,
SQSHRNB,
SQSHRNT,
SQSHRUNB,
SQSHRUNT,
UQRSHL,
UQRSHLR,
UQRSHRNB,
UQRSHRNT,
UQSHL,
UQSHLR,
UQSHRNB,
UQSHRNT

21

VALU

Arithmetic, shift
right for divide

ASRD

21

VALU

Arithmetic, shift
rounding

SRSHL, SRSHLR,
SRSHR, URSHL,
URSHLR,
URSHR

21

VALU

Bit manipulation (B)

BDEP, BEXT,
BGRP

14

1/14

VMC

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 0of 77

Instruction Group

Arm® Cortex-A520 Core Software Optimization Guide

SVE Instruction

PJDOC-1505342170-671342

Execution

Throughp
ut

Issue 1.2
Instruction characteristics

Utilized
Pipeline

Bit manipulation (H) BDEP, BEXT, 22 1/22 VMC
BGRP
Bit manipulation (S) BDEP, BEXT, 38 1/38 VMC
BGRP
Bit manipulation (D) BDEP, BEXT, 70 1/70 VMC
BGRP
Bitwise select BSL, BSL1N, 3 2,1 VALU
BSL2N, NBSL
Count/reverse bits CLS, CLZ,RBIT 3 2,1 VALU
Count (B,H) CNT 3 2,1 VALU
Count (S) CNT 8 2/5,1/5 VALU
Count (D) CNT 12 1/5,1/10 VALU
Broadcast logical DUPM, MOV 4 2,1 VALU
bitmask immediate
to vector
Compare and set CMPEQ, 5 2,1 VALU
flags CMPGE,
CMPGT, CMPHI,
CMPHS, CMPLE,
CMPLO, CMPLS,
CMPLT, CMPNE
Complex add CADD 3 2,1 VALU
Complex add SQCADD 4 2,1 VALU
saturating
Complex dot CDOT 4 2,1 VMAC
product 8-bit
element
Complex dot CDOT 4 2,1 VMAC
product 16-bit
element
Complex multiply- CMLA 4 2,1 VMAC
add B, H, Selement
size
Complex multiply- CMLA 4 2,1 VMAC
add D element size

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 0f 77

Instruction Group

Arm® Cortex-A520 Core Software Optimization Guide

SVE Instruction

Exec
Laten

cy

PJDOC-1505342170-671342

Execution
Throughp
ut

Issue 1.2
Instruction characteristics

Utilized
Pipeline

Conditional extract CLASTA, 8 1,1 VALU

operations, general CLASTB

purpose register

Conditional extract CLASTA, 4 2,1 VALU

operations, CLASTB,

SIMD&FP scalar COMPACT,

and vector forms SPLICE

Convert to floating SCVTF, UCVTF 4 2,1 VALU

point, 64b to float

or convert to double

Convert to floating SCVTF, UCVTEF 4 2,1 VALU

point, 32b to single

or half

Convert to floating SCVTF, UCVTF 4 2,1 VALU

point, 16b to half

Copy, scalar CPY 3 2,1 VALU

Copy, scalar CPY 3 2,1 VALU

SIMD&FP or imm

Divides, 32 bit SDIV, SDIVR, 15 1/12 VMC
UDIV,UDIVR

Divides, 64 bit SDIV, SDIVR, 26 1/23 VMC
UDIV,UDIVR

Dot product, 8 bit SDOT,UDOT 2,1 VMAC

Dot product, 8 bit, SUDOT, USDOT 2,1 VMAC

using signed and

unsigned integers

Dot product, 16 bit SDOT,UDOT 4 2,1 VMAC

Duplicate, DUP, MOV 3 2,1 VALU

immediate and

indexed form

Duplicate, indexed > DUP 3 2,1 VALU

elem

Duplicate, scalar DUP, MOV 3 2,1 VALU

form

Extend, sign or zero SXTB, SXTH, 3 2,1 VALU
SXTW, UXTB,
UXTH, UXTW

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 54 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group SVE Instruction Exec Execution Utilized
Laten Throughp Pipeline
cy ut

Extract EXT 3 21 VALU

Extract narrow SQXTNB, 4 21 VALU

saturating SQXTNT,

SQXTUNB,
SQXTUNT,
UQXTNB,
UQXTNT

Extract/insert LASTA, LASTB, 4 21 VALU

operation, SIMD INSR

and FP scalar form

Extract/insert LASTA, LASTB, 8,8 1/3,1/3 VALUO

operation, scalar INSR 4 o1

Histogram HISTCNT, 8 2/5 VALUO

operations HISTSEG

Horizontal INDEX 4 2,1 VMAC

operations, B, H, S

form, immediate

operands only

Horizontal INDEX 4 1,1 VMAC

operations, B, H, S

form, scalar,

immediate

operands)/ scalar

operands only /

immediate, scalar

operands

Horizontal INDEX 4 2,1 VMAC

operations, D form,

immediate operands

only

Horizontal INDEX 4 1,1 VMAC

operations, D form,

scalar, immediate

operands)/ scalar

operands only /

immediate, scalar

operands

Logical AND, BIC, EON, 3 21 VALU

EOR, MOV,
NOT, ORN, ORR

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 550f 77

Arm® Cortex-A520 Core Software Optimization Guide

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group SVE Instruction Exec Execution Utilized
Laten Throughp Pipeline
cy ut

Logical EORBT, EORTB, 4 21 VALU

Max/min, basic and SMAX, SMAXP, 3 21 VALU

pairwise SMIN, SMINP,

UMAX, UMAXP
UMIN, UMINP

Matching MATCH, 77 1/4.,1/4 VALU

operations NMATCH

Matrix multiply- SMMLA, 4 2,1 VMAC

accumulate UMMLA,

USMMLA

Move prefix MOVPREX 3 2,1 VALU

Multiply, B, H, S MUL, SMULH, 4 2,1 VMAC

element size UMULH

Multiply, D element MUL, SMULH, 4 2,1 VMAC

size UMULH

Multiply long SMULLB, 4 2,1 VMAC

SMULLT,
UMULLB,
UMULLT

Multiply MLA, MLS 4 21 VMAC

accumulate, B, H, S

element size

Multiply MLA, MLS, MAD, 4 2,1 VMAC

accumulate, D MSB,

element size

Multiply accumulate SMLALB, 4 2,1 VMAC

long SMLALT,

SMLSLB,
SMLSLT,
UMLALB,
UMLALT,
UMLSLB,
UMLSLT

Multiply accumulate SQDMLALB, 4 21 VMAC

saturating doubling SQDMLALT,

long regular SQDMLALBT,

SQDMLSLB,
SQDMLSLT,
SQDMLSLBT

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 56 of 77

Arm® Cortex-A520 Core Software Optimization Guide

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group SVE Instruction Exec Execution Utilized
Laten Throughp Pipeline
cy ut

Multiply saturating SQDMULH 4 21 VMAC

doubling high, B, H,

Selement size

Multiply saturating SQDMULH 4 2,1 VMAC

doubling high, D

element size

Multiply saturating SQDMULLB, 4 21 VMAC

doubling long SQDMULLT

Multiply saturating SQRDMLAH, 4 1,1 VMAC

rounding doubling SQRDMLSH,

regular/complex SQRDCMLAH

accumulate, B, H, S

element size

Multiply saturating SQRDMLAH, 4 1,1 VMAC

rounding doubling SQRDMLSH,

regular/complex SQRDCMLAH

accumulate, D

element size

Multiply saturating SQRDMULH 4 2,1 VMAC

rounding doubling

regular/complex, B,

H, S element size

Multiply saturating SQRDMULH 4 2,1 VMAC

rounding doubling

regular/complex, D

element size

Multiply/multiply PMUL, PMULLB, 4 2,1 VALU

long, (8, 16, 32) PMULLT

polynomial

Multiply/multiply PMULLB, 9 1/9 VMC

long, (64) PMULLT

polynomial

Predicate counting DECH, DECW, 3 2,1 VALU

vector DECD, INCH,

INCW, INCD

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 57 of 77

Instruction Group

Arm® Cortex-A520 Core Software Optimization Guide

SVE Instruction

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Utilized
Pipeline

Execution

Throughp
ut

Predicate counting SQDECH, 4 2,1 VALU
vector, saturating SQDECW,

SQDECD,

SQINCH,

SQINCWY,

SQINCD,

UQDECH,

UQDECW,

UQDECD,

UQINCH,

UQINCWY,

UQINCD
Reciprocal estimate URECPE, 4 2,1 VMAC

URSQRTE
Reduction, SADDYV, 4 1 VALUO
arithmetic, B form UADDYV,

SMAXV, SMINV,

UMAXV, UMINV
Reduction, SADDYV, 4 1 VALUO
arithmetic, H form UADDYV,

SMAXV, SMINV,

UMAXV, UMINV
Reduction, SADDV, 4 1 VALUO
arithmetic, S form UADDV,

SMAXV, SMINV,

UMAXV, UMINV
Reduction, logical ANDV, EORV, 4 1 VALUO

ORV
Reverse, vector REV, REVB, 3,3 2,1 VALU

REVH, REVW
Select, vector form MOV, SEL 3 2,1 VALU
Table lookup TBL 4 2,1 VALU
Table lookup, TBL 8 2/5,1/5 VALU
double table
Table lookup TBX 4 2,1 VALU
extension
Transpose, vector TRN1, TRN2 3 2,1 VALU
form

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 58 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group SVE Instruction Execution Utilized
Throughp Pipeline
ut

Unpack and extend SUNPKHI, 4 2,1 VALU

SUNPKLO,
UUNPKHI,
UUNPKLO
Zip/unzip UZP1,UZP2, 3 2.1 VALU
ZIP1,ZIP2

3.26 SVE FP data processing instructions

Table 3-25 SVE Floating-point instructions

Instruction Group SVE Exec Execution Utilized

Instruction Latency Throughput Pipeline
Floating point FABD, FABS 4 2,1 VALU
absolute
value/difference
Floating point FADD, 4 2,1 VALU
arithmetic FADDP,

FNEG,

FSUB,

FSUBR
Floating point FADDA 32 1/25 VALU
associative add, F16
Floating point FADDA 16 1/9,1/18 VALU
associative add, F32
Floating point FADDA 8 2/5,1/5 VALU
associative add, F64
Floating point FACGE, 4 1,1/2 VALU
compare FACGT,

FACLE,

FACLT,

FCMEQ,

FCMGE,

FCMGT,

FCMLE,

FCMLT,

FCMNE,

FCMUO
Floating point FCADD 4 2,1 VALU
complex add

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 59 of 77

Instruction Group

SVE
Instruction

Arm® Cortex-A520 Core Software Optimization Guide

Exec

Latency

PJDOC-1505342170-671342

Execution
Throughput

Issue 1.2
Instruction characteristics

Utilized
Pipeline

Floating point FCMLA 2,1 VMAC
complex multiply
add
Floating point FCVT, 2,1 VALU
convert, long or FCVTLT,
narrow (F16to F32 FCVTNT
or F32to F16)
Floating point FCVT, 2,1 VALU
convert, long or FCVTLT,
narrow (F16 to Fé4, FCVTNT
F32toFé4, Fé4to
F32or F64to F16)
Floating point FCVTX, 2,1 VALU
convert, round to FCVTXNT
odd
Floating point base2 FLOGB 2,1 VMAC
log, F16
Floating point base2 FLOGB 2,1 VMAC
log, F32
Floating point base2 FLOGB 2,1 VMAC
log, F64
Floating point FCVTZS, 2,1 VALU
convert to integer, FCVTZU
F16
Floating point FCVTZS, 2,1 VALU
convert to integer, FCVTZU
F32
Floating point FCVTZS, 2,1 VALU
convert to integer, FCVTZU
F64
Floating point copy FCPY, 2,1 VALU
FDUP,
FMOV
Floating point FDIV, 1/5 VMC
divide, F16* FDIVR
Floating point FDIV, 13 1/10 VMC
divide, F321 FDIVR
Floating point FDIV, 22 1/19 VMC
divide, F641 FDIVR

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 60 of 77

Arm® Cortex-A520 Core Software Optimization Guide

Instruction Group

SVE
Instruction

Exec
Latency

PJDOC-1505342170-671342

Execution
Throughput

Issue 1.2
Instruction characteristics

Utilized
Pipeline

Floating point FMAXP, 4 2,1 VALU
min/max pairwise FMAXNMP,

FMINP,

FMINNMP
Floating point FMAX, 4 2,1 VALU
min/max FMIN,

FMAXNM,

FMINNM
Floating point FSCALE, 4 2,1 VMAC
multiply FMUL,

FMULX
Floating point FMLA, 4 2,1 VMAC
multiply accumulate FMLS,

FMAD,

FMSB,

FNMAD,

FNMLA,

FNMLS,

FNMSB
Floating point FMLALB, 4 2,1 VMAC
multiply add/sub FMLALT,
accumulate long FMLSLB,

FMLSLT
Floating point FRECPE, 4 2,1 VMAC
reciprocal estimate, FRECPX,
F16 FRSQRTE
Floating point FRECPE, 4 2,1 VMAC
reciprocal estimate, FRECPX,
F32 FRSQRTE
Floating point FRECPE, 4 2,1 VMAC
reciprocal estimate, FRECPX,
F64 FRSQRTE
Floating point FRECPS, 4 2,1 VMAC
reciprocal step FRSQRTS
Floating point FMAXNMV 4 1 VALUO
reduction, F16 FMAXV.

FMINNMV,

FMINV
Floating point FADDV 12 1/5 VALUO
reduction, F16

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 61 0of 77

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Arm® Cortex-A520 Core Software Optimization Guide

Utilized
Pipeline

Execution
Throughput

Instruction Group SVE Exec

Instruction Latency

Floating point FADDV 8 2/5 VALUO
reduction, F32
Floating point FADDV 4 2 VALUO
reduction, F64
Floating point round FRINTA, 4 2,1 VALU
tointegral, F16 FRINTI,

FRINTM,

FRINTN,

FRINTP,

FRINTX,

FRINTZ
Floating point round FRINTA, 4 2,1 VALU
tointegral, F32 FRINTI,

FRINTM,

FRINTN,

FRINTP,

FRINTX,

FRINTZ
Floating point round FRINTA, 4 2,1 VALU
tointegral, F64 FRINTI,

FRINTM,

FRINTN,

FRINTP,

FRINTX,

FRINTZ
Floating point FSQRT 8 1/5 VMC
square root, F16
Floating point FSQRT 12 1/9 VMC
square root, F32
Floating point FSQRT 22 1/19 VMC
square root F64
Floating point FEXPA 4 2,1 VMAC
trigonometric
exponentiation
Floating point FTMAD 4 2,1 VMAC
trigonometric
multiply add
Floating point FTSMUL 4 2,1 VMAC
trigonometric
starting value

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 62 0of 77

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Arm® Cortex-A520 Core Software Optimization Guide

Utilized
Pipeline

Execution
Throughput

FTSSEL 33 21 VALU

Instruction Group SVE Exec

Instruction Latency

Floating point
trigonometric select
coefficient

Notes:

1. Floating-point division operations may finish early if the divisor is a power of two.

3.27 SVE BFloat16 (BF16) instructions

Table 3-26 SVE Bfloat16 (BF16) instructions

Instruction Group SVE Exec Execution Utilized
Instruction Latency Throughput Pipeline
Convert, F32 to BFCVT, 4 2,1 VALU
BF16 BFCVTNT
Dot product BFDOT 10 2,1 VMAC,
VALU
Matrix multiply BFMMLA 14,15 1,1/2 VMAC,
accumulate VALU
Multiply accumulate BFMLALB, 4 2,1 VMAC
long BFMLALT

3.28 SVE Load instructions

The latencies shown in Table 3-27 assume the memory access hits in the Level 1 Data Cache.

Base register updates are done in parallel to the operation.

Table 3-27 SVE Load instructions

Instruction Group SVE Load Execution Utilized
Instruction Latency Throughput Pipeline
Load vector LDR 3 2 Load/Store,
Load
Load predicate LDR 3 1 Load/Store

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 63 0f 77

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Arm® Cortex-A520 Core Software Optimization Guide

Instruction Group

SVE
Instruction

Load
Latency

Execution
Throughput

Utilized
Pipeline

Contiguous load
scalar +imm

LD1B,
LD1D,
LD1H,
LDIW
LD1SB,
LD1SH,
LDISW,

Load/Store,
Load

Contiguous load
scalar + scalar

LD1B,
LD1D,
LD1H,
LDIW
LD1SB,
LD1SH
LD1SW

Load/Store,
Load

Contiguous load
broadcast, scalar +
imm

LD1RB,
LD1RH,
LD1RD,
LDIRW,
LD1RSB,
LDIRSH,
LDIRSW,
LD1RQB,
LD1RQD,
LDIRQH,

Load/Store,
Load

Contiguous load
broadcast, scalar +
scalar

LD1RQB,
LDIRQD,
LDIRQH,
LDIRQW

Load/Store,
Load

Non temporal load

scalar +imm

LDNT1B,
LDNT1D,
LDNT1H,
LDNTIW

Load/Store,
Load

Non temporal load

scalar + scalar

LDNT1B,
LDNT1D,
LDNT1H

LDNTIW

Load/Store,
Load

Non temporal
gather load, vector
+ scalar 32-bit
elementsize

LDNT1B,
LDNT1H,
LDNTIW,

LDNT1SB,
LDNT1SH

? 1/9

Load/Store

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 64 of 77

Instruction Group

SVE
Instruction

Arm® Cortex-A520 Core Software Optimization Guide

Load

Latency

PJDOC-1505342170-671342

Execution
Throughput

Issue 1.2
Instruction characteristics

Utilized
Pipeline

Non temporal LDNT1B, 1/7 Load/Store
gather load, vector LDNT1D,
+ scalar 64-bit LDNT1H,
element size LDNT1W,

LDNT1SB,

LDNT1SH,

LDNT1SW
Contiguous first LDFF1B, 2 Load/Store,
faulting load, scalar LDFF1D, Load
+scalar LDFF1H,

LDFF1WY,

LDFF1SB,

LDFF1SD,

LDFF1SH

LDFF1SW
Contiguous non LDNF1B, 2 Load/Store,
faulting load, scalar LDNF1D, Load
+imm LDNF1H,

LDNF1W,

LDNF1SB,

LDNF1SH,

LDNF1SW
Contiguous Load LD2B, 1 Load/Store
two structures to LD2D,
two vectors, scalar LD2H,
+imm LD2W
Contiguous Load LD28B, 1/2 Load/Store
two structures to LD2D,
two vectors, scalar LD2H,
+scalar LD2W
Contiguous Load LD3B, 1/3 Load/Store
three structures to LD3D,
three vectors, scalar LD3H,
+imm LD3W
Contiguous Load LD3B, 1/4 Load/Store
three structures to LD3D,
three vectors, scalar LD3H,
+scalar LD3W
Contiguous Load LD4B, 1/3 Load/Store
four structures to LD4D,
four vectors, scalar LD4H
+imm LD4W

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 650f 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342

Instruction Group

SVE
Instruction

Issue 1.2
Instruction characteristics

Load Execution Utilized
Latency Throughput Pipeline

Contiguous Load
four structures to
four vectors, scalar
+scalar

LD4B,
LD4D,
LD4H,
LD4AW

5 1/4 Load/Store

Gather load, vector
+imm, 32-bit
element size

LD1B,
LD1H,
LD1IW,
LD1SB,
LD1SH,
LD1SW,
LDFF1B,
LDFF1H,
LDFFIW,
LDFF1SB,
LDFF1SH,
LDFF1SW

9 1/9 Load/Store

Gather load, vector
+imm, 64-bit
element size

LD1B,
LD1D,
LD1H,
LD1IW,
LD1SB,
LD1SH,
LD1SW,
LDFF1B,
LDFF1D
LDFF1H,
LDFFIW,
LDFF1SB,
LDFF1SH,
LDFF1SW

7 1/7 Load/Store

Gather load, 32-bit
scaled offset

LD1H,
LDIW,
LDFF1H,
LDFF1SH,
LDFFIW

7 1/7 Load/Store

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 66 0of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group SVE Load Execution Utilized

Instruction Latency Throughput Pipeline

Gather load, 32-bit LD1B, 7 1/7 Load/Store
unpacked unscaled LD1D,
offset LD1H,
LD1W,
LDFF1B,
LDFF1D,
LDFF1H,
LDFF1SB,
LDFF1SH,
LDFF1SW,
LDFF1W
Gather load, 32-bit LD1B, / 1/7 Load/Store
unscaled offset LD1H,
LD1W,
LDFF1B,
LDFF1H,
LDFF1SB,
LDFF1SH,
LDFF1W
Gather load, 32-bit LD1D, 7 1/7 Load/Store
unpacked scaled LD1H,
offset LDIW,
LDFF1D,
LDFF1H,
LDFF1SH,
LDFF1SW,
LDFF1W

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 67 of 77

Instruction Group

Arm® Cortex-A520 Core Software Optimization Guide

SVE
Instruction

Load
Latency

PJDOC-1505342170-671342

Execution
Throughput

Issue 1.2

Instruction characteristics

Utilized
Pipeline

Gather load, 64-bit
unscaled offset

LD1B,
LD1D,
LD1H,
LDIW,
LDFF1B,
LDFF1D,
LDFF1H,
LDFF1SB,
LDFF1SH,
LDFF1SW,
LDFFIW

1/7

Load/Store

Gather load, 64-bit
scaled offset

LD1D,
LD1H,
LD1IW,
LDFF1D,
LDFF1H,
LDFF1SH,
LDFF1SW,
LDFFIW

1/7

Load/Store

3.29 SVE Store instructions

Base register updates are done in parallel to the operation.

Table 3-28 SVE Store instructions

Instruction Group SVE Exec Execution Utilized
Instructions Latency Throughput Pipeline
Store from STR - 1 Load/Store
predicatereg
Store from vector STR - 1 Load/Store
reg
Contiguous store, ST1B,ST1H, - 1 Load/Store
scalar +imm ST1D,
ST1IW
Contiguous store, ST1H,ST1B, - 1 Load/Store
scalar +scalar ST1D,
ST1IW

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 68 of 77

Instruction Group

Arm® Cortex-A520 Core Software Optimization Guide

SVE
Instructions

Exec
Latency

PJDOC-1505342170-671342

Execution
Throughput

Issue 1.2
Instruction characteristics

Utilized
Pipeline

Contiguous store ST2B,ST2H, 1/2 Load/Store
two structures from ST2D,
two vectors, scalar ST2W
+imm
Contiguous store ST2H,ST2B, 1/2 Load/Store
two structures from ST2D,
two vectors, scalar ST2W
+ scalar
Contiguous store ST3B, ST3H, 1/6 Load/Store
three structures ST3W
from three vectors, ST3D 1/3 | Load/Store
scalar +imm
Contiguous store ST3B, ST3H, 1/6 Load/Store
three structures ST3W
from three vectors, ST3D 1/3 | Load/Store
scalar + scalar
Contiguous store ST4B, ST4H, 1/8 Load/Store
four structures from ST4W
four vectors, scalar ST4D 1/4 | Load/Store
+imm
Contiguous store ST4B, ST4H, 1/8 Load/Store
four structures from ST4W
four vectors, scalar
+scalar ST4D 1/4 Load/Store
Non temporal store, STNT1B, 1 Load/Store
scalar +imm STNT1D,

STNT1H,

STNT1IW
Non temporal store, STNT1H, 1 Load/Store
scalar + scalar STNT1B,

STNT1D,

STNT1IW
Scatter non STNT1B, 1/9 Load/Store
temporal store, STNT1H,
vector + scalar 32- STNT1IW
bit element size
Scatter non STNT1B, 1/7 Load/Store
temporal store, STNT1D,
vector + scalar 64- STNT1H,
bit element size STNT1IW

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 69 of 77

Arm® Cortex-A520 Core Software Optimization Guide

PJDOC-1505342170-671342
Issue 1.2
Instruction characteristics

Instruction Group SVE Exec Execution Utilized
Instructions Latency Throughput Pipeline
Scatter store vector ST1B,ST1H, 1/9 Load/Store
+imm 32-bit STIW
element size
Scatter store vector ST1B,ST1D, 1/7 Load/Store
+imm 64-bit ST1H,
element size ST1IW
Scatter store, 32-bit ST1H, 1/8 Load/Store
scaled offset STIW
Scatter store, 32-bit ST1B,ST1D, 1/8 Load/Store
unpacked unscaled ST1H,
offset STIW
Scatter store, 32-bit ST1D, 1/8 Load/Store
unpacked scaled ST1H,
offset STIW
Scatter store, 32-bit ST1B,ST1H, 1/8 Load/Store
unscaled offset STIW
Scatter store, 64-bit ST1D, 1/8 Load/Store
scaled offset ST1H,
STIW
Scatter store, 64-bit ST1B,ST1D, 1/8 Load/Store
unscaled offset ST1H,
STIW

3.30 SVE Miscellaneous instructions

Table 3-29 SVE Miscellaneous instructions

Instruction Group SVE Exec Execution Utilized
Instruction Latency Throughput Pipeline

Read first fault RDFFR 1 Load/Store

register,

unpredicated

Read first fault RDFFR 1 Load/Store

register, predicated

Read first fault RDFFRS 1 Load/Store

register and set

flags

Set first fault SETFFR 1 Load/Store

register

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 70 0f 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Instruction characteristics

Instruction Group SVE Exec Execution Utilized

Instruction Latency Throughput Pipeline
Write to first fault WRFFR 1 1 Load/Store
register

3.31 SVE Cryptography instructions

Table 3-30 SVE cryptography instructions

Instruction Group SVE Exec Execution Utilized
Instructions Latency Throughput Pipeline

Crypto AES ops AESD, AESE, 3 2,1 Crypto
AESIMC,
AESMC

Crypto SHA3 ops BCAX, 4 2,1 VALU
EOR3, XAR

Crypto SHA3 ops RAX1 9 1/9 VMC

RAX1

Crypto SM4 ops SMA4E, 9 1/9 VMC
SM4EKEY

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 710f 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Special considerations

4 Special considerations

4.1 Issue constraints

The issue queue has space for three instructions that support a maximum of (excluding
Floating-Point. Predicate, SIMD, SVE register accesses):

e Four general purpose destination registers
e Six general purpose source registers
An instruction will occupy two entries when it has either:
e Three or more general purpose destination registers
e Three or more general purpose source registers
Aninstruction will stall if insufficient space is available in the issue queue.

AES instructions will stall until there is at least one other instruction available to be issued (see
4.2 Instruction fusion).

A maximum of three issue queue entries can be co-issued per cycle (ignoring hazards)
consisting of at most:

e TwoALU instructions

e Twoloadinstructions

e Onestoreinstruction

e Two VPU data processing instructions
Multicycle entries disable co-issuing for all cycles of the operation but the last.
The following are multicycle:

e Atomicinstructions with Acquire or Release semantics

e Loads thatload more than 256-bit of data

e Storesthat store more than 128-bits of data

e Stores with Release semantics

e RDFFRS instructions

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 72 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Special considerations

4.2 Instruction fusion
Cortex-A520 Core can accelerate key instruction pairs in an operation called fusion.
The following instruction pairs can be fused for increased execution efficiency:

e 'AESE+AESMC'and'AESD + AESIMC' (see 4.13)

e MOVPRFXfusion: Cortex-A520 Core implements instruction fusion for MOVPRFX
instructions followed by SVE data processing instructions in all cases where the
instruction pair is defined as architecturally predictable other than those listed below,
and the fused pair will execute with the latency of the SVE data processing instruction.
Due to microarchitectural limitations, the following instructions will not fuse with an
unpredicated MOVPRFX: FCMLA, FMAD, FMLA, FMLS, FNMAD, FNMLA, FNMLS,
FNMSB, MAD, MLA, MLS, MSB, UDOT, BFMLALB, BEMLALT, SMMLA, UMMLA,
USMMLA, USDOT, SUDOT.

The following instructions will not fuse with a predicated or unpredicated MOVPRFX:
CNT, SABA, SABALB, SABALT, UABA, UABALB, UABALT, URSRA.

4.3 Branch instruction alighment

Branch instruction and branch target instruction alignment and density can affect
performance.

For best case performance, avoid placing more than one conditional branch instructions within
analigned 16-byte instruction memory region.

4.4 Load / Store Alignment

The Armv8-A architecture allows many types of load and store accesses to be arbitrarily
aligned. Cortex-A520 Core handles most unaligned accesses without performance penalties.
However, there are cases which could reduce bandwidth or incur additional latency, as
described below.

e Quad-word load operations that are not 4-byte aligned

e Loadoperations that cross a 32-byte boundary

e Store operations that cross a 16-byte boundary

4.5 A64 low latency pointer forwarding

In the Aé4 instruction set the following pointer sequence is expected to be common to
generate load-store addresses:

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 73 0f 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Special considerations

adrp x0, <const>
ldrp x0, [x0, #lol2 <const>]

In Cortex-A520 Core, there are dedicated forwarding paths that always allow this sequence to
be executed without incurring a dependency-based stall.

4.6 AUT* RET forwarding

Inthe Aé4 instruction set any variant of the AUT instruction will be dual issued with the directly
following RET instruction. The latency of the AUT instruction for the dependency of the LR
does not apply for these cases.

4.7 SIMD MAC forwarding

For the following integer SIMD instructions:
MUL, MLA, MLS, UMULL, UMULL2. SMULL, SMULL2. UMLAL. UMLAL2, SMLAL, SMLALZ2,
UMLSL, UMLSL2, SMLSL, SMLAL2, UDOT, SDOT

A dedicated MAC accumulator forwarding path is present. This forwarding path will be
triggered only when two consecutive instructions satisfy the following conditions:

e Bothinstructions read from/write to the same destination/accumulator register
e Bothinstructions use the same destination element size
e Theinstructions target the same destination register size (128-bit or 64-bit)

When this forwarding path is active, the latency between the above instructions will be 1 cycle.

4.8 Memory Tagging Extensions

Enabling precise tag checking can prevent Cortex-A520 Core from entering write-streaming
mode. This can reduce performance and increase power for larger writes, and memset or
memcpy-like workloads.

4.9 Memory routines

To achieve maximum throughput for memory copy (or similar loops), one should do the
following:

e Unroll the loop to include multiple load and store operations per iteration, minimizing
the overheads of looping

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 74 of 77

v,

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Special considerations

e Storesshould be aligned on a 16-byte boundary wherever possible

e Loads should not cross a 32-byte boundary as they incur a penalty

Updated optimized routines are available:
https://github.com/ARM-software/optimized-
routines/tree/master/string/aarche64

Figure 2 shows a code snippet from the inner loop of memory copy routine that copies at least
128 bytes. The loop copies 64 bytes per iteration and prefetches one iteration ahead.

Figure 2 Code Snippet from memcpy routine - large copy inner loop

Figure 3 shows a code snippet from the inner loop memory copy routine that copies Oto 16
bytes.

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page750f77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2

Special considerations

ldr A 1w, [src]

ldr A hw, [srcend, -4]
str A 1w, [dstin]

str A hw, [dstend, -4]
ret

bic src, src, 15

Figure 3 Code Snippet from memcpy routine - small copy inner loop

To achieve maximum throughput on memset, it is recommended that one do the following.

Unroll the loop to include multiple store operations per iteration, minimizing the overheads of
looping. Figure 4 shows code from the memset routine to set 17 to 96 bytes.

L(set medium) :
str g0, [dstin]
tbnz count, 6, L(set96)
str g0, [dstend, -16]
tbz count, 5, 1f
str g0, [dstin, 16]
str g0, [dstend, -32]

1: ret

Figure 4 Code snippet from memset routine

To achieve maximum performance on memset to zero, it is recommended that one use DC ZVA
instead of STP. Figure 5 shows code from the memset routine to illustrate the usage of DC
ZVA.

L(zva loop) :
add dst, dst, 64
dc zva, dst
subs count, count, 64
b.hi L(zva_ loop)
stp g0, g0, [dstend, -64]
stp g0, g0, [dstend, -32]

ret

Figure 5 Code snipper from memset to zero routine

4.10 Cache maintenance operations

While using set way invalidation operations on L1 cache, it is recommended that software be
written to traverse the sets in the inner loop and ways in the outer loop.

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 76 of 77

Arm® Cortex-A520 Core Software Optimization Guide PJDOC-1505342170-671342
Issue 1.2
Special considerations

4.11 Cache access latencies

The latency numbers for load instructions given in Instruction characteristics section assume
the ideal case. It should be noted that more cycles will be added to these access delays
depending on which level of cache is accessed. Table 4-1 lists the latencies for the different
levels of cache.

Table 4-1: Cortex-A520 cache access latencies

Scenario Cycle count

L1 cache hit 2-4 cycles (2 is best case, 4 is normal case)
L2 cache hit 10-12 cycles (10 is best case, 11-12 is normal
case)

4.12 Shared VPU

Cortex-A520 Core shares a VPU between all Cortex-A520 cores in acomplex. The VPU is
used to execute ASIMD, FP, Neon, and SVE instructions. Instructions being executed on VPU
pipelines by one core may reduce performance of the instructions executed on the VPU by the
other core.

4.13 AES encryption / decryption

Cortex-A520 Core implements instruction fusion for AES instructions (see section 4.2). Itis
recommended instructions pairs be interleaved in groups of three or more for the following:
AESE, AESMC, AESD, AESIMC.

AESE data0l, key reg
AESMC data0O, dataO
AESE datal, key reg
AESMC datal, datal
AESE data2, key reg
AESMC dataZ2, dataZ2..

Figure 6 Code snippet for AES instruction fusion

Copyright © 20233 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 77 of 77

	1 Introduction
	1.1 Product revision status
	1.2 Intended audience
	1.3 Conventions
	1.3.1 Glossary
	1.3.2 Typographical conventions

	1.4 Additional reading

	2 Overview
	2.1 Pipeline overview

	3 Instruction characteristics
	3.1 Instruction tables
	3.2 Branch Instructions
	3.3 Arithmetic and logical instructions
	3.4 Divide and multiply instructions
	3.5 Pointer authentication instructions
	3.6 Miscellaneous data-processing instructions
	3.7 Load instructions
	3.8 Store instructions
	3.9 Tag data processing
	3.10 Tag load instructions
	3.11 Tag store instructions
	3.12 FP scalar data processing instructions
	3.13 FP scalar miscellaneous instructions
	3.14 FP scalar load instructions
	3.15 FP scalar store instructions
	3.16 ASIMD Integer instructions
	3.17 ASIMD FP data processing instructions
	3.18 ASIMD BFloat16 (BF16) instructions
	3.19 ASIMD miscellaneous instructions
	3.20 ASIMD load instructions
	3.21 ASIMD store instructions
	3.22 Cryptography extensions
	3.23 CRC
	3.24 SVE Predicate instructions
	3.25 SVE Integer instructions
	3.26 SVE FP data processing instructions
	3.27 SVE BFloat16 (BF16) instructions
	3.28 SVE Load instructions
	3.29 SVE Store instructions
	3.30 SVE Miscellaneous instructions
	3.31 SVE Cryptography instructions

	4 Special considerations
	4.1 Issue constraints
	4.2 Instruction fusion
	4.3 Branch instruction alignment
	4.4 Load / Store Alignment
	4.5 A64 low latency pointer forwarding
	4.6 AUT* RET forwarding
	4.7 SIMD MAC forwarding
	4.8 Memory Tagging Extensions
	4.9 Memory routines
	4.10 Cache maintenance operations
	4.11 Cache access latencies
	4.12 Shared VPU
	4.13 AES encryption / decryption

