

Armv7-M and Armv8-R

Software Migration Guide
Non-confidential Issue 01
Copyright © 2024 Arm Limited (or its affiliates).
All rights reserved.

109692

Armv7-M and Armv8-R Software Migration Guide 109692

Issue 01

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 2 of 35

Armv7-M and Armv8-R

Software Migration Guide

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

01 29-February-2024 Confidential/Non-
Confidential

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, has undertaken no analysis to identify or understand the scope and content of,
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of
the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in
this document may be the trademarks of their respective owners. Please follow Arm's trademark usage
guidelines at https://www.arm.com/company/policies/trademarks.

https://www.arm.com/company/policies/trademarks

Armv7-M and Armv8-R Software Migration Guide 109692

Issue 01

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 3 of 35

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on Armv7-M and Armv8-
R, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/documentation-
feedback-survey.

Inclusive language commitment

We believe that this document contains no offensive language. To report offensive language in this document,
email terms@arm.com.

https://support.developer.arm.com/
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Armv7-M and Armv8-R Software Migration Guide 109692

Issue 01

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 4 of 35

Contents

1. Introduction .. 6

1.1. Intended audience .. 6

1.2. Conventions .. 6

1.3. Useful resources .. 7

2. Overview ... 8

3. ISA .. 9

3.1. Instruction set .. 9

3.2. Register set .. 11

4. Exception model ... 13

4.1. Exception mode .. 13

4.1.1. Thread Mode ... 13

4.1.2. Exception vector table ... 14

4.1.3. Exception handling .. 16

4.2. Reset ... 18

4.2.1. Reset state in Armv7-M .. 18

4.2.2. Reset state in Armv8-R ... 18

5. Interrupt ... 19

5.1. Interrupt controller .. 19

5.2. Interrupt handling ... 20

6. Virtualization .. 22

7. System registers ... 23

8. Memory model .. 24

8.1. Memory type ... 25

8.1.1. Normal memory ... 25

8.1.2. Device memory .. 25

8.1.3. Strongly ordered .. 25

Armv7-M and Armv8-R Software Migration Guide 109692

Issue 01

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 5 of 35

8.1.4. Normal memory ... 26

8.1.5. Device memory .. 26

8.2. Memory protection unit.. 26

9. Tools ... 29

9.1. Compiler .. 29

9.2. Linker .. 30

10. Startup ... 31

10.1. EL2 Vector Table initialization ... 31

10.2. EL2 initialization .. 31

10.3. EL1 Vector Table initialization ... 32

10.4. Stack initialization ... 32

10.5. MPU initialization .. 32

10.6. VFP/NEON initialization .. 33

10.7. Cache/MPU enabling ... 33

10.8. Interrupt controller initialization .. 33

10.9. Nested Interrupt Handling .. 33

10.10. Cluster Startup ... 34

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

1 Introduction

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 6 of 35

1. Introduction

1.1. Intended audience

This guide is useful for partners looking to reuse their existing software based on Armv7-M and
Armv8-R based designs. This is also useful for new projects using Cortex-M and/or Cortex-R based
designs.

1.2. Conventions

The following subsections describe conventions used in Arm documents.

Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

Typographical conventions

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace bold Language keywords when used outside example code.

monospace
underline

A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

small capitals Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
implementation defined, implementation specific, unknown, and unpredictable.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or
damage.

https://developer.arm.com/glossary

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

1 Introduction

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 7 of 35

Convention Use

Requirements for the system. Not following these requirements will result in system failure or damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better, or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.3. Useful resources

Arm products Document ID Confidentiality

Arm Cortex-R Series Programmer's Guide den0042 Non-confidential

Arm Cortex-M3 Processor Technical Reference Manual 100165 Non-confidential

Arm Cortex-M4 Processor Technical Reference Manual 100166 Non-confidential

Arm Cortex-M7 Processor Technical Reference Manual ddi0489 Non-confidential

Arm Cortex-R52 Processor Technical Reference Manual 100026 Non-confidential

Arm architecture and specifications Document
ID

Confidentiality

Armv7-M Architecture Reference Manual ddi0403 Non-confidential

Arm Architecture Reference Manual for A-profile architecture ddi0487 Non-confidential

Arm Architecture Reference Manual Supplement - Armv8, for the Armv8-R AArch32
architecture profile

ddi0568 Non-confidential

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot guarantee the quality of
its documents when used with any other PDF reader.
Adobe PDF reader products can be downloaded at http://www.adobe.com.

https://developer.arm.com/documentation/den0042
https://developer.arm.com/documentation/100165
https://developer.arm.com/documentation/100166
https://developer.arm.com/documentation/ddi0489
https://developer.arm.com/documentation/100026
https://developer.arm.com/documentation/ddi0403
https://developer.arm.com/documentation/ddi0487
https://developer.arm.com/documentation/ddi0568
https://developer.arm.com/documentation/ddi0568
http://www.adobe.com/

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

2 Overview

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 8 of 35

2. Overview
With the trend towards central compute in vehicle architecture from the existing discrete ECU
architecture, in the near-term future there will be increasing interest in porting the existing matured
software from multiple discrete ECUs (based on Cortex-M) onto a single Cortex-R based zone
controller (with virtualization).

Scalability both in terms of hardware and software will be beneficial for partners, as partners will be
able to scale across multiple products without reinvesting in development from scratch.

This is a guide for partners on the best practices for software development that can help to scale and
migrate software across architectures. There are architectural differences between Cortex-M and
Cortex-R cores; however, the intention is to capture the differences and suggestions on how software
needs to be adapted so that it can be scaled and migrated to a different Arm architecture.

This guide presents general guidelines on how to migrate software from Cortex M to Cortex-R. This
whitepaper This whitepaper supports you to port original Cortex-M software to Cortex-R, not to
enable all features of Cortex-R. We will mainly focus on Armv7-M processors (Cortex-M3, Cortex-
M4, Cortex-M7), and Armv8-R processors (Cortex R52, Cortex-R52+). To be more targeted in this
whitepaper, unless otherwise specified, Cortex-R mainly refers to Cortex-R52 and Cortex-R52+, not
Cortex-R82 implemented with the Armv8-R architecture.

Because Cortex-R52 and Cortex-R52+ share the same instruction set and they are software
compatible, references to Cortex-R52 in this document also apply to Cortex-R52+.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

3 ISA

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 9 of 35

3. ISA
There are three different instruction sets used by Armv7-M and Armv8-R architecture.

3.1. Instruction set
• T32 This is a variable-length instruction set that uses both 16-bit and 32-bit instruction

encodings.

• A32 This is a fixed-length instruction set that uses 32-bit instruction encodings. Before the
introduction of Armv8, it was called the Arm instruction set.

• A64 The A64 instruction set provides access to 64-bit wide integer registers and data operations.
Instruction opcodes, however, are still 32-bit long, not 64-bit.

Armv7-M processors support T32 instruction set. As Figure-1 shows, different Arm v7-M
processors can support a certain subset of the T32 instruction set.

Cortex-R52 and Cortex-R52+ implement T32 and A32 instruction sets.

Cortex-R82 supports the A64 instruction set, but not the A32 or T32 instruction sets.

Additionally, Arm v8-M supports a variant of the T32 instruction set, which is a superset of T32.

Figure 3-1 and Figure 3-2 show the instruction set support status among different architectures.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

3 ISA

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 10 of 35

Figure 3-1: Instruction set of T32 in Armv7-M

Figure 3-2: Instruction set among different architectures

Figure 3-2 shows that Armv8-R A32 supports all instructions of Armv7-M. You can compile Armv7-M
software (C language or assemble language source code) directly in Armv8-R A32 environment if the
tools are compatible. There might be minor instruction differences such as SWP/SWPB, which is
deprecated in Cortex-R52, so you need replace them with equivalent instructions such as
LDREX/STREX.

A bigger gap exists if you are mitigating from Armv7-M to Armv8-R A64. If you have written any
hand-coded assembler (in the T32 instruction set), replace this with equivalent instructions from the
A64 instruction set and rebuild the software. You also need modify and check data types (size) and
instructions that have no equivalent. For the source code implemented in C language, it might also be
necessary to modify and check the data type, such as from int to uint32. Recompiling the C code

with the correct compiler switches automatically generates the appropriate A64 instructions. See
section 9.1 Compiler for more details. .

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

3 ISA

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 11 of 35

• Armv8-M implements a superset of the T32 ISA. You might need to substitute any instructions which do not have an
equivalent, and re-assemble if you mitigate from v8-M to v8-R AArch32.

• Some v8-M cores such as Cortex-M55 implement Helium technology, which is the M-profile Vector Extension (MVE).
You might need additional work if you are mitigating from v8-M with MVE to v8-R. Due to the instruction difference, it
is better to avoid using C intrinsic or assembler instructions in your source code. You might need to re-write key
vector routines including all vector assembly or intrinsic functions.

3.2. Register set

Both Armv7-M and Armv8-R share the same register definition and size of R0-R15, but they have

some different register banking among processor modes.

ARMV7-M only banks stack pointer as Main Stack Pointer (MSP) and Process Stack Pointer (PSP)
modes.

Figure 3-3 shows that Armv8-R banks more registers (SP, SPSR, LR, and R8-R12 in FIQ mode)

among different processor modes.

Figure 3-3: Registers banking of Armv7-M and Armv8-R

Figure 3-4 and Figure 3-5 show that there are also some differences between xPSR in Armv7-M and

PSTATE in Armv8-R. You need to be aware of these differences when you migrate your software.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

3 ISA

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 12 of 35

Figure 3-4: PSR register in Armv7-M

Figure 3-5: PSR register in Armv8-R

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

4 Exception model

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 13 of 35

4. Exception model
The exception model focuses on the behavior of Armv7-M and Armv8-R when the core enters
exception, such as interrupt.

4.1. Exception mode

Armv7-M processor has two privileged levels and two processor modes.

4.1.1. Thread Mode

Thread mode is used for application execution. It can use either Main Stack Pointer (MSP) or Process
Stack Pointer (PSP), and it also can be either in privileged mode or unprivileged mode. Cortex-M is in
MSP and privileged mode at reset.

4.1.1.1. Handler Mode

Handler mode is used for exception handling. This mode is entered when an exception occurs. It only
uses Main Stack Pointer (MSP) and is always in privileged mode.

Table 4-1 shows the processor modes in Armv7-M.

Table 4-1: Modes of Armv7-M

Mode Description

Handler Privileged Used to handle exceptions

Thread Privileged Mode under which most RTOS run

Thread Unprivileged Mode under which most tasks run

Armv8-R processor has three exception levels (EL0 is unprivileged level, EL1 and EL2 are privileged

level) and 8 processor modes available, as Table 4-2 shows.

Table 4-2: Modes of Armv8-R

Mode Description

Hyp (Hypervisor) Entered on reset or when a

Hypervisor call instruction

(HVC) is executed, used for

virtualization

EL2

SVC (Supervisor) Entered when a Supervisor

Call Instruction (SVC) is

executed

EL1

FIQ Entered when a high-priority

(fast) interrupt is raised

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

4 Exception model

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 14 of 35

Mode Description

IRQ Entered when a normal-

priority interrupt is raised

Abort Used to handle memory access

violations

Undef Used to handle undefined

instructions

System Privileged mode using the

same registers as User mode

User Mode under which most tasks

run

EL0

Although there are lots of exception mode differences between Armv7-M and Armv8-R, and mapping
equivalent exception modes from Armv7-M to Armv8-R is still the simplest way to migrate software.
Table 4-3 shows an example for these equivalences.

Table 4-3: Equivalent mode from Armv7-M to Armv8-R

Mode of Armv7-M Equivalent mode of Armv8-R

(no equivalent) Hypervisor

Handler Supervisor

FIQ

IRQ

Abort

Undef

(no equivalent) System

Thread Unprivileged User

After mapping equivalent exception patterns, your software might still require some modification.
The complexity of modification is often related to your software architecture, such as how deeply
your software incorporates unusual patterns.

4.1.2. Exception vector table

Table 4-4 shows the V7 M exception vector table has 16+N entries, and each entry consists of
addresses, not instructions.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

4 Exception model

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 15 of 35

Table 4-4: Exception vector table of Armv7-M

Address Description Exception number

0x40+4N External interrupt N 16+N

… …

0x40 External interrupt 0 16

0x3C SysTick 15

0x38 PendSV 14

0x34 (Reserved) 13

0x30 Debug Monitor 12

0x2C SVCall 11

0x28 (Reserved) 10

0x20-0x24 (…) …

0x1C (Reserved) 7

0x18 UsageFault 6

0x14 BusFault 5

0x10 MemManage 4

0x0C HardFault 3

0x08 NMI 2

0x04 Reset 1

0x00 SP_main N/A

Table 4-5 shows that there are two vector tables in Armv8-R, one for EL1 and one for EL2. In some
software implementations, each guest OS can have its own EL1 vector table, and these vector tables
are managed by hypervisor. In contrast to Armv7-M, each Armv8-R vector table has only 8 entries.
Each entry consists of instructions, not addresses, which means one 32-bit instruction or two 16-bit
instructions, usually direct branch instruction.

Table 4-5: Exception vector table of Armv8-R

0x1C FIQ (EL1 Vector table) FIQ (EL2 Vector table)

0x18 IRQ IRQ

0x14 (Reserved) Hypervisor Trap/Hypervisor mode entry

0x10 Data Abort Data Abort (from Hypervisor Mode)

0x0C Prefetch Abort Prefetch Abort (from Hypervisor Mode)

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

4 Exception model

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 16 of 35

0x1C FIQ (EL1 Vector table) FIQ (EL2 Vector table)

0x08 Software Interrupt HVC (from Hypervisor Mode)

0x04 Undefined Instruction Undefined Instruction (From Hypervisor Mode)

0x00 (Reset) Reset

There is no simple equitant map between the exceptions of Armv7-M and Armv8-R because they use
different exception terminology. The Arm® Architecture Reference Manual for A-profile architecture,
section G1.16 - AArch32 state exception descriptions which describes the possible reasons for each
exception entry.

4.1.3. Exception handling

When an exception is received, the processor interrupts the execution of current instruction flow. To
minimize interrupt latency, the processor allows exceptions during the execution of multi-cycle
instruction.

Because the Armv8-R exception architecture is very different from Armv7-M, the exception handling
process (both in hardware and software) is also different between Armv7-M and Armv8-R. Armv7-M
is a hardware-implemented architecture that handles the context save/restore by hardware so that
there is no software overhead for exception entry and exit. However, in Armv8-R, software has the
responsibility of context save and restore. Typically, software needs a wrapper, named as top-level
handler, to handle them.

4.1.3.1. Exception handling in Armv7-M

Figure 4-1 shows that the processor executes the following process to handle exceptions in
Armv7-M.

1. The processor state is automatically saved to the current stack, which includes PC, R0-R3, R12,

LR, xPSR. The Link Register is modified for interrupt return.

2. The processor accesses the vector table and the address of the ISR is read from the vector table.

3. The exception handler routine executes in handler mode using the main stack.

4. The exception handler returns to main (assuming that there is no nesting).

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

4 Exception model

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 17 of 35

Figure 4-1: Exception handling in Armv7-M

4.1.3.2. Exception handling in Armv8-R

Figure 4-2 shows that the processor executes the following process to handle exceptions in Armv8-R.

1. The processor state is automatically saved to the SPSR, and the current processor state is
updated. The link register is modified for interrupt return if the exception is handled in EL1.

2. The processor executes from the corresponding entry of the vector table, which typically is a
branch instruction to the top-level handler.

3. The top-level handler saves current context, and then calls the second-level exception handler.

4. The second-level handler routine is executed, typically in a C language environment, and then
returns to the top-level handler.

5. The top-level handler restores current context, and then returns to main (assuming that there is
no nesting).

Figure 4-2: Exception handling in Armv8-R

Some existing RTOS support both Cortex-M and Cortex-R cores. Typically, RTOS code includes
architectural support and implements software code to support the corresponding exception model.
Using these existing RTOSs in your project can significantly reduce porting effort.

If your Armv7-M software source code is bare-metal or your RTOS does not support Armv8-R, you
might need to rework privileged code from Armv7-M to Armv8-R, such as SVC and return
procedures. You can port the exception handling code from an existing RTOS, which supports
Armv8-R, to your current software.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

4 Exception model

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 18 of 35

4.2. Reset

Reset is a special exception in both Armv7-M and Armv8-R.

4.2.1. Reset state in Armv7-M

Armv7-M always resets at privilege thread mode using Main Stack Pointer (MSP).

4.2.2. Reset state in Armv8-R

Armv8-R always resets at EL2 in hypervisor mode.

The software between processor reset and functional tasks execution is also called boot code. The
boot code sets up the basic environment in which functional tasks run.

Because of the differences between the exception models in Armv7-M and Armv8-R, migrating from
Armv7-M to Armv8-R requires rewriting most of the boot code.

Fortunately, most of the startup code is the same among different Armv8-R platforms, which means
that, it only needs minor effort if you take another Armv8-R platform as reference (for example, open-
source Armv8-R platform).

Furthermore, the workload decreases significantly if you are using existing RTOS which supports
Armv8-R because RTOS might take care of all and makes you ignore that there is a boot.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

5 Interrupt

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 19 of 35

5. Interrupt
Each interrupt has four different states in both Armv7-M and Armv8-R.

• Inactive: Interrupt is not active and not pending.

• Pending: Interrupt is asserted but not yet being serviced.

• Active: Interrupt is being serviced but not yet complete.

• Active & Pending: Interrupt is both active and pending.

Figure 5-1 shows that the interrupt state can change from the current state to another state. For
example:

• Inactive Pending: When the interrupt is asserted.

• Pending Active: When the interrupt is under processing by a core.

• Active Inactive: When the core finished interrupt handling.

Figure 5-1: Interrupt state machine

The state machine can have more paths in a real processor. We simplified it because this
simplification does not affect software migration.

5.1. Interrupt controller

Armv7-M cores integrated NVIC as its interrupt controller, but Cortex-R cores have different types
of interrupt controllers:

• Cortex-R4 and Cortex-R5: VIC

• Cortex-R7 and Cortex-R8: built-in GIC-v1

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

5 Interrupt

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 20 of 35

• Cortex-R52: built-in GIC-v3

• Cortex-R82: external GIC-v3.2

Using an existing off-the-shelf OS to manage interrupts is the most efficient way to migrate from
Armv7-M to Armv8-R.

Both Armv7-M and Armv8-R abstract the same interrupt state machine, and your OS can abstract the
interrupt routing control functions and replace them with the Armv8-R interrupt controller
implementation. There might be some minor feature differences, such as the number of available
priority levels. In this case, you need to modify them manually.

GIC-v3 introduces more features, for example:

• Interrupt group: asserts interrupt through IRQ signal or FIQ signal.

• Interrupt virtualization: asserts vIRQ signal to the core.

• Software generated interrupt: sends interrupt to other cores.

If you want to enable the corresponding software APIs while migrating your software, you must
implement them.

5.2. Interrupt handling

The processor enters an exception in both Armv7-M and Armv8-R. As mentioned before, Armv7-M
implements a hardware-implemented exception mechanism controlled by hardware, but such work is
mainly maintained by software in Armv8-R, which causes more complexity when your software
handles the interrupt.

Using an existing off-the-shelf OS to manage interrupts is the most efficient way to migrate from
Armv7-M to Armv8-R.

If you are using bare-metal software, your assembler stubs in Armv8-R need to recreate the Armv7-
M stacking and vectoring, combined with trapping and emulation for exception return. Interrupt
entry and exit routines need to be re-written.

Your software can have a nested-interrupt requirement which is important for interrupt preemption
support. This feature is naturally supported by NVIC in Armv7-M, but you must enable it through
software in Armv8-R, for example, as Figure 5-2 shows.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

5 Interrupt

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 21 of 35

Figure 5-2: Nested interrupt support in Armv8-R

The following sequence demonstrates nested-interrupt support in Armv8-R:

1. Save LR_irq and SPSR_irq to the SVC mode stack.

2. Switch to SVC mode.

3. Store remaining AAPCS registers on to the SVC mode stack.

4. Store adjustment and LR_svc to stack.

5. Identify and clear interrupt source.

6. Enable interrupt.

7. Call interrupt handler routine.

8. Disable interrupt.

9. Restore LR_svc and unadjust the stack.

10. Restore AAPCS registers and return from the SVC mode stack.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

6 Virtualization

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 22 of 35

6. Virtualization
Because Armv8-R adds virtualization support and always boots from hypervisor, there are two
possible cases that can occur while you are migrating from Armv7-M to Armv8-R.

You might want to directly migrate your Armv7-M software to Armv8-R without virtualization
support. In this case, the boot code of Armv8-R must be modified to ensure EL2 is never used after
the boot stage.

These are the minimum steps to be completed before leaving EL2:

1. Configure HCR (Hypervisor Control Register) to disable HVC.

2. Configure HACTLR (Hypervisor Auxiliary Control Register) to allow EL1 access to
implementation specific registers.

3. Set VBAR (Vector Base Address Register) to the address of EL1 vector table.

4. Set ELR_hyp (Exception Link Register Hyp Mode) to the entry of EL1 code.

5. Execute the ERET instruction.

Another possible solution is to treat the Armv7-M workload as a single guest under a hypervisor. This
is suitable if your Armv8-R project has bigger scope and takes advantage of virtualization support.

If you want to enable virtualization in Armv8-R, you need to implement additional software, such as a
hypervisor (VMM, Virtual Machine Manager).

Figure 6-1 shows a typical Armv8-R software architecture with virtualization enabled.

Figure 6-1: Virtualization enabled software in Armv8-R

Generally, the task or Real-Time Operating System (RTOS) might not be aware of the existence of
virtualization, so most applications can run directly on the virtualization-enabled environment, but
some system-related software might still require some modification, such as system controls and
device drivers.

Arm also provides an example of virtualization based on Cortex-R52. You can get the example from
the Armv8-R virtualization manual on the Arm Developer website.

https://developer.arm.com/documentation/102909

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

7 System registers

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 23 of 35

7. System registers
Most of the system features are controlled by system registers. The system registers are different
between Armv7-M and Armv8-R, not only because they have different features, but also because
some features are implemented differently between Armv7-M and Armv8-R.

System registers can be accessed in one of the three ways:

• MRC/MCR: access through co-processor

• MRS/MSR: access processor state

• LDR/STR: memory mapped system registers

For example, in Cortex-R52:

• Read PAR[31:0] into Rt:

MRC p15, 0, <Rt>, c7, c4, 0

• Write Rt to PAR[31:0]. PAR[63:32] are unchanged

MCR p15, 0, <Rt>, c7, c4, 0

• Read 64-bit PAR into Rt (low word) and Rt2 (high word)

MRRC p15, 0, <Rt>, <Rt2>, c7

• Write Rt (low word) and Rt2 (high word) to 64-bit PAR

MCRR p15, 0, <Rt>, <Rt2>, c7

A possible way to migrate from Armv7-M to Armv8-R is that software abstracts the system control
functions or register-field access into a library, so that you only need to replace the corresponding
registers in Armv7-M with the equivalent registers in Armv8-R. Because of the differentiation of the
features between Armv7-M and Armv8-R, sometimes you might need to update all system register
access routines, or some C code in Armv7-M might need to be re-written in assembly code in
Armv8-R.

Your existing Cortex-M software can use CMSIS which abstracts most of system registers accessing
into feature-based functions. CMSIS is not available for Cortex-R, but you can still implement the
corresponding functions with Armv8-R system registers if your Armv7-M software uses CMSIS. This
will save effort in your migration.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

8 Memory model

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 24 of 35

8. Memory model
Armv7-M is a memory-mapped architecture with PMSA-v7 (Protected Memory System Architecture)
support. The memory is divided into 8 x 512MB regions, as Figure 8-1 shows.

Figure 8-1: Default memory map in Armv7-M

Armv8-R has a different memory map view, which is implemented to support PMSA-v8. The memory
attributes are different according to access origin and caching policy, as Figure 8-2 shows.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

8 Memory model

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 25 of 35

Figure 8-2: Default memory map in Armv8-R

8.1. Memory type

There are three mutually exclusive memory types defined in Armv7-M.

8.1.1. Normal memory

Normal memory is the most flexible memory type. It is suitable for different types of memory, for
example, ROM, RAM, Flash, and SDRAM. Caches and write buffers are permitted. Accesses to normal
memory can be restarted.

8.1.2. Device memory

Device memory is suitable for peripherals and I/O devices. Caches are not permitted, but write
buffers are still supported. Accesses to device memory must not be restarted.

8.1.3. Strongly ordered

Strongly-ordered memory is like device memory but buffers are not supported.

There are two mutually exclusive memory types defined in Armv8-R.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

8 Memory model

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 26 of 35

8.1.4. Normal memory

Like Armv7-M, the Normal memory type is used for code and most data regions. It allows the core to
re-order, repeat, and merge accesses.

8.1.5. Device memory

The device type is used for regions where accesses can have side-effects. Typically, this type is only
used for peripherals.

There are four variants of device memory in Armv8-R:

• Device-nGnRnE most restrictive

• Device-nGnRE

• Device-nGRE

• Device-GRE least restrictive

Replacing the memory type in Armv7-M with the equivalent memory type in Armv8-R is the simplest
way to migrate software, as Table 8-1 shows.

Table 8-1: Equivalent memory type from Armv7-M to Armv8-R

Memory type in Armv7-M Equivalent type in Armv8-R

Normal Normal

Device Device - nGnRE

Strongly-ordered Device - nGnRnE

In addition to the memory type, many other factors need to be considered during the memory model
migration, such as cache policy, and access rights. See section 8.2 Memory protection unit for more
details.

8.2. Memory protection unit

The Memory Protection Unit (MPU) provides basic memory management by allowing attributes to be
applied to different address regions.

Armv7-M supports Protected Memory System Architecture (PMSAv7), and Armv8-R supports
PMSAv8.

Armv7-M has an optional programmable MPU. It allows subdividing the 4GB memory address range
into regions, and subdividing regions into subregions. Armv7-M also supports region overlapping.
Each memory region is defined by a base address, size, access permissions, and memory attributes.

Armv8-R (Cortex-R52) has two programmable MPUs controlled by EL1 and EL2 . Each MPU allows
subdivision of the 4GB memory address range into regions. Each memory region is defined by a base
address, limit address, access permissions, and memory attributes.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

8 Memory model

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 27 of 35

Most of the memory attributes can be migrated from Armv7-M to Armv8-R easily, but the access
permission is not compatible between Armv7-M and Armv8-R.

Armv7-M uses three bits to control access rights, as Table 8-2 shows.

Table 8-2: Access permission in Armv7-M

AP Unprivileged Privileged

000 No access No access

001 No access Read/Write

010 Read-only Read/Write

011 Read/Write Read/Write

100 UNPREDICTABLE UNPREDICTABLE

101 No access Read-only

110 Read-only Read-only

111 Read-only Read-only

Armv8-R only uses two bits to control access rights, as Table 8-3 shows.

Table 8-3: Access permission in Armv8-R (Cortex-R52)

AP Unprivileged (EL0) Privileged (EL1)

00 No access Read/write

01 Read/write Read/write

10 No access Read-only

11 Read-only Read-only

Some combinations do not exist in the Armv8-R configuration such as read-only in Unprivileged, and
read/write in Privileged.

Furthermore, to support virtualization, Armv8-R implements a two-level MPU structure. MPU1 can
be used for RTOS and application, MPU2 can be used for Hypervisor. The final attributes are
combined from MPU1 and MPU2, as Figure 8-3 shows.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

8 Memory model

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 28 of 35

Figure 8-3: Two-level MPU in Armv8-R

The two-level MPU structure decouples the memory management of RTOS and hypervisor. RTOS
manages its memory configuration only in MPU1 and hypervisor switches active RTOS only through
reconfiguration of MPU2. This mechanism greatly facilitates the implementation of virtualization in
your system.

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

9 Tools

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 29 of 35

9. Tools
There are many development tools and environments that support both Armv7-M and Armv8-R, such
as Arm DS. Using an integrated development environment that supports both Armv7-M and Armv8-
R can reduce the workload of migration significantly.

Arm recommends using the Arm Development Studio integrated development environment, which is
designed specifically for the Arm architecture with support of multicore debug for Cortex-A, Cortex-
R, Cortex–M, and Neoverse Arm CPUs.

In this section, we use the components in Arm DS to demonstrate the compile and link differences of
Armv7-M and Armv8-R.

Figure 9-1 shows the embedded application build process of Arm DS.

Figure 9-1: Arm DS embedded application build process

9.1. Compiler

Armv8-R is supported by Arm Compiler for Embedded (Arm Compiler 6), which is based on LLVM
Clang. Other third-party compilers might also support Armv8-R such as GCC, IAR, and CLANG.

Arm Compiler for Embedded is an advanced embedded C/C++ compilation toolchain from Arm for
the development of bare-metal software, firmware, and Real-Time Operating System (RTOS)
applications. During the migration from Armv7-M to Armv8-R, you need to change some compiler
parameters such as CPU architecture and CPU type to adopt current architecture and core, as Table
9-1 shows.

Table 9-1: Example of compile options migration

Parameter Cortex-M4 Cortex-R52

-march armv7-m armv8-r

-mcpu cortex-m4 cortex-r52

-mfpu fpv4-sp-d16 neon-fp-armv8 (if neon is present)

-mfloat-abi hard hard

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

9 Tools

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 30 of 35

9.2. Linker

Arm Compiler for Embedded uses scatter-files to maintain its configurations. Because Armv7-M and
Armv8-R have different memory maps, you need to modify the corresponding section of scatter file to
reflect the Armv8-R memory map.

This example shows a scatter file for Cortex-M4:

LOAD_REGION 0x00000000 0x00005000

{

 VECTORS +0 0x400

 {

 exceptions.o (vectors, +FIRST)

 }

 CODE +0 0x4000-0x400

 {

 * (+RO)

 }

 DATA 0x20004000 0x2000

 {

 * (+RW, +ZI)

 }

 ARM_LIB_STACKHEAP 0x20006000 EMPTY 0x1000 { }

 PROCESS_STACK 0x20007000 EMPTY 0x1000 { }

 SCS_REGION 0xE000E000 UNINIT 0x1000

 {

 scs.o(.bss.scs_registers)

 }

}

This example shows a scatter file for Cortex-R52:

LOAD 0x0

{

 CODE +0 0x8000

 {

 startup.o (VECTORS, +First)

 startup.o (RESET)

 * (InRoot$$Sections)

 * (+RO)

 }

 DATA 0x8000 0x4000

 {

 * (+RW,+ZI)

 }

 ARM_LIB_HEAP 0xC000 ALIGN 64 EMPTY 0x1000 {}

 ARM_LIB_STACK +0 ALIGN 64 EMPTY 4 * 0x4000 {}

 ATCM 0xB0000000 0x4000

 {

 sorts.o (+RO)

 }

}

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

10 Startup

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 31 of 35

10. Startup
This section summarizes the basic startup flow of Cortex-R52.

10.1. EL2 Vector Table initialization

After reset, program execution starts at the reset vector of EL2 that is defined by the
CFGVECTABLEx[31:5] signals. Your linker script links the EL2 reset vector to this address. The

A32/T32 status is defined by the CFGTHUMBEXCEPTIONSx pin, and data endianness configured

by CFGENDIANESSx. Your software build option must match these configurations. The EL2 vector

table initialization code looks like this:

EL2_Start:

 B EL2_Reset_Handler

 B EL2_Undefined_Handler

 B EL2_HVC_Handler

 B EL2_Prefetch_Handler

 B EL2_Data_Handler

 B EL2_HypModeEntry_Handler

 B EL2_IRQ_Handler

 // EL2_FIQ_Handler may follow immediately to avoid branching

10.2. EL2 initialization

Before entering EL1, the following EL2 registers might need to be properly configured. Some of these
steps are optional. It depends on the type of software residing in EL2. These steps show the typical
effort which needs to be done in EL2:

Configure Hypervisor System Control Register(HSCTLR)

Configure Hypervisor Stack Pointer(SP_HYP)

Configure Hypervisor Configuration Register(HCR)

Configure Hypervisor Auxiliary Control Register(HACTLR)

Configure and enable EL2 MPU

Enable caches

Configure VBAR

Configure SPSR_HYP to target EL1 SVC_Mode

Configure ELR_HYP to point to the EL1 “reset” code(EL1_Reset_Handler)

Execute ERET

You can use the following process to disable EL2 if the software does not employ EL2 during your
migration.

Configure HCR to disable HVC

Configure HACTLR to enable EL1 access to IMP DEF registers

Configure VBAR to target EL1 vector table

Configure SPSR_HYP to target EL1 SVC_Mode

Configure ELR_HYP to point to the EL1 “reset” code(EL1_Reset_Handler)

Execute ERET

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

10 Startup

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 32 of 35

10.3. EL1 Vector Table initialization

Typically, the core enters EL1 reset vector entry after executing the instruction ERET. If your

software supports virtualization, there can be many VMs that exist, and then it is likely that many EL1
vector tables are present. This is normally under the supervision of the hypervisor. This code is an
example of the EL1 vector table:

EL1_Start:

 B EL1_Reset_Handler

 B EL1_Undefined_Handler

 B EL1_SVC_Handler

 B EL1_Prefetch_Handler

 B EL1_Data_Handler

 NOP ; Reserved vector

 B EL1_IRQ_Handler

 // EL1_FIQ_Handler may follow immediately to avoid branching

10.4. Stack initialization

In EL1_Reset_Handler, it is usually necessary to initialize the stack for each exception mode to enable
the software stack. To setup the stack pointer, you can simply enter each mode and assign the
appropriate value to the stack pointer. For example, the sample below allocates 512 bytes of stack for
Abort, IRQ, and SVC modes, and you can do the same for any other exception mode.

// Stack location & size (in bytes)

.equ StackBase, 0x20000000 // Stack at top of memory

.equ ExcStackSize, 512 // 512 bytes per exception type

 LDR r0, =StackBase // Base address of all stacks

 CPS #AbortMode // Change to Abort mode

 MOV sp, r0 // Set sp_abt

 CPS #IRQMode

 SUB r0, r0, #ExcStackSize

 MOV sp, r0 // Set sp_irq

 CPS #SVCMode

 SUB r0, r0, #ExcStackSize

 MOV sp, r0 // Set sp_svc

10.5. MPU initialization

Cortex-R52 supports 16 MPU regions for EL1 and EL2. EL2 MPU can only be initialized in EL2. EL1
MPU can be initialized in either EL1 or EL2. If your software supports virtualization, there can be
many VMs, and then there can be many EL1 MPU configurations that are usually maintained in the
hypervisor. The following example shows a typical MPU initialization process, assuming the MPU
configuration data is referenced by register r5:

 LDM r5!, {r1-r4} // r5 points to MPU configuration

 MCR (H)PRBAR0, r1 // write (H)PRBAR0

 MCR (H)PRLAR0, r2 // write (H)PRLAR0

 MCR (H)PRBAR1, r3 // write (H)PRBAR1

 MCR (H)PRLAR1, r4 // write (H)PRLAR1

 … (8 times)

 LDM r5!, {r1-r2} // load (H)MAIR0/1 setting

 MCR (H)MAIR0, r1 // write (H)MAIR0

 MCR (H)MAIR1, r2 // write (H)MAIR1

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

10 Startup

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 33 of 35

10.6. VFP/NEON initialization

You need to enable the coprocessors CP10 and CP11 to enable VFP/NEON by configuring the
register Coprocessor Access Control Register (CPACR) located in CP15. In many software design,

NEON/VFP does not have to be turned on at reset, because software might need to delay enabling
NEON/VFP to save power, such as enabling VFP/NEON through an undefined exception handler to
execute NEON or VFP instructions.

The following example shows the process of enabling VFP/NEON:

 MRC p15, 0x0, r0, c1, c0, 2 // Read CP15 CPACR

 ORR r0, r0, #(0x0f << 20) // Full access rights

 MCR p15, 0x0, r0, c1, c0, 2 // Write CP15 CPACR

 ISB

 MOV r0, #0x40000000 // Enable Advanced SIMD & VFP

 VMSR FPEXC, r0 // Write FPEXC

10.7. Cache/MPU enabling

The following example shows the process of enabling the cache and the MPU by configuring the
register System Control Register (SCR):

 MRC p15, 0, r0, c1, c0, 0 // read System Control Register

 ORR r0, r0, #(0x1 << 12) // enable I Cache

 ORR r0, r0, #(0x1 << 2) // enable D Cache

 ORR r0, r0, #0x1 // enable MPU

 MCR p15, 0, r0, c1, c0, 0 // write System Control Register

10.8. Interrupt controller initialization

The following example shows how to initialize GIC and enable a vTimer interrupt in Cortex-R52:

 GICD.CTLR = 0x13; // enable Group 0, Group 1

 while ((GICD.CTLR&0x80000000) != 0x0);// poll RWP is cleared

 GICR_RD0.WAKER &= 0xFFFFFFFD; // clear ProcessorSleep

 while ((GICR_RD0.WAKER&0x4) == 0x4);// poll ChildrenAsleep

 enableGroup0Ints(); // Enable group 0 interrupts

 enableGroup1Ints(); // Enable group 1 interrupts

 setPriorityMask(0xFF); // Set priority to 0xFF

 setBinaryPoint(0x0); // Set Group0 binary point

 setAliasedBinaryPoint(0x0); // Set Group1 binary point

 GICR_SGI.IPRIORITYR[27] = 0x7F; // set priority vTimer

 GICR_SGI.IGROUPR0 = 0xFFFFFFFF; // Set SGI/PPI to group 1

 GICR_SGI.ICFGR[1] = 0x0; // PPI level sensitive GICR_SGI.ISENABLER0

= 0x08000000;// Enable vTimer

10.9. Nested Interrupt Handling

As mentioned in section 5 Interrupt, the Cortex-R52 must save and restore interruptible context to
support nested interrupt. The following example shows the procedure for this process:

Nested_IRQ_Handler:

 SUB lr, lr, #4

 SRSFD sp!, #0x13

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

10 Startup

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 34 of 35

 CPS #0x13

 PUSH {r0-r3, r12}

 AND r1, sp, #4

 SUB sp, sp, r1

 PUSH {r1, lr}

 BL identify_and_clear_source

 CPSIE i

 BL C_irq_handler

 CPSID i

 POP {r1, lr}

 ADD sp, sp, r1

 POP {r0-r3, r12}

 RFEFD sp!

10.10. Cluster Startup

There are two possible approaches to cluster booting in cortex-R52.

Approach 1

Hardware brings up a primary core after reset, and all other secondary cores are held in reset by
the hardware. After the primary core finishes its startup process the primary core brings other
cores out of reset.

Approach 2

All cores in cortex-R52 cluster come out of reset and software is used to stall secondary cores.
Secondary cores wait until the primary core instructs them to proceed, as Figure 10-1 shows.

Figure 10-1: Cluster startup

Below is the pseudocode for Figure 10-1:

Armv7-M and Armv8-R Software Migration Guide 109692
Issue 01

10 Startup

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-confidential

Page 35 of 35

cluster_boot()

{

 core_id = Read_reg(MPIDR) & 0xFF;

 if((core_id == 0)} {

 do_primary_boot();

 set_primary_boot_done();

 }

 else {

 wait (PRIMARY_BOOT_DONE);

 do_secondary_boot();

 }

 next_boot_stage();

}

