
AMBA® CHI Chip-to-Chip
(C2C)

Architecture Specification

Document number IHI0098

Document quality Release

Document version A

Document confidentiality Non-confidential

Date of issue Feb 2024

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.

AMBA® CHI Chip-to-Chip (C2C) Architecture Specification

Release information

Date Version Changes

2024/Feb/07 A • First public release

ii

Non-Confidential Proprietary Notice

This document is NON-CONFIDENTIAL and any use by you is subject to the terms of this notice and the Arm AMBA
Specification Licence set about below.

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be
the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/
policies/trademarks

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-21451 version 2.2

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

AMBA SPECIFICATION LICENCE

THIS END USER LICENCE AGREEMENT (“LICENCE”) IS A LEGAL AGREEMENT BETWEEN YOU (EITHER A
SINGLE INDIVIDUAL, OR SINGLE LEGAL ENTITY) AND ARM LIMITED (“ARM”) FOR THE USE OF ARM’S
INTELLECTUAL PROPERTY (INCLUDING, WITHOUT LIMITATION, ANY COPYRIGHT) IN THE RELEVANT AMBA
SPECIFICATION ACCOMPANYING THIS LICENCE. ARM LICENSES THE RELEVANT AMBA SPECIFICATION TO
YOU ON CONDITION THAT YOU ACCEPT ALL OF THE TERMS IN THIS LICENCE. BY CLICKING “I AGREE” OR
OTHERWISE USING OR COPYING THE RELEVANT AMBA SPECIFICATION YOU INDICATE THAT YOU AGREE TO
BE BOUND BY ALL THE TERMS OF THIS LICENCE.

“LICENSEE” means You and your Subsidiaries. “Subsidiary” means, if You are a single entity, any company the majority of
whose voting shares is now or hereafter owned or controlled, directly or indirectly, by You. A company shall be a Subsidiary only
for the period during which such control exists.

1. Subject to the provisions of Clauses 2, 3 and 4, Arm hereby grants to LICENSEE a perpetual, non-exclusive,
non-transferable, royalty free, worldwide licence to:

(i) use and copy the relevant AMBA Specification for the purpose of developing and having developed products that
comply with the relevant AMBA Specification;

(ii) manufacture and have manufactured products which either: (a) have been created by or for LICENSEE under the
licence granted in Clause 1(i); or (b) incorporate a product(s) which has been created by a third party(s) under a
licence granted by Arm in Clause 1(i) of such third party’s AMBA Specification Licence; and

(iii) offer to sell, sell, supply or otherwise distribute products which have either been (a) created by or for LICENSEE
under the licence granted in Clause 1(i); or (b) manufactured by or for LICENSEE under the licence granted in
Clause 1(ii).

2. LICENSEE hereby agrees that the licence granted in Clause 1 is subject to the following restrictions:

(i) where a product created under Clause 1(i) is an integrated circuit which includes a CPU then either: (a) such CPU
shall only be manufactured under licence from Arm; or (b) such CPU is neither substantially compliant with nor
marketed as being compliant with the Arm instruction sets licensed by Arm from time to time;

(ii) the licences granted in Clause 1(iii) shall not extend to any portion or function of a product that is not itself compliant
with part of the relevant AMBA Specification; and

(iii) no right is granted to LICENSEE to sublicense the rights granted to LICENSEE under this Agreement.

3. Except as specifically licensed in accordance with Clause 1, LICENSEE acquires no right, title or interest in any Arm
technology or any intellectual property embodied therein. In no event shall the licences granted in accordance with Clause
1 be construed as granting LICENSEE, expressly or by implication, estoppel or otherwise, a licence to use any Arm
technology except the relevant AMBA Specification.

4. THE RELEVANT AMBA SPECIFICATION IS PROVIDED “AS IS” WITH NO REPRESENTATION OR
WARRANTIES EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
SATISFACTORY QUALITY, MERCHANTABILITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE, OR THAT ANY USE OR IMPLEMENTATION OF SUCH ARM TECHNOLOGY WILL NOT INFRINGE
ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY
RIGHTS.

5. NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS AGREEMENT, TO THE FULLEST
EXTENT PETMITTED BY LAW, THE MAXIMUM LIABILITY OF ARM IN AGGREGATE FOR ALL CLAIMS MADE
AGAINST ARM, IN CONTRACT, TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF
THIS AGREEMENT (INCLUDING WITHOUT LIMITATION (I) LICENSEE’S USE OF THE ARM TECHNOLOGY;
AND (II) THE IMPLEMENTATION OF THE ARM TECHNOLOGY IN ANY PRODUCT CREATED BY LICENSEE
UNDER THIS AGREEMENT) SHALL NOT EXCEED THE FEES PAID (IF ANY) BY LICENSEE TO ARM UNDER
THIS AGREEMENT. THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND
THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN
EXCESS OF THIS LIMITATION.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

6. No licence, express, implied or otherwise, is granted to LICENSEE, under the provisions of Clause 1, to use the Arm
tradename, or AMBA trademark in connection with the relevant AMBA Specification or any products based thereon.
Nothing in Clause 1 shall be construed as authority for LICENSEE to make any representations on behalf of Arm in respect
of the relevant AMBA Specification.

7. This Licence shall remain in force until terminated by you or by Arm. Without prejudice to any of its other rights
if LICENSEE is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence
immediately upon giving written notice to You. You may terminate this Licence at any time. Upon expiry or termination of
this Licence by You or by Arm LICENSEE shall stop using the relevant AMBA Specification and destroy all copies of the
relevant AMBA Specification in your possession together with all documentation and related materials. Upon expiry or
termination of this Licence, the provisions of clauses 6 and 7 shall survive.

8. The validity, construction and performance of this Agreement shall be governed by English Law.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

http://www.arm.com

Contents

AMBA® CHI Chip-to-Chip (C2C) Architecture Specification

AMBA® CHI Chip-to-Chip (C2C) Architecture Specification ii
Release information . ii
Non-Confidential Proprietary Notice . iii
AMBA SPECIFICATION LICENCE . iv
Confidentiality Status . v
Product Status . v
Web Address . v

Part A Preface

About this specification
Intended audience . x

Using this specification
Conventions . xii

Typographical conventions . xii
Signals . xii
Numbers . xii

Additional reading . xiii
Feedback . xiv

Feedback on this specification . xiv
Inclusive terminology commitment . xiv

Part B Specification

Chapter B1 Introduction
B1.1 Overview . 17

B1.1.1 Multi-chip Symmetric Multi-Processor (SMP) 17
B1.1.2 Multi-chip coherent accelerator attach 18

B1.2 Terminology . 19

Chapter B2 Interface structures
B2.1 Interface layers . 21

B2.1.1 Protocol layer . 21
B2.1.2 Packetization layer . 21
B2.1.3 Link layer . 21
B2.1.4 Physical layer . 22

B2.2 Message classes . 23
B2.3 Channel connection . 24
B2.4 Multiple interfaces . 25

B2.4.1 Hash function example . 25

Chapter B3 Packetization
B3.1 Containers . 28
B3.2 Protocol header . 30
B3.3 Message packing . 31

B3.3.1 Rules and restrictions . 31

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Contents

Chapter B4 Message structures
B4.1 Transactions and transaction flows . 34

B4.1.1 Field mapping in requests to Subordinate Nodes 34
B4.1.2 Unsupported transactions . 34

B4.2 Message fields . 35
B4.2.1 C2C specific message fields . 35
B4.2.2 Request message fields . 36
B4.2.3 Response message fields . 38
B4.2.4 Data message fields . 40
B4.2.5 WritePush message . 42
B4.2.6 Snoop message fields . 46
B4.2.7 Uncredited Miscellaneous message fields 47
B4.2.8 Redundant fields . 47

Chapter B5 Flow control
B5.1 Introduction . 50
B5.2 Message credits . 51

B5.2.1 Credit grant using a Protocol header . 51
B5.2.2 Credit grant using a MiscU message 51
B5.2.3 Credit grant message format . 52

B5.3 Resource Planes . 54
B5.4 Data credit pools . 55

B5.4.1 Credits for DataS and DataL messages 55
B5.4.2 Credits for WrReqData messages . 56

B5.5 Ordered interface . 57

Chapter B6 DVM transactions
B6.1 Introduction . 59
B6.2 DVM Node, DN . 60

B6.2.1 DVM Node assignment . 60
B6.3 DVM transaction flows . 61

B6.3.1 DVMReq . 61
B6.3.2 DVMSync . 62

B6.4 DVM transaction responses . 63
B6.5 Flow control . 64

Chapter B7 RME-DA and RME-CDA support
B7.1 Introduction . 66
B7.2 Fields supporting RME-DA and RME-CDA . 68
B7.3 Host and device responsibilities . 69
B7.4 Request Nodes per device . 70

Chapter B8 Interface state management
B8.1 Introduction . 72
B8.2 Interface Activation and Deactivation . 73

B8.2.1 Activity states . 73
B8.2.2 Messages . 73
B8.2.3 Activation message format . 74
B8.2.4 Activation and Deactivation flow . 75

B8.3 Connect Miscellaneous messages . 78
B8.4 Coherency connect and disconnect . 79

B8.4.1 Coherency connect states . 79
B8.4.2 Messages . 79

B8.5 DVM domain connect and disconnect . 82
B8.5.1 DVM connect states . 82

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

Contents
Contents

B8.5.2 Messages . 82
B8.5.3 DVM domain connect and disconnect flow 83

Chapter B9 Interface initialization
B9.1 Introduction . 85
B9.2 Initialization flow . 86

B9.2.1 LinkStatus message format . 87

Chapter B10 Protocol layer property exchange
B10.1 Introduction . 90

B10.1.1 Properties message format . 91
B10.2 On-chip payload properties . 93
B10.3 On-chip opcode and flow properties . 95
B10.4 C2C specific properties . 98

B10.4.1 Uniform properties . 98
B10.4.2 Receiver and Transmitter properties . 99
B10.4.3 Expectations when exchanged C2C specific properties differ 102

B10.5 Property packing in MiscU.Properties message 104
B10.6 Property packing into registers . 106

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

Part A
Preface

About this specification

This specification describes the AMBA® CHI Chip-to-Chip (C2C) architecture.

Intended audience

This specification is written for engineers who want to become familiar with the C2C architecture compatible with
the CHI architecture.

x

Using this specification

The information in this specification is organized into parts, as described in this section:

Chapter B1 Introduction

Read this for an introduction to the CHI C2C architecture and the terminology in this specification.

Chapter B2 Interface structures

Read this for an overview on the functional layers between on-chip CHI and CHI C2C.

Chapter B3 Packetization

Read this for a description of how messages are packed into containers.

Chapter B4 Message structures

Read this for a description of the size and fields in each message type.

Chapter B5 Flow control

Read this for a description of the credit exchange used to flow control messages.

Chapter B6 DVM transactions

Read this for a description of the DVM transaction format and how they are propagated.

Chapter B7 RME-DA and RME-CDA support

Read this for an overview of RME-Device Assignment (RME-DA) and RME-Coherent Device
Assignment (RME-CDA).

Chapter B8 Interface state management

Read this for a description of how to manage the connectivity state of the interface.

Chapter B9 Interface initialization

Read this for an overview of how to initialize C2C interface.

Chapter B10 Protocol layer property exchange

Read this for a description of interface properties and how these properties are communicated.

xi

Conventions

Typographical conventions

The typographical conventions are:

italic Highlights important notes, introduces special terminology, and denotes internal
cross-references and citations.

bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.
Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS Used for a few terms that have specific technical meanings.

Signals

The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

– HIGH for active-HIGH signals.

– LOW for active-LOW signals.

Lowercase n At the start or end of a signal name denotes an active-LOW signal.

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
Both are written in a monospace font.

xii

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer, http://developer.arm.com for access to Arm documentation.

[1] AMBA® CHI Architecture Specification. (ARM IHI 0051 G) Arm Ltd.

[2] Universal Compute Interconnect Express (UCIe). Universal Compute Interconnect Express Consortium.

[3] Compute Express Link (CXL). Compute Express Link Consortium.

[4] Arm® Realm Management Extension (RME) System Architecture. (ARM AES 0053 Issue B 00eac5) Arm Ltd.

[5] Arm® Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A.
(ARM DDI 0615 Issue A.d) Arm Ltd.

xiii

http://developer.arm.com

Feedback

Arm welcomes feedback on its documentation.

Feedback on this specification

If you have any comments or queries about our documentation, create a ticket at
https://support.developer.arm.com.

As part of the ticket, please include:

• The title (AMBA® CHI Chip-to-Chip (C2C) Architecture Specification).
• The number (IHI0098 A).
• The section name to which your comments refer.
• The page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Inclusive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.

Arm strives to lead the industry and create change.

This specification does not contain such terms. If you find offensive terms in this document, please contact
terms@arm.com.

xiv

https://support.developer.arm.com
mailto:terms@arm.com

Part B
Specification

Chapter B1
Introduction

This specification is a Chip-to-Chip (C2C) extension of the AMBA® CHI Architecture Specification [1]. It contains
the following sections:

• B1.1 Overview
• B1.2 Terminology

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

16

Chapter B1. Introduction
B1.1. Overview

B1.1 Overview

The C2C extension enables building a system with multiple CPUs, accelerators, or other devices. CHI C2C
focuses on the packetization of CHI messages, making them suitable to be transported over a chip-to-chip link.
The packetization format is optimized for link utilization and latency, while avoiding complex packing and
unpacking schemes.

The two primary use cases are:

• Multi-chip Symmetric Multi-Processor (SMP)
• Multi-chip coherent accelerator attach

The C2C extension can also be referred to as Chip(let)-to-Chip(let), as it covers both the board-level connection of
multiple chips and the package level connection of multiple dies or chiplets.

B1.1.1 Multi-chip Symmetric Multi-Processor (SMP)

The SMP configurations of interest are a small number of chips that are similar in their functionality and tightly
connected together. Each chip includes System-on-Chip (SoC) components with a large number of processing
cores. Each chip is expected to have attached memory that is coherently shared by processing cores on all the
chips.

Figure B1.1 shows an example of a two-chip topology.

Host HostC2C

Memory Memory

Figure B1.1: Example of a two-chip topology

Figure B1.2 shows an example of four chips in a fully connected topology. The attached memories will exist but
are not shown in the figure.

Host Host

Host Host

Figure B1.2: Example of four chips in a fully connected topology

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

17

Chapter B1. Introduction
B1.1. Overview

B1.1.2 Multi-chip coherent accelerator attach

The accelerator attach configurations of interest are one or more coherent accelerators connected to a host chip.

The accelerators can be fully coherent or IO coherent.

Figure B1.3 shows an example of a topology of coherent accelerators.

Host AcceleratorC2C

Memory Memory

Figure B1.3: Example of a topology with coherent accelerators

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

18

Chapter B1. Introduction
B1.2. Terminology

B1.2 Terminology

The following terms have a specific meaning within this specification:

DN

DVM Node (DN) is a node located within the chip that processes DVM operations to and from remote
chips.

RP

Resource Planes are link buffer resources enabling groups of messages within the same Message Class
to be independently transported over the link.

Transmitter

An interface component that forwards messages to the Link layer.

Receiver

An interface component that receives messages from the Link layer.

Container

A container is the smallest fixed size unit in which messages are transferred across an interface.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

19

Chapter B2
Interface structures

This chapter describes the structure of the C2C interface. It contains the following sections:

• B2.1 Interface layers
• B2.2 Message classes
• B2.3 Channel connection
• B2.4 Multiple interfaces

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

20

Chapter B2. Interface structures
B2.1. Interface layers

B2.1 Interface layers

The functional logic between on-chip CHI interface and the chip pins that a message traverses through is divided
into multiple functional layers. These layers are referred to as:

• Protocol layer
• Packetization layer
• Link layer
• Physical layer

Link layer and Physical layer presence is expected, but not required, for connecting two chips together.

Figure B2.1 shows the C2C interface structure.

REQ

Data-link
Retry buffer

Physical
channel

P
ro

to
co

l
la

ye
r

Packetization layer

RSP

DAT

SNP

MISC

REQ

RSP

DAT

SNP

MISC

C2C
Interface

C2C
Interface

Packetization layer

Link layer Link layer

P
rotocol
layer

CRC Check and
Data-link Retry

Figure B2.1: C2C interface structure

B2.1.1 Protocol layer

The Protocol layer handles protocol conversion between on-chip CHI and CHI C2C.

The logic required for the conversion is minimal.

B2.1.2 Packetization layer

When the Link layer is present, the Packetization layer is between the Protocol layer and the Link layer.

If the Link layer is not present, the Packetization layer connects directly to the external signals. If required, the
Packetization layer packs outgoing messages into a fixed size container and unpacks incoming containers into
individual messages. The incoming messages are forwarded to the Protocol layer or other functional blocks within
the Packetization layer.

B2.1.3 Link layer

The Link layer is responsible for handling message transport at a FLow control unIT (Flit) granularity.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

21

Chapter B2. Interface structures
B2.1. Interface layers

The Link layer is also responsible for optional data integrity and transport error detection and recovery. Typically,
this is done by adding a generated Cyclic Redundancy Check (CRC) checksum to a flit being transmitted and
checking the CRC checksum on the received flit.

When an error occurs, the Link layer can use a flit retry mechanism to recover from the error.

B2.1.4 Physical layer

The Physical layer is responsible for providing reliable electrical connectivity between the two chips.

Some of the capabilities of the Physical layer include the logic to overcome latency skew among different signals
and link retraining to maintain signal integrity.

There must be a space in a container for the Link layer to fill the following transport information:

• Flit header
• Link reliability

The detail of the Link layer and Physical layer is outside the scope of this specification.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22

Chapter B2. Interface structures
B2.2. Message classes

B2.2 Message classes

This specification defines a message class as the group of messages of a single CHI message type. Message classes
are similar to on-chip CHI physical channels.

Messages are grouped into the following five message classes:

• Request, REQ
• Response, RSP. Does not include data.
• Snoop, SNP
• Data, DAT
• Miscellaneous, MISC

MISC, a C2C-specific message class, is defined to group all messages that do not directly relate to on-chip CHI
protocol messages. Example use of MISC messages are interface initialization and message credit grant.

For further MISC message details, see B4.2.7 Uncredited Miscellaneous message fields.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23

Chapter B2. Interface structures
B2.3. Channel connection

B2.3 Channel connection

There are two different approaches to connect the different message class channels between chips:

1. Shared channel connect
2. Independent channel connect

The common usage for a C2C interface is expected to be a shared channel connection. All on-chip channels share
the same connection between chips.

A fixed size container is used as the unit of exchange across the C2C interface. The messages to be sent are placed
in a container. The container can include multiple messages from the same message class as well as messages
from different message classes.

The use of a container with messages included from any message class instead of using independent physical
channels for each message class typically results in a better link efficiency.

Figure B2.2 shows a shared channel connection.

REQ

RSP

DAT

SNP

Message
channels to a
single stream

Byte Stream

MISC

Single stream
to message

channel

Byte Stream

REQ

RSP

DAT

SNP

MISC

Byte Stream Byte Stream

Figure B2.2: Shared channel connect

Alternatively, an independent channel connect can be used, where a separate physical set of wires is used for each
message class. This type of connection provides implementation ease due to not requiring packetization logic.
However, this is at the cost of potential underutilization of the physical channels due to lack of messages to fully
utilize all available channels.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

Chapter B2. Interface structures
B2.4. Multiple interfaces

B2.4 Multiple interfaces

It is expected that a single C2C interface is used to connect two chips.

It is permitted that multiple C2C interfaces are used between two chips to meet greater throughput requirements.

When using multiple interfaces, both the chips must follow message association requirements.

Within transaction For a Request or Snoop, all associated Data or Response messages must use the same
interface.

Between transaction All requests and snoops to the same address must use the same interface.
All endpoint ordered requests must use the same interface.
DVMReq and DVMSync transactions from a given source must use the same interface.
See B6.3 DVM transaction flows.
MISC messages to the same target must use the same interface.

A Completer can ensure that a response is sent on the same interface as the corresponding memory or snoop
request by tracking the interface used by the request.

A Home can ensure snoop requests are sent on the same interface as requests to that address by either tracking the
interface the request was received on or by using a common address hash.

When using an address hash:

• A chip is required to use a single address hash for requests to a given target chip.

• Requests to different target chips can use different address hash functions.

• It is permitted to use an approach where both the request and snoop sides are able to be programmed with a
hash function. An example hash function is provided in B2.4.1 Hash function example.

The number of interfaces permitted for aggregating traffic between two components is 1 to 16.

B2.4.1 Hash function example

Figure B2.3 shows how the interface number is determined from an address hash.

Zeros Access address[Max-1:6]

6[Max -1] 51 Max

Hash Mask[51:6]

Masked_Addr[51:6]

&

XOR
Interface Num

Figure B2.3: Interface determination from address hash

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter B2. Interface structures
B2.4. Multiple interfaces

The following steps are used to determine the interface on which to send a request or a snoop:

1. The cache line aligned input address is first filtered through a Hash Mask. The most significant address bits
that are not used must be 0 before filtering the address. In this example, the result of the filtering is labeled as
Masked_Addr.

2. The individual bits of the Masked_Addr are XORed to obtain the target interface in a manner defined by the
number of interfaces between the two chips.

The following are examples of determining the interface number for a given address when the number of interfaces
is:

• A power-of-two

For 2 interfaces Interface Num[0] = Masked_Addr[n-1] XOR Masked_Addr[n-2]...Masked_Addr[7] XOR
Masked_Addr[6]

For 4 interfaces Interface Num[1:0] = Masked_Addr[n-1:n-2] XOR
Masked_Addr[n-3:n-4]...Masked_Addr[9:8] XOR Masked_Addr[7:6]

For 8 interfaces Interface Num[2:0] = Masked_Addr[n-1:n-3] XOR
Masked_Addr[n-4:n-6]...Masked_Addr[11:9] XOR Masked_Addr[8:6]

• Non power-of-two.
The first step is to perform the hash using a power-of-two number of interfaces which is larger than the
available number of interfaces. The obtained intermediate interface number is mapped to the interface
number by using a table or by some other implementation means. The table is heuristically set up to
distribute, as evenly as possible, the hashed numbers across the available number of interfaces. The larger the
intermediate interface number relative to the actual number of interfaces, the greater than the uniformity of
message distribution across the interfaces.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter B3
Packetization

This chapter describes the process of packetization within the C2C interface. It contains the following sections:

• B3.1 Containers
• B3.2 Protocol header
• B3.3 Message packing

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Chapter B3. Packetization
B3.1. Containers

B3.1 Containers

A container is 256 bytes and comprises Link header bytes, Protocol header bytes and message bytes organized in
granules.

The following two container formats are defined:

1. Format X, comprising of:

• 240 bytes of payload, split into twelve 20-byte granules
• 6 bytes of Link header
• 10 bytes of Protocol header
• This format is compatible with UCIe [2] 256-byte Latency Optimized Mode with optional bytes.

2. Format Y, comprising of:

• 226 bytes of payload, split into:
– Ten 20-byte granules
– One 16-byte granule
– One 10-byte granule

• 20 bytes of Link header
• 10 bytes of Protocol header
• This format is compatible with CXL [3] 256-byte latency optimized flit format.

Figure B3.1 shows the container byte layouts for Format X and Format Y. The granules are distributed so they are
aligned across 64-byte and 128-byte parts of the container.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

Chapter B3. Packetization
B3.1. Containers

Format X

62

63

G2

G1

G0

21

22

42

LinkHdr3

126

127

G5

G4

G3

85

86

106

ProtHdr7

190

191

G8

G7

G6

150

170

LinkHdr5

254

255

G11

G10

G9

214

234

0

1

LinkHdr0

LinkHdr1

2

64

65

ProtHdr2

ProtHdr3

66

128

129

ProtHdr4

ProtHdr5

130

192

193

ProtHdr8

ProtHdr9

194

Format X

ProtHdr1

62

63

G2

G1

G0

22

42

G5

G4

G3

86

106

ProtHdr7

190

191

G8

G7

G6

150

170

G11

G10

G9

214

234

0

1

LinkHdr0

LinkHdr1

2

64

65

ProtHdr2

ProtHdr3

66

128

129

ProtHdr4

ProtHdr5

130

192

193

ProtHdr8

ProtHdr9

194

122

123

LinkHdr2

LinkHdr3

LinkHdr4

LinkHdr5

LinkHdr6

LinkHdr7

124

125

126

127

244

245

246

247

248

249

250

251

252

253

254

255

LinkHdr8

LinkHdr9

LinkHdr10

LinkHdr11

LinkHdr12

LinkHdr13

LinkHdr14

LinkHdr15

LinkHdr16

LinkHdr17

LinkHdr18

LinkHdr19

ProtHdr0

ProtHdr1

LinkHdr2 ProtHdr6 LinkHdr4 ProtHdr0 ProtHdr6

Format Y ContainerFormat X Container

Figure B3.1: Container layout format

For information on ProtHdr bits, see B3.2 Protocol header.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

Chapter B3. Packetization
B3.2. Protocol header

B3.2 Protocol header

The bytes which are not used for message granules are either the Link header or the Protocol header.

The description of Link header bytes are outside the scope of this specification. Typical usage for these bits are for
adding a flit header, a CRC, and an FEC.

The Protocol layer header bits are allocated as shown in Figure B3.2.

Rsvd

Rsvd
Rsvd
Rsvd
Rsvd
Rsvd

MsgStart[0]
MsgStart[1]
MsgStart[2]

ProtHdr0

ProtHdr1

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

ProtHdr2

Rsvd
Rsvd
Rsvd

0
1
2
3
4
5

6
7

0
1
2
3
4
5

6
7

Rsvd
Rsvd
Rsvd
Rsvd
Rsvd

MsgStart[3]
MsgStart[4]
MsgStart[5]

ProtHdr3

ProtHdr4 0 MsgCredit[0]
1
2
3
4
5

6
7

0
1
2
3
4
5

6
7

ProtHdr5

MsgCredit[1]
MsgCredit[2]
MsgCredit[3]
MsgCredit[4]
MsgCredit[5]
MsgCredit[6]
MsgCredit[7]
MsgCredit[8]
MsgCredit[9]
MsgCredit[10]
MsgCredit[11]
MsgCredit[12]
MsgCredit[13]
MsgCredit[14]
MsgCredit[15]

ProtHdr6 0
1
2
3
4
5

6
7

0
1
2
3
4
5

6
7

ProtHdr7

Rsvd
Rsvd
Rsvd
Rsvd
Rsvd
Rsvd
Rsvd

MsgStart[6]
MsgStart[7]
MsgStart[8]

ProtHdr8 0
1
2
3
4
5

6
7

0
1
2
3
4
5

6
7

ProtHdr9

Rsvd
Rsvd
Rsvd
Rsvd
Rsvd
Rsvd
Rsvd

MsgStart[9]
MsgStart[10]
MsgStart[11]

Rsvd
Rsvd
Rsvd
Rsvd
Rsvd

Rsvd

Rsvd
Rsvd
Rsvd
Rsvd
Rsvd
Rsvd

Rsvd
Rsvd
Rsvd
Rsvd
Rsvd

Rsvd

Rsvd
Rsvd
Rsvd
Rsvd

Rsvd
Rsvd

Figure B3.2: Protocol header field layout

Table B3.1 shows the encoding of the Protocol Header fields present in Figure B3.2.

Table B3.1: Protocol header fields

Field name Width Description

MsgCredit 16 Message credits granted by the Receiver. See B5.2 Message credits.

MsgStart 12 MsgStart[i] indicates if a message starts in granule i. There is a
MsgStart bit for each of the granules.

MsgStart[i] = 0 A message does not start in the granule i.
The granule might be empty or be part of a
message that started in an earlier granule.

MsgStart[i] = 1 A message starts in the granule i. That is,
there is a MsgType field in the first bits of
that granule.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter B3. Packetization
B3.3. Message packing

B3.3 Message packing

Messages are packed into a container using granules. Messages are only permitted to begin at the start of a granule.
This limits the number of positions each message type can occupy within a container to minimize decode logic.

The MsgStart vector in the Protocol Header determines if a new message starts at a particular granule. Each
message begins with a MsgType field that defines the type of the message.

B3.3.1 Rules and restrictions

The restrictions on message placement within a container are:

• In Format X container, a message can be placed in any granule.

• In Format Y container:

– A message, except Resp and Misc type, can be placed in any granule except G5 and G11.

– A Resp can be placed in any granule.

– A Misc message of:

* A total message size of 10 bytes or less can be placed in any granule.

* A total message size of 16 bytes or less can be placed in any granule except G11.

* A total message size greater than 16 bytes can be placed in any granule except G5 and G11.

• Multi-granule messages:

– Can start in any granule, except G5 and G11 in Format Y.

– Must be contiguous, except when spanning G5 or G11 in Format Y. Multi-granule messages in Format
Y skip over G5 and G11.

– Can span across consecutive containers. When spanning multiple containers, the message must continue
in G0 of the next container.

Additionally, the container packing rules are:

• Inclusion of a message in a granule is optional. A container with no messages is permitted.

• The LSB of a message is placed in the LSB of the granule.

• Unused bits must be 0, including:

– Granules that do not include a message.

– Any bits between the end of a message and the end of the granule.

• 32-byte data is placed in the half of the 64-byte Data field, corresponding to the request address bit[5] value.

• Granules are organized into groups: G0-G2, G3-G5, G6-G8, G9-G11.

– Each group can have:

* No granules populated.
* The lowest numbered granule populated.
* The two lowest numbered granules populated.
* All granules populated.
* A maximum of one MiscU message.
* A maximum of four response messages, where Resp2 counts as two response messages.

For example, if G6 is not populated, then G7 and G8 must also be empty.

– A MiscU.LinkStatus message can only use G0.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter B3. Packetization
B3.3. Message packing

ReqL (1/2)

G11 (20B)

Container A Resp2

G10 (20B)

Format X

Resp

G9 (20B)

ReqS

G8 (20B)

DataS (4/4)

G7 (20B)

DataS (3/4)

G6 (20B)

DataS (2/4)

G5 (20B)

DataS (1/4)

G4 (20B)

ReqL (2/2)

G3 (20B)

ReqL (1/2)

G2 (20B)

Snoop

G1 (20B)

ReqS

G0 (20B)

ReqL (2/2)Container B

Figure B3.3: Example of Format X container packing

Figure B3.3 illustrates an example of Format X container packing. The two containers in Figure B3.3 include:

• Two ReqS and two ReqL messages, where one ReqL message spans over two containers.
• One Resp and one Resp2 message.
• One Snoop message.
• One DataS message.
• Empty granules in Container B.

G11
(10B)

Container A

G10 (20B)

Format Y

G9 (20B) G8 (20B) G7 (20B) G6 (20B) G5 (16B) G4 (20B) G3 (20B) G2 (20B) G1 (20B) G0 (20B)

Container B

Resp
DataL
(2/5)

DataL
(1/5)

Snoop ReqS Resp
DataS
(3/4)

DataS
(2/4)

DataS
(1/4)

ReqL
(2/2)

ReqL
(1/2)

DataL
(5/5)

WrReqDataS
(1/4)

WrReqDataS
(4/4)

Container C Resp Resp

Container D Resp
WrReqDataS

(4/4)
WrReqDataS

(3/4)
WrReqDataS

(2/4)
WrReqDataS

(1/4)
Resp

WrReqDataS
(3/4)

WrReqDataS
(2/4)

WrReqDataS
(1/4)

WrReqDataS
(4/4)

WrReqDataS
(3/4)

WrReqDataS
(3/4)

WrReqDataS
(2/4)

WrReqDataS
(2/4)

WrReqDataS
(1/4)

WrReqDataS
(4/4)

WrReqDataS
(3/4)

WrReqDataS
(2/4)

WrReqDataS
(1/4)

WrReqDataS
(4/4)

WrReqDataS
(3/4)

WrReqDataS
(2/4)

WrReqDataS
(1/4)

DataS
(4/4)

ReqS
DataL
(4/5)

DataL
(3/5)

WrReqDataS
(4/4)

Figure B3.4: Example of Format Y container packing

Figure B3.4 illustrates an example of Format Y container packing. The four containers in Figure B3.4 include:

• Two ReqS messages and one ReqL.

• Six Resp messages.

• One Snoop message.

• One DataS message and one DataL message.

– The DataS message in Container A spans over G5.

– The DataL message starts in Container A, skips over G11, and rolls over to the beginning of Container
B.

• Six WrReqDataS messages.

– One WrReqDataS message in Container B, spans over G5.

– One WrReqDataS message starts in Container C G9, skips over G11, and rolls over to the beginning of
Container B.

• Empty granules in Container B.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter B4
Message structures

This chapter describes the extent of support for on-chip CHI transaction flows, the on-chip CHI fields in messages
that are optimized out as they are not required and resulting message formats with list of fields in each message
class. It contains the following sections:

• B4.1 Transactions and transaction flows
• B4.2 Message fields

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter B4. Message structures
B4.1. Transactions and transaction flows

B4.1 Transactions and transaction flows

This section describes the mapping of fields in a request received by a Subordinate Node to on-chip CHI fields,
and also lists the CHI transactions that are not supported.

B4.1.1 Field mapping in requests to Subordinate Nodes

An interface receiving requests targeting Subordinate Node must map the fields in the received request to the
on-chip CHI request message in the following manner:

• Duplicate SrcID onto ReturnNID
• Duplicate TxnID onto ReturnTxnID
• Set DoDWT to 0

B4.1.2 Unsupported transactions

The following transactions are not supported:

• Forwarding snoops

• Exclusive access to Non-cacheable and Device memory

• Request Retry flows

• Direct Memory Transfer (DMT). The ReturnNID and ReturnTxnID fields used for DMT are not included in
a Request message.

• Direct Cache Transfer (DCT). The FwdNID and FwdTxnID fields used exclusively for DCT are not included
in a Snoop message.

• Direct Write Transfer (DWT). The ReturnNID field used for DWT is not included in a Request message.

• When Tag Match is enabled, direct TagMatch response to Request Node from Subordinate Node is not
supported.

• In Persist Cache Maintenance Operation (CMO) transaction flow, direct Persist response to Request Node
from Subordinate Node is not supported.

Note

For a Read transaction, the chip which includes the Home Node and Subordinate Node can use DMT
internally to that chip. This allows data to be forwarded directly to the C2C port from the Subordinate Node.

However, because DMT is not supported across the C2C interface, the data response only has a single SrcID
field, rather than having both SrcID and HomeNID fields. At the C2C port, the SrcID field in the data
response must be populated with the Node ID of the Home. This ensures that any subsequent message in the
transaction, such as CompAck, is correctly sent to the Home.

For Write transactions and Snoop transactions, the SrcID field of the data response will contain the correct
Node ID and does not need to be replaced with the Home ID.

At the Requester chip interface, the SrcID and HomeNID in the responses to the Requester must be
populated by duplicating the common field value.

DCT support can be partially supported at the Home chip egress by keeping track of the snoop type before
converting the Forwarding snoop into a Non-forwarding snoop. When the snoop response with data is
received, the interface logic can split the response where one is sent to the Requester and the other is sent to
the Home.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter B4. Message structures
B4.2. Message fields

B4.2 Message fields

This section describes the fields in each message class.

Fields that are present for C2C, but not in on-chip CHI messages, are described in B4.2.1 C2C specific message
fields. On-chip CHI messages that are removed in C2C messages are described in B4.2.8 Redundant fields.

B4.2.1 C2C specific message fields

The following fields are added to C2C messages and are not present in on-chip CHI messages:

• MsgType
• ResPlane
• SharedCrdt
• ChunkValid
• RsvdZero

B4.2.1.1 Message type, MsgType

This field identifies the message type in terms of message class and size, where:

• Request, Data, WrReqData messages can be one of two types, dependent upon message length. See B4.2.2
Request message fields, B4.2.4 Data message fields, and B4.2.5 WritePush message for more details.

• Response messages can be one or two per granule of 20 bytes. See B4.2.3 Response message fields.

• Miscellaneous messages can be credited or uncredited.

– See B4.2.7 Uncredited Miscellaneous message fields for details on uncredited MISC messages.

– This specification does not yet define any credited MISC messages.

Table B4.1 shows the encoding of the MsgType field.

Table B4.1: MsgType encoding

MsgType Type CHI channel

0b0000 MiscU -

0b0001 MiscC -

0b0010 ReqS REQ

0b0011 ReqL REQ

0b0100 Resp RSP

0b0101 Resp2 RSP

0b0110 Snoop SNP

0b0111 DataS DAT

0b1000 DataL DAT

0b1001 WrReqDataS REQ and DAT

0b1010 WrReqDataL REQ and DAT

0b1011 - 0b1111 Reserved

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter B4. Message structures
B4.2. Message fields

B4.2.1.2 Resource plane, ResPlane

This field is used to support multiple resource planes in Request and WritePush messages. See B5.3 Resource
Planes and B5.4 Data credit pools.

B4.2.1.3 Shared credit, SharedCrdt

This field is used to support multiple resource planes and data credit pools in Request and Data message class
messages. See B5.3 Resource Planes and B5.4 Data credit pools.

B4.2.1.4 Chunk valid, ChunkValid

This field is present in DataS, DataL, WrReqDataS, and WrReqDataL messages. Its value indicates if one or both
of the 32 byte data chunks have valid data.

Table B4.2 shows the ChunkValid field encodings.

Table B4.2: ChunkValid field encoding

ChunkValid[1:0] Valid chunk

0b00 Reserved

0b01 Lower 32 bytes

0b10 Upper 32 bytes

0b11 All 64 bytes

B4.2.1.5 RsvdZero

This field indicates that the use of the bits is Reserved and a Transmitter must set the field value to zero, a Receiver
must ignore the field and an intermediate agent must forward them unchanged. The inclusion of RsvdZero field in
a message may be for starting the subsequent field at a byte or granule boundary or to fill the bits beyond useful
information in the last granule.

B4.2.2 Request message fields

The fields in the Request message types are described in this section:

• ReqS, for short-sized formats
• ReqL, for long-sized formats

A Request message uses a ReqL message format when any of the following fields are present in the request and
have a non-zero value:

• Addr[3:0] in any request. Addr[5:0] bits in Dataless requests of 64 bytes size to normal memory are
permitted to be zeroed.

• LPID in an exclusive transaction.

• GroupID in a Persist CMO, a StashOnceSep, or a Write with TagOp value of Match.

• StashNID[10:1]

• StashLPIDValid

• PBHA

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter B4. Message structures
B4.2. Message fields

• LikelyShared

• DataTarget[6:1]

• RSVDC[N-1:16]

When the the use of ReqS is allowed, a Transmitter is permitted to use ReqL messages in place of ReqS. The use
of ReqL instead of ReqS may lead to reduced container packing efficiency.

Table B4.3 lists Request message fields and their placement into ReqS and ReqL.

The columns in the table are defined as follows:

Common Fields marked with the same ’x’ in ’Cx’ share a common position in the message.

ReqS The request includes all mandatory fields and most commonly used optional fields.

ReqL Request size is extended to include all supported Request fields.

Table B4.3: Request message fields

Common Field name Width (bits)

ReqS ReqL

MsgType 4 4

SharedCrdt 1 1

ResPlane 3 3

QoS 4 4

SrcID 11 11

TxnID 12 12

NS 1 1

NSE 1 1

SecSID1 1 1

Order 2 2

MemAttr 4 4

ExpCompAck 1 1

TraceTag 1 1

Addr[51:6] 46 46

Addr[5:4] 2 2

SnpAttr 1 1

MPAM 15 15

C0 MECID
StreamID

16 16

RSVDC[15:0] 16 16

Size 3 3

Opcode 7 7

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter B4. Message structures
B4.2. Message fields

Table B4.3 – Continued from previous page

Common Field name Width (bits)

ReqS ReqL

TagOp 2 2

C1 StashNIDValid
Endian
Deep
PrefetchTgtHint

1 1

C2 Excl
SnoopMe
CAH

1 1

C3 DataTarget[0]
StashNID[0]

1 1

RsvdZero 3 3

PBHA 0 4

Addr[3:0] 0 4

StashLPIDValid 0 1

StashLPID 0 5

C4 {4’b0,
DataTarget[6:1]}
StashNID[10:1]

0 10

C5 {3’b0, LPID}
PGroupID
StashGroupID
TagGroupID

0 8

RSVDC[23:16] 0 8

RSVDC[31:24] 0 8

LikelyShared 0 1

RsvdZero 0 111

Total (bits)a 157 206

a The total bit count does not include the RsvdZero bits.

B4.2.3 Response message fields

The fields in the Response message types are described in this section:

• Resp
• Resp2

B4.2.3.1 Resp message type

Table B4.4 shows the fields in a Resp message type, where one response is packed into a single granule.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter B4. Message structures
B4.2. Message fields

Table B4.4: Resp response message fields

Common Field name Width (bits)

MsgType 4

QoS 4

TgtID 11

SrcID 11

TxnID 12

Opcode 5

RespErr 2

Resp 3

DataPull 1

CBusy 3

TagOp 2

TraceTag 1

C6 DBID
{4’b0, PGroupID}
{4’b0, StashGroupID}
{4’b0, TagGroupID}

12

RsvdZero 9

Total (bits)a 71

a The total bit count does not include the RsvdZero bits.

B4.2.3.2 Resp2 message type

Table B4.5 shows the fields in a Resp2 message type, where two responses are packed into a single granule.

Table B4.5: Resp2 response message fields

Common Field name Width (bits)

MsgType 4

QoS 4

TgtID 11

SrcID 11

TxnID 12

Opcode 5

RespErr 2

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter B4. Message structures
B4.2. Message fields

Table B4.5 – Continued from previous page

Common Field name Width (bits)

Resp 3

DataPull 1

CBusy 3

TagOp 2

TraceTag 1

C6 DBID
{4’b0, PGroupID}
{4’b0, StashGroupID}
{4’b0, TagGroupID}

12

RsvdZero 9

RsvdZero 4

QoS 4

TgtID 11

SrcID 11

TxnID 12

Opcode 5

RespErr 2

Resp 3

DataPull 1

CBusy 3

TagOp 2

TraceTag 1

C6 DBID
{4’b0, PGroupID}
{4’b0, StashGroupID}
{4’b0, TagGroupID}

12

RsvdZero 9

Total (bits)a 138

a The total bit count does not include the RsvdZero bits.

B4.2.4 Data message fields

DataS and DataL message formats are used for read data, snoop response data, and non-WritePush data messages.

The characteristics of DataS and DataL message format include:

• SrcID and HomeNID share a single 11-bit field. This field is used by:

– HomeNID in CompData and DataSepResp

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter B4. Message structures
B4.2. Message fields

– SrcID in SnpRespData and WriteData

• Data poison is a single bit per data transfer and is indicated by a RespErr value of DERR.

• The ChunkValid field is used to indicate if the corresponding 32 bytes includes valid data. See Table B4.2.

• The Data field starts at a byte boundary. This requires a RsvdZero bit padding before the Data field.

• Fields exclusively in DataL message start at a granule boundary.

• Invalid bytes in the Data field in any data message, indicated by ChunkValid, and BE in write data and snoop
response data, must be zeroed.

The DataL message format must be used instead of DataS when any of the following conditions are true:

• The BE field in a data response to a partial write request has one or more bits with zero value.

• The following fields are present in the message and have a non-zero value:

– QoS
– PBHA
– RSVDC[N-1:16]

When the use of DataS is allowed, a Transmitter is permitted to use DataL message in place of DataS. The use of
DataL instead of DataS may lead to reduced container packing efficiency.

Table B4.6 shows the message fields for DataS and DataL.

Table B4.6: DataS and DataL message fields

Common Field name DataS DataL

MsgType 4 4

SharedCrdt 1 1

RsvdZero 1 1

ChunkValid 2 2

TgtID 11 11

C8 SrcID
HomeNID

11 11

TxnID 12 12

Opcode 4 4

RespErr 2 2

Resp 3 3

DataSource 8 8

DataPull 1 1

CBusy 3 3

CCID 2 2

TagOp 2 2

Tag 16 16

TU 4 4

TraceTag 1 1

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter B4. Message structures
B4.2. Message fields

Table B4.6 – Continued from previous page

Common Field name DataS DataL

CAH 1 1

C9 {4’b0, DBID}
MECID

16 16

RSVDC[15:0] 16 16

RsvdZero 7 7

Data 512 0

RsvdZero 0 32

RSVDC[31:16] 0 16

QoS 0 4

PBHA 0 4

RsvdZero 0 40

BE 0 64

Data 0 512

Total Non-data (bits)a 120 208

Total (bits)a 632 720

a The total bit count does not include the RsvdZero bits.

B4.2.5 WritePush message

Immediate Writes, Atomics and DVMReq transactions with NonCopyBackWriteData data, are permitted, but not
required, to optimize their transaction flow by using write push semantics. A Write push flow combines the
request and data sent from the Transmitter to Receiver into a single message, thus eliminating the need for a
DBIDResp response.

This two-step write push over the three-step write pull transaction allows the following advantages:

• Reduced number of messages, therefore improving link utilization.
• Fields that are present in both Request and Data only need to be sent once.
• Reduced request buffer occupancy time.

The following interface properties are defined to support WritePush transactions:

WritePush_Support This property indicates if the interface supports the use of WritePush for Immediate
Writes and Atomic transactions. See B10.4.2 Receiver and Transmitter properties.

DVMPush_Support This property indicates if the interface supports the use of WritePush for DVM
transactions. See B10.4.2 Receiver and Transmitter properties.

See B4.2.5.2 Message fields for message format details.

B4.2.5.1 Transaction flow

Figure B4.1 shows the transaction flow for an Immediate Write transaction using write push semantics.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter B4. Message structures
B4.2. Message fields

Requester

Requester

Completer

Completer

WrReqDataS or WrReqDataL

Comp

Figure B4.1: WritePush transaction flow

The sequence for the WritePush transaction is:

• The transaction starts with the Requester issuing a WrReqDataS or WrReqDataL message.

• The Completer sends a Comp response.

B4.2.5.2 Message fields

Table B4.7 lists the request opcodes that are permitted to use a WrReqDataS message. In these requests, the BE
field values must all be 1. All other push transactions, including those that require fields which are not included in
a WrReqDataS message, must use a WrReqDataL message format.

In WrReqDataS and WrReqDataL, invalid bytes in the Data field must be zeroed.

Note

The interface can use ChunkValid to determine which bytes to be zeroed.

The OWO field in Table B4.7 indicates if the write is part of a group of writes that require Ordered Write
Observation (OWO) guarantees.

When OWO = 0 OWO guarantees are not required.

When OWO = 1 OWO guarantees are required.

When the rules permit the use of WrReqDataS, a write push message is permitted to use WrReqDataL instead of
WrReqDataS. The use of WrReqDataL may lead to reduced container packing efficiency.

Table B4.7: WrReqDataS and WrReqDataL message fields

Common Field name Width (bits)

WrReqDataS WrReqDataL

MsgType 4 4

SharedCrdt 1 1

ResPlane 3 3

QoS 4 4

SrcID 11 11

TxnID 12 12

NS 1 1

NSE 1 1

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter B4. Message structures
B4.2. Message fields

Table B4.7 – Continued from previous page

Common Field name Width (bits)

WrReqDataS WrReqDataL

SecSID1 1 1

Order 2 2

MemAttr 4 4

C10 ExpCompAck
OWO

1 1

TraceTag 1 1

Addr[51:6] 46 46

Opcode2 2 0

Union1a 34 0

Data 512 0

Addr[5:4] 0 2

SnpAttrb 0 1

MPAM 0 15

MECID 0 16

RSVDC[15:0] 0 16

Sizec 0 3

Opcode 0 7

TagOpd 0 2

C1 StashNIDValid
Endian
Deep
PrefetchTgtHint

0 1

C2 Excl
SnoopMe
CAH

0 1

C3 DataTarget[0]
StashNID[0]

0 1

RsvdZero 0 3

PBHA 0 4

Addr[3:0] 0 4

StashLPIDValid 0 1

StashLPID 0 5

C4 {4’b0, DataTarget[6:1]} 0 10

StashNID[10:1]

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter B4. Message structures
B4.2. Message fields

Table B4.7 – Continued from previous page

Common Field name Width (bits)

WrReqDataS WrReqDataL

C5 {3’b0, LPID}
PGroupID
StashGroupID
TagGroupID

0 8

RSVDC[23:16]e 0 8

Tag 0 16

TU 0 4

ChunkValid 0 2

RespErr 0 2

BE 0 64

Data 0 512

Total Non-data (bits)f 128 285

Total (bits)f 640 797

a This field is shared among MECID, MPAM, and RSVDC. See Figure B4.2.

b For WrReqDataS, this field is derived from Opcode2.

c For WrReqDataS, this field has 64 bytes implicitly.

d The TagOp value in the Request is the same as the TagOp value in the Data message.

e A maximum of 24 bits for the RSVDC is permitted for C2C interface.

f The total bit count does not include the RsvdZero bits.

Table B4.8 shows the Opcode2 field in a WrReqDataS message.

Table B4.8: Opcode2 field encoding in WrReqDataS message

Opcode2[1:0] WrReqDataS command Comments

00 WriteNoSnpFull

01 WriteUniqueFull

10 WriteNoSnpPtl All 64 BE bits set

11 WriteUniquePtl All 64 BE bits set

Figure B4.2 illustrates the sharing of the Union1 field among MPAM, MECID, and RSVDC fields.

The lower order bits of the Union1 field determine how the other bits of the field are used for MPAM, MECID, and

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter B4. Message structures
B4.2. Message fields

RSVDC values.

0 0Reserved

MECID[15:0]

RSVDC[15:0]

RSVDC[15:0] MECID[15:0] 1 0

MPAM[14:0]

MPAM[14:0]

0 0 1

1 0 1

RSVDC[7:0] MECID[11:0] MPAM[11:0] 1 1

Figure B4.2: Union1 field use for MPAM, MECID, and RSVDC

B4.2.6 Snoop message fields

Table B4.9 shows the fields in a Snoop message.

Table B4.9: Snoop message fields

Common Field name Width (bits)

MsgType 4

QoS 4

TgtID 11

SrcID 11

TxnID 12

PBHA 4

StashLPIDValid 1

StashLPID 5

Opcode 5

Addr 48

NS 1

NSE 1

DoNotGoToSD 1

RetToSrc 1

TraceTag 1

MPAM 15

MECID 16

RsvdZero 19

Total (bits)a 141

a The total bit count does not include the RsvdZero bits.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter B4. Message structures
B4.2. Message fields

B4.2.7 Uncredited Miscellaneous message fields

The fields in a MiscU message are shown in Table B4.10.

The number of Payload bits used by a MiscU message is dependent on the MISC message type.

The following key is used:

X Variable field width, where the precise value is dependent on the MiscOp field value.

Table B4.10: MiscU message fields

Field name Width (bits)

MsgType 4

MiscOp 4

Payload X

Total (bits) 8 + X

MiscOp describes the message subtypes supported by Miscellaneous message class.

The encoding of MiscOp field in a MiscU message is shown in Table B4.11.

Table B4.11: Encoding of MiscOp field in MiscU message

MiscOp[3:0] MiscU message

0000 Reserved

0001 Reserved

0010 Activation

0011 Connect

0100 CrdtGrant

0101 Properties

0110 LinkStatus

Others Reserved

B4.2.8 Redundant fields

Certain CHI fields are not required in C2C messages because of one or more of the following reasons:

• The transaction flow that uses the field is not supported.

• The field is used in messages in the Home Node to Subordinate Node interface only to support flow
optimizations not supported in C2C.

• Routing of messages of that message class is based on address decode rather than ID.

Table B4.12 shows the CHI fields not required in C2C messages.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter B4. Message structures
B4.2. Message fields

Table B4.12: CHI message fields not inlcuded in C2C messages

Message Class Field name Bits Description

Request TgtID 11 This field is removed as requests are routed using address
decode rather than using TgtID.

ReturnNID
ReturnTxnID
DoDWT

11
12
1

These fields are removed as they are only used in requests
from Home Node to Subordinate Node to provide an
optimized direct path response communication between a
Request Node and a Subordinate Node. Direct responses
between these nodes are not supported.

AllowRetry
PCrdType

1
4

These fields are removed as they are only used in a
Request Retry transaction flow.

Response FwdState 3 This field is removed as it is only used in DCT transaction
flows.

PCrdType 4 This field is removed as it is only used in Request Retry
transaction flows.

Data FwdState 3 This field is removed as it is only used in DCT transaction
flows.

DataID 2 This field is removed because data is always sent across a
C2C inteface in a single 64-byte block.

Poison 8 This field is removed as the poison indication is per the
cache line and is encoded in RespErr field. The RespErr
encoding of 0b10 is used to indicate Posion or Data
Error.

DataCheck 64 This field is removed as the Link layer may use its own
proprietary mechanism, such as CRC and Forward Error
Correction (FEC), to support transport reliability. This
makes the DataCheck field redundant.

NumDat
Replicate

2
1

These fields are removed as they are used to support
limited data elision. A cache line data is always
transported as a 64B granule.

Snoop FwdNID
FwdTxnID

11
12

These fields are removed as they are only used in
Forwarding snoops.

VMIDExt 8 This field is removed as it is only used in DVM snoops.
DVM snoops are sent across the C2C interface as DVM
requests, therefore this field is not required in snoops.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter B5
Flow control

This chapter describes the message flow control for a C2C interface. It contains the following sections:

• B5.1 Introduction
• B5.2 Message credits
• B5.3 Resource Planes
• B5.5 Ordered interface

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter B5. Flow control
B5.1. Introduction

B5.1 Introduction

Messages are required to adhere to the following conditions:

• A message must not be dropped or lost in transport, that is, every message that is sent by a Transmitter must
be received and processed by the Receiver.

• Incoming packets from the Link layer or Physical layer must be accepted without applying backpressure, in
accordance with industry wide physical design standards. See UCIe [2] for more information.

• Response and Data channel messages must be accepted without dependency on forward progress of any
Request or Snoop messages.

• Snoop channel message must progress without dependency on forward progress of Request channel
messages.

• Write push requests must not block forward progress of any data that is not associated with a write push.

The following mechanisms are used to support the flow control requirements:

• Separate credits per message class are provided to ensure messages from an individual message class can
progress, while other Message Class messages are back pressured.

• Multiple Resource Planes and DAT credit pools are supported within REQ and DAT Message Classes to
support forward progress guarantees for different message groups within each message class.

• Ordering of messages within a message class and an RP is also supported.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter B5. Flow control
B5.2. Message credits

B5.2 Message credits

To support flow control requirements, it is required that:

• Messages from each message class must be flow controlled independently.

• For each message class, the Receiver must provide message credits to the Transmitter. This ensures a
Transmitter has the appropriate credits before sending a message.

– Uncredited MISC messages do not require a message credit and the Receiver must guarantee to accept
such a message.

– To send a WrReqDataS or WrReqDataL message, the Transmitter needs to have one REQ and one DAT
message credit. See B5.4 Data credit pools.

See Table B4.1 to determine which credit is required for each message type.

Credits can be granted using either the Protocol header or using a MiscU message.

B5.2.1 Credit grant using a Protocol header

Credits can be granted to the Transmitter using the message credit grant field, MsgCredit, in the Protocol Header.
The subfields of the MsgCredit field are shown in Figure B5.1. The MsgCredit field can be used to grant credits for
all message classes, except MISC.

A container with Activation messages cannot be used to grant credits using the Protocol header. See B8.2 Interface
Activation and Deactivation for details on Activation messages.

ShC RP

15 14 12

SNPCredit

11 9 8

DATCredit RSPCredit REQCredit

6 5 3 2 0

Figure B5.1: Message credit fields in Protocol Header

SharedCrdt (ShC) and RP fields are included to be used when multiple RP are supported in either REQ or DAT
message classes. ShC and RP field values are applicable in both REQCredit and DATCredit fields, but are not
applicable to RSPCredit or SNPCredit fields.

When ShC = 0 The REQCredit and DATCredit both correspond to credit pools indicated by the RP field
value and:

– When WritePush_Support and DVMPush_Support are both False, DATCredit must be
0.

– When either WritePush_Support or DVMPush_Support, or both, are True, DATCredit
must be 0 when the RP value is greater than 1.

– An RP value of greater than or equal value to the maximum REQ RP is not permitted.

When ShC = 1 The REQCredit and DATCredit both correspond to shared credit pool. The RP field is
inapplicable and must be zero.

See B5.3 Resource Planes and B5.4 Data credit pools for details of the shared credit and dedicated credit pool
usage.

B5.2.2 Credit grant using a MiscU message

Credits for all message channels can be granted using a MISC channel message by sending an explicit credit grant
message on the MISC channel. See B5.2.3 Credit grant message format.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter B5. Flow control
B5.2. Message credits

REQ

P
ro

to
co

l
la

ye
r

Packetization layer

RSP

DAT

SNP

MISC

REQ

RSP

DAT

SNP

MISC

C2C
Interface

C2C
Interface

Packetization layer

Link and Physical
layer

Message credit
exchange

P
rotocol
layer

Link and Physical
layer

Figure B5.2: Message credits

Granted credits are used when a message in the associated message class is sent.

Table B5.1 shows the encoding of the message credit field.

Table B5.1: Message credit field encoding

Message credit[2:0] Num credit

000 0

001 1

010 2

011 4

100 8

101 16

110 Reserved

111 Reserved

B5.2.3 Credit grant message format

The MiscU.CrdtGrant is used for granting credits for messages.

Table B5.2 shows the CrdtGrant MiscU message fields.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter B5. Flow control
B5.2. Message credits

Table B5.2: CrdtGrant message fields

Field name Width (bits)

MsgType 4

MiscOp 4

REQShCredit 3

RSPCredit 3

DATShCredit 3

SNPCredit 3

MISCCredit 3

REQ0Credit 3

REQ1Credit 3

REQ2Credit 3

REQ3Credit 3

REQ4Credit 3

REQ5Credit 3

REQ6Credit 3

REQ7Credit 3

DAT0Credita 3

DAT1Credita 3

RsvdZero 27

Total (bits) 80

a When WritePush_Support and DVMPush_Support are both False, this field
is inapplicable and must be zero.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter B5. Flow control
B5.3. Resource Planes

B5.3 Resource Planes

Multiple resource planes are typically used to enable:

• Forward progress guarantees against different requests. For example, to ensure the forward progress of PCIe
posted writes is not dependent on the progress of other write transactions.

• Service time guarantees. For example, messages that are part of real-time traffic which need to be serviced
within required latency bounds.

• Simplification of the protocol. For example, eliminating Request retry without creating a transport deadlock,
even when two phases of a transaction use the same transport.

This specification supports request Resource Planes (RP) to provide transport independence between requests.
When using Resource Planes:

• Messages using different Resource Planes must not block one another from the local Protocol layer to the
remote Protocol layer.

• The following types of credits can be issued:

– Dedicated credits are for a specific RP and can only be used for messages belonging to that RP.

– Shared credits do not specify an RP and can be used for messages assigned to any RP.

• Messages using the same RP must remain in-order, even if they are using shared credits.

• Any RP for which the Transmitter has credits can be used to send messages.

• It is recommended, but not required, that a Transmitter uses shared credits before dedicated credits.

There can be up to eight Resource Planes for Request messages.

A Receiver can divide its buffers between shared and dedicated credit pools. The number of message credits for
each dedicated credit pool is permitted to be different.

The Receiver must have available at least one dedicated credit per request RP supported and at least one credit for
shared credit pool.

A Request message must:

• Indicate if it is using shared pool credit.

• Include the RP to which it belongs to, even when using shared pool credit.

SharedCrdt and ResPlane fields are included in request messages to support Resource Planes:

• SharedCrdt. Indicates if a request is using a shared credit.

When SharedCrdt = 0 The request is using dedicated RP credit. The RP number is indicated by the
ResPlane field value.

When SharedCrdt = 1 The request is using shared pool credit. The RP to which the message belongs
must be indicated by the ResPlane field value, even though shared credits are
being used.

• ResPlane[2:0]. Indicates the RP to which the request belongs.

The field value can be 0 to Num_RP_REQ. The Num_RP_REQ property defines the maximum number of
dedicated RP supported by the Request message class. See Table B10.7 and Table B10.8 for the
Num_RP_REQ encoding.

See B4.2.2 Request message fields for the ReqS and ReqL message format.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter B5. Flow control
B5.4. Data credit pools

B5.4 Data credit pools

Credits that are used to transfer messages with data, DAT credits, are split into the following credit pools:

• DAT0Credit, a dedicated credit used to transfer Data messages that need progress to be guaranteed over any
blocked WritePush message. The sending of a message using DAT0Credit must not be dependent on the
progress of messages using credits from the other data credit pools.

• DAT1Credit, a dedicated credit used to transfer WrReqData messages that need guaranteed forward progress.
The sending of a message using DAT1Credit must not be dependent on progress of messages using credits
from the other data credit pools

• DATShCredit, a shared credit that can be used to transfer any data message. The use of DATShCredit by
messages relating to one request RP must not block or be blocked by messages relating to another request RP.

Table B5.3 shows which message types are permitted to use which credit types.

Table B5.3: Data credit options for each message type

Message type Messages Credit type

Data Read response with data,
Snoop response with data,
Write pull data response.

DATShCredit, DAT0Credit

WrReqData WritePush that require
forward progress guarantees.

DATShCredit, DAT1Credit

WritePush that do not
require forward progress
guarantees.

DATShCredit

The choice of using a dedicated or shared credit can depend on the required progress of the transfer. For example:

• A PCIe write which must make forward progress, and is using the WrReqData message, is expected to use a
dedicated credit when no shared credits are available.

• A DVM message which can be stalled by other messages can wait for a shared credit to be available and does
not need dedicated credit support.

At least one credit of DATShCredit type must be available.

If either WritePush_Support or DVMPush_Support are True, at least one credit of each dedicated DAT credit type
must be made available.

If both WritePush_Support and DVMPush_Support are False, DAT0Credit and DAT1Credit are not required and
credits for them must not be sent.

B5.4.1 Credits for DataS and DataL messages

The DataS and DataL fields include a SharedCrdt field with the following encoding:

When SharedCrdt = 0 The data message is using a DAT0Credit.

When SharedCrdt = 1 The data message is using a DATShCredit.

See B4.2.4 Data message fields for the DataS and DataL message format.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter B5. Flow control
B5.4. Data credit pools

B5.4.2 Credits for WrReqData messages

A WrReqData message includes a request and write data, so needs one REQ message credit and one DAT message
credit.

The request part of a WrReqData message can be allocated an RP in the same way as other request messages.

Any WrReqData message that:

• Requires forward progress guarantees is permitted to use either DATShCredit or DAT1Credit. It is
recommended, but not required, to use DATShCredit before DAT1Credit.

• Does not require forward progress guarantees must use DATShCredit.

The credit and RP options for WrReqData messages are encoded in SharedCrdt and ResPlane fields as follows:

• SharedCrdt

When SharedCrdt = 0 The request is using a REQxCredit. The data is using a DAT1Credit.

When SharedCrdt = 1 The request is using a REQShCredit. The data is using a DATShCredit.

• ResPlane[2:0]

Indicates the RP to which the request is assigned.

See B4.2.5.2 Message fields for the WrReqData message format.

Note

A write message that needs both Request and Data shared credits to progress using WritePush semantics
may change to using Write pull to progress on the transaction, when simultaneous availability of both shared
credits is not provided in a timely manner.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter B5. Flow control
B5.5. Ordered interface

B5.5 Ordered interface

It is required that the C2C interface must be ordered.

Containers must be received at the C2C interface in the same order that they were sent by the C2C interface on the
far side of the link.

It is required that:

• At the Transmitter:

– Messages from the same message class and same RP where that applies, must be placed in the container
in the same order that they are received from the Protocol layer, that is in granules starting from the
lowest number first to higher numbers.

– Messages from different message class do not have such ordered placement restrictions.

• At the Receiver:

– The Packetization layer must maintain the order of placement of messages of a given message class
within the received container as well as order in which containers are received.

– The messages within a message class of the same RP value must be forwarded to the Protocol layer in
the same order as they are received.

See B2.4 Multiple interfaces for ordering requirements when using multiple interfaces between two components.

The ordered interface is a required feature and hence an interface property to control its presence is not included.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter B6
DVM transactions

This chapter contains the following sections:

• B6.1 Introduction
• B6.2 DVM Node, DN
• B6.3 DVM transaction flows
• B6.4 DVM transaction responses
• B6.5 Flow control

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter B6. DVM transactions
B6.1. Introduction

B6.1 Introduction

All CHI DVM transactions are supported over the C2C interface. A new node type, DVM Node (DN), is defined
which is responsible for propagating local DVM transactions to remote chips and performing the required local
invalidations as requested by remote DVM requests.

DVM Nodes also manage flow control to guarantee DVM transaction forward progress.

DVM message flows are optimized by introducing new response types and reducing the number of messages.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter B6. DVM transactions
B6.2. DVM Node, DN

B6.2 DVM Node, DN

A DN processes DVM operations to and from remote chips. A DN performs the following functions:

• Sends DVM requests to remote DVM Nodes for local DVM transactions. When sending the request to
multiple nodes, it may use unicasting DVM requests to each remote DN or a hierarchical tree communication
pattern to send to a subset of remote DN which further forward the request to another subset and thus
spanning the DVM request to all DVM nodes in the system.

• Collects responses for DVM requests it sent to remote DN.

• Performs locally required invalidations for remote DVM requests.

• Coordinates interaction between local and remote DVM transactions.

Each chip is permitted to have one DN only.

The number of DVM Nodes in the system is limited to 64.

B6.2.1 DVM Node assignment

A DN is permitted to share ID name space with Request Nodes and Home Nodes on the same chip.

This requires DVM responses which are targeting a DN to be identified separately from responses targeting
Request Nodes.

Note

The ability to share Node ID name space minimizes the total unique ID required in the system.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter B6. DVM transactions
B6.3. DVM transaction flows

B6.3 DVM transaction flows

The two DVM transactions over C2C are:

• DVMReq
• DVMSync

In this specification, DVMReq refers to DVMOp(NonSync) and DVMSync refers to DVMOp(Sync).

B6.3.1 DVMReq

The DVMReq transaction flow is illustrated in Figure B6.1. The flow is similar to a 32-byte write partial
transaction flow. The DVMReq transaction can use write push or write pull semantics.

The DVMReq is permitted to use write push semantics only when DVMPush_Support property is True.

The Completer responses are:

• When a write push flow is used: CompDVM.
• When a write pull flow is used: CompDVM, DBIDRespDVM, or a combined CompDBIDRespDVM.

See B6.4 DVM transaction responses for response message details.

DVM transaction payload is distributed across the Addr and Data fields of the request, like on-chip CHI. Comp and
DVMData are differentiated from Comp and Data responses for non-DVM transactions by using different opcodes.

Requester

Requester

Completer

Completer

alt [1. Using push flow]

DVMReq (WrReqDataL)

CompDVM

[2. Using pull flow]

DVMReq

alt [2a. Separate Comp and DBIDResp]

DBIDRespDVM

DVMData

CompDVM

[2b. Combined Comp and DBIDResp]

CompDBIDRespDVM

DVMData

Figure B6.1: DVMReq transaction flow

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter B6. DVM transactions
B6.3. DVM transaction flows

Note

On-chip CHI is used to pass DVM transactions from a local DN or ingress port to the C2C Requester.

After being sent across the C2C interface, the C2C Completer uses on-chip CHI to pass the transaction to
the local DN or an egress port.

B6.3.2 DVMSync

The DVMSync transaction flow is illustrated in Figure B6.2. The flow is similar to a Dataless request transaction
flow with a single response.

The complete response is CompSyncDVM.

All required payload is in the request address fields and thus the DVM transaction data response is eliminated.

DVMSync is used when the on-chip Opcode field indicates DVMOp and the DVMType subfield indicates
Synchronization.

Request is tracked by SrcID alone. There can be only one DVMSync transaction outstanding from each source.
Thus, the TgtID in the response is used to match the response to its corresponding request.

In the request, the TxnID is inapplicable and must be zero.

In the response, the TxnID field is inapplicable and must be zero.

Requester

Requester

Completer

Completer

DVMSync

CompSyncDVM

Figure B6.2: DVMSync transaction flow

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter B6. DVM transactions
B6.4. DVM transaction responses

B6.4 DVM transaction responses

The response messages for DVMReq and DVMSync messages are:

• For DVMReq: CompDVM, DBIDRespDVM, CompDBIDRespDVM, and DVMData
• For DVMSync: CompSyncDVM.

See Table B6.1 and Table B6.2 for opcodes for DVM transaction responses, both data and non-data responses.

Table B6.1: DVM transaction response opcode encodings

Opcode[4:0] Resp

0x1C CompDVM

0x1D DBIDRespDVM

0x1E CompDBIDRespDVM

0x1F CompSyncDVM

Table B6.2: DVMReq data response opcode encodings

Opcode[4:0] Resp

0xD DVMData

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter B6. DVM transactions
B6.5. Flow control

B6.5 Flow control

The following rules must be followed by the Requester and the Completer of DVM transactions to guarantee
transaction forward progress is made.

A DN:

• Must have only one DVMSync request outstanding to remote DVM nodes.
• Permitted to have any number of DVMReq requests outstanding to remote DVM nodes.
• Must accept one DVMSync from each remote DN.

This requirement of all DVMSync requests must be sunk at the destination DN is placed to avoid request path
being blocked at the C2C.

A DVMSync at DN must not block forward progress of DVMReq transactions. That is, must guarantee forward
progress of DVMReq transactions received from remote nodes. This guarantee can be obtained by reserving a
buffer for received DVMReq transactions.

DVMReq transactions forward progress at the C2C interface must not depend on forward progress of DVMSync
transactions.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Chapter B7
RME-DA and RME-CDA support

This chapter describes the C2C support for RME Device Assignment (DA) and RME Coherent Device Assignment
(CDA). which are part of Arm Confidential Compute Architecture. It contains the following sections:

• B7.1 Introduction
• B7.2 Fields supporting RME-DA and RME-CDA
• B7.3 Host and device responsibilities
• B7.4 Request Nodes per device

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

65

Chapter B7. RME-DA and RME-CDA support
B7.1. Introduction

B7.1 Introduction

RME-DA is part of the Realm Management Extension architecture that enables the secure assignment of
assignable device interfaces. A Device Permission Table (DPT) contains the permission attributes associated with
physical addresses and specifies a corresponding set of DPT checks that apply to incoming accesses from devices.

In this section, the term RME-DA refers to a device that is IO coherent and the term RME-CDA refers to a device
that has the capability of being fully coherent.

This specification supports RME-DA and RME-CDA in multiple accelerator device topologies, where the
accelerators are connected to a host. See Figure B7.1.

Host
Device
Acc

HCM DCM

Device
Acc

Figure B7.1: A host connected to two Accelerator devices

A host, made from a single or multiple SoC dies, forms a Trusted Computing Base (TCB): A host:

• Is responsible for enforcing the security policies required by the system.

• Can be connected to multiple devices.

• Can have memory termed as Host Coherent Memory (HCM) directly attached to it. The HCM can be
coherently accessed by the host, or by any fully coherent or IO coherent devices.

• Must not send a Stash Snoop to a device, unless the line is already legally permitted to be cached by the
device.

• Is permitted to send DVMOp requests or SnpDVMOp snoops towards a device.

A device is a single physical chip(let) and is treated as a single unit from a trust perspective and individually
attested. A device:

• Is trusted in its entirety for a set of Realms only and trusted to maintain Realm separation where required.

• Can have private memory-mapped resources.

• Can have one or more interfaces.

• Can have memory termed as device coherent memory (DCM) directly attached to it. The DCM can be
coherently accessed by the host, the device, and by other coherent devices.

• Can access the DCM of another coherent device only where that access is channeled through a host compute
node.

• Only operates in the Realm and Non-secure PAS.

• Is expected, but not required, to include the following fields in all requests to the host:

– Security State (SecSID1) field

– Stream ID (StreamID) field

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter B7. RME-DA and RME-CDA support
B7.1. Introduction

• Only receives snoop requests for regions of memory owned by Realms that trust the device.

• Cannot be directly connected to another device.

• Is not permitted to send DVMReq or DVMSync requests to a host.

The host and the devices can have multiple Request Nodes and Home Nodes.

It is expected that the host will perform additional checks on certain messages from or to a device. These checks
can ensure that:

• Requests coming from the device to HCM are permitted to access that memory. This means the device
cannot issue a request with a random PA and expect to get access to that location.

• Snoops coming from the device are only for DCM. This means the device cannot issue a request with
arbitrary PA to gain access to a location.

• Snoops going to the device for cached HCM locations only expose accesses that the device is permitted to
observe. This means the device cannot build up a picture of all trusted system activity for more targeted
attacks.

For more information on RME-DA and RME-CDA, see [1].

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter B7. RME-DA and RME-CDA support
B7.2. Fields supporting RME-DA and RME-CDA

B7.2 Fields supporting RME-DA and RME-CDA

The fields used to enable support for RME-DA and RME-CDA include:

StreamID Stream Identifier. StreamID is a unique identifier of request streams originating from one or a set of
Requesters associated with the same System MMU context. The StreamID field in messages at an
interface is applicable as defined by the DevAssign_Support properties.

Note

When interfacing to PCIe, StreamID is the Requester ID associated with a single PCIe endpoint.

SecSID1 Secure Stream Identifier. SecSID1 qualifies the Security state of StreamID. The SecSID1 field in
messages at an interface is applicable as defined by the DevAssign_Support properties.

MECID Memory Encryption Context Identifier. MECID is an identifier assigned to memory accesses,
associating each access with a memory encryption context. The MECID value is unique to each Realm.
The MECID field in messages at an interface is applicable as defined by the MEC_Support properties.

For more details on these fields and their applicability, see [1].

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter B7. RME-DA and RME-CDA support
B7.3. Host and device responsibilities

B7.3 Host and device responsibilities

For details on the responsibilities of a host or device in a system that supports RME-DA or RME-CDA, see [4] and
[5].

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter B7. RME-DA and RME-CDA support
B7.4. Request Nodes per device

B7.4 Request Nodes per device

In an accelerator-attached configuration when the DevAssign_Support_Tx property indicates an interface is
represented as a device:

• At the interface, the maximum number of Request Nodes permitted is 16. From this, a maximum of 8 nodes
can be RN-F. The remaining can be IO coherent Request Nodes. The RN-F nodes must be assigned node ID
values within the range 0 to 7.

• The interface must precisely track device caching to determine if an RN-F on that device has cached a copy
of the line.

Note

The manner in which memory caching is tracked at a Home determines the efficiency of snoop filter
implementation.

Precisely knowing where a line is cached results in a Home sending targeted snoops to that cache.

With coarse grain tracking, a Home needs to resort to multi-casting the snoop to a subset of caches or
broadcasting the snoops to all the caches except the Requester. Both multicasting and broadcasting of
snoops involves a Home sending multiple unicast snoops.

A fine grain tracker at Home, typically a snoop filter or a directory, increases in size with respect to the
increase in the number of caches to be tracked precisely.

To manage the increase in the size of a fine grain tracking snoop filter, an architectural upper limit on the
number of caching agents per interface is placed. A host that supports RME-CDA can preemptively size its
cache tracking structure to that limit.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter B8
Interface state management

This chapter describes the C2C interface state management. It contains the following sections:

• B8.1 Introduction
• B8.2 Interface Activation and Deactivation
• B8.4 Coherency connect and disconnect
• B8.5 DVM domain connect and disconnect

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter B8. Interface state management
B8.1. Introduction

B8.1 Introduction

Hardware flows manage the connectivity state of the interface and thus the link.

The three different connect and disconnect set of flows affect either the fully coherent traffic, DVM messages or all
protocol messages.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter B8. Interface state management
B8.2. Interface Activation and Deactivation

B8.2 Interface Activation and Deactivation

Interface activation and deactivation is used to enable or disable transport of all protocol traffic across the interface.
Activation messages within MiscU message type support interface activation and deactivation. See B8.2.2
Messages for details of these messages.

B8.2.1 Activity states

The interface can be in one of four activity states.

STOP The interface is disconnected from all protocol activity.

ACTIVATE The interface is preparing to enable protocol activity.

RUN The interface is enabled for protocol activity.

DEACTIVATE The interface is preparing to disconnect from all protocol activity.

See B8.2.4 Activation and Deactivation flow for details of the interface behavior in each state.

The permitted state transitions are:

• STOP to ACTIVATE
• ACTIVATE to RUN
• RUN to DEACTIVATE
• DEACTIVATE to STOP

Figure B8.1 shows the permitted state transitions.

ActivateReq sent or received

ActivateAck
sent and
received

DeactivateReq sent or received

DeactivateAck
sent and
received

STOP ACTIVATE

RUNDEACTIVATE

Figure B8.1: Activation deactivation state transition

The remote credits are implicitly returned when the interface moves into the STOP state. That is, all Transmitter
message credit counts are zeroed and Receiver message credits are reset to the values they were at the interface
initialization.

B8.2.2 Messages

The following five messages are defined to support interface activation flow:

• ActivateReq
• ActivateAck
• DeactivateReq

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter B8. Interface state management
B8.2. Interface Activation and Deactivation

• DeactivateAck
• DeactivateHint

See Table B8.2 for their message format and Table B8.1 for ActivationOp encoding.

B8.2.2.1 ActivateReq and ActivateAck

ActivateReq and ActivateAck message pair is used to move the interface from a STOP state to the RUN state.

See STOP and ACTIVATE state entries in B8.2.4 Activation and Deactivation flow for when ActivateReq and
ActivateAck messages are sent and the interface response on receiving them.

B8.2.2.2 DeactivateReq and DeactivateAck

DeactivateReq and DeactivateAck message pair is used to bring the interface from the RUN state to the STOP
state.

B8.2.2.3 DeactivateHint

DeactivateHint is a message informing the remote interface about the readiness of the Transmitter to deactivate the
interface. The characteristics of this message include:

• It is a MiscU.Activation message. See Table B8.1.

• An interface is only permitted to send this message in the RUN activation state.

• An interface is permitted to send a DeactivateHint and then resume activity on the link.

• An interface is permitted to send multiple DeactivateHint messages, either with or without link activity
between them.

• An interface is permitted to send a DeactivateReq without first sending a DeactivateHint message.

• If an interface has sent a DeactivateHint it is permitted to send a DeactivateReq without waiting for any
response to the DeactivateHint.

Note

The sender may use heuristics to decide on when to send the DeactivateHint message. For example,
the heuristics might use the length of time the link has been inactive, that is, the time period for which
no message is sent or received across the link.

• The Receiver is permitted to respond to the DeactivateHint message in the following manner:

– Can drop the hint without any state change.

– Accept the hint and respond with DeactivateReq when the conditions for sending the message are met.

B8.2.3 Activation message format

Table B8.1 shows the encoding of ActivationOp field in the Activation message.

Table B8.1: Encoding of ActivationOp field in MiscU.Activation messages

ActivationOp[3:0] Message

0000 ActivateReq

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter B8. Interface state management
B8.2. Interface Activation and Deactivation

Table B8.1 – Continued from previous page

ActivationOp[3:0] Message

0001 ActivateAck

0010 DeactivateReq

0011 DeactivateAck

0100 DeactivateHint

Others Reserved

See B8.2.2 Messages for details on activation messages.

Table B8.2 shows the Activation message fields.

Table B8.2: Activation message fields

Field name Width (bits) Value

MsgType 4 0b0000

MiscOp 4 0b0010

ActivationOp 4

PropertyReq 1 0 or 1a

RsvdZero 19

Total (bits) 32

a When ActivationOp == ActivationReq, else inapplicable and must be 0.

B8.2.3.1 PropertyReq

This field value determines if a property exchange is required at the completion of interface activation.

When PropertyReq = 0 Properties must not be exchanged.

When PropertyReq = 1 Properties messages must be sent after ActivateAck is sent and received.

This field is applicable when ActivationOp is ActivateReq.

This field is inapplicable and must be zero for other Activate message types.

See B10.1 Introduction.

B8.2.4 Activation and Deactivation flow

This section describes the behavior of the interface in each activation state.

There are two options for conditions under which the interface deactivation can be initiated. The two deactivation
conditions, defined by Deactivation_Support property, are:

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter B8. Interface state management
B8.2. Interface Activation and Deactivation

1. Protocol agnostic: DeactivateReq is permitted to be sent from the RUN state at any time and does not need to
check protocol message flows. Additionally, the protocol messages must not be sent after DeactivateReq is
sent until the interface comes back to RUN state.

2. Protocol aware: DeactivateReq is permitted to be sent only when interfaces are in the RUN state and are
completely quiesced in both directions. A reason for quiescing the interface may be for powering down the
interface or the chip. Quiesce condition requires both sides must not have any protocol traffic to send. That
is, all outstanding requests must have completed, no response messages must be sent, and no new request or
snoop messages must be sent across the link.

The interface behavior for each activation and deactivation state includes:

STOP

– The credits are reset in this state.

– The Receiver has all the credits but must not send any credits.

– The Transmitter has no credits and is only permitted to send LinkStatus or ActivateReq
messages.

– If an interface wants to start sending other messages, it must send an ActivateReq message.

– When an interface has sent or received an ActivateReq message, it must move into the
ACTIVATE state.

ACTIVATE

– If not already sent, send an ActivateReq message.

– If not already received, wait for an ActivateReq message.

– After receiving the ActivateReq message, ActivateAck must be sent in a timely manner in
response to the request.

– After ActivateAck is sent, it is permitted, but not required, to send credits.

– After ActivateAck is received, credits may be received.

– When an interface has sent and received an ActivateAck message, it must move into the
RUN state.

RUN

– Interface properties are sent, if requested.

– Credits, appropriate to the negotiated interface properties, must be sent.

– Credited messages can be sent.

– If an interface might want to stop, it can send a DeactivateHint message. This message can
be ignored by the remote or can cause it to send a DeactivateReq message.

– If an interface wants to move to the STOP state, it can send a DeactivateReq message.

– When an interface has sent or received a DeactivateReq message, it must move into the
DEACTIVATE state.

DEACTIVATE

– If not already sent, when required activity is completed, send a DeactivateReq message.

– Credits must be sent, until DeactivateReq is received.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter B8. Interface state management
B8.2. Interface Activation and Deactivation

– Credited messages must not be sent, after the DeactivateReq message is sent.

– DeactivateAck must be sent in a timely manner after a DeactivateReq is received.

– Credits must not be sent after the DeactivateAck message is sent.

– When an interface has sent and received a DeactivateAck message, it must move into the
STOP state.

B8.2.4.1 Activation trigger, ActTrigger

A software visible 2-bit activation control field, ActTrigger, is defined to enable the hardware to initiate an
Activate or Deactivate flow.

Table B8.3 shows the encoding of the ActTrigger field.

Table B8.3: ActTrigger bit encoding

ActTrigger[1:0] Description

00 No action

01 Send ActivateReq

10 Send DeactivateReq

11 Reserved

It is sufficient to set the trigger bits on one side to start the activation or deactivation sequence.

For example, if an Accelerator is attached to a host using the C2C link, the triggers can be implemented only on
the host side.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter B8. Interface state management
B8.3. Connect Miscellaneous messages

B8.3 Connect Miscellaneous messages

The MiscU.Connect messages are used in connecting and disconnecting an interface from the Snoop and DVM
domains. See B8.4 Coherency connect and disconnect and B8.5 DVM domain connect and disconnect on how
these messages are used.

Table B8.4 shows the Connect message fields.

Table B8.4: MiscU.Connect message fields

Field name Width (bits) Value

MsgType 4 0b0000

MiscOp 4 0b0011

ConnectOp 4

RsvdZero 20

Total (bits) 32

Table B8.5 shows the encoding of ConnectOp field in Connect messages.

Table B8.5: Encoding of ConnectOp field in MiscU.Connect messages

ConnectOp[3:0] Message

0000 CohConnectReq

0001 CohConnectAck

0010 CohDisconnectReq

0011 CohDisconnectAck

0100 DVMConnectReq

0101 DVMConnectAck

0110 DVMDisconnectReq

0111 DVMDisconnectAck

Others Reserved

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter B8. Interface state management
B8.4. Coherency connect and disconnect

B8.4 Coherency connect and disconnect

Interface coherency connect and disconnect messages are used to connect or disconnect the interface from
coherency management requirements.

B8.4.1 Coherency connect states

Each direction of C2C interface can be in one of the four coherency states. See Table B8.6 for details of each state.

CohDisabled The Requester caches on the interface do not include coherent data.

CohConnect An interface is requesting to be permitted to cache coherent data.

CohEnabled The Requesters on the interface participate in coherent data exchange.

CohDisconnect The Requesters on the interface are requesting to be removed from participating in coherent data
exchange.

The Requesters on a chip participating in coherency domain are independent of the Home Nodes on that interface
sending snoops to the remote nodes. Thus, the coherency connect and disconnect is per direction. The coherency
state of an interconnect effects all Requesters on that interface.

The permitted state transitions are:

• CohDisabled to CohConnect
• CohConnect to CohEnabled
• CohEnabled to CohDisconnect
• CohDisconnect to CohDisabled

The interface moving from CohDisconnect to CohDisabled state must retain and not zero out the SNP credits held
from the remote side.

Figure B8.2 shows the permitted state transitions.

CohConnectReq sent

CohConnectAck
received

CohDisconnectReq sent

CohDisconnectAck
received

CohDisabled CohConnect

CohDisconnect CohEnabled

Figure B8.2: Coherency domain connect disconnect state transitions

B8.4.2 Messages

As part of MiscU.Connect message type, there are four messages defined to support interface Coherency connect
flow:

1. CohConnectReq

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter B8. Interface state management
B8.4. Coherency connect and disconnect

2. CohConnectAck
3. CohDisconnectReq
4. CohDisconnectAck

See Table B8.4 for their message format and Table B8.5 for ConnectOp encoding.

Table B8.6 describes the behavior of the two interfaces during connecting and disconnecting to a coherency
domain.

Table B8.6: C2C coherency connect state description

State Tx C2C interface behavior Rx C2C interface behavior

CohDisabled Requesters at this interface must not
contain coherent data.
Must not send Snoopable Allocating
requests.
Does not:

– Receive snoop requests from the
remote.

– Influence coherency connect state in
the reverse direction.

Permitted to grant SNP message credits to
remote.
Must remain in CohDisabled state until
CohConnectReq is sent and then must
move to CohConnect state.

Must not send snoop requests to remote.
Must be able to handle receiving SNP
message credits.
Does not influence coherency connect state
in the reverse direction.
Must remain in CohDisabled state until
CohConnectReq is received and then must
move to CohConnect state.

CohConnect Permitted to send SNP message credits.
Must be prepared to respond to snoop
requests.
Must remain in CohConnect state until
CohConnectAck is received and then must
move to CohEnabled state.

Must be able to handle receiving SNP
message credits.
Must send CohConnectAck in a timely
manner and then move to CohEnabled
state.

CohEnabled Permitted to send Snoopable Allocating
requests.

– Requesters at this interface are
permitted to cache coherent data.

Must respond in a coherence compliant
manner to any received snoop requests.
When desired to disconnect from
coherency domain and the Requester
caches on the interface do not include
coherent data then send CohDisconnectReq
and move to CohDisconnect state.

Permitted to send snoop requests as
required to maintain coherency.
Must remain in CohEnabled state until
CohDisconnectReq message is received
and then must move to CohDisconnect
state.

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter B8. Interface state management
B8.4. Coherency connect and disconnect

Table B8.6 – Continued from previous page

State Tx C2C interface behavior Rx C2C interface behavior

CohDisconnect Must not send Snoopable Allocating
requests.
Must continue granting SNP credits. The
Remote side might have snoop requests
queued to be sent.
Must continue to respond to snoop
requests.
Must remain in CohDisconnect state until
it receives CohDisconnectAck and then
must move to CohDisabled state.

Complete outstanding snoop requests.
Must send CohDisconnectAck message in
a timely manner and move to CohDisabled
state.

Note

Coherence connect states are independent in each direction. An interface Transmitter may continue to send
Snoop requests while the Receiver on the same side of the interface is in coherency disabled state.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter B8. Interface state management
B8.5. DVM domain connect and disconnect

B8.5 DVM domain connect and disconnect

The DVM domain connect and disconnect messages are used to connect and disconnect the interface from address
translation tables management.

B8.5.1 DVM connect states

A C2C interface can be in one of four DVM domain connect states. See B8.5.3 DVM domain connect and
disconnect flow for details of each state.

DVMDisabled The interface is removed from DVM domain and does not send or receive DVM requests.

DVMConnect An interface is requesting to join the DVM domain.

DVMEnabled An interface is participating in DVM domain activities.

DVMDisconnect An interface is requesting to be taken out of DVM domain.

When an interface removes itself from DVM domain, it neither sends or accepts DVM requests.

The permitted state transitions are:

• DVMDisabled to DVMConnect
• DVMConnect to DVMEnabled
• DVMEnabled to DVMDisconnect
• DVMDisconnect to DVMDisabled

Figure B8.3 shows the permitted state transitions.

DVMConnectReq sent or received

DVMConnectAck sent
and received

DVMDisconnectReq sent or received

DVMDisconnectAck
sent and received

DVMDisabled DVMConnect

DVMEnabledDVMDisconnect

Figure B8.3: DVM domain connect disconnect state transitions

B8.5.2 Messages

The following four messages, grouped together as part of MiscU.Connect message type, are defined to support
interface DVM connect flow:

• DVMConnectReq
• DVMConnectAck
• DVMDisconnectReq
• DVMDisconnectAck

See Table B8.4 for their message format and Table B8.5 for ConnectOp encoding.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter B8. Interface state management
B8.5. DVM domain connect and disconnect

B8.5.3 DVM domain connect and disconnect flow

The interface behavior in each DVM connect state includes:

DVMDisabled

– The Requesters on the interface must not cache address translations.

– The interface must not send or receive DVM transactions.

– The interface is permitted to receive a DVMConnectReq message.

– A DVMConnectReq message can be sent if the interface wants to participate in DVM
domain activities.

– When an interface has sent or received a DVMConnectReq message, it must move into
the DVMConnect state.

DVMConnect

– If not already sent, then send a DVMConnectReq.

– If not already received, wait for DVMConnectReq message.

– Once DVMConnectReq is received, send DVMConnectAck in a timely manner.

– Must remain in DVMConnect state until DVMConnectAck is sent and received and then
move to DVMEnabled state.

DVMEnabled

– Permitted to send DVM transactions.

– Can receive DVM transactions.

– If the interface wants to be removed from the DVM domain, it must first complete all
outstanding DVM transactions and then send DVMDisconnectReq.

– When an interface has sent or received a DVMDisconnectReq message, it must move into
the DVMDisconnect state.

DVMDisconnect

– If not already sent, wait for all outstanding DVM transactions to complete then send a
DVMDisconnectReq message.

– After sending a DVMDisconnectReq, must not send any DVM requests.

– Must continue to respond to DVM requests until a DVMDisconnectReq is received.

– Must send DVMDisconnectAck in a timely manner after DVMDisconnectReq is received.

– When an interface has sent and received DVMDisconnectAck message, it must move into
the DVMDisabled state.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter B9
Interface initialization

This chapter describes the C2C interface initialization. It contains the following sections:

• B9.1 Introduction
• B9.2 Initialization flow

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter B9. Interface initialization
B9.1. Introduction

B9.1 Introduction

C2C interface initialization establishes the interface to enable the sending and receiving of protocol messages.

The initialization flow has the following steps:

1. Coordinate with the Link layer to check if the remote Protocol layer is up within the interface.

2. Exchange interface properties using MiscU.Properties messages. This sets up the interface to start
exchanging message credits followed by protocol messages.

Note

Discovery, enumeration, and negotiation of global or common capabilities, such as Req_Addr_Width, Node
ID assignment, address maps, routing table set up, is not managed by the hardware property exchange flows.

The exchange of capabilities that are not part of the hardware property exchange flow is expected to be
handled by software.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter B9. Interface initialization
B9.2. Initialization flow

B9.2 Initialization flow

The key features of the initialization flow include:

• The Protocol layers on the two sides of the link are guaranteed to be able to receive Miscellaneous messages
before link initialization is completed. This enables the Protocol layers to exchange MiscU.Activation
messages using the default container format.

Figure B9.1 shows the possible transaction flows for interface initialization.

Chip 1 Chip 2

ProtLayer1 LinkPhyLayer1 LinkPhyLayer2 ProtLayer2

Note
Link layer initialization sequence (details not shown)

Chip 1 Protocol Layer wakeup, CXS example
CXSACTIVEREQ

CXSACTIVEACK

CXSACTIVEREQ

CXSACTIVEACK

Chip 2 Protocol Layer wakeup, CXS example
CXSACTIVEREQ

CXSACTIVEACK

CXSACTIVEREQ

CXSACTIVEACK

Note
Protocol layer must be up before Link layer sends initialization completion acknowledgement to remote.

Link or Physical layer initialization completed

Note
Link layer communicates negotiated flit format.

LinkStatus

Note
Link layer communicates negotiated flit format.

LinkStatus

Ensure remote protocol layer is active

Activate check 1 to 2
MiscU.Activate.ActivateReq

MiscU.Activate.ActivateAck

Activate check 2 to 1
MiscU.Activate.ActivateReq

MiscU.Activate.ActivateAck

Property and parameter exchange

MiscU.Properties

MiscU.Properties

Figure B9.1: C2C link initialization

The sequence for interface initialization is:

1. The interface initialization starts with link reset and initialization.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter B9. Interface initialization
B9.2. Initialization flow

Before the link initialization is complete, the Link layer must wake up the Protocol layer. The Link layer to
Protocol layer wake-up handshake method is IMPLEMENTATION DEFINED.

An example wake-up handshake using CXS interface between the Link layer and Protocol layer is shown in
Figure B9.1.

• The Link layer sends CXSACTIVEREQ to the local Protocol layer.

• Once up, the Protocol layer sends the CXSACTIVEACK response.

• In response to CXSACTIVEREQ from the Link layer, the protocol goes through the same handshake
in the reverse direction. This reverse-direction CXSACTIVE handshake can be performed as late as
during the end-to-end, that is, PL-to-remote-PL Activate handshake.

2. After the Link layer initialization is complete, the Link layer must be able to receive and recognize
ActivateReq from the remote side. This is to be able to receive the ActivateReq request message, as
described in (4).

3. After the Link layer initialization is complete, the Link layer sends MiscU.LinkStatus message to the local
Protocol layer.

The LinkStatus message informs the Protocol layer of the completion of link initialization and includes
information on negotiated flit format. For LinkStatus message details, see B9.2.1 LinkStatus message format.

4. Protocol layer to ensure that the remote Protocol layer is active:

• Each Protocol layer sends ActivateReq message to the remote Protocol layer.
• The Protocol layer responds to received ActivateReq with ActivateAck message.

5. At this stage, both sides are ready to exchange supported property values using Properties message, if
requested in the ActivateReq:

• The Protocol layer sends Properties message to the remote.
• Once the Protocol layer receives Properties messages from the remote, the Protocol layer is permitted to

grant credits to the remote.

For details of interface properties, their exchange and negotiation see Chapter B10 Protocol layer property
exchange.

At the time when the link activation phase is completed, and properties exchange is required, the interface
Coherency and DVM states are in Disabled state. If required, the interface coherency connection and DVM
connection must be enabled by going through individual Coherency and DVM connect flows.

B9.2.1 LinkStatus message format

The MiscU.LinkStatus message is used by the Link layer to inform the Protocol layer the completion of Link layer
initialization and change in power status of the link. This message is sent during the interface initialization as
described in B9.2 Initialization flow and the Link layer is permitted to send whenever the physical link power state
changes.

Table B9.1 shows the LinkStatus message fields.

Table B9.1: LinkStatus message fields

Field name Width (bits) Value

MsgType 4 0b0000

MiscOp 4 0b0110

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter B9. Interface initialization
B9.2. Initialization flow

Table B9.1 – Continued from previous page

Field name Width (bits) Value

FlitFormat 3

LinkPowerState 3

RsvdZero 18

Total 32

B9.2.1.1 FlitFormat

The FlitFormat field in the LinkStatus message is used by the Link layer to inform the Protocol layer how many
bytes are required to populate the Link layer specific fields, such as link header, FEC, and CRC.

Table B9.2 shows the mapping of the FlitFormat values to the Protocol layer container format.

Table B9.2: Encoding of FlitFormat in LinkStatus message

FlitFormat[2:0] Bytes
required

Comment

000 Reserved

001 6 Compatible with Format X

010 20 Compatible with Format Y

Others Reserved

B9.2.1.2 LinkPowerState

The LinkPowerState field in the LinkStatus message allows the Link layer to inform the protocol of the power
state of the link. This information is sent to the Protocol layer during link initialization and also whenever there is
a change in link power state.

Table B9.3 shows the LinkPowerStatus message fields.

Table B9.3: Encoding of LinkPowerState in LinkStatus message

LinkPowerState[2:0] Power state

000 Disabled

001 Active

100 Reset

Others Reserved

Note

The Protocol layer upon receiving LinkStatus message with Reset may be required to reset some protocol
configuration settings.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter B10
Protocol layer property exchange

This chapter describes the exchange of properties for the Protocol layer. It contains the following sections:

• B10.1 Introduction
• B10.2 On-chip payload properties
• B10.3 On-chip opcode and flow properties
• B10.4 C2C specific properties
• B10.5 Property packing in MiscU.Properties message
• B10.6 Property packing into registers

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter B10. Protocol layer property exchange
B10.1. Introduction

B10.1 Introduction

After the interface initialization is completed and the activation sequence requires a property exchange, interface
properties must be communicated in both directions for each logical link before any protocol messages are sent.

A property is used to declare a capability.

The interface properties are grouped into three classifications:

1. On-chip payload

• Details either the presence or width, or both, of certain on-chip fields.

• Allows for the optimization of the payload fields prior to the message selection, potentially allowing for
more efficient packing.

2. On-chip opcode/flow

• Details the on-chip support of certain classifications of transactions.

• Ensures that the interface does not deadlock by preventing unsupported messages being sent across the
C2C link.

3. C2C specific

• Details which specification release the interface supports, to ensure backward compatibility.

• Provides additional information to assist with link usage.

Both sides of the logical link send MiscU.Properties messages with an indication of their capabilities.

The property values in each Properties message are driven from a set of registers that define the capabilities of the
chip sending the message.

There are certain properties that have Receiver, Rx, and Transmitter, Tx, variants:

Property_Rx This indicates the capability of the chip sending the Properties message as a Receiver. The
Transmitter chip must be able to terminate any messages that the Receiver chip indicates it does
not support.

Property_Tx This indicates the capability of the chip sending the Properties message as a Transmitter.
Awareness at the Receiver chip of what it could receive enables potential power optimizations.

Where there is no _Tx or _Rx extension, the property is classified as Uniform and applies to the interface in both
directions.

It is permitted for software to update the register values prior to sending a Properties message to reduce the
advertised capabilities of the interface.

Upon receipt of a Properties message, the Receiver must compare each of the communicated properties against its
own properties.

When the property values align, no modification of behavior is required.

When the properties differ, the Transmitter is permitted to adapt its behavior accordingly. The required adaptation
depends upon the property classification and the differences seen in the:

• On-chip payload

– If the Transmitter, _Tx, property is True and the Receiver, _Rx, property is False, it is permitted, but not
required, that the associated field value is zeroed prior to message selection and container packing.

– If the Transmitter, _Tx, property is False and the Receiver, _Rx, property is True, it is required that the
associated field value is zeroed prior to message selection and container packing.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter B10. Protocol layer property exchange
B10.1. Introduction

– If the Transmitter, _Tx property is a larger value than the Receiver, _Rx, property, it is permitted, but not
required, that the most significant bits that are not supported at the Receiver are zeroed at the
Transmitter prior to message selection and container packing.

– If the Transmitter, _Tx, property is a smaller value than the Receiver, _Rx, property, it is required that
the associated field value is 0 extended at the Transmitter prior to message selection and container
packing.

• On-chip opcode and flow

– If the local Transmitter, _Tx, property is True and the Receiver, _Rx, property is False, the Transmitter
must terminate or downgrade any associated on-chip message in an on-chip protocol-compliant manner.
It is IMPLEMENTATION DEFINED how this downgrade or termination takes place.

Note

For example:

– Downgrade includes converting a SnpUniqueStash to a SnpUnique, if the target chip does not
support stashing but has a copy of the data that is needed to complete a transaction.

– Termination includes a Requester performing an Atomic transaction locally when it is established
that there is no downstream atomic support. This might be achieved through the use of an on-chip
BROADCASTATOMIC signal on the Requester or an alternative control register.

– If the Transmitter, _Tx, property is False and the Receiver, _Rx, property is True, there should be no
further action required. The associated on-chip protocol messages should not be presented to the
Transmitter for communication across the C2C link.

– Optionally, if the Receiver, _Rx, property is True and the Transmitter, _Tx, property is False, the
Receiver chip might be able to save power by turning off certain portions of logic.

• C2C specific

– If the Transmitter, _Tx, property is True and the Receiver, _Rx, property is False, the Transmitter must
not use the associated feature or transaction flow.

– If the Transmitter, _Tx, property is False and the Receiver, _Rx, property is True, the Receiver might be
able to save power by turning off certain portions of logic.

– If the Transmitter, _Tx, and Receiver, _Rx, properties have values other than True or False, and these
values differ between both sides of the link, additional statements will describe the expected behavior.

– If the Uniform properties on either side of the link do not match, additional statements will describe the
expected behavior.

The properties in opposing directions on a link can differ. That is, it may be possible that certain transactions can
be initiated in one direction, but not the other.

B10.1.1 Properties message format

The MiscU.Properties field is used by the Protocol layers to exchange their supported property values with the
remote Protocol layer.

Table B10.1 shows the Properties field encodings. See Table B10.11 for details of the Payload field.

Table B10.1: Properties message fields

Field name Width (bits) Value

MsgType 4 0b0000

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter B10. Protocol layer property exchange
B10.1. Introduction

Table B10.1 – Continued from previous page

Field name Width (bits) Value

MiscOp 4 0b0101

Payload 152

Total (bits) 160

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter B10. Protocol layer property exchange
B10.2. On-chip payload properties

B10.2 On-chip payload properties

Table B10.2 lists the properties that are used to describe specific on-chip field payload characteristics of the chip as
a Receiver.

Table B10.2: Receiver on-chip payload properties

Property Width (bits) Description

MPAM_Support_Rx 2 Support for MPAM.

0b00 False. MPAM field is not present.

0b01 True. MPAM field is present.

Others Reserved

PBHA_Support_Rx 2 Support for PBHA.

0b00 False. PBHA field is not present.

0b01 True. PBHA field is present.

Others Reserved

MEC_Support_Rx 2 Support for MEC.

0b00 False. MECID field is not present.

0b01 True. MECID field is present.

Others Reserved

RSVDC_REQ_Rx 3 Width of RSVDC on the REQ channel.

0b0000 0 bits

0b0001 4 bits

0b0010 8 bits

0b0011 12 bits

0b0100 16 bits

0b0101 24 bits

0b0110 32 bits

Others Reserved

RSVDC_DAT_Rx 3 Width of RSVDC on the DAT channel.
0b0000 0 bits

0b0001 4 bits

0b0010 8 bits

0b0011 12 bits

0b0100 16 bits

0b0101 24 bits

0b0110 32 bits

Others Reserved

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter B10. Protocol layer property exchange
B10.2. On-chip payload properties

Table B10.3 lists the properties that are used to describe specific on-chip field payload characteristics of the chip as
a Transmitter.

Table B10.3: Transmitter on-chip payload properties

Property Width (bits) Description

MPAM_Support_Tx 2 Support for MPAM.

0b00 False. MPAM field is not present.

0b01 True. MPAM field is present.

Others Reserved

PBHA_Support_Tx 2 Support for PBHA.

0b00 False. PBHA field is not present.

0b01 True. PBHA field is present.

Others Reserved

MEC_Support_Tx 2 Support for MEC.

0b00 False. MECID field is not present.

0b01 True. MECID field is present.

Others Reserved

RSVDC_REQ_Tx 3 Width of RSVDC on the REQ channel.

0b0000 0 bits

0b0001 4 bits

0b0010 8 bits

0b0011 12 bits

0b0100 16 bits

0b0101 24 bits

0b0110 32 bits

Others Reserved

RSVDC_DAT_Tx 4 Width of RSVDC on the DAT channel.
0b000 0 bits

0b001 4 bits

0b010 8 bits

0b011 12 bits

0b100 16 bits

0b101 24 bits

0b110 32 bits

Others Reserved

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Chapter B10. Protocol layer property exchange
B10.3. On-chip opcode and flow properties

B10.3 On-chip opcode and flow properties

Table B10.4 lists the properties that are used to describe specific on-chip opcode and flow support of the chip as a
Receiver.

Table B10.4: Receiver on-chip opcode/flow properties

Property Width (bits) Description

Atomic_Transactions_Rx 2 Support for Atomic transactions.

0b00 False. Atomic transactions not supported.

0b01 True. Atomic transactions supported.

Others Reserved

Cache_Stash_Transactions_Rx 2 Support for Stashing requests and snoops.

0b00 False. Stash transactions not supported.

0b01 True. Stash transactions supported.

Others Reserved

Persist_Transactions_Rx 2 Support for CMO operations to the PoP and PoDP.

0b00 False. Persist CMO transactions not
supported.

0b01 True. Persist CMO transactions supported.

Others Reserved

Deferrable_Write_Rx 2 Support for WriteNoSnpDef.

0b00 False. Deferrable Write transactions not
supported.

0b01 True. Deferrable Write transactions
supported.

Others Reserved

RME_Support_Rx 2 Support for the Realm Management Extensions, including Realm and
Root Physical Address Spaces and PoPA Cache Maintenance
Operations.

0b00 False. RME transactions not supported.

0b01 True. RME transactions supported.

Others Reserved

Snoop_Support_Rx 2 Support for Snoop transactions.

0b00 False. Snoop transactions not supported.

0b01 True. Snoop transactions supported.

Others Reserved

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

95

Chapter B10. Protocol layer property exchange
B10.3. On-chip opcode and flow properties

Table B10.4 – Continued from previous page

Property Width (bits) Description

DVM_Support_Rx 2 Support for DVM messages.

0b00 False. DVM transactions not supported.

0b01 True. DVM transactions supported.

Others Reserved

MTE_Support_Rx 2 Support for MTE.

0b00 False. MTE not supported.

0b01 Reduced MTE transaction support.

0b10 Full MTE transaction support.

0b11 Reserved

CMO_Transactions_Rx 2 Support for CMO transactions.

0b00 False. CMO transactions not supported.

0b01 True. CMO transactions supported.

Others Reserved

Table B10.5 lists the properties that are used to describe specific on-chip opcode and flow support of the chip as a
Transmitter.

Table B10.5: Transmitter on-chip opcode/flow properties

Property Width (bits) Description

Atomic_Transactions_Tx 2 Support for Atomic transactions.

0b00 False. Will not send Atomic transactions.

0b01 True. Can send Atomic transactions.

Others Reserved

Cache_Stash_Transactions_Tx 2 Support for Stashing requests and snoop.

0b00 False. Will not send Stashing requests or
snoops.

0b01 True. Can send Stashing requests or
snoops.

Others Reserved

Persist_Transactions_Tx 2 Support for CMO operations to the PoP and PoDP.

0b00 False. Will not send Persist CMO
transactions.

0b01 True. Can send Persist CMO transactions.

Others Reserved

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter B10. Protocol layer property exchange
B10.3. On-chip opcode and flow properties

Table B10.5 – Continued from previous page

Property Width (bits) Description

Deferrable_Write_Tx 2 Support for WriteNoSnpDef.

0b00 False. Will not send Deferrable Write
transactions.

0b01 True. Can send Deferrable Write
transactions.

Others Reserved

RME_Support_Tx 2 Support for the Realm Management Extensions, including Realm and
Root Physical Address Spaces, and PoPA Cache Maintenance
Operations.

0b00 False. Will not send RME transactions.

0b01 True. Can send RME transactions.

Others Reserved

Snoop_Support_Tx 2 Support for Snoop transactions.

0b00 False. Will not send Snoop transactions.

0b01 True. Can send Snoop transactions.

Others Reserved

DVM_Support_Tx 2 Support for DVM messages.

0b00 False. Will not send DVM transactions.

0b01 True. Can send DVM transactions.

Others Reserved

MTE_Support_Tx 2 Support for MTE.

0b00 False. Will only send transactions with
TagOp Invalid.

0b01 Reduced MTE transaction support.
Will not send transactions with TagOp
Match. Can send transactions with other
TagOp values.

0b10 Full MTE transaction support.
Can send transactions with any TagOp
value.

0b11 Reserved

CMO_Transactions_Tx 2 Support for CMO transactions.

0b00 False. Will not send CMO transactions.

0b01 True. Can send CMO transactions.

Others Reserved

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter B10. Protocol layer property exchange
B10.4. C2C specific properties

B10.4 C2C specific properties

This section describes C2C specific properties, including:

• B10.4.1 Uniform properties
• B10.4.2 Receiver and Transmitter properties

B10.4.1 Uniform properties

Table B10.6 lists the properties that are used to describe C2C specific capabilities that are uniform in both
directions of the interface.

Table B10.6: Uniform C2C specific properties

Property Width (bits) Description

Protocol 4 Protocol supported.

0b0000 CHI C2C

Others Reserved

Version 4 Version supported.

0b0000 A

Others Reserved

Num_Properties_Messages 4 Number of MiscU.Properties messages per logical link that can be sent
and accepted by this interface.

0b0000 1

Others Reserved

Container_Format 4 Container format supported by the interface in both directions.
0b0000 is not permitted.

Bit 0 Format X
0 Not supported

1 Supported

Bit 1 Format Y
0 Not supported

1 Supported

Bits 2 and 3 Reserved

Deactivation_Support 4 Deactivation modes supported by the interface.

Bit 0 Protocol Agnostic

0 Not supported

1 Supported

Bit 1 Protocol Aware
0 Not supported

1 Supported

Bits 2 and 3 Reserved

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter B10. Protocol layer property exchange
B10.4. C2C specific properties

B10.4.2 Receiver and Transmitter properties

Table B10.7 lists the properties that are used to describe C2C specific capabilities of the interface .

Table B10.7: Receiver C2C specific properties

Property Width (bits) Description

Num_RP_REQ_Rx 4 Indicates the maximum number of resource planes the interface supports
on the REQ channel.

0b0000 1

0b0001 2

0b0010 3

0b0011 4

0b0100 5

0b0101 6

0b0110 7

0b0111 8

Others Reserved

WritePush_Support_Rx 2 Indicates if an interface supports WritePush flows for write transactions.

0b00 False. WritePush is not supported for
Immediate Write and Atomic transactions.

0b01 True. WritePush is supported for both
Immediate Write and Atomic transactions.

Others Reserved

DVMPush_Support_Rx 2 Indicates if an interface supports WritePush flows for DVM transactions.

0b00 False. WritePush is not supported for
DVM transactions.

0b01 True. WritePush is supported for DVM
transactions.

Others Reserved

Note
WrReqDataS messages cannot be used for DVM transactions,
regardless of the DVMPush_Support_Rx property value.

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter B10. Protocol layer property exchange
B10.4. C2C specific properties

Table B10.7 – Continued from previous page

Property Width (bits) Description

DevAssign_Support_Rx 4 Support for RME-DA or RME-CDA. Only valid when
RME_Support_Rx is True.
Provided for informational purposes only, to assist with setup or debug.
Not expected to have any functional effect in isolation.
Each bit defines the roles of the other chip that this chip can connect to:

Bit 0 Host
0 Cannot connect to a host.

1 Can connect to a host.

Bit 1 Device_StreamID_SecSID1
0 Cannot connect to a device. Does not use

SecSID1 and StreamID fields.

1 Can connect a device. Can make use of
SecSID1 and StreamID fields.

Bit 2 Device_NoStreamID_NoSecSID1
0 Cannot connect to a device. Does not use

SecSID1 and StreamID fields.

1 Can connect to a device. Does not use
SecSID1 and StreamID fields.

Bit 3 Reserved

Table B10.8 lists the properties that are used to describe C2C specific capabilities of the interface as a Transmitter.

Table B10.8: Transmitter C2C specific properties

Property Width (bits) Description

Num_RP_REQ_Tx 4 Indicates the maximum number of resource planes the interface supports
on the REQ channel.

0b0000 1

0b0001 2

0b0010 3

0b0011 4

0b0100 5

0b0101 6

0b0110 7

0b0111 8

Others Reserved

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter B10. Protocol layer property exchange
B10.4. C2C specific properties

Table B10.8 – Continued from previous page

Property Width (bits) Description

WritePush_Support_Tx 2 Indicates if an interface supports a WritePush flow for write transactions.

0b00 False. WritePush is not supported for
Immediate Write and Atomic transactions.

0b01 True. WritePush is supported for both
Immediate Write and Atomic transactions.

Others Reserved

DVMPush_Support_Tx 2 Indicates if an interface supports a WritePush flow for DVM
transactions.
0b00 False. Will not use a WrReqDataL

message for DVM transactions.

0b01 True. Can use a WrReqDataL message for
DVM transactions.

Others Reserved

Note
WrReqDataS messages cannot be sent for DVM transactions,
regardless of the DVMPush_Support_Tx property value.

DevAssign_Support_Tx 4 Support for RME-DA or RME-CDA. Only valid when
RME_Support_Tx is True.
Provided for informational purposes only, to assist with setup or debug.
Not expected to have any functional effect in isolation.
Each bit defines the roles of the this chip that can be presented to the
other chip:

Bit 0 Host
0 Cannot present as a host.

1 Can present as a host.

Bit 1 Device_StreamID_SecSID1
0 Cannot present as a device. Does not send

SecSID1 and StreamID fields.

1 Can present as a device. Sends SecSID1
and StreamID fields.

Bit 2 Device_NoStreamID_NoSecSID1
0 Cannot present as a device. Does not send

SecSID1 and StreamID fields.

1 Can present as a device. Does not send
SecSID1 and StreamID fields.

Bit 3 Reserved

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter B10. Protocol layer property exchange
B10.4. C2C specific properties

B10.4.3 Expectations when exchanged C2C specific properties differ

Table B10.9 details the expected outcome when C2C specific properties differ between two sides of a link and
those properties are:

• Uniform properties
• Transmitter, _Tx, and Receiver, _Rx, properties that have values other than True or False

Table B10.9: Expectations when exchanged C2C specific properties differ

Property Expectations

Protocol If the remote interface supports a different protocol to the local interface,
then there might be an incompatibility.
Only one protocol is supported in this version of the specification.

Version A newer version of the interface is expected to be backward compatible
with older version. When the versions differ, both sides must negotiate
to operate in the older version. Currently, there is only one version of
the specification. Therefore, the two sides will not differ in their
supported version.

Num_Properties_Msg Linked to the Protocol property.
The Transmitter should only send the correct number of
MiscU.Properties messages that the Receiver can accept.

Received Num_RP_REQ_Rx and sent
Num_RP_REQ_Tx

If the received Num_RP_REQ_Rx value is greater than the sent
Num_RP_REQ_Tx value, there should not be any functional issues.
The Transmitter might receive credits for Resource Planes that it does
not intend to use.
If the received Num_RP_REQ_Rx value is less than the sent
Num_RP_REQ_Tx value, there might be functional issues if the
Transmitter chip cannot consolidate traffic onto the reduced number of
Resource Planes. The Transmitter will not receive credits for Resource
Planes that it potentially needs to use for traffic dependency isolation.
This should be considered at chip or chiplet selection and build time.

Received Num_RP_REQ_Tx and sent
Num_RP_REQ_Rx

If the received Num_RP_REQ_Tx value is less than the sent
Num_RP_REQ_Rx value, there should not be any functional issues.
The Receiver is permitted, but not required, to redistribute the credits
that it would have provided for the unused Resource Planes.
If the received Num_RP_REQ_Tx value is greater than the sent
Num_RP_REQ_Rx value, there is no expected change in behavior by
the Receiver.

Received DevAssign_Support_Rx and sent
DevAssign_Support_Tx

Provided for informational purposes only, to assist with setup or debug.
Not expected to have any functional effect in isolation. Additional
software attestation and configuration is expected.

Received DevAssign_Support_Tx and sent
DevAssign_Support_Rx

Provided for informational purposes only, to assist with setup/debug.
Not expected to have any functional effect in isolation. Additional
software attestation and configuration is expected.

Container_Format See B10.4.3.1 Container_Format resolution.

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter B10. Protocol layer property exchange
B10.4. C2C specific properties

Table B10.9 – Continued from previous page

Property Expectations

Deactivation_Support If none of the property bit position assertions match, deactivation is not
supported by the protocol.
If only one of the property bit position assertions matches, the
associated mode is the only one supported.
If multiple property bit position assertions match, any of associated
deactivation approaches can be used.

B10.4.3.1 Container_Format resolution

There are two parts to the determination of the container format that is used:

1. The two Protocol layers exchange the Container_Format property to determine what options are available.

2. The container formats that can be supported at the Protocol layer are combined with the requirements of the
FlitFormat needed by the Link layer.

Table B10.10 shows how these two aspects are combined.

Table B10.10: Enter table title

Container_Format
supported

FlitFormat negotiated

6 bytes 20 bytes

Format X Format X Not compatible

Format Y Format Y Format Y

Format X and Format Y Format X Format Y

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter B10. Protocol layer property exchange
B10.5. Property packing in MiscU.Properties message

B10.5 Property packing in MiscU.Properties message

Table B10.11 illustrates the packing of properties in the payload of MiscU.Properties message.

Table B10.11: MiscU.Properties message format

MISC bit position Field name Width (bits) Value Property
classification

3:0 MsgType 4 MiscU Not applicable

7:4 MiscOp 4 Properties

11:8 Num_Properties_Msg 4 Uniform properties

15:12 Protocol 4

19:16 Version 4

23:20 Container_Format 4

27:24 Deactivation_Support 4

39:28 Reserved 12

43:40 Num_RP_REQ_Rx 4 Receiver properties

47:44 Reserved 4

49:48 WritePush_Support_Rx 2

51:50 DVMPush_Support_Rx 2

53:52 Snoop_Transactions_Rx 2

55:54 DVM_Support_Rx 2

57:56 Atomic_Transactions_Rx 2

59:58 Cache_Stash_Transactions_Rx 2

61:60 Persist_Transactions_Rx 2

63:62 MTE_Support_Rx 2

65:64 Deferrable_Write_Rx 2

67:66 RME_Support_Rx 2

69:68 CMO_Transactions_Rx 2

71:70 MPAM_Support_Rx 2

73:72 PBHA_Support_Rx 2

75:74 MEC_Support_Rx 2

79:76 RSVDC_REQ_Rx 4

83:80 RSVDC_DAT_Rx 4

87:84 DevAssign_Support_Rx 4

99:88 Reserved 12

103:100 Num_RP_REQ_Tx 4 Transmitter
properties

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter B10. Protocol layer property exchange
B10.5. Property packing in MiscU.Properties message

Table B10.11 – Continued from previous page

MISC bit position Field name Width (bits) Value Property
classification

107:104 Reserved 4

109:108 WritePush_Support_Tx 2

111:110 DVMPush_Support_Rx 2

113:112 Snoop_Transactions_Tx 2

115:114 DVM_Support_Tx 2

117:116 Atomic_Transactions_Tx 2

119:118 Cache_Stash_Transactions_Tx 2

121:120 Persist_Transactions_Tx 2

123:122 MTE_Support_Tx 2

125:124 Deferrable_Write_Tx 2

127:126 RME_Support_Tx 2

129:128 CMO_Transactions_Tx 2

131:130 MPAM_Support_Tx 2

133:132 PBHA_Support_Tx 2

135:134 MEC_Support_Tx 2

139:136 RSVDC_REQ_Tx 4

140:143 RSVDC_DAT_Tx 4

147:144 DevAssign_Support_Tx 4

159:148 Reserved 12

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter B10. Protocol layer property exchange
B10.6. Property packing into registers

B10.6 Property packing into registers

It is expected that each interface will have multiple sets of 64-bit registers that contain the properties for use during
runtime. The defined sets of registers are detailed in Table B10.12.

Table B10.12: Property register sets

Register sets Access permissions Number of
instances

Description

Supported RO 1 Provides information on the local chip interface
directly out of reset

Advertised RW 1 per logical link A copy of the Supported register that can be
software-modified to downgrade the properties
that are communicated in the MiscU.Properties
message

Informed RW 1 per logical link A copy of the properties received in the
MiscU.Properties message sent by the other side
of the logical link

Negotiated RO 1 per logical link The outcome following the comparison of each
property from both sides of the logical link. This
can be used by the:

– Transmitter to control what messages are
sent.

– Receiver to enable power saving on logic
that will not be utilized.

The format used for Uniform property registers is shown in Table B10.13.

Table B10.13: Uniform register property format

Bit position Bits Property

3:0 4 Num_Properties_Msg

7:4 4 Protocol

11:8 4 Version

15:12 4 Container_Format

19:16 4 Deactivation_Support

63:20 44 Reserved

The format used for Receiver property registers is shown in Table B10.14.

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter B10. Protocol layer property exchange
B10.6. Property packing into registers

Table B10.14: Receiver register property format

Bit position Bits Property

3:0 4 Num_RP_REQ_Rx

7:4 4 Reserved

9:8 2 WritePush_Support_Rx

11:10 2 DVMPush_Support_Rx

13:12 2 Snoop_Transactions_Rx

15:14 2 DVM_Support_Rx

17:16 2 Atomic_Transactions_Rx

19:18 2 Cache_Stash_Transactions_Rx

21:20 2 Persist_Transactions_Rx

23:22 2 MTE_Support_Rx

25:24 2 Deferrable_Write_Rx

27:26 2 RME_Support_Rx

29:28 2 CMO_Transactions_Rx

31:30 2 MPAM_Support_Rx

33:32 2 PBHA_Support_Rx

35:34 2 MEC_Support_Rx

39:36 4 RsvdC_REQ_Rx

43:40 4 RsvdC_DAT_Rx

47:44 4 DevAssign_Support_Rx

63:48 16 Reserved

The format used for Transmitter property registers is shown in Table B10.15.

Table B10.15: Transmitter register property format

Bit position Bits Property

3:0 4 Num_RP_REQ_Tx

7:4 4 Reserved

9:8 2 WritePush_Support_Tx

11:10 2 DVMPush_Support_Tx

13:12 2 Snoop_Transactions_Tx

15:14 2 DVM_Support_Tx

17:16 2 Atomic_Transactions_Tx

19:18 2 Cache_Stash_Transactions_Tx

Continued on next page

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter B10. Protocol layer property exchange
B10.6. Property packing into registers

Table B10.15 – Continued from previous page

Bit position Bits Property

21:20 2 Persist_Transactions_Tx

23:22 2 MTE_Support_Tx

25:24 2 Deferrable_Write_Tx

27:26 2 RME_Support_Tx

29:28 2 CMO_Transactions_Tx

31:30 2 MPAM_Support_Tx

33:32 2 PBHA_Support_Tx

35:34 2 MEC_Support_Tx

39:36 4 RsvdC_REQ_Tx

43:40 4 RsvdC_DAT_Tx

47:44 4 DevAssign_Support_Tx

63:48 16 Reserved

IHI0098
A

Copyright © 2024 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

	AMBA® CHI Chip-to-Chip (C2C) Architecture Specification
	Release information
	Non-Confidential Proprietary Notice
	AMBA SPECIFICATION LICENCE
	Confidentiality Status
	Product Status
	Web Address

	Contents
	A Preface
	About this specification
	Intended audience

	Using this specification
	Conventions
	Typographical conventions
	Signals
	Numbers

	Additional reading
	Feedback
	Feedback on this specification
	Inclusive terminology commitment

	B Specification
	B1 Introduction
	B1.1 Overview
	B1.1.1 Multi-chip Symmetric Multi-Processor (SMP)
	B1.1.2 Multi-chip coherent accelerator attach

	B1.2 Terminology

	B2 Interface structures
	B2.1 Interface layers
	B2.1.1 Protocol layer
	B2.1.2 Packetization layer
	B2.1.3 Link layer
	B2.1.4 Physical layer

	B2.2 Message classes
	B2.3 Channel connection
	B2.4 Multiple interfaces
	B2.4.1 Hash function example

	B3 Packetization
	B3.1 Containers
	B3.2 Protocol header
	B3.3 Message packing
	B3.3.1 Rules and restrictions

	B4 Message structures
	B4.1 Transactions and transaction flows
	B4.1.1 Field mapping in requests to Subordinate Nodes
	B4.1.2 Unsupported transactions

	B4.2 Message fields
	B4.2.1 C2C specific message fields
	B4.2.1.1 Message type, MsgType
	B4.2.1.2 Resource plane, ResPlane
	B4.2.1.3 Shared credit, SharedCrdt
	B4.2.1.4 Chunk valid, ChunkValid
	B4.2.1.5 RsvdZero

	B4.2.2 Request message fields
	B4.2.3 Response message fields
	B4.2.3.1 Resp message type
	B4.2.3.2 Resp2 message type

	B4.2.4 Data message fields
	B4.2.5 WritePush message
	B4.2.5.1 Transaction flow
	B4.2.5.2 Message fields

	B4.2.6 Snoop message fields
	B4.2.7 Uncredited Miscellaneous message fields
	B4.2.8 Redundant fields

	B5 Flow control
	B5.1 Introduction
	B5.2 Message credits
	B5.2.1 Credit grant using a Protocol header
	B5.2.2 Credit grant using a MiscU message
	B5.2.3 Credit grant message format

	B5.3 Resource Planes
	B5.4 Data credit pools
	B5.4.1 Credits for DataS and DataL messages
	B5.4.2 Credits for WrReqData messages

	B5.5 Ordered interface

	B6 DVM transactions
	B6.1 Introduction
	B6.2 DVM Node, DN
	B6.2.1 DVM Node assignment

	B6.3 DVM transaction flows
	B6.3.1 DVMReq
	B6.3.2 DVMSync

	B6.4 DVM transaction responses
	B6.5 Flow control

	B7 RME-DA and RME-CDA support
	B7.1 Introduction
	B7.2 Fields supporting RME-DA and RME-CDA
	B7.3 Host and device responsibilities
	B7.4 Request Nodes per device

	B8 Interface state management
	B8.1 Introduction
	B8.2 Interface Activation and Deactivation
	B8.2.1 Activity states
	B8.2.2 Messages
	B8.2.2.1 ActivateReq and ActivateAck
	B8.2.2.2 DeactivateReq and DeactivateAck
	B8.2.2.3 DeactivateHint

	B8.2.3 Activation message format
	B8.2.3.1 PropertyReq

	B8.2.4 Activation and Deactivation flow
	B8.2.4.1 Activation trigger, ActTrigger

	B8.3 Connect Miscellaneous messages
	B8.4 Coherency connect and disconnect
	B8.4.1 Coherency connect states
	B8.4.2 Messages

	B8.5 DVM domain connect and disconnect
	B8.5.1 DVM connect states
	B8.5.2 Messages
	B8.5.3 DVM domain connect and disconnect flow

	B9 Interface initialization
	B9.1 Introduction
	B9.2 Initialization flow
	B9.2.1 LinkStatus message format
	B9.2.1.1 FlitFormat
	B9.2.1.2 LinkPowerState

	B10 Protocol layer property exchange
	B10.1 Introduction
	B10.1.1 Properties message format

	B10.2 On-chip payload properties
	B10.3 On-chip opcode and flow properties
	B10.4 C2C specific properties
	B10.4.1 Uniform properties
	B10.4.2 Receiver and Transmitter properties
	B10.4.3 Expectations when exchanged C2C specific properties differ
	B10.4.3.1 Container_Format resolution

	B10.5 Property packing in MiscU.Properties message
	B10.6 Property packing into registers

