
Learn the architecture - Generic Interrupt
Controller v3 and v4, LPIs
Version 1.0

Non-Confidential
Copyright © 2022 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
102923_0100_01_en

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

Learn the architecture - Generic Interrupt Controller v3 and v4, LPIs

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 19 May 2022 Non-Confidential First release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 24

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 24

mailto:terms@arm.com

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

Contents

Contents

1. Introduction.. 6

2. LPIs... 7

3. Redistributors...8
3.1 Initial configuration of a Redistributor... 8
3.2 Reconfiguring LPIs.. 10

4. ITS...11
4.1 The command queue...12
4.2 Initial configuration of an ITS.. 13
4.3 The sizes and layout of Collection and Device tables...14
4.4 Adding a new command to the command queue.. 16
4.5 Mapping an interrupt to a Redistributor...16
4.6 Migrating interrupts between Redistributors...18
4.7 Removing interrupt mappings..18
4.8 Remapping or removing the mapping of devices... 19

5. Example...20

6. Check your knowledge... 22

7. Related information... 23

8. Next steps.. 24

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

Introduction

1. Introduction
This guide introduces Locality-specific Peripheral Interrupts (LPIs), a type of interrupt introduced in
GICv3/v4.

An interrupt is a signal to the processor that an event has occurred which needs to be dealt
with. Interrupts are typically generated by peripherals. LPIs are typically used for peripherals that
produce Message-Signaled Interrupts (MSIs).

The configuration and management of LPIs is different to the other interrupt types because their
state is held in memory rather than registers. LPIs are Message-Signaled Interrupts (MSIs), with
translation provided by an Interrupt Translation Service (ITS).

This guide is aimed at anyone who needs an understanding of how MSIs are translated by the GIC
and how the resulting LPIs are managed. In particular, the guide is aimed at anyone who needs to
configure the GIC in a bare-metal environment.

This guide complements the Arm Generic Interrupt Controller Architecture Specification GIC
architecture version 3.0 and 4.0. It is not a replacement or alternative. Refer to the Arm Generic
Interrupt Controller Architecture Specification GIC architecture version 3.0 and 4.0 for detailed
descriptions of registers and behaviors.

At the end of this guide you will be able to:

• Name and describe the function of the memory structures used by Redistributors to handle
LPIs.

• Explain how an ITS translates an incoming MSI into an interrupt.

• Write bare-metal code to enable LPI handling in a GIC.

Before you begin
This guide assumes familiarity with the GIC’s support for physical interrupts. If you have not already
done so, you should read Learn the architecture: Arm Generic Interrupt Controller v3 and v4.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 24

https://developer.arm.com/documentation/ihi0069/latest
https://developer.arm.com/documentation/ihi0069/latest
https://developer.arm.com/documentation/198123/latest

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

LPIs

2. LPIs
The configuration of LPIs is very different to the other interrupt types, and involves the following:

• Redistributors

• ITSs (Interrupt Translation Service)

LPIs are always message–based interrupts, and they can be supported by an ITS. An ITS is
responsible for receiving interrupts from peripherals and forwarding them to the appropriate
Redistributor as LPIs. A system might include more than one ITS, in which case each ITS must be
configured individually.

Support for LPIs is optional and is indicated by GICD_TYPER.LPIS.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

Redistributors

3. Redistributors
The Redistributors use tables held in memory for both LPI configuration information and the state
of each physical LPI. Configuration information for LPIs is stored in the LPI Configuration table,
which is pointed to by GICR_PROPBASER. LPI configuration is global, that is, all Redistributors
must see the same configuration. Typically, a system has a single LPI Configuration table that is
shared by all Redistributors.

State information for LPIs is also stored in tables in memory. These are the LPI Pending tables,
which are pointed to by GICR_PENDBASER. Each Redistributor has its own LPI Pending table, and
these tables are not shared between Redistributors.

The diagram below shows three Redistributors and the associated LPI tables:

Figure 3-1: LPI Configuration and LPI Pending tables

3.1 Initial configuration of a Redistributor
The steps to initialize the Redistributors in a system are as follows:

1. Allocate memory for the LPI Configuration table and initialize the table with the appropriate
configurations for each LPI.

2. Set GICR_PROPBASER in each Redistributor to point to the LPI Configuration table.

3. Allocate memory for the LPI Pending table of each Redistributor and initialize the content of
each table. At system start-up, this typically means zeroing the memory, meaning that all LPI
INTIDs are in the inactive state.

4. Set GICR_PENDBASER in each Redistributor to point to the LPI Pending table associated with
that Redistributor.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

Redistributors

5. Set GICR_CTLR.EnableLPIs to 1 in each Redistributor to enable LPIs.

LPI Configuration table
The LPI Configuration table contains one byte for each LPI INTID. The following diagram shows the
format of each entry:

Figure 3-2: Format of an entry in the LPI Configuration table

Although priority values are 8 bits for SPIs, PPIs, and SGIs, there are only 6 bits in the table to
record the priority of an LPI. The lower two bits of the priority of an LPI are always treated as
0b00.

There is no field for recording the Group configuration. LPIs are always treated as Non-secure
Group 1 interrupts.

The size of the LPI Configuration table depends on the number of LPIs. The maximum
number of INTIDs (SPIs, PPIs, SGIs and LPIs) that are supported by the GIC is indicated by
GICD_TYPER.IDbits. The LPI Configuration table only handles LPIs, which use INTIDs that are
greater than 8191. Therefore, to support all possible LPIs the LPI Configuration table size is
calculated as follows:

Size in bytes = 2GICD_TYPER.IDbits+1 – 8192

However, it is possible to support a smaller range of INTIDs. GICR_PROPBASER also includes
an IDbits field that indicates the number of INTIDs that are supported by the LPI Configuration
table. This number must be equal to or smaller than the value in GICD_TYPER.IDbits. Software
must allocate enough memory for this number of entries. In this case the required size of the LPI
Configuration table becomes:

Size in bytes = 2GICR_PROPBASER.IDbits+1 – 8192

The interrupt controller must be able to read the memory allocated for the LPI Configuration table.
However, it never writes to this memory.

LPI Pending tables
State information for LPIs is stored in memory. LPIs have two states: inactive or pending.

Figure 3-3: State machine for LPIs

Interrupts transition from pending to inactive when they have been acknowledged.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

Redistributors

Because there are only two states, there is only 1 bit for each LPI in the LPI Pending tables.
Therefore, to support all possible INTIDs in an implementation, the size of the LPI Pending tables
must be:

Size in bytes = (2GICD_TYPER.IDbits+1) / 8

Unlike the LPI Configuration table, the size of the LPI Pending tables is not adjusted to take account
of LPIs starting at INTID 8192. The first 1KB of the table (corresponding to the entries for INTIDs 0
to 8291) stores IMPLEMENTATION DEFINED state.

As described in LPI Configuration table, it is possible to use a smaller range of INTIDs than is
supported by hardware. GICR_PROPBASER.IDBits controls the size of the INTID range. Therefore,
it affects both the size of the LPI Configuration table and the size of the LPI Pending table. To
support the configured INTID range, the required LPI Pending table size is as follows:

Size in bytes = (2GICR_PROPBASER.IDbits+1)/8

The interrupt controller must be able to read from and write to the memory allocated for the LPI
Pending table. Typically, a Redistributor caches the highest priority pending interrupts internally and
writes state information to the LPI Pending table when there are too many pending interrupts to
cache or when entering a low-power state.

While LPIs are enabled in the owning Redistributor, software is never expected to directly access
the LPI Pending table.

3.2 Reconfiguring LPIs
LPI configuration information is stored in a table in memory, not in registers. Redistributors cache
the LPI configuration information for performance reasons. This means that to reconfigure an LPI,
software must:

1. Update the entry in the LPI Configuration table.

2. Ensure global visibility of the update or updates.

3. Invalidate any caching of the configuration in the Redistributors.

The invalidation of the cache in the Redistributor is performed by issuing the ITS INV or INVALL
commands. The INV command invalidates the entry for a specific interrupt, so this command is
typically used when reconfiguring a small number of LPIs. The INVALL command invalidates entries
for all interrupts in a specified collection. For more information about ITS commands, see Adding a
new command to the command queue.

If an ITS is not implemented, software must write to the GICR_INVLPIR or GICR_INVALLR registers
instead to cause the Redistributors to reload the interrupt configuration. 

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

ITS

4. ITS
A peripheral generates an LPI by writing a message to GITS_TRANSLATER in the ITS. This provides
the ITS with the following information:

EventID
This is the value written to GITS_TRANSLATER. The EventID identifies which interrupt the
peripheral is sending. The EventID might be the same as the INTID, or it might be translated
by the ITS into the INTID.

DeviceID
The DeviceID identifies the peripheral. The mechanism by which a DeviceID is generated is
IMPLEMENTATION DEFINED.

The ITS handles the translation of the message into an INTID that can be delivered to a connected
core.

Physical LPIs are grouped together in collections. All LPIs in a collection are routed to the same
Redistributor. Software allocates LPIs to collections, allowing it to efficiently move interrupts from
one processing element to another.

An ITS uses three types of table to handle the translation and routing of LPIs. These are:

Device table
There is one Device table per ITS. Device tables map DeviceIDs to Interrupt Translation
Tables.

Interrupt Translation Tables
There is one Interrupt Translation Table (ITT) per DeviceID or peripheral. The ITT contains the
peripheral-specific mappings between EventID and INTID. They also contain the collection
which the INTID is a member of.

Collection table
There is one Collection table per ITS. The Collection table maps collections to Redistributors.

When a peripheral writes a message to GITS_TRANSLATER, the ITS does the following:

1. Uses the DeviceID to select the appropriate entry from the Device table. This entry identifies
which Interrupt Translation Table to use.

2. Uses the EventID to select the appropriate entry from the selected Interrupt Translation Table.
This entry provides the INTID and the Collection ID.

3. Uses the Collection ID to select the required entry in the Collection table, which returns the
routing information.

4. Forwards the interrupt to the target Redistributor.

The following diagram illustrates this process:

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

ITS

Figure 4-1: An ITS forwarding an LPI to a Redistributor

An ITS can optionally support a number of hardware collections. Hardware
collections are where the ITS holds the configuration internally, rather than storing it
in memory. GITS_TYPER.HCC reports the number of hardware collections that are
supported. You can still think of this as being part of the Collection table, it is just
not stored in memory.

4.1 The command queue
An ITS is controlled using a command queue in memory. The command queue is a circular buffer
and it is defined by the following three registers:

GITS_CBASER
This register specifies the base address and size of the command queue. The command
queue must be 64KB aligned and the size must be a multiple of 4KB. Each entry in the
command queue is 32 bytes. GITS_CBASER also specifies the cacheability and shareability
settings that the ITS uses when accessing the command queue.

GITS_CREADR
This register points to the next command that the ITS will process.

GITS_CWRITER
This register points to the entry in the queue where the next new command should be
written.

The following diagram shows a simplified representation of a command queue:

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

ITS

Figure 4-2: ITS circular command queue

The Arm Generic Interrupt Controller Architecture Specification GIC architecture version 3.0 and
4.0 provides details of all the commands supported by an ITS and how these are encoded.

4.2 Initial configuration of an ITS
To configure an ITS at system startup, software must:

1. Allocate memory for the Device and Collection tables.

The GITS_BASER[0..7] registers specify the base address and size of the ITS Device and
Collection tables. Software uses these registers to discover the number and type of tables that
the ITS supports. Software must then allocate the required memory and set the GITS_BASERn
registers to point to this allocated memory.

2. Allocate memory for the command queue.

Software must allocate the memory for the command queue and set GITS_CBASER and
GITS_CWRITER to point to the start of this allocated memory.

3. Enable the ITS.

When the tables and command queue have been allocated, the ITS can be enabled. This is
done by setting the GITS_CTLR.Enable bit to 1.

Once GITS_CTLR.Enable has been set, the GITS_BASERn and GITS_CBASER registers become
read-only.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

ITS

4.3 The sizes and layout of Collection and Device tables
The location and size of the Collection and Device tables is configured using the GITS_BASERn
registers. Software must allocate memory for these tables and configure the GITS_BASERn
registers before enabling the ITS.

Software can allocate a flat (single level) table or two-level tables. This is specified by
GITS_BASERn.Indirect.

Support for two-level tables is optional. If the ITS only supports flat tables,
GITS_BASERn.Indirect is RAZ/WI.

Flat level tables
With a flat table, a single contiguous block of memory is allocated to the ITS to record mappings.
Software is required to fill the memory with zeroes before enabling the ITS. Thereafter the table is
populated by the ITS as it processes commands from the command queue.

The following diagram shows a flat table. The table is a single contiguous block of memory, with a
GITS_BASERn register pointing to the base address of the table:

Figure 4-3: A flat Device or Collection table

Entry

Si
ze

 is
 a

 m
ul

tip
le

of
 p

ag
e

siz
e

Entry
Entry

...

Entry
Entry
EntryGITS_BASERn

The size of the table scales with the width of DeviceID or CollectionID, as appropriate. The
required size can be calculated as follows:

Size in bytes = 2ID_width * entry_size

Where entry_size is the number of bytes per table entry and is reported by
GITS_BASERn.Entry_Size.

When configuring the GITS_BASERn registers, the size of the table is specified as a number of
pages. The size of a page is controlled by GITS_BASERn.Page_Size, and can be 4KB, 16KB or 64KB.
Therefore, the result of the formula given above must be rounded up to the next whole page size.

For example, if a system implements an 8-bit DeviceID, the bytes per table entry is 8 and a 4K
page size is used:

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

ITS

28 * 8 = 2048 bytes = 4K (rounded up to the next full page)

Two-level tables
With two-level tables, software allocates a single first level table, and several second level tables as
shown in the following diagram:

Figure 4-4: A two-level Device or Collection table

The first level table is populated by software, with each entry either pointing at a second level table
or marked as invalid. The second level tables must be filled with zeroes before they are allocated to
the ITS and are populated by the ITS as it processes commands from the command queue.

While the ITS is enabled (GITS_CTLR.Enabled == 1) software might allocate additional second
level tables and update the corresponding first level table entry to point at these additional tables.
Software must not remove allocations, or change existing allocations, while the ITS is enabled.

The size of each second level table is one page. As with the flat tables, the page size is configured
by GITS_BASERn.Page_Size. It therefore contains (page_size / entry_size) entries.

Each first level table entry represents (page_size / entry_size) IDs and can either point to a second
level table or be marked as invalid. Any ITS command that uses an ID which corresponds to an
invalid entry will be discarded.

The required size of the first level table can be calculated by:

Size in bytes = (2ID_width / (page_size / entry_size)) * 8

As with the single level tables, the size of the first level table is specified as a number of pages.
Therefore, the result of the formula must be rounded up to the next whole page size.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

ITS

4.4 Adding a new command to the command queue
To add a new command to the command queue, software must:

1. Write the new command to the queue.

GITS_CWRITER points to the next entry that does not contain a valid command in the
command queue. Software must write the command to this entry, and it must ensure global
visibility.

2. Update GITS_CWRITER.

Software must update GITS_CWRITER to the next entry that does not contain a new
command. Updating GITS_CWRITER informs the ITS that a new command has been added.

Software can add multiple commands to the queue at the same time, provided there are
enough empty spaces in the command queue and that GITS_CWRITER is updated accordingly.

3. Wait for the command to be read by the ITS.

Software can check whether the command has been read by the ITS by polling GITS_CREADR.
All commands have been read by the ITS when GITS_CWRITER.Offset is equal to
GITS_CREADR.Offset.

Alternatively, an INT command can be added to generate an interrupt to signal that a group of
commands has been read by the ITS.

The ITS reads the commands from the command queue in order. However, the effects that these
commands have on the Redistributors might be visible out-of-order. A SYNC command can ensure
that the effects of previously issued commands are visible.

The command queue is full when GITS_CWRITER points at the location before
GITS_CREADR. Software must check that there is sufficient space in the queue
before attempting to add new commands.

4.5 Mapping an interrupt to a Redistributor
Every peripheral that can send interrupts to an ITS has its own DeviceID. Each DeviceID requires
its own Interrupt Translation Table (ITT) to hold its EventID to INTID mappings. Software must
allocate memory for the ITT and then use the MAPD command to map the DeviceID to the ITT as
shown by the following command:

MAPD <DeviceID>, <ITT_Address>, <Size>

When the DeviceID of a peripheral has been mapped to an ITT, the different EventIDs it can send
must be mapped to INTIDs and collections. Each collection is mapped to a target Redistributor.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

ITS

INTIDs can be mapped to a collection using the MAPTI and MAPI commands. The MAPI command is
used when the EventID and INTID are the same, as follows:

MAPI <DeviceID>, <EventID>, <Collection ID>

The MAPTI command is used when the EventID and INTID are different:

MAPTI <DeviceID>, <EventID>, <INTID>, <Collection ID>

Collections are mapped to a Redistributor using the MAPC command:

MAPC <Collection ID>, <Target Redistributor>

Identification of the target Redistributor depends on GITS_TYPER.PTA:

• GITS_TYPER.PTA==0

The Redistributor is specified by its ID, which can be read from
GICR_TYPER.Processor_Number.

• GITS_TYPER.PTA==1

The Redistributor is specified by its physical address.

Example
A timer has DeviceID 5 and uses a 2-bit EventID. We want EventID 0 to be mapped to INTID
8725. The ITT allocated for the timer is at address 0x84500000.

We decide to use collection number 3 and deliver the interrupt to the Redistributor with ID 7.

The command sequence for this is as follows:

MAPD 5, 0x84500000, 2 // Map DeviceID 5 to an ITT
MAPTI 5, 0, 8725, 3 // Map EventID 0 to INTID 8725 and collection 3
MAPC 3, 7 // Map collection 3 to Redistributor 7
SYNC 7

The example assumes that none of the mappings have previously been set up, and
that GITS_TYPER.PTA==0.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

ITS

4.6 Migrating interrupts between Redistributors
You can use several different techniques to move an interrupt from one Redistributor to another:

• Remap a collection.

Software can move all interrupts from one Redistributor to a different Redistributor by
remapping the entire collection. This is typically done when the processing element attached to
the Redistributor is powering down, and the interrupts must be moved to another Redistributor.
This can be done using the following command sequence:

MAPC <Collection ID>, <RDADDR2> // Remap collection to new Redistributor
SYNC <RDADDR2> // Ensure visibility of the mapping
MOVALL <RDADDR1>, <RDADDR2> // Move pending state to new Redistributor
SYNC <RDADDR1> // Ensure visibility of move

In this command sequence RDADDR1 is the previously targeted Redistributor, and RDADDR2 is the
new target Redistributor.

If there were multiple collections targeting RDADDR1, then we would need multiple MAPC
commands, one for each collection. This sequence assumes that all the collections are being
remapped to the same new target Redistributor.

• Map an interrupt to a different collection. Individual interrupts can be remapped to a different
collection. This can be done using the following command sequence:

MOVI <DeviceID>, <EventID>, <ID of new Collection>
SYNC <RDADDR1>

In this command sequence RDADDR1 is the Redistributor that is targeted by the collection to
which the interrupt was originally assigned, before the interrupt was remapped.

4.7 Removing interrupt mappings
To remap or remove the mapping of an interrupt, software must do the following:

1. Disable the physical INTID to which the interrupt is currently mapped. This is done in the LPI
configuration tables. For more information, see Reconfiguring LPIs.

2. Issue a DISCARD command. This removes the mapping of the interrupt and clears the pending
state of the mapped INTID.

3. Issue a SYNC command and wait until the command has completed.

After the command has completed, no more interrupts are delivered to the Redistributor to which
the interrupts were previously mapped.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

ITS

4.8 Remapping or removing the mapping of devices
To change or remove the mapping for devices software must do the following:

1. Follow the steps in Removing interrupt mappings for each EventID of that peripheral that is
currently mapped.

2. Issue a MAPD command to remap the device. Alternatively, a MAPD command with the valid bit
cleared to 0 removes the mapping.

3. Issue a SYNC command and wait until the command has completed.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

Example

5. Example
Download a short example to accompany this guide here. The example demonstrates initializing the
GIC, configuring an LPI using the ITS, and handling a generated LPI interrupt.

The example requires Arm Development Studio. If you do not already have a copy, an evaluation
copy is available from Arm Development Studio

The example includes a ReadMe.txt file which lists the included files and instructions for building
and running the example.

The example contains the following files:

• gicv3_basic.c contains functions for interacting with the GIC

• gicv3_lpis.c contains functions specifically related to LPIs

• main_lpi.c is a short test program which uses LPIs

In this example, we look at the file main_lpi.c as follows:

int main(void)
{
 uint32_t type, entry_size;
 uint32_t rd, target_rd;

 //
 // Configure the interrupt controller
 //
 rd = initGIC();

The function initGIC() performs the basic initialization of the GIC. For more information, see
Learn the architecture: Arm Generic Interrupt Controller v3 and v4 guide.

The following code allocates the memory for the LPI Configuration and Pending Tables:

 //
 // Set up Redistributor structures used for LPIs
 //

 setLPIConfigTableAddr(rd, CONFIG_TABLE, GICV3_LPI_DEVICE_nGnRnE /*Attributes*/,
 15 /* Number of ID bits */);
 setLPIPendingTableAddr(rd, PENDING_TABLE, GICV3_LPI_DEVICE_nGnRnE /*Attributes*/,
 15 /* Number of ID bits */);
 enableLPIs(rd);

The Configuration Table is shared by multiple Redistributors but there is a single Pending Table for
each Redistributor. This example uses a single core, so it only allocates a single LPI Pending table.

Next, the code configures the ITS:

 // Allocate memory for the ITS command queue
 initITSCommandQueue(CMD_QUEUE, GICV3_ITS_CQUEUE_VALID /*Attributes*/,
 1 /*num_pages*/);

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 24

https://developer.arm.com/-/media/Files/downloads/Common-Task-Tutorials-Samples/AArch64_GIC_v3_v4_example.zip
https://developer.arm.com/products/software-development-tools/arm-development-studio
https://developer.arm.com/documentation/198123/

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

Example

 // Allocate Device table
 setITSTableAddr(0 /*index*/,
 DEVICE_TABLE /* addr */,
 (GICV3_ITS_TABLE_PAGE_VALID | GICV3_ITS_TABLE_PAGE_DIRECT |
 GICV3_ITS_TABLE_PAGE_DEVICE_nGnRnE),
 GICV3_ITS_TABLE_PAGE_SIZE_4K,
 16 /*num_pages*/);

 //Allocate Collection table
 setITSTableAddr(1 /*index*/,
 COLLECTION_TABLE /* addr */,
 (GICV3_ITS_TABLE_PAGE_VALID | GICV3_ITS_TABLE_PAGE_DIRECT |
 GICV3_ITS_TABLE_PAGE_DEVICE_nGnRnE),
 GICV3_ITS_TABLE_PAGE_SIZE_4K,
 16 /*num_pages*/);

 // Enable the ITS
 enableITS();

This code allocates memory for the ITS’s Command Queue, Device table, and Collection table.
Once the tables are initialized, the ITS is enabled.

With the ITS enabled, an interrupt can be mapped by adding commands to the command queue, as
shown in the following code:

 // Set up a mapping
 itsMAPD(0 /*DeviceID*/, ITT /*addr of ITT*/, 2 /*bit width of ID*/);
 itsMAPTI(0 /*DeviceID*/, 0 /*EventID*/, 8193 /*intid*/, 0 /*collection*/);
 itsMAPC(target_rd /* target Redistributor*/, 0 /*collection*/);
 itsSYNC(target_rd /* target Redistributor*/);

This example does the following:

• Maps DeviceID 0 to an Interrupt Translation Table

• Maps EventID 0 from DeviceID 0 to the INTID 8193 and allocates it to Collection 0

• Maps Collection 0 to the current Redistributor (0.0.0.0)

At this point, we have the GIC enabled with an ITS mapping for a DeviceID/EventID. Next, we
configure INTID 8193 as follows:

 configureLPI(rd, 8193 /*INTID*/, GICV3_LPI_ENABLE, 0 /*Priority*/);
 printf("main(): Sending LPI 8193\n");
 itsINV(0 /*DeviceID*/, 0 /*EventID*/);
 itsINT(0 /*DeviceID*/, 0 /*EventID*/);

This code enables INTID 8193 and sets its priority. It is possible the GIC has already cached the old
configuration, so an INV command is needed to ensure the new configuration is used.

The FVP Base Platform model does not include a peripheral capable of generating this MSI, so
instead we generate it using an INT command.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

Check your knowledge

6. Check your knowledge
The following questions and answers let you check your understanding of this guide.

How is the state-machine for LPIs different to the other interrupt types?
The other interrupt types have four states: Inactive, Pending, Active, and Active and Pending.
LPIs only have two states: Inactive and Pending.

Where is the configuration and state for LPIs stored?
In memory. The Redistributors share a common LPI Configuration table which stores the
configuration. There is one LPI Pending table per Redistributor which stores pending state.

What information does an MSI contain which allows an ITS to translate it?
A DeviceID and an EventID. The DeviceID identifies which peripheral sent the interrupt. The
EventID identifies which interrupt the peripheral is sending.

How does software create mappings in the ITS?
By issuing commands using the ITS command queue. A MAPD command creates a mapping for
the device. MAPI and MAPTI commands map the EventIDs of a peripheral.

How does software change the priority of an LPI?
The software must do the following:

1. Update the appropriate entry in the LPI Configuration Table

2. Ensure global visibility of the change

3. Invalidate any configuration caching in the GIC by issuing an invalidate operation using the ITS
or writing to one of the invalidation registers

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 24

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0

Related information

7. Related information
Here are some resources related to material in this guide:

• Learn the architecture: Arm Generic Interrupt Controller v3 and v4

• GIC specifications

• GIC home page on developer.arm.com

• GIC Stream Protocol interface version B

• Arm Community

• Learn the architecture: Exception model guide

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 24

https://developer.arm.com/documentation/198123
https://developer.arm.com/architectures/system-architectures/system-components/arm-generic-interrupt-controller/documentation
https://developer.arm.com/ip-products/system-ip/system-controllers/interrupt-controllers
https://developer.arm.com/documentation/ecm0495013/b/?lang=en
https://community.arm.com/developer
https://developer.arm.com/architectures/learn-the-architecture/exception-model

Learn the architecture - Generic Interrupt Controller v3 and
v4, LPIs

Document ID: 102923_0100_01_en
Version 1.0
Next steps

8. Next steps
This guide introduced the LPI interrupt type in GICv3/4. It explained how an ITS receives LPIs from
peripherals and forwards them to the appropriate Redistributor, and provided information about
the memory structures used by Redistributors to handle LPIs.

GICv4 allows for hardware managed virtualization LPIs, for more information see GIC Support for
Virtualization.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 24

https://developer.arm.com/documentation/ihi0048/b/GIC-Support-for-Virtualization
https://developer.arm.com/documentation/ihi0048/b/GIC-Support-for-Virtualization

	Learn the architecture - Generic Interrupt Controller v3 and v4, LPIs
	Contents
	1. Introduction
	2. LPIs
	3. Redistributors
	3.1 Initial configuration of a Redistributor
	3.2 Reconfiguring LPIs

	4. ITS
	4.1 The command queue
	4.2 Initial configuration of an ITS
	4.3 The sizes and layout of Collection and Device tables
	4.4 Adding a new command to the command queue
	4.5 Mapping an interrupt to a Redistributor
	4.6 Migrating interrupts between Redistributors
	4.7 Removing interrupt mappings
	4.8 Remapping or removing the mapping of devices

	5. Example
	6. Check your knowledge
	7. Related information
	8. Next steps

