
Arm® CPU Telemetry Solution
Version 1.0

Topdown Methodology Specification

Non-Confidential
Copyright © 2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
109542_0100_01_en

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm® CPU Telemetry Solution
Topdown Methodology Specification

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 26 January 2024 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 36

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 36

mailto:terms@arm.com

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01
Contents

Contents

1. Introduction.. 6
1.1 Conventions..6
1.2 Useful resources..7
1.3 Other information... 8

2. About Arm CPU Telemetry Solution..9

3. Arm Topdown methodology..10
3.1 Stage 1: Topdown analysis...11
3.2 Stage 2: Microarchitecture exploration... 15

4. Arm Telemetry framework for CPUs...18
4.1 Data model standardization... 22

5. Arm Telemetry Solution for software profiling: tools..23
5.1 Arm telemetry specification and profiling tools.. 23
5.1.1 Arm Topdown tool..24
5.1.2 Performance analysis using Linux perf tool..25
5.1.3 Performance analysis using WindowsPerf Tool... 27

A. Arm Topdown tool example..30

B. Linux perf data collection.. 32

C. WindowsPerf tool data collection... 34

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Introduction

1. Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system
failure or damage.

Requirements for the system. Not following these requirements might result in
system failure or damage.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 36

https://developer.arm.com/glossary

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Introduction

Requirements for the system. Not following these requirements will result in system
failure or damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm® Telemetry on Arm Developer – Non-Confidential

Arm® Telemetry Solution GitLab repository – Non-Confidential

Arm architecture and specifications Document ID Confidentiality

Arm® Architecture Reference Manual for A-profile architecture DDI 0487 Non-Confidential

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 36

http://developer.arm.com/documentation
https://developer.arm.com/telemetry
https://gitlab.arm.com/telemetry-solution/telemetry-solution
https://developer.arm.com/documentation/ddi0487

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Introduction

Non-Arm resources Document
ID

Organization

A. Yasin, IEEE Xplore, “A Top-
Down method for performance
analysis and counters
architecture”

– A. Yasin, “A Top-Down method for performance analysis and counters architecture,” 2014
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
Monterey, CA, USA, 2014, pp. 35-44, doi: 10.1109/ISPASS.2014.6844459.

Linux kptr-restrict – Linux kptr-restrict

Linux perf-annotate – Linux perf-annotate

Linux perf-record – Linux perf-record

Linux perf-report – Linux perf-report

Linux perf-stat – Linux perf-stat

Linux perf_event and tool
security, Unprivileged users

– Linux perf_event and tool security, Unprivileged users

Linux perf_event_paranoid – Linux perf_event_paranoid

WindowsPerf GitLab repository – Linaro WindowsPerf GitLab repository

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com

1.3 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 36

https://ieeexplore.ieee.org/document/6844459
https://ieeexplore.ieee.org/document/6844459
https://ieeexplore.ieee.org/document/6844459
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#kptr-restrict
https://man7.org/linux/man-pages/man1/perf-annotate.1.html
https://man7.org/linux/man-pages/man1/perf-record.1.html
https://man7.org/linux/man-pages/man1/perf-report.1.html
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html#unprivileged-users
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#perf-event-paranoid
https://gitlab.com/Linaro/WindowsPerf/windowsperf
http://www.adobe.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

About Arm CPU Telemetry Solution

2. About Arm CPU Telemetry Solution
Arm CPU Telemetry Solution comprises a set of components, that is, a top-down performance
analysis methodology, a standardized telemetry framework, and profiling tool. It is designed to use
a CPU’s telemetry data to help identify performance bottlenecks and improve execution efficiency
by using these components.

System-on-Chip (SoC) telemetry enables collection and analysis of hardware execution information
from a platform to gain insights about a system’s performance. This information can be used to
identify performance issues and improve execution efficiency.

A modern CPU contains a hardware performance monitoring unit (PMU) which provides a set
of functional events that describe the internal state of the microarchitecture during execution.
Multiple events can be used to derive metrics, which provide more meaningful insights by
abstracting the hardware details.

Performance analysis is an investigative and diagnostic process. Using a systematic methodology
is important to narrow down the bottleneck for root cause analysis and code execution
improvements. A well-known example of a systematic methodology is the top-down performance
analysis methododology. For more information, see A. Yasin, IEEE Xplore, “A Top-Down method for
performance analysis and counters architecture”.

Arm CPU Telemetry Solution is designed to collect, represent, and analyze CPU telemetry data
on Arm CPU based platforms. A supported Arm CPU implementation provides a telemetry
specification that defines the hardware PMU events, derived metrics, and Arm Topdown
methodology supported by the CPU. Arm Topdown methodology is Arm’s implementation of
the top-down performance analysis methododology. It is a approach to consume the telemetry
events and metrics in a hierarchical decision tree format for hotspot analysis. See Arm Topdown
methodology.

The methodology, metrics, and events are represented in a standardized telemetry framework, Arm
Telemetry framework that is designed to support the collection and processing of large amounts
of CPU telemetry data. In this framework, events are categorized into function groups and metric
groups that can be collected in stages, with the help of profiling tools. This framework also helps to
manage and represent the telemetry specification of supported CPUs in a standardized machine-
readable format, which can be harnessed by profiling tools.

Arm CPU Telemetry Solution also provides the Arm Topdown tool. It is a simple command line tool
to profile applications. The tool parses the telemetry machine-readable specification (MRS), which
is a JSON file, to collect and process the telemetry data that is supported by the CPU to provide
performance insights. Arm Topdown tool is enabled for both Linux and Windows platforms.

For more information about Arm CPU Telemetry Solution, see Arm® Telemetry on Arm Developer.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 36

https://ieeexplore.ieee.org/document/6844459
https://ieeexplore.ieee.org/document/6844459
https://developer.arm.com/telemetry

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Topdown methodology

3. Arm Topdown methodology
Arm Topdown methodology supports performance analysis, workload characterization, and
microarchitecture exploration on Arm A-profile CPUs that implement version 3 of the Performance
Monitors Extension, FEAT_PMUv3.

For more information about the Performance Monitors Extension, see Arm® Architecture Reference
Manual for A-profile architecture.

This performance analysis methodology provides a systematic and top-down hierarchical approach
to use hardware performance monitoring events for analysis use cases. The methodology
is formulated with the help of performance metrics derived from the hardware monitoring
events, making the hardware monitors accessible for an average software user without extensive
microarchitectural knowledge. Computer architects and system designers can also use it for
resource characterization and platform tuning by using the specified set of performance metrics.

To identify the application bottleneck for a CPU, the first step is to characterize the execution
efficiency of the cycles spent. This workload characterization can be measured by the distribution
of execution cycles broken down between:

• Those cycles that worked efficiently.

• Those cycles that are wasted by pipeline stalls and redirections.

The process of breaking down the cycles can be done hierarchically to narrow down the bottleneck
in the CPU pipeline. It also helps to identify and ignore the CPU components that are not causing
the performance issue.

After identifying the CPU component bottleneck in the hardware, the next step is to measure the
microarchitectural metrics of that component for further root cause analysis.

To aid the investigative and diagnosis process, Arm Topdown methodology is conducted in two
stages:

Stage 1: Topdown analysis
The first stage is to perform Topdown analysis. It uses hierarchical pipeline stall-related
metrics to detect and identify the performance bottleneck in the CPU. For more information,
see Stage 1: Topdown analysis.

Stage 2: Microarchitecture exploration
The second stage is to conduct microarchitecture exploration to further analyze bottlenecked
CPU resources. It uses a set of CPU resource effectiveness metrics. For more information,
see Stage 2: Microarchitecture exploration.

After completing stage 1, the Arm Topdown methodology provides recommended stage 2 metrics
to further analyze the identified the bottleneck. Stage 2 metrics can be used directly for a targeted
analysis of a CPU resource.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 36

https://developer.arm.com/documentation/ddi0487
https://developer.arm.com/documentation/ddi0487

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Topdown methodology

3.1 Stage 1: Topdown analysis
Topdown analysis is the first stage of the methodology to support hotspot detection. A set of
pipeline efficiency metrics specify the PMU events to measure, which helps to characterize the
distribution of cycles spent by the CPU.

Topdown analysis metrics are formulated as a decision tree of metrics that need to be hierarchically
traversed, in a predefined path, to help locate the bottleneck.

An Arm CPU implementation consists of a frontend that fetches instructions from memory,
decodes them, and dispatches them to a backend. The backend executes those instructions,
including reading and writing data from and to memory. As shown in the pipeline model in the
following figure, the frontend is often in order, whereas the backend can be in order or out of order
depending on the CPU’s microarchitecture.

Figure 3-1: An Arm CPU implementation pipeline model

In a simple scalar CPU implementation, the frontend dispatches a maximum of one instruction for
each cycle. In this case, a cycle is classified as follows:

• Useful cycle, whereby an instruction were dispatched

• Stalled cycle, whereby no instruction was dispatched

In a superscalar CPU implementation, the frontend can dispatch many instructions for each cycle
using instruction level parallelism, thereby achieving a higher Instructions Per Cycle (IPC). Each
instruction takes one of an implementation-defined maximum number of dispatch slots on each
cycle. Therefore, the utilization and efficiency of cycles spent is more accurately calculated by
counting the number of dispatch slots in which instructions were dispatched and those slots that
did not dispatch instructions.

A modern CPU implementation can also break instructions into micro-operations for execution.
The frontend of the CPU decodes and decomposes instructions to micro-operations that can be
executed by the backend execution units. In this case, the utilization and efficiency of a pipeline is
measured by examining cycles or slots on which no operations are dispatched, referred to as stalled
cycles or stalled slots.

To keep the CPU backend fed with instructions, the frontend also predicts the future instructions
to be executed. The success of future instructions is highly dependent on the control flow of
the code that is determined by branched instructions. When these predictions are wrong, the
instructions dispatched to the backend are canceled and can cause pipeline bubbles.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Topdown methodology

On superscalar CPU implementations, the total execution bandwidth of the CPU can be measured
in terms of the number of execution slots for operations. The total number of slots supported by
the core determines the execution bandwidth of the CPU for top-down accounting and is defined
as a microarchitectural parameter. The value of the parameter is used to derive the execution
bandwidth metrics for a CPU.

These key characteristics determine efficient pipeline execution. Thus, the Arm Topdown analysis
starts by calculating the following measurements to detect inefficiencies. Each measurement is a
percentage of the total execution bandwidth of the CPU:

• The percentage of execution bandwidth used by operations that are retired.

• The percentage of execution bandwidth lost to mis-speculation.

• The percentage of execution bandwidth lost to stalls in the frontend.

• The percentage of execution bandwidth lost to stalls in the backend.

These measurements that form the metrics for the Topdown level 1 analysis are defined as follows:

retiring

This metric is the percentage of total slots that retired operations. It indicates the proportion
of cycles that were used and efficient.

bad_speculation

This metric is the percentage of total slots that executed operations but did not retire due to
a pipeline flush caused by mis-speculation. It indicates the cycles that were used but were
inefficient executing the wrong instructions. It also includes cycles spent recovering from
the pipeline flush, which requires an instruction pipeline refill from the correct instruction
location.

frontend_bound

This metric is the percentage of total slots that were stalled due to resource constraints in the
frontend unit of the CPU.

backend_bound

This metric is the percentage of total slots that were stalled due to resource constraints in the
backend unit of the CPU.

The following figure shows an example of Topdown level 1 analysis that was conducted for a
microbenchmark designed to stress key CPU blocks.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Topdown methodology

Figure 3-2: Ustress Topdown level 1 metrics (TopdownL1)

After the first level of accounting, Arm Topdown methodology can then support lower levels in the
hierarchy, to further break down the stalling events.

A relatively high frontend_bound metric shows that execution cycles are being wasted due to
pipeline stalls in the in-order frontend of the CPU. Many causes can exist for these stalls, such as:

• Inefficiency in the branch prediction unit

• Fetch latency due to instruction cache misses

• Translation delays caused by instruction Translation Lookaside Buffer (TLB) walks

For example, if the frontend is stalled and there is an instruction cache miss in progress, then the
stall might be due to the cache miss and hence attributed to it.

A relatively high backend_bound metric shows that execution cycles are wasted due to pipeline
stalls in the backend of the CPU. Many causes can exist for these stalls such as:

• Inefficiency in the backend execution units

• Data cache misses

• Translation delays caused by data TLB walks

A relatively high bad_speculation metric shows that the pipeline stalls can be due pipeline flushes
or machine clears that break the pipeline requiring a control flow change. The major causes for
these stalls are branch mis-predictions and exceptions.

A relatively high retiring metric shows that the pipelines were utilized. However, this metric can
indicate inefficiency due to underutilization of the microarchitectural capabilities. For example,

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Topdown methodology

scalar execution of a code that should have been performed more efficiently using vector
operations.

After the level 1 metrics, second level analysis mainly determines whether a pipeline stall is due to
memory or processor effects, for example:

• An example of a memory effect is a cache miss. If memory effects dominate, then the program
is referred to as memory bound.

• An example of a processor effect is when a backend is full of operations waiting for execution
units or results of the previous operations to become available. If processor effects dominate,
then the program is referred to as CPU bound.

These stalls might also break down into third, fourth level metrics, such as, the specific cases
summarized in the previous memory and processor effects examples. Support for the lower levels
can also be microarchitecture dependent.

Refer to Topdown analysis tree of the Arm CPU implementation to understand what
the CPU supports, for example, in an Arm core telemetry specification. For more
information about available Arm core telemetry specifications, see Arm® Telemetry
on Arm Developer.

Topdown event implementations for Arm CPU microarchitecture
It is not always practical or feasible to continue down the levels of top-down accounting, especially
to track slot level. The lower the level, the higher the number of events that occur simultaneously.

The lower the level, the smaller it becomes, and any signal causing the bottleneck can get lost in
the noise. Thus, to precisely attribute the causes to effects becomes more difficult. Tracking cause
to effect can involve a lot of hardware which is:

• Difficult to design

• Difficult to validate

• Consumes area and power that can be otherwise spent on additional processing resources

As a result, the accounting of events takes the form of: the counter counts each cycle by
STALL_<other event> where <a condition applies>. That is, these events count the coincidence
of a stall with the applied condition.

Although described as being coincidental, CPU implementations might choose to delay some event
signals while deciding whether the event occurs. Because of pipelining, a stall that results from a
condition might not be immediately possible once the condition becomes active. To improve the
quality of the event data, the condition might be delayed to determine whether it is coincidental
with a stall. That is, <a condition applies> becomes <a condition applied after a fixed,
implementation-specific, number of cycles>.

For the purpose of stall accounting in Arm A-profile “big” CPUs, the boundary between frontend
and backend is at the point of rename and dispatch as shown in the following figure. It is the point
in the pipeline where the core switches from an in-order pipeline to an out-of-order pipeline. It

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 36

https://developer.arm.com/telemetry
https://developer.arm.com/telemetry

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Topdown methodology

also marks the point where resource contention that causes a stall condition is associated with
the throughput in the out-of-order division of the Arm A-profile “big” CPU. Examples of resource
contention are execution bandwidth and physical register renames.

Figure 3-3: Frontend and backend division in an Arm “big” CPU with an out-of-order backend

Arm architecture defines some key Topdown events that support the Topdown metrics. The
following table show some example events used in the Topdown level 1 metric definitions of Arm
processor IP that have adopted Arm CPU Telemetry Solution, referred to as Arm cores in this
specification.

Table 3-1: Topdown analysis event support in Arm cores

Topdown event category Stall events Supported Arm cores

Overall Stalls STALL Neoverse™ N2, V1, V2

STALL_SLOT Neoverse N2, V1, V2

Frontend Stall Events STALL_FRONTEND Neoverse N1, N2, V1, V2

STALL_SLOT_FRONTEND Neoverse N2, V1, V2

Backend Stall Events STALL_BACKEND Neoverse N1, N2, V1, V2

STALL_SLOT_BACKEND Neoverse N2, V1, V2

Refer to the Topdown methodology tree in each supported Arm core for the
complete list of events, hierarchy of metrics derived from these events, and event
relationships. A Topdown methodology may include common architectural events
across Arm processor families and a set of events which can be microarchitecture
dependent. For more information about available Arm core telemetry specifications,
see Arm® Telemetry on Arm Developer.

3.2 Stage 2: Microarchitecture exploration
After the potential hotspot in the CPU pipeline is identified in stage 1, the next stage is to conduct
a microarchitectural analysis of the CPU pipeline resource causing the bottleneck.

Stage 2 is defined as the microarchitecture exploration stage for which a set of CPU resource
effectiveness metrics are defined under metric groups for each resource. Industry-standard metrics
such as Misses Per Kilo Instructions (MPKI) and Miss Ratios are metric groups that are also defined
in this stage.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 36

https://developer.arm.com/telemetry

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Topdown methodology

A relatively high frontend stall rate indicates that cycles are wasted due to pipeline stalls in the in-
order frontend of the CPU. A relatively high backend stall rate indicates that cycles are wasted due
to pipeline stalls in the backend. This breakdown helps to narrow down the dominating CPU blocks
that can be further analyzed to identify performance bottlenecks as shown in the following figure.

Figure 3-4: Stage 2 metrics for microarchitecture exploration

The list of major CPU resource effectiveness metrics to further analyze a frontend_bound workload
are as follows:

• Instruction TLB (ITLB) Effectiveness metrics

• Instruction Cache Effectiveness metrics

• Branch Effectiveness metrics

The list of major CPU resource effectiveness metrics to further analyze a backend_bound workload
is as follows:

• Data TLB Effectiveness metrics

• Data Cache Effectiveness metrics

• Operation Mix metrics

The list of major CPU resource effectiveness metrics to further analyze a bad_speculation
workload is as follows:

• Branch Effectiveness metrics

• Branch Mix metrics

The list of major CPU resource effectiveness metrics to further analyze a retiring workload is as
follows:

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Topdown methodology

• Operation Mix metrics

• Vectorization Effectiveness metrics

Performance analysis metrics supported by each Arm core depend on the
hardware events implemented by the core. For more information about the
metric groups and the list of metrics within each group, see the relevant Arm core
telemetry specification. For more information about available Arm core telemetry
specifications, see Arm® Telemetry on Arm Developer.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 36

https://developer.arm.com/telemetry

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry framework for CPUs

4. Arm Telemetry framework for CPUs
Arm Telemetry framework for CPUs has key elements that follow a standardized data model to
produce and consume the CPU’s telemetry data. The data model helps specify the telemetry
features for the end users and profiling tools.

This framework supports all collaterals for telemetry, that is, written specifications for end users, for
example, software analysts or system designers, and machine-readable specifications for profiling
tools.

The main elements of the framework are events, metrics, metric groups, and methodology. The
following figure shows those elements as a high-level data model.

Figure 4-1: Data model for Arm Telemetry framework for CPUs

PMU events implemented by an Arm core are either:

• Common, that is, the events are defined by the Arm architecture.

• IMPLEMENTATION DEFINED, that is, the events are specific to an Arm CPU.

Events are also either:

• Architectural - the events give the same result for the same workload on all Arm cores
implementing the Arm architecture, to within a reasonable degree of accuracy, as described by
the Arm architecture.

• Microarchitectural - the events give different results for the same workload on different Arm
cores.

All events supported by an Arm core are grouped by function for each CPU resource in which
they are counted. Metrics are derived from events that support the Topdown methodology and
are grouped into metric groups for analysis. Key metrics can be standardized for an Arm processor
product family. Event implementations that form a metric can vary for each microarchitectural

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry framework for CPUs

requirement. This design approach standardizes and abstracts metrics such that an analyst with
software expertise can consume the events directly without knowing the hardware design in depth.

Each definition of the framework element contains an example from the Arm
Machine Readable Specification schema. All Arm cores that support the Arm
Telemetry framework publish the associated Arm core telemetry specification with
the MRS source data to the Arm CPU Telemetry Solution data repository in GitLab:
Arm® Telemetry Solution GitLab repository

Events
Hardware performance monitoring events implemented by the CPU that contain raw data read
from the registers or memory buffers.

Data fields
Event Code
Event Mnemonic
Event Title
Description
Functional Category

Example event
 "L1I_CACHE_REFILL": {
 "code": "0x0001",
 "title": "Level 1 instruction cache refill",
 "description": "Counts cache line refills in the level 1 instruction
 cache caused by a missed instruction fetch. Instruction fetches may include
 accessing multiple instructions, but the single cache line allocation is
 counted once.",
 "common": true,
 "accesses": [
 "PMU",
 "ETE"
],
 "architectural": false,
 "impdef": false
 }

Metrics
Derived mathematical relationships between events that provide insight into the system behavior.
They are developed to abstract hardware details of the events from consumers of the telemetry
data.

Data fields
Metric Name
Metric Title
Metric Description
Metric Formula
Metric Unit
Metric Events

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 36

https://gitlab.arm.com/telemetry-solution/telemetry-solution

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry framework for CPUs

Example metric
"l1i_cache_mpki": {
 "title": "L1I Cache MPKI",
 "formula": "((L1I_CACHE_REFILL / INST_RETIRED) * 1000)",
 "description": "This metric measures the number of level 1 instruction cache
 accesses missed per thousand instructions executed.",
 "units": "MPKI",
 "events": [
 "INST_RETIRED",
 "L1I_CACHE_REFILL"
]
 }

Metric groups
Groups of metrics that are analyzed together for performance correlation during a specific
investigation. A group can be dependent on a usage model. Thus, some metrics can belong to
multiple metric groups.

Data fields
Metric Group Name
Metric Group Title
Metric Group Description
Metric Group Metrics

Example metric group
"Topdown_L1": {
 "title": "Topdown Level 1",
 "description": "This metric group contains the first set of metrics to begin
 topdown analysis of application performance, which provide the percentage
 distribution of processor pipeline utilization.",
 "metrics": [
 "frontend_bound",
 "backend_bound",
 "retiring",
 "bad_speculation"
]
 }

Events required for the metrics can be obtained from the metric data schema.

Methodology
Methodology is actionable guidance to explain how to consume the different metrics and events
for a specific usage model, for example, hotspot analysis. Methodology can be a metric group or
collection of metric groups. It provides actions and guidance notes on how to consume the data to
take steps or derive actionable insights from the data.

An example methodology is Arm Topdown methodology. It is a decision tree with root and leaf
nodes of metrics that belong to specific metric groups. Metric relationships are key to represent
the Topdown tree. Metric groups are required for the analysis process. They provide guidance for
profiling data collection tools. Guidance includes how many hardware monitoring events to count,
and in which order, because hardware resources are limited. Relationships between metrics and
metric groups is specified for a methodology. Stage 1 and stage 2 metric relationships are captured
in the methodology specification schema.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry framework for CPUs

Topdown Methodology schema
"topdown_methodology": {
 "title": "Topdown Methodology",
 "description": "Topdown Performance Analysis Methodology",
 "metric_grouping": {
 "stage_1": [
 "Topdown_L1"
],
 "stage_2": [
 "Cycle_Accounting",
 "General",
 "MPKI",
 "Miss_Ratio",
 "Branch_Effectiveness",
 "ITLB_Effectiveness",
 "DTLB_Effectiveness",
 "L1I_Cache_Effectiveness",
 "L1D_Cache_Effectiveness",
 "L2_Cache_Effectiveness",
 "LL_Cache_Effectiveness",
 "Operation_Mix"
]
 },
 "decision_tree": {
 "root_nodes": [
 "frontend_bound",
 "backend_bound",
 "retiring",
 "bad_speculation"
],
 },
 "metrics": {
 "name": "frontend_bound",
 "group": "Topdown_L1",
 "next_items": [
 "Branch_Effectiveness",
 "ITLB_Effectiveness",
 "L1I_Cache_Effectiveness",
 "L2_Cache_Effectiveness",
 "LL_Cache_Effectiveness"
],
 "sample_events": [
 "STALL_SLOT_FRONTEND",
 "STALL_FRONTEND"
]
 }
 }

The following figure shows how the different elements of the Arm Telemetry framework are used
to construct the level 1 metrics of the Topdown methodology, grouped as the Topdown level 1
metric group.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry framework for CPUs

Figure 4-2: An example demonstration of Telemetry framework relationship

Because hardware counters are limited, it is important that the profiling data collection tool has
sufficient counters to collect the data required for an analysis stage or a metric group. For the
Topdown analysis level 1 metrics, as shown in the previous figure, a total of seven events are
required for full coverage. The number of counters required will vary for each CPU, depending on
the events required to derive the metrics. Software uses multiplexing when collecting metrics in a
group that requires more events than the number of available hardware counters. This discrepancy
can result in accuracy issues. Thus, hardware requirements for supported counters must be derived
for each methodology requirement to achieve a reliable solution.

4.1 Data model standardization
All components of the Arm CPU Telemetry Solution are designed for scalability to enable an
Arm A-profile CPU implementation to adopt this solution. The elements of the Arm Telemetry
framework can be used across individual Arm cores or Arm processor families.

The elements also provide the flexibility for the characteristics of an Arm processor family or
an individual Arm core, for example, a core’s events implementation. Thus, the metric formulae
can vary as required. An Arm processor family refers to a family of Arm processor IP that
implement features of the A-profile architecture. Each family supports different markets and their
requirements, for example, Cortex®-A, Cortex-X, or Neoverse.

For example, Topdown analysis defines a collection of metric groups that form a decision tree
for a hotspot analysis use case. The nodes can be designed as a breadth first search tree, such
that the traversal direction is decided by the metric weights that are defined for tree nodes at
a single level. Metric groups, metric formulae, and relations can be updated for each A-profile
CPU implementation. The elements of the Arm Telemetry framework let Arm processor IP teams
easily define their microarchitectural events and metric formulae to derive the Topdown analysis
relationships. However, the interfaces remain standardized for tooling and collateral generation.

Arm Telemetry framework can be easily adopted by any Arm A-profile CPU implementation,
thereby achieving a standard telemetry solution for the Arm ecosystem. For more information
about how the solution enables the profiling tools in both Linux and Windows environments, see
Arm Telemetry Solution for software profiling: tools.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry Solution for software profiling: tools

5. Arm Telemetry Solution for software
profiling: tools

Performance monitoring features in a system have two main usage models, profiling and software
optimization and run-time monitoring. Both models are enabled by established profiling tools.

Each usage model uses counting and sampling to read the hardware telemetry data supported by
the platform hardware and the software telemetry data supported by system software.

Profiling and software optimization
Profiling tools that are used in software optimization get the telemetry data from system software
and hardware performance monitors, which identify bottlenecks or areas of improvement. The
main goal of optimization is primarily to reduce the elapsed time required to execute the program.
While reducing power consumption can be a goal, it is usually a side effect of reducing the elapsed
time.

Run-time monitoring
Monitoring tools that are used in system operations get the telemetry data from system software
and hardware performance monitors across the system. The goal of performance monitoring is to
provide a system operator with answers that can improve the efficiency of the system. Run-time
monitoring helps to:

• Understand the current performance of the system.

• Evaluate whether the system executes efficiently or requires any further tuning or added
capacity to meet the load demands to meet the Service Level Agreement (SLA). An SLA in a
system meets sustained throughput or latency requirements of the deployed application.

In a data center environment, observability and continuous run-time monitoring can cause the
operator to do effective capacity planning and, for example, adjust capacity or rearrange load on
the available machines. The job can be automated by software to monitor the system and take the
required actions to guarantee the application SLA. Telemetry data from the SoC hardware is heavily
used in this run-time monitoring, along with system software and application software provided
metrics.

5.1 Arm telemetry specification and profiling tools
The Arm cores that support Arm CPU Telemetry Solution provide a telemetry specification that
contains the methodology, metric groups, metrics, and hardware performance monitoring events
which are supported by the core.

This specification is also provided in a standardized machine-readable format, that is, an Arm
Telemetry JSON file that follows the schemas for the elements of the Arm Telemetry framework.
See Arm Telemetry framework for CPUs. These files can be consumed by any profiling or
monitoring tool as shown in in the following figure.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry Solution for software profiling: tools

Figure 5-1: Arm Telemetry Solution and profiling tool enablement

Common profiling tools are Google Perfetto which is heavily used in the Android ecosystem and
Microsoft Windows Performance Analyzer (WPA) which is heavily used in the Windows ecosystem.
These tools either rely on the performance data collection capabilities provided by the underlying
operating system or might support the tools’ drivers for data collection. They can directly use the
Arm Telemetry JSON files for telemetry data collection from the hardware.

Operating systems support performance data collection using utilities, for example, the Linux
perf tool on Linux OS, WindowsPerf tool on Windows OS, and simpleperf tool on Android. These
utilities also have support to collect performance metrics from the hardware monitoring units. They
can use the Arm Telemetry specification to get the hardware information for event collection which
can be post processed to derive metrics.

Arm recommends collecting all metrics that are in stage 1 and stage 2 Topdown analysis for
workload characterization. For further analysis, an Arm core telemetry specification provides
a recommended set of microarchitecture exploration metric groups against some hotspots
detected in stage 1. All stage 2 metrics can be used to derive further insights into the overall
microarchitecture behavior during the execution of the application under investigation. These
metrics can be used independently of stage 1.

5.1.1 Arm Topdown tool

Arm CPU Telemetry Solution is implemented by the Arm Topdown tool. This tool supports
collecting the recommended set of the telemetry data and processing it to derive the relevant set
of metrics for application Topdown analysis.

It is a command line tool that supports using Linux perf and WindowsPerf to profile applications
on Linux and Windows platforms respectively. The tool parses the machine-readable telemetry
specifications provided as JSON files. It collects the data that is required to help the user with the
Arm Topdown methodology stages, as shown in the following figure.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry Solution for software profiling: tools

Figure 5-2: Arm Topdown tool

The tool is available to download from the Arm CPU Telemetry Solution: Arm® Telemetry Solution
GitLab repository

For introductory guidance about how to use the tool, see Arm Topdown tool example.

5.1.2 Performance analysis using Linux perf tool

The Linux perf tool is a widely used open source preformance analysis tool for collecting hardware
and software performance events from different sources in the hardware and system software.

The kernel employs a perf_event subsystem to collect measurable events including the hardware
PMU events from the CPU. As shown in the following figure, each CPU has its dedicated PMU
hardware and the kernel perf driver collects events from each CPU’s PMU separately.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 36

https://gitlab.arm.com/telemetry-solution/telemetry-solution
https://gitlab.arm.com/telemetry-solution/telemetry-solution

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry Solution for software profiling: tools

Figure 5-3: Performance monitoring architecture for CPUs in a Linux based platform

The Linux perf_event subsystem provides an interface between the Linux kernel and user space
performance monitoring tools to collect the raw hardware events as needed. As an open source
tool, Linux perf can be used for performance monitoring, which supports the following types of
performance measurement techniques:

Counting
Counting method collects overall statistics of an event during a workload’s execution, where
the counter assigned with each event produces an aggregate of the overall event count.
These event statistics help to characterize the overall workload execution behavior, without
providing any details on where a particular event occurred in the program. This method is
the best approach for an initial workload characterization exercise to identify performance
limitations of the workload.

Event sampling
Event sampling is a profiling method where each event is sampled, by configuring the PMU
counter to overflow after a preset number of events. This overflow interrupt records the
event count and also the program counter address and register information. Such sampled
data is used to construct profiling information about the application, including stack trace and
function level annotations. With this data, it is easy to locate the libraries and code portions
that contribute to the large portion of the sampled event.

These measurement techniques or modes are available through the following perf commands:

perf-stat

Provide performance counter statistics for overall execution of the program. For more
information, see Linux perf-stat.

perf-record

Record the execution performance with the percentage of samples for each event for all
libraries and functions. For more information, see Linux perf-record.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 36

https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://man7.org/linux/man-pages/man1/perf-record.1.html

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry Solution for software profiling: tools

perf-report

Generate a report of the recorded sample using record. For more information, see Linux perf-
report.

perf-annotate

Annotate a report with the samples’ percentage on the disassembly of the code. For more
information, see Linux perf-annotate.

When high accuracy is needed, for example, when profiling hot loops or significant portions of
code, the Counting mode should be preferred for its accuracy. It might require multiple profiling
iterations when many different events must be logged.

When the number of events is greater than the total number of available counters, the counter
is time multiplexed between events, and the final count is scaled for the total time period. This
multiplexed counting can cause accuracy issues, but it is sufficient unless a precise measurement is
needed.

The event sampling mode is extremely useful for hotspot analysis which relies on a statistical
approach to sample different events over a large portion of time or code. This method has
limitations that cause accuracy issues, such as:

• Sampling delay, that is, between the counter overflow and interrupt handler, which causes skid
in the data obtained, that is, data stored during the sampling process and may not be the exact
point where the event occurred.

• Speculative execution style of the CPU, whereby some instructions that executed and triggered
events might not be valid if they were on the wrong code path.

While the event sampling mode has accuracy limitations, it is the best way to advance identification
of hotspots in code execution. Linux perf allows tuning the sampling frequency, which helps to
study variations in the event counts if the data shows large inconsistencies across runs.

For introductory guidance about how to use Linux perf to collect hardware counters on Arm cores
in both counting and sampling modes, see Linux perf data collection.

5.1.3 Performance analysis using WindowsPerf Tool

WindowsPerf is a Linux perf inspired, lightweight Windows on Arm (WoA) performance profiling
tool. Profiling using WindowsPerf is based on the A64 Performance Monitor Unit and its hardware
counters.

WindowsPerf is a Linaro open-source project with a permissive BSD license which aims to build
Arm PMU based WOA performance monitoring tool. The tool has similar features as Linux perf for
counting and sampling PMU events from hardware IP blocks on the WOA platform. It also supports
multiplexing and grouping similar to the Linux perf tool, which become part of Windows Kernel API
in the future.

WindowsPerf is in the preliminary stages of development, though it already supports the counting
model for obtaining aggregate counts of PMU events. It also uses a sampling model for determining

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 36

https://man7.org/linux/man-pages/man1/perf-report.1.html
https://man7.org/linux/man-pages/man1/perf-report.1.html
https://man7.org/linux/man-pages/man1/perf-annotate.1.html

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry Solution for software profiling: tools

the frequencies of event occurrences produced by program locations at the function, basic block,
and/or instruction levels. These are very similar to the approach described in Performance analysis
using Linux perf tool.

WindowsPerf documentation and the tool can be accessed from: WindowsPerf GitLab repository

The WindowsPerf architecture comprises:

wperf-driver

A signed Windows kernel mode driver.

WindowsPerf Kernel driver is signed only for Windows 11.

wperf

A command line interface like Linux perf as shown in the following figure.

Figure 5-4: Performance monitoring architecture for CPUs in a Windows based platform

WindowsPerf supports the counting and sampling modes through the following commands:

wperf stat

Provide performance counter statistics for overall execution of a WoA application. It supports
multiplexing capabilities for events and can profile between 1 and n cores as specified. In
counting mode, timeline mode is also supported, which refers to consecutive counting of
events and a CSV file format output.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Telemetry Solution for software profiling: tools

wperf sample

Provide PMU event sampling for core events, which records the execution performance using
the percentage of samples for each event per libraries and functions in a WoA application. In
sampling mode, users can sample WOA applications pinned to a specified core. WindowsPerf
offers sampling output with hot function names annotated with:

• source code file name + line number

• optional disassembly. For an example of the output, see https://gitlab.com/Linaro/
WindowsPerf/windowsperf/-/blob/main/wperf/README.md?ref_type=heads#counting-
to-asses-which-events-are-popular

WindowsPerf offers human readable console output, standardized JSON output to file, console, or
CSV output for timeline mode.

For more information about how to use WindowsPerf to collect hardware counters in both
counting and sampling modes, see WindowsPerf tool data collection.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 36

https://gitlab.com/Linaro/WindowsPerf/windowsperf/-/blob/main/wperf/README.md?ref_type=heads#counting-to-asses-which-events-are-popular
https://gitlab.com/Linaro/WindowsPerf/windowsperf/-/blob/main/wperf/README.md?ref_type=heads#counting-to-asses-which-events-are-popular
https://gitlab.com/Linaro/WindowsPerf/windowsperf/-/blob/main/wperf/README.md?ref_type=heads#counting-to-asses-which-events-are-popular

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Topdown tool example

Appendix A Arm Topdown tool example
Use the following steps to conduct application hotspot analysis using the Arm Topdown tool.

Arm Topdown tool, topdown-tool provides rich options to fine tune the profiling
process. Run topdown-tool \--help to list all options.

Step 1, Collect the stage 1 Topdown analysis metrics
In this step, we specify the Topdown methodology stage to profile, for example, topdown for stage
1, and uarch for stage 2.

topdown-tool -s topdown -- ./a.out

Results for Topdown level 1:

=========================
 [Topdown Level 1]
 Frontend Bound... 4.25% slots
 Backend Bound.... 91.34% slots
 Retiring......... 4.08% slots
 Bad Speculation.. 0.34% slots

Based on these results, this workload shows a very high backend bound metric.

Step 2, Collect the stage 2 microarchitecture exploration metrics
In this step, we can specify the metric groups of interest for further analysis. In the following
example, the cache effectiveness is checked for a high backend bound workload.

topdown-tool -m L1D_Cache_Effectiveness, L2_Cache_Effectiveness -- ./a.out

Results for Stage 2:

Stage 2 (uarch metrics)
=======================
[L1 Data Cache Effectiveness]
 L1D Cache MPKI.................. 331.529 misses per 1,000 instructions
 L1D Cache Miss Ratio............ 0.996 per cache access
[L2 Unified Cache Effectiveness]
 L2 Cache MPKI................... 0.028 misses per 1,000 instructions
 L2 Cache Miss Ratio............. 0.000 per cache access

Based on these results, there are very high L1D cache misses.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Arm Topdown tool example

There are many metric groups to explore. For example, we can check the proportions of different
kinds of instructions, for example, the Operation Mix metric.

./topdown-tool -m Operation_Mix -- ./a.out

Results for Speculative Operation Mix:

Stage 2 (uarch metrics)
=======================
[Speculative Operation Mix]
 Load Operations Percentage.......... 33.17% operations
 Store Operations Percentage......... 0.06% operations
 Integer Operations Percentage....... 33.48% operations
 Advanced SIMD Operations Percentage. 0.00% operations
 Floating Point Operations Percentage 0.00% operations
 Branch Operations Percentage........ 31.09% operations
 Crypto Operations Percentage........ 0.00% operations

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Linux perf data collection

Appendix B Linux perf data collection
To enable PMU event collection, the Linux Kernel must be built with CONFIG_HW_ PERF_EVENTS
enabled in the kernel config.

Most of the production builds have this config option enabled. However, ensure that this option is
enabled when building a custom kernel.

For more information about perf_event and unprivileged users, see Linux perf_event and tool
security, Unprivileged users.

There are also two system settings which need to be configured as root user to obtain kernel
symbols and add extra privileges as follows:

echo -1 > /proc/sys/kernel/perf_event_paranoid
echo 0 > /proc/sys/kernel/kptr_restrict

perf_event_paranoid

This setting affects privilege checks in the kernel. If set to -1, it permits enabling of events
that might reveal sensitive information or can impact the stability of the system. For more
information about this setting, see Linux perf_event_paranoid.

kptr_restrict

This setting affects whether kernel addresses are exposed, that is, through /proc/kallsyms.
Some developers use this technique to get kernel symbol resolution when they do not have
the vmlinux to hand, or where KASLR is in use. For more information about this setting, see
Linux kptr-restrict.

In both cases, there are potential security implications, so it is advised to check the official kernel
documentation and consult the system administrator before enabling them.

A quick test to verify that PMU events are being counted properly is to use the perf stat
functionality of the Linux perf tool to count instructions and cycles. perf stat counts the total
count of a specified event, provided as the hex register code. 0x8 is the hex code for instructions
that are retired and 0x11 is the hex code for CPU cycles specified by the Arm architecture
common across all Arm CPU implementations.

These events are provided to the perf stat -e option with a prefix 'r' to it. For a code example,
see Collect hardware PMU events using counting mode on Linux perf.

The perf stat command counts the total count of instructions and cpu cycles on all CPUs for 10
seconds. Linux perf allows to count for a particular CPU, for each process, for each thread and so
on.

perf can silently fail if an event is not supported or enabled on an Arm core. For more information
about supported events, see the specific Arm core telemetry specification or its Technical
Reference Manual.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 36

https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html#unprivileged-users
https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html#unprivileged-users
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#perf-event-paranoid
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html#kptr-restrict

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

Linux perf data collection

Collect hardware PMU events using counting mode on Linux perf
To count all events for characterization, a typical solution is to capture events in batches of the
total counter registers available in the platform.

One method to determine the number of counters available is to successively increase the number
of counters that are requested in a single group until the last counter reads <"not supported">. If
this method is performed through the Linux perf tool, it opens N+1 counters, because perf always
opens the group leader event in disabled mode, and the kernel does not count this event towards
the number of available events.

This example uses the -e option to pass the instructions and cycles events to perf stat by using
their hex codes, that is, 'r8' and 'r11' respectively:

ubuntu@linux-1:-$ perf stat -e r8,r11 -- sleep 10
Performance counter stats for 'sleep 10':
 1242692 r8
 1000747 r11
.001721954 seconds time elapsed
0.000772000 seconds user
0.000000000 seconds sys

Collect hardware PMU events using sampling mode on Linux perf
For sampling events, use the perf record command from Linux perf tool.

For more information about how to conduct sampling and analyze the sampled data with these
command lines, see the following Linux perf examples.

ubuntu@linux-1:-$ perf record -e instructions, cycles -- sleep
ubuntu@linux-1:-$ perf report
ubuntu@linux-1:-$ perf annotate

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

WindowsPerf tool data collection

Appendix C WindowsPerf tool data
collection

Use the following examples to collect PMU events using either counting or sample modes with the
WindowsPerf tool.

Collect hardware PMU events using counting mode on WindowsPerf
The following example collects the L1D cache metric on a running ustress micro-benchmark
workload:

• Pin ustress micro-benchmark workload l1d_cache_workload.exe to core #1.

• Run WindowsPerf in counting mode with timeline mode -t to measure the
l1d_cache_miss_ratio metric ustress l1d_cache_workload.exe workload built for a native WoA
environment.

start /affinity 2 l1d_cache_workload.exe 99999
wperf stat -m l1d_cache_miss_ratio -t -i 0 \--timeout 0.5 -c 1
 |
counting ... done
...
sleeping ... done
counting ... /Ctrl-C received, quit counting..done
sleeping ... done |

This command creates a CSV text file that contains the l1d_cache_miss_ratio metric
measurements by collecting the relevant hardware PMU events. To derive this metric, the tool
collected the L1D_CACHE and L1D_CACHE_REFILL events and processed them. The data is collected in
a CSV which can be used to plot chart for the metric as shown in the following figure.

Figure C-1: “l1d_cache_miss_ratio” metric as a chart

Collect hardware PMU events using sampling mode on WindowsPerf
WindowsPerf supports the record command to sample a process on a specific core.

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

WindowsPerf tool data collection

The record command spawns the process and pins it to the core specified by the -c option. –
pe <file> can be used as a command line option to spawn a specific process or provide the
application to execute for profiling using the “--” double-dash option.

For example, the following command uses wperf record to profile an executable python_d.exe.

wperf record -e ld_spec:100000 -c 1 --timeout 30 -- python_d.exe -c 10**10**100

This example:

• -c 1 option samples on core #1.

• -e ld_spec samples the PMU event, LD_SPEC.

• ldspec:100000 sets a sampling frequency, 100000.

• --timeout 30 sets the time internal to sample for 30 seconds.

• python_d.exe -c 10**10**100) is a Cpython process to compute expression
"10\^10\^100" (googolplex). In this example we sample CPython, built with the debug
information.

To configure the sampling mode a user must provide additional debug information files, with the
extension “.pdb”, called the “Program DataBase”, or simply “the PDB”.

You can specify the process PDB file name by using ``--pdb_file python_d.pdb
and --. In the previous example, wperf can deduce the PDB file name, with its path
from PE file name, that is python_d.exe -> python_d.pdb.

WindowsPerf can correctly resolve symbols in executables, for example, python_d.exe and DLLs if
the corresponding PDB files are provided.

An example of the expected output is as follows:

base address of 'python_d.exe': 0x7ff6e0a41270, runtime delta: 0x7ff5a0a40000
samplingee.e.eCtrl-C received, quit counting... done!
============== sample source: ld_spec, top 50 hot functions =================
 35.42% 136 _PyEval_EvalFrameDefault:python312_d.dll
 9.38% 36 unicodekeys_lookup_unicode:python312_d.dll
 5.47% 21 _PyFrame_Stackbase:python312_d.dll
 3.91% 15 GETITEM:python312_d.dll
 3.65% 14 dictkeys_get_index:python312_d.dll
 3.39% 13 _Py_DECREF_SPECIALIZED:python312_d.dll
 3.12% 12 _PyFrame_ClearExceptCode:python312_d.dll
 2.86% 11 _PyFrame_Initialize:python312_d.dll
 2.60% 10 DK_UNICODE_ENTRIES:python312_d.dll
 2.60% 10 _Py_dict_lookup:python312_d.dll
 2.60% 10 unicode_get_hash:python312_d.dll
 2.34% 9 clear_thread_frame:python312_d.dll
 2.08% 8 _PyFrame_StackPush:python312_d.dll
 2.08% 8 PyDict_Contains:python312_d.dll
 1.82% 7 Py_INCREF:python312_d.dll
 1.82% 7 _PyThreadState_PopFrame:python312_d.dll
 1.82% 7 _PyErr_Occurred:python312_d.dll
 1.82% 7 medium_value:python312_d.dll
 1.56% 6 get_small_int:python312_d.dll

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 36

Arm® CPU Telemetry Solution Topdown Methodology
Specification

Document ID: 109542_0100_01_en
Issue: 01

WindowsPerf tool data collection

 1.30% 5 PyTuple_GET_SIZE:python312_d.dll
 1.30% 5 _PyLong_FromSTwoDigits:python312_d.dll
 1.04% 4 Py_XDECREF:python312_d.dll
 1.04% 4 _Py_atomic_load_64bit_impl:python312_d.dll
 0.78% 3 Py_IS_TYPE:python312_d.dll
 0.78% 3 _Py_EnterRecursivePy:python312_d.dll
 0.52% 2 _PyFrame_GetStackPointer:python312_d.dll
 0.52% 2 read_u16:python312_d.dll
 0.52% 2 _PyLong_Add:python312_d.dll
 0.52% 2 _PyFrame_PushUnchecked:python312_d.dll
 0.52% 2 Py_SIZE:python312_d.dll
 0.26% 1 _Py_IncRefTotal:python312_d.dll
 0.26% 1 _PyFrame_SetStackPointer:python312_d.dll
 0.26% 1 unknown

Copyright © 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 36

	Arm® CPU Telemetry Solution Topdown Methodology Specification
	Contents
	1. Introduction
	1.1 Conventions
	1.2 Useful resources
	1.3 Other information

	2. About Arm CPU Telemetry Solution
	3. Arm Topdown methodology
	3.1 Stage 1: Topdown analysis
	3.2 Stage 2: Microarchitecture exploration

	4. Arm Telemetry framework for CPUs
	4.1 Data model standardization

	5. Arm Telemetry Solution for software profiling: tools
	5.1 Arm telemetry specification and profiling tools
	5.1.1 Arm Topdown tool
	5.1.2 Performance analysis using Linux perf tool
	5.1.3 Performance analysis using WindowsPerf Tool

	A. Arm Topdown tool example
	B. Linux perf data collection
	C. WindowsPerf tool data collection

