
Optimizing Image Processing with Neon Intrinsics
Version 3.0

Non-Confidential
Copyright © 2019–2021, 2023–2024 Arm Limited (or
its affiliates).
All rights reserved.

Issue 01
101964_0300_01_en

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Optimizing Image Processing with Neon Intrinsics

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-
00

20 December
2019

Non-
Confidential

First release

0200-
00

8 July 2020 Non-
Confidential

Updates to text.

0201-
01

6 July 2021 Non-
Confidential

Title update

0300-
00

17 March 2023 Non-
Confidential

Extended scope of guide to describe libTIFF
optimizations.

0300-
01

8 January 2024 Non-
Confidential

Minor update

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 33

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 33

https://www.arm.com/company/policies/trademarks

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 33

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Contents

Contents

1. Overview of Neon technology..6

2. Chromium optimization with Neon intrinsics..7

3. Chromium optimization: Adler-32..11

4. Chromium optimization: color palette expansion.. 15

5. Chromium optimization: pre-multiplied alpha channel data..17

6. Chromium optimization: summary of results.. 21

7. libTIFF optimization with Neon intrinsics...22

8. libTIFF optimization: grayscale to RGBA conversion...25

9. libTIFF optimization: horizontal image flip...27

10. libTIFF optimization: CMYK to RGBA conversion... 30

11. libTIFF optimization: auto-vectorization and compiler options.. 33

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 33

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Overview of Neon technology

1. Overview of Neon technology
This guide shows how Neon technology has been used to improve performance in the real-world:
specifically, in the open-source Chromium and libTIFF projects.

In the guide, we demonstrate to programmers how they can use Neon intrinsics in their code to
enable Single Instruction, Multiple Data (SIMD) processing. Using Neon in this way can bring huge
performance benefits.

If you are not familiar with Neon, you can read an overview of Neon on the Arm Developer
website.

What are Neon intrinsics?
Neon technology provides a dedicated extension to the Arm Instruction Set Architecture, providing
additional instructions that can perform mathematical operations in parallel on multiple data
streams.

Neon technology can help speed up a wide variety of applications, including:

• Audio and video processing

• 2D and 3D gaming graphics

• Voice and facial recognition

• Computer vision and deep learning

Neon intrinsics are function calls that programmers can use in their C or C++ code. The compiler
then replaces these function calls with an appropriate Neon instruction or sequence of Neon
instructions.

Intrinsics provide almost as much control as writing assembly language, but leave low-level details
such as register allocation and instruction scheduling to the compiler. This frees developers
to concentrate on the higher-level behavior of their algorithms, rather than the lower-level
implementation details.

Another advantage of using intrinsics is that the same source code can be compiled for different
targets. This means that, for example, a single source code implementation can be built for both
32-bit and 64-bit targets.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 33

https://www.chromium.org/
https://gitlab.com/libtiff/libtiff
https://developer.arm.com/Architectures/Neon

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization with Neon intrinsics

2. Chromium optimization with Neon
intrinsics

This section of the guide examines several optimizations made to the Chromium open-source
project using Neon intrinsics. These optimizations improve the performance of PNG image
processing.

Why Chromium?
Why did we choose Chromium to investigate the performance improvements possible with Neon?

Chromium provides the basis for Google Chrome, which is the most popular web browser in the
world, in terms of user numbers. Any performance improvements that we made to the Chromium
codebase can benefit many millions of users worldwide.

Chromium is an open-source project, so everyone can inspect the full source code. When learning
about a new subject, like programming with Neon intrinsics, it often helps to have examples to
learn from. We hope that the examples that are provided in this guide help, because you can see
them in the context of a complete, real-world codebase.

Why PNG?
Now that we have decided to work in Chromium, where should we look in the Chromium code
to make optimizations? With over 25 million lines of code, we must pick a specific area to target.
When looking at the type of workloads that web browsers deal with, the bulk of content is still text
and graphics. Images often represent most of the downloaded bytes on a web page, and contribute
to a significant proportion of the processing time. Recent data suggests that % of mobile users
abandon sites that take over 3 seconds to load. This means that optimizing image load times, and
therefore page load times, should bring tangible benefits.

The Portable Network Graphics (PNG) format was developed as an improved, non-patented
replacement for the Graphics Interchange Format (GIF). PNG is the standard for transparent images
in the web. It is also a popular format for web graphics in general. Because of this, Arm decided to
investigate opportunities for Neon optimization in PNG image processing.

Introducing Bobby the bird
To help decide where to look for optimization opportunities, we went in search of performance
data.

The following image of a bird has complex textures, a reasonably large size, and a transparent
background. This means that it is a good test case for investigating optimizations to the PNG
decoding process:

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 33

https://www.thinkwithgoogle.com/intl/en-154/insights-inspiration/research-data/need-mobile-speed-how-mobile-latency-impacts-publisher-revenue/
https://www.thinkwithgoogle.com/intl/en-154/insights-inspiration/research-data/need-mobile-speed-how-mobile-latency-impacts-publisher-revenue/

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization with Neon intrinsics

Figure 2-1: Bobby the bird

Image source: Penubag [Public domain], from Wikimedia Commons

The first thing to know is that all PNG images are not created equally. There are several different
ways to encode PNG images, for example:

• Compression. Different compression algorithms can result in different file sizes. For example,
Zopfli produces PNG image files that are typically about 5% smaller than zlib, at the cost of
taking longer to perform the compression.

• Pre-compression filters. The PNG format allows filtering of the image data to improve
compression results. PNG filters are lossless, so they do not affect the content of the image
itself. Filters only change the data representation of the image to make it more compressible.
Using pre-compression filters can give smaller file sizes at the cost of increased processing time.

• Color depth. Reducing the number of colors in an image reduces file size, but also potentially
degrades image quality.

• Color indexing. The PNG format allows individual pixel colors to be specified as either a
TrueColor RGB triple, or an index into a palette of colors. Indexing colors reduces file sizes,
but might degrade image quality if the original image contains more colors than the maximum

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 33

https://commons.wikimedia.org/wiki/File:ZebraHighRes.png

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization with Neon intrinsics

that the palette allows. Indexed colors also need decoding back to the RGB triple, which may
increase processing time.

We investigated performance with three different versions of the Bobby the budgie image to
investigate possible areas for optimization.

Table 2-1: Performance using different images

Image File size Number of colors Palette or TrueColor? Filters? Compression Encoder

Original_Bobby.PNG 2.7M 211787 TrueColor Yes zlib libpng

Palette_Bobby.PNG 0.9M 256 Palette No zlib libpng

Zopfli_Bobby.PNG 2.6M 211787 TrueColor Yes Zopfli ZopfliPNG

To obtain performance data for each of these three images, we used the Linux perf tool to profile
ContentShell. The performance data for each image is as follows:

Original_Bobby.PNG
== Image has pre-compression filters (2.7MB) ==
Lib Command SharedObj method
 CPU (%)
zlib TileWorker liblink
 inflate_fast.................... 1.96
zlib TileWorker libblnk
 adler32......................... 0.88
blink TileWorker liblink ImageFrame::setRGBAPremultiply..
 0.45
blink TileWorker liblink
 png_read_filter_row_up...........0.03*

Palette_Bobby.PNG
== Image has no pre-compression filters (0.9MB) ==
Lib Command SharedObj method
 CPU (%)
libpng TileWorker liblink cr_png_do_expand_palette........
 0.88
zlib TileWorker liblink
 inflate_fast.................... 0.62
blink TileWorker liblink ImageFrame::setRGBAPremultiply..
 0.49
zlib TileWorker libblnk
 adler32......................... 0.31

Zopfli_Bobby.PNG
== Image was optimized using zopfli (2.6MB) ==
Lib Command SharedObj method
 CPU (%)
zlib TileWorker liblink
 inflate_fast.................... 3.06
zlib TileWorker libblnk
 adler32......................... 1.36
blink TileWorker liblink ImageFrame::setRGBAPremultiply..
 0.70
blink TileWorker liblink png_read_filter_row_up..........
 0.48*

This data helped identify the zlib library as a good target for our optimization efforts. This is
because it contains several methods that contribute significantly to performance.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 33

https://chromium.googlesource.com/chromium/src.git/+/master/docs/profiling_content_shell_on_android.md
https://chromium.googlesource.com/chromium/src.git/+/master/docs/profiling_content_shell_on_android.md

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization with Neon intrinsics

Zlib was also considered a good candidate to target for the following reasons:

• The zlib library is used in many different software applications and libraries, for example libpng,
Skia, FreeType, Cronet, and Chrome. This means that any performance improvements that we
could achieve in zlib would yield performance improvements for many users.

• Released in 1995, the zlib library has a relatively old codebase. Older codebases might have
areas that have not been modified in many years. These areas are likely to provide more
opportunities for improvement.

• The zlib library did not contain any existing optimizations for Arm. This means that there
probably a wide range of improvements to make.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 33

http://www.libpng.org/pub/png/libpng.html
https://skia.org/
https://www.freetype.org/
https://developer.android.com/guide/topics/connectivity/cronet
https://www.google.co.uk/chrome/

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization: Adler-32

3. Chromium optimization: Adler-32
Adler-32 is a checksum algorithm used by the zlib compression library to detect data corruption
errors. Adler-32 checksums are faster to calculate than CRC32 checksums, but trade reliability for
speed as Adler-32 is more prone to collisions.

The PNG format uses Adler-32 for uncompressed data and CRC32 is used for the compressed
segments.

An Adler-32 checksum is calculated as follows:

• A is a 16-bit checksum calculated as the sum of all bits in the input stream, plus 1, modulo
65521.

• B is a 16-bit checksum calculated as the sum of all individual A values, modulo 65521. B has
the initial value 0.

• The final Adler-32 checksum is a 32-bit checksum formed by concatenating the two 16-bit
values of A and B, with B occupying the most significant bytes.

This means that the Adler-32 checksum function can be expressed as follows:

A = 1 + D1 + D2 + ... + Dn (mod 65521)

B = (1 + D1) + (1 + D1 + D2) + ... + (1 + D1 + D2 + ... + Dn) (mod 65521)
 = nxD1 + (n-1) x D2 + (n-2) x D3 + ... + Dn + n (mod 65521)

Adler-32(D) = (B x 65536) + A

For example, the following table shows the calculation of the Adler-32 checksum of the ASCII
string Neon:

Table 3-1: Adler-32 checksum calculation

Character Decimal ASCII code A B

N 78 (1 + 78) % 65521 = 79 (0 + 79) % 65521 = 79

e 101 (79 + 101) % 65521 = 180 (79 + 180) % 65521 = 259

o 111 (180 + 111) % 65521 = 291 (259 + 291) % 65521 = 550

n 110 (291 + 110) % 65521 = 401 (550 + 401) % 65521 = 951

The decimal Adler-32 checksum is calculated as follows:

Adler-32 = (B x 65536) + A
 = (951 x 65536) + 401
 = 62,324,736 + 401
 = 62,325,137

The same calculation in hexadecimal is as follows:

Adler-32 = (B x 00010000) + A
 = (03B7 x 00010000) + 0191
 = 03B70000 + 0191

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 33

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization: Adler-32

 = 03B70191

Unoptimized implementation
The following code shows a simplistic implementation of the Adler-32 algorithm, from Wikipedia:

const uint32_t MOD_ADLER = 65521;

uint32_t adler32(unsigned char *data, size_t len)
/*
 where data is the location of the data in physical memory and
 len is the length of the data in bytes
*/
{
 uint32_t a = 1, b = 0;
 size_t index;

 // Process each byte of the data in order
 for (index = 0; index < len; ++index)
 {
 a = (a + data[index]) % MOD_ADLER;
 b = (b + a) % MOD_ADLER;
 }

 return (b << 16) | a;
}

This code simply loops through the data one value at a time, summing and accumulating results.
One of the problems with this approach is that performing the modulo operation is expensive.
Here, this expensive modulo operation is performed at every single iteration.

Neon-optimized implementation
Optimizing the Adler-32 algorithm with Neon uses vector multiplication and accumulation to
process up to 32 data values at the same time:

static void NEON_accum32(uint32_t *s, const unsigned char *buf,
 z_size_t len)
{
 /* Please refer to the 'Algorithm' section of:
 * https://en.wikipedia.org/wiki/Adler-32
 * Here, 'taps' represents the 'n' scalar multiplier of 'B', which
 * will be multiplied and accumulated.
 */
 static const uint8_t taps[32] = {
 32, 31, 30, 29, 28, 27, 26, 25,
 24, 23, 22, 21, 20, 19, 18, 17,
 16, 15, 14, 13, 12, 11, 10, 9,
 8, 7, 6, 5, 4, 3, 2, 1 };

 /* This may result in some register spilling (and 4 unnecessary VMOVs). */
 const uint8x16_t t0 = vld1q_u8(taps);
 const uint8x16_t t1 = vld1q_u8(taps + 16);
 const uint8x8_t n_first_low = vget_low_u8(t0);
 const uint8x8_t n_first_high = vget_high_u8(t0);
 const uint8x8_t n_second_low = vget_low_u8(t1);
 const uint8x8_t n_second_high = vget_high_u8(t1);

 uint32x2_t adacc2, s2acc2, as;
 uint16x8_t adler, sum2;
 uint8x16_t d0, d1;

 uint32x4_t adacc = vdupq_n_u32(0);
 uint32x4_t s2acc = vdupq_n_u32(0);

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 33

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization: Adler-32

 adacc = vsetq_lane_u32(s[0], adacc, 0);
 s2acc = vsetq_lane_u32(s[1], s2acc, 0);

 /* Think of it as a vectorized form of the code implemented to
 * handle the tail (or a DO16 on steroids). But in this case
 * we handle 32 elements and better exploit the pipeline.
 */
 while (len >= 2) {
 d0 = vld1q_u8(buf);
 d1 = vld1q_u8(buf + 16);
 s2acc = vaddq_u32(s2acc, vshlq_n_u32(adacc, 5));
 adler = vpaddlq_u8(d0);
 adler = vpadalq_u8(adler, d1);
 sum2 = vmull_u8(n_first_low, vget_low_u8(d0));
 sum2 = vmlal_u8(sum2, n_first_high, vget_high_u8(d0));
 sum2 = vmlal_u8(sum2, n_second_low, vget_low_u8(d1));
 sum2 = vmlal_u8(sum2, n_second_high, vget_high_u8(d1));
 adacc = vpadalq_u16(adacc, adler);
 s2acc = vpadalq_u16(s2acc, sum2);
 len -= 2;
 buf += 32;
 }

 /* This is the same as before, but we only handle 16 elements as
 * we are almost done.
 */
 while (len > 0) {
 d0 = vld1q_u8(buf);
 s2acc = vaddq_u32(s2acc, vshlq_n_u32(adacc, 4));
 adler = vpaddlq_u8(d0);
 sum2 = vmull_u8(n_second_low, vget_low_u8(d0));
 sum2 = vmlal_u8(sum2, n_second_high, vget_high_u8(d0));
 adacc = vpadalq_u16(adacc, adler);
 s2acc = vpadalq_u16(s2acc, sum2);
 buf += 16;
 len--;
 }

 /* Combine the accumulated components (adler and sum2). */
 adacc2 = vpadd_u32(vget_low_u32(adacc), vget_high_u32(adacc));
 s2acc2 = vpadd_u32(vget_low_u32(s2acc), vget_high_u32(s2acc));
 as = vpadd_u32(adacc2, s2acc2);

 /* Store the results. */
 s[0] = vget_lane_u32(as, 0);
 s[1] = vget_lane_u32(as, 1);
}

The taps optimization that is referred to in the code comments works by computing the checksum
of a vector of 32 elements where the n variable is known and fixed. This computed checksum is
later recombined with another segment of 32 elements, rolling through the input data array. For
more information, you can watch the BlinkOn 9: Optimizing image decoding on Arm presentation.

Elsewhere in the code, the expensive modulo operation is optimized so that it is only run when
absolutely needed. The point at which the modulo is needed is just before the accumulated sum
could possibly overflow the modulo value. This is calculated to be once every 5552 iterations.

The following table shows more information about the intrinsics in this example:

Table 3-2: Intrinsics used in the Adler-32 example

Intrinsic Description

vaddq_u32 Vector add

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 33

https://www.youtube.com/watch?v=xzL_xDcqhnw
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vaddq_u32&_ga=2.151263481.1575318662.1576490154-465292012.1573033583

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization: Adler-32

Intrinsic Description
vdupq_n_u32 Load all lanes of vector to the same literal value

vget_high_u32

vget_high_u8

vget_low_u32

vget_low_u8

Split vectors into two components

vget_lane_u32 Extract a single lane from a vector

vld1q_u8 Load a single vector or lane

vmlal_u8 Vector multiply and accumulate

vmull_u8 Vector multiply

vpadalq_u16

vpadalq_u8

Pairwise add and accumulate

vpadd_u32

vpaddlq_u8

Pairwise add

vsetq_lane_u32 Load a single lane of a vector from a literal

vshlq_n_u32 Vector shift left by constant

Results
Optimizing Adler-32 to use Neon intrinsics to perform SIMD arithmetic yielded significant
performance improvements when this optimization started shipping in Chrome M63.

Tests in Armv8 showed an improvement of around 3x. For example, elapsed real time reduced from
350ms to 125ms for a 4096x4096 byte test executed 30 times.

This optimization alone yielded a performance boost for PNG decoding ranging from 5% to 18%.

Learn more
The following resources provide additional information about the Adler-32 optimization:

• Chromium Issue 688601: Optimize Adler-32 checksum

• Wikipedia: Adler-32

• BlinkOn 9: Optimizing image decoding on Arm

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 33

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vdupq_n_u32
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vget_high_u32
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vget_high_u8
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vget_low_u32
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vget_low_u8
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vget_lane_u32
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vld1q_u8
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vmlal_u8
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vmull_u8
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vpadalq_u16
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vpadalq_u8
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vpadd_u32
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vpaddlq_u8
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vsetq_lane_u32
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vshlq_n_u32
https://bugs.chromium.org/p/chromium/issues/detail?id=688601
https://en.wikipedia.org/wiki/Adler-32
https://www.youtube.com/watch?v=xzL_xDcqhnw

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization: color palette expansion

4. Chromium optimization: color palette
expansion

In palettized PNG images, color information is not contained directly in the image’s pixels. Instead,
each pixel contains an index value into a palette of colors. This technique reduces the file size of
PNG images, but means extra work must be done to display the PNG.

To render the PNG image, each palette index must be converted to an RGBA value by looking up
that index in the palette. The following diagram shows how the palette maps different index values
to RGB values.

Figure 4-1: Color palette expansion diagram

Image Palette

Index

0

1

2

R G B A

255 0 0 255

0 255 0 255

0 0 255 255

2 1 0

0 2 1

1 0 2

Unoptimized implementation
The original implementation of the palette expansion algorithm can be found in
png_do_expand_palette(). The code iterates over every pixel, looking up each palette index (*sp)
and adding the corresponding RGBA values to the output stream.

for (i = 0; i < row_width; i++)
{
 if ((int)(*sp) >= num_trans)
 *dp-- = 0xff;
 else
 *dp-- = trans_alpha[*sp];
 *dp-- = palette[*sp].blue;
 *dp-- = palette[*sp].green;
 *dp-- = palette[*sp].red;
 sp--;
}

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 33

https://chromium.googlesource.com/chromium/src/+/master/third_party/libpng/pngrtran.c

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization: color palette expansion

Neon-optimized implementation
The optimized code uses Neon instructions to parallelize the data transfer and restructuring. The
original code individually copied across each of the RGBA values from the index. The optimized
code uses Neon intrinsics to construct a four-lane vector containing the R, G, B, and A values. This
vector is then stored into memory. The optimized code using Neon intrinsics is as follows:

for(i = 0; i + 3 < row_width; i += 4) {
 uint32x4_t cur;
 png_bytep sp = *ssp - i, dp = *ddp - (i << 2);
 cur = vld1q_dup_u32 (riffled_palette + *(sp - 3));
 cur = vld1q_lane_u32(riffled_palette + *(sp - 2), cur, 1);
 cur = vld1q_lane_u32(riffled_palette + *(sp - 1), cur, 2);
 cur = vld1q_lane_u32(riffled_palette + *(sp), cur, 3);
 vst1q_u32((void *)dp, cur);
}

The following table shows more information about the intrinsics in this example:

Table 4-1: Intrinsics used in the color palette expansion example

Intrinsic Description

vld1q_dup_u32 Load all lanes of a vector with the same value from memory

vld1q_lane_u32 Load a single lane of a vector with a value from memory

vst1q_u32 Store a vector into memory

Results
By using vectors to speed up the data transfer, performance gains in the range 10% to 30% have
been observed.

This optimization started shipping in Chromium M66 and libpng version 1.6.36.

Learn more
The following resources provide additional information about the png_do_expand_palette()
optimization:

• Chromium Issue 706134: Optimize png_do_expand_palette

• Wikipedia: Indexed color

• Portable Network Graphics (PNG) Specification (Second Edition)

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 33

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vld1q_dup_u32
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vld1q_lane_u32
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vst1q_u32
https://bugs.chromium.org/p/chromium/issues/detail?id=706134
https://en.wikipedia.org/wiki/Indexed_color
https://www.w3.org/TR/2003/REC-PNG-20031110/

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization: pre-multiplied alpha channel data

5. Chromium optimization: pre-multiplied
alpha channel data

The color of each pixel in a PNG image is defined by an RGB triple. An additional value, called the
alpha channel, specifies the opacity of the pixel. Each of the R, G, B, and A values are integers
between 0 and 255. An alpha value of 0 means the pixel is transparent and does not appear in the
final image. A value of 255 means the pixel is totally opaque and obscures any other image data in
the same location.

When rendering a PNG image, the browser needs to calculate pre-multiplied alpha data. That is,
the RGB data for each pixel must be multiplied by the corresponding alpha channel value. This
calculation produces scaled RGB data that accounts for the opacity of the pixel.

The following diagram shows the same RGB pixel scaled by three different alpha values:

Figure 5-1: Pre-multiplied alpha channel data diagram

254 84 128 255

128

0

254 84 128

254 84 128

254 84 128

127 42 64

0 0 0

X

X

X =

=

= Opaque

Semi-transparent

Transparent

Each scaled color value is calculated as you can see in the following code:

Scaled_RGB_value = straight_rgb_value x (alpha_value / 255)

Unoptimized implementation
In Chromium, the code that performs this calculation is the ImageFrame::setRGBAPremultiply()
function. Before Neon optimization, this function had the following implementation:

static inline void setRGBAPremultiply(PixelData* dest,
 unsigned r,
 unsigned g,
 unsigned b,
 unsigned a) {
 enum FractionControl { RoundFractionControl = 257 * 128 };

 if (a < 255) {
 unsigned alpha = a * 257;
 r = (r * alpha + RoundFractionControl) >> 16;

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 33

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization: pre-multiplied alpha channel data

 g = (g * alpha + RoundFractionControl) >> 16;
 b = (b * alpha + RoundFractionControl) >> 16;
 }

 *dest = SkPackARGB32NoCheck(a, r, g, b);
}

This unoptimized function operates on a single RGBA value at a time, multiplying each of the R, G,
and B values by the alpha channel.

Neon-optimized implementation
The serial data processing performed in the unoptimized implementation provides an opportunity
for Neon optimization. Rather than operating on a single data value at a time, we can:

• Load the RGBA data into separate R, G, B and A input vectors. Use a de-interleaved load. In
this case, that means loading every fourth data value into the same register.

• Multiply each data lane with its corresponding alpha value simultaneously.

• Store the scaled data with an interleaved store. This means storing values from each of the four
registers into adjacent memory locations, to produce an output stream of scaled RGBA data.

Figure 5-2: Input data for neon-optimized implementation diagram

254 127254 196 Rn···

84
84

128 0 Bn···

222 Gn
42

···

127 98 Rn x An···

42

64 0 Bn x An···

111 Gn x An···

128

128

128 128 An···
196

222

0

128

·

·

·

64

128

98

111

0

128

·

·

·

Input Stream of
RGBA Values

Result vectors

Input Vectors

X

=

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 33

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization: pre-multiplied alpha channel data

The Neon optimized code is as follows:

static inline void SetRGBAPremultiplyRowNeon(png_bytep src_ptr,
 const int pixel_count,
 ImageFrame::PixelData* dst_pixel,
 unsigned* const alpha_mask) {
 // Input registers.
 uint8x8x4_t rgba;

 // Scale the color channel by alpha - the opacity coefficient.
 auto premultiply = [](uint8x8_t c, uint8x8_t a) {
 // First multiply the color by alpha, expanding to 16-bit (max 255*255).
 uint16x8_t ca = vmull_u8(c, a);
 // Now we need to round back down to 8-bit, returning (x+127)/255.
 // (x+127)/255 == (x + ((x+128)>>8) + 128)>>8. This form is well suited
 // to NEON: vrshrq_n_u16(...,8) gives the inner (x+128)>>8, and
 // vraddhn_u16() both the outer add-shift and our conversion back to 8-bit.
 return vraddhn_u16(ca, vrshrq_n_u16(ca, 8));
 };

.

.

.

 // Main loop

 // Load data
 rgba = vld4_u8(src_ptr);

 // Premultiply with alpha channel
 rgba.val[0] = premultiply(rgba.val[0], rgba.val[3]);
 rgba.val[1] = premultiply(rgba.val[1], rgba.val[3]);
 rgba.val[2] = premultiply(rgba.val[2], rgba.val[3]);

 // Write back (interleaved) results to memory.
 vst4_u8(reinterpret_cast<uint8_t*>(dst_pixel), rgba);

}

The following table shows more information about the intrinsics in this example:

Table 5-1: Intrinsics used in the pre-multiplied alpha channel example

Intrinsic Description

vmull_u8 Vector multiply

vraddhn_u16 Vector rounding addition

vrshrq_n_u16 Vector rounding shift right

vld4_u8 Load multiple 4-element structures to four vector registers

vst4_u8 Store multiple 4-element structures from four vector registers

Results
This optimization gave results in the region of 9% improvement.

Learn more
The following resources provide additional information about the
ImageFrame::setRGBAPremultiply() optimization:

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 33

https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vmull_u8
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vraddhn_u16
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vrshrq_n_u16
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vld4_u8
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics?search=vst4_u8

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization: pre-multiplied alpha channel data

• Chromium Issue 702860: Optimize ImageFrame::setRGBAPremultiply

• The SetRGBAPremultiplyRowNeon() function in the Chromium codebase

• Wikipedia: Alpha compositing

• Arm Community Blog: Coding for Neon - Part 1: Load and Stores

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 33

https://bugs.chromium.org/p/chromium/issues/detail?id=702860
https://cs.chromium.org/chromium/src/third_party/blink/renderer/platform/image-decoders/png/png_image_decoder.cc?sq=package:chromium&g=0&l=323
https://en.wikipedia.org/wiki/Alpha_compositing
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/coding-for-neon---part-1-load-and-stores

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

Chromium optimization: summary of results

6. Chromium optimization: summary of
results

This guide has shown how we identified optimization opportunities within the Chromium open-
source codebase. The guide also provides detail about several specific optimizations made using
Neon intrinsics.

One more notable optimization was a 20% increase in performance by optimizing inflate_fast()
to use Neon intrinsics to perform long loads and stores in the byte array.

The result of all these optimizations was a 2.9x boost to PNG decoding performance. The
following figure shows the decoding time improvement, in milliseconds, for test images comparing
unoptimized zlib to Neon-optimized zlib:

Figure 6-1: PNG decoding performance diagram

Vanilla
0

50

100

150

200

Neon

Optimizations were validated using representative data sets. For PNG, we used three sets of test
data:

• An internal data set for Chromium developers, with 92 images

• The public Kodak data set, with 24 images

• The public Google doodles data set, with 154 images

For more information about Neon programming in general, see the Neon Programmer’s Guide for
Armv8-A on the Arm Developer website.

For more information about Neon intrinsics, see the Neon Intrinsics Reference.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 33

http://www.cs.albany.edu/~xypan/research/snr/Kodak.html
https://www.google.com/doodles/
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/neon-programmers-guide-for-armv8-a
https://developer.arm.com/
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization with Neon intrinsics

7. libTIFF optimization with Neon intrinsics
This section shows how Neon technology can improve performance in image processing
applications. We use Neon intrinsics to optimize different aspects of the open-source Tag Image
File Format (TIFF) image processing library, libTIFF.

Why libTIFF?
We chose to optimize libTIFF version 4.4.0 because it is an open-source project. This means that
everyone has access to the source code.

Many large software projects use the libTIFF library, including the Android operating system
and the Chrome web browser. This means that optimizations to libTIFF benefit a wide range of
applications and users.

Finally, because libTIFF is an older library, there are many areas in the code that can be optimized
for newer generations of hardware.

You can download the libTIFF 4.4.0 source code and read the build instructions.

Test platforms
Software performance, including Neon code, depends on many factors. These factors include the
type of CPU on which the code runs, and also the operating system and its configuration settings.

To test the optimizations shown in this section, we used the following smartphones as target
platforms:

• Samsung Galaxy S7, model SM-G930F released in 2016 with Android 7. This handset runs a
Exynos 8890 octa-core chipset which includes Cortex-A53 cores running at up to 2.3 GHz.

• Google Pixel 4 XL, released in 2019 with Android 10. This handset runs a Snapdragon 855
octa-core chipset which includes Qualcomm Kryo 485 cores running at up to 2.8 GHz.

The Kernel Scheduler automatically moves application processes between slower or faster
cores on Android, which affects performance. To ensure that the Kernel Scheduler did not affect
measurements, on the Galaxy S7 we enabled only one of the faster cores and set the Kernel
Scaling Governor to Performance mode. This setting forces the CPU frequency to the maximum
possible. Tests on the Pixel 4 XL were performed without this change.

If you change the Kernel Scaling Governor configuration setting you might need to
build the Android operating system from source code. This is outside the scope of
this guide.

Performance tests
To test the performance of libTIFF, we developed a custom Android app using two different images.
Each image exercises different areas of code within libTIFF.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 33

http://www.libtiff.org/
https://libtiff.gitlab.io/libtiff
http://download.osgeo.org/libtiff/tiff-4.4.0.zip
https://libtiff.gitlab.io/libtiff/build.html

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization with Neon intrinsics

To measure performance, we first process the images using the original non-Neon version of
libTIFF, and then using the Neon-optimized version. When processing is complete, the application
reports performance statistics for both libTIFF versions.

The first image is a horizontally-flipped grayscale image with black and white text. The image uses
8 bits per pixel (8BPP). The orientation of this image is top-right, so the first pixel in data is the top-
right of the image. This image allows us to use two Neon optimizations: one for converting 8BPP
image data to 32BPP, and one for the horizontal flip.

Figure 7-1: Test image 1: Horizontally-flipped grayscale image

The second image is similar to the first image, but with varying background colors behind the text.
This image is stored in CMYK format, and lets us test the Neon optimization for converting CMYK
to RGBA.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 33

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization with Neon intrinsics

Figure 7-2: Test image 2: CMYK color image

The tests use the default libTIFF compiler build options, which specify the -O2 optimization flag.
The build command line is too complicated to include in full. The simplified version for one of the
source files is as follows:

$ aarch64-linux-android24-clang -O2 -c SOURCE_FILE.c -fPIC -o SOURCE_FILE.o

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 33

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization: grayscale to RGBA conversion

8. libTIFF optimization: grayscale to RGBA
conversion

The first test image is black and white with data stored as 8BPP grayscale. When the
TIFFImageRGBARead function extracts this image, it converts the pixels to RGBA.

Unoptimized implementation
The following code shows the original libTIFF implementation:

static void putgreytile(TIFFRGBAImage* img, uint32_t* cp,
 uint32_t x, uint32_t y, uint32_t w, uint32_t h,
 int32_t fromskew, int32_t toskew, unsigned char* pp)
{
 int samplesperpixel = img->samplesperpixel;
 uint32_t** BWmap = img->BWmap;
 // 1. For all lines of the image..
 for(; h > 0; --h) {
 // 2. For all pixels across a line..
 for (x = w; x > 0; --x) {
 // 3. Convert the 8-bit pixel value into a 32-bit RGBA pixel (1 pixel at a
 time)
 *cp++ = BWmap[*pp][0];
 pp += samplesperpixel;
 }
 cp += toskew;
 pp += fromskew;
 }
}

The TIFFImageRGBARead function loads the image, expanding each 8-bit pixel to 32 bits, 8 bits per
channel.

The BWmap variable is a lookup table that converts 8-bit grayscale values to 32-bit values. With
the sample image, it takes an 8-bit value B and returns a 32-bit value with B copied to each 8-bit
channel and the value 255 inserted into the alpha channel.

Neon-optimized implementation
The Neon-optimized implementation processes the data for four pixels simultaneously. For
simplicity, this implementation optimizes the most frequent use case where the values toskew and
fromskew are zero.

// 1. Does the image match our requirements for optimization and are we to use Neon?
// (tif_packbitsmode is a tag that is set by the app).
// Check to see if there are a multiple of 4 pixels. This is to ensure that we
// can process four pixels in one iteration.
// Each pixel is 32 bits, so four pixels fit exactly into the 128-bit Neon
 registers.
uint32_t n = h * w;
if (img->tif->tif_packbitsmode == PackBits_Neon
 && toskew == 0
 && fromskew == 0
 && (n & 0x3) == 0)
{
 n >>= 2;
 uint32x4_t p = vdupq_n_u32(0);

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 33

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization: grayscale to RGBA conversion

 while(n-- > 0) {

 // 2. Use the BWmap lookup table to convert the pixel to 32-bit value.
 // Each 32-bit pixel is loaded into one of 4 lanes of the 128-bit register.
 p = vld1q_lane_u32(BWmap[*pp], p, 0);
 pp += samplesperpixel;
 p = vld1q_lane_u32(BWmap[*pp], p, 1);
 pp += samplesperpixel;
 p = vld1q_lane_u32(BWmap[*pp], p, 2);
 pp += samplesperpixel;
 p = vld1q_lane_u32(BWmap[*pp], p, 3);
 pp += samplesperpixel;

 // 3. Write out four pixels with a single 128-bit write operation.
 vst1q_u32(cp, p);
 cp += 4;
 }
}

The following table shows more information about the intrinsics in this example:

Table: Intrinsics used in the grayscale to RGBA conversion example

Intrinsic Description

vdupq_n_u32 Duplicate vector element

vld1q_lane_u32 Load multiple single-element structures

vst1q_u32 Store multiple single-element structures to memory

Results
The performance results for using Neon to optimize grayscale to RGBA conversion are as follows:

Table: Performance results

Test platform Original code runtime (ms) Neon optimized code runtime (ms) Performance improvement

Galaxy S7 6.09 3.16 1.92x

Pixel 4 XL 4.27 2.53 1.68x

Performance times are for 1000 iterations in all cases.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 33

https://developer.arm.com/architectures/instruction-sets/intrinsics/vdupq_n_u32
https://developer.arm.com/architectures/instruction-sets/intrinsics/vld1q_lane_u32
https://developer.arm.com/architectures/instruction-sets/intrinsics/vst1q_u32

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization: horizontal image flip

9. libTIFF optimization: horizontal image flip
TIFF allows images to be stored in any orthogonal layout. The first pixel in memory can be the top-
left, top-right, bottom-left, or bottom-right of the image. For the first test image, the TIFF image is
right-to-left and we need the pixels in a left-to-right layout. We need to perform a horizontal flip of
the image.

Unoptimized implementation
The following code shows the original libTIFF implementation of the image flip operation:

uint32_t line;
// 1. For an image of width w and height h, for all lines in the image, do the
 following.
for (line = 0; line < h; line++) {
 uint32_t *left = raster + (line * w);
 uint32_t *right = left + w - 1;
 // 2. Swap the pixel at the beginning of the line with the pixel at the end,
 // then work inwards, swapping as we go.
 while (left < right) {
 // 3. Swap two pixels on the same line
 uint32_t temp = *left;
 *left = *right;
 *right = temp;
 left++;
 right--;
 }
}

This code contains two small loops that reverse the ordering of the pixels line-by-line.

Each pixel is 32-bits, in RGBA color format, so the lines of pixels are reversed 32-
bits at a time rather than byte-by-byte.

Neon-optimized implementation
The Neon-optimized implementation reverses the pixels in a row of the image by creating an index
table. Each iteration of the loop swaps four pixels from the left of the row with four pixels from the
right.

For simplicity, Neon optimization is only applied if the image is a multiple of 8 pixels
wide.

// For all lines of the image..
for (line = 0; line < h; line++) {
 uint32_t *left = raster + (line * w);
 uint32_t *right = left + w;
 right -= 4;
 // Create an index table to obtain pixel information four pixels, based
 // on an offset from the left and right base addresses.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 33

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization: horizontal image flip

 //
 // This index table is used later by the table lookup intrinsic vqtbl1q_u8.
 //
 // The indices swap the pixel order preserving channel ordering
 // within the pixels, remembering that each pixel is 4 bytes.
 //
 // For example, if we have four RGBA pixels W, X, Y and Z, we swap
 // them to Z, Y, X and W.
 //
 // This example uses decimal values to aid comprehension.
 //
 // uint8_t reverseIndices[16] = {
 // Fetch pixel Z's RGBA components (indices R=12, G=13, B=14 and A=15)
 // and place them in indices 0 to 3:
 // [0] 0x0C = 12, // Z.Red = 12th byte in the input
 // [1] 0x0D = 13, // Z.Green = 13th byte in the input
 // [2] 0x0E = 14, // Z.Blue = 14th byte in the input
 // [3] 0x0F = 15, // Z.Alpha = 15th byte in the input
 // Fetch pixel Y's RGBA components:
 // [4] 0x08 = 8,
 // [5] 0x09 = 9,
 // [6] 0x0A = 10,
 // [7] 0x0B = 11,
 // Fetch pixel X's RGBA components:
 // [8] 0x04 = 4,
 // [9] 0x05 = 5,
 // [10] 0x06 = 6,
 // [11] 0x07 = 7,
 // Fetch pixel W's RGBA components:
 // [12] 0x00 = 0,
 // [13] 0x01 = 1,
 // [14] 0x02 = 2,
 // [15] 0x03 = 3 };
 uint8x8_t reverse1 = vcreate_u8(0x0B0A09080F0E0D0Cull);
 uint8x8_t reverse2 = vcreate_u8(0x0302010007060504ull);
 uint8x16_t reverseIndices = vcombine_u8(reverse1, reverse2);
 // Each loop iteration swaps four pixels from the left with
 // four pixels from the right, reversing the order within each
 // batch of four pixels.
 while (left < right) {
 // Load pixels from the left and reverse their order
 uint8x16_t leftPixels = vld1q_u8((uint8_t*)left);
 uint8x16_t reversedLeftPixels = vqtbl1q_u8(leftPixels, reverseIndices);
 // Load pixels from the right and reverse their order
 uint8x16_t rightPixels = vld1q_u8((uint8_t*)right);
 uint8x16_t reversedRightPixels = vqtbl1q_u8(rightPixels, reverseIndices);
 // Copy the right-hand pixels to the left and the left-hand pixels
 // to the right
 vst1q_u8((uint8_t*)left, reversedRightPixels);
 vst1q_u8((uint8_t*)right, reversedLeftPixels);
 left += 4;
 right -= 4;
 }
}

The following table shows more information about the intrinsics in this example:

Table: Intrinsics used in the image flip example

Intrinsic Description

vcreate_u8 Create a vector from a literal value

vcombine_u8 Join two smaller vectors into a single larger vector

vqtbl1q_u8 Table vector lookup

vld1q_u8 Load multiple single-element structures

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 33

https://developer.arm.com/architectures/instruction-sets/intrinsics/vcreate_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vcombine_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vqtbl1q_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vld1q_u8

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization: horizontal image flip

Intrinsic Description
vst1q_u8 Store multiple single-element structures to memory

Results
The following table shows performance results for using Neon to optimize the horizontal flip
operation:

Table: Performance results

Test platform Original code runtime (ms) Neon optimized code runtime (ms) Performance improvement

Galaxy S7 3.12 2.71 1.15x

Pixel 4 XL 8.25 6.28 1.31x

Performance times are for 1000 iterations in all cases.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 33

https://developer.arm.com/architectures/instruction-sets/intrinsics/vst1q_u8

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization: CMYK to RGBA conversion

10. libTIFF optimization: CMYK to RGBA
conversion

The second test image stores pixels in CMYK (Cyan, Magenta, Yellow and Black) format. CMYK is
used in printing. Popular image editing programs often support loading and saving files as CMYK.

TIFF supports automatic conversion of CMYK to RGBA using the TIFFReadRGBA interface.

To convert CMYK to RGB, libtiff uses the following calculations:

• R = 255 x (1 - C) x (1 - K)

• G = 255 x (1 - M) x (1 - K)

• B = 255 x (1 - Y) x (1 - K)

The alpha channel A is always output as 255.

Unoptimized implementation
The following code shows the original libTIFF implementation of the CMYK to RGBA conversion:

// The original code uses a macro UNROLL8 to unroll code and
// each iteration processes eight pixels.
//
// The macro actually contains a for loop that iterates over a single line
// (the w parameter is the width of the image).

#define UNROLL8(w, op1, op2) { \
 uint32_t _x; \
// For the whole width of the image..
 for (_x = w; _x >= 8; _x -= 8) { \
 op1; \
// Repeat for 8 pixels..
 REPEAT8(op2); \
 } \
// For any pixels left over..
 if (_x > 0) { \
 op1; \
 CASE8(_x,op2); \
 } \
} // end of macro UNROLL8()

// For each line of the image (h is the image height)
for(; h > 0; --h) {
 // Convert 8 pixels from CMYK to RGBA (A is always 255)
 UNROLL8(w, NOP, {
 k = 255 - pp[3];
 r = (k*(255-pp[0]))/255;
 g = (k*(255-pp[1]))/255;
 b = (k*(255-pp[2]))/255;
 // Write each pixel to memory one at a time
 *cp++ = PACK(r, g, b);
 pp += samplesperpixel
 });
 cp += toskew;
 pp += fromskew;
}

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 33

https://en.wikipedia.org/wiki/CMYK_color_model

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization: CMYK to RGBA conversion

Neon-optimized implementation
The Neon-optimized implementation uses intrinsics to perform calculations for multiple pixels
simultaneously.

As with the other libTIFF optimizations in this guide, the full version of the code
uses an if statement to check whether to use the original code or the Neon code.
For example, we only optimize the case where skewing is not required, that is when
the values toskew and fromskew are zero. For clarity, the if statement is not shown
here.

// Loop over all pixels of the image
uint32_t np = w * h;
uint32_t* endp = cp + np;

// Indices for VTBL that duplicate each pixels K value
uint8x8_t dupK1 = vcreate_u8(0xff06ff06ff06ff06ull);
uint8x8_t dupK2 = vcreate_u8(0xff0eff0eff0eff0eull);
uint8x16_t kindices = vcombine_u8(dupK1, dupK2);

// Indices to obtain the final results
uint8_t resultIndices[16] = {0,1,2,-1,4,5,6,-1,8,9,10,-1,12,13,14,-1};
while(cp < endp) {
 // 16 copies of 255
 uint8x16_t v255 = vdupq_n_u8 (255);
 // load 4 pixels (each pixel is 4 bytes with the CMYK values)
 uint8x16_t src_u8 = vld1q_u8(pp);
 // perform (255 - x) on each component
 // each vsubl is working on 2 pixels
 uint16x8_t subl = vsubl_u8(vget_low_u8(v255), vget_low_u8(src_u8));
 uint16x8_t subh = vsubl_high_u8(v255, src_u8);
 // duplicate k element from each pixel in subl
 uint8x16_t kl = vqtbl1q_u8(subl, kindices);
 uint8x16_t kh = vqtbl1q_u8(subh, kindices);
 // multiply (255 - x) by (255 - k)
 uint16x8_t ml = vmulq_u16(kl, subl);
 uint16x8_t mh = vmulq_u16(kh, subh);
 // the results we need are in the low 8 bits of the uint16 elements
 // combine results and result (throwing away all the upper halves of all the
 uint16)
 uint8x16_t idx = vld1q_u8 (resultIndices);
 uint16x8_t resultl = ml / 255;
 uint16x8_t resulth = mh / 255;
 uint8x16_t packed = vuzp1q_u8 (vreinterpretq_u8_u16 (resultl),
 vreinterpretq_u8_u16 (resulth));
 // wherever the index is -1, we take the value from v255 (we return 255 in
 alpha)
 uint8x16_t pixels = vqtbx1q_u8 (v255, packed, idx);
 // store the four RGBA pixels and advance the pointers/counters
 vst1q_u8((uint8_t*)cp, pixels);
 cp += 4;
 pp += samplesperpixel * 4;
}

The following table shows more information about the intrinsics in this example:

Table: Intrinsics used in the CMYK to RGBA example

Intrinsic Description

vcombine_u8 Join two smaller vectors into a single larger vector

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 33

https://developer.arm.com/architectures/instruction-sets/intrinsics/vcombine_u8

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization: CMYK to RGBA conversion

Intrinsic Description
vcreate_u8 Create a vector from a literal value

vdupq_n_u8 Load all lanes of vector to the same literal value

vget_low_u8 Split vectors into two components

vld1q_u8 Load multiple single-element structures

vmulq_u16 Vector multiply

vqtbl1q_u8 Table vector lookup

vqtbx1q_u8 Table vector lookup extension

vreinterpretq_u8_u16 Vector reinterpret cast operation

vst1q_u8 Store multiple single-element structures to memory

vsubl_high_u8 Vector subtract using upper half of vector elements

vsubl_u8 Vector subtract

vuzp1q_u8 Unzip vectors, reading corresponding even-numbered vector elements from two source vectors

Results
The performance results for using Neon to optimize the CMYK to RGBA conversion are as follows:

The following table shows performance results for using Neon to optimize the CMYK to RGBA
conversion:

Table: Performance results

Test platform Original code runtime (ms) Neon optimized code runtime (ms) Performance improvement

Galaxy S7 13.31 7.70 1.72x

Pixel 4 XL 11.80 5.89 2.00x

Performance times are for 1000 iterations in all cases.

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 33

https://developer.arm.com/architectures/instruction-sets/intrinsics/vcreate_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vdupq_n_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vget_low_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vld1q_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vmulq_u16
https://developer.arm.com/architectures/instruction-sets/intrinsics/vqtbl1q_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vqtbx1q_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vreinterpretq_u8_u16
https://developer.arm.com/architectures/instruction-sets/intrinsics/vst1q_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vsubl_high_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vsubl_u8
https://developer.arm.com/architectures/instruction-sets/intrinsics/vuzp1q_u8

Optimizing Image Processing with Neon Intrinsics Document ID: 101964_0300_01_en
Version 3.0

libTIFF optimization: auto-vectorization and compiler options

11. libTIFF optimization: auto-vectorization
and compiler options

The compiler options used to build a library can have a large effect on the performance of your
program.

In particular, compiler options can enable or disable auto-vectorization features in your compiler
that automatically optimize your code to take advantage of Neon.

To demonstrate the effect of auto-vectorization, we built and benchmarked the original non-Neon
version of libTIFF with two different compiler optimization options:

-O0

Minimum optimization, auto-vectorization disabled.

-O2

High optimization, auto-vectorization enabled.

The following table shows the results of running the original non-Neon version of libTIFF built
with different compiler options. The tests are the same benchmark tests used earlier in this guide,
running on the Galaxy S7.

Table: Performance results for different compiler options

Optimization Runtime with -O0 (ms) Runtime with -O2 (ms) Performance improvement

Grayscale to RGBA 17.97 6.09 3.5x

Flip 10.84 3.12 3.4x

CMYK to RGBA 46.95 13.31 3.5x

Copyright © 2019–2021, 2023–2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 33

	Optimizing Image Processing with Neon Intrinsics
	Contents
	1. Overview of Neon technology
	2. Chromium optimization with Neon intrinsics
	3. Chromium optimization: Adler-32
	4. Chromium optimization: color palette expansion
	5. Chromium optimization: pre-multiplied alpha channel data
	6. Chromium optimization: summary of results
	7. libTIFF optimization with Neon intrinsics
	8. libTIFF optimization: grayscale to RGBA conversion
	9. libTIFF optimization: horizontal image flip
	10. libTIFF optimization: CMYK to RGBA conversion
	11. libTIFF optimization: auto-vectorization and compiler options

