
Introduction to Helium
Version 1.3

guide

Non-Confidential
Copyright © 2020–2022, 2024 Arm Limited (or its
affiliates).
All rights reserved.

Issue 02
102102_0103_02_en

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Introduction to Helium
guide

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-00 1 March 2020 Non-Confidential First release

0101-00 1 June 2020 Non-Confidential Updated images

0102-00 14 June 2021 Non-Confidential Updated text and images

0103-01 3 February 2022 Non-Confidential Added chapter to the Vector instruction example

0103-02 4 January 2024 Non-Confidential Minor updates

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 25

https://www.arm.com/company/policies/trademarks

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 25

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Contents

Contents

1. Overview...6

2. Helium registers.. 7

3. Predication..9

4. Vector instruction example:VMLA...15

5. Vector instruction example:VMLADAVA... 21

6. Check your knowledge... 24

7. Related information... 25

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Overview

1. Overview
This guide introduces Arm Helium technology, which is the M-profile Vector Extension (MVE) for
the Arm Cortex-M processor series. The Arm Cortex-M55 processor is the first Arm processor to
support this technology.

Helium is an extension of the Armv8.1-M architecture and delivers a significant performance uplift
for Machine Learning (ML) and Digital Signal Processing (DSP) applications for small, embedded
devices.

Helium technology provides optimized performance by using Single Instruction Multiple Data
(SIMD) to perform the same operation simultaneously on multiple data items. This can be
particularly effective in DSP and ML.

At the end of this guide:

• You will be familiar with Helium and the differences it has with Neon

• Helium registers

• Predication in Helium

Before you begin
You should have familiarity with the Arm architecture, see our Introducing the Arm architecture for
more information.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 25

https://developer.arm.com/architectures/learn-the-architecture

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Helium registers

2. Helium registers
This chapter describes the structure of registers.

Registers, vectors, lanes, and elements
The Helium registers contain vectors of elements of the same data type. The same element
position in the input and output registers is referred to as a lane.

Usually each Helium instruction results in noperations, where nis the number of lanes that the
input vectors are divided into. Each operation is contained within the lane.

The number of lanes in a Helium vector depends on the size of the vector and the data elements in
the vector.

A 128-bit Helium vector can contain the following element sizes:

• Two 64-bit integers

• Four 32-bit integers or single precision float

• Eight 16-bit integers or half precision float

• Sixteen 8-bit integers

Elements in a vector are ordered from the least significant bit to the most significant bit. That
is, element 0 uses the least significant bits of the register. Let’s look at an example of a Helium
instruction. The instruction VADD.16 q0, q0, q5 performs a parallel addition of eight lanes of 16-
bit (8 x 16 = 128) integer elements from vectors in q5 and q0, storing the result in q0. This can be
seen in the following diagram:

Figure 2-1: Helium instruction example

q5

q0

127 112

q0

127 112

+

Lane 7

111 96

111 96

+

Lane 6

95 80

95 80

+

Lane 5

79 64

79 64

+

Lane 4

63 48

63 48

+

Lane 3

47 32

47 32

+

Lane 2

31 16

31 16

+

Lane 1

15 0

15 0

+

Lane 0

Helium instructions use a mix of vector and scalar operands, including:

• Vector by vector to vector

• Vector by scalar to vector

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Helium registers

• Vector by vector to scalar

For example, multiplication, this can be seen in Vector instruction example. You can find more
examples in the Armv8-M Architecture Reference Manual.

Data types
When programming for Helium in C or C++, different data types let you declare vectors of different
sizes. To use these data types, we must add the library arm_mve.h to the program. This header file
provides data types that look like the following:

• Sixteen 8-bit elements = int8x16, uint8x16

• Eight 16-bit elements = int16x8, uint16x8, float16x8

• Four 32-bit elements = int32x4, uint32x4, float32x4

• Two 64-bit elements = int64x2, uint64x2

Predication register
Predication lets you selectively perform mathematic operations on lanes in a vector. The
predication mask specifies which lanes are processed, by setting bits to true (1) or false (0). The
predication status and control register, VPR.P0, contains this predication mask. We explain this in
Helium instructions.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 25

https://developer.arm.com/architectures/instruction-sets/simd-isas/helium/helium-programmers-guide/introduction-to-helium/vector-instruction-example
https://developer.arm.com/docs/ddi0553/latest

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3
Predication

3. Predication
Predication provides a way to conditionally execute a block of instructions, on lanes that meet
specified criteria. The predication mask specifies which lanes are processed by setting bits to true
(1) or false (0).

Each bit represents the predication of a lane in the 128-bit Helium vector. Therefore, when
using vectors which contain a lane width of 32 bits, 4 out of the 16 bits control predication. The
following table shows different lane widths:

Lane width Bits in VPR.P0

32 bits [12, 8, 4, 0]

16 bits [14, 12, 10, 8, 6, 4, 2, 0]

8 bits [15:0]

You can find more information about lanes and lane widths in the Armv8-M Architecture Reference
Manual.

There are four different types of predication intrinsics:

_m

Merging

_z

Zeroing

_x

Don’t care

_p

Predicated

The different types of predication can be used for loop tail handling. When input data is not a
multiple of 128-bits, the final loop iteration needs to process a partially empty vector. For example,
a data array of ten 32-bit values is processed as two full iterations on vectors containing four
elements, and a final loop iteration on a vector containing two elements. Merging predication loads
a value from the inactive vector into these lanes. Zeroing predication can mark the unused lanes
on the final loop iteration. Pruning predication can only store the values in the lanes that are set to
true. Don’t care predication can be used when we don’t care whether an undeclared or declared
value are loaded into the unused lanes.

Examples of predication
Merging

Merging predication can be used for clipping values in a vector that exceed a specified
maximum. Merging predication is where false predicated lanes, are filled with the
corresponding element from the inactive vector.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 25

https://developer.arm.com/docs/ddi0553/latest
https://developer.arm.com/docs/ddi0553/latest

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3
Predication

The intrinsic vaddq_m is an example of a merging predication. vaddq_m adds two vectors together,
and the false predicated lanes are filled with the value from the inactive vector. This is explained in
the following example:

int32x4_t [__arm_]vaddq_m[_s32] (int32x4_t inactive, int32x4_t a, int32x4_t b,
 mve_pred16_t p)

In this example, the four inputs are:

• Inactive A 32x4 vector which contains 4,4,4,4

• a A 32x4 vector which contains 5,2,3,6

• b A 32x4 vector which contains 7, 1, 6, 2

• p A predicate mask, containing 16 bits. For 32-bit lanes, the bits in the mask which control lane
predication are bits 12, 8, 4, and 0. In this example, bits 12 and 1 have been set to true and bits
8 and 4 have been set to false, resulting in a predicate mask of 0001000000000001.

This example uses a vector that is 32x4. The vector could be a different size. Helium registers has
more information. However, the vector registers; inactive, a and b must contain the same number
of lanes.

Looking at the lane predication in detail, we can see that:

• Bits 8 and 4 control lanes two and three. In our example, these bits contain zero. This means
that lanes two and three take their value from the inactive vector. In both cases this value is
four.

• Bits 12 and 0 control lanes one and four. In our example these bits contain one. This means
that lanes one and four take their value from the result of adding the corresponding lanes in the
vectors a and b.

• For bit 12 this corresponds to 5+7 = 12

• For bit 0 this corresponds to 6+8 = 14

Therefore, the result vector equals: 12,4,4,14.

This process is illustrated in the following diagram:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3
Predication

Figure 3-1: Merging example

444

0 0 0 1 0 0 0 10 0 0 0 0 0 0 0

Inactive

P

A

+ + + +

4

1444Inactive 12

6325

B

= = = =

8617

The following assembly code assumes that r0 points to the 0x11111111 0x22222222
0x33333333 0x44444444 pattern in memory. The following code is an example of merging
predication:

// predicated addition (inactive lanes untouched)
mov r1, 0xf00f // set mask for 32-bit elements 0 & 3
vmsr p0, r1 // set predicate bit 0 & 4
vldrw.s32 q0, [r0] // q0 = { 0x11111111 0x22222222 0x33333333
 0x44444444}
movw r2, 0x5555
movt r2, 0x5555
vdup.32 q1, r2 // q1 = {0x55555555 0x55555555 0x55555555
 0x55555555}
vpst
vaddt.i32 q1, q0, q0 // q1 = {0x22222222 0x55555555 0x55555555
 0x88888888}

movw r2, 0x0000 // set upper bound = 0x30000000
movt r2, 0x3000
vldrw.s32 q0, [r0] // q0 = { 0x11111111 0x22222222 0x33333333
 0x44444444}
vpt.s32 ge, q0, r2 // enable lanes greater or equal than r2
vdupt.32 q0, r2 // set q0[i] to r2 for active lanes, others are
 untouched
 // q0 = { 0x11111111 0x22222222 0x30000000
 0x30000000}

Zeroing
Zeroing predication is used for load instructions. The false predicated lanes are set to zero.

The following intrinsic is an example of a zeroing predicated load, which loads consecutive
elements from memory into a destination vector register:

uint32x4_t [__arm_]vldrwq_z[_s32] (uint32_t const * base, mve_pred16_t p)

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3
Predication

Consider an example where the two inputs are:

• Base A pointer to the start of an array containing 32-bit unsigned integer values. In this
example, it contains 5, 2, 3, 6.

• p A predicated mask. For 32-bit lanes, the bits in the mask which control lane predication are
bits 12, 8, 4, 0. In this example, it equals 0000000000010001.

The output is a vector containing the result. Looking at the lane predication in detail:

• Four numbers are contained within memory. These numbers are loaded into a vector through
base, the pointer to the array.

• Bits 12 and 8 control lanes four and three. In our example, these bits contain zero. This means
that lanes four and three are populated with the value zero.

• Bits 4 and 0 control lanes two and one. In our example, these bits contain one. This means that
lanes one and two are populated with the value from memory.

Therefore, the result vector equals 0, 0, 2, 5. This process is illustrated in the following diagram:

Figure 3-2: Zeroing example

0 0 2 5

0 0 0 0 0 00 1

Base

0 0 0 0 0 0 0

5

2

3

6

1P

The following assembly code assumes that r0 points to the 0x11111111 0x22222222
0x33333333 0x44444444 pattern in memory. The following code is an example of zeroing
predication:

// starting with predicated load (zeroing of inactive lanes)
// 32-bit load
mov r1, 0x0ff0 // set mask for 32-bit elements 1 & 2
vmsr p0, r1 // set predicate bits
vpst // activate predication for the next slot
vldrwt.s32 q0, [r0] // q0 = { 0x00000000 0x22222222 0x33333333 }

// 8-bit load
mov r1, 0x1111 // set mask for 8-bit elements 0, 4, 8, 12
vmsr p0, r1 // set predicate bits
vpst // activate predication for the next slot
vldrbt.s8 q0, [r0] // q0 = { 0x11 0x00 0x00 0x00 0x22 0x00 0x00 0x00
 0x33 0x00 0x00 0x00 0x44 0x00 0x00 0x00}

// 16-bit load
mov r1, 0x300c // set mask for 16-bit elements 1 & 6
vmsr p0, r1 // set predicate bits

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3
Predication

vpst // activate predication for the next slot
vldrht.s16 q0, [r0] // q0 = { 0x0000 0x1111 0x000 0x00000 0x000 0x00000
 0x4444 0x0000}

Don’t care
Don’t care predication is like zeroing predication, because it is used for load instructions. The
difference between don’t care predication and zeroing predication is that, when a lane has
been set to false, an undeclared variable is left undefined instead of having a 0 as the output.

Predicated
Predicated predication is used when a scalar output is returned. False-predicated lanes are
not used when computing the output. The following intrinsic is an example of predicated
predication. This intrinsic finds the minimum value of the elements in a vector, then compares
that minimum value to the specified value a.

The intrinsic returns the smaller of the two values:

int32_t [__arm_]vminvq_p[_s32] (int32_t a, int32x4_t b, mve_pred16_t p)

Consider an example in which the three inputs are:

• a A scalar value that equals 4

• b A 32x4 vector that contains the values: 5, 2, 3, 6

• p A predicated mask. For 32-bit lanes, the bits in the mask which control lane predication are
bits 12, 8, 4, 0. In this example, it equals 0001000000000001

The output is the smaller of a or the minimum value in b.

Looking at the lane predication in detail:

• Bits 8 and 4 controls lanes two and three. In our example, these bits contain zero. This means
that these lanes are not used.

• Bits 12 and 0 control lanes one and four. In our example, these bits contain one. This means
that lanes one and four are compared to see which contains the smallest number. In this
example, the smallest number is 5

• The minimum value: 5 is compared with the scalar value (a), which is 4.

• Therefore, the intrinsic returns 4.

This process is illustrated in the following diagram:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3
Predication

Figure 3-3: Predicated example

1

5 2

Is 5 < 6

5 < 4

4

3 6

0 0 0 0 0 0 10 0 0 0 0 0 0

B

P

a

0

The following assembly code assumes that r0 points to the 0x11111111 0x22222222
0x33333333 0x44444444 pattern in memory. The following code is an example of predicated
predication:

// predicated 32-bit MAC (inactive lanes ignored)
mov r1, 0x00ff // set mask for 32-bit elements 0 & 1
vmsr p0, r1 // set predicate bits
vldrw.s32 q0, [r0] // q0 = { 0x11111111 0x22222222 0x33333333
 0x44444444}
clrm {r2, r3}
vpst
vrmlaldavht.s32 r2, r3, q0, q0 // r2,r3 = (sum(q0[i] * q0[i]) + (1<<7)) >> 8
 i={0,1}
 // (0x11111111 ^2 + 0x22222222 ^ 2 + (1<<7)) >> 8

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Vector instruction example:VMLA

4. Vector instruction example:VMLA
In this section of the guide, we introduce how Helium uses vector instructions when performing
parallel arithmetic on vectors using vector registers. We also show how we can use intrinsics to
perform parallel arithmetic.

Vector Multiply Accumulate
The first example that we have chosen to show parallel arithmetic is Vector Multiply Accumulate
(VMLA). At a high-level, in VMLA each element in the source vector is multiplied by a scalar value. The
result is added to the respective element from the destination vector. The results are stored in the
destination register.

The following example shows the VMLA instruction:

VMLA.S32 VectorOne, VectorTwo, Scalarvalue

This instruction shows that VectorOne is the accumulator vector register and is the destination
register for the entire operation.

VMLA has three inputs and one output. The three inputs are:

• VectorOne The accumulator vector register

• VectorTwo The source vector register

• Scalarvalue The scalar general-purpose register

The output is:

• VectorOne The accumulator vector register and destination register

In the example, the vector registers, VectorOne and VectorTwo, are divided into four lanes of 32-
bit values. However, the vector registers could be divided into eight 16-bit values or sixteen 8-bit
values, depending on which data types you are operating on. Both VectorOne and VectorTwo must
contain the same number of data lanes.

In our example, the inputs:

• VectorOne contains the numbers 7,1,6,2

• VectorTwo contains the numbers 5,2,3,6.

• Scalarvalue contains 2.

When the three inputs have been declared:

• Scalarvalue is multiped with VectorTwo.

• VectorTwo is added to VectorOne.

• VectorOne is outputted.

That is, VectorOne[i] = VectorOne[i] + VectorTwo[i] * Scalarvalue where i={0..elts-1}

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Vector instruction example:VMLA

These steps are shown in the following diagram:

Figure 4-1: Steps for VMLA

5

10

VectorTwo

VectorOne

Result

x2

2

4

x2

3

6

x2

6

12

x2

7

+

1

+

6

+

2

+

= = = =

17 5 12 14

Implementation using intrinsics
One way that you could use VMLA in your C code is by using intrinsics. Intrinsics are functions
which the compiler understands and replaces with low-level Helium instructions.

First, we declare two arrays to hold the input vectors and an integer variable to hold the scalar
value. You can see this in the following code:

//Declaring the arrays and the scalar value
const int arrayone[] = {5, 2, 3, 6};
const int arraytwo[] = {7, 1, 6, 2};

int32_t Scalarvalue = 2;

In this example, we only use four numbers in our vectors. However, in a real-world example more
than four numbers may be used. This can be seen in the following code:

//Declaring the pointer value
int32_t *pone = arrayone;
int32_t *ptwo = arraytwo;

When the arrays, and the pointers, have been declared, the values can be loaded into vector
registers.

The following code uses intrinsics to load the array values into helium vector registers:

//Loading the 4 values from the array
int32x4_t VectorOne = vld1q_s32 (pone);
int32x4_t VectorTwo = vld1q_s32 (ptwo);

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Vector instruction example:VMLA

In the following code this performs the multiply and accumulate operation:

int32x4_t Result = vmlaq_n_s32 (VectorTwo, VectorOne, Scalarvalue);

This is stating Result = VectorOne + (VectorTwo x Scalarvalue).

Here is a complete working example:

#include <stdio.h>
#include <stdlib.h>
#include "arm_mve.h"

int main(void) {
 printf("Program started\n");
 //Declaring arrays
 const int32_t arrayone[] = {5, 2, 3, 6};
 const int arraytwo[] = {7, 1, 6, 2};
 const int inactivearray[] = {4,4,4,4};
 const int m[] = {8,8,8,8};

 //Value that arraytwo is being multiplied by
 int32_t scalarvalue = 2;

 //pointer values for both arrays (need this because otherwise it would print
 out 4 every time)
 int32_t *pone = arrayone;
 int *ptwo = arraytwo;

 //Loading the 4 values from the array
 int32x4_t VectorOne = vld1q_s32 (pone);
 int32x4_t VectorTwo = vld1q_s32 (ptwo);

 //The VMLA instruction
 int32x4_t Result = vmlaq_n_s32 (VectorTwo, VectorOne, scalarvalue);

 //Printing the results
 printf("Element 0: %d\n", vgetq_lane_s32 (Result,0));
 printf("Element 1: %d\n", vgetq_lane_s32 (Result,1));
 printf("Element 2: %d\n", vgetq_lane_s32 (Result,2));
 printf("Element 3: %d\n", vgetq_lane_s32 (Result,3));
}

How this can be done using C code
In the previous sections of this guide, we introduced the multiply-accumulate instruction and how
it can be generated from intrinsics. Now let’s look at the multiply-accumulate instruction can be
generated from C source-code. We use the following motivating example:

void vmla (int *__restrict Qda, int *__restrict Qn, int Rm, int N) {
for (int i = 0; i<N; i++)
 Qda[i] += Qn[i] * Rm;
}

The preceding code shows that the C implementation is an almost direct translation of the pseudo-
code that is shown in the previous section, Qda = Qda + (Qn x Rm). In the preceding example, the
first two arguments of the function VMLA are integer pointers modeling the two input streams. The
first one is also the output stream. The arguments are annotated with the __restrict keyword to
indicate that streams Qda and Qn do not overlap. For more details on __restrict see Arm Compiler
toolchain Compiler Reference. The third argument is the scalar value Rm. The fourth argument is N

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 25

https://developer.arm.com/docs/dui0491/h/language-extensions/restrict
https://developer.arm.com/docs/dui0491/h/language-extensions/restrict

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Vector instruction example:VMLA

which determines how many numbers will be processed, In the previous section and example this
was 4, here it is a run-time value N.

This example also shows that writing C code has advantages compared to writing intrinsics. C
code is more compact, readable, and portable. However, writing C code relies on the compiler to
efficiently translate your code into machine instructions. When more fine-grained control of the
generated instructions is required, intrinsics might be a better solution.

When this VMLA function is compiled with Arm Compiler 6.14, the following assembly code is
generated:

 dlstp.32 lr, r3
.LBB0_1:
 vldrw.u32 q0, [r1], #16
 vldrw.u32 q1, [r12], #16
 vmla.u32 q1, q0, r2
 vstrw.32 q1, [r0]
 mov r0, r12
 letp lr, .LBB0_1

Let’s look first at the generated function body that follows label LBB0_1. There are two load
instructions loading 16 bytes in vector registers >q0 and q1. Vector q1 is multiplied by the scalar
value in r2, which contains function argument Rm, and accumulated in vector registers q0. The
results are then stored to r0, which corresponds to function argument Qda. The first and last
instruction in this example are instructions that control the execution of the loop, which we will be
discussed in Tail-predication.

The VMLA instruction uses vector registers, we have shown that we are generating vector code from
C-code that is using scalar values and operations with Qda[i] += Qn[i] * Rm. For example, auto-
vectorization by the compiler can transform scalar code to vector code in an efficient way. Auto-
vectorization is enabled with optimization level –Os and above.

Arm Compiler User Guide: Selecting optimization options helps to transform existing code and
serves as an alternative to writing (vector) intrinsics.

In Tail-predication, we discuss the last interesting aspect of the generated code example: the loop
control instructions.

Tail-predication
In Predication, we mention tail-predication as one of the predication forms introduced in Armv8.1.
The assembly code example in How this can be done using C code shows usage of two of these
new instructions:

• DLSTP: Do-Loop-Start, Tail-Predicated

• LETP: Loop-End, Tail-Predicated

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 25

https://developer.arm.com/docs/dui0491/h/language-extensions/restrict
https://developer.arm.com/docs/100748/0612/using-common-compiler-options/selecting-optimization-options

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Vector instruction example:VMLA

These two instructions are the tail-predication version of the Do-Loop Start (DLS) and Loop-End
(LE) instructions and are part of the low-overhead-branches extension that aim to speed-up loop
execution. Tail-predication is best illustrated with an example:

for (int i=0; i < 10; i++)
 A[i] += B[i] + C[i];

In this example, the loop iterates ten times, which means that it is processing 10 integer elements.
If we can vectorize this code and can pack four integer elements in one vector, we have two vector
operations processing eight elements. Because we need to process ten elements, we need a scalar
loop (a tail loop), that processes the remaining two elements. In pseudo-code. The vectorized code
looks like this:

for (int i=0; i < 8; i+=4) // the vector loop
 A[i:4] += B[i:4] * C[i:4];
for (int i=8; i < 10; i++) // the tail-loop
 A[i] += B[i] * C[i];

The vector loop increments with four. It processes four 4 elements at the same time, which is
indicated with the i:4 array index notation. The tail loop is the original loop, except that it starts at
8. This means that it executes only the last 2 iterations, so I=8, I=9, the ninth and tenth iterations
respectively.

Having both the vector and the tail loop comes at a cost, which is the overhead of executing
2 loops, and code density. Tail-predication solves these problems and allows the execution of
these loops. For example, loops that process several elements. Where number of elements being
processed are not an exact multiple of the number of elements that fit in a vector, in one single
vector loop. In pseudo-code, that looks like this:

 for (int i=0; i < 12; i+=4) // the vector loop and the tail-loop
 A[i:4] += B[i:4] * C[i:4], active lane if i<10

The loop bound has been adjusted to 12, and the step size is 4, so that this loop executes 3
iterations. Executing 3 iterations of this vector loop would process 12 elements, while we need to
process only 10. For the last iteration, tail-predication means that the last 2 lanes are disabled to
make sure we only process these 10 elements and not 12. In the previous pseudo code example,
this is indicated with the active lane if i<10 annotation. The Armv8.1-M tail-predication loop
instruction solves this in hardware.

Let’s now look again at the assembly output in the How this can be done using C code and the tail-
predicated loop. The loop is set up with the following instruction:

dlstp.32 lr, r3

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Vector instruction example:VMLA

The instruction dlstp sets up a tail-predicated loop, where register lr contains the number of
elements to be processed, with its initial value coming from register r3. This makes sense if we
remember what the VMLA function prototype looks like:

 void vmla (int *__restrict Qda, int *__restrict Qn, int Rm, int N)

Function argument N corresponds to the number of elements that are processed by the loop, is the
fourth function argument and is passed in register r3. After this, the loop body is executed, and we
branch back to the beginning with new instruction, which looks like:

letp lr, .LBB0_1

This Loop-End (LE) instruction branches back to label. LBB0_1 and decrements the number of
elements to be processed in register lr. It also ensures that, for the last iteration, the right vector
lanes are enabled or disabled, for example, it takes care of the tail-predication. Using Arm Compiler
6, tail-predicated loops can be generated from source code or intrinsics.

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Vector instruction example:VMLADAVA

5. Vector instruction example:VMLADAVA
The next example is the Vector Multiply Accumulate Add Accumulate Across Vector (VMLADAVA)
instruction. This example introduces both the VMLADAVA instruction and the non-accumulating
variant, VMLADAV.

The VMLADAV instruction multiplies together the corresponding lanes of two input vectors, then
sums these individual results to a produce a single value.

The following diagram shows an example for the VMLADAV instruction:

Figure 5-1: VMLADAV simplified operation

Like the VMLADAV instruction, VMLADAVA multiplies together the corresponding lanes of two input
vectors, then sums these individual results to produce a scalar value. The difference to VMLADAV is
that this summed scalar result is then added to an existing value in the specified scalar register.

The following diagram shows an example for the VMLADAVA instruction:

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Vector instruction example:VMLADAVA

Figure 5-2: VMLADAVA simplified operation

The following code fragment shows how to write a program with intrinsics using VMLADAV and
VMLADAVA instructions:

int main(void)
{
 // Declare the arrays and the scalar value
 const int arrayone[] = {3, 4, 6, 5};
 const int arraytwo[] = {1, 2, 3, 4};

 int32_t Scalar = 0;

 // Declare pointers to the two input vector arrays
 int32_t *pone = arrayone;
 int32_t *ptwo = arraytwo;

 // Load the values from the arrays
 int32x4_t VectorOne = vld1q_s32 (pone);
 int32x4_t VectorTwo = vld1q_s32 (ptwo);

 // Use VMLADAV to multiply the vector elements and sum the results
 Scalar = vmladav (VectorTwo, VectorOne);
 printf("Sum of products (VMLADAV) = %d\n", Scalar);
 // Use VMLADAVA to multiply the vector elements and sum the results, adding to
 the existing value in Scalar
 Scalar = vmladava (Scalar, VectorTwo, VectorOne);
 printf("Accumulated sum of products (VMLADAVA) = %d\n", Scalar);

 return EXIT_SUCCESS;
 return EXIT_SUCCESS;
}

When you run the program, you see the following:

Sum of products (VMLADAV) = 49
Accumulated sum of products (VMLADAVA) = 98

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Vector instruction example:VMLADAVA

These are further examples to show the VMLADAV and VMLADAVA instructions:

// 16-bit Vector Multiply Add Dual Accumulate Across Vector
MOV R2, #0
MOV R3, #1000
VIDUP.U16 Q0, R2, #1 // Generates incrementing sequence, starting at 0
 with step of 1
VMUL.S16 Q0, Q0, R3 // Multiply by 1000
VDDUP.U16 Q1, R2, #1 // Generates decrementing sequence, starting at 8
 with step of 1
VMUL.S16 Q1, Q1, R3 // Multiply by 1000

// non-accumulated
 // Q0 = [0 1000 2000 3000 4000 5000 6000 7000]
 // Q1 = [8000 7000 6000 5000 4000 3000 2000 1000]
VMLADAV.S16 R0, Q0, Q1 // R0 = sum(Q0[i] * Q1[i])
 // R0 = 84000000

// with accumulation
 // Q0 = [0 1000 2000 3000 4000 5000 6000 7000]
 // Q1 = [8000 7000 6000 5000 4000 3000 2000 1000]
VMLADAVA.S16 R0, Q0, Q1 // R0 = R0 + sum(Q0[i] * Q1[i])
 // R0 input = 84000000
 // R0 output = 168000000

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Check your knowledge

6. Check your knowledge
The following questions helps you test your knowledge:

Which predication type fills false predicated lanes with the corresponding element from the
inactive vector?

Merging

In the instruction VMLA.S32, what does the S32 indicate?
S32 indicates that each vector lane loaded by the VMLA instruction contains a 32-bit signed
integer.

Which type of load is used to unpack data, and which type of store is used to pack data?
Widening load is used to unpack the data and a narrowing store is used to pack the data.

Does Helium contain 8 or 16 vector registers?
Helium contains 8. Neon contains 16

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 25

Introduction to Helium guide Document ID: 102102_0103_02_en
Version 1.3

Related information

7. Related information
Here are some resources related to material in this guide:

• Arm architecture and reference manuals

• Arm Community: Ask development questions and find articles and blogs on specific topics from
Arm experts.

• Armv8-M Architecture Reference Manual

• Arm Compiler toolchain Compiler Reference

• Arm Compiler User Guide: Selecting optimization options

• Arm Compiler 6.14

• Getting started with Arm Helium: The new vector extension for the M-profile Architecture

• White paper, Introduction to the Armv8.1 architecture

Copyright © 2020–2022, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 25

https://developer.arm.com/docs
https://community.arm.com/
https://developer.arm.com/docs/ddi0553/latest
https://developer.arm.com/docs/dui0491/h/language-extensions/restrict
https://developer.arm.com/docs/100748/0612/using-common-compiler-options/selecting-optimization-options
https://developer.arm.com/tools-and-software/embedded/arm-compiler/downloads/version-6/6-14
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-helium-the-new-vector-extension-for-arm-m-profile-architecture
https://pages.arm.com/introduction-armv8.1m.html

	Introduction to Helium guide
	Contents
	1. Overview
	2. Helium registers
	3. Predication
	4. Vector instruction example:VMLA
	5. Vector instruction example:VMLADAVA
	6. Check your knowledge
	7. Related information

