
Optimization advice for graphics content on
mobile devices
Version 1.0

Non-Confidential
Copyright © 2021, 2024 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
102643_0100_01_en

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Optimization advice for graphics content on mobile devices

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-00 10 August 2021 Non-Confidential Initial release

0100-01 3 January 2024 Non-Confidential Minor updates

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 24

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 24

mailto:terms@arm.com

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01
Contents

Contents

1. Overview...6

2. Improving CPU bound content... 7

3. Improving CPU to GPU scheduling bound content... 8

4. Data resource issues.. 9

5. Improving fragment bound content...11

6. Improving GPU queue scheduling bound content... 13

7. High arithmetic load.. 15

8. High culling percentage.. 16

9. High draw calls..17

10. High load store... 18

11. High overdraw.. 19

12. High texture load... 20

13. High varying load...21

14. Improving thermally bound applications..22

15. Improving non-fragment bound content..23

16. Related information...24

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Overview

1. Overview
These topics provide advice on how to optimize your Android application by avoiding common
graphics problems that might cause your application to run slow, or cause the device to overheat.

Arm Mobile Studio can help you to identify performance bottlenecks, and determine where your
application is CPU, vertex or fragment bound. Once you know this, use the advice here to increase
your application’s performance:

• Avoid redundant work

• Reduce precision

• Issue only visible draws, in the right order

• Optimize shader programs

• Use texture compression, mesh level-of detail and mipmapping techniques.

For further best practises for Mali-based devices, you can also refer to the Mali GPU best practises
guide.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 24

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio
https://developer.arm.com/docs/101897/latest
https://developer.arm.com/docs/101897/latest

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Improving CPU bound content

2. Improving CPU bound content
Content that is CPU bound fails to hit its target performance due to high software processing
demands. There are two causes of CPU boundness: Critical path load and high aggregate load.

Critical path load
High critical path load is caused when a single thread, or a synchronized sequence of multiple
threads, creates a bottleneck. It is the most common type of CPU bottleneck found in applications
running on multi-core mobile devices. To improve performance, you must reduce the CPU load on
this critical path, either by optimizing content to reduce cost or by moving work into threads that
can execute in parallel.

High aggregate load
High aggregate load occurs when the total cumulative load of the executing processes and
application threads is too high. In this scenario, poor performance is not due to a single thread or
critical path, so you must reduce any CPU workload across all threads to improve performance.

Improving render thread performance
High loads can occur when the application rendering thread makes poor use of the native
graphics API. Here are some recommended best practices for reducing the CPU cost of rendering
operations:

1. Perform expensive software operations at level load time, not during gameplay. This could
include operations such as shader compilation, program linking, large buffer upload, and large
texture data upload.

2. Do not modify buffers or textures that are still referenced by in-flight draw calls, unless you are
using MAP_UNSYNCHRONIZED to disable resource dependency tracking.

3. Large numbers of draw calls are expensive for the CPU to process, so you should aim to reduce
the number of draw calls. Refer to the advice page for high draw calls for tips on how to do
this.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 24

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/advice/high-draw-calls

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Improving CPU to GPU scheduling bound content

3. Improving CPU to GPU scheduling bound
content

Content that is CPU-to-GPU scheduling bound fails to hit its target frame rate, but neither CPU
nor GPU is kept busy because of workload serialization across the CPU-GPU interface.

The rendering process is designed to be asynchronously pipelined. The CPU puts new rendering
work into a queue, to be processed by the GPU some time later. For content that is not hitting
target performance, we want the CPU to keep some work in this queue. If the queue ever empties,
then the GPU will go idle and performance is wasted.

The main cause for this queue to empty is where the CPU is blocked and is waiting for some of the
queued work to complete. When it is blocked, the CPU stops adding more rendering to the queue,
so it is possible for the queue to drain. Here are some recommendations to avoid this issue:

1. Avoid using API calls that force a pipeline drain, such as glFinish() or a synchronous
glReadPixels().

2. Avoid using glMapBuffer() on a buffer that is still referenced by an in-flight draw call or
compute dispatch, unless you are using MAP_UNSYNCHRONIZED.

3. Use query objects and client-side fences in a pipelined way, waiting for the result at least one,
and ideally two, frames after the query or fence was submitted to the command stream.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Data resource issues

4. Data resource issues
The CPU controls the rendering process. It provides new data, such as transforms and light
positions for every frame. GPU processing is asynchronous. This means data resources may be
referenced by a queued command, and sit in the command stream for some time. OpenGL ES
needs rendering to reflect the state of the resources at the time the draw call was made, so
resources can’t be modified until the GPU workload referencing them completes.

Figure 4-1: Rendering pipeline

Resources

Commands

Window
Surface

Attempting to modify a resource that’s still referenced will usually trigger the creation of a new
copy of that resource. This will avoid stalling the pipeline, but it creates significant CPU overhead.
In effect, we need to make a new memory allocation, then copy data to populate the parts which
were not replaced. This is often referred to as resource ghosting.

Streamline lets you pinpoint instances of high CPU load. Where this is being caused by resource
ghost creation, you might see high-time inside the graphics driver libGLES_Mali.so, in the Call
Paths or Functions views.

Figure 4-2: The Call Paths and Function views in Streamline

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 24

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/components/streamline-performance-analyzer

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Data resource issues

There are two ways to resolve this problem:

• The application creates multiple buffers (or textures) and uses them in a round-robin fashion.
The aim here is to have enough buffers in the rotation that all pending references have dropped
by the time they are reused in a later frame.

• Use glMapBufferRange with GL_MAP_UNSYNCHRONIZED. You can then build the rotation using
subregions inside a single buffer. This avoids the need for multiple buffers, however, you
will need to manage the subregion dependencies in application logic. Avoid specifying
the MAP_INVALIDATE flag. Arm is a unified memory architecture, so the flag can be safely
omitted. In fact on some older Mali driver releases, specifying INVALIDATE would override the
unsynchronized behavior and re-trigger ghosting.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Improving fragment bound content

5. Improving fragment bound content
Content that is fragment bound fails to hit its target performance due to high fragment processing
demands. There are three main causes of slow fragment performance.

• Too many fragments to shade

• Too many shader cycles per fragment

Content that causes poor fragment processing efficiency

One of the most common problems is with content that tries to shade too many fragments, or
fragments that are too expensive, given the performance capabilities of the target GPU. This is a
particularly common problem in mass-market devices, which have smaller GPU configurations than
high-end smartphones, but have a similar screen resolution. For these devices it is a useful exercise
to set a per-pixel performance budget to help guide design choices.

Set a performance budget
Consider a device with a Mali-G72 MP2, a two core and two pixel-per-clock GPU, running at
600MHz. The best-case cycle budget for this device when targeting 1080p 60FPS is:

pixelsPerSecond = 1920 * 1080 * 60 = 124,416,000
 cyclesPerSecond = 2 * 600,000,000 = 1,200,000,000
 cyclesPerPixel = cyclesPerSecond / pixelsPerSecond = 9.6

This budget assumes 100% shader core utilization and must include all frame costs, including
vertex shading. This is a usable budget for a 2D game or a simple 3D game, but it’s impossible to
run a high-end rendering pipeline inside this budget. The first set of choices that you should review
for mass market devices are therefore the target resolution and frame rate, as these are easy to
change and have the biggest impact on the overall pipeline cost. Dropping the target configuration
to 720p 30FPS frees up a lot of processing capacity, increasing the cycle budget to over 40 cycles
per pixel.

Minimize the number of fragments
Once those coarse settings have been decided, it is important to minimize the number of fragments
that must be shaded for each frame, as rendering multiple layers of fragment per pixel can rapidly
consume valuable cycles.

1. Render opaque objects from front-to-back. Objects closes:

a. Disable blending

b. Disable alpha-to-coverage

c. Reduce the number of shaders that use discard statements.

This will maximize the number of fragments killed by early depth testing and hidden surface
removal.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Improving fragment bound content

2. Review menus and user interfaces for efficient use of transparent layers; layers of 2D interface
components can quickly accumulate into a high layer count, which is expensive to process even
if the layers themselves are simple.

Minimize processing cost per fragment
For fragments that are required, you should reduce the processing cost per fragment. Exactly what
is required depends on the dominant shader pipeline, but here are some best practises:

1. Reduce the precision of computation - mediump arithmetic is faster than highp arithmetic.

2. Reduce the precision of per-vertex inputs - mediump varying values use less memory and
interpolate faster than highp varying values.

3. Reduce texture filtering complexity - bilinear (LINEAR_MIP_NEAREST) filtering is faster than
trilinear (LINEAR_MIP_LINEAR) filtering, and you should only use anisotropic filtering sparingly.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Improving GPU queue scheduling bound content

6. Improving GPU queue scheduling bound
content

Content that is GPU queue scheduling bound fails to hit its target frame rate, and the GPU is busy
all of the time, but neither GPU queue is kept busy because of workload serialization across them.

The Mali tile-based rendering process is designed to parallelize across the two GPU queues. One
render pass is being vertex shaded in one queue, while an earlier pass is being fragment shaded
in the other. This parallel processing ensures the most efficient use of the available processing
resources.

Figure 6-1: Vertex and fragment tile-based rendering

FragmentFragment

VertexVertex

OpenGL ES
For OpenGL ES, serialization across queues commonly occurs because of data dependencies
between render passes. For example, if a vertex shader in render pass N reads a texture written to
by the fragment stage in render pass N-1 then it can not start until render pass N-1 has completed.

Figure 6-2: Vertex shader in render pass

FragmentFragment

Vertex

Bubble

Vertex
Dep

Aim to minimize these dependencies by inserting non-dependent work between the two
dependent processing stages, allowing other work to fill the bubble.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Improving GPU queue scheduling bound content

Figure 6-3: Vertex dependency in the fragment bubble

FragmentFragment Fragment

VertexVertexVertex

Dep

Vulkan
For Vulkan, workload dependencies are explicitly stated by the application, so the most
common cause for queue-to-queue scheduling issues is where the application specifies overly
conservative dependencies that force serialization when it is not required. For example, specifying
rcStage=BOTTOM_OF_PIPE and dstStage=TOP_OF_PIPE makes all render passes run serially with no
parallel processing.

Your application should specify the most relaxed dependencies possible while still maintaining
correctness. This means that srcStage should be as early in the pipeline as possible, and dstStage
should be as late in the pipeline as possible. For cases where the minimal valid dependencies still
cause slot serialization, follow the advice stated for OpenGL ES above, and insert non-dependent
work between the dependent passes to fill the bubble.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

High arithmetic load

7. High arithmetic load
For applications that are GPU limited, and have high shader loads dominated by arithmetic
processing, the solution is to reduce arithmetic complexity in the shaders.

To reduce arithmetic load:

1. Reduce precision - mediump computation can be twice as fast as highp computation.

2. Avoid branch divergence - divergent branches within the threads of a warp reduce arithmetic
efficiency as not all threads are active when executing divergent code paths.

3. Vectorize operations - Mali Midgard GPUs use SIMD arithmetic logic, so matrix and vector
operations in the source code are more likely to vectorize well into SIMD operations than scalar
operations.

4. Move processing from per-fragment to per-vertex, to lower evaluation frequency.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

High culling percentage

8. High culling percentage
Triangles are expensive inputs to a GPU, so it is critical to make sure that they are used wisely.
Triangles that are thrown away during primitive culling have no visual benefit to the scene, so you
should aim to optimize draw call dispatch on the GPU to minimize the number of primitives that are
culled.

For well-performing 3D content, it is expected that half of all triangles are culled due to the facing
test, because they make up the side of a model that is facing away from the camera. If significantly
fewer triangles than this are being killed by the facing test, check that back-face culling is enabled
for as many draw calls as possible.

The frustum test runs after the facing test and kills triangles that are outside of the view frustum.
Aim to minimize the number of primitives killed by this test by filtering out as much as possible on
the CPU, discarding a draw call when all objects that it contains are outside of the view frustum.

The sample test runs last, and kills triangles that are so small that they hit no sample points. Any
measurable level of culling detected at this stage is indicative of an application using very dense
geometry, which is very expensive for the GPU to process.

Avoid tiny triangles by:

1. Using dynamic mesh level-of-detail to select simpler meshes as objects get further from the
camera.

2. Using texture pseudo-geometry techniques such as normal mapping to replace fine detail
physical geometry.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

High draw calls

9. High draw calls
Large numbers of draw calls are expensive for the CPU to process, so it is important to reduce the
number of draw calls, particularly those that have no visible impact on the scene.

To reduce the number of draw calls:

1. Use software culling techniques to discard objects that are not visible to the camera, reducing
the number of API draw calls. Techniques could include using algorithms such as bounding
box intersection with the camera frustum (test if a spatial volume is visible), and portal visibility
checks (test if a room is visible).

2. Use object batching techniques to merge multiple objects into a single draw, reducing the
number of API draw calls.

Related information
For more information about best practises for handling draw calls, refer to the following topics in
the Mali GPU best practises guide:

• Draw call batching

• Draw call culling

• Optimizing the draw call render order

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 24

https://developer.arm.com/docs/101897/latest/optimizing-application-logic/draw-call-batching-best-practices
https://developer.arm.com/docs/101897/latest/optimizing-application-logic/draw-call-culling-best-practices
https://developer.arm.com/docs/101897/latest/optimizing-application-logic/optimizing-the-draw-call-render-order

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

High load store

10. High load store
To improve the performance of applications that are GPU-limited, and that have high shader
loads dominated by load/store operations, you should improve memory access efficiency and
vectorization in your shader programs.

To reduce a high load/store load:

1. Improve access density, by using vector loads in compute shaders, and access patterns that
touch adjacent data from adjacent threads in each warp. This will enable a single cache line
access to return data for multiple threads.

2. Reduce cache pressure, by reducing precision and improving spatial locality of accesses.

3. Avoid using imageLoad() calls for read-only texture accesses. Use texture() calls instead.

4. Avoid using atomic calls, because they have a high per-thread cost.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

High overdraw

11. High overdraw
Content that has a high degree of overdraw - multiple fragments shaded per output pixel - can
suffer from poor performance because of the cumulative cost of shading all of the layers. This can
occur even if the layers are individually simple, especially for devices running at high resolutions
and frame rates.

Reduce overdraw in your application by:

1. Ensuring draw calls are opaque:

a. Disable blending

b. Disable alpha-to-coverage

c. Avoid shaders that use discard statements.

2. Splitting large UI elements with a mixture of opaque and transparent parts into two draw calls;
one for the opaque parts and one for the transparent parts.

3. Changing the content to reducing the number of layers, pre-baking layers of transparency into
a single flattened texture where possible.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

High texture load

12. High texture load
To improve the performance of applications that are GPU-limited, and that have high shader load
dominated by texture processing, you should reduce texture filtering complexity.

To reduce a high texture load:

1. Reduce filtering quality

• Bilinear (LINEAR_MIP_NEAREST) filters are twice as fast as trilinear (LINEAR_MIP_LINAR)
filters.

• A lower level of MAX_ANISOTROPY will limit how many texture samples are made per
shader operation.

2. Reduce sampler precision - mediump sampler types need less data than highp samplers.

3. Reduce data size:

• Use texture compression

• Use mipmaps

• Use ASTC_decode_mode for ASTC textures

• Use narrower uncompressed formats.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

High varying load

13. High varying load
To improve the performance of applications that are GPU-limited, and that have high shader loads
dominated by varying interpolation processing, you should reduce interpolation complexity in your
shader programs.

To reduce a high varying load:

1. Reduce precision - mediump interpolation is twice as fast as highp interpolation.

2. Pack mediump vectors into multiples of 32-bits.

Vectors that are a multiple of 32 bits in length are more efficient than non-
packed vectors. For example, a mediump vec2 + vec2 pair is faster than a
mediump vec3 + float pair.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 24

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Improving thermally bound applications

14. Improving thermally bound applications
When under a high processing load, high-end smartphones and tablets can produce more heat
than they can dissipate. If such a load is prolonged, the device starts to throttle its performance
to avoid overheating, reducing CPU and GPU performance until a thermally-sustainable level
is reached. To maintain smooth gameplay and a consistent frame rate, you should aim to make
efficient use of the available CPU, GPU, and memory bandwidth to avoid pushing the device into a
thermally unsustainable performance requirement.

When a device is thermally bound, optimizing any workload, even if it is not the highest load, will
improve the thermal situation. You should review the following areas:

1. DRAM access is very power intensive, costing approximately 100pJ per byte for LPDDR4. Aim
to reduce the number of memory accesses per frame. To do this:

• Reduce the resolution of render passes, and use narrower attachment color formats.

• Use simpler meshes with reduced vertex count and attribute precision

• Use texture compression and mipmapping.

2. For CPU processing, Arm-based devices often use multiple different CPU designs, using
big.LITTLE or DynamIQ technology. These designs mix “big” cores, which have high
performance, and “LITTLE” cores, which are slower but much more energy efficient. When
thermally bound you should aim to get as much work as possible running on the “LITTLE”
cores, by using a mixture of optimization and multi-threading.

3. For GPU processing, reduce the precision of computation in shaders; mediump uses half the
energy per operation of a highp operation.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 24

https://www.arm.com/why-arm/technologies/big-little
https://www.arm.com/why-arm/technologies/dynamiq

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Improving non-fragment bound content

15. Improving non-fragment bound content
If you have established that your content that is not fragment bound, it might be failing to hit its
target performance due to high vertex processing or compute demands, such as:

• High vertex count

• Large vertex data size

• Vertex shader complexity

• Expensive compute shaders

Vertices are one of the most expensive inputs into a render, so it is important that they are used
efficiently. Typically, each vertex requires between 32 and 64 bytes of input attribute data and
high-precision shader processing to accurately compute their position. You should aim to keep
triangles as large as possible to amortize the high per-vertex shader processing and memory
bandwidth cost.

Here are some recommended best practices for reducing the CPU cost of rendering operations:

1. Use dynamic mesh level-of-detail to dynamically select a suitable mesh triangle density based
on the distance between the object and the camera.

2. Use pseudo-geometry techniques, such as normal mapping, to replace mesh geometry with
textures and shader computation.

3. Use higher densities of triangles only to enhance areas that normal maps do not, such as
silhouette edges of objects.

4. Use smaller data types such as half-float, and minimize padding, to reduce the number of bytes
of data per vertex.

5. Separate position-related attributes from those related to non-position calculations and store
them tightly-packed in separate buffer regions. This maximizes the bandwidth savings from the
Mali index-driven vertex shading scheme.

Caveats
In addition to the direct cost of vertex shading, complex meshes can also reduce fragment shading
efficiency. This is because the cost incurred per triangle - such as rasterization and vertex data
fetch - is not amortized over very many fragments. In addition, small triangles are more likely to
only partially cover each 2x2 pixel quad used by fragment shading, meaning that more quads must
be shaded to achieve the same screen coverage.

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 24

https://developer.arm.com/tools-and-software/graphics-and-gaming/arm-mobile-studio/advice/fragment-bound
https://developer.arm.com/solutions/graphics-and-gaming/developer-guides/learn-the-basics/the-bifrost-shader-core/index-driven-geometry-pipeline

Optimization advice for graphics content on mobile devices Document ID: 102643_0100_01_en
Issue: 01

Related information

16. Related information
Useful information and shortcuts to next steps.

• Graphics developer guides

• Graphics and gaming blogs

• Ask a question on the Arm graphics and gaming forum

Copyright © 2021, 2024 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 24

https://developer.arm.com/solutions/graphics-and-gaming/developer-guides
https://community.arm.com/developer/tools-software/graphics/b/blog?_ga=2.245195777.562073787.1628502631-616249991.1623083451
https://community.arm.com/developer/tools-software/graphics/f/discussions?_ga=2.245195777.562073787.1628502631-616249991.1623083451

	Optimization advice for graphics content on mobile devices
	Contents
	1. Overview
	2. Improving CPU bound content
	3. Improving CPU to GPU scheduling bound content
	4. Data resource issues
	5. Improving fragment bound content
	6. Improving GPU queue scheduling bound content
	7. High arithmetic load
	8. High culling percentage
	9. High draw calls
	10. High load store
	11. High overdraw
	12. High texture load
	13. High varying load
	14. Improving thermally bound applications
	15. Improving non-fragment bound content
	16. Related information

