

Whitepaper

Spectre-BHB: Speculative Target Reuse Attacks
Version 1.8-r0p2

Overview
Branch prediction allows modern CPUs, including those from Arm, to speculatively select the
instruction stream based on multiple mechanisms that consider the branch instruction
information including the history of previously executed branches. On Arm CPUs, that
information is stored in an internal structure sometimes referred to as the Branch History
Buffer (BHB). The architecture does not describe such mechanisms, and implementations can
make use of different techniques to speculatively change the instruction stream. This
particular attack, known as Spectre-BHB [1], has been assigned the CVE number CVE-2022-
23960.

While Spectre-BHB is similar to Spectre v2 [2], the CSV2 hardware features introduced to
mitigate against Spectre v2 do not work against Spectre-BHB. This whitepaper discusses the
differences between the two attacks and describes the mitigations necessary to protect
against Spectre-BHB.

Spectre v2

Description
Code running in a Variant 2 vulnerable CPU in one security domain or context (i.e., security
state, exception level, VM, or process) could train the branch predictor to induce another
context to speculate over incorrect instruction streams. See Figure 1. Transient execution
attacks have shown that this mis-speculation in one context can leave traces (e.g., cache
allocations) to be later measured from another context to infer secret information.

Figure 1. Spectre v2 attack. (1) Adversary trains branch predictor from the adversary’s own context to branch to address
0x500, where the victim VA space contains an exfiltration gadget. (2) Victim executes a branch instruction and consumes
the prediction generated for the adversary, leading to speculative leakage.

FEAT_CSV2
Arm added FEAT_CSV2 which provides additional restrictions on the architecture to filter
branch prediction by the hardware described context (e.g., security state + exception level +
VMID + ASID, and optionally SCXTNUM1) that the processor is in. The purpose of these
restrictions is to prevent code running in one context from training the branch predictors in
an adversary-controlled way, that could induce other contexts to speculatively leak secret
data. With FEAT_CSV2, code running in one context cannot inject the targets consumed by
branch predictions in another context. See Figure 2.

Figure 2. FEAT_CSV2 separates predictions by context, in such a way that predictions made for the adversary cannot be
consumed by the victim. (1) Adversary trains branch predictor from her own context to branch to address 0x500, where
the victim VA space contains an exfiltration gadget. (2) Victim executes a branch instruction, but because the entry’s
context differs no prediction is made.

1 Software Context Numbers allow to define finer grained contexts to separate security domains running in the
same process. For instance, to separate an eBPF program from the rest of the kernel or isolate the JavaScript
code in a web browser.

Spectre-BHB

Description
Since FEAT_CSV2 stops an adversary from controlling predictions in another context, Spectre-
BHB instead forces and exploits the mis-prediction of the victim’s own predictions. For that,
it relies on the fact that many implementations use, along with the branch information, a
globally shared branch history to inform branch predictions. In such implementations, the
adversary could tamper with the branch history from one context and force mis-predictions
in another context, leading to speculative execution of incorrect instruction streams. See
Figure 3.

Figure 3. (1) Victim runs normally, executing an indirect branch with different safe targets (“foo” and “bar”), and some
other branch to a potential (given the right register values) exfiltration “gadget”. This makes several branch predictions in
the victim’s context. (2) The adversary tampers the global branch history, forcing the combination of PC=N and history to
alias with the “gadget” entry. (3) The victim executes an allegedly safe branch that is mis-predicted, redirecting the control
flow to a gadget that, with adversary-controlled registers, causing speculative leakage.

Practicality of target reuse attacks

The complexity of this attack is higher than conventional Spectre v2, as it requires:

1. The existence of an exfiltration primitive in the victim’s domain that is predicted as a
valid branch target as the result of the victim’s normal execution.

2. Adversary’s control over the mis-prediction (e.g., via the branch history) right before
the branch; the more instructions executed in between—the adversary’s control
sequence and the victim’s branch—the less control.

This contrasts with traditional Spectre v2, where the adversary could directly train the
predictor across contexts with arbitrary branch targets. Furthermore, since a valid target will
usually point to a valid function entry point rather than right to the exfiltration gadget, a
longer speculation window is required. Whilst this alone is not sufficient to stop an attack, it
adds to the list of constraints.

Branch target misprediction is an inherent problem of any efficient predictor implementation.
For instance, in the best case, consider an indirect branch with multiple targets. It is unlikely
that the predictor will not mis-predict from time to time. This case is similar to the conditional
branch misprediction of Spectre v1, where the adversary invokes the victim several times to
train the prediction into a certain direction before triggering the mis-speculation.

However, the problem is exacerbated when the predictor can mix targets used by branches
at different locations (among an aliased subset or among all branches), and even more when
the adversary has active control over the misprediction (e.g., via the branch history). This
control implies that the adversary can reliably repeat a specific misprediction:
deterministically (i.e., occurs each time), or probabilistically (i.e., occurs after enough
repetitions).

Mitigations

On CPUs affected by Spectre-BHB, to protect against attacks across exception levels or
security states, Arm recommends adding a loop to discard the branch history on exception
entry to a higher exception level. That loop will execute some core specific number (“K”) of
iterations.

If the core implements the Speculation Barrier instruction (SB), then the following sequence
should be used:
 MOV x0, #K // core specific number

loop:

 B PC+4

 SUBS x0, x0, #1

 BNE loop

 SB

Otherwise, the following sequence should be used:
 MOV x0, #K // core specific number

loop:

 B PC+4

 SUBS x0, x0, #1

 BNE loop

 DSB

 ISB

Table 1 contains the list of affected cores and their required K values:

Core K value CSV2 ECBHB
Cortex-A15 8 N/A no

Cortex-A57 8 0000 no

Cortex-A65 (see note 4 below) 0001 no

Cortex-A65AE (see note 4 below) 0000 no

Cortex-A72 prior to r1p0 8 0000 no

Cortex-A72 from r1p0 8 0001 no

Cortex-A73 (see note 2 below) N/A no

Cortex-A75 (see note 2 below) N/A no

Cortex-A76 24 0001 no

Cortex-A76AE 24 0001 no

Cortex-A77 24 0001 no

Cortex-A78 32 0001 no

Cortex-A78AE 32 0001 no

Cortex-A78C 32 0001 no

Cortex-X1 32 0001 no

Cortex-X2 32 0010 no

Cortex-X3 prior to r1p1 132 0010 no

Cortex-X3 from r1p1 132 0010 yes

Cortex-A710 32 0010 no

Cortex-A715 prior to r1p1 38 0010 no

Cortex-A715 from r1p1 38 0010 yes

Cortex-A720 38 0010 yes

Neoverse E1 (see note 4 below) 0001 no

Neoverse N1 24 0001 no

Neoverse N2 32 0010 no

Neoverse V1 32 0001 no

Neoverse V2 prior to r0p1 132 0010 no

Neoverse V2 from r0p1 132 0010 yes

Table 1. Number of iterations required to override the branch history. CSV2 values: 0b0000=not
disclosed; 0b0001=Spectre-v2 mitigation w/o SCXTNUM; 0b0010=Spectre-v2 mitigation and
SCXTNUM. Support for ECBHB.

Notes:

1. Even though the Cortex-A15, the Cortex-A57, and the Cortex-A72 prior to r1p0 do not
implement FEAT_CSV2, the mitigation with the loop iterations specified for the
Cortex-A72 from r1p0 will work to mitigate against Spectre-BHB.

2. Mitigating Spectre-BHB on the Cortex-A73 and Cortex-A75 requires the entire branch
predictor to be invalidated, regardless of whether the revision implements
FEAT_CSV2. In Aarch64, functionality can only be implemented in firmware.
Accordingly, a new Secure Monitor Call SMCCC_ARCH_WORKAROUND_3 is specified
to implement the mitigation on these (and similarly affected) cores.

3. While the Cortex-A510 does implement FEAT_CSV2, there is sufficiently limited load
speculation that it should not be possible to create a practical attack using Spectre-
BHB.

4. The mitigation for these cores consists of disabling and re-enabling the MMU at the
highest implemented exception level.

Cores without FEAT_CSV2

The mitigations for Spectre v2, which involve flushing all branch predictions via an
implementation specific route on every context switch, will also mitigate against Spectre-BHB.
Accordingly, this is the recommended mitigation for cores like the A72 (prior to r1p0) and A57
which do not implement FEAT_CSV2.

Same context attacks

Environments like eBPF augment the risk of this class of attacks. eBPF programs can run in the
same context as the rest of the kernel, allowing adversariess 1) to insert exfiltration gadgets
(removing the need to find a suitable one in the kernel), and 2) to control the misprediction
from the same context (rendering mitigations triggered on context switch, such as
FEAT_ECBHB, insufficient).

Given the broad range of attack vectors for eBPF, and the high-performance requirements,
Arm strongly recommends that systems ensure that only eBPF code supplied by trusted
parties is used. Please note that since eBPF is not supplied or developed by Arm, we cannot
guarantee security for different instances of eBPF.

Please also note that some environments provide mechanisms for signing eBPF code to
ensure the trustworthy nature of this code.

Hardware Mitigations

CLRBHB

A new instruction, CLRBHB will be added in HINT space. This instruction is implemented as
part of FEAT_CLRBHB, which is optional in all versions of the architecture from Armv8.0 to
Armv8.8, and from Armv9.0 to Armv9.3.

CLRBHB clears the branch history for the current context to the extent that branch history
information created before the CLRBHB instruction cannot be used by code before the
CLRBHB instruction to exploitatively control the execution of any code in the current context
appearing in program order after the instruction.

Allocation:

• AArch64: the CLRBHB instruction is allocated in Hint space, using HINT #22.
• AArch32, T32: HINT 001, with option 0110 is allocated as CLRBHB
• AArch32, A32: Move Special Register and Hints (immediate) instructions with
R:imm4 ==00000 and imm12== (0000)00010110 is allocated as CLRBHB

Current implementations are protected against Spectre-BHB with the current loop value,
while future implementations that might need a larger loop value would be built with the
CLRBHB instruction so this sequence would be generically useful.

For future implementations, code that knows that CLRBHB has been implemented could omit
the loop.

The CLRBHB instruction is completed by a subsequent ISB instruction executed by the same
core.

An ID field ID_AA64ISAR2_EL1<31:28> is allocated as the CLRBHB field for the identification
of CLRBHB in AArch64 as follows:

• 0000 - Hint #22 is a NOP
• 0001 - Hint #22 is implemented as CLRBHB

All other values reserved.

The ID_ISAR6/ID_ISAR6_EL1<31:28> field is allocated as the CLRBHB field for the
identification of CLRBHB in AArch32 as follows:

• 0000 - CLRBHB is a NOP
• 0001 - The CLRBHB instruction is implemented

All other values reserved.

FEAT_ECBHB

The Arm architecture introduces a new feature FEAT_ECBHB, which requires that the branch
history information created in a context before an exception to a higher exception level using
AArch64 cannot be used by code before that exception to exploitatively control the execution
of any code in a different context after the exception.

FEAT_ECBHB is optional in all versions of the architecture from Armv8.0 to Armv8.8, and from
Armv9.0 to Armv9.3

An ID field ID_AA64MMFR1<63:60>, is allocated as the ECBHB field to allow the
identification of FEAT_ECBHB:

• 0000 – The implementation does not disclose whether the branch history information
created in a context before an exception to a higher exception level using AArch64 can
be used by code before that exception to exploitatively control the execution of any
code in a different context after the exception.

• 0001 – The branch history information created in a context before an exception to a
higher exception level using AArch64 cannot be used by code before that exception
to exploitatively control the execution of any code in a different context after the
exception.

All other values reserved.

CSV2 Update

In the ID field ID_AA64PFR0_EL1.CSV2, a new encoding is added:

• 0b0011 Branch targets and branch history trained in one hardware-described context
can exploitatively control speculative execution in a different hardware-described
context only in a hard-to-determine way. The SCXTNUM_ELx registers are supported,
and the contexts include the SCXTNUM_ELx register contexts.

This feature is described as FEAT_CSV2_3 and is optional to all versions of the architecture
from Armv8.0 and Armv9.0.

References
1. “Branch History Injection”

https://www.vusec.net/projects/bhi-spectre-bhb/
2. “Spectre attacks: Exploiting speculative execution”. Paul Kocher, Jann Horn, Anders

Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, et al. (2019)

https://www.vusec.net/projects/bhi-spectre-bhb/

	Overview
	Spectre v2
	Description
	FEAT_CSV2

	Spectre-BHB
	Description
	Practicality of target reuse attacks

	Mitigations
	Cores without FEAT_CSV2
	Same context attacks

	Hardware Mitigations
	CLRBHB
	FEAT_ECBHB
	CSV2 Update

	References

