
Arm® Compiler
Version 6.12

armasm User Guide

Copyright © 2014–2019 Arm Limited or its affiliates. All rights reserved.
100069_0612_00_en

Arm® Compiler
armasm User Guide
Copyright © 2014–2019 Arm Limited or its affiliates. All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential Arm Compiler v6.00 Release

B 15 December 2014 Non-Confidential Arm Compiler v6.01 Release

C 30 June 2015 Non-Confidential Arm Compiler v6.02 Release

D 18 November 2015 Non-Confidential Arm Compiler v6.3 Release

E 24 February 2016 Non-Confidential Arm Compiler v6.4 Release

F 29 June 2016 Non-Confidential Arm Compiler v6.5 Release

G 04 November 2016 Non-Confidential Arm Compiler v6.6 Release

0607-00 05 April 2017 Non-Confidential Arm Compiler v6.7 Release. Document numbering scheme has
changed.

0608-00 30 July 2017 Non-Confidential Arm Compiler v6.8 Release.

0609-00 25 October 2017 Non-Confidential Arm Compiler v6.9 Release.

0610-00 14 March 2018 Non-Confidential Arm Compiler v6.10 Release.

0610-01 01 June 2018 Non-Confidential Document update to include the CSDB instruction for the Arm
Compiler v6.10 Release.

0611-00 25 October 2018 Non-Confidential Arm Compiler v6.11 Release. Removed the A32/T32 and A64
instruction set descriptions.

0612-00 27 February 2019 Non-Confidential Arm Compiler v6.12 Release. Removed the A32/T32 and A64
instruction set descriptions.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in
this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other
rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of
this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is

 Arm® Compiler

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

2

Non-Confidential

not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is
not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at
any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the
conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if
there is any conflict between the English version of this document and any translation, the terms of the English version of the
Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2014–2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

http://www.arm.com

 Arm® Compiler

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3

Non-Confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks
http://www.arm.com

Contents
Arm® Compiler armasm User Guide

Preface
About this book 14

Chapter 1 Overview of the Assembler
1.1 About the Arm® Compiler toolchain assemblers .. 1-17
1.2 Key features of the armasm assembler 1-18
1.3 How the assembler works 1-19
1.4 Directives that can be omitted in pass 2 of the assembler 1-21
1.5 Support level definitions 1-23

Chapter 2 Structure of Assembly Language Modules
2.1 Syntax of source lines in assembly language .. 2-28
2.2 Literals 2-30
2.3 ELF sections and the AREA directive .. 2-31
2.4 An example armasm syntax assembly language module 2-32

Chapter 3 Writing A32/T32 Assembly Language
3.1 About the Unified Assembler Language .. 3-36
3.2 Syntax differences between UAL and A64 assembly language 3-37
3.3 Register usage in subroutine calls 3-38
3.4 Load immediate values .. 3-39
3.5 Load immediate values using MOV and MVN 3-40
3.6 Load immediate values using MOV32 3-43
3.7 Load immediate values using LDR Rd, =const 3-44

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4

Non-Confidential

3.8 Literal pools 3-45
3.9 Load addresses into registers 3-46
3.10 Load addresses to a register using ADR 3-47
3.11 Load addresses to a register using ADRL 3-49
3.12 Load addresses to a register using LDR Rd, =label .. 3-50
3.13 Other ways to load and store registers .. 3-52
3.14 Load and store multiple register instructions 3-53
3.15 Load and store multiple register instructions in A32 and T32 3-54
3.16 Stack implementation using LDM and STM 3-55
3.17 Stack operations for nested subroutines 3-57
3.18 Block copy with LDM and STM .. 3-58
3.19 Memory accesses .. 3-60
3.20 The Read-Modify-Write operation 3-61
3.21 Optional hash with immediate constants 3-62
3.22 Use of macros 3-63
3.23 Test-and-branch macro example 3-64
3.24 Unsigned integer division macro example 3-65
3.25 Instruction and directive relocations 3-67
3.26 Symbol versions 3-69
3.27 Frame directives .. 3-70
3.28 Exception tables and Unwind tables .. 3-71

Chapter 4 Using armasm
4.1 armasm command-line syntax 4-73
4.2 Specify command-line options with an environment variable 4-74
4.3 Using stdin to input source code to the assembler .. 4-75
4.4 Built-in variables and constants 4-76
4.5 Identifying versions of armasm in source code 4-80
4.6 Diagnostic messages 4-81
4.7 Interlocks diagnostics 4-82
4.8 Automatic IT block generation in T32 code 4-83
4.9 T32 branch target alignment .. 4-84
4.10 T32 code size diagnostics 4-85
4.11 A32 and T32 instruction portability diagnostics 4-86
4.12 T32 instruction width diagnostics 4-87
4.13 Two pass assembler diagnostics 4-88
4.14 Using the C preprocessor .. 4-89
4.15 Address alignment in A32/T32 code .. 4-91
4.16 Address alignment in A64 code 4-92
4.17 Instruction width selection in T32 code .. 4-93

Chapter 5 armasm Command-line Options
5.1 --16 5-96
5.2 --32 5-97
5.3 --apcs=qualifier…qualifier .. 5-98
5.4 --arm .. 5-100
5.5 --arm_only 5-101
5.6 --bi 5-102
5.7 --bigend 5-103
5.8 --brief_diagnostics, --no_brief_diagnostics .. 5-104

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5

Non-Confidential

5.9 --checkreglist 5-105
5.10 --cpreproc 5-106
5.11 --cpreproc_opts=option[,option,…] .. 5-107
5.12 --cpu=list .. 5-108
5.13 --cpu=name 5-109
5.14 --debug 5-112
5.15 --depend=dependfile .. 5-113
5.16 --depend_format=string 5-114
5.17 --diag_error=tag[,tag,…] 5-115
5.18 --diag_remark=tag[,tag,…] 5-116
5.19 --diag_style={arm|ide|gnu} 5-117
5.20 --diag_suppress=tag[,tag,…] 5-118
5.21 --diag_warning=tag[,tag,…] 5-119
5.22 --dllexport_all 5-120
5.23 --dwarf2 5-121
5.24 --dwarf3 5-122
5.25 --errors=errorfile 5-123
5.26 --exceptions, --no_exceptions 5-124
5.27 --exceptions_unwind, --no_exceptions_unwind 5-125
5.28 --execstack, --no_execstack .. 5-126
5.29 --execute_only 5-127
5.30 --fpmode=model 5-128
5.31 --fpu=list 5-129
5.32 --fpu=name .. 5-130
5.33 -g 5-131
5.34 --help 5-132
5.35 -idir[,dir, …] 5-133
5.36 --keep 5-134
5.37 --length=n 5-135
5.38 --li 5-136
5.39 --library_type=lib .. 5-137
5.40 --list=file 5-138
5.41 --list= .. 5-139
5.42 --littleend .. 5-140
5.43 -m 5-141
5.44 --maxcache=n .. 5-142
5.45 --md 5-143
5.46 --no_code_gen 5-144
5.47 --no_esc 5-145
5.48 --no_hide_all .. 5-146
5.49 --no_regs 5-147
5.50 --no_terse 5-148
5.51 --no_warn 5-149
5.52 -o filename 5-150
5.53 --pd 5-151
5.54 --predefine "directive" 5-152
5.55 --reduce_paths, --no_reduce_paths 5-153
5.56 --regnames 5-154
5.57 --report-if-not-wysiwyg 5-155
5.58 --show_cmdline 5-156

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6

Non-Confidential

5.59 --thumb 5-157
5.60 --unaligned_access, --no_unaligned_access 5-158
5.61 --unsafe 5-159
5.62 --untyped_local_labels 5-160
5.63 --version_number 5-161
5.64 --via=filename .. 5-162
5.65 --vsn 5-163
5.66 --width=n .. 5-164
5.67 --xref 5-165

Chapter 6 Symbols, Literals, Expressions, and Operators
6.1 Symbol naming rules 6-168
6.2 Variables .. 6-169
6.3 Numeric constants 6-170
6.4 Assembly time substitution of variables 6-171
6.5 Register-relative and PC-relative expressions 6-172
6.6 Labels .. 6-173
6.7 Labels for PC-relative addresses 6-174
6.8 Labels for register-relative addresses 6-175
6.9 Labels for absolute addresses 6-176
6.10 Numeric local labels 6-177
6.11 Syntax of numeric local labels 6-178
6.12 String expressions 6-179
6.13 String literals .. 6-180
6.14 Numeric expressions 6-181
6.15 Syntax of numeric literals 6-182
6.16 Syntax of floating-point literals 6-183
6.17 Logical expressions 6-184
6.18 Logical literals .. 6-185
6.19 Unary operators 6-186
6.20 Binary operators 6-187
6.21 Multiplicative operators .. 6-188
6.22 String manipulation operators .. 6-189
6.23 Shift operators 6-190
6.24 Addition, subtraction, and logical operators 6-191
6.25 Relational operators 6-192
6.26 Boolean operators 6-193
6.27 Operator precedence 6-194
6.28 Difference between operator precedence in assembly language and C 6-195

Chapter 7 Directives Reference
7.1 Alphabetical list of directives 7-199
7.2 About assembly control directives 7-200
7.3 About frame directives 7-201
7.4 ALIAS 7-202
7.5 ALIGN .. 7-203
7.6 AREA 7-205
7.7 ARM or CODE32 directive 7-209
7.8 ASSERT 7-210
7.9 ATTR .. 7-211

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7

Non-Confidential

7.10 CN 7-212
7.11 CODE16 directive .. 7-213
7.12 COMMON .. 7-214
7.13 CP .. 7-215
7.14 DATA .. 7-216
7.15 DCB 7-217
7.16 DCD and DCDU 7-218
7.17 DCDO .. 7-219
7.18 DCFD and DCFDU .. 7-220
7.19 DCFS and DCFSU 7-221
7.20 DCI 7-222
7.21 DCQ and DCQU .. 7-223
7.22 DCW and DCWU 7-224
7.23 END 7-225
7.24 ENDFUNC or ENDP .. 7-226
7.25 ENTRY 7-227
7.26 EQU 7-228
7.27 EXPORT or GLOBAL 7-229
7.28 EXPORTAS 7-231
7.29 FIELD 7-232
7.30 FRAME ADDRESS .. 7-233
7.31 FRAME POP 7-234
7.32 FRAME PUSH 7-235
7.33 FRAME REGISTER 7-236
7.34 FRAME RESTORE .. 7-237
7.35 FRAME RETURN ADDRESS .. 7-238
7.36 FRAME SAVE .. 7-239
7.37 FRAME STATE REMEMBER .. 7-240
7.38 FRAME STATE RESTORE .. 7-241
7.39 FRAME UNWIND ON .. 7-242
7.40 FRAME UNWIND OFF .. 7-243
7.41 FUNCTION or PROC 7-244
7.42 GBLA, GBLL, and GBLS 7-245
7.43 GET or INCLUDE 7-246
7.44 IF, ELSE, ENDIF, and ELIF .. 7-247
7.45 IMPORT and EXTERN .. 7-249
7.46 INCBIN 7-251
7.47 INFO .. 7-252
7.48 KEEP 7-253
7.49 LCLA, LCLL, and LCLS 7-254
7.50 LTORG 7-255
7.51 MACRO and MEND 7-256
7.52 MAP 7-259
7.53 MEXIT .. 7-260
7.54 NOFP 7-261
7.55 OPT 7-262
7.56 QN, DN, and SN .. 7-264
7.57 RELOC 7-266
7.58 REQUIRE 7-267
7.59 REQUIRE8 and PRESERVE8 7-268

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8

Non-Confidential

7.60 RLIST 7-269
7.61 RN 7-270
7.62 ROUT 7-271
7.63 SETA, SETL, and SETS .. 7-272
7.64 SPACE or FILL 7-274
7.65 THUMB directive 7-275
7.66 TTL and SUBT 7-276
7.67 WHILE and WEND 7-277
7.68 WN and XN .. 7-278

Chapter 8 armasm-Specific Instruction Set Features
8.1 armasm support for the CSDB instruction 8-280
8.2 A32 and T32 pseudo-instruction summary .. 8-281
8.3 ADRL pseudo-instruction 8-282
8.4 CPY pseudo-instruction 8-284
8.5 LDR pseudo-instruction 8-285
8.6 MOV32 pseudo-instruction .. 8-287
8.7 NEG pseudo-instruction 8-288
8.8 UND pseudo-instruction 8-289

Chapter 9 Via File Syntax
9.1 Overview of via files 9-291
9.2 Via file syntax rules .. 9-292

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

9

Non-Confidential

List of Figures
Arm® Compiler armasm User Guide

Figure 1-1 Integration boundaries in Arm Compiler 6. .. 1-25

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

10

Non-Confidential

List of Tables
Arm® Compiler armasm User Guide

Table 3-1 Syntax differences between UAL and A64 assembly language .. 3-37
Table 3-2 A32 state immediate values (8-bit) .. 3-40
Table 3-3 A32 state immediate values in MOV instructions .. 3-40
Table 3-4 32-bit T32 immediate values ... 3-41
Table 3-5 32-bit T32 immediate values in MOV instructions ... 3-41
Table 3-6 Stack-oriented suffixes and equivalent addressing mode suffixes .. 3-55
Table 3-7 Suffixes for load and store multiple instructions .. 3-55
Table 4-1 Built-in variables .. 4-76
Table 4-2 Built-in Boolean constants ... 4-77
Table 4-3 Predefined macros .. 4-77
Table 4-4 armclang equivalent command-line options .. 4-89
Table 5-1 Supported Arm architectures ... 5-109
Table 5-2 Severity of diagnostic messages ... 5-115
Table 5-3 Specifying a command-line option and an AREA directive for GNU-stack sections 5-126
Table 6-1 Unary operators that return strings .. 6-186
Table 6-2 Unary operators that return numeric or logical values ... 6-186
Table 6-3 Multiplicative operators .. 6-188
Table 6-4 String manipulation operators .. 6-189
Table 6-5 Shift operators ... 6-190
Table 6-6 Addition, subtraction, and logical operators ... 6-191
Table 6-7 Relational operators .. 6-192
Table 6-8 Boolean operators ... 6-193
Table 6-9 Operator precedence in Arm assembly language ... 6-195

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

11

Non-Confidential

Table 6-10 Operator precedence in C ... 6-195
Table 7-1 List of directives ... 7-199
Table 7-2 OPT directive settings ... 7-262
Table 8-1 Summary of pseudo-instructions ... 8-281
Table 8-2 Range and encoding of expr ... 8-289

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

12

Non-Confidential

Preface

This preface introduces the Arm® Compiler armasm User Guide.

It contains the following:
• About this book on page 14.

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

13

Non-Confidential

 About this book
Arm® Compiler armasm User Guide. This document provides information for using the Arm legacy
assembler (armasm). It contains information on command-line options, assembler directives, and
supports the Armv7 and Armv8 architectures.

 Using this book

This book is organized into the following chapters:

Chapter 1 Overview of the Assembler
Gives an overview of the assemblers provided with Arm Compiler toolchain.

Chapter 2 Structure of Assembly Language Modules
Describes the structure of assembly language source files.

Chapter 3 Writing A32/T32 Assembly Language
Describes the use of a few basic A32 and T32 instructions and the use of macros.

Chapter 4 Using armasm
Describes how to use armasm.

Chapter 5 armasm Command-line Options
Describes the armasm command-line syntax and command-line options.

Chapter 6 Symbols, Literals, Expressions, and Operators
Describes how you can use symbols to represent variables, addresses, and constants in code, and
how you can combine these with operators to create numeric or string expressions.

Chapter 7 Directives Reference
Describes the directives that are provided by the Arm assembler, armasm.

Chapter 8 armasm-Specific Instruction Set Features
Describes the additional support that armasm provides for the Arm instruction set.

Chapter 9 Via File Syntax
Describes the syntax of via files accepted by armasm.

 Glossary

The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm® Glossary for more information.

 Typographic conventions

italic
Introduces special terminology, denotes cross-references, and citations.

bold
Highlights interface elements, such as menu names. Denotes signal names. Also used for terms
in descriptive lists, where appropriate.

monospace
Denotes text that you can enter at the keyboard, such as commands, file and program names,
and source code.

monospace
Denotes a permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

monospace italic
Denotes arguments to monospace text where the argument is to be replaced by a specific value.

 Preface
 About this book

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

14

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

monospace bold
Denotes language keywords when used outside example code.

<and>
Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

 Feedback

Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:
• The product name.
• The product revision or version.
• An explanation with as much information as you can provide. Include symptoms and diagnostic

procedures if appropriate.

Feedback on content

If you have comments on content then send an e-mail to errata@arm.com. Give:

• The title Arm Compiler armasm User Guide.
• The number 100069_0612_00_en.
• If applicable, the page number(s) to which your comments refer.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
 Note

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the
represented document when used with any other PDF reader.

 Other information

• Arm® Developer.
• Arm® Information Center.
• Arm® Technical Support Knowledge Articles.
• Technical Support.
• Arm® Glossary.

 Preface
 About this book

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

15

Non-Confidential

mailto:errata@arm.com
https://developer.arm.com/
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/topic/com.arm.doc.faqs
http://www.arm.com/support/technical-support
http://infocenter.arm.com/help/topic/com.arm.doc.aeg0014-/index.html

Chapter 1
Overview of the Assembler

Gives an overview of the assemblers provided with Arm Compiler toolchain.

It contains the following sections:
• 1.1 About the Arm® Compiler toolchain assemblers on page 1-17.
• 1.2 Key features of the armasm assembler on page 1-18.
• 1.3 How the assembler works on page 1-19.
• 1.4 Directives that can be omitted in pass 2 of the assembler on page 1-21.
• 1.5 Support level definitions on page 1-23.

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

1-16

Non-Confidential

1.1 About the Arm® Compiler toolchain assemblers
The Arm Compiler toolchain provides different assemblers.

They are:
• The freestanding legacy assembler, armasm. Use armasm to assemble existing A64, A32, and T32

assembly language code written in armasm syntax.
• The armclang integrated assembler. Use this to assemble assembly language code written in GNU

syntax.
• An optimizing inline assembler built into armclang. Use this to assemble assembly language code

written in GNU syntax that is used inline in C or C++ source code.

 Note

This book only applies to armasm. For information on armclang, see the armclang Reference Guide.

 Note

Be aware of the following:
• Generated code might be different between two Arm Compiler releases.
• For a feature release, there might be significant code generation differences.

 Note

The command-line option descriptions and related information in the individual Arm Compiler tools
documents describe all the features that Arm Compiler supports. Any features not documented are not
supported and are used at your own risk. You are responsible for making sure that any generated code
using community features on page 1-23 is operating correctly.

Related information
Arm Compiler armclang Reference Guide
Mixing Assembly Code with C or C++ Code
Assembling armasm and GNU syntax assembly code

1 Overview of the Assembler
1.1 About the Arm® Compiler toolchain assemblers

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

1-17

Non-Confidential

https://developer.arm.com/docs/100067/0612
https://developer.arm.com/docs/100748/0612/using-assembly-and-intrinsics-in-c-or-c-code
https://developer.arm.com/docs/100748/0612/assembling-assembly-code/assembling-armasm-and-gnu-syntax-assembly-code

1.2 Key features of the armasm assembler
The armasm assembler supports instructions, directives, and user-defined macros.

It supports:

• Unified Assembly Language (UAL) for both A32 and T32 code.
• Assembly language for A64 code.
• Advanced SIMD instructions in A64, A32, and T32 code.
• Floating-point instructions in A64, A32, and T32 code.
• Directives in assembly source code.
• Processing of user-defined macros.
• SDOT and UDOT instructions are an optional extension in Armv8.2-A and later, and a mandtory

extension in Armv8.4-A and later.

 Note

armasm does not support some architectural features, such as:
• Half-precision floating-point multiply with add or multiply with subtract arithmetic operations. These

instructions are an optional extension in Armv8.2-A and Armv8.3-A, and a mandatory extension in
Armv8.4-A and later. See +fp16fml in the -mcpu command-line option in the armclang Reference
Guide.

• AArch64 Crypto instructions (for SHA512, SHA3, SM3, SM4). See +crypto in the -mcpu
command-line option in the armclang Reference Guide.

Related concepts
1.3 How the assembler works on page 1-19
3.1 About the Unified Assembler Language on page 3-36
3.22 Use of macros on page 3-63
Related reference
Chapter 7 Directives Reference on page 7-197
5.13 --cpu=name on page 5-109
Related information
-mcpu
Arm Compiler Instruction Set Reference Guide

1 Overview of the Assembler
1.2 Key features of the armasm assembler

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

1-18

Non-Confidential

https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-mcpu
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-mcpu
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-mcpu
https://developer.arm.com/docs/100076/latest

1.3 How the assembler works
armasm reads the assembly language source code twice before it outputs object code. Each read of the
source code is called a pass.

This is because assembly language source code often contains forward references. A forward reference
occurs when a label is used as an operand, for example as a branch target, earlier in the code than the
definition of the label. The assembler cannot know the address of the forward reference label until it
reads the definition of the label.

During each pass, the assembler performs different functions. In the first pass, the assembler:

• Checks the syntax of the instruction or directive. It faults if there is an error in the syntax, for
example if a label is specified on a directive that does not accept one.

• Determines the size of the instruction and data being assembled and reserves space.
• Determines offsets of labels within sections.
• Creates a symbol table containing label definitions and their memory addresses.

In the second pass, the assembler:
• Faults if an undefined reference is specified in an instruction operand or directive.
• Encodes the instructions using the label offsets from pass 1, where applicable.
• Generates relocations.
• Generates debug information if requested.
• Outputs the object file.

Memory addresses of labels are determined and finalized in the first pass. Therefore, the assembly code
must not change during the second pass. All instructions must be seen in both passes. Therefore you
must not define a symbol after a :DEF: test for the symbol. The assembler faults if it sees code in pass 2
that was not seen in pass 1.

Line not seen in pass 1

The following example shows that num EQU 42 is not seen in pass 1 but is seen in pass 2:

 AREA x,CODE
 [:DEF: foo
num EQU 42
]
foo DCD num
 END

Assembling this code generates the error:

A1903E: Line not seen in first pass; cannot be assembled.

Line not seen in pass 2

The following example shows that MOV r1,r2 is seen in pass 1 but not in pass 2:

 AREA x,CODE
 [:LNOT: :DEF: foo
 MOV r1, r2
]
foo MOV r3, r4
 END

Assembling this code generates the error:

A1909E: Line not seen in second pass; cannot be assembled.

Related concepts
4.13 Two pass assembler diagnostics on page 4-88
3.25 Instruction and directive relocations on page 3-67
Related reference
1.4 Directives that can be omitted in pass 2 of the assembler on page 1-21

1 Overview of the Assembler
1.3 How the assembler works

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

1-19

Non-Confidential

5.17 --diag_error=tag[,tag,…] on page 5-115
5.14 --debug on page 5-112

1 Overview of the Assembler
1.3 How the assembler works

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

1-20

Non-Confidential

1.4 Directives that can be omitted in pass 2 of the assembler
Most directives must appear in both passes of the assembly process. You can omit some directives from
the second pass over the source code by the assembler, but doing this is strongly discouraged.

Directives that can be omitted from pass 2 are:
• GBLA, GBLL, GBLS.
• LCLA, LCLL, LCLS.
• SETA, SETL, SETS.
• RN, RLIST.
• CN, CP.
• SN, DN, QN.
• EQU.
• MAP, FIELD.
• GET, INCLUDE.
• IF, ELSE, ELIF, ENDIF.
• WHILE, WEND.
• ASSERT.
• ATTR.
• COMMON.
• EXPORTAS.
• IMPORT.
• EXTERN.
• KEEP.
• MACRO, MEND, MEXIT.
• REQUIRE8.
• PRESERVE8.

 Note

Macros that appear only in pass 1 and not in pass 2 must contain only these directives.

ASSERT directive appears in pass 1 only

The code in the following example assembles without error although the ASSERT directive does not
appear in pass 2:

 AREA ||.text||,CODE
x EQU 42
 IF :LNOT: :DEF: sym
 ASSERT x == 42
 ENDIF
sym EQU 1
 END

Use of ELSE and ELIF directives

Directives that appear in pass 2 but do not appear in pass 1 cause an assembly error. However, this does
not cause an assembly error when using the ELSE and ELIF directives if their matching IF directive
appears in pass 1. The following example assembles without error because the IF directive appears in
pass 1:

 AREA ||.text||,CODE
x EQU 42
 IF :DEF: sym
 ELSE
 ASSERT x == 42
 ENDIF
sym EQU 1
 END

1 Overview of the Assembler
1.4 Directives that can be omitted in pass 2 of the assembler

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

1-21

Non-Confidential

Related concepts
1.3 How the assembler works on page 1-19
4.13 Two pass assembler diagnostics on page 4-88

1 Overview of the Assembler
1.4 Directives that can be omitted in pass 2 of the assembler

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

1-22

Non-Confidential

1.5 Support level definitions
This describes the levels of support for various Arm Compiler 6 features.

Arm Compiler 6 is built on Clang and LLVM technology. Therefore, it has more functionality than the
set of product features described in the documentation. The following definitions clarify the levels of
support and guarantees on functionality that are expected from these features.

Arm welcomes feedback regarding the use of all Arm Compiler 6 features, and intends to support users
to a level that is appropriate for that feature. You can contact support at https://developer.arm.com/
support.

Identification in the documentation

All features that are documented in the Arm Compiler 6 documentation are product features, except
where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well-tested, and is
expected to be stable across feature and update releases.
• Arm intends to give advance notice of significant functionality changes to product features.
• If you have a support and maintenance contract, Arm provides full support for use of all product

features.
• Arm welcomes feedback on product features.
• Any issues with product features that Arm encounters or is made aware of are considered for fixing in

future versions of Arm Compiler.

In addition to fully supported product features, some product features are only alpha or beta quality.

Beta product features

Beta product features are implementation complete, but have not been sufficiently tested to be
regarded as suitable for use in production environments.

Beta product features are indicated with .
• Arm endeavors to document known limitations on beta product features.
• Beta product features are expected to eventually become product features in a future release

of Arm Compiler 6.
• Arm encourages the use of beta product features, and welcomes feedback on them.
• Any issues with beta product features that Arm encounters or is made aware of are

considered for fixing in future versions of Arm Compiler.

Alpha product features

Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Alpha product features are indicated with .
• Arm endeavors to document known limitations of alpha product features.
• Arm encourages the use of alpha product features, and welcomes feedback on them.
• Any issues with alpha product features that Arm encounters or is made aware of are

considered for fixing in future versions of Arm Compiler.

Community features

Arm Compiler 6 is built on LLVM technology and preserves the functionality of that technology where
possible. This means that there are additional features available in Arm Compiler that are not listed in the
documentation. These additional features are known as community features. For information on these
community features, see the documentation for the Clang/LLVM project.

1 Overview of the Assembler
1.5 Support level definitions

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

1-23

Non-Confidential

https://developer.arm.com/support
https://developer.arm.com/support
http://clang.llvm.org/docs/UsersManual.html

Where community features are referenced in the documentation, they are indicated with .
• Arm makes no claims about the quality level or the degree of functionality of these features, except

when explicitly stated in this documentation.
• Functionality might change significantly between feature releases.
• Arm makes no guarantees that community features will remain functional across update releases,

although changes are expected to be unlikely.

Some community features might become product features in the future, but Arm provides no roadmap
for this. Arm is interested in understanding your use of these features, and welcomes feedback on them.
Arm supports customers using these features on a best-effort basis, unless the features are unsupported.
Arm accepts defect reports on these features, but does not guarantee that these issues will be fixed in
future releases.

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:
• The following figure shows the structure of the Arm Compiler 6 toolchain:

1 Overview of the Assembler
1.5 Support level definitions

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

1-24

Non-Confidential

armasm

armclang

Arm C library

Arm C++ library

armlink

LLVM Project
clang

armasm syntax
assembly

armasm syntax
assembly

C/C++
Source code

C/C++
Source code

GNU syntax
Assembly

GNU syntax
Assembly

Source code
headers

Source code
headers

ObjectsObjects ObjectsObjects ObjectsObjects

Scatter/Steering/
Symdefs file

Scatter/Steering/
Symdefs file

ImageImage

LLVM Project
libc++

Figure 1-1 Integration boundaries in Arm Compiler 6.

The dashed boxes are toolchain components, and any interaction between these components is an
integration boundary. Community features that span an integration boundary might have significant
limitations in functionality. The exception to this is if the interaction is codified in one of the
standards supported by Arm Compiler 6. See Application Binary Interface (ABI) for the Arm®

Architecture. Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

• The Clang implementations of compiler features, particularly those that have been present for a long
time in other toolchains, are likely to be mature. The functionality of new features, such as support

1 Overview of the Assembler
1.5 Support level definitions

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

1-25

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

for new language features, is likely to be less mature and therefore more likely to have limited
functionality.

Deprecated features

A deprecated feature is one that Arm plans to remove from a future release of Arm Compiler. Arm does
not make any guarantee regarding the testing or maintenance of deprecated features. Therefore, Arm
does not recommend using a feature after it is deprecated.

For information on replacing deprecated features with supported features, refer to the Arm Compiler
documentation and Release Notes.

Unsupported features

With both the product and community feature categories, specific features and use-cases are known not
to function correctly, or are not intended for use with Arm Compiler 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive list of
unsupported features or use-cases for community features. The known limitations on community features
are listed in Community features on page 1-23.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:
• The Clang option -stdlib=libstdc++ is not supported.
• C++ static initialization of local variables is not thread-safe when linked against the standard C++

libraries. For thread-safety, you must provide your own implementation of thread-safe functions as
described in Standard C++ library implementation definition.

 Note

This restriction does not apply to the [ALPHA]-supported multithreaded C++ libraries.

• Use of C11 library features is unsupported.
• Any community feature that is exclusively related to non-Arm architectures is not supported.
• Compilation for targets that implement architectures older than Armv7 or Armv6‑M is not supported.
• The long double data type is not supported for AArch64 state because of limitations in the current

Arm C library.
• Complex numbers are not supported because of limitations in the current Arm C library.

1 Overview of the Assembler
1.5 Support level definitions

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

1-26

Non-Confidential

https://developer.arm.com/docs/100073/0612/the-arm-c-and-c-libraries/iso-c-library-implementation-definition/standard-c-library-implementation-definition

Chapter 2
Structure of Assembly Language Modules

Describes the structure of assembly language source files.

It contains the following sections:
• 2.1 Syntax of source lines in assembly language on page 2-28.
• 2.2 Literals on page 2-30.
• 2.3 ELF sections and the AREA directive on page 2-31.
• 2.4 An example armasm syntax assembly language module on page 2-32.

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

2-27

Non-Confidential

2.1 Syntax of source lines in assembly language
The assembler parses and assembles assembly language to produce object code.

Syntax

Each line of assembly language source code has this general form:

{symbol} {instruction|directive|pseudo-instruction} {;comment}

All three sections of the source line are optional.

symbol is usually a label. In instructions and pseudo-instructions it is always a label. In some directives it
is a symbol for a variable or a constant. The description of the directive makes this clear in each case.

symbol must begin in the first column. It cannot contain any white space character such as a space or a
tab unless it is enclosed by bars (|).

Labels are symbolic representations of addresses. You can use labels to mark specific addresses that you
want to refer to from other parts of the code. Numeric local labels are a subclass of labels that begin with
a number in the range 0-99. Unlike other labels, a numeric local label can be defined many times. This
makes them useful when generating labels with a macro.

Directives provide important information to the assembler that either affects the assembly process or
affects the final output image.

Instructions and pseudo-instructions make up the code a processor uses to perform tasks.
 Note

Instructions, pseudo-instructions, and directives must be preceded by white space, such as a space or a
tab, irrespective of whether there is a preceding label or not.

Some directives do not allow the use of a label.

A comment is the final part of a source line. The first semicolon on a line marks the beginning of a
comment except where the semicolon appears inside a string literal. The end of the line is the end of the
comment. A comment alone is a valid line. The assembler ignores all comments. You can use blank lines
to make your code more readable.

Considerations when writing assembly language source code

You must write instruction mnemonics, pseudo-instructions, directives, and symbolic register names
(except a1-a4 and v1-v8 in A32 or T32 instructions) in either all uppercase or all lowercase. You must
not use mixed case. Labels and comments can be in uppercase, lowercase, or mixed case.

 AREA A32ex, CODE, READONLY
 ; Name this block of code A32ex

 ENTRY ; Mark first instruction to execute
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 ADD r0, r0, r1 ; r0 = r0 + r1
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; AArch32 semihosting (formerly SWI)
 END ; Mark end of file

To make source files easier to read, you can split a long line of source into several lines by placing a
backslash character (\) at the end of the line. The backslash must not be followed by any other

2 Structure of Assembly Language Modules
2.1 Syntax of source lines in assembly language

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

2-28

Non-Confidential

characters, including spaces and tabs. The assembler treats the backslash followed by end-of-line
sequence as white space. You can also use blank lines to make your code more readable.

 Note

Do not use the backslash followed by end-of-line sequence within quoted strings.

The limit on the length of lines, including any extensions using backslashes, is 4095 characters.

Related concepts
6.6 Labels on page 6-173
6.10 Numeric local labels on page 6-177
6.13 String literals on page 6-180
Related reference
2.2 Literals on page 2-30
6.1 Symbol naming rules on page 6-168
6.15 Syntax of numeric literals on page 6-182

2 Structure of Assembly Language Modules
2.1 Syntax of source lines in assembly language

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

2-29

Non-Confidential

2.2 Literals
Assembly language source code can contain numeric, string, Boolean, and single character literals.

Literals can be expressed as:
• Decimal numbers, for example 123.
• Hexadecimal numbers, for example 0x7B.
• Numbers in any base from 2 to 9, for example 5_204 is a number in base 5.
• Floating point numbers, for example 123.4.
• Boolean values {TRUE} or {FALSE}.
• Single character values enclosed by single quotes, for example 'w'.
• Strings enclosed in double quotes, for example "This is a string".

 Note

In most cases, a string containing a single character is accepted as a single character value. For example
ADD r0,r1,#"a" is accepted, but ADD r0,r1,#"ab" is faulted.

You can also use variables and names to represent literals.

Related reference
2.1 Syntax of source lines in assembly language on page 2-28

2 Structure of Assembly Language Modules
2.2 Literals

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

2-30

Non-Confidential

2.3 ELF sections and the AREA directive
Object files produced by the assembler are divided into sections. In assembly source code, you use the
AREA directive to mark the start of a section.

ELF sections are independent, named, indivisible sequences of code or data. A single code section is the
minimum required to produce an application.

The output of an assembly or compilation can include:
• One or more code sections. These are usually read-only sections.
• One or more data sections. These are usually read-write sections. They might be zero-initialized (ZI).

The linker places each section in a program image according to section placement rules. Sections that are
adjacent in source files are not necessarily adjacent in the application image

Use the AREA directive to name the section and set its attributes. The attributes are placed after the name,
separated by commas.

You can choose any name for your sections. However, names starting with any non-alphabetic character
must be enclosed in bars, or an AREA name missing error is generated. For example, |1_DataArea|.

The following example defines a single read-only section called A32ex that contains code:

 AREA A32ex, CODE, READONLY ; Name this block of code A32ex

Related concepts
2.4 An example armasm syntax assembly language module on page 2-32
Related reference
7.6 AREA on page 7-205
Related information
Information about scatter files

2 Structure of Assembly Language Modules
2.3 ELF sections and the AREA directive

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

2-31

Non-Confidential

https://developer.arm.com/docs/100070/0612/scatter-loading-features

2.4 An example armasm syntax assembly language module
An armasm syntax assembly language module has several constituent parts.

These are:
• ELF sections (defined by the AREA directive).
• Application entry (defined by the ENTRY directive).
• Application execution.
• Application termination.
• Program end (defined by the END directive).

Constituents of an A32 assembly language module

The following example defines a single section called A32ex that contains code and is marked as being
READONLY. This example uses the A32 instruction set.

 AREA A32ex, CODE, READONLY
 ; Name this block of code A32ex
 ENTRY ; Mark first instruction to execute
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 ADD r0, r0, r1 ; r0 = r0 + r1
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; AArch32 semihosting (formerly SWI)
 END ; Mark end of file

Constituents of an A64 assembly language module

The following example defines a single section called A64ex that contains code and is marked as being
READONLY. This example uses the A64 instruction set.

 AREA A64ex, CODE, READONLY
 ; Name this block of code A64ex
 ENTRY ; Mark first instruction to execute
start
 MOV w0, #10 ; Set up parameters
 MOV w1, #3
 ADD w0, w0, w1 ; w0 = w0 + w1
stop
 MOV x1, #0x26
 MOVK x1, #2, LSL #16
 STR x1, [sp,#0] ; ADP_Stopped_ApplicationExit
 MOV x0, #0
 STR x0, [sp,#8] ; Exit status code
 MOV x1, sp ; x1 contains the address of parameter block
 MOV w0, #0x18 ; angel_SWIreason_ReportException
 HLT 0xf000 ; AArch64 semihosting
 END ; Mark end of file

Constituents of a T32 assembly language module

The following example defines a single section called T32ex that contains code and is marked as being
READONLY. This example uses the T32 instruction set.

 AREA T32ex, CODE, READONLY
 ; Name this block of code T32ex
 ENTRY ; Mark first instruction to execute
 THUMB
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 ADD r0, r0, r1 ; r0 = r0 + r1
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0xab ; AArch32 semihosting (formerly SWI)
 ALIGN 4 ; Aligned on 4-byte boundary
 END ; Mark end of file

2 Structure of Assembly Language Modules
2.4 An example armasm syntax assembly language module

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

2-32

Non-Confidential

Application entry

The ENTRY directive declares an entry point to the program. It marks the first instruction to be executed.
In applications using the C library, an entry point is also contained within the C library initialization
code. Initialization code and exception handlers also contain entry points.

Application execution in A32 or T32 code

The application code begins executing at the label start, where it loads the decimal values 10 and 3 into
registers R0 and R1. These registers are added together and the result placed in R0.

Application execution in A64 code

The application code begins executing at the label start, where it loads the decimal values 10 and 3 into
registers W0 and W1. These registers are added together and the result placed in W0.

Application termination

After executing the main code, the application terminates by returning control to the debugger.

A32 and T32 code

You do this in A32 and T32 code using the semihosting SVC instruction:

• In A32 code, the semihosting SVC instruction is 0x123456 by default.
• In T32 code, use the semihosting SVC instruction is 0xAB by default.

A32 and T32 code uses the following parameters:
• R0 equal to angel_SWIreason_ReportException (0x18).
• R1 equal to ADP_Stopped_ApplicationExit (0x20026).

A64 code

In A64 code, use HLT instruction 0xF000 to invoke the semihosting interface.

A64 code uses the following parameters:
• W0 equal to angel_SWIreason_ReportException (0x18).
• X1 is the address of a block of two parameters. The first is the exception type,

ADP_Stopped_ApplicationExit (0x20026) and the second is the exit status code.

Program end

The END directive instructs the assembler to stop processing this source file. Every assembly language
source module must finish with an END directive on a line by itself. Any lines following the END directive
are ignored by the assembler.

Related concepts
2.3 ELF sections and the AREA directive on page 2-31
Related reference
7.23 END on page 7-225
7.25 ENTRY on page 7-227
Related information
Semihosting for AArch32 and AArch64

2 Structure of Assembly Language Modules
2.4 An example armasm syntax assembly language module

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

2-33

Non-Confidential

https://developer.arm.com/docs/100863/latest

Chapter 3
Writing A32/T32 Assembly Language

Describes the use of a few basic A32 and T32 instructions and the use of macros.

It contains the following sections:
• 3.1 About the Unified Assembler Language on page 3-36.
• 3.2 Syntax differences between UAL and A64 assembly language on page 3-37.
• 3.3 Register usage in subroutine calls on page 3-38.
• 3.4 Load immediate values on page 3-39.
• 3.5 Load immediate values using MOV and MVN on page 3-40.
• 3.6 Load immediate values using MOV32 on page 3-43.
• 3.7 Load immediate values using LDR Rd, =const on page 3-44.
• 3.8 Literal pools on page 3-45.
• 3.9 Load addresses into registers on page 3-46.
• 3.10 Load addresses to a register using ADR on page 3-47.
• 3.11 Load addresses to a register using ADRL on page 3-49.
• 3.12 Load addresses to a register using LDR Rd, =label on page 3-50.
• 3.13 Other ways to load and store registers on page 3-52.
• 3.14 Load and store multiple register instructions on page 3-53.
• 3.15 Load and store multiple register instructions in A32 and T32 on page 3-54.
• 3.16 Stack implementation using LDM and STM on page 3-55.
• 3.17 Stack operations for nested subroutines on page 3-57.
• 3.18 Block copy with LDM and STM on page 3-58.
• 3.19 Memory accesses on page 3-60.
• 3.20 The Read-Modify-Write operation on page 3-61.
• 3.21 Optional hash with immediate constants on page 3-62.
• 3.22 Use of macros on page 3-63.
• 3.23 Test-and-branch macro example on page 3-64.

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-34

Non-Confidential

• 3.24 Unsigned integer division macro example on page 3-65.
• 3.25 Instruction and directive relocations on page 3-67.
• 3.26 Symbol versions on page 3-69.
• 3.27 Frame directives on page 3-70.
• 3.28 Exception tables and Unwind tables on page 3-71.

3 Writing A32/T32 Assembly Language

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-35

Non-Confidential

3.1 About the Unified Assembler Language
Unified Assembler Language (UAL) is a common syntax for A32 and T32 instructions. It supersedes
earlier versions of both the A32 and T32 assembler languages.

Code that is written using UAL can be assembled for A32 or T32 for any Arm processor. armasm faults
the use of unavailable instructions.

armasm can assemble code that is written in pre-UAL and UAL syntax.

By default, armasm expects source code to be written in UAL. armasm accepts UAL syntax if any of the
directives CODE32, ARM, or THUMB is used or if you assemble with any of the --32, --arm, or --thumb
command-line options. armasm also accepts source code that is written in pre-UAL A32 assembly
language when you assemble with the CODE32 or ARM directive.

armasm accepts source code that is written in pre-UAL T32 assembly language when you assemble using
the --16 command-line option, or the CODE16 directive in the source code.

 Note

The pre-UAL T32 assembly language does not support 32-bit T32 instructions.

Related reference
5.1 --16 on page 5-96
7.7 ARM or CODE32 directive on page 7-209
7.11 CODE16 directive on page 7-213
7.65 THUMB directive on page 7-275
5.2 --32 on page 5-97
5.4 --arm on page 5-100
5.59 --thumb on page 5-157

3 Writing A32/T32 Assembly Language
3.1 About the Unified Assembler Language

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-36

Non-Confidential

3.2 Syntax differences between UAL and A64 assembly language
UAL is the assembler syntax that is used by the A32 and T32 instruction sets. A64 assembly language is
the assembler syntax that is used by the A64 instruction set.

UAL in Armv8 is unchanged from Armv7.

The general statement format and operand order of A64 assembly language is the same as UAL, but
there are some differences between them. The following table describes the main differences:

Table 3-1 Syntax differences between UAL and A64 assembly language

UAL A64

You make an instruction conditional by appending
a condition code suffix directly to the mnemonic,
with no delimiter. For example:

BEQ label

For conditionally executed instructions, you separate the condition code suffix
from the mnemonic using a . delimiter. For example:

B.EQ label

Apart from the IT instruction, there are no
unconditionally executed integer instructions that
use a condition code as an operand.

A64 provides several unconditionally executed instructions that use a condition
code as an operand. For these instructions, you specify the condition code to test
for in the final operand position. For example:

CSEL w1,w2,w3,EQ

The .W and .N instruction width specifiers control
whether the assembler generates a 32-bit or 16-bit
encoding for a T32 instruction.

A64 is a fixed width 32-bit instruction set so does not support .W and .N
qualifiers.

The core register names are R0-R15. Qualify register names to indicate the operand data size, either 32-bit (W0-W31)
or 64-bit (X0-X31).

You can refer to registers R13, R14, and R15 as
synonyms for SP, LR, and PC respectively.

In AArch64, there is no register that is named W31 or X31. Instead, you can refer
to register 31 as SP, WZR, or XZR, depending on the context. You cannot refer to
PC either by name or number. LR is an alias for register 30.

A32 has no equivalent of the extend operators. You can specify an extend operator in several instructions to control how a portion
of the second source register value is sign or zero extended. For example, in the
following instruction, UXTB is the extend type (zero extend, byte) and #2 is an
optional left shift amount:

ADD X1, X2, W3, UXTB #2

3 Writing A32/T32 Assembly Language
3.2 Syntax differences between UAL and A64 assembly language

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-37

Non-Confidential

3.3 Register usage in subroutine calls
You use branch instructions to call and return from subroutines. The Procedure Call Standard for the
Arm Architecture defines how to use registers in subroutine calls.

A subroutine is a block of code that performs a task based on some arguments and optionally returns a
result. By convention, you use registers R0 to R3 to pass arguments to subroutines, and R0 to pass a
result back to the callers. A subroutine that requires more than four inputs uses the stack for the
additional inputs.

To call subroutines, use a branch and link instruction. The syntax is:

 BL destination

where destination is usually the label on the first instruction of the subroutine.

destination can also be a PC-relative expression.

The BL instruction:

• Places the return address in the link register.
• Sets the PC to the address of the subroutine.

After the subroutine code has executed you can use a BX LR instruction to return.
 Note

Calls between separately assembled or compiled modules must comply with the restrictions and
conventions defined by the Procedure Call Standard for the Arm® Architecture.

Example

The following example shows a subroutine, doadd, that adds the values of two arguments and returns a
result in R0:

 AREA subrout, CODE, READONLY ; Name this block of code
 ENTRY ; Mark first instruction to execute
start MOV r0, #10 ; Set up parameters
 MOV r1, #3
 BL doadd ; Call subroutine
stop MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; AArch32 semihosting (formerly SWI)
doadd ADD r0, r0, r1 ; Subroutine code
 BX lr ; Return from subroutine
 END ; Mark end of file

Related concepts
3.17 Stack operations for nested subroutines on page 3-57
Related information
Procedure Call Standard for the Arm Architecture
Procedure Call Standard for the Arm 64-bit Architecture (AArch64)

3 Writing A32/T32 Assembly Language
3.3 Register usage in subroutine calls

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-38

Non-Confidential

http://infocenter/help/topic/com.arm.doc.ihi0042e/index.html
http://infocenter/help/topic/com.arm.doc.ihi0055c/index.html

3.4 Load immediate values
To represent some immediate values, you might have to use a sequence of instructions rather than a
single instruction.

A32 and T32 instructions can only be 32 bits wide. You can use a MOV or MVN instruction to load a
register with an immediate value from a range that depends on the instruction set. Certain 32-bit values
cannot be represented as an immediate operand to a single 32-bit instruction, although you can load these
values from memory in a single instruction.

You can load any 32-bit immediate value into a register with two instructions, a MOV followed by a MOVT.
Or, you can use a pseudo-instruction, MOV32, to construct the instruction sequence for you.

You can also use the LDR pseudo-instruction to load immediate values into a register.

You can include many commonly-used immediate values directly as operands within data processing
instructions, without a separate load operation. The range of immediate values that you can include as
operands in 16-bit T32 instructions is much smaller.

Related concepts
3.5 Load immediate values using MOV and MVN on page 3-40
3.6 Load immediate values using MOV32 on page 3-43
3.7 Load immediate values using LDR Rd, =const on page 3-44
Related reference
8.5 LDR pseudo-instruction on page 8-285

3 Writing A32/T32 Assembly Language
3.4 Load immediate values

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-39

Non-Confidential

3.5 Load immediate values using MOV and MVN
The MOV and MVN instructions can write a range of immediate values to a register.

In A32:

• MOV can load any 8-bit immediate value, giving a range of 0x0-0xFF (0-255).

It can also rotate these values by any even number.

These values are also available as immediate operands in many data processing operations, without
being loaded in a separate instruction.

• MVN can load the bitwise complements of these values. The numerical values are -(n+1), where n is
the value available in MOV.

• MOV can load any 16-bit number, giving a range of 0x0-0xFFFF (0-65535).

The following table shows the range of 8-bit values that can be loaded in a single A32 MOV or MVN
instruction (for data processing operations). The value to load must be a multiple of the value shown in
the Step column.

Table 3-2 A32 state immediate values (8-bit)

Binary Decimal Step Hexadecimal MVN valuea Notes

000000000000000000000000abcdefgh 0-255 1 0-0xFF -1 to -256 -

0000000000000000000000abcdefgh00 0-1020 4 0-0x3FC -4 to -1024 -

00000000000000000000abcdefgh0000 0-4080 16 0-0xFF0 -16 to -4096 -

000000000000000000abcdefgh000000 0-16320 64 0-0x3FC0 -64 to -16384 -

... -

abcdefgh000000000000000000000000 0-255 x 224 224 0-0xFF000000 1-256 x -224 -

cdefgh000000000000000000000000ab (bit pattern) - - (bit pattern) See b in Note

efgh000000000000000000000000abcd (bit pattern) - - (bit pattern) See b in Note

gh000000000000000000000000abcdef (bit pattern) - - (bit pattern) See b in Note

The following table shows the range of 16-bit values that can be loaded in a single MOV A32 instruction:

Table 3-3 A32 state immediate values in MOV instructions

Binary Decimal Step Hexadecimal MVN value Notes

0000000000000000abcdefghijklmnop 0-65535 1 0-0xFFFF - See c in Note

 Note

These notes give extra information on both tables.

a
The MVN values are only available directly as operands in MVN instructions.

b
These values are available in A32 only. All the other values in this table are also available in 32-
bit T32 instructions.

c
These values are not available directly as operands in other instructions.

3 Writing A32/T32 Assembly Language
3.5 Load immediate values using MOV and MVN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-40

Non-Confidential

In T32:

• The 32-bit MOV instruction can load:
— Any 8-bit immediate value, giving a range of 0x0-0xFF (0-255).
— Any 8-bit immediate value, shifted left by any number.
— Any 8-bit pattern duplicated in all four bytes of a register.
— Any 8-bit pattern duplicated in bytes 0 and 2, with bytes 1 and 3 set to 0.
— Any 8-bit pattern duplicated in bytes 1 and 3, with bytes 0 and 2 set to 0.

These values are also available as immediate operands in many data processing operations, without
being loaded in a separate instruction.

• The 32-bit MVN instruction can load the bitwise complements of these values. The numerical values
are -(n+1), where n is the value available in MOV.

• The 32-bit MOV instruction can load any 16-bit number, giving a range of 0x0-0xFFFF (0-65535).
These values are not available as immediate operands in data processing operations.

In architectures with T32, the 16-bit T32 MOV instruction can load any immediate value in the range
0-255.

The following table shows the range of values that can be loaded in a single 32-bit T32 MOV or MVN
instruction (for data processing operations). The value to load must be a multiple of the value shown in
the Step column.

Table 3-4 32-bit T32 immediate values

Binary Decimal Step Hexadecimal MVN valuea Notes

000000000000000000000000abcdefgh 0-255 1 0x0-0xFF -1 to -256 -

00000000000000000000000abcdefgh0 0-510 2 0x0-0x1FE -2 to -512 -

0000000000000000000000abcdefgh00 0-1020 4 0x0-0x3FC -4 to -1024 -

... -

0abcdefgh00000000000000000000000 0-255 x 223 223 0x0-0x7F800000 1-256 x -223 -

abcdefgh000000000000000000000000 0-255 x 224 224 0x0-0xFF000000 1-256 x -224 -

abcdefghabcdefghabcdefghabcdefgh (bit pattern) - 0xXYXYXYXY 0xXYXYXYXY -

00000000abcdefgh00000000abcdefgh (bit pattern) - 0x00XY00XY 0xFFXYFFXY -

abcdefgh00000000abcdefgh00000000 (bit pattern) - 0xXY00XY00 0xXYFFXYFF -

00000000000000000000abcdefghijkl 0-4095 1 0x0-0xFFF - See b in Note

The following table shows the range of 16-bit values that can be loaded by the MOV 32-bit T32
instruction:

Table 3-5 32-bit T32 immediate values in MOV instructions

Binary Decimal Step Hexadecimal MVN value Notes

0000000000000000abcdefghijklmnop 0-65535 1 0x0-0xFFFF - See c in Note

 Note

These notes give extra information on the tables.

a
The MVN values are only available directly as operands in MVN instructions.

3 Writing A32/T32 Assembly Language
3.5 Load immediate values using MOV and MVN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-41

Non-Confidential

b
These values are available directly as operands in ADD, SUB, and MOV instructions, but not in MVN
or any other data processing instructions.

c
These values are only available in MOV instructions.

In both A32 and T32, you do not have to decide whether to use MOV or MVN. The assembler uses
whichever is appropriate. This is useful if the value is an assembly-time variable.

If you write an instruction with an immediate value that is not available, the assembler reports the error:
Immediate n out of range for this operation.

Related concepts
3.4 Load immediate values on page 3-39

3 Writing A32/T32 Assembly Language
3.5 Load immediate values using MOV and MVN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-42

Non-Confidential

3.6 Load immediate values using MOV32
To load any 32-bit immediate value, a pair of MOV and MOVT instructions is equivalent to a MOV32 pseudo-
instruction.

Both A32 and T32 instruction sets include:
• A MOV instruction that can load any value in the range 0x00000000 to 0x0000FFFF into a register.
• A MOVT instruction that can load any value in the range 0x0000 to 0xFFFF into the most significant

half of a register, without altering the contents of the least significant half.

You can use these two instructions to construct any 32-bit immediate value in a register. Alternatively,
you can use the MOV32 pseudo-instruction. The assembler generates the MOV, MOVT instruction pair for
you.

You can also use the MOV32 instruction to load addresses into registers by using a label or any PC-relative
expression in place of an immediate value. The assembler puts a relocation directive into the object file
for the linker to resolve the address at link-time.

Related concepts
6.5 Register-relative and PC-relative expressions on page 6-172
Related reference
8.6 MOV32 pseudo-instruction on page 8-287

3 Writing A32/T32 Assembly Language
3.6 Load immediate values using MOV32

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-43

Non-Confidential

3.7 Load immediate values using LDR Rd, =const
The LDR Rd,=const pseudo-instruction generates the most efficient single instruction to load any 32-bit
number.

You can use this pseudo-instruction to generate constants that are out of range of the MOV and MVN
instructions.

The LDR pseudo-instruction generates the most efficient single instruction for the specified immediate
value:
• If the immediate value can be constructed with a single MOV or MVN instruction, the assembler

generates the appropriate instruction.
• If the immediate value cannot be constructed with a single MOV or MVN instruction, the assembler:

— Places the value in a literal pool (a portion of memory embedded in the code to hold constant
values).

— Generates an LDR instruction with a PC-relative address that reads the constant from the literal
pool.

For example:

 LDR rn, [pc, #offset to literal pool]
 ; load register n with one word
 ; from the address [pc + offset]

You must ensure that there is a literal pool within range of the LDR instruction generated by the
assembler.

Related concepts
3.8 Literal pools on page 3-45
Related reference
8.5 LDR pseudo-instruction on page 8-285

3 Writing A32/T32 Assembly Language
3.7 Load immediate values using LDR Rd, =const

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-44

Non-Confidential

3.8 Literal pools
The assembler uses literal pools to store some constant data in code sections. You can use the LTORG
directive to ensure a literal pool is within range.

The assembler places a literal pool at the end of each section. The end of a section is defined either by
the END directive at the end of the assembly or by the AREA directive at the start of the following section.
The END directive at the end of an included file does not signal the end of a section.

In large sections the default literal pool can be out of range of one or more LDR instructions. The offset
from the PC to the constant must be:

• Less than 4KB in A32 or T32 code when the 32-bit LDR instruction is available, but can be in either
direction.

• Forward and less than 1KB when only the 16-bit T32 LDR instruction is available.

When an LDR Rd,=const pseudo-instruction requires the immediate value to be placed in a literal pool,
the assembler:
• Checks if the value is available and addressable in any previous literal pools. If so, it addresses the

existing constant.
• Attempts to place the value in the next literal pool if it is not already available.

If the next literal pool is out of range, the assembler generates an error message. In this case you must
use the LTORG directive to place an additional literal pool in the code. Place the LTORG directive after the
failed LDR pseudo-instruction, and within the valid range for an LDR instruction.

You must place literal pools where the processor does not attempt to execute them as instructions. Place
them after unconditional branch instructions, or after the return instruction at the end of a subroutine.

Example of placing literal pools

The following example shows the placement of literal pools. The instructions listed as comments are the
A32 instructions generated by the assembler.

 AREA Loadcon, CODE, READONLY
 ENTRY ; Mark first instruction to execute
start
 BL func1 ; Branch to first subroutine
 BL func2 ; Branch to second subroutine
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; AArch32 semihosting (formerly SWI)func1
 LDR r0, =42 ; => MOV R0, #42
 LDR r1, =0x55555555 ; => LDR R1, [PC, #offset to
 ; Literal Pool 1]
 LDR r2, =0xFFFFFFFF ; => MVN R2, #0
 BX lr
 LTORG ; Literal Pool 1 contains
 ; literal Ox55555555
func2
 LDR r3, =0x55555555 ; => LDR R3, [PC, #offset to
 ; Literal Pool 1]
 ; LDR r4, =0x66666666 ; If this is uncommented it
 ; fails, because Literal Pool 2
 ; is out of reach
 BX lr
LargeTable
 SPACE 4200 ; Starting at the current location,
 ; clears a 4200 byte area of memory
 ; to zero
 END ; Literal Pool 2 is inserted here,
 ; but is out of range of the LDR
 ; pseudo-instruction that needs it

Related concepts
3.7 Load immediate values using LDR Rd, =const on page 3-44
Related reference
7.50 LTORG on page 7-255

3 Writing A32/T32 Assembly Language
3.8 Literal pools

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-45

Non-Confidential

3.9 Load addresses into registers
It is often necessary to load an address into a register. There are several ways to do this.

For example, you might have to load the address of a variable, a string literal, or the start location of a
jump table.

Addresses are normally expressed as offsets from a label, or from the current PC or other register.

You can load an address into a register either:
• Using the instruction ADR.
• Using the pseudo-instruction ADRL.
• Using the pseudo-instruction MOV32.
• From a literal pool using the pseudo-instruction LDR Rd,=Label.

Related concepts
3.10 Load addresses to a register using ADR on page 3-47
3.11 Load addresses to a register using ADRL on page 3-49
3.6 Load immediate values using MOV32 on page 3-43
3.12 Load addresses to a register using LDR Rd, =label on page 3-50

3 Writing A32/T32 Assembly Language
3.9 Load addresses into registers

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-46

Non-Confidential

3.10 Load addresses to a register using ADR
The ADR instruction loads an address within a certain range, without performing a data load.

ADR accepts a PC-relative expression, that is, a label with an optional offset where the address of the label
is relative to the PC.

 Note

The label used with ADR must be within the same code section. The assembler faults references to labels
that are out of range in the same section.

The available range of addresses for the ADR instruction depends on the instruction set and encoding:

A32

Any value that can be produced by rotating an 8-bit value right by any even number of bits
within a 32-bit word. The range is relative to the PC.

32-bit T32 encoding

±4095 bytes to a byte, halfword, or word-aligned address.

16-bit T32 encoding

0 to 1020 bytes. label must be word-aligned. You can use the ALIGN directive to ensure this.

Example of a jump table implementation with ADR

This example shows A32 code that implements a jump table. Here, the ADR instruction loads the address
of the jump table.

 AREA Jump, CODE, READONLY ; Name this block of code
 ARM ; Following code is A32 code
num EQU 2 ; Number of entries in jump table
 ENTRY ; Mark first instruction to execute
start ; First instruction to call
 MOV r0, #0 ; Set up the three arguments
 MOV r1, #3
 MOV r2, #2
 BL arithfunc ; Call the function
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; AArch32 semihosting (formerly
SWI)arithfunc ; Label the function
 CMP r0, #num ; Treat function code as unsigned
 ; integer
 BXHS lr ; If code is >= num then return
 ADR r3, JumpTable ; Load address of jump table
 LDR pc, [r3,r0,LSL#2] ; Jump to the appropriate routine
JumpTable
 DCD DoAdd
 DCD DoSub
DoAdd
 ADD r0, r1, r2 ; Operation 0
 BX lr ; Return
DoSub
 SUB r0, r1, r2 ; Operation 1
 BX lr ; Return
 END ; Mark the end of this file

In this example, the function arithfunc takes three arguments and returns a result in R0. The first
argument determines the operation to be carried out on the second and third arguments:

argument1=0

Result = argument2 + argument3.

argument1=1

Result = argument2 – argument3.

3 Writing A32/T32 Assembly Language
3.10 Load addresses to a register using ADR

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-47

Non-Confidential

The jump table is implemented with the following instructions and assembler directives:

EQU

Is an assembler directive. You use it to give a value to a symbol. In this example, it assigns the
value 2 to num. When num is used elsewhere in the code, the value 2 is substituted. Using EQU in
this way is similar to using #define to define a constant in C.

DCD

Declares one or more words of store. In this example, each DCD stores the address of a routine
that handles a particular clause of the jump table.

LDR
The LDR PC,[R3,R0,LSL#2] instruction loads the address of the required clause of the jump
table into the PC. It:
• Multiplies the clause number in R0 by 4 to give a word offset.
• Adds the result to the address of the jump table.
• Loads the contents of the combined address into the PC.

Related concepts
3.12 Load addresses to a register using LDR Rd, =label on page 3-50
3.11 Load addresses to a register using ADRL on page 3-49

3 Writing A32/T32 Assembly Language
3.10 Load addresses to a register using ADR

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-48

Non-Confidential

3.11 Load addresses to a register using ADRL
The ADRL pseudo-instruction loads an address within a certain range, without performing a data load. The
range is wider than that of the ADR instruction.

ADRL accepts a PC-relative expression, that is, a label with an optional offset where the address of the
label is relative to the current PC.

 Note

The label used with ADRL must be within the same code section. The assembler faults references to labels
that are out of range in the same section.

The assembler converts an ADRL rn,label pseudo-instruction by generating:
• Two data processing instructions that load the address, if it is in range.
• An error message if the address cannot be constructed in two instructions.

The available range depends on the instruction set and encoding.

A32

Any value that can be generated by two ADD or two SUB instructions. That is, any value that can
be produced by the addition of two values, each of which is 8 bits rotated right by any even
number of bits within a 32-bit word. The range is relative to the PC.

32-bit T32 encoding

±1MB to a byte, halfword, or word-aligned address.

16-bit T32 encoding

ADRL is not available.

Related concepts
3.10 Load addresses to a register using ADR on page 3-47
3.12 Load addresses to a register using LDR Rd, =label on page 3-50

3 Writing A32/T32 Assembly Language
3.11 Load addresses to a register using ADRL

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-49

Non-Confidential

3.12 Load addresses to a register using LDR Rd, =label
The LDR Rd,=label pseudo-instruction places an address in a literal pool and then loads the address into
a register.

LDR Rd,=label can load any 32-bit numeric value into a register. It also accepts PC-relative expressions
such as labels, and labels with offsets.

The assembler converts an LDR Rd,=label pseudo-instruction by:
• Placing the address of label in a literal pool (a portion of memory embedded in the code to hold

constant values).
• Generating a PC-relative LDR instruction that reads the address from the literal pool, for example:

 LDR rn [pc, #offset_to_literal_pool]
 ; load register n with one word
 ; from the address [pc + offset]

You must ensure that the literal pool is within range of the LDR pseudo-instruction that needs to access
it.

Example of loading using LDR Rd, =label

The following example shows a section with two literal pools. The final LDR pseudo-instruction needs to
access the second literal pool, but it is out of range. Uncommenting this line causes the assembler to
generate an error.

The instructions listed in the comments are the A32 instructions generated by the assembler.

 AREA LDRlabel, CODE, READONLY
 ENTRY ; Mark first instruction to execute
start
 BL func1 ; Branch to first subroutine
 BL func2 ; Branch to second subroutine
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; AArch32 semihosting (formerly SWI)
func1
 LDR r0, =start ; => LDR r0,[PC, #offset into Literal Pool 1]
 LDR r1, =Darea + 12 ; => LDR r1,[PC, #offset into Literal Pool 1]
 LDR r2, =Darea + 6000 ; => LDR r2,[PC, #offset into Literal Pool 1]
 BX lr ; Return
 LTORG ; Literal Pool 1
func2
 LDR r3, =Darea + 6000 ; => LDR r3,[PC, #offset into Literal Pool 1]
 ; (sharing with previous literal)
 ; LDR r4, =Darea + 6004 ; If uncommented, produces an error because
 ; Literal Pool 2 is out of range.
 BX lr ; Return
Darea SPACE 8000 ; Starting at the current location, clears
 ; a 8000 byte area of memory to zero.
 END ; Literal Pool 2 is automatically inserted
 ; after the END directive.
 ; It is out of range of all the LDR
 ; pseudo-instructions in this example.

Example of string copy

The following example shows an A32 code routine that overwrites one string with another. It uses the
LDR pseudo-instruction to load the addresses of the two strings from a data section. The following are
particularly significant:

DCB

The DCB directive defines one or more bytes of store. In addition to integer values, DCB accepts
quoted strings. Each character of the string is placed in a consecutive byte.

3 Writing A32/T32 Assembly Language
3.12 Load addresses to a register using LDR Rd, =label

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-50

Non-Confidential

LDR, STR

The LDR and STR instructions use post-indexed addressing to update their address registers. For
example, the instruction:

LDRB r2,[r1],#1

loads R2 with the contents of the address pointed to by R1 and then increments R1 by 1.

The example also shows how, unlike the ADR and ADRL pseudo-instructions, you can use the LDR pseudo-
instruction with labels that are outside the current section. The assembler places a relocation directive in
the object code when the source file is assembled. The relocation directive instructs the linker to resolve
the address at link time. The address remains valid wherever the linker places the section containing the
LDR and the literal pool.

 AREA StrCopy, CODE, READONLY
 ENTRY ; Mark first instruction to execute
start
 LDR r1, =srcstr ; Pointer to first string
 LDR r0, =dststr ; Pointer to second string
 BL strcopy ; Call subroutine to do copy
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; AArch32 semihosting (formerly SWI)
strcopy
 LDRB r2, [r1],#1 ; Load byte and update address
 STRB r2, [r0],#1 ; Store byte and update address
 CMP r2, #0 ; Check for zero terminator
 BNE strcopy ; Keep going if not
 MOV pc,lr ; Return
 AREA Strings, DATA, READWRITE
srcstr DCB "First string - source",0
dststr DCB "Second string - destination",0
 END

Related concepts
3.11 Load addresses to a register using ADRL on page 3-49
3.7 Load immediate values using LDR Rd, =const on page 3-44
Related reference
8.5 LDR pseudo-instruction on page 8-285
7.15 DCB on page 7-217

3 Writing A32/T32 Assembly Language
3.12 Load addresses to a register using LDR Rd, =label

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-51

Non-Confidential

3.13 Other ways to load and store registers
You can load and store registers using LDR, STR and MOV (register) instructions.

You can load any 32-bit value from memory into a register with an LDR data load instruction. To store
registers into memory you can use the STR data store instruction.

You can use the MOV instruction to move any 32-bit data from one register to another.

Related concepts
3.14 Load and store multiple register instructions on page 3-53
3.15 Load and store multiple register instructions in A32 and T32 on page 3-54

3 Writing A32/T32 Assembly Language
3.13 Other ways to load and store registers

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-52

Non-Confidential

3.14 Load and store multiple register instructions
The A32 and T32 instruction sets include instructions that load and store multiple registers. These
instructions can provide a more efficient way of transferring the contents of several registers to and from
memory than using single register loads and stores.

Multiple register transfer instructions are most often used for block copy and for stack operations at
subroutine entry and exit. The advantages of using a multiple register transfer instruction instead of a
series of single data transfer instructions include:
• Smaller code size.
• A single instruction fetch overhead, rather than many instruction fetches.
• On uncached Arm processors, the first word of data transferred by a load or store multiple is always a

nonsequential memory cycle, but all subsequent words transferred can be sequential memory cycles.
Sequential memory cycles are faster in most systems.

 Note

The lowest numbered register is transferred to or from the lowest memory address accessed, and the
highest numbered register to or from the highest address accessed. The order of the registers in the
register list in the instructions makes no difference.

You can use the --diag_warning 1206 assembler command line option to check that registers in register
lists are specified in increasing order.

Related concepts
3.15 Load and store multiple register instructions in A32 and T32 on page 3-54
3.16 Stack implementation using LDM and STM on page 3-55
3.17 Stack operations for nested subroutines on page 3-57
3.18 Block copy with LDM and STM on page 3-58

3 Writing A32/T32 Assembly Language
3.14 Load and store multiple register instructions

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-53

Non-Confidential

3.15 Load and store multiple register instructions in A32 and T32
Instructions are available in both the A32 and T32 instruction sets to load and store multiple registers.

They are:

LDM

Load Multiple registers.

STM

Store Multiple registers.

PUSH

Store multiple registers onto the stack and update the stack pointer.

POP

Load multiple registers off the stack, and update the stack pointer.

In LDM and STM instructions:
• The list of registers loaded or stored can include:

— In A32 instructions, any or all of R0-R12, SP, LR, and PC.
— In 32-bit T32 instructions, any or all of R0-R12, and optionally LR or PC (LDM only) with some

restrictions.
— In 16-bit T32 instructions, any or all of R0-R7.

• The address must be word-aligned. It can be:
— Incremented after each transfer.
— Incremented before each transfer (A32 instructions only).
— Decremented after each transfer (A32 instructions only).
— Decremented before each transfer (not in 16-bit encoded T32 instructions).

• The base register can be either:
— Updated to point to the next block of data in memory.
— Left as it was before the instruction.

When the base register is updated to point to the next block in memory, this is called writeback, that is,
the adjusted address is written back to the base register.

In PUSH and POP instructions:
• The stack pointer (SP) is the base register, and is always updated.
• The address is incremented after each transfer in POP instructions, and decremented before each

transfer in PUSH instructions.
• The list of registers loaded or stored can include:

— In A32 instructions, any or all of R0-R12, SP, LR, and PC.
— In 32-bit T32 instructions, any or all of R0-R12, and optionally LR or PC (POP only) with some

restrictions.
— In 16-bit T32 instructions, any or all of R0-R7, and optionally LR (PUSH only) or PC (POP only).

 Note

Use of SP in the list of registers in these A32 instructions is deprecated.

A32 STM and PUSH instructions that use PC in the list of registers, and A32 LDM and POP instructions that
use both PC and LR in the list of registers are deprecated.

Related concepts
3.14 Load and store multiple register instructions on page 3-53

3 Writing A32/T32 Assembly Language
3.15 Load and store multiple register instructions in A32 and T32

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-54

Non-Confidential

3.16 Stack implementation using LDM and STM
You can use the LDM and STM instructions to implement pop and push operations respectively. You use a
suffix to indicate the stack type.

The load and store multiple instructions can update the base register. For stack operations, the base
register is usually the stack pointer, SP. This means that you can use these instructions to implement push
and pop operations for any number of registers in a single instruction.

The load and store multiple instructions can be used with several types of stack:

Descending or ascending

The stack grows downwards, starting with a high address and progressing to a lower one (a
descending stack), or upwards, starting from a low address and progressing to a higher address
(an ascending stack).

Full or empty

The stack pointer can either point to the last item in the stack (a full stack), or the next free space
on the stack (an empty stack).

To make it easier for the programmer, stack-oriented suffixes can be used instead of the increment or
decrement, and before or after suffixes. The following table shows the stack-oriented suffixes and their
equivalent addressing mode suffixes for load and store instructions:

Table 3-6 Stack-oriented suffixes and equivalent addressing mode suffixes

Stack-oriented suffix For store or push instructions For load or pop instructions

FD (Full Descending stack) DB (Decrement Before) IA (Increment After)

FA (Full Ascending stack) IB (Increment Before) DA (Decrement After)

ED (Empty Descending stack) DA (Decrement After) IB (Increment Before)

EA (Empty Ascending stack) IA (Increment After) DB (Decrement Before)

The following table shows the load and store multiple instructions with the stack-oriented suffixes for the
various stack types:

Table 3-7 Suffixes for load and store multiple instructions

Stack type Store Load

Full descending STMFD (STMDB, Decrement Before) LDMFD (LDM, increment after)

Full ascending STMFA (STMIB, Increment Before) LDMFA (LDMDA, Decrement After)

Empty descending STMED (STMDA, Decrement After) LDMED (LDMIB, Increment Before)

Empty ascending STMEA (STM, increment after) LDMEA (LDMDB, Decrement Before)

For example:

 STMFD sp!, {r0-r5} ; Push onto a Full Descending Stack
 LDMFD sp!, {r0-r5} ; Pop from a Full Descending Stack

 Note

The Procedure Call Standard for the Arm® Architecture (AAPCS), and armclang always use a full
descending stack.

3 Writing A32/T32 Assembly Language
3.16 Stack implementation using LDM and STM

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-55

Non-Confidential

The PUSH and POP instructions assume a full descending stack. They are the preferred synonyms for
STMDB and LDM with writeback.

Related concepts
3.14 Load and store multiple register instructions on page 3-53
Related information
Procedure Call Standard for the Arm Architecture

3 Writing A32/T32 Assembly Language
3.16 Stack implementation using LDM and STM

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-56

Non-Confidential

http://infocenter/help/topic/com.arm.doc.ihi0042e/index.html

3.17 Stack operations for nested subroutines
Stack operations can be very useful at subroutine entry and exit to avoid losing register contents if other
subroutines are called.

At the start of a subroutine, any working registers required can be stored on the stack, and at exit they
can be popped off again.

In addition, if the link register is pushed onto the stack at entry, additional subroutine calls can be made
safely without causing the return address to be lost. If you do this, you can also return from a subroutine
by popping the PC off the stack at exit, instead of popping the LR and then moving that value into the
PC. For example:

subroutine PUSH {r5-r7,lr} ; Push work registers and lr
 ; code
 BL somewhere_else
 ; code
 POP {r5-r7,pc} ; Pop work registers and pc

Related concepts
3.3 Register usage in subroutine calls on page 3-38
3.14 Load and store multiple register instructions on page 3-53
Related information
Procedure Call Standard for the Arm Architecture
Procedure Call Standard for the Arm 64-bit Architecture (AArch64)

3 Writing A32/T32 Assembly Language
3.17 Stack operations for nested subroutines

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-57

Non-Confidential

http://infocenter/help/topic/com.arm.doc.ihi0042e/index.html
http://infocenter/help/topic/com.arm.doc.ihi0055c/index.html

3.18 Block copy with LDM and STM
You can sometimes make code more efficient by using LDM and STM instead of LDR and STR instructions.

Example of block copy without LDM and STM

The following example is an A32 code routine that copies a set of words from a source location to a
destination a single word at a time:

 AREA Word, CODE, READONLY ; name the block of code
num EQU 20 ; set number of words to be copied
 ENTRY ; mark the first instruction called
start
 LDR r0, =src ; r0 = pointer to source block
 LDR r1, =dst ; r1 = pointer to destination block
 MOV r2, #num ; r2 = number of words to copy
wordcopy
 LDR r3, [r0], #4 ; load a word from the source and
 STR r3, [r1], #4 ; store it to the destination
 SUBS r2, r2, #1 ; decrement the counter
 BNE wordcopy ; ... copy more
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; AArch32 semihosting (formerly SWI)
 AREA BlockData, DATA, READWRITE
src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 END

You can make this module more efficient by using LDM and STM for as much of the copying as possible.
Eight is a sensible number of words to transfer at a time, given the number of available registers. You can
find the number of eight-word multiples in the block to be copied (if R2 = number of words to be copied)
using:

 MOVS r3, r2, LSR #3 ; number of eight word multiples

You can use this value to control the number of iterations through a loop that copies eight words per
iteration. When there are fewer than eight words left, you can find the number of words left (assuming
that R2 has not been corrupted) using:

 ANDS r2, r2, #7

Example of block copy using LDM and STM
The following example lists the block copy module rewritten to use LDM and STM for copying:

 AREA Block, CODE, READONLY ; name this block of code
num EQU 20 ; set number of words to be copied
 ENTRY ; mark the first instruction called
start
 LDR r0, =src ; r0 = pointer to source block
 LDR r1, =dst ; r1 = pointer to destination block
 MOV r2, #num ; r2 = number of words to copy
 MOV sp, #0x400 ; Set up stack pointer (sp)
blockcopy
 MOVS r3,r2, LSR #3 ; Number of eight word multiples
 BEQ copywords ; Fewer than eight words to move?
 PUSH {r4-r11} ; Save some working registers
octcopy
 LDM r0!, {r4-r11} ; Load 8 words from the source
 STM r1!, {r4-r11} ; and put them at the destination
 SUBS r3, r3, #1 ; Decrement the counter
 BNE octcopy ; ... copy more
 POP {r4-r11} ; Don't require these now - restore
 ; originals
copywords
 ANDS r2, r2, #7 ; Number of odd words to copy
 BEQ stop ; No words left to copy?
wordcopy
 LDR r3, [r0], #4 ; Load a word from the source and
 STR r3, [r1], #4 ; store it to the destination
 SUBS r2, r2, #1 ; Decrement the counter
 BNE wordcopy ; ... copy more
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException

3 Writing A32/T32 Assembly Language
3.18 Block copy with LDM and STM

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-58

Non-Confidential

 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; AArch32 semihosting (formerly SWI)
 AREA BlockData, DATA, READWRITE
src DCD 1,2,3,4,5,6,7,8,1,2,3,4,5,6,7,8,1,2,3,4
dst DCD 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 END

 Note

The purpose of this example is to show the use of the LDM and STM instructions. There are other ways to
perform bulk copy operations, the most efficient of which depends on many factors and is outside the
scope of this document.

Related information
What is the fastest way to copy memory on a Cortex-A8?

3 Writing A32/T32 Assembly Language
3.18 Block copy with LDM and STM

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-59

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka13544.html

3.19 Memory accesses
Many load and store instructions support different addressing modes.

Offset addressing

The offset value is applied to an address obtained from the base register. The result is used as the
address for the memory access. The base register is unchanged. The assembly language syntax
for this mode is:

[Rn, offset]

Pre-indexed addressing

The offset value is applied to an address obtained from the base register. The result is used as the
address for the memory access, and written back into the base register. The assembly language
syntax for this mode is:

[Rn, offset]!

Post-indexed addressing

The address obtained from the base register is used, unchanged, as the address for the memory
access. The offset value is applied to the address, and written back into the base register. The
assembly language syntax for this mode is:

[Rn], offset

In each case, Rn is the base register and offset can be:
• An immediate constant.
• An index register, Rm.
• A shifted index register, such as Rm, LSL #shift.

Related concepts
4.15 Address alignment in A32/T32 code on page 4-91

3 Writing A32/T32 Assembly Language
3.19 Memory accesses

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-60

Non-Confidential

3.20 The Read-Modify-Write operation
The read-modify-write operation ensures that you modify only the specific bits in a system register that
you want to change.

Individual bits in a system register control different system functionality. Modifying the wrong bits in a
system register might cause your program to behave incorrectly.

 VMRS r10,FPSCR ; copy FPSCR into the general-purpose r10
 BIC r10,r10,#0x00370000 ; clear STRIDE bits[21:20] and LEN bits[18:16]
 ORR r10,r10,#0x00030000 ; set bits[17:16] (STRIDE =1 and LEN = 4)
 VMSR FPSCR,r10 ; copy r10 back into FPSCR

To read-modify-write a system register, the instruction sequence is:
1. The first instruction copies the value from the target system register to a temporary general-purpose

register.
2. The next one or more instructions modify the required bits in the general-purpose register. This can

be one or both of:
• BIC to clear to 0 only the bits that must be cleared.
• ORR to set to 1 only the bits that must be set.

3. The final instruction writes the value from the general-purpose register to the target system register.

3 Writing A32/T32 Assembly Language
3.20 The Read-Modify-Write operation

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-61

Non-Confidential

3.21 Optional hash with immediate constants
You do not have to specify a hash before an immediate constant in any instruction syntax.

This applies to A32, T32, Advanced SIMD, and floating-point instructions. For example, the following
are valid instructions:

 BKPT 100
 MOVT R1, 256
 VCEQ.I8 Q1, Q2, 0

By default, the assembler warns if you do not specify a hash:

WARNING: A1865W: '#' not seen before constant expression.

You can suppressed this with --diag_suppress=1865.

If you use the assembly code with another assembler, you are advised to use the # before all immediates.
The disassembler always shows the # for clarity.

3 Writing A32/T32 Assembly Language
3.21 Optional hash with immediate constants

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-62

Non-Confidential

3.22 Use of macros
A macro definition is a block of code enclosed between MACRO and MEND directives. It defines a name that
you can use as a convenient alternative to repeating the block of code.

The main uses for a macro are:
• To make it easier to follow the logic of the source code by replacing a block of code with a single

meaningful name.
• To avoid repeating a block of code several times.

Related concepts
3.23 Test-and-branch macro example on page 3-64
3.24 Unsigned integer division macro example on page 3-65
Related reference
7.51 MACRO and MEND on page 7-256

3 Writing A32/T32 Assembly Language
3.22 Use of macros

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-63

Non-Confidential

3.23 Test-and-branch macro example
You can use a macro to perform a test-and-branch operation.

In A32 code, a test-and-branch operation requires two instructions to implement.

You can define a macro such as this:

 MACRO
$label TestAndBranch $dest, $reg, $cc
$label CMP $reg, #0
 B$cc $dest
 MEND

The line after the MACRO directive is the macro prototype statement. This defines the name
(TestAndBranch) you use to invoke the macro. It also defines parameters ($label, $dest, $reg, and
$cc). Unspecified parameters are substituted with an empty string. For this macro you must give values
for $dest, $reg and $cc to avoid syntax errors. The assembler substitutes the values you give into the
code.

This macro can be invoked as follows:

test TestAndBranch NonZero, r0, NE
 ...
 ...
NonZero

After substitution this becomes:

test CMP r0, #0
 BNE NonZero
 ...
 ...
NonZero

Related concepts
3.22 Use of macros on page 3-63
3.24 Unsigned integer division macro example on page 3-65
6.10 Numeric local labels on page 6-177

3 Writing A32/T32 Assembly Language
3.23 Test-and-branch macro example

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-64

Non-Confidential

3.24 Unsigned integer division macro example
You can use a macro to perform unsigned integer division.

The macro takes the following parameters:

$Bot

The register that holds the divisor.

$Top

The register that holds the dividend before the instructions are executed. After the instructions
are executed, it holds the remainder.

$Div

The register where the quotient of the division is placed. It can be NULL ("") if only the
remainder is required.

$Temp

A temporary register used during the calculation.

Example unsigned integer division with a macro
 MACRO
$Lab DivMod $Div,$Top,$Bot,$Temp
 ASSERT $Top <> $Bot ; Produce an error message if the
 ASSERT $Top <> $Temp ; registers supplied are
 ASSERT $Bot <> $Temp ; not all different
 IF "$Div" <> ""
 ASSERT $Div <> $Top ; These three only matter if $Div
 ASSERT $Div <> $Bot ; is not null ("")
 ASSERT $Div <> $Temp ;
 ENDIF
$Lab
 MOV $Temp, $Bot ; Put divisor in $Temp
 CMP $Temp, $Top, LSR #1 ; double it until
90 MOVLS $Temp, $Temp, LSL #1 ; 2 * $Temp > $Top
 CMP $Temp, $Top, LSR #1
 BLS %b90 ; The b means search backwards
 IF "$Div" <> "" ; Omit next instruction if $Div
 ; is null
 MOV $Div, #0 ; Initialize quotient
 ENDIF
91 CMP $Top, $Temp ; Can we subtract $Temp?
 SUBCS $Top, $Top,$Temp ; If we can, do so
 IF "$Div" <> "" ; Omit next instruction if $Div
 ; is null
 ADC $Div, $Div, $Div ; Double $Div
 ENDIF
 MOV $Temp, $Temp, LSR #1 ; Halve $Temp,
 CMP $Temp, $Bot ; and loop until
 BHS %b91 ; less than divisor
 MEND

The macro checks that no two parameters use the same register. It also optimizes the code produced if
only the remainder is required.

To avoid multiple definitions of labels if DivMod is used more than once in the assembler source, the
macro uses numeric local labels (90, 91).

The following example shows the code that this macro produces if it is invoked as follows:

ratio DivMod R0,R5,R4,R2

Output from the example division macro
 ASSERT r5 <> r4 ; Produce an error if the
 ASSERT r5 <> r2 ; registers supplied are
 ASSERT r4 <> r2 ; not all different
 ASSERT r0 <> r5 ; These three only matter if $Div
 ASSERT r0 <> r4 ; is not null ("")

3 Writing A32/T32 Assembly Language
3.24 Unsigned integer division macro example

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-65

Non-Confidential

 ASSERT r0 <> r2 ;
ratio
 MOV r2, r4 ; Put divisor in $Temp
 CMP r2, r5, LSR #1 ; double it until
90 MOVLS r2, r2, LSL #1 ; 2 * r2 > r5
 CMP r2, r5, LSR #1
 BLS %b90 ; The b means search backwards
 MOV r0, #0 ; Initialize quotient
91 CMP r5, r2 ; Can we subtract r2?
 SUBCS r5, r5, r2 ; If we can, do so
 ADC r0, r0, r0 ; Double r0
 MOV r2, r2, LSR #1 ; Halve r2,
 CMP r2, r4 ; and loop until
 BHS %b91 ; less than divisor

Related concepts
3.22 Use of macros on page 3-63
3.23 Test-and-branch macro example on page 3-64
6.10 Numeric local labels on page 6-177

3 Writing A32/T32 Assembly Language
3.24 Unsigned integer division macro example

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-66

Non-Confidential

3.25 Instruction and directive relocations
The assembler can embed relocation directives in object files to indicate labels with addresses that are
unknown at assembly time. The assembler can relocate several types of instruction.

A relocation is a directive embedded in the object file that enables source code to refer to a label whose
target address is unknown or cannot be calculated at assembly time. The assembler emits a relocation in
the object file, and the linker resolves this to the address where the target is placed.

The assembler relocates the data directives DCB, DCW, DCWU, DCD, and DCDU if their syntax contains an
external symbol, that is a symbol declared using IMPORT or EXTERN. This causes the bottom 8, 16, or 32
bits of the address to be used at link-time.

The REQUIRE directive emits a relocation to signal to the linker that the target label must be present if the
current section is present.

The assembler is permitted to emit a relocation for these instructions:

LDR (PC-relative)
All A32 and T32 instructions, except the T32 doubleword instruction, can be relocated.

PLD, PLDW, and PLI
All A32 and T32 instructions can be relocated.

B, BL, and BLX
All A32 and T32 instructions can be relocated.

CBZ and CBNZ
All T32 instructions can be relocated but this is discouraged because of the limited branch range
of these instructions.

LDC and LDC2
Only A32 instructions can be relocated.

VLDR
Only A32 instructions can be relocated.

The assembler emits a relocation for these instructions if the label used meets any of the following
requirements, as appropriate for the instruction type:

• The label is WEAK.
• The label is not in the same AREA.
• The label is external to the object (IMPORT or EXTERN).

For B, BL, and BX instructions, the assembler emits a relocation also if:
• The label is a function.
• The label is exported using EXPORT or GLOBAL.

 Note

You can use the RELOC directive to control the relocation at a finer level, but this requires knowledge of
the ABI.

Example
 IMPORT sym ; sym is an external symbol
 DCW sym ; Because DCW only outputs 16 bits, only the lower
 ; 16 bits of the address of sym are inserted at
 ; link-time.

Related reference
7.6 AREA on page 7-205
7.27 EXPORT or GLOBAL on page 7-229

3 Writing A32/T32 Assembly Language
3.25 Instruction and directive relocations

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-67

Non-Confidential

7.45 IMPORT and EXTERN on page 7-249
7.58 REQUIRE on page 7-267
7.57 RELOC on page 7-266
7.15 DCB on page 7-217
7.16 DCD and DCDU on page 7-218
7.22 DCW and DCWU on page 7-224
Related information
ELF for the Arm Architecture

3 Writing A32/T32 Assembly Language
3.25 Instruction and directive relocations

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-68

Non-Confidential

http://infocenter/help/topic/com.arm.doc.ihi0044e/index.html

3.26 Symbol versions
The Arm linker conforms to the Base Platform ABI for the Arm Architecture (BPABI) and supports the
GNU-extended symbol versioning model.

To add a symbol version to an existing symbol, you must define a version symbol at the same address. A
version symbol is of the form:
• name@ver if ver is a non default version of name.
• name@@ver if ver is the default version of name.

The version symbols must be enclosed in vertical bars.

For example, to define a default version:

|my_versioned_symbol@@ver2| ; Default version
my_asm_function PROC
 ...
 BX lr
 ENDP

To define a non default version:

|my_versioned_symbol@ver1| ; Non default version
my_old_asm_function PROC
 ...
 BX lr
 ENDP

Related information
Base Platform ABI for the Arm Architecture
Accessing and managing symbols with armlink

3 Writing A32/T32 Assembly Language
3.26 Symbol versions

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-69

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0037-/index.html
https://developer.arm.com/docs/100070/0612/accessing-and-managing-symbols-with-armlink

3.27 Frame directives
Frame directives provide information in object files that enables debugging and profiling of assembly
language functions.

You must use frame directives to describe the way that your code uses the stack if you want to be able to
do either of the following:

• Debug your application using stack unwinding.
• Use either flat or call-graph profiling.

The assembler uses frame directives to insert DWARF debug frame information into the object file in
ELF format that it produces. This information is required by a debugger for stack unwinding and for
profiling.

Be aware of the following:
• Frame directives do not affect the code produced by the assembler.
• The assembler does not validate the information in frame directives against the instructions emitted.

Related concepts
3.28 Exception tables and Unwind tables on page 3-71
Related reference
7.3 About frame directives on page 7-201
Related information
Procedure Call Standard for the Arm Architecture

3 Writing A32/T32 Assembly Language
3.27 Frame directives

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-70

Non-Confidential

http://infocenter/help/topic/com.arm.doc.ihi0042e/index.html

3.28 Exception tables and Unwind tables
You use FRAME directives to enable the assembler to generate unwind tables.

 Note

Not supported for AArch64 state.

Exception tables are necessary to handle exceptions thrown by functions in high-level languages such as
C++. Unwind tables contain debug frame information which is also necessary for the handling of such
exceptions. An exception can only propagate through a function with an unwind table.

An assembly language function is code enclosed by either PROC and ENDP or FUNC and ENDFUNC
directives. Functions written in C++ have unwind information by default. However, for assembly
language functions that are called from C++ code, you must ensure that there are exception tables and
unwind tables to enable the exceptions to propagate through them.

An exception cannot propagate through a function with a nounwind table. The exception handling
runtime environment terminates the program if it encounters a nounwind table during exception
processing.

The assembler can generate nounwind table entries for all functions and non-functions. The assembler
can generate an unwind table for a function only if the function contains sufficient FRAME directives to
describe the use of the stack within the function. To be able to create an unwind table for a function, each
POP or PUSH instruction must be followed by a FRAME POP or FRAME PUSH directive respectively.
Functions must conform to the conditions set out in the Exception Handling ABI for the Arm®

Architecture (EHABI), section 9.1 Constraints on Use. If the assembler cannot generate an unwind table
it generates a nounwind table.

Related concepts
3.27 Frame directives on page 3-70
Related reference
7.3 About frame directives on page 7-201
5.26 --exceptions, --no_exceptions on page 5-124
5.27 --exceptions_unwind, --no_exceptions_unwind on page 5-125
7.39 FRAME UNWIND ON on page 7-242
7.40 FRAME UNWIND OFF on page 7-243
7.41 FUNCTION or PROC on page 7-244
7.24 ENDFUNC or ENDP on page 7-226
Related information
Exception Handling ABI for the Arm Architecture

3 Writing A32/T32 Assembly Language
3.28 Exception tables and Unwind tables

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

3-71

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038-/index.html

Chapter 4
Using armasm

Describes how to use armasm.

It contains the following sections:
• 4.1 armasm command-line syntax on page 4-73.
• 4.2 Specify command-line options with an environment variable on page 4-74.
• 4.3 Using stdin to input source code to the assembler on page 4-75.
• 4.4 Built-in variables and constants on page 4-76.
• 4.5 Identifying versions of armasm in source code on page 4-80.
• 4.6 Diagnostic messages on page 4-81.
• 4.7 Interlocks diagnostics on page 4-82.
• 4.8 Automatic IT block generation in T32 code on page 4-83.
• 4.9 T32 branch target alignment on page 4-84.
• 4.10 T32 code size diagnostics on page 4-85.
• 4.11 A32 and T32 instruction portability diagnostics on page 4-86.
• 4.12 T32 instruction width diagnostics on page 4-87.
• 4.13 Two pass assembler diagnostics on page 4-88.
• 4.14 Using the C preprocessor on page 4-89.
• 4.15 Address alignment in A32/T32 code on page 4-91.
• 4.16 Address alignment in A64 code on page 4-92.
• 4.17 Instruction width selection in T32 code on page 4-93.

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-72

Non-Confidential

4.1 armasm command-line syntax
You can use a command line to invoke armasm. You must specify an input source file and you can
specify various options.

The command for invoking the assembler is:

armasm {options} inputfile

where:

options
are commands that instruct the assembler how to assemble the inputfile. You can invoke
armasm with any combination of options separated by spaces. You can specify values for some
options. To specify a value for an option, use either ‘=’ (option=value) or a space character
(option value).

inputfile

is an assembly source file. It must contain UAL, pre-UAL A32 or T32, or A64 assembly
language.

The assembler command line is case-insensitive, except in filenames and where specified. The assembler
uses the same command-line ordering rules as the compiler. This means that if the command line
contains options that conflict with each other, then the last option found always takes precedence.

4 Using armasm
4.1 armasm command-line syntax

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-73

Non-Confidential

4.2 Specify command-line options with an environment variable
The ARMCOMPILER6_ASMOPT environment variable can hold command-line options for the assembler.

The syntax is identical to the command-line syntax. The assembler reads the value of
ARMCOMPILER6_ASMOPT and inserts it at the front of the command string. This means that options
specified in ARMCOMPILER6_ASMOPT can be overridden by arguments on the command line.

Related concepts
4.1 armasm command-line syntax on page 4-73
Related information
Toolchain environment variables

4 Using armasm
4.2 Specify command-line options with an environment variable

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-74

Non-Confidential

https://developer.arm.com/docs/100748/0612/supporting-reference-information/toolchain-environment-variables

4.3 Using stdin to input source code to the assembler
You can use stdin to pipe output from another program into armasm or to input source code directly on
the command line. This is useful if you want to test a short piece of code without having to create a file
for it.

To use stdin to pipe output from another program into armasm, invoke the program and the assembler
using the pipe character (|). Use the minus character (-) as the source filename to instruct the assembler
to take input from stdin. You must specify the output filename using the -o option. You can specify the
command-line options you want to use. For example to pipe output from fromelf:

fromelf --disassemble A32input.o | armasm --cpu=8-A.32 -o A32output.o -

 Note

The source code from stdin is stored in an internal cache that can hold up to 8 MB. You can increase
this cache size using the --maxcache command-line option.

To use stdin to input source code directly on the command line:

Procedure
1. Invoke the assembler with the command-line options you want to use. Use the minus character (-) as

the source filename to instruct the assembler to take input from stdin. You must specify the output
filename using the -o option. For example:

armasm --cpu=8-A.32 -o output.o -

2. Enter your input. For example:

 AREA A32ex, CODE, READONLY
 ; Name this block of code A32ex
 ENTRY ; Mark first instruction to execute
start
 MOV r0, #10 ; Set up parameters
 MOV r1, #3
 ADD r0, r0, r1 ; r0 = r0 + r1
stop
 MOV r0, #0x18 ; angel_SWIreason_ReportException
 LDR r1, =0x20026 ; ADP_Stopped_ApplicationExit
 SVC #0x123456 ; AArch32 semihosting (formerly SWI)

 END ; Mark end of file

3. Terminate your input by entering:
• Ctrl+Z then Return on Microsoft Windows systems.
• Ctrl+D on Unix-based operating systems.

Related concepts
4.1 armasm command-line syntax on page 4-73
Related reference
5.44 --maxcache=n on page 5-142

4 Using armasm
4.3 Using stdin to input source code to the assembler

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-75

Non-Confidential

4.4 Built-in variables and constants
armasm defines built-in variables that hold information about, for example, the state of armasm, the
command-line options used, and the target architecture or processor.

The following table lists the built-in variables defined by armasm:

Table 4-1 Built-in variables

{ARCHITECTURE} Holds the name of the selected Arm architecture.

{AREANAME} Holds the name of the current AREA.

{ARMASM_VERSION} Holds an integer that increases with each version of armasm. The format of the
version number is Mmmuuxx where:
• M is the major version number, 6.
• mm is the minor version number.
• uu is the update number.
• xx is reserved for Arm internal use. You can ignore this for the purposes of

checking whether the current release is a specific version or within a range of
versions.

 Note

The built-in variable |ads$version| is deprecated.

|ads$version| Has the same value as {ARMASM_VERSION}.

{CODESIZE} Is a synonym for {CONFIG}.

{COMMANDLINE} Holds the contents of the command line.

{CONFIG} Has the value:
• 64 if the assembler is assembling A64 code.
• 32 if the assembler is assembling A32 code.
• 16 if the assembler is assembling T32 code.

{CPU} Holds the name of the selected processor. The value of {CPU} is derived from the
value specified in the --cpu option on the command line.

{ENDIAN} Has the value "big" if the assembler is in big-endian mode, or "little" if it is in
little-endian mode.

{FPU} Holds the name of the selected FPU. The default in AArch32 state is "FP-ARMv8".
The default in AArch64 state is "A64".

{INPUTFILE} Holds the name of the current source file.

{INTER} Has the Boolean value True if --apcs=/inter is set. The default is {False}.

{LINENUM} Holds an integer indicating the line number in the current source file.

{LINENUMUP} When used in a macro, holds an integer indicating the line number of the current
macro. The value is the same as {LINENUM} when used in a non-macro context.

{LINENUMUPPER} When used in a macro, holds an integer indicating the line number of the top macro.
The value is the same as {LINENUM} when used in a non-macro context.

{OPT} Value of the currently-set listing option. You can use the OPT directive to save the
current listing option, force a change in it, or restore its original value.

4 Using armasm
4.4 Built-in variables and constants

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-76

Non-Confidential

{PC} or . Address of current instruction.

{PCSTOREOFFSET} Is the offset between the address of the STR PC,[…] or STM Rb,{…, PC}
instruction and the value of PC stored out. This varies depending on the processor or
architecture specified.

{ROPI} Has the Boolean value {True} if --apcs=/ropi is set. The default is {False}.

{RWPI} Has the Boolean value {True} if --apcs=/rwpi is set. The default is {False}.

{VAR} or @ Current value of the storage area location counter.

You can use built-in variables in expressions or conditions in assembly source code. For example:

 IF {ARCHITECTURE} = "8-A"

They cannot be set using the SETA, SETL, or SETS directives.

The names of the built-in variables can be in uppercase, lowercase, or mixed, for example:

 IF {CpU} = "Generic ARM"

 Note

All built-in string variables contain case-sensitive values. Relational operations on these built-in
variables do not match with strings that contain an incorrect case. Use the command-line options --cpu
and --fpu to determine valid values for {CPU}, {ARCHITECTURE}, and {FPU}.

The assembler defines the built-in Boolean constants TRUE and FALSE.

Table 4-2 Built-in Boolean constants

{FALSE} Logical constant false.

{TRUE} Logical constant true.

The following table lists the target processor-related built-in variables that are predefined by the
assembler. Where the value field is empty, the symbol is a Boolean value and the meaning column
describes when its value is {TRUE}.

Table 4-3 Predefined macros

Name Value Meaning

{TARGET_ARCH_AARCH32} boolean {TRUE} when assembling for AArch32 state. {FALSE} when assembling
for AArch64 state.

{TARGET_ARCH_AARCH64} boolean {TRUE} when assembling for AArch64 state. {FALSE} when assembling
for AArch32 state.

{TARGET_ARCH_ARM} num The number of the A32 base architecture of the target processor
irrespective of whether the assembler is assembling for A32 or T32. The
value is defined as zero when assembling for A64, and eight when
assembling for A32/T32.

{TARGET_ARCH_THUMB} num The number of the T32 base architecture of the target processor
irrespective of whether the assembler is assembling for A32 or T32. The
value is defined as zero when assembling for A64, and five when
assembling for A32/T32.

4 Using armasm
4.4 Built-in variables and constants

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-77

Non-Confidential

Table 4-3 Predefined macros (continued)

Name Value Meaning

{TARGET_ARCH_XX} – XX represents the target architecture and its value depends on the target
processor:

For the Armv8 architecture:
• If you specify the assembler option --cpu=8-A.32 or --cpu=8-

A.64 then {TARGET_ARCH_8_A} is defined.
• If you specify the assembler option --cpu=8.1-A.32 or --

cpu=8.1-A.64 then {TARGET_ARCH_8_1_A} is defined.

For the Armv7 architecture, if you specify --cpu=Cortex-A8, for
example, then {TARGET_ARCH_7_A} is defined.

{TARGET_FEATURE_EXTENSION_REGIS
TER_COUNT}

num The number of 64-bit extension registers available in Advanced SIMD or
floating-point.

{TARGET_FEATURE_CLZ} – If the target processor supports the CLZ instruction.

{TARGET_FEATURE_CRYPTOGRAPHY} – If the target processor has cryptographic instructions.

{TARGET_FEATURE_DIVIDE} – If the target processor supports the hardware divide instructions SDIV and
UDIV.

{TARGET_FEATURE_DOUBLEWORD} – If the target processor supports doubleword load and store instructions,
for example the A32 and T32 instructions LDRD and STRD (except the
Armv6‑M architecture).

{TARGET_FEATURE_DSPMUL} – If the DSP-enhanced multiplier (for example the SMLAxy instruction) is
available.

{TARGET_FEATURE_MULTIPLY} – If the target processor supports long multiply instructions, for example the
A32 and T32 instructions SMULL, SMLAL, UMULL, and UMLAL (that is, all
architectures except the Armv6‑M architecture).

{TARGET_FEATURE_MULTIPROCESSING
}

– If assembling for a target processor with Multiprocessing Extensions.

{TARGET_FEATURE_NEON} – If the target processor has Advanced SIMD.

{TARGET_FEATURE_NEON_FP16} – If the target processor has Advanced SIMD with half-precision floating-
point operations.

{TARGET_FEATURE_NEON_FP32} – If the target processor has Advanced SIMD with single-precision floating-
point operations.

{TARGET_FEATURE_NEON_INTEGER} – If the target processor has Advanced SIMD with integer operations.

{TARGET_FEATURE_UNALIGNED} – If the target processor has support for unaligned accesses (all architectures
except the Armv6‑M architecture).

{TARGET_FPU_SOFTVFP} – If assembling with the option --fpu=SoftVFP.

{TARGET_FPU_SOFTVFP_VFP} – If assembling for a target processor with SoftVFP and floating-point
hardware, for example --fpu=SoftVFP+FP-ARMv8.

4 Using armasm
4.4 Built-in variables and constants

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-78

Non-Confidential

Table 4-3 Predefined macros (continued)

Name Value Meaning

{TARGET_FPU_VFP} – If assembling for a target processor with floating-point hardware, without
using SoftVFP, for example --fpu=FP-ARMv8.

{TARGET_FPU_VFPV2} – If assembling for a target processor with VFPv2.

{TARGET_FPU_VFPV3} – If assembling for a target processor with VFPv3.

{TARGET_FPU_VFPV4} – If assembling for a target processor with VFPv4.

{TARGET_PROFILE_A} – If assembling for a Cortex®-A profile processor, for example, if you
specify the assembler option --cpu=7-A.

{TARGET_PROFILE_M} – If assembling for a Cortex-M profile processor, for example, if you
specify the assembler option --cpu=7-M.

{TARGET_PROFILE_R} – If assembling for a Cortex-R profile processor, for example, if you specify
the assembler option --cpu=7-R.

Related concepts
4.5 Identifying versions of armasm in source code on page 4-80
Related reference
5.13 --cpu=name on page 5-109
5.32 --fpu=name on page 5-130

4 Using armasm
4.4 Built-in variables and constants

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-79

Non-Confidential

4.5 Identifying versions of armasm in source code
The assembler defines the built-in variable ARMASM_VERSION to hold the version number of the
assembler.

You can use it as follows:

 IF ({ARMASM_VERSION} / 100000) >= 6
 ; using armasm in Arm Compiler 6
 ELIF ({ARMASM_VERSION} / 1000000) = 5
 ; using armasm in Arm Compiler 5
 ELSE
 ; using armasm in Arm Compiler 4.1 or earlier
 ENDIF

 Note

The built-in variable |ads$version| is deprecated.

Related reference
4.4 Built-in variables and constants on page 4-76

4 Using armasm
4.5 Identifying versions of armasm in source code

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-80

Non-Confidential

4.6 Diagnostic messages
The assembler can provide extra error, warning, and remark diagnostic messages in addition to the
default ones.

By default, these additional diagnostic messages are not displayed. However, you can enable them using
the command-line options --diag_error, --diag_warning, and --diag_remark.

Related concepts
4.7 Interlocks diagnostics on page 4-82
4.8 Automatic IT block generation in T32 code on page 4-83
4.9 T32 branch target alignment on page 4-84
4.10 T32 code size diagnostics on page 4-85
4.11 A32 and T32 instruction portability diagnostics on page 4-86
4.12 T32 instruction width diagnostics on page 4-87
4.13 Two pass assembler diagnostics on page 4-88
Related reference
5.17 --diag_error=tag[,tag,…] on page 5-115

4 Using armasm
4.6 Diagnostic messages

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-81

Non-Confidential

4.7 Interlocks diagnostics
armasm can report warning messages about possible interlocks in your code caused by the pipeline of the
processor chosen by the --cpu option.

To do this, use the --diag_warning 1563 command-line option when invoking armasm.
 Note

• armasm does not have an accurate model of the target processor, so these messages are not reliable
when used with a multi-issue processor such as Cortex‑A8.

• Interlocks diagnostics apply to A32 and T32 code, but not to A64 code.

Related concepts
4.8 Automatic IT block generation in T32 code on page 4-83
4.9 T32 branch target alignment on page 4-84
4.12 T32 instruction width diagnostics on page 4-87
4.6 Diagnostic messages on page 4-81
Related reference
5.21 --diag_warning=tag[,tag,…] on page 5-119

4 Using armasm
4.7 Interlocks diagnostics

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-82

Non-Confidential

4.8 Automatic IT block generation in T32 code
armasm can automatically insert an IT block for conditional instructions in T32 code, without requiring
the use of explicit IT instructions.

If you write the following code:

 AREA x, CODE
 THUMB
 MOVNE r0,r1
 NOP
 IT NE
 MOVNE r0,r1
 END

armasm generates the following instructions:

 IT NE
 MOVNE r0,r1
 NOP
 IT NE
 MOVNE r0,r1

You can receive warning messages about the automatic generation of IT blocks when assembling T32
code. To do this, use the armasm --diag_warning 1763 command-line option when invoking armasm.

Related concepts
4.6 Diagnostic messages on page 4-81
Related reference
5.21 --diag_warning=tag[,tag,…] on page 5-119

4 Using armasm
4.8 Automatic IT block generation in T32 code

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-83

Non-Confidential

4.9 T32 branch target alignment
armasm can issue warnings about non word-aligned branch targets in T32 code.

On some processors, non word-aligned T32 instructions sometimes take one or more additional cycles to
execute in loops. This means that it can be an advantage to ensure that branch targets are word-aligned.
To ensure armasm reports such warnings, use the --diag_warning 1604 command-line option when
invoking it.

Related concepts
4.6 Diagnostic messages on page 4-81
Related reference
5.21 --diag_warning=tag[,tag,…] on page 5-119

4 Using armasm
4.9 T32 branch target alignment

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-84

Non-Confidential

4.10 T32 code size diagnostics
In T32 code, some instructions, for example a branch or LDR (PC-relative), can be encoded as either a 32-
bit or 16-bit instruction. armasm chooses the size of the instruction encoding.

armasm can issue a warning when it assembles a T32 instruction to a 32-bit encoding when it could have
used a 16-bit encoding.

To enable this warning, use the --diag_warning 1813 command-line option when invoking armasm.

Related concepts
4.17 Instruction width selection in T32 code on page 4-93
4.6 Diagnostic messages on page 4-81
Related reference
5.21 --diag_warning=tag[,tag,…] on page 5-119

4 Using armasm
4.10 T32 code size diagnostics

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-85

Non-Confidential

4.11 A32 and T32 instruction portability diagnostics
armasm can issue warnings about instructions that cannot assemble to both A32 and T32 code.

There are a few UAL instructions that can assemble as either A32 code or T32 code, but not both. You
can identify these instructions in the source code using the --diag_warning 1812 command-line option
when invoking armasm.

It warns for any instruction that cannot be assembled in the other instruction set. This is only a hint, and
other factors, like relocation availability or target distance might affect the accuracy of the message.

Related concepts
4.6 Diagnostic messages on page 4-81
Related reference
5.21 --diag_warning=tag[,tag,…] on page 5-119

4 Using armasm
4.11 A32 and T32 instruction portability diagnostics

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-86

Non-Confidential

4.12 T32 instruction width diagnostics
armasm can issue a warning when it assembles a T32 instruction to a 32-bit encoding when it could have
used a 16-bit encoding.

If you use the .W specifier, the instruction is encoded in 32 bits even if it could be encoded in 16 bits. You
can use a diagnostic warning to detect when a branch instruction could have been encoded in 16 bits, but
has been encoded in 32 bits. To do this, use the --diag_warning 1607 command-line option when
invoking armasm.

 Note

This diagnostic does not produce a warning for relocated branch instructions, because the final address is
not known. The linker might even insert a veneer, if the branch is out of range for a 32-bit instruction.

Related concepts
4.6 Diagnostic messages on page 4-81
Related reference
5.21 --diag_warning=tag[,tag,…] on page 5-119

4 Using armasm
4.12 T32 instruction width diagnostics

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-87

Non-Confidential

4.13 Two pass assembler diagnostics
armasm can issue a warning about code that might not be identical in both assembler passes.

armasm is a two pass assembler and the input code that the assembler reads must be identical in both
passes. If a symbol is defined after the :DEF: test for that symbol, then the code read in pass one might
be different from the code read in pass two. armasm can warn in this situation.

To do this, use the --diag_warning 1907 command-line option when invoking armasm.

Example

The following example shows that the symbol foo is defined after the :DEF: foo test.

 AREA x,CODE
 [:DEF: foo
]
foo MOV r3, r4
 END

Assembling this code with --diag_warning 1907 generates the message:

Warning A1907W: Test for this symbol has been seen and may cause failure in the second pass.

Related concepts
4.8 Automatic IT block generation in T32 code on page 4-83
4.9 T32 branch target alignment on page 4-84
4.12 T32 instruction width diagnostics on page 4-87
4.6 Diagnostic messages on page 4-81
1.3 How the assembler works on page 1-19
Related reference
5.21 --diag_warning=tag[,tag,…] on page 5-119
1.4 Directives that can be omitted in pass 2 of the assembler on page 1-21

4 Using armasm
4.13 Two pass assembler diagnostics

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-88

Non-Confidential

4.14 Using the C preprocessor
armasm can invoke armclang to preprocess an assembly language source file before assembling it.
Preprocessing with armclang allows you to use C preprocessor commands in assembly source code.

If you require armclang preprocessing, you must use the --cpreproc command-line option together
with the --cpreproc_opts command-line option when invoking the assembler. Including these options
causes armasm to call armclang to preprocess the file before assembling it.

 Note

As a minimum, you must specify the armclang --target option and either the -mcpu or -march option
with --cpreproc_opts.

To assemble code containing C directives that require the C preprocessor, the input assembly source
filename must have an upper-case extension .S. If your source filenames have a lower-case extension .s,
then to avoid having to rename the files:

1. Perform the pre-processing step manually using the armclang -x assembler-with-cpp option.
2. Assemble the preprocessed file without using the --cpreproc and --cpreproc_opts options.

armasm looks for the armclang binary in the same directory as the armasm binary. If it does not find the
binary, armasm expects the armclang binary to be on the PATH.

If present on the command line, armasm passes the following options by default to armclang:
• Basic pre-processor configuration options, such as -E.
• User-specified include directories, -I directives.
• Anything that is specified in --cpreproc_opts.

Some of the options that armasm passes to armclang are converted to the armclang equivalent
beforehand. These options are shown in the following table:

Table 4-4 armclang equivalent command-line options

armasm armclang

--thumb -mthumb

--arm -marm

-i -I

armasm correctly interprets the preprocessed #line commands. It can generate error messages and
debug_line tables using the information in the #line commands.

Preprocessing an assembly language source file

The following example shows the command that you write to preprocess and assemble a file, source.S.
The example also passes the compiler options to define a macro that is called RELEASE, and to undefine a
macro that is called ALPHA.

armasm --cpu=cortex-m3 --cpreproc --cpreproc_opts=--target=arm-arm-none-eabi,-mcpu=cortex-
a9,-D,RELEASE,-U,ALPHA source.S

4 Using armasm
4.14 Using the C preprocessor

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-89

Non-Confidential

Preprocessing an assembly language source file manually

Alternatively, you must manually call armclang to preprocess the file before calling armasm. The
following example shows the commands that you write to manually preprocess and assemble a file,
source.S:

armclang --target=arm-arm-none-eabi -mcpu=cortex-m3 -E source.S > preprocessed.S
armasm --cpu=cortex-m3 preprocessed.S

In this example, the preprocessor outputs a file that is called preprocessed.S, and armasm assembles it.

Related reference
5.10 --cpreproc on page 5-106
5.11 --cpreproc_opts=option[,option,…] on page 5-107
Related information
Specifying a target architecture, processor, and instruction set
Mandatory armclang options
-march armclang option
-mcpu armclang option
--target armclang option

4 Using armasm
4.14 Using the C preprocessor

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-90

Non-Confidential

https://developer.arm.com/docs/100068/0612/migrating-from-armcc-to-armclang/command-line-options-for-preprocessing-assembly-source-code
https://developer.arm.com/docs/100748/0612/using-common-compiler-options/mandatory-armclang-options
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-march
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-mcpu
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-target

4.15 Address alignment in A32/T32 code
In Armv7‑A, Armv7‑R, Armv8‑A, and Armv8‑R, the A bit in the System Control Register (SCTLR)
controls whether alignment checking is enabled or disabled. In Armv7‑M and Armv8‑M, the
UNALIGN_TRP bit, bit 3, in the Configuration and Control Register (CCR) controls the alignment
checking.

If alignment checking is enabled, all unaligned word and halfword transfers cause an alignment
exception. If disabled, unaligned accesses are permitted for the LDR, LDRH, STR, STRH, LDRSH, LDRT, STRT,
LDRSHT, LDRHT, STRHT, and TBH instructions. Other data-accessing instructions always cause an alignment
exception for unaligned data.

For STRD and LDRD, the specified address must be word-aligned.

If all your data accesses are aligned, you can use the --no_unaligned_access command-line option to
declare that the output object was not permitted to make unaligned access. If all input objects declare that
they are not permitted to use unaligned accesses, then the linker can avoid linking in any library
functions that support unaligned access.

Related reference
5.60 --unaligned_access, --no_unaligned_access on page 5-158

4 Using armasm
4.15 Address alignment in A32/T32 code

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-91

Non-Confidential

4.16 Address alignment in A64 code
If alignment checking is not enabled, then unaligned accesses are permitted for all load and store
instructions other than exclusive load, exclusive store, load acquire, and store release instructions. If
alignment checking is enabled, then unaligned accesses are not permitted.

With alignment checking enabled, all load and store instructions must use addresses that are aligned to
the size of the data being accessed:
• Addresses for 8-byte transfers must be 8-byte aligned.
• Addresses for 4-byte transfers are 4-byte word-aligned.
• Addresses for 2-byte transfers are 2-byte aligned.

Unaligned accesses cause an alignment exception.

For any memory access, if the stack pointer is used as the base register, then it must be quadword-
aligned. Otherwise it generates a stack alignment exception.

If all your data accesses are aligned, you can use the --no_unaligned_access command-line option to
declare that the output object was not permitted to make unaligned access. If all input objects declare that
they are not permitted to use unaligned accesses, then the linker can avoid linking in any library
functions that support unaligned access.

4 Using armasm
4.16 Address alignment in A64 code

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-92

Non-Confidential

4.17 Instruction width selection in T32 code
Some T32 instructions can have either a 16-bit encoding or a 32-bit encoding.

If you do not specify the instruction size, by default:
• For forward reference LDR, ADR, and B instructions, armasm always generates a 16-bit instruction,

even if that results in failure for a target that could be reached using a 32-bit instruction.
• For external reference LDR and B instructions, armasm always generates a 32-bit instruction.
• In all other cases, armasm generates the smallest size encoding that can be output.

If you want to override this behavior, you can use the .W or .N width specifier to ensure a particular
instruction size. armasm faults if it cannot generate an instruction with the specified width.

The .W specifier is ignored when assembling to A32 code, so you can safely use this specifier in code
that might assemble to either A32 or T32 code. However, the .N specifier is faulted when assembling to
A32 code.

Related concepts
4.10 T32 code size diagnostics on page 4-85

4 Using armasm
4.17 Instruction width selection in T32 code

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

4-93

Non-Confidential

Chapter 5
armasm Command-line Options

Describes the armasm command-line syntax and command-line options.

It contains the following sections:
• 5.1 --16 on page 5-96.
• 5.2 --32 on page 5-97.
• 5.3 --apcs=qualifier…qualifier on page 5-98.
• 5.4 --arm on page 5-100.
• 5.5 --arm_only on page 5-101.
• 5.6 --bi on page 5-102.
• 5.7 --bigend on page 5-103.
• 5.8 --brief_diagnostics, --no_brief_diagnostics on page 5-104.
• 5.9 --checkreglist on page 5-105.
• 5.10 --cpreproc on page 5-106.
• 5.11 --cpreproc_opts=option[,option,…] on page 5-107.
• 5.12 --cpu=list on page 5-108.
• 5.13 --cpu=name on page 5-109.
• 5.14 --debug on page 5-112.
• 5.15 --depend=dependfile on page 5-113.
• 5.16 --depend_format=string on page 5-114.
• 5.17 --diag_error=tag[,tag,…] on page 5-115.
• 5.18 --diag_remark=tag[,tag,…] on page 5-116.
• 5.19 --diag_style={arm|ide|gnu} on page 5-117.
• 5.20 --diag_suppress=tag[,tag,…] on page 5-118.
• 5.21 --diag_warning=tag[,tag,…] on page 5-119.
• 5.22 --dllexport_all on page 5-120.
• 5.23 --dwarf2 on page 5-121.

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-94

Non-Confidential

• 5.24 --dwarf3 on page 5-122.
• 5.25 --errors=errorfile on page 5-123.
• 5.26 --exceptions, --no_exceptions on page 5-124.
• 5.27 --exceptions_unwind, --no_exceptions_unwind on page 5-125.
• 5.28 --execstack, --no_execstack on page 5-126.
• 5.29 --execute_only on page 5-127.
• 5.30 --fpmode=model on page 5-128.
• 5.31 --fpu=list on page 5-129.
• 5.32 --fpu=name on page 5-130.
• 5.33 -g on page 5-131.
• 5.34 --help on page 5-132.
• 5.35 -idir[,dir, …] on page 5-133.
• 5.36 --keep on page 5-134.
• 5.37 --length=n on page 5-135.
• 5.38 --li on page 5-136.
• 5.39 --library_type=lib on page 5-137.
• 5.40 --list=file on page 5-138.
• 5.41 --list= on page 5-139.
• 5.42 --littleend on page 5-140.
• 5.43 -m on page 5-141.
• 5.44 --maxcache=n on page 5-142.
• 5.45 --md on page 5-143.
• 5.46 --no_code_gen on page 5-144.
• 5.47 --no_esc on page 5-145.
• 5.48 --no_hide_all on page 5-146.
• 5.49 --no_regs on page 5-147.
• 5.50 --no_terse on page 5-148.
• 5.51 --no_warn on page 5-149.
• 5.52 -o filename on page 5-150.
• 5.53 --pd on page 5-151.
• 5.54 --predefine "directive" on page 5-152.
• 5.55 --reduce_paths, --no_reduce_paths on page 5-153.
• 5.56 --regnames on page 5-154.
• 5.57 --report-if-not-wysiwyg on page 5-155.
• 5.58 --show_cmdline on page 5-156.
• 5.59 --thumb on page 5-157.
• 5.60 --unaligned_access, --no_unaligned_access on page 5-158.
• 5.61 --unsafe on page 5-159.
• 5.62 --untyped_local_labels on page 5-160.
• 5.63 --version_number on page 5-161.
• 5.64 --via=filename on page 5-162.
• 5.65 --vsn on page 5-163.
• 5.66 --width=n on page 5-164.
• 5.67 --xref on page 5-165.

5 armasm Command-line Options

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-95

Non-Confidential

5.1 --16
Instructs armasm to interpret instructions as T32 instructions using the pre-UAL T32 syntax.

This option is equivalent to a CODE16 directive at the head of the source file. Use the --thumb option to
specify T32 instructions using the UAL syntax.

 Note

Not supported for AArch64 state.

Related reference
5.59 --thumb on page 5-157
7.11 CODE16 directive on page 7-213

5 armasm Command-line Options
5.1 --16

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-96

Non-Confidential

5.2 --32
A synonym for the --arm command-line option.

 Note

Not supported for AArch64 state.

Related reference
5.4 --arm on page 5-100

5 armasm Command-line Options
5.2 --32

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-97

Non-Confidential

5.3 --apcs=qualifier…qualifier
Controls interworking and position independence when generating code.

Syntax

--apcs=qualifier...qualifier
Where qualifier...qualifier denotes a list of qualifiers. There must be:
• At least one qualifier present.
• No spaces or commas separating individual qualifiers in the list.

Each instance of qualifier must be one of:

none

Specifies that the input file does not use AAPCS. AAPCS registers are not set up. Other
qualifiers are not permitted if you use none.

/interwork, /nointerwork

For Armv7‑A, Armv7‑R, Armv8‑A, and Armv8‑R, /interwork specifies that the code in the
input file can interwork between A32 and T32 safely.

The default is /interwork for AArch32 targets that support both A32 and T32 instruction sets.

The default is /nointerwork for AArch32 targets that only support the T32 instruction set (M-
profile targets).

When assembling for AArch64 state, interworking is not available.

/inter, /nointer

Are synonyms for /interwork and /nointerwork.

/ropi, /noropi
/ropi specifies that the code in the input file is Read-Only Position-Independent (ROPI). The
default is /noropi.

/pic, /nopic
Are synonyms for /ropi and /noropi.

/rwpi, /norwpi
/rwpi specifies that the code in the input file is Read-Write Position-Independent (RWPI). The
default is /norwpi.

/pid, /nopid
Are synonyms for /rwpi and /norwpi.

/fpic, /nofpic
/fpic specifies that the code in the input file is read-only independent and references to
addresses are suitable for use in a Linux shared object. The default is /nofpic.

/hardfp, /softfp

Requests hardware or software floating-point linkage. This enables the procedure call standard
to be specified separately from the version of the floating-point hardware available through the
--fpu option. It is still possible to specify the procedure call standard by using the --fpu option,
but Arm recommends you use --apcs. If floating-point support is not permitted (for example,
because --fpu=none is specified, or because of other means), then /hardfp and /softfp are
ignored. If floating-point support is permitted and the softfp calling convention is used
(--fpu=softvfp or --fpu=softvfp+fp-armv8), then /hardfp gives an error.

/softfp is not supported for AArch64 state.

Usage

This option specifies whether you are using the Procedure Call Standard for the Arm® Architecture
(AAPCS). It can also specify some attributes of code sections.

5 armasm Command-line Options
5.3 --apcs=qualifier…qualifier

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-98

Non-Confidential

The AAPCS forms part of the Base Standard Application Binary Interface for the Arm® Architecture
(BSABI) specification. By writing code that adheres to the AAPCS, you can ensure that separately
compiled and assembled modules can work together.

 Note

AAPCS qualifiers do not affect the code produced by armasm. They are an assertion by the programmer
that the code in the input file complies with a particular variant of AAPCS. They cause attributes to be
set in the object file produced by armasm. The linker uses these attributes to check compatibility of files,
and to select appropriate library variants.

Example

armasm --cpu=8-A.32 --apcs=/inter/hardfp inputfile.s

Related information
Procedure Call Standard for the Arm Architecture
Application Binary Interface (ABI) for the Arm Architecture

5 armasm Command-line Options
5.3 --apcs=qualifier…qualifier

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-99

Non-Confidential

https://developer.arm.com/docs/ihi0042/latest
http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

5.4 --arm
Instructs armasm to interpret instructions as A32 instructions. It does not, however, guarantee A32-only
code in the object file. This is the default. Using this option is equivalent to specifying the ARM or CODE32
directive at the start of the source file.

 Note

Not supported for AArch64 state.

Related reference
5.2 --32 on page 5-97
5.5 --arm_only on page 5-101
7.7 ARM or CODE32 directive on page 7-209

5 armasm Command-line Options
5.4 --arm

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-100

Non-Confidential

5.5 --arm_only
Instructs armasm to only generate A32 code. This is similar to --arm but also has the property that
armasm does not permit the generation of any T32 code.

 Note

Not supported for AArch64 state.

Related reference
5.4 --arm on page 5-100

5 armasm Command-line Options
5.5 --arm_only

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-101

Non-Confidential

5.6 --bi
A synonym for the --bigend command-line option.

Related reference
5.7 --bigend on page 5-103
5.42 --littleend on page 5-140

5 armasm Command-line Options
5.6 --bi

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-102

Non-Confidential

5.7 --bigend
Generates code suitable for an Arm processor using big-endian memory access.

The default is --littleend.

Related reference
5.42 --littleend on page 5-140
5.6 --bi on page 5-102

5 armasm Command-line Options
5.7 --bigend

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-103

Non-Confidential

5.8 --brief_diagnostics, --no_brief_diagnostics
Enables and disables the output of brief diagnostic messages.

This option instructs the assembler whether to use a shorter form of the diagnostic output. In this form,
the original source line is not displayed and the error message text is not wrapped when it is too long to
fit on a single line. The default is --no_brief_diagnostics.

Related reference
5.17 --diag_error=tag[,tag,…] on page 5-115
5.21 --diag_warning=tag[,tag,…] on page 5-119

5 armasm Command-line Options
5.8 --brief_diagnostics, --no_brief_diagnostics

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-104

Non-Confidential

5.9 --checkreglist
Instructs the armasm to check RLIST, LDM, and STM register lists to ensure that all registers are provided in
increasing register number order.

When this option is used, armasm gives a warning if the registers are not listed in order.
 Note

In AArch32 state, this option is deprecated. Use --diag_warning 1206 instead. In AArch64 state, this
option is not supported..

Related reference
5.21 --diag_warning=tag[,tag,…] on page 5-119

5 armasm Command-line Options
5.9 --checkreglist

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-105

Non-Confidential

5.10 --cpreproc
Instructs armasm to call armclang to preprocess the input file before assembling it.

Restrictions

You must use --cpreproc_opts with this option to correctly configure the armclang compiler for pre-
processing.

armasm only passes the following command-line options to armclang by default:
• Basic pre-processor configuration options, such as -E.
• User specified include directories, -I directives.
• Anything specified in --cpreproc_opts.

Related concepts
4.14 Using the C preprocessor on page 4-89
Related reference
5.11 --cpreproc_opts=option[,option,…] on page 5-107
Related information
-x armclang option
Command-line options for preprocessing assembly source code

5 armasm Command-line Options
5.10 --cpreproc

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-106

Non-Confidential

https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-x
https://developer.arm.com/docs/100068/0612/migrating-from-armcc-to-armclang/command-line-options-for-preprocessing-assembly-source-code

5.11 --cpreproc_opts=option[,option,…]
Enables armasm to pass options to armclang when using the C preprocessor.

Syntax

--cpreproc_opts=option[,option,…]

Where option[,option,…] is a comma-separated list of C preprocessing options.

At least one option must be specified.

Restrictions

As a minimum, you must specify the armclang options --target and either -mcpu or -march in --
cpreproc_opts.

To assemble code containing C directives that require the C preprocessor, the input assembly source
filename must have an upper-case extension .S.

You cannot pass the armclang option -x assembler-with-cpp, because it gets added to armclang after
the source file name.

 Note

Ensure that you specify compatible architectures in the armclang options --target, -mcpu or -march,
and the armasm --cpu option.

Example

The options to the preprocessor in this example are --cpreproc_opts=--target=arm-arm-none-
eabi,-mcpu=cortex-a9,-D,DEF1,-D,DEF2.

armasm --cpu=cortex-a9 --cpreproc --cpreproc_opts=--target=arm-arm-none-eabi,-mcpu=cortex-
a9,-D,DEF1,-D,DEF2 -I /path/to/includes1 -I /path/to/includes2 input.S

Related concepts
4.14 Using the C preprocessor on page 4-89
Related reference
5.10 --cpreproc on page 5-106
Related information
Command-line options for preprocessing assembly source code
Mandatory armclang options
-march armclang option
-mcpu armclang option
--target armclang option
-x armclang option

5 armasm Command-line Options
5.11 --cpreproc_opts=option[,option,…]

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-107

Non-Confidential

https://developer.arm.com/docs/100068/0612/migrating-from-armcc-to-armclang/command-line-options-for-preprocessing-assembly-source-code
https://developer.arm.com/docs/100748/0612/using-common-compiler-options/mandatory-armclang-options
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-march
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-mcpu
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-target
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-x

5.12 --cpu=list
Lists the architecture and processor names that are supported by the --cpu=name option.

Syntax

--cpu=list

Related reference
5.13 --cpu=name on page 5-109

5 armasm Command-line Options
5.12 --cpu=list

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-108

Non-Confidential

5.13 --cpu=name
Enables code generation for the selected Arm processor or architecture.

Syntax

--cpu=name

Where name is the name of a processor or architecture:

Processor and architecture names are not case-sensitive.

Wildcard characters are not accepted.

The following table shows the supported architectures. For a complete list of the supported architecture
and processor names, specify the --cpu=list option.

 Note

armasm does not support architectures later than Armv8.3.

Table 5-1 Supported Arm architectures

Architecture name Description

6-M Armv6 architecture microcontroller profile.

6S-M Armv6 architecture microcontroller profile with OS extensions.

7-A Armv7 architecture application profile.

7-A.security Armv7‑A architecture profile with Security Extensions and includes the SMC instruction (formerly
SMI).

7-R Armv7 architecture real-time profile.

7-M Armv7 architecture microcontroller profile.

7E-M Armv7‑M architecture profile with DSP extension.

8-A.32 Armv8‑A architecture profile, AArch32 state.

8-A.32.crypto Armv8‑A architecture profile, AArch32 state with cryptographic instructions.

8-A.64 Armv8‑A architecture profile, AArch64 state.

8-A.64.crypto Armv8‑A architecture profile, AArch64 state with cryptographic instructions.

8.1-A.32 Armv8.1, for Armv8‑A architecture profile, AArch32 state.

8.1-A.32.crypto Armv8.1, for Armv8‑A architecture profile, AArch32 state with cryptographic instructions.

8.1-A.64 Armv8.1, for Armv8‑A architecture profile, AArch64 state.

8.1-A.64.crypto Armv8.1, for Armv8‑A architecture profile, AArch64 state with cryptographic instructions.

8.2-A.32 Armv8.2, for Armv8‑A architecture profile, AArch32 state.

8.2-A.32.crypto Armv8.2, for Armv8‑A architecture profile, AArch32 state with cryptographic instructions.

8.2-A.32.crypto.dotprod Armv8.2, for Armv8‑A architecture profile, AArch32 state with cryptographic instructions and the
VSDOT and VUDOT instructions.

8.2-A.32.dotprod Armv8.2, for Armv8‑A architecture profile, AArch32 state with the VSDOT and VUDOT instructions.

5 armasm Command-line Options
5.13 --cpu=name

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-109

Non-Confidential

Table 5-1 Supported Arm architectures (continued)

Architecture name Description

8.2-A.64 Armv8.2, for Armv8‑A architecture profile, AArch64 state.

8.2-A.64.crypto Armv8.2, for Armv8‑A architecture profile, AArch64 state with cryptographic instructions.

8.2-A.64.crypto.dotprod Armv8.2, for Armv8‑A architecture profile, AArch64 state with cryptographic instructions and the
SDOT and UDOT instructions.

8.2-A.64.dotprod Armv8.2, for Armv8‑A architecture profile, AArch64 state with the SDOT and UDOT instructions.

8.3-A.32 Armv8.3, for Armv8‑A architecture profile, AArch32 state.

8.3-A.32.crypto Armv8.3, for Armv8‑A architecture profile, AArch32 state with cryptographic instructions.

8.3-A.32.crypto.dotprod Armv8.3, for Armv8‑A architecture profile, AArch32 state with cryptographic instructions and the
VSDOT and VUDOT instructions.

8.3-A.32.dotprod Armv8.3, for Armv8‑A architecture profile, AArch32 state with the VSDOT and VUDOT instructions.

8.3-A.64 Armv8.3, for Armv8‑A architecture profile, AArch64 state.

8.3-A.64.crypto Armv8.3, for Armv8‑A architecture profile, AArch64 state with cryptographic instructions.

8.3-A.64.crypto.dotprod Armv8.3, for Armv8‑A architecture profile, AArch64 state with cryptographic instructions and the
SDOT and UDOT instructions.

8.3-A.64.dotprod Armv8.3, for Armv8‑A architecture profile, AArch64 state with the SDOT and UDOT instructions.

8-R Armv8‑R architecture profile.

8-M.Base Armv8‑M baseline architecture profile. Derived from the Armv6‑M architecture.

8-M.Main Armv8‑M mainline architecture profile. Derived from the Armv7‑M architecture.

8-M.Main.dsp Armv8‑M mainline architecture profile with DSP extension.

 Note

• The full list of supported architectures and processors depends on your license.

Default

There is no default option for --cpu.

Usage

The following general points apply to processor and architecture options:

Processors
• Selecting the processor selects the appropriate architecture, Floating-Point Unit (FPU), and

memory organization.
• If you specify a processor for the --cpu option, the generated code is optimized for that

processor. This enables the assembler to use specific coprocessors or instruction scheduling
for optimum performance.

5 armasm Command-line Options
5.13 --cpu=name

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-110

Non-Confidential

Architectures
• If you specify an architecture name for the --cpu option, the generated code can run on any

processor supporting that architecture. For example, --cpu=7-A produces code that can be
used by the Cortex‑A9 processor.

FPU
• Some specifications of --cpu imply an --fpu selection.

 Note

Any explicit FPU, set with --fpu on the command line, overrides an implicit FPU.

• If no --fpu option is specified and the --cpu option does not imply an --fpu selection, then
--fpu=softvfp is used.

A32/T32
• Specifying a processor or architecture that supports T32 instructions, such as

--cpu=cortex-a9, does not make the assembler generate T32 code. It only enables features
of the processor to be used, such as long multiply. Use the --thumb option to generate T32
code, unless the processor only supports T32 instructions.

 Note

Specifying the target processor or architecture might make the generated object code
incompatible with other Arm processors. For example, A32 code generated for architecture
Armv8 might not run on a Cortex‑A9 processor, if the generated object code includes
instructions specific to Armv8. Therefore, you must choose the lowest common denominator
processor suited to your purpose.

• If the architecture only supports T32, you do not have to specify --thumb on the command
line. For example, if building for Cortex-M4 or Armv7‑M with --cpu=7-M, you do not have
to specify --thumb on the command line, because Armv7‑M only supports T32. Similarly,
Armv6‑M and other T32-only architectures.

Restrictions

You cannot specify both a processor and an architecture on the same command-line.

Example

armasm --cpu=Cortex-A17 inputfile.s

Related reference
5.3 --apcs=qualifier…qualifier on page 5-98
5.12 --cpu=list on page 5-108
5.32 --fpu=name on page 5-130
5.59 --thumb on page 5-157
5.61 --unsafe on page 5-159
Related information
Arm Architecture Reference Manual

5 armasm Command-line Options
5.13 --cpu=name

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-111

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

5.14 --debug
Instructs the assembler to generate DWARF debug tables.

--debug is a synonym for -g. The default is DWARF 3.
 Note

Local symbols are not preserved with --debug. You must specify --keep if you want to preserve the
local symbols to aid debugging.

Related reference
5.23 --dwarf2 on page 5-121
5.24 --dwarf3 on page 5-122
5.36 --keep on page 5-134
5.33 -g on page 5-131

5 armasm Command-line Options
5.14 --debug

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-112

Non-Confidential

5.15 --depend=dependfile
Writes makefile dependency lines to a file.

Source file dependency lists are suitable for use with make utilities.

Related reference
5.45 --md on page 5-143
5.16 --depend_format=string on page 5-114

5 armasm Command-line Options
5.15 --depend=dependfile

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-113

Non-Confidential

5.16 --depend_format=string
Specifies the format of output dependency files, for compatibility with some UNIX make programs.

Syntax

--depend_format=string

Where string is one of:

unix

generates dependency file entries using UNIX-style path separators.

unix_escaped

is the same as unix, but escapes spaces with \.

unix_quoted

is the same as unix, but surrounds path names with double quotes.

Related reference
5.15 --depend=dependfile on page 5-113

5 armasm Command-line Options
5.16 --depend_format=string

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-114

Non-Confidential

5.17 --diag_error=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Error severity.

Syntax

--diag_error=tag[,tag,…]
Where tag can be:
• A diagnostic message number to set to error severity. This is the four-digit number, nnnn, with the

tool letter prefix, but without the letter suffix indicating the severity.
• warning, to treat all warnings as errors.

Usage

Diagnostic messages output by the assembler can be identified by a tag in the form of {prefix}number,
where the prefix is A.

You can specify more than one tag with this option by separating each tag using a comma. You can
specify the optional assembler prefix A before the tag number. If any prefix other than A is included, the
message number is ignored.

The following table shows the meaning of the term severity used in the option descriptions:

Table 5-2 Severity of diagnostic messages

Severity Description

Error Errors indicate violations in the syntactic or semantic rules of assembly language. Assembly continues, but object code is
not generated.

Warning Warnings indicate unusual conditions in your code that might indicate a problem. Assembly continues, and object code is
generated unless any problems with an Error severity are detected.

Remark Remarks indicate common, but not recommended, use of assembly language. These diagnostics are not issued by default.
Assembly continues, and object code is generated unless any problems with an Error severity are detected.

Related reference
5.8 --brief_diagnostics, --no_brief_diagnostics on page 5-104
5.18 --diag_remark=tag[,tag,…] on page 5-116
5.20 --diag_suppress=tag[,tag,…] on page 5-118
5.21 --diag_warning=tag[,tag,…] on page 5-119

5 armasm Command-line Options
5.17 --diag_error=tag[,tag,…]

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-115

Non-Confidential

5.18 --diag_remark=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Remark severity.

Syntax

--diag_remark=tag[,tag,…]

Where tag is a comma-separated list of diagnostic message numbers. This is the four-digit number,
nnnn, with the tool letter prefix, but without the letter suffix indicating the severity.

Usage

Diagnostic messages output by the assembler can be identified by a tag in the form of {prefix}number,
where the prefix is A.

You can specify more than one tag with this option by separating each tag using a comma. You can
specify the optional assembler prefix A before the tag number. If any prefix other than A is included, the
message number is ignored.

Related reference
5.8 --brief_diagnostics, --no_brief_diagnostics on page 5-104
5.17 --diag_error=tag[,tag,…] on page 5-115
5.20 --diag_suppress=tag[,tag,…] on page 5-118
5.21 --diag_warning=tag[,tag,…] on page 5-119

5 armasm Command-line Options
5.18 --diag_remark=tag[,tag,…]

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-116

Non-Confidential

5.19 --diag_style={arm|ide|gnu}
Specifies the display style for diagnostic messages.

Syntax

--diag_style=string

Where string is one of:

arm
Display messages using the legacy Arm compiler style.

ide
Include the line number and character count for any line that is in error. These values are
displayed in parentheses.

gnu
Display messages in the format used by gcc.

Usage

--diag_style=gnu matches the format reported by the GNU Compiler, gcc.

--diag_style=ide matches the format reported by Microsoft Visual Studio.

Choosing the option --diag_style=ide implicitly selects the option --brief_diagnostics. Explicitly
selecting --no_brief_diagnostics on the command line overrides the selection of
--brief_diagnostics implied by --diag_style=ide.

Selecting either the option --diag_style=arm or the option --diag_style=gnu does not imply any
selection of --brief_diagnostics.

Default

The default is --diag_style=arm.

Related reference
5.8 --brief_diagnostics, --no_brief_diagnostics on page 5-104

5 armasm Command-line Options
5.19 --diag_style={arm|ide|gnu}

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-117

Non-Confidential

5.20 --diag_suppress=tag[,tag,…]
Suppresses diagnostic messages that have a specific tag.

Syntax

--diag_suppress=tag[,tag,…]
Where tag can be:
• A diagnostic message number to be suppressed. This is the four-digit number, nnnn, with the tool

letter prefix, but without the letter suffix indicating the severity.
• error, to suppress all errors that can be downgraded.
• warning, to suppress all warnings.

Diagnostic messages output by armasm can be identified by a tag in the form of {prefix}number, where
the prefix is A.

You can specify more than one tag with this option by separating each tag using a comma.

Example

For example, to suppress the warning messages that have numbers 1293 and 187, use the following
command:

armasm --cpu=8-A.64 --diag_suppress=1293,187

You can specify the optional assembler prefix A before the tag number. For example:

armasm --cpu=8-A.64 --diag_suppress=A1293,A187

If any prefix other than A is included, the message number is ignored. Diagnostic message tags can be
cut and pasted directly into a command line.

Related reference
5.8 --brief_diagnostics, --no_brief_diagnostics on page 5-104
5.17 --diag_error=tag[,tag,…] on page 5-115
5.18 --diag_remark=tag[,tag,…] on page 5-116
5.20 --diag_suppress=tag[,tag,…] on page 5-118
5.21 --diag_warning=tag[,tag,…] on page 5-119

5 armasm Command-line Options
5.20 --diag_suppress=tag[,tag,…]

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-118

Non-Confidential

5.21 --diag_warning=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Warning severity.

Syntax

--diag_warning=tag[,tag,…]
Where tag can be:
• A diagnostic message number to set to warning severity. This is the four-digit number, nnnn, with the

tool letter prefix, but without the letter suffix indicating the severity.
• error, to set all errors that can be downgraded to warnings.

Diagnostic messages output by the assembler can be identified by a tag in the form of {prefix}number,
where the prefix is A.

You can specify more than one tag with this option by separating each tag using a comma.

You can specify the optional assembler prefix A before the tag number. If any prefix other than A is
included, the message number is ignored.

Related reference
5.8 --brief_diagnostics, --no_brief_diagnostics on page 5-104
5.17 --diag_error=tag[,tag,…] on page 5-115
5.18 --diag_remark=tag[,tag,…] on page 5-116
5.20 --diag_suppress=tag[,tag,…] on page 5-118

5 armasm Command-line Options
5.21 --diag_warning=tag[,tag,…]

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-119

Non-Confidential

5.22 --dllexport_all
Controls symbol visibility when building DLLs.

This option gives all exported global symbols STV_PROTECTED visibility in ELF rather than STV_HIDDEN,
unless overridden by source directives.

Related reference
7.27 EXPORT or GLOBAL on page 7-229

5 armasm Command-line Options
5.22 --dllexport_all

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-120

Non-Confidential

5.23 --dwarf2
Uses DWARF 2 debug table format.

 Note

Not supported for AArch64 state.

This option can be used with --debug, to instruct armasm to generate DWARF 2 debug tables.

Related reference
5.14 --debug on page 5-112
5.24 --dwarf3 on page 5-122

5 armasm Command-line Options
5.23 --dwarf2

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-121

Non-Confidential

5.24 --dwarf3
Uses DWARF 3 debug table format.

This option can be used with --debug, to instruct the assembler to generate DWARF 3 debug tables. This
is the default if --debug is specified.

Related reference
5.14 --debug on page 5-112
5.23 --dwarf2 on page 5-121

5 armasm Command-line Options
5.24 --dwarf3

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-122

Non-Confidential

5.25 --errors=errorfile
Redirects the output of diagnostic messages from stderr to the specified errors file.

5 armasm Command-line Options
5.25 --errors=errorfile

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-123

Non-Confidential

5.26 --exceptions, --no_exceptions
Enables or disables exception handling.

 Note

Not supported for AArch64 state.

These options instruct armasm to switch on or off exception table generation for all functions defined by
FUNCTION (or PROC) and ENDFUNC (or ENDP) directives.

--no_exceptions causes no tables to be generated. It is the default.

Related reference
5.27 --exceptions_unwind, --no_exceptions_unwind on page 5-125
7.39 FRAME UNWIND ON on page 7-242
7.40 FRAME UNWIND OFF on page 7-243
7.41 FUNCTION or PROC on page 7-244
7.24 ENDFUNC or ENDP on page 7-226

5 armasm Command-line Options
5.26 --exceptions, --no_exceptions

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-124

Non-Confidential

5.27 --exceptions_unwind, --no_exceptions_unwind
Enables or disables function unwinding for exception-aware code. This option is only effective if
--exceptions is enabled.

 Note

Not supported for AArch64 state.

The default is --exceptions_unwind.

For finer control, use the FRAME UNWIND ON and FRAME UNWIND OFF directives.

Related reference
5.26 --exceptions, --no_exceptions on page 5-124
7.39 FRAME UNWIND ON on page 7-242
7.40 FRAME UNWIND OFF on page 7-243
7.41 FUNCTION or PROC on page 7-244
7.24 ENDFUNC or ENDP on page 7-226

5 armasm Command-line Options
5.27 --exceptions_unwind, --no_exceptions_unwind

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-125

Non-Confidential

5.28 --execstack, --no_execstack
Generates a .note.GNU-stack section marking the stack as either executable or non-executable.

You can also use the AREA directive to generate either an executable or non-executable .note.GNU-stack
section. The following code generates an executable .note.GNU-stack section. Omitting the CODE
attribute generates a non-executable .note.GNU-stack section.

 AREA |.note.GNU-stack|,ALIGN=0,READONLY,NOALLOC,CODE

In the absence of --execstack and --no_execstack, the .note.GNU-stack section is not generated
unless it is specified by the AREA directive.

If both the command-line option and source directive are used and are different, then the stack is marked
as executable.

Table 5-3 Specifying a command-line option and an AREA directive for GNU-stack sections

--execstack command-line option --no_execstack command-line
option

execstack AREA directive execstack execstack

no_execstack AREA directive execstack no_execstack

Related reference
7.6 AREA on page 7-205

5 armasm Command-line Options
5.28 --execstack, --no_execstack

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-126

Non-Confidential

5.29 --execute_only
Adds the EXECONLY AREA attribute to all code sections.

Usage

The EXECONLY AREA attribute causes the linker to treat the section as execute-only.

It is the user's responsibility to ensure that the code in the section is safe to run in execute-only memory.
For example:
• The code must not contain literal pools.
• The code must not attempt to load data from the same, or another, execute-only section.

Restrictions
This option is only supported for:
• Processors that support the Armv8‑M mainline or Armv8‑M Baseline architecture.
• Processors that support the Armv7‑M architecture, such as Cortex-M3, Cortex-M4, and Cortex‑M7.
• Processors that support the Armv6‑M architecture.

 Note

Arm has only performed limited testing of execute-only code on Armv6‑M targets.

5 armasm Command-line Options
5.29 --execute_only

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-127

Non-Confidential

5.30 --fpmode=model
Specifies floating-point standard conformance and sets library attributes and floating-point
optimizations.

Syntax

--fpmode=model

Where model is one of:

none

Source code is not permitted to use any floating-point type or floating-point instruction. This
option overrides any explicit --fpu=name option.

ieee_full

All facilities, operations, and representations guaranteed by the IEEE standard are available in
single and double-precision. Modes of operation can be selected dynamically at runtime.

ieee_fixed

IEEE standard with round-to-nearest and no inexact exceptions.

ieee_no_fenv

IEEE standard with round-to-nearest and no exceptions. This mode is compatible with the Java
floating-point arithmetic model.

std

IEEE finite values with denormals flushed to zero, round-to-nearest and no exceptions. It is C
and C++ compatible. This is the default option.

Finite values are as predicted by the IEEE standard. It is not guaranteed that NaNs and infinities
are produced in all circumstances defined by the IEEE model, or that when they are produced,
they have the same sign. Also, it is not guaranteed that the sign of zero is that predicted by the
IEEE model.

fast

Some value altering optimizations, where accuracy is sacrificed to fast execution. This is not
IEEE compatible, and is not standard C.

 Note

This does not cause any changes to the code that you write.

Example

armasm --cpu=8-A.32 --fpmode ieee_full inputfile.s

Related reference
5.32 --fpu=name on page 5-130
Related information
IEEE Standards Association

5 armasm Command-line Options
5.30 --fpmode=model

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-128

Non-Confidential

http://standards.ieee.org

5.31 --fpu=list
Lists the FPU architecture names that are supported by the --fpu=name option.

Example

armasm --fpu=list

Related reference
5.30 --fpmode=model on page 5-128
5.32 --fpu=name on page 5-130

5 armasm Command-line Options
5.31 --fpu=list

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-129

Non-Confidential

5.32 --fpu=name
Specifies the target FPU architecture.

Syntax

--fpu=name

Where name is the name of the target FPU architecture. Specify --fpu=list to list the supported FPU
architecture names that you can use with --fpu=name.

The default floating-point architecture depends on the target architecture.
 Note

Software floating-point linkage is not supported for AArch64 state.

Usage

If you specify this option, it overrides any implicit FPU option that appears on the command line, for
example, where you use the --cpu option. Floating-point instructions also produce either errors or
warnings if assembled for the wrong target FPU.

armasm sets a build attribute corresponding to name in the object file. The linker determines
compatibility between object files, and selection of libraries, accordingly.

Related reference
5.30 --fpmode=model on page 5-128

5 armasm Command-line Options
5.32 --fpu=name

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-130

Non-Confidential

5.33 -g
Enables the generation of debug tables.

This option is a synonym for --debug.

Related reference
5.14 --debug on page 5-112

5 armasm Command-line Options
5.33 -g

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-131

Non-Confidential

5.34 --help
Displays a summary of the main command-line options.

Default

This is the default if you specify armasm without any options or source files.

Related reference
5.63 --version_number on page 5-161
5.65 --vsn on page 5-163

5 armasm Command-line Options
5.34 --help

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-132

Non-Confidential

5.35 -idir[,dir, …]
Adds directories to the source file include path.

Any directories added using this option have to be fully qualified.

Related reference
7.43 GET or INCLUDE on page 7-246

5 armasm Command-line Options
5.35 -idir[,dir, …]

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-133

Non-Confidential

5.36 --keep
Instructs the assembler to keep named local labels in the symbol table of the object file, for use by the
debugger.

Related reference
7.48 KEEP on page 7-253

5 armasm Command-line Options
5.36 --keep

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-134

Non-Confidential

5.37 --length=n
Sets the listing page length.

Length zero means an unpaged listing. The default is 66 lines.

Related reference
5.40 --list=file on page 5-138

5 armasm Command-line Options
5.37 --length=n

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-135

Non-Confidential

5.38 --li
A synonym for the --littleend command-line option.

Related reference
5.42 --littleend on page 5-140
5.7 --bigend on page 5-103

5 armasm Command-line Options
5.38 --li

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-136

Non-Confidential

5.39 --library_type=lib
Enables the selected library to be used at link time.

Syntax

--library_type=lib

Where lib is one of:

standardlib

Specifies that the full Arm runtime libraries are selected at link time. This is the default.

microlib

Specifies that the C micro-library (microlib) is selected at link time.

 Note

• This option can be used with the compiler, assembler, or linker when use of the libraries require more
specialized optimizations.

• This option can be overridden at link time by providing it to the linker.
• microlib is not supported for AArch64 state.

Related information
Building an application with microlib

5 armasm Command-line Options
5.39 --library_type=lib

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-137

Non-Confidential

https://developer.arm.com/docs/100073/0612/the-arm-c-micro-library/building-an-application-with-microlib

5.40 --list=file
Instructs the assembler to output a detailed listing of the assembly language produced by the assembler to
a file.

If - is given as file, the listing is sent to stdout.

Use the following command-line options to control the behavior of --list:
• --no_terse.
• --width.
• --length.
• --xref.

Related reference
5.50 --no_terse on page 5-148
5.66 --width=n on page 5-164
5.37 --length=n on page 5-135
5.67 --xref on page 5-165
7.55 OPT on page 7-262

5 armasm Command-line Options
5.40 --list=file

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-138

Non-Confidential

5.41 --list=
Instructs the assembler to send the detailed assembly language listing to inputfile.lst.

 Note

You can use --list without the equals sign and filename to send the output to inputfile.lst.
However, this syntax is deprecated and the assembler issues a warning. This syntax is to be removed in a
later release. Use --list= instead.

Related reference
5.40 --list=file on page 5-138

5 armasm Command-line Options
5.41 --list=

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-139

Non-Confidential

5.42 --littleend
Generates code suitable for an Arm processor using little-endian memory access.

Related reference
5.7 --bigend on page 5-103
5.38 --li on page 5-136

5 armasm Command-line Options
5.42 --littleend

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-140

Non-Confidential

5.43 -m
Instructs the assembler to write source file dependency lists to stdout.

Related reference
5.45 --md on page 5-143

5 armasm Command-line Options
5.43 -m

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-141

Non-Confidential

5.44 --maxcache=n
Sets the maximum source cache size in bytes.

The default is 8MB. armasm gives a warning if the size is less than 8MB.

5 armasm Command-line Options
5.44 --maxcache=n

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-142

Non-Confidential

5.45 --md
Creates makefile dependency lists.

This option instructs the assembler to write source file dependency lists to inputfile.d.

Related reference
5.43 -m on page 5-141

5 armasm Command-line Options
5.45 --md

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-143

Non-Confidential

5.46 --no_code_gen
Instructs the assembler to exit after pass 1, generating no object file. This option is useful if you only
want to check the syntax of the source code or directives.

5 armasm Command-line Options
5.46 --no_code_gen

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-144

Non-Confidential

5.47 --no_esc
Instructs the assembler to ignore C-style escaped special characters, such as \n and \t.

5 armasm Command-line Options
5.47 --no_esc

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-145

Non-Confidential

5.48 --no_hide_all
Gives all exported and imported global symbols STV_DEFAULT visibility in ELF rather than STV_HIDDEN,
unless overridden using source directives.

You can use the following directives to specify an attribute that overrides the implicit symbol visibility:
• EXPORT.
• EXTERN.
• GLOBAL.
• IMPORT.

Related reference
7.27 EXPORT or GLOBAL on page 7-229
7.45 IMPORT and EXTERN on page 7-249

5 armasm Command-line Options
5.48 --no_hide_all

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-146

Non-Confidential

5.49 --no_regs
Instructs armasm not to predefine register names.

 Note

This option is deprecated. In AArch32 state, use --regnames=none instead.

Related reference
5.56 --regnames on page 5-154

5 armasm Command-line Options
5.49 --no_regs

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-147

Non-Confidential

5.50 --no_terse
Instructs the assembler to show in the list file the lines of assembly code that it has skipped because of
conditional assembly.

If you do not specify this option, the assembler does not output the skipped assembly code to the list file.

This option turns off the terse flag. By default the terse flag is on.

Related reference
5.40 --list=file on page 5-138

5 armasm Command-line Options
5.50 --no_terse

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-148

Non-Confidential

5.51 --no_warn
Turns off warning messages.

Related reference
5.21 --diag_warning=tag[,tag,…] on page 5-119

5 armasm Command-line Options
5.51 --no_warn

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-149

Non-Confidential

5.52 -o filename
Specifies the name of the output file.

If this option is not used, the assembler creates an object filename in the form inputfilename.o. This
option is case-sensitive.

5 armasm Command-line Options
5.52 -o filename

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-150

Non-Confidential

5.53 --pd
A synonym for the --predefine command-line option.

Related reference
5.54 --predefine "directive" on page 5-152

5 armasm Command-line Options
5.53 --pd

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-151

Non-Confidential

5.54 --predefine "directive"
Instructs armasm to pre-execute one of the SETA, SETL, or SETS directives.

You must enclose directive in quotes, for example:

armasm --cpu=8-A.64 --predefine "VariableName SETA 20" inputfile.s

armasm also executes a corresponding GBLL, GBLS, or GBLA directive to define the variable before setting
its value.

The variable name is case-sensitive. The variables defined using the command line are global to armasm
source files specified on the command line.

Considerations when using --predefine
Be aware of the following:
• The command-line interface of your system might require you to enter special character

combinations, such as \", to include strings in directive. Alternatively, you can use --via file to
include a --predefine argument. The command-line interface does not alter arguments from --via
files.

• --predefine is not equivalent to the compiler option -Dname. --predefine defines a global variable
whereas -Dname defines a macro that the C preprocessor expands.

Although you can use predefined global variables in combination with assembly control directives,
for example IF and ELSE to control conditional assembly, they are not intended to provide the same
functionality as the C preprocessor in armasm. If you require this functionality, Arm recommends you
use the compiler to pre-process your assembly code.

Related reference
5.53 --pd on page 5-151
7.42 GBLA, GBLL, and GBLS on page 7-245
7.44 IF, ELSE, ENDIF, and ELIF on page 7-247
7.63 SETA, SETL, and SETS on page 7-272

5 armasm Command-line Options
5.54 --predefine "directive"

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-152

Non-Confidential

5.55 --reduce_paths, --no_reduce_paths
Enables or disables the elimination of redundant path name information in file paths.

Windows systems impose a 260 character limit on file paths. Where relative pathnames exist whose
absolute names expand to longer than 260 characters, you can use the --reduce_paths option to reduce
absolute pathname length by matching up directories with corresponding instances of .. and eliminating
the directory/.. sequences in pairs.

--no_reduce_paths is the default.
 Note

Arm recommends that you avoid using long and deeply nested file paths, in preference to minimizing
path lengths using the --reduce_paths option.

 Note

This option is valid for 32-bit Windows systems only.

5 armasm Command-line Options
5.55 --reduce_paths, --no_reduce_paths

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-153

Non-Confidential

5.56 --regnames
Controls the predefinition of register names.

 Note

Not supported for AArch64 state.

Syntax

--regnames=option

Where option is one of the following:

none
Instructs armasm not to predefine register names.

callstd
Defines additional register names based on the AAPCS variant that you are using, as specified
by the --apcs option.

all
Defines all AAPCS registers regardless of the value of --apcs.

Related reference
5.49 --no_regs on page 5-147
5.56 --regnames on page 5-154
5.3 --apcs=qualifier…qualifier on page 5-98

5 armasm Command-line Options
5.56 --regnames

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-154

Non-Confidential

5.57 --report-if-not-wysiwyg
Instructs armasm to report when it outputs an encoding that was not directly requested in the source code.

This can happen when armasm:
• Uses a pseudo-instruction that is not available in other assemblers, for example MOV32.
• Outputs an encoding that does not directly match the instruction mnemonic, for example if the

assembler outputs the MVN encoding when assembling the MOV instruction.
• Inserts additional instructions where necessary for instruction syntax semantics, for example armasm

can insert a missing IT instruction before a conditional T32 instruction.

 Note

Not supported for AArch64 state.

5 armasm Command-line Options
5.57 --report-if-not-wysiwyg

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-155

Non-Confidential

5.58 --show_cmdline
Outputs the command line used by the assembler.

Usage
Shows the command line after processing by the assembler, and can be useful to check:
• The command line a build system is using.
• How the assembler is interpreting the supplied command line, for example, the ordering of

command-line options.

The commands are shown normalized, and the contents of any via files are expanded.

The output is sent to the standard error stream (stderr).

Related reference
5.64 --via=filename on page 5-162

5 armasm Command-line Options
5.58 --show_cmdline

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-156

Non-Confidential

5.59 --thumb
Instructs armasm to interpret instructions as T32 instructions, using UAL syntax. This is equivalent to a
THUMB directive at the start of the source file.

 Note

Not supported for AArch64 state.

Related reference
5.4 --arm on page 5-100
7.65 THUMB directive on page 7-275

5 armasm Command-line Options
5.59 --thumb

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-157

Non-Confidential

5.60 --unaligned_access, --no_unaligned_access
Enables or disables unaligned accesses to data on Arm-based processors.

These options instruct the assembler to set an attribute in the object file to enable or disable the use of
unaligned accesses.

5 armasm Command-line Options
5.60 --unaligned_access, --no_unaligned_access

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-158

Non-Confidential

5.61 --unsafe
Enables instructions for other architectures to be assembled without error.

 Note

Not supported for AArch64 state.

It downgrades error messages to corresponding warning messages. It also suppresses warnings about
operator precedence.

Related concepts
6.20 Binary operators on page 6-187
Related reference
5.17 --diag_error=tag[,tag,…] on page 5-115
5.21 --diag_warning=tag[,tag,…] on page 5-119

5 armasm Command-line Options
5.61 --unsafe

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-159

Non-Confidential

5.62 --untyped_local_labels
Causes armasm not to set the T32 bit for the address of a numeric local label referenced in an LDR
pseudo-instruction.

 Note

Not supported for AArch64 state.

When this option is not used, if you reference a numeric local label in an LDR pseudo-instruction, and the
label is in T32 code, then armasm sets the T32 bit (bit 0) of the address. You can then use the address as
the target for a BX or BLX instruction.

If you require the actual address of the numeric local label, without the T32 bit set, then use this option.
 Note

When using this option, if you use the address in a branch (register) instruction, armasm treats it as an
A32 code address, causing the branch to arrive in A32 state, meaning it would interpret this code as A32
instructions.

Example
THUMB
 ...
1
 ...
 LDR r0,=%B1 ; r0 contains the address of numeric local label "1",
 ; T32 bit is not set if --untyped_local_labels was used
 ...

Related concepts
6.10 Numeric local labels on page 6-177

5 armasm Command-line Options
5.62 --untyped_local_labels

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-160

Non-Confidential

5.63 --version_number
Displays the version of armasm you are using.

Usage
The assembler displays the version number in the format Mmmuuxx, where:
• M is the major version number, 6.
• mm is the minor version number.
• uu is the update number.
• xx is reserved for Arm internal use. You can ignore this for the purposes of checking whether the

current release is a specific version or within a range of versions.

5 armasm Command-line Options
5.63 --version_number

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-161

Non-Confidential

5.64 --via=filename
Reads an additional list of input filenames and assembler options from filename.

Syntax

--via=filename

Where filename is the name of a via file containing options to be included on the command line.

Usage

You can enter multiple --via options on the assembler command line. The --via options can also be
included within a via file.

Related concepts
9.1 Overview of via files on page 9-291
Related reference
9.2 Via file syntax rules on page 9-292

5 armasm Command-line Options
5.64 --via=filename

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-162

Non-Confidential

5.65 --vsn
Displays the version information and the license details.

 Note

--vsn is intended to report the version information for manual inspection. The Component line indicates
the release of Arm Compiler you are using. If you need to access the version in other tools or scripts, for
example in build scripts, use the output from --version_number.

Example

> armasm --vsn
Product: ARM Compiler N.n
Component: ARM Compiler N.n
Tool: armasm [tool_id]
license_type
Software supplied by: ARM Limited

5 armasm Command-line Options
5.65 --vsn

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-163

Non-Confidential

5.66 --width=n
Sets the listing page width.

The default is 79 characters.

Related reference
5.40 --list=file on page 5-138

5 armasm Command-line Options
5.66 --width=n

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-164

Non-Confidential

5.67 --xref
Instructs the assembler to list cross-referencing information on symbols, including where they were
defined and where they were used, both inside and outside macros.

The default is off.

Related reference
5.40 --list=file on page 5-138

5 armasm Command-line Options
5.67 --xref

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

5-165

Non-Confidential

Chapter 6
Symbols, Literals, Expressions, and Operators

Describes how you can use symbols to represent variables, addresses, and constants in code, and how
you can combine these with operators to create numeric or string expressions.

It contains the following sections:
• 6.1 Symbol naming rules on page 6-168.
• 6.2 Variables on page 6-169.
• 6.3 Numeric constants on page 6-170.
• 6.4 Assembly time substitution of variables on page 6-171.
• 6.5 Register-relative and PC-relative expressions on page 6-172.
• 6.6 Labels on page 6-173.
• 6.7 Labels for PC-relative addresses on page 6-174.
• 6.8 Labels for register-relative addresses on page 6-175.
• 6.9 Labels for absolute addresses on page 6-176.
• 6.10 Numeric local labels on page 6-177.
• 6.11 Syntax of numeric local labels on page 6-178.
• 6.12 String expressions on page 6-179.
• 6.13 String literals on page 6-180.
• 6.14 Numeric expressions on page 6-181.
• 6.15 Syntax of numeric literals on page 6-182.
• 6.16 Syntax of floating-point literals on page 6-183.
• 6.17 Logical expressions on page 6-184.
• 6.18 Logical literals on page 6-185.
• 6.19 Unary operators on page 6-186.
• 6.20 Binary operators on page 6-187.
• 6.21 Multiplicative operators on page 6-188.
• 6.22 String manipulation operators on page 6-189.

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-166

Non-Confidential

• 6.23 Shift operators on page 6-190.
• 6.24 Addition, subtraction, and logical operators on page 6-191.
• 6.25 Relational operators on page 6-192.
• 6.26 Boolean operators on page 6-193.
• 6.27 Operator precedence on page 6-194.
• 6.28 Difference between operator precedence in assembly language and C on page 6-195.

6 Symbols, Literals, Expressions, and Operators

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-167

Non-Confidential

6.1 Symbol naming rules
You must follow some rules when naming symbols in assembly language source code.

The following rules apply:
• Symbol names must be unique within their scope.
• You can use uppercase letters, lowercase letters, numeric characters, or the underscore character in

symbol names. Symbol names are case-sensitive, and all characters in the symbol name are
significant.

• Do not use numeric characters for the first character of symbol names, except in numeric local labels.
• Symbols must not use the same name as built-in variable names or predefined symbol names.
• If you use the same name as an instruction mnemonic or directive, use double bars to delimit the

symbol name. For example:

||ASSERT||

The bars are not part of the symbol.
• You must not use the symbols |$a|, |$t|, or |$d| as program labels. These are mapping symbols

that mark the beginning of A32, T32, and A64 code, and data within the object file. You must not use
|$x| in A64 code.

• Symbols beginning with the characters $v are mapping symbols that relate to floating-point code.
Arm recommends you avoid using symbols beginning with $v in your source code.

If you have to use a wider range of characters in symbols, for example, when working with compilers,
use single bars to delimit the symbol name. For example:

|.text|

The bars are not part of the symbol. You cannot use bars, semicolons, or newlines within the bars.

Related concepts
6.10 Numeric local labels on page 6-177
Related reference
4.4 Built-in variables and constants on page 4-76

6 Symbols, Literals, Expressions, and Operators
6.1 Symbol naming rules

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-168

Non-Confidential

6.2 Variables
You can declare numeric, logical, or string variables using assembler directives.

The value of a variable can be changed as assembly proceeds. Variables are local to the assembler. This
means that in the generated code or data, every instance of the variable has a fixed value.

The type of a variable cannot be changed. Variables are one of the following types:
• Numeric.
• Logical.
• String.

The range of possible values of a numeric variable is the same as the range of possible values of a
numeric constant or numeric expression.

The possible values of a logical variable are {TRUE} or {FALSE}.

The range of possible values of a string variable is the same as the range of values of a string expression.

Use the GBLA, GBLL, GBLS, LCLA, LCLL, and LCLS directives to declare symbols representing variables, and
assign values to them using the SETA, SETL, and SETS directives.

Example
a SETA 100
L1 MOV R1, #(a*5) ; In the object file, this is MOV R1, #500
a SETA 200 ; Value of 'a' is 200 only after this point.
 ; The previous instruction is always MOV R1, #500
 …
 BNE L1 ; When the processor branches to L1, it executes
 ; MOV R1, #500

Related concepts
6.14 Numeric expressions on page 6-181
6.12 String expressions on page 6-179
6.3 Numeric constants on page 6-170
6.17 Logical expressions on page 6-184
Related reference
7.42 GBLA, GBLL, and GBLS on page 7-245
7.49 LCLA, LCLL, and LCLS on page 7-254
7.63 SETA, SETL, and SETS on page 7-272

6 Symbols, Literals, Expressions, and Operators
6.2 Variables

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-169

Non-Confidential

6.3 Numeric constants
You can define 32-bit numeric constants using the EQU assembler directive.

Numeric constants are 32-bit integers in A32 and T32 code. You can set them using unsigned numbers in
the range 0 to 232-1, or signed numbers in the range -231 to 231 -1. However, the assembler makes no
distinction between -n and 232-n.

In A64 code, numeric constants are 64-bit integers. You can set them using unsigned numbers in the
range 0 to 264-1, or signed numbers in the range -263 to 263-1. However, the assembler makes no
distinction between -n and 264-n.

Relational operators such as >= use the unsigned interpretation. This means that 0 > -1 is {FALSE}.

Use the EQU directive to define constants. You cannot change the value of a numeric constant after you
define it. You can construct expressions by combining numeric constants and binary operators.

Related concepts
6.14 Numeric expressions on page 6-181
Related reference
6.15 Syntax of numeric literals on page 6-182
7.26 EQU on page 7-228

6 Symbols, Literals, Expressions, and Operators
6.3 Numeric constants

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-170

Non-Confidential

6.4 Assembly time substitution of variables
You can assign a string variable to all or part of a line of assembly language code. A string variable can
contain numeric and logical variables.

Use the variable with a $ prefix in the places where the value is to be substituted for the variable. The
dollar character instructs armasm to substitute the string into the source code line before checking the
syntax of the line. armasm faults if the substituted line is larger than the source line limit.

Numeric and logical variables can also be substituted. The current value of the variable is converted to a
hexadecimal string (or T or F for logical variables) before substitution.

Use a dot to mark the end of the variable name if the following character would be permissible in a
symbol name. You must set the contents of the variable before you can use it.

If you require a $ that you do not want to be substituted, use $$. This is converted to a single $.

You can include a variable with a $ prefix in a string. Substitution occurs in the same way as anywhere
else.

Substitution does not occur within vertical bars, except that vertical bars within double quotes do not
affect substitution.

Example
 ; straightforward substitution
 GBLS add4ff
 ;
add4ff SETS "ADD r4,r4,#0xFF" ; set up add4ff
 $add4ff.00 ; invoke add4ff
 ; this produces
 ADD r4,r4,#0xFF00
 ; elaborate substitution
 GBLS s1
 GBLS s2
 GBLS fixup
 GBLA count
 ;
count SETA 14
s1 SETS "a$$b$count" ; s1 now has value a$b0000000E
s2 SETS "abc"
fixup SETS "|xy$s2.z|" ; fixup now has value |xyabcz|
|C$$code| MOV r4,#16 ; but the label here is C$$code

Related reference
2.1 Syntax of source lines in assembly language on page 2-28
6.1 Symbol naming rules on page 6-168

6 Symbols, Literals, Expressions, and Operators
6.4 Assembly time substitution of variables

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-171

Non-Confidential

6.5 Register-relative and PC-relative expressions
The assembler supports PC-relative and register-relative expressions.

A register-relative expression evaluates to a named register combined with a numeric expression.

You write a PC-relative expression in source code as a label or the PC, optionally combined with a
numeric expression. Some instructions can also accept PC-relative expressions in the form [PC,
#number].

If you specify a label, the assembler calculates the offset from the PC value of the current instruction to
the address of the label. The assembler encodes the offset in the instruction. If the offset is too large, the
assembler produces an error. The offset is either added to or subtracted from the PC value to form the
required address.

Arm recommends you write PC-relative expressions using labels rather than the PC because the value of
the PC depends on the instruction set.

 Note

• In A32 code, the value of the PC is the address of the current instruction plus 8 bytes.
• In T32 code:

— For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction
plus 4 bytes.

— For all other instructions that use labels, the value of the PC is the address of the current
instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

• In A64 code, the value of the PC is the address of the current instruction.

Example
 LDR r4,=data+4*n ; n is an assembly-time variable
 ; code
 MOV pc,lr
data DCD value_0
 ; n-1 DCD directives
 DCD value_n ; data+4*n points here
 ; more DCD directives

Related concepts
6.6 Labels on page 6-173
Related reference
7.52 MAP on page 7-259

6 Symbols, Literals, Expressions, and Operators
6.5 Register-relative and PC-relative expressions

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-172

Non-Confidential

6.6 Labels
A label is a symbol that represents the memory address of an instruction or data.

The address can be PC-relative, register-relative, or absolute. Labels are local to the source file unless
you make them global using the EXPORT directive.

The address given by a label is calculated during assembly. armasm calculates the address of a label
relative to the origin of the section where the label is defined. A reference to a label within the same
section can use the PC plus or minus an offset. This is called PC-relative addressing.

Addresses of labels in other sections are calculated at link time, when the linker has allocated specific
locations in memory for each section.

Related concepts
6.7 Labels for PC-relative addresses on page 6-174
6.8 Labels for register-relative addresses on page 6-175
6.9 Labels for absolute addresses on page 6-176
Related reference
2.1 Syntax of source lines in assembly language on page 2-28
7.27 EXPORT or GLOBAL on page 7-229

6 Symbols, Literals, Expressions, and Operators
6.6 Labels

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-173

Non-Confidential

6.7 Labels for PC-relative addresses
A label can represent the PC value plus or minus the offset from the PC to the label. Use these labels as
targets for branch instructions, or to access small items of data embedded in code sections.

You can define PC-relative labels using a label on an instruction or on one of the data definition
directives.

You can also use the section name of an AREA directive as a label for PC-relative addresses. In this case
the label points to the first byte of the specified AREA. Arm does not recommend using AREA names as
branch targets because when branching from A32 to T32 state or T32 to A32 state in this way, the
processor does not change the state properly.

Related reference
7.6 AREA on page 7-205
7.15 DCB on page 7-217
7.16 DCD and DCDU on page 7-218
7.18 DCFD and DCFDU on page 7-220
7.19 DCFS and DCFSU on page 7-221
7.20 DCI on page 7-222
7.21 DCQ and DCQU on page 7-223
7.22 DCW and DCWU on page 7-224

6 Symbols, Literals, Expressions, and Operators
6.7 Labels for PC-relative addresses

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-174

Non-Confidential

6.8 Labels for register-relative addresses
A label can represent a named register plus a numeric value. You define these labels in a storage map.
They are most commonly used to access data in data sections.

You can use the EQU directive to define additional register-relative labels, based on labels defined in
storage maps.

 Note

Register-relative addresses are not supported in A64 code.

Example of storage map definitions
 MAP 0,r9
 MAP 0xff,r9

Related reference
7.17 DCDO on page 7-219
7.26 EQU on page 7-228
7.52 MAP on page 7-259
7.64 SPACE or FILL on page 7-274

6 Symbols, Literals, Expressions, and Operators
6.8 Labels for register-relative addresses

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-175

Non-Confidential

6.9 Labels for absolute addresses
A label can represent the absolute address of code or data.

These labels are numeric constants. In A32 and T32 code they are integers in the range 0 to 232-1. In A64
code, they are integers in the range 0 to 264-1. They address the memory directly. You can use labels to
represent absolute addresses using the EQU directive. To ensure that the labels are used correctly when
referenced in code, you can specify the absolute address as:
• A32 code with the ARM directive.
• T32 code with the THUMB directive.
• Data.

Example of defining labels for absolute address
abc EQU 2 ; assigns the value 2 to the symbol abc
xyz EQU label+8 ; assigns the address (label+8) to the symbol xyz
fiq EQU 0x1C, ARM ; assigns the absolute address 0x1C to the symbol fiq
 ; and marks it as A32 code

Related concepts
6.6 Labels on page 6-173
6.7 Labels for PC-relative addresses on page 6-174
6.8 Labels for register-relative addresses on page 6-175
Related reference
7.26 EQU on page 7-228

6 Symbols, Literals, Expressions, and Operators
6.9 Labels for absolute addresses

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-176

Non-Confidential

6.10 Numeric local labels
Numeric local labels are a type of label that you refer to by number rather than by name. They are used
in a similar way to PC-relative labels, but their scope is more limited.

A numeric local label is a number in the range 0-99, optionally followed by a name. Unlike other labels,
a numeric local label can be defined many times and the same number can be used for more than one
numeric local label in an area.

Numeric local labels do not appear in the object file. This means that, for example, a debugger cannot set
a breakpoint directly on a numeric local label, like it can for named local labels kept using the KEEP
directive.

A numeric local label can be used in place of symbol in source lines in an assembly language module:

• On its own, that is, where there is no instruction or directive.
• On a line that contains an instruction.
• On a line that contains a code- or data-generating directive.

A numeric local label is generally used where you might use a PC-relative label.

Numeric local labels are typically used for loops and conditional code within a routine, or for small
subroutines that are only used locally. They are particularly useful when you are generating labels in
macros.

The scope of numeric local labels is limited by the AREA directive. Use the ROUT directive to limit the
scope of numeric local labels more tightly. A reference to a numeric local label refers to a matching label
within the same scope. If there is no matching label within the scope in either direction, armasm
generates an error message and the assembly fails.

You can use the same number for more than one numeric local label even within the same scope. By
default, armasm links a numeric local label reference to:
• The most recent numeric local label with the same number, if there is one within the scope.
• The next following numeric local label with the same number, if there is not a preceding one within

the scope.

Use the optional parameters to modify this search pattern if required.

Related concepts
6.6 Labels on page 6-173
Related reference
2.1 Syntax of source lines in assembly language on page 2-28
6.11 Syntax of numeric local labels on page 6-178
7.51 MACRO and MEND on page 7-256
7.48 KEEP on page 7-253
7.62 ROUT on page 7-271

6 Symbols, Literals, Expressions, and Operators
6.10 Numeric local labels

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-177

Non-Confidential

6.11 Syntax of numeric local labels
When referring to numeric local labels you can specify how armasm searches for the label.

Syntax

n[routname] ; a numeric local label

%[F|B][A|T]n[routname] ; a reference to a numeric local label

where:

n

is the number of the numeric local label in the range 0-99.

routname

is the name of the current scope.

%

introduces the reference.

F

instructs armasm to search forwards only.

B

instructs armasm to search backwards only.

A

instructs armasm to search all macro levels.

T

instructs armasm to look at this macro level only.

Usage

If neither F nor B is specified, armasm searches backwards first, then forwards.

If neither A nor T is specified, armasm searches all macros from the current level to the top level, but does
not search lower level macros.

If routname is specified in either a label or a reference to a label, armasm checks it against the name of
the nearest preceding ROUT directive. If it does not match, armasm generates an error message and the
assembly fails.

Related concepts
6.10 Numeric local labels on page 6-177
Related reference
7.62 ROUT on page 7-271

6 Symbols, Literals, Expressions, and Operators
6.11 Syntax of numeric local labels

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-178

Non-Confidential

6.12 String expressions
String expressions consist of combinations of string literals, string variables, string manipulation
operators, and parentheses.

Characters that cannot be placed in string literals can be placed in string expressions using the :CHR:
unary operator. Any ASCII character from 0 to 255 is permitted.

The value of a string expression cannot exceed 5120 characters in length. It can be of zero length.

Example
improb SETS "literal":CC:(strvar2:LEFT:4)
 ; sets the variable improb to the value "literal"
 ; with the left-most four characters of the
 ; contents of string variable strvar2 appended

Related concepts
6.13 String literals on page 6-180
6.19 Unary operators on page 6-186
6.2 Variables on page 6-169
Related reference
6.22 String manipulation operators on page 6-189
7.63 SETA, SETL, and SETS on page 7-272

6 Symbols, Literals, Expressions, and Operators
6.12 String expressions

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-179

Non-Confidential

6.13 String literals
String literals consist of a series of characters or spaces contained between double quote characters.

The length of a string literal is restricted by the length of the input line.

To include a double quote character or a dollar character within the string literal, include the character
twice as a pair. For example, you must use $$ if you require a single $ in the string.

C string escape sequences are also enabled and can be used within the string, unless --no_esc is
specified.

Examples
abc SETS "this string contains only one "" double quote"
def SETS "this string contains only one $$ dollar symbol"

Related reference
2.1 Syntax of source lines in assembly language on page 2-28
5.47 --no_esc on page 5-145

6 Symbols, Literals, Expressions, and Operators
6.13 String literals

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-180

Non-Confidential

6.14 Numeric expressions
Numeric expressions consist of combinations of numeric constants, numeric variables, ordinary numeric
literals, binary operators, and parentheses.

Numeric expressions can contain register-relative or program-relative expressions if the overall
expression evaluates to a value that does not include a register or the PC.

Numeric expressions evaluate to 32-bit integers in A32 and T32 code. You can interpret them as
unsigned numbers in the range 0 to 232-1, or signed numbers in the range -231 to 231-1. However, armasm
makes no distinction between -n and 232-n. Relational operators such as >= use the unsigned
interpretation. This means that 0 > -1 is {FALSE}.

In A64 code, numeric expressions evaluate to 64-bit integers. You can interpret them as unsigned
numbers in the range 0 to 264-1, or signed numbers in the range -263 to 263-1. However, armasm makes no
distinction between -n and 264-n.

 Note

armasm does not support 64-bit arithmetic variables. See 7.63 SETA, SETL, and SETS on page 7-272
(Restrictions) for a workaround.

Arm recommends that you only use armasm for legacy Arm syntax assembly code, and that you use the
armclang assembler and GNU syntax for all new assembly files.

Example
a SETA 256*256 ; 256*256 is a numeric expression
 MOV r1,#(a*22) ; (a*22) is a numeric expression

Related concepts
6.20 Binary operators on page 6-187
6.2 Variables on page 6-169
6.3 Numeric constants on page 6-170
Related reference
6.15 Syntax of numeric literals on page 6-182
7.63 SETA, SETL, and SETS on page 7-272

6 Symbols, Literals, Expressions, and Operators
6.14 Numeric expressions

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-181

Non-Confidential

6.15 Syntax of numeric literals
Numeric literals consist of a sequence of characters, or a single character in quotes, evaluating to an
integer.

They can take any of the following forms:
• decimal-digits.
• 0xhexadecimal-digits.
• &hexadecimal-digits.
• n_base-n-digits.
• 'character'.

where:

decimal-digits
Is a sequence of characters using only the digits 0 to 9.

hexadecimal-digits
Is a sequence of characters using only the digits 0 to 9 and the letters A to F or a to f.

n_
Is a single digit between 2 and 9 inclusive, followed by an underscore character.

base-n-digits
Is a sequence of characters using only the digits 0 to (n-1)

character
Is any single character except a single quote. Use the standard C escape character (\') if you
require a single quote. The character must be enclosed within opening and closing single quotes.
In this case, the value of the numeric literal is the numeric code of the character.

You must not use any other characters. The sequence of characters must evaluate to an integer.

In A32/T32 code, the range is 0 to 232-1, except in DCQ, DCQU, DCD, and DCDU directives.

In A64 code, the range is 0 to 264-1, except in DCD and DCDU directives.
 Note

• In the DCQ and DCQU, the integer range is 0 to 264-1
• In the DCO and DCOU directives, the integer range is 0 to 2128-1

Examples
a SETA 34906
addr DCD 0xA10E
 LDR r4,=&1000000F
 DCD 2_11001010
c3 SETA 8_74007
 DCQ 0x0123456789abcdef
 LDR r1,='A' ; pseudo-instruction loading 65 into r1
 ADD r3,r2,#'\'' ; add 39 to contents of r2, result to r3

Related concepts
6.3 Numeric constants on page 6-170

6 Symbols, Literals, Expressions, and Operators
6.15 Syntax of numeric literals

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-182

Non-Confidential

6.16 Syntax of floating-point literals
Floating-point literals consist of a sequence of characters evaluating to a floating-point number.

They can take any of the following forms:

• {-}digitsE{-}digits
• {-}{digits}.digits
• {-}{digits}.digitsE{-}digits
• 0xhexdigits
• &hexdigits
• 0f_hexdigits
• 0d_hexdigits

where:

digits
Are sequences of characters using only the digits 0 to 9. You can write E in uppercase or
lowercase. These forms correspond to normal floating-point notation.

hexdigits
Are sequences of characters using only the digits 0 to 9 and the letters A to F or a to f. These
forms correspond to the internal representation of the numbers in the computer. Use these forms
to enter infinities and NaNs, or if you want to be sure of the exact bit patterns you are using.

The 0x and & forms allow the floating-point bit pattern to be specified by any number of hex digits.

The 0f_ form requires the floating-point bit pattern to be specified by exactly 8 hex digits.

The 0d_ form requires the floating-point bit pattern to be specified by exactly 16 hex digits.

The range for half-precision floating-point values is:
• Maximum 65504 (IEEE format) or 131008 (alternative format).
• Minimum 0.00012201070785522461.

The range for single-precision floating-point values is:

• Maximum 3.40282347e+38.
• Minimum 1.17549435e-38.

The range for double-precision floating-point values is:
• Maximum 1.79769313486231571e+308.
• Minimum 2.22507385850720138e-308.

Floating-point numbers are only available if your system has floating-point, Advanced SIMD with
floating-point.

Examples
 DCFD 1E308,-4E-100
 DCFS 1.0
 DCFS 0.02
 DCFD 3.725e15
 DCFS 0x7FC00000 ; Quiet NaN
 DCFD &FFF0000000000000 ; Minus infinity

Related concepts
6.3 Numeric constants on page 6-170
Related reference
6.15 Syntax of numeric literals on page 6-182

6 Symbols, Literals, Expressions, and Operators
6.16 Syntax of floating-point literals

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-183

Non-Confidential

6.17 Logical expressions
Logical expressions consist of combinations of logical literals ({TRUE} or {FALSE}), logical variables,
Boolean operators, relations, and parentheses.

Relations consist of combinations of variables, literals, constants, or expressions with appropriate
relational operators.

Related reference
6.26 Boolean operators on page 6-193
6.25 Relational operators on page 6-192

6 Symbols, Literals, Expressions, and Operators
6.17 Logical expressions

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-184

Non-Confidential

6.18 Logical literals
Logical or Boolean literals can have one of two values, {TRUE} or {FALSE}.

Related concepts
6.13 String literals on page 6-180
Related reference
6.15 Syntax of numeric literals on page 6-182

6 Symbols, Literals, Expressions, and Operators
6.18 Logical literals

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-185

Non-Confidential

6.19 Unary operators
Unary operators return a string, numeric, or logical value. They have higher precedence than other
operators and are evaluated first.

A unary operator precedes its operand. Adjacent operators are evaluated from right to left.

The following table lists the unary operators that return strings:

Table 6-1 Unary operators that return strings

Operator Usage Description

:CHR: :CHR:A Returns the character with ASCII code A.

:LOWERCASE: :LOWERCASE:string Returns the given string, with all uppercase characters converted to lowercase.

:REVERSE_CC: :REVERSE_CC:cond_code Returns the inverse of the condition code in cond_code, or an error if cond_code
does not contain a valid condition code.

:STR: :STR:A In A32 and T32 code, returns an 8-digit hexadecimal string corresponding to a
numeric expression, or the string "T" or "F" if used on a logical expression. In A64
code, returns a 16-digit hexadecimal string.

:UPPERCASE: :UPPERCASE:string Returns the given string, with all lowercase characters converted to uppercase.

The following table lists the unary operators that return numeric values:

Table 6-2 Unary operators that return numeric or logical values

Operator Usage Description

? ?A Number of bytes of code generated by line defining symbol A.

+ and - +A

-A

Unary plus. Unary minus. + and – can act on numeric and PC-relative expressions.

:BASE: :BASE:A If A is a PC-relative or register-relative expression, :BASE: returns the number of
its register component. :BASE: is most useful in macros.

:CC_ENCODING: :CC_ENCODING:cond_code Returns the numeric value of the condition code in cond_code, or an error if
cond_code does not contain a valid condition code.

:DEF: :DEF:A {TRUE} if A is defined, otherwise {FALSE}.

:INDEX: :INDEX:A If A is a register-relative expression, :INDEX: returns the offset from that base
register. :INDEX: is most useful in macros.

:LEN: :LEN:A Length of string A.

:LNOT: :LNOT:A Logical complement of A.

:NOT: :NOT:A Bitwise complement of A (~ is an alias, for example ~A).

:RCONST: :RCONST:Rn Number of register. In A32/T32 code, 0-15 corresponds to R0-R15. In A64 code,
0-30 corresponds to W0-W30 or X0-X30.

Related concepts
6.20 Binary operators on page 6-187

6 Symbols, Literals, Expressions, and Operators
6.19 Unary operators

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-186

Non-Confidential

6.20 Binary operators
You write binary operators between the pair of sub-expressions they operate on. They have lower
precedence than unary operators.

 Note

The order of precedence is not the same as in C.

Related concepts
6.28 Difference between operator precedence in assembly language and C on page 6-195
Related reference
6.21 Multiplicative operators on page 6-188
6.22 String manipulation operators on page 6-189
6.23 Shift operators on page 6-190
6.24 Addition, subtraction, and logical operators on page 6-191
6.25 Relational operators on page 6-192
6.26 Boolean operators on page 6-193

6 Symbols, Literals, Expressions, and Operators
6.20 Binary operators

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-187

Non-Confidential

6.21 Multiplicative operators
Multiplicative operators have the highest precedence of all binary operators. They act only on numeric
expressions.

The following table shows the multiplicative operators:

Table 6-3 Multiplicative operators

Operator Alias Usage Explanation

* A*B Multiply

/ A/B Divide

:MOD: % A:MOD:B A modulo B

You can use the :MOD: operator on PC-relative expressions to ensure code is aligned correctly. These
alignment checks have the form PC-relative:MOD:Constant. For example:

 AREA x,CODE
 ASSERT ({PC}:MOD:4) == 0
 DCB 1
y DCB 2
 ASSERT (y:MOD:4) == 1
 ASSERT ({PC}:MOD:4) == 2
 END

Related concepts
6.20 Binary operators on page 6-187
6.5 Register-relative and PC-relative expressions on page 6-172
6.14 Numeric expressions on page 6-181
Related reference
6.15 Syntax of numeric literals on page 6-182

6 Symbols, Literals, Expressions, and Operators
6.21 Multiplicative operators

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-188

Non-Confidential

6.22 String manipulation operators
You can use string manipulation operators to concatenate two strings, or to extract a substring.

The following table shows the string manipulation operators. In CC, both A and B must be strings. In the
slicing operators LEFT and RIGHT:
• A must be a string.
• B must be a numeric expression.

Table 6-4 String manipulation operators

Operator Usage Explanation

:CC: A:CC:B B concatenated onto the end of A

:LEFT: A:LEFT:B The left-most B characters of A

:RIGHT: A:RIGHT:B The right-most B characters of A

Related concepts
6.12 String expressions on page 6-179
6.14 Numeric expressions on page 6-181

6 Symbols, Literals, Expressions, and Operators
6.22 String manipulation operators

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-189

Non-Confidential

6.23 Shift operators
Shift operators act on numeric expressions, by shifting or rotating the first operand by the amount
specified by the second.

The following table shows the shift operators:

Table 6-5 Shift operators

Operator Alias Usage Explanation

:ROL: A:ROL:B Rotate A left by B bits

:ROR: A:ROR:B Rotate A right by B bits

:SHL: << A:SHL:B Shift A left by B bits

:SHR: >> A:SHR:B Shift A right by B bits

 Note

SHR is a logical shift and does not propagate the sign bit.

Related concepts
6.20 Binary operators on page 6-187

6 Symbols, Literals, Expressions, and Operators
6.23 Shift operators

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-190

Non-Confidential

6.24 Addition, subtraction, and logical operators
Addition, subtraction, and logical operators act on numeric expressions.

Logical operations are performed bitwise, that is, independently on each bit of the operands to produce
the result.

The following table shows the addition, subtraction, and logical operators:

Table 6-6 Addition, subtraction, and logical operators

Operator Alias Usage Explanation

+ A+B Add A to B

- A-B Subtract B from A

:AND: & A:AND:B Bitwise AND of A and B

:EOR: ^ A:EOR:B Bitwise Exclusive OR of A and B

:OR: A:OR:B Bitwise OR of A and B

The use of | as an alias for :OR: is deprecated.

Related concepts
6.20 Binary operators on page 6-187

6 Symbols, Literals, Expressions, and Operators
6.24 Addition, subtraction, and logical operators

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-191

Non-Confidential

6.25 Relational operators
Relational operators act on two operands of the same type to produce a logical value.

The operands can be one of:
• Numeric.
• PC-relative.
• Register-relative.
• Strings.

Strings are sorted using ASCII ordering. String A is less than string B if it is a leading substring of string
B, or if the left-most character in which the two strings differ is less in string A than in string B.

Arithmetic values are unsigned, so the value of 0>-1 is {FALSE}.

The following table shows the relational operators:

Table 6-7 Relational operators

Operator Alias Usage Explanation

= == A=B A equal to B

> A>B A greater than B

>= A>=B A greater than or equal to B

< A<B A less than B

<= A<=B A less than or equal to B

/= <> != A/=B A not equal to B

Related concepts
6.20 Binary operators on page 6-187

6 Symbols, Literals, Expressions, and Operators
6.25 Relational operators

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-192

Non-Confidential

6.26 Boolean operators
Boolean operators perform standard logical operations on their operands. They have the lowest
precedence of all operators.

In all three cases, both A and B must be expressions that evaluate to either {TRUE} or {FALSE}.

The following table shows the Boolean operators:

Table 6-8 Boolean operators

Operator Alias Usage Explanation

:LAND: && A:LAND:B Logical AND of A and B

:LEOR: A:LEOR:B Logical Exclusive OR of A and B

:LOR: || A:LOR:B Logical OR of A and B

Related concepts
6.20 Binary operators on page 6-187

6 Symbols, Literals, Expressions, and Operators
6.26 Boolean operators

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-193

Non-Confidential

6.27 Operator precedence
armasm includes an extensive set of operators for use in expressions. It evaluates them using a strict order
of precedence.

Many of the operators resemble their counterparts in high-level languages such as C.

armasm evaluates operators in the following order:
1. Expressions in parentheses are evaluated first.
2. Operators are applied in precedence order.
3. Adjacent unary operators are evaluated from right to left.
4. Binary operators of equal precedence are evaluated from left to right.
Related concepts
6.19 Unary operators on page 6-186
6.20 Binary operators on page 6-187
6.28 Difference between operator precedence in assembly language and C on page 6-195
Related reference
6.21 Multiplicative operators on page 6-188
6.22 String manipulation operators on page 6-189
6.23 Shift operators on page 6-190
6.24 Addition, subtraction, and logical operators on page 6-191
6.25 Relational operators on page 6-192
6.26 Boolean operators on page 6-193

6 Symbols, Literals, Expressions, and Operators
6.27 Operator precedence

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-194

Non-Confidential

6.28 Difference between operator precedence in assembly language and C
armasm does not follow exactly the same order of precedence when evaluating operators as a C compiler.

For example, (1 + 2 :SHR: 3) evaluates as (1 + (2 :SHR: 3)) = 1 in assembly language. The
equivalent expression in C evaluates as ((1 + 2) >> 3) = 0.

Arm recommends you use brackets to make the precedence explicit.

If your code contains an expression that would parse differently in C, and you are not using the --unsafe
option, armasm gives a warning:

A1466W: Operator precedence means that expression would evaluate differently in C

In the following tables:
• The highest precedence operators are at the top of the list.
• The highest precedence operators are evaluated first.
• Operators of equal precedence are evaluated from left to right.

The following table shows the order of precedence of operators in assembly language, and a comparison
with the order in C.

Table 6-9 Operator precedence in Arm assembly language

assembly language precedence equivalent C operators

unary operators unary operators

* / :MOD: * / %

string manipulation n/a

:SHL: :SHR: :ROR: :ROL: << >>

+ - :AND: :OR: :EOR: + - & | ^

= > >= < <= /= <> == > >= < <= !=

:LAND: :LOR: :LEOR: && ||

The following table shows the order of precedence of operators in C.

Table 6-10 Operator precedence in C

C precedence

unary operators

* / %

+ - (as binary operators)

<< >>

< <= > >=

== !=

&

^

|

&&

||

6 Symbols, Literals, Expressions, and Operators
6.28 Difference between operator precedence in assembly language and C

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-195

Non-Confidential

Related concepts
6.20 Binary operators on page 6-187
Related reference
6.27 Operator precedence on page 6-194

6 Symbols, Literals, Expressions, and Operators
6.28 Difference between operator precedence in assembly language and C

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

6-196

Non-Confidential

Chapter 7
Directives Reference

Describes the directives that are provided by the Arm assembler, armasm.

It contains the following sections:
• 7.1 Alphabetical list of directives on page 7-199.
• 7.2 About assembly control directives on page 7-200.
• 7.3 About frame directives on page 7-201.
• 7.4 ALIAS on page 7-202.
• 7.5 ALIGN on page 7-203.
• 7.6 AREA on page 7-205.
• 7.7 ARM or CODE32 directive on page 7-209.
• 7.8 ASSERT on page 7-210.
• 7.9 ATTR on page 7-211.
• 7.10 CN on page 7-212.
• 7.11 CODE16 directive on page 7-213.
• 7.12 COMMON on page 7-214.
• 7.13 CP on page 7-215.
• 7.14 DATA on page 7-216.
• 7.15 DCB on page 7-217.
• 7.16 DCD and DCDU on page 7-218.
• 7.17 DCDO on page 7-219.
• 7.18 DCFD and DCFDU on page 7-220.
• 7.19 DCFS and DCFSU on page 7-221.
• 7.20 DCI on page 7-222.
• 7.21 DCQ and DCQU on page 7-223.
• 7.22 DCW and DCWU on page 7-224.
• 7.23 END on page 7-225.

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-197

Non-Confidential

• 7.24 ENDFUNC or ENDP on page 7-226.
• 7.25 ENTRY on page 7-227.
• 7.26 EQU on page 7-228.
• 7.27 EXPORT or GLOBAL on page 7-229.
• 7.28 EXPORTAS on page 7-231.
• 7.29 FIELD on page 7-232.
• 7.30 FRAME ADDRESS on page 7-233.
• 7.31 FRAME POP on page 7-234.
• 7.32 FRAME PUSH on page 7-235.
• 7.33 FRAME REGISTER on page 7-236.
• 7.34 FRAME RESTORE on page 7-237.
• 7.35 FRAME RETURN ADDRESS on page 7-238.
• 7.36 FRAME SAVE on page 7-239.
• 7.37 FRAME STATE REMEMBER on page 7-240.
• 7.38 FRAME STATE RESTORE on page 7-241.
• 7.39 FRAME UNWIND ON on page 7-242.
• 7.40 FRAME UNWIND OFF on page 7-243.
• 7.41 FUNCTION or PROC on page 7-244.
• 7.42 GBLA, GBLL, and GBLS on page 7-245.
• 7.43 GET or INCLUDE on page 7-246.
• 7.44 IF, ELSE, ENDIF, and ELIF on page 7-247.
• 7.45 IMPORT and EXTERN on page 7-249.
• 7.46 INCBIN on page 7-251.
• 7.47 INFO on page 7-252.
• 7.48 KEEP on page 7-253.
• 7.49 LCLA, LCLL, and LCLS on page 7-254.
• 7.50 LTORG on page 7-255.
• 7.51 MACRO and MEND on page 7-256.
• 7.52 MAP on page 7-259.
• 7.53 MEXIT on page 7-260.
• 7.54 NOFP on page 7-261.
• 7.55 OPT on page 7-262.
• 7.56 QN, DN, and SN on page 7-264.
• 7.57 RELOC on page 7-266.
• 7.58 REQUIRE on page 7-267.
• 7.59 REQUIRE8 and PRESERVE8 on page 7-268.
• 7.60 RLIST on page 7-269.
• 7.61 RN on page 7-270.
• 7.62 ROUT on page 7-271.
• 7.63 SETA, SETL, and SETS on page 7-272.
• 7.64 SPACE or FILL on page 7-274.
• 7.65 THUMB directive on page 7-275.
• 7.66 TTL and SUBT on page 7-276.
• 7.67 WHILE and WEND on page 7-277.
• 7.68 WN and XN on page 7-278.

7 Directives Reference

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-198

Non-Confidential

7.1 Alphabetical list of directives
The Arm assembler, armasm, provides various directives.

The following table lists them:

Table 7-1 List of directives

Directive Directive Directive

ALIAS EQU LTORG

ALIGN EXPORT or GLOBAL MACRO and MEND

ARM or CODE32 EXPORTAS MAP

AREA EXTERN MEND (see MACRO)

ASSERT FIELD MEXIT

ATTR FRAME ADDRESS NOFP

CN FRAME POP OPT

CODE16 FRAME PUSH PRESERVE8 (see REQUIRE8)

COMMON FRAME REGISTER PROC see FUNCTION

CP FRAME RESTORE

DATA FRAME SAVE RELOC

DCB FRAME STATE REMEMBER REQUIRE

DCD and DCDU FRAME STATE RESTORE REQUIRE8 and PRESERVE8

DCDO FRAME UNWIND ON or OFF RLIST

DCFD and DCFDU FUNCTION or PROC RN

DCFS and DCFSU GBLA, GBLL, and GBLS ROUT

DCI GET or INCLUDE SETA, SETL, and SETS

DCQ and DCQU GLOBAL (see EXPORT) SN

DCW and DCWU IF, ELSE, ENDIF, and ELIF SPACE or FILL

DN IMPORT SUBT

ELIF, ELSE (see IF) INCBIN THUMB

END INCLUDE see GET TTL

ENDFUNC or ENDP INFO WHILE and WEND

ENDIF (see IF) KEEP WN and XN

ENTRY LCLA, LCLL, and LCLS

7 Directives Reference
7.1 Alphabetical list of directives

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-199

Non-Confidential

7.2 About assembly control directives
Some assembler directives control conditional assembly, looping, inclusions, and macros.

These directives are as follows:
• MACRO and MEND.
• MEXIT.
• IF, ELSE, ENDIF, and ELIF.
• WHILE and WEND.

Nesting directives
The following structures can be nested to a total depth of 256:
• MACRO definitions.
• WHILE...WEND loops.
• IF...ELSE...ENDIF conditional structures.
• INCLUDE file inclusions.

The limit applies to all structures taken together, regardless of how they are nested. The limit is not 256
of each type of structure.

Related reference
7.51 MACRO and MEND on page 7-256
7.53 MEXIT on page 7-260
7.44 IF, ELSE, ENDIF, and ELIF on page 7-247
7.67 WHILE and WEND on page 7-277

7 Directives Reference
7.2 About assembly control directives

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-200

Non-Confidential

7.3 About frame directives
Frame directives enable debugging and profiling of assembly language functions. They also enable the
stack usage of functions to be calculated.

Correct use of these directives:

• Enables the armlink --callgraph option to calculate stack usage of assembler functions.

The following are the rules that determine stack usage:
— If a function is not marked with PROC or ENDP, stack usage is unknown.
— If a function is marked with PROC or ENDP but with no FRAME PUSH or FRAME POP, stack usage is

assumed to be zero. This means that there is no requirement to manually add FRAME PUSH 0 or
FRAME POP 0.

— If a function is marked with PROC or ENDP and with FRAME PUSH n or FRAME POP n, stack usage is
assumed to be n bytes.

• Helps you to avoid errors in function construction, particularly when you are modifying existing
code.

• Enables the assembler to alert you to errors in function construction.
• Enables backtracing of function calls during debugging.
• Enables the debugger to profile assembler functions.

If you require profiling of assembler functions, but do not want frame description directives for other
purposes:
• You must use the FUNCTION and ENDFUNC, or PROC and ENDP, directives.
• You can omit the other FRAME directives.
• You only have to use the FUNCTION and ENDFUNC directives for the functions you want to profile.

In DWARF, the canonical frame address is an address on the stack specifying where the call frame of an
interrupted function is located.

Related reference
7.30 FRAME ADDRESS on page 7-233
7.31 FRAME POP on page 7-234
7.32 FRAME PUSH on page 7-235
7.33 FRAME REGISTER on page 7-236
7.34 FRAME RESTORE on page 7-237
7.35 FRAME RETURN ADDRESS on page 7-238
7.36 FRAME SAVE on page 7-239
7.37 FRAME STATE REMEMBER on page 7-240
7.38 FRAME STATE RESTORE on page 7-241
7.39 FRAME UNWIND ON on page 7-242
7.40 FRAME UNWIND OFF on page 7-243
7.41 FUNCTION or PROC on page 7-244
7.24 ENDFUNC or ENDP on page 7-226

7 Directives Reference
7.3 About frame directives

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-201

Non-Confidential

7.4 ALIAS
The ALIAS directive creates an alias for a symbol.

Syntax

ALIAS name, aliasname

where:

name

is the name of the symbol to create an alias for.

aliasname

is the name of the alias to be created.

Usage

The symbol name must already be defined in the source file before creating an alias for it. Properties of
name set by the EXPORT directive are not inherited by aliasname, so you must use EXPORT on aliasname
if you want to make the alias available outside the current source file. Apart from the properties set by
the EXPORT directive, name and aliasname are identical.

Correct example
baz
bar PROC
 BX lr
 ENDP
 ALIAS bar,foo ; foo is an alias for bar
 EXPORT bar
 EXPORT foo ; foo and bar have identical properties
 ; because foo was created using ALIAS
 EXPORT baz ; baz and bar are not identical
 ; because the size field of baz is not set

Incorrect example
 EXPORT bar
 IMPORT car
 ALIAS bar,foo ; ERROR - bar is not defined yet
 ALIAS car,boo ; ERROR - car is external
bar PROC
 BX lr
 ENDP

Related reference
7.27 EXPORT or GLOBAL on page 7-229

7 Directives Reference
7.4 ALIAS

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-202

Non-Confidential

7.5 ALIGN
The ALIGN directive aligns the current location to a specified boundary by padding with zeros or NOP
instructions.

Syntax

ALIGN {expr{,offset{,pad{,padsize}}}}

where:

expr

is a numeric expression evaluating to any power of 2 from 20 to 231

offset

can be any numeric expression

pad

can be any numeric expression

padsize

can be 1, 2 or 4.

Operation

The current location is aligned to the next lowest address of the form:

offset + n * expr

n is any integer which the assembler selects to minimise padding.

If expr is not specified, ALIGN sets the current location to the next word (four byte) boundary. The
unused space between the previous and the new current location are filled with:
• Copies of pad, if pad is specified.
• NOP instructions, if all the following conditions are satisfied:

— pad is not specified.
— The ALIGN directive follows A32 or T32 instructions.
— The current section has the CODEALIGN attribute set on the AREA directive.

• Zeros otherwise.

pad is treated as a byte, halfword, or word, according to the value of padsize. If padsize is not
specified, pad defaults to bytes in data sections, halfwords in T32 code, or words in A32 code.

Usage
Use ALIGN to ensure that your data and code is aligned to appropriate boundaries. This is typically
required in the following circumstances:
• The ADR T32 pseudo-instruction can only load addresses that are word aligned, but a label within T32

code might not be word aligned. Use ALIGN 4 to ensure four-byte alignment of an address within T32
code.

• Use ALIGN to take advantage of caches on some Arm processors. For example, the Arm940T™

processor has a cache with 16-byte lines. Use ALIGN 16 to align function entries on 16-byte
boundaries and maximize the efficiency of the cache.

• A label on a line by itself can be arbitrarily aligned. Following A32 code is word-aligned (T32 code
is halfword aligned). The label therefore does not address the code correctly. Use ALIGN 4 (or ALIGN
2 for T32) before the label.

Alignment is relative to the start of the ELF section where the routine is located. The section must be
aligned to the same, or coarser, boundaries. The ALIGN attribute on the AREA directive is specified
differently.

7 Directives Reference
7.5 ALIGN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-203

Non-Confidential

Examples
 AREA cacheable, CODE, ALIGN=3
rout1 ; code ; aligned on 8-byte boundary
 ; code
 MOV pc,lr ; aligned only on 4-byte boundary
 ALIGN 8 ; now aligned on 8-byte boundary
rout2 ; code

In the following example, the ALIGN directive tells the assembler that the next instruction is word aligned
and offset by 3 bytes. The 3 byte offset is counted from the previous word aligned address, resulting in
the second DCB placed in the last byte of the same word and 2 bytes of padding are to be added.

 AREA OffsetExample, CODE
 DCB 1 ; This example places the two bytes in the first
 ALIGN 4,3 ; and fourth bytes of the same word.
 DCB 1 ; The second DCB is offset by 3 bytes from the
 ; first DCB.

In the following example, the ALIGN directive tells the assembler that the next instruction is word aligned
and offset by 2 bytes. Here, the 2 byte offset is counted from the next word aligned address, so the value
n is set to 1 (n=0 clashes with the third DCB). This time three bytes of padding are to be added.

 AREA OffsetExample1, CODE
 DCB 1 ; In this example, n cannot be 0 because it
 DCB 1 ; clashes with the 3rd DCB. The assembler
 DCB 1 ; sets n to 1.
 ALIGN 4,2 ; The next instruction is word aligned and
 DCB 2 ; offset by 2.

In the following example, the DCB directive makes the PC misaligned. The ALIGN directive ensures that
the label subroutine1 and the following instruction are word aligned.

 AREA Example, CODE, READONLY
start LDR r6,=label1
 ; code
 MOV pc,lr
label1 DCB 1 ; PC now misaligned
 ALIGN ; ensures that subroutine1 addresses
subroutine1 ; the following instruction.
 MOV r5,#0x5

Related reference
7.6 AREA on page 7-205

7 Directives Reference
7.5 ALIGN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-204

Non-Confidential

7.6 AREA
The AREA directive instructs the assembler to assemble a new code or data section.

Syntax

AREA sectionname{,attr}{,attr}...

where:

sectionname

is the name to give to the section. Sections are independent, named, indivisible chunks of code
or data that are manipulated by the linker.

You can choose any name for your sections. However, names starting with a non-alphabetic
character must be enclosed in bars or a missing section name error is generated. For example, |
1_DataArea|.

Certain names are conventional. For example, |.text| is used for code sections produced by
the C compiler, or for code sections otherwise associated with the C library.

attr

are one or more comma-delimited section attributes. Valid attributes are:

ALIGN=expression

By default, ELF sections are aligned on a four-byte boundary. expression can have
any integer value from 0 to 31. The section is aligned on a 2expression-byte boundary. For
example, if expression is 10, the section is aligned on a 1KB boundary.

This is not the same as the way that the ALIGN directive is specified.
 Note

Do not use ALIGN=0 or ALIGN=1 for A32 code sections.

Do not use ALIGN=0 for T32 code sections.

ASSOC=section

section specifies an associated ELF section. sectionname must be included in any
link that includes section

CODE

Contains machine instructions. READONLY is the default.

CODEALIGN

Causes armasm to insert NOP instructions when the ALIGN directive is used after A32 or
T32 instructions within the section, unless the ALIGN directive specifies a different
padding. CODEALIGN is the default for execute-only sections.

7 Directives Reference
7.6 AREA

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-205

Non-Confidential

COMDEF
 Note

This attribute is deprecated. Use the COMGROUP attribute.

Is a common section definition. This ELF section can contain code or data. It must be
identical to any other section of the same name in other source files.

Identical ELF sections with the same name are overlaid in the same section of memory
by the linker. If any are different, the linker generates a warning and does not overlay
the sections.

COMGROUP=symbol_name

Is the signature that makes the AREA part of the named ELF section group. See the
GROUP=symbol_name for more information. The COMGROUP attribute marks the ELF
section group with the GRP_COMDAT flag.

COMMON

Is a common data section. You must not define any code or data in it. It is initialized to
zeros by the linker. All common sections with the same name are overlaid in the same
section of memory by the linker. They do not all have to be the same size. The linker
allocates as much space as is required by the largest common section of each name.

DATA

Contains data, not instructions. READWRITE is the default.

EXECONLY

Indicates that the section is execute-only. Execute-only sections must also have the
CODE attribute, and must not have any of the following attributes:

• READONLY.
• READWRITE.
• DATA.
• ZEROALIGN.

armasm faults if any of the following occur in an execute-only section:
• Explicit data definitions, for example DCD and DCB.
• Implicit data definitions, for example LDR r0, =0xaabbccdd.
• Literal pool directives, for example LTORG, if there is literal data to be emitted.
• INCBIN or SPACE directives.
• ALIGN directives, if the required alignment cannot be accomplished by padding with

NOP instructions. armasm implicitly applies the CODEALIGN attribute to sections with
the EXECONLY attribute.

FINI_ARRAY

Sets the ELF type of the current area to SHT_FINI_ARRAY.

GROUP=symbol_name

Is the signature that makes the AREA part of the named ELF section group. It must be
defined by the source file, or a file included by the source file. All AREAS with the same
symbol_name signature are part of the same group. Sections within a group are kept or
discarded together.

INIT_ARRAY

Sets the ELF type of the current area to SHT_INIT_ARRAY.

7 Directives Reference
7.6 AREA

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-206

Non-Confidential

LINKORDER=section

Specifies a relative location for the current section in the image. It ensures that the
order of all the sections with the LINKORDER attribute, with respect to each other, is the
same as the order of the corresponding named sections in the image.

MERGE=n

Indicates that the linker can merge the current section with other sections with the
MERGE=n attribute. n is the size of the elements in the section, for example n is 1 for
characters. You must not assume that the section is merged, because the attribute does
not force the linker to merge the sections.

NOALLOC

Indicates that no memory on the target system is allocated to this area.

NOINIT
Indicates that the data section is uninitialized, or initialized to zero. It contains only
space reservation directives SPACE or DCB, DCD, DCDU, DCQ, DCQU, DCW, or DCWU with
initialized values of zero. You can decide at link time whether an area is uninitialized or
zero-initialized.

 Note

Arm Compiler does not support systems with ECC or parity protection where the
memory is not initialized.

PREINIT_ARRAY

Sets the ELF type of the current area to SHT_PREINIT_ARRAY.

READONLY

Indicates that this section must not be written to. This is the default for Code areas.

READWRITE

Indicates that this section can be read from and written to. This is the default for Data
areas.

SECFLAGS=n

Adds one or more ELF flags, denoted by n, to the current section.

SECTYPE=n

Sets the ELF type of the current section to n.

STRINGS

Adds the SHF_STRINGS flag to the current section. To use the STRINGS attribute, you
must also use the MERGE=1 attribute. The contents of the section must be strings that are
nul-terminated using the DCB directive.

ZEROALIGN

Causes armasm to insert zeros when the ALIGN directive is used after A32 or T32
instructions within the section, unless the ALIGN directive specifies a different padding.
ZEROALIGN is the default for sections that are not execute-only.

Usage

Use the AREA directive to subdivide your source file into ELF sections. You can use the same name in
more than one AREA directive. All areas with the same name are placed in the same ELF section. Only the
attributes of the first AREA directive of a particular name are applied.

7 Directives Reference
7.6 AREA

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-207

Non-Confidential

In general, Arm recommends that you use separate ELF sections for code and data. However, you can
put data in code sections. Large programs can usually be conveniently divided into several code sections.
Large independent data sets are also usually best placed in separate sections.

The scope of numeric local labels is defined by AREA directives, optionally subdivided by ROUT
directives.

There must be at least one AREA directive for an assembly.
 Note

armasm emits R_ARM_TARGET1 relocations for the DCD and DCDU directives if the directive uses PC-
relative expressions and is in any of the PREINIT_ARRAY, FINI_ARRAY, or INIT_ARRAY ELF sections. You
can override the relocation using the RELOC directive after each DCD or DCDU directive. If this relocation is
used, read-write sections might become read-only sections at link time if the platform ABI permits this.

Example

The following example defines a read-only code section named Example:

 AREA Example,CODE,READONLY ; An example code section.
 ; code

Related concepts
2.3 ELF sections and the AREA directive on page 2-31
Related reference
7.5 ALIGN on page 7-203
7.57 RELOC on page 7-266
7.16 DCD and DCDU on page 7-218
Related information
Information about image structure and generation

7 Directives Reference
7.6 AREA

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-208

Non-Confidential

https://developer.arm.com/docs/100070/0612/image-structure-and-generation

7.7 ARM or CODE32 directive
The ARM directive instructs the assembler to interpret subsequent instructions as A32 instructions, using
either the UAL or the pre-UAL Arm assembler language syntax. CODE32 is a synonym for ARM.

 Note

Not supported for AArch64 state.

Syntax

ARM

Usage

In files that contain code using different instruction sets, the ARM directive must precede any A32 code.

If necessary, this directive also inserts up to three bytes of padding to align to the next word boundary.

This directive does not assemble to any instructions. It also does not change the state. It only instructs
armasm to assemble A32 instructions as appropriate, and inserts padding if necessary.

Example

This example shows how you can use ARM and THUMB directives to switch state and assemble both A32
and T32 instructions in a single area.

 AREA ToT32, CODE, READONLY ; Name this block of code
 ENTRY ; Mark first instruction to execute
 ARM ; Subsequent instructions are A32
start
 ADR r0, into_t32 + 1 ; Processor starts in A32 state
 BX r0 ; Inline switch to T32 state
 THUMB ; Subsequent instructions are T32
into_t32
 MOVS r0, #10 ; New-style T32 instructions

Related reference
7.11 CODE16 directive on page 7-213
7.65 THUMB directive on page 7-275
Related information
Arm Architecture Reference Manual

7 Directives Reference
7.7 ARM or CODE32 directive

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-209

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

7.8 ASSERT
The ASSERT directive generates an error message during assembly if a given assertion is false.

Syntax

ASSERT logical-expression

where:

logical-expression

is an assertion that can evaluate to either {TRUE} or {FALSE}.

Usage

Use ASSERT to ensure that any necessary condition is met during assembly.

If the assertion is false an error message is generated and assembly fails.

Example
 ASSERT label1 <= label2 ; Tests if the address
 ; represented by label1
 ; is <= the address
 ; represented by label2.

Related reference
7.47 INFO on page 7-252

7 Directives Reference
7.8 ASSERT

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-210

Non-Confidential

7.9 ATTR
The ATTR set directives set values for the ABI build attributes. The ATTR scope directives specify the
scope for which the set value applies to.

Syntax

ATTR FILESCOPE

ATTR SCOPE name

ATTR settype tagid, value

where:

name

is a section name or symbol name.

settype
can be any of:
• SETVALUE.
• SETSTRING.
• SETCOMPATWITHVALUE.
• SETCOMPATWITHSTRING.

tagid

is an attribute tag name (or its numerical value) defined in the ABI for the Arm Architecture.

value
depends on settype:
• is a 32-bit integer value when settype is SETVALUE or SETCOMPATWITHVALUE.
• is a nul-terminated string when settype is SETSTRING or SETCOMPATWITHSTRING.

Usage

The ATTR set directives following the ATTR FILESCOPE directive apply to the entire object file. The ATTR
set directives following the ATTR SCOPE name directive apply only to the named section or symbol.

For tags that expect an integer, you must use SETVALUE or SETCOMPATWITHVALUE. For tags that expect a
string, you must use SETSTRING or SETCOMPATWITHSTRING.

Use SETCOMPATWITHVALUE and SETCOMPATWITHSTRING to set tag values which the object file is also
compatible with.

Examples
 ATTR SETSTRING Tag_CPU_raw_name, "Cortex-A8"
 ATTR SETVALUE Tag_VFP_arch, 3 ; VFPv3 instructions permitted.
 ATTR SETVALUE 10, 3 ; 10 is the numerical value of
 ; Tag_VFP_arch.

Related information
Addenda to, and Errata in, the ABI for the Arm Architecture

7 Directives Reference
7.9 ATTR

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-211

Non-Confidential

https://developer.arm.com/docs/ihi0045/latest

7.10 CN
The CN directive defines a name for a coprocessor register.

Syntax

name CN expr

where:

name

is the name to be defined for the coprocessor register. name cannot be the same as any of the
predefined names.

expr

evaluates to a coprocessor register number from 0 to 15.

Usage
Use CN to allocate convenient names to registers, to help you remember what you use each register for.

 Note

Avoid conflicting uses of the same register under different names.

The names c0 to c15 are predefined.

Example
power CN 6 ; defines power as a symbol for
 ; coprocessor register 6

7 Directives Reference
7.10 CN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-212

Non-Confidential

7.11 CODE16 directive
The CODE16 directive instructs the assembler to interpret subsequent instructions as T32 instructions,
using the UAL syntax.

 Note

Not supported for AArch64 state.

Syntax

CODE16

Usage

In files that contain code using different instruction sets,CODE16 must precede T32 code written in pre-
UAL syntax.

If necessary, this directive also inserts one byte of padding to align to the next halfword boundary.

This directive does not assemble to any instructions. It also does not change the state. It only instructs
armasm to assemble T32 instructions as appropriate, and inserts padding if necessary.

Related reference
7.7 ARM or CODE32 directive on page 7-209
7.65 THUMB directive on page 7-275

7 Directives Reference
7.11 CODE16 directive

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-213

Non-Confidential

7.12 COMMON
The COMMON directive allocates a block of memory of the defined size, at the specified symbol.

Syntax

COMMON symbol{,size{,alignment}} {[attr]}

where:

symbol

is the symbol name. The symbol name is case-sensitive.

size

is the number of bytes to reserve.

alignment

is the alignment.

attr

can be any one of:

DYNAMIC

sets the ELF symbol visibility to STV_DEFAULT.

PROTECTED

sets the ELF symbol visibility to STV_PROTECTED.

HIDDEN

sets the ELF symbol visibility to STV_HIDDEN.

INTERNAL

sets the ELF symbol visibility to STV_INTERNAL.

Usage

You specify how the memory is aligned. If the alignment is omitted, the default alignment is four. If the
size is omitted, the default size is zero.

You can access this memory as you would any other memory, but no space is allocated by the assembler
in object files. The linker allocates the required space as zero-initialized memory during the link stage.

You cannot define, IMPORT or EXTERN a symbol that has already been created by the COMMON directive. In
the same way, if a symbol has already been defined or used with the IMPORT or EXTERN directive, you
cannot use the same symbol for the COMMON directive.

Correct example
 LDR r0, =xyz
 COMMON xyz,255,4 ; defines 255 bytes of ZI store, word-aligned

Incorrect example
 COMMON foo,4,4
 COMMON bar,4,4
foo DCD 0 ; cannot define label with same name as COMMON
 IMPORT bar ; cannot import label with same name as COMMON

7 Directives Reference
7.12 COMMON

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-214

Non-Confidential

7.13 CP
The CP directive defines a name for a specified coprocessor.

Syntax

name CP expr

where:

name

is the name to be assigned to the coprocessor. name cannot be the same as any of the predefined
names.

expr

evaluates to a coprocessor number within the range 0 to 15.

Usage
Use CP to allocate convenient names to coprocessors, to help you to remember what you use each one
for.

 Note

Avoid conflicting uses of the same coprocessor under different names.

The names p0 to p15 are predefined for coprocessors 0 to 15.

Example
dmu CP 6 ; defines dmu as a symbol for
 ; coprocessor 6

7 Directives Reference
7.13 CP

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-215

Non-Confidential

7.14 DATA
The DATA directive is no longer required. It is ignored by the assembler.

7 Directives Reference
7.14 DATA

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-216

Non-Confidential

7.15 DCB
The DCB directive allocates one or more bytes of memory, and defines the initial runtime contents of the
memory.

Syntax

{label} DCB expr{,expr}...

where:

expr
is either:
• A numeric expression that evaluates to an integer in the range -128 to 255.
• A quoted string. The characters of the string are loaded into consecutive bytes of store.

Usage

If DCB is followed by an instruction, use an ALIGN directive to ensure that the instruction is aligned.

= is a synonym for DCB.

Example

Unlike C strings, Arm assembler strings are not nul-terminated. You can construct a nul-terminated C
string using DCB as follows:

C_string DCB "C_string",0

Related concepts
6.14 Numeric expressions on page 6-181
Related reference
7.16 DCD and DCDU on page 7-218
7.21 DCQ and DCQU on page 7-223
7.22 DCW and DCWU on page 7-224
7.64 SPACE or FILL on page 7-274
7.5 ALIGN on page 7-203

7 Directives Reference
7.15 DCB

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-217

Non-Confidential

7.16 DCD and DCDU
The DCD directive allocates one or more words of memory, aligned on four-byte boundaries, and defines
the initial runtime contents of the memory. DCDU is the same, except that the memory alignment is
arbitrary.

Syntax

{label} DCD{U} expr{,expr}

where:

expr
is either:
• A numeric expression.
• A PC-relative expression.

Usage

DCD inserts up to three bytes of padding before the first defined word, if necessary, to achieve four-byte
alignment.

Use DCDU if you do not require alignment.

& is a synonym for DCD.

Examples
data1 DCD 1,5,20 ; Defines 3 words containing
 ; decimal values 1, 5, and 20
data2 DCD mem06 + 4 ; Defines 1 word containing 4 +
 ; the address of the label mem06
 AREA MyData, DATA, READWRITE
 DCB 255 ; Now misaligned ...
data3 DCDU 1,5,20 ; Defines 3 words containing
 ; 1, 5 and 20, not word aligned

Related concepts
6.14 Numeric expressions on page 6-181
Related reference
7.15 DCB on page 7-217
7.21 DCQ and DCQU on page 7-223
7.22 DCW and DCWU on page 7-224
7.64 SPACE or FILL on page 7-274
7.20 DCI on page 7-222

7 Directives Reference
7.16 DCD and DCDU

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-218

Non-Confidential

7.17 DCDO
The DCDO directive allocates one or more words of memory, aligned on four-byte boundaries, and defines
the initial runtime contents of the memory as an offset from the static base register, sb (R9).

Syntax

{label} DCDO expr{,expr}...

where:

expr

is a register-relative expression or label. The base register must be sb.

Usage

Use DCDO to allocate space in memory for static base register relative relocatable addresses.

Example
 IMPORT externsym
 DCDO externsym ; 32-bit word relocated by offset of
 ; externsym from base of SB section.

7 Directives Reference
7.17 DCDO

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-219

Non-Confidential

7.18 DCFD and DCFDU
The DCFD directive allocates memory for word-aligned double-precision floating-point numbers, and
defines the initial runtime contents of the memory. DCFDU is the same, except that the memory alignment
is arbitrary.

Syntax

{label} DCFD{U} fpliteral{,fpliteral}...

where:

fpliteral

is a double-precision floating-point literal.

Usage

Double-precision numbers occupy two words and must be word aligned to be used in arithmetic
operations. The assembler inserts up to three bytes of padding before the first defined number, if
necessary, to achieve four-byte alignment.

Use DCFDU if you do not require alignment.

The word order used when converting fpliteral to internal form is controlled by the floating-point
architecture selected. You cannot use DCFD or DCFDU if you select the --fpu none option.

The range for double-precision numbers is:
• Maximum 1.79769313486231571e+308.
• Minimum 2.22507385850720138e-308.

Examples
 DCFD 1E308,-4E-100
 DCFDU 10000,-.1,3.1E26

Related reference
7.19 DCFS and DCFSU on page 7-221
6.16 Syntax of floating-point literals on page 6-183

7 Directives Reference
7.18 DCFD and DCFDU

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-220

Non-Confidential

7.19 DCFS and DCFSU
The DCFS directive allocates memory for word-aligned single-precision floating-point numbers, and
defines the initial runtime contents of the memory. DCFSU is the same, except that the memory alignment
is arbitrary.

Syntax

{label} DCFS{U} fpliteral{,fpliteral}...

where:

fpliteral

is a single-precision floating-point literal.

Usage

Single-precision numbers occupy one word and must be word aligned to be used in arithmetic
operations. DCFS inserts up to three bytes of padding before the first defined number, if necessary to
achieve four-byte alignment.

Use DCFSU if you do not require alignment.

The range for single-precision values is:
• Maximum 3.40282347e+38.
• Minimum 1.17549435e-38.

Examples
 DCFS 1E3,-4E-9
 DCFSU 1.0,-.1,3.1E6

Related reference
7.18 DCFD and DCFDU on page 7-220
6.16 Syntax of floating-point literals on page 6-183

7 Directives Reference
7.19 DCFS and DCFSU

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-221

Non-Confidential

7.20 DCI
The DCI directive allocates memory that is aligned and defines the initial runtime contents of the
memory.

In A32 code, it allocates one or more words of memory, aligned on four-byte boundaries.

In T32 code, it allocates one or more halfwords of memory, aligned on two-byte boundaries.

Syntax

{label} DCI{.W} expr{,expr}

where:

expr
is a numeric expression.

.W
if present, indicates that four bytes must be inserted in T32 code.

Usage

The DCI directive is very like the DCD or DCW directives, but the location is marked as code instead of
data. Use DCI when writing macros for new instructions not supported by the version of the assembler
you are using.

In A32 code, DCI inserts up to three bytes of padding before the first defined word, if necessary, to
achieve four-byte alignment. In T32 code, DCI inserts an initial byte of padding, if necessary, to achieve
two-byte alignment.

You can use DCI to insert a bit pattern into the instruction stream. For example, use:

DCI 0x46c0

to insert the T32 operation MOV r8,r8.

Example macro
 MACRO ; this macro translates newinstr Rd,Rm
 ; to the appropriate machine code
 newinst $Rd,$Rm
 DCI 0xe16f0f10 :OR: ($Rd:SHL:12) :OR: $Rm
 MEND

32-bit T32 example
 DCI.W 0xf3af8000 ; inserts 32-bit NOP, 2-byte aligned.

Related concepts
6.14 Numeric expressions on page 6-181
Related reference
7.16 DCD and DCDU on page 7-218
7.22 DCW and DCWU on page 7-224

7 Directives Reference
7.20 DCI

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-222

Non-Confidential

7.21 DCQ and DCQU
The DCQ directive allocates one or more eight-byte blocks of memory, aligned on four-byte boundaries,
and defines the initial runtime contents of the memory. DCQU is the same, except that the memory
alignment is arbitrary.

Syntax

{label} DCQ{U} {-}literal{,{-}literal…}

{label} DCQ{U} expr{,expr…}

where:
literal

is a 64-bit numeric literal.

The range of numbers permitted is 0 to 264-1.

In addition to the characters normally permitted in a numeric literal, you can prefix literal
with a minus sign. In this case, the range of numbers permitted is -263 to -1.

The result of specifying -n is the same as the result of specifying 264–n.

expr
is either:
• A numeric expression.
• A PC-relative expression.

 Note

armasm accepts expressions in DCQ and DCQU directives only when you are assembling for AArch64
targets.

Usage

DCQ inserts up to three bytes of padding before the first defined eight-byte block, if necessary, to achieve
four-byte alignment.

Use DCQU if you do not require alignment.

Correct example
 AREA MiscData, DATA, READWRITE
data DCQ -225,2_101 ; 2_101 means binary 101.

Incorrect example
number EQU 2 ; This code assembles for AArch64 targets only.
 DCQU number ; For AArch32 targets, DCQ and DCQU only accept
 ; literals, not expressions.

Related concepts
6.14 Numeric expressions on page 6-181
Related reference
7.15 DCB on page 7-217
7.16 DCD and DCDU on page 7-218
7.22 DCW and DCWU on page 7-224
7.64 SPACE or FILL on page 7-274

7 Directives Reference
7.21 DCQ and DCQU

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-223

Non-Confidential

7.22 DCW and DCWU
The DCW directive allocates one or more halfwords of memory, aligned on two-byte boundaries, and
defines the initial runtime contents of the memory. DCWU is the same, except that the memory alignment is
arbitrary.

Syntax

{label} DCW{U} expr{,expr}...

where:

expr

is a numeric expression that evaluates to an integer in the range -32768 to 65535.

Usage

DCW inserts a byte of padding before the first defined halfword if necessary to achieve two-byte
alignment.

Use DCWU if you do not require alignment.

Examples
data DCW -225,2*number ; number must already be defined
 DCWU number+4

Related concepts
6.14 Numeric expressions on page 6-181
Related reference
7.15 DCB on page 7-217
7.16 DCD and DCDU on page 7-218
7.21 DCQ and DCQU on page 7-223
7.64 SPACE or FILL on page 7-274

7 Directives Reference
7.22 DCW and DCWU

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-224

Non-Confidential

7.23 END
The END directive informs the assembler that it has reached the end of a source file.

Syntax

END

Usage

Every assembly language source file must end with END on a line by itself.

If the source file has been included in a parent file by a GET directive, the assembler returns to the parent
file and continues assembly at the first line following the GET directive.

If END is reached in the top-level source file during the first pass without any errors, the second pass
begins.

If END is reached in the top-level source file during the second pass, the assembler finishes the assembly
and writes the appropriate output.

Related reference
7.43 GET or INCLUDE on page 7-246

7 Directives Reference
7.23 END

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-225

Non-Confidential

7.24 ENDFUNC or ENDP
The ENDFUNC directive marks the end of an AAPCS-conforming function. ENDP is a synonym for
ENDFUNC.

Related reference
7.41 FUNCTION or PROC on page 7-244

7 Directives Reference
7.24 ENDFUNC or ENDP

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-226

Non-Confidential

7.25 ENTRY
The ENTRY directive declares an entry point to a program.

Syntax

ENTRY

Usage
A program must have an entry point. You can specify an entry point in the following ways:
• Using the ENTRY directive in assembly language source code.
• Providing a main() function in C or C++ source code.
• Using the armlink --entry command-line option.

You can declare more than one entry point in a program, although a source file cannot contain more than
one ENTRY directive. For example, a program could contain multiple assembly language source files,
each with an ENTRY directive. Or it could contain a C or C++ file with a main() function and one or more
assembly source files with an ENTRY directive.

If the program contains multiple entry points, then you must select one of them. You do this by exporting
the symbol for the ENTRY directive that you want to use as the entry point, then using the
armlink --entry option to select the exported symbol.

Example
 AREA ARMex, CODE, READONLY
 ENTRY ; Entry point for the application.
 EXPORT ep1 ; Export the symbol so the linker can find it
ep1 ; in the object file.
 ; code
 END

When you invoke armlink, if other entry points are declared in the program, then you must specify
--entry=ep1, to select ep1.

Related information
Image entry points
--entry=location

7 Directives Reference
7.25 ENTRY

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-227

Non-Confidential

https://developer.arm.com/docs/100070/0612/image-structure-and-generation/the-structure-of-an-arm-elf-image/image-entry-points
https://developer.arm.com/docs/100070/0612/linker-command-line-options/-entrylocation

7.26 EQU
The EQU directive gives a symbolic name to a numeric constant, a register-relative value or a PC-relative
value.

Syntax

name EQU expr{, type}

where:

name

is the symbolic name to assign to the value.

expr

is a register-relative address, a PC-relative address, an absolute address, or a 32-bit integer
constant.

type
is optional. type can be any one of:
• ARM.
• THUMB.
• CODE32.
• CODE16.
• DATA.

You can use type only if expr is an absolute address. If name is exported, the name entry in the
symbol table in the object file is marked as ARM, THUMB, CODE32, CODE16, or DATA, according to
type. This can be used by the linker.

Usage

Use EQU to define constants. This is similar to the use of #define to define a constant in C.

* is a synonym for EQU.

Examples
abc EQU 2 ; Assigns the value 2 to the symbol abc.
xyz EQU label+8 ; Assigns the address (label+8) to the
 ; symbol xyz.
fiq EQU 0x1C, CODE32 ; Assigns the absolute address 0x1C to
 ; the symbol fiq, and marks it as code.

Related reference
7.48 KEEP on page 7-253
7.27 EXPORT or GLOBAL on page 7-229

7 Directives Reference
7.26 EQU

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-228

Non-Confidential

7.27 EXPORT or GLOBAL
The EXPORT directive declares a symbol that can be used by the linker to resolve symbol references in
separate object and library files. GLOBAL is a synonym for EXPORT.

Syntax

EXPORT {[WEAK]}

EXPORT symbol {[SIZE=n]}

EXPORT symbol {[type{,set}]}

EXPORT symbol [attr{,type{,set}}{,SIZE=n}]

EXPORT symbol [WEAK {,attr}{,type{,set}}{,SIZE=n}]

where:

symbol

is the symbol name to export. The symbol name is case-sensitive. If symbol is omitted, all
symbols are exported.

WEAK

symbol is only imported into other sources if no other source exports an alternative symbol. If
[WEAK] is used without symbol, all exported symbols are weak.

attr

can be any one of:

DYNAMIC

sets the ELF symbol visibility to STV_DEFAULT.

PROTECTED

sets the ELF symbol visibility to STV_PROTECTED.

HIDDEN

sets the ELF symbol visibility to STV_HIDDEN.

INTERNAL

sets the ELF symbol visibility to STV_INTERNAL.

type

specifies the symbol type:

DATA

symbol is treated as data when the source is assembled and linked.

CODE

symbol is treated as code when the source is assembled and linked.

ELFTYPE=n

symbol is treated as a particular ELF symbol, as specified by the value of n, where n
can be any number from 0 to 15.

If unspecified, the assembler determines the most appropriate type. Usually the assembler
determines the correct type so you are not required to specify it.

set

7 Directives Reference
7.27 EXPORT or GLOBAL

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-229

Non-Confidential

specifies the instruction set:

ARM

symbol is treated as an A32 symbol.

THUMB

symbol is treated as a T32 symbol.

If unspecified, the assembler determines the most appropriate set.

n
specifies the size and can be any 32-bit value. If the SIZE attribute is not specified, the
assembler calculates the size:
• For PROC and FUNCTION symbols, the size is set to the size of the code until its ENDP or

ENDFUNC.
• For other symbols, the size is the size of instruction or data on the same source line. If there

is no instruction or data, the size is zero.

Usage

Use EXPORT to give code in other files access to symbols in the current file.

Use the [WEAK] attribute to inform the linker that a different instance of symbol takes precedence over
this one, if a different one is available from another source. You can use the [WEAK] attribute with any of
the symbol visibility attributes.

Examples
 AREA Example,CODE,READONLY
 EXPORT DoAdd ; Export the function name
 ; to be used by external modules.
DoAdd ADD r0,r0,r1

Symbol visibility can be overridden for duplicate exports. In the following example, the last EXPORT
takes precedence for both binding and visibility:

 EXPORT SymA[WEAK] ; Export as weak-hidden
 EXPORT SymA[DYNAMIC] ; SymA becomes non-weak dynamic.

The following examples show the use of the SIZE attribute:

 EXPORT symA [SIZE=4]
 EXPORT symA [DATA, SIZE=4]

Related reference
7.45 IMPORT and EXTERN on page 7-249
Related information
ELF for the Arm Architecture

7 Directives Reference
7.27 EXPORT or GLOBAL

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-230

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

7.28 EXPORTAS
The EXPORTAS directive enables you to export a symbol from the object file, corresponding to a different
symbol in the source file.

Syntax

EXPORTAS symbol1, symbol2

where:

symbol1

is the symbol name in the source file. symbol1 must have been defined already. It can be any
symbol, including an area name, a label, or a constant.

symbol2

is the symbol name you want to appear in the object file.

The symbol names are case-sensitive.

Usage

Use EXPORTAS to change a symbol in the object file without having to change every instance in the
source file.

Examples
 AREA data1, DATA ; Starts a new area data1.
 AREA data2, DATA ; Starts a new area data2.
 EXPORTAS data2, data1 ; The section symbol referred to as data2
 ; appears in the object file string table as data1.
one EQU 2
 EXPORTAS one, two ; The symbol 'two' appears in the object
 EXPORT one ; file's symbol table with the value 2.

Related reference
7.27 EXPORT or GLOBAL on page 7-229

7 Directives Reference
7.28 EXPORTAS

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-231

Non-Confidential

7.29 FIELD
The FIELD directive describes space within a storage map that has been defined using the MAP directive.

Syntax

{label} FIELD expr

where:

label

is an optional label. If specified, label is assigned the value of the storage location counter,
{VAR}. The storage location counter is then incremented by the value of expr.

expr

is an expression that evaluates to the number of bytes to increment the storage counter.

Usage

If a storage map is set by a MAP directive that specifies a base-register, the base register is implicit in
all labels defined by following FIELD directives, until the next MAP directive. These register-relative
labels can be quoted in load and store instructions.

is a synonym for FIELD.

Examples

The following example shows how register-relative labels are defined using the MAP and FIELD
directives:

 MAP 0,r9 ; set {VAR} to the address stored in R9
 FIELD 4 ; increment {VAR} by 4 bytes
Lab FIELD 4 ; set Lab to the address [R9 + 4]
 ; and then increment {VAR} by 4 bytes
 LDR r0,Lab ; equivalent to LDR r0,[r9,#4]

When using the MAP and FIELD directives, you must ensure that the values are consistent in both passes.
The following example shows a use of MAP and FIELD that causes inconsistent values for the symbol x. In
the first pass sym is not defined, so x is at 0x04+R9. In the second pass, sym is defined, so x is at
0x00+R0. This example results in an assembly error.

 MAP 0, r0
 if :LNOT: :DEF: sym
 MAP 0, r9
 FIELD 4 ; x is at 0x04+R9 in first pass
 ENDIF
x FIELD 4 ; x is at 0x00+R0 in second pass
sym LDR r0, x ; inconsistent values for x results in assembly error

Related concepts
1.3 How the assembler works on page 1-19
Related reference
7.52 MAP on page 7-259
1.4 Directives that can be omitted in pass 2 of the assembler on page 1-21

7 Directives Reference
7.29 FIELD

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-232

Non-Confidential

7.30 FRAME ADDRESS
The FRAME ADDRESS directive describes how to calculate the canonical frame address for the following
instructions.

Syntax

FRAME ADDRESS reg{,offset}

where:

reg

is the register on which the canonical frame address is to be based. This is SP unless the
function uses a separate frame pointer.

offset

is the offset of the canonical frame address from reg. If offset is zero, you can omit it.

Usage

Use FRAME ADDRESS if your code alters which register the canonical frame address is based on, or if it
changes the offset of the canonical frame address from the register. You must use FRAME ADDRESS
immediately after the instruction that changes the calculation of the canonical frame address.

You can only use FRAME ADDRESS in functions with FUNCTION and ENDFUNC or PROC and ENDP directives.
 Note

If your code uses a single instruction to save registers and alter the stack pointer, you can use FRAME
PUSH instead of using both FRAME ADDRESS and FRAME SAVE.

If your code uses a single instruction to load registers and alter the stack pointer, you can use FRAME POP
instead of using both FRAME ADDRESS and FRAME RESTORE.

Example
_fn FUNCTION ; CFA (Canonical Frame Address) is value
 ; of SP on entry to function
 PUSH {r4,fp,ip,lr,pc}
 FRAME PUSH {r4,fp,ip,lr,pc}
 SUB sp,sp,#4 ; CFA offset now changed
 FRAME ADDRESS sp,24 ; - so we correct it
 ADD fp,sp,#20
 FRAME ADDRESS fp,4 ; New base register
 ; code using fp to base call-frame on, instead of SP

Related reference
7.31 FRAME POP on page 7-234
7.32 FRAME PUSH on page 7-235

7 Directives Reference
7.30 FRAME ADDRESS

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-233

Non-Confidential

7.31 FRAME POP
The FRAME POP directive informs the assembler when the callee reloads registers.

Syntax

There are the following alternative syntaxes for FRAME POP:

FRAME POP {reglist}

FRAME POP {reglist},n

FRAME POP n

where:

reglist
is a list of registers restored to the values they had on entry to the function. There must be at
least one register in the list.

n
is the number of bytes that the stack pointer moves.

Usage

FRAME POP is equivalent to a FRAME ADDRESS and a FRAME RESTORE directive. You can use it when a
single instruction loads registers and alters the stack pointer.

You must use FRAME POP immediately after the instruction it refers to.

You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives. You do
not have to do this after the last instruction in a function.

If n is not specified or is zero, the assembler calculates the new offset for the canonical frame address
from {reglist}. It assumes that:
• Each AArch32 register popped occupies four bytes on the stack.
• Each VFP single-precision register popped occupies four bytes on the stack, plus an extra four-byte

word for each list.
• Each VFP double-precision register popped occupies eight bytes on the stack, plus an extra four-byte

word for each list.

Related reference
7.30 FRAME ADDRESS on page 7-233
7.34 FRAME RESTORE on page 7-237

7 Directives Reference
7.31 FRAME POP

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-234

Non-Confidential

7.32 FRAME PUSH
The FRAME PUSH directive informs the assembler when the callee saves registers, normally at function
entry.

Syntax

There are the following alternative syntaxes for FRAME PUSH:

FRAME PUSH {reglist}

FRAME PUSH {reglist},n

FRAME PUSH n

where:

reglist
is a list of registers stored consecutively below the canonical frame address. There must be at
least one register in the list.

n
is the number of bytes that the stack pointer moves.

Usage

FRAME PUSH is equivalent to a FRAME ADDRESS and a FRAME SAVE directive. You can use it when a single
instruction saves registers and alters the stack pointer.

You must use FRAME PUSH immediately after the instruction it refers to.

You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

If n is not specified or is zero, the assembler calculates the new offset for the canonical frame address
from {reglist}. It assumes that:
• Each AArch32 register pushed occupies four bytes on the stack.
• Each VFP single-precision register pushed occupies four bytes on the stack, plus an extra four-byte

word for each list.
• Each VFP double-precision register popped occupies eight bytes on the stack, plus an extra four-byte

word for each list.

Example
p PROC ; Canonical frame address is SP + 0
 EXPORT p
 PUSH {r4-r6,lr}
 ; SP has moved relative to the canonical frame address,
 ; and registers R4, R5, R6 and LR are now on the stack
 FRAME PUSH {r4-r6,lr}
 ; Equivalent to:
 ; FRAME ADDRESS sp,16 ; 16 bytes in {R4-R6,LR}
 ; FRAME SAVE {r4-r6,lr},-16

Related reference
7.30 FRAME ADDRESS on page 7-233
7.36 FRAME SAVE on page 7-239

7 Directives Reference
7.32 FRAME PUSH

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-235

Non-Confidential

7.33 FRAME REGISTER
The FRAME REGISTER directive maintains a record of the locations of function arguments held in
registers.

Syntax

FRAME REGISTER reg1, reg2

where:

reg1

is the register that held the argument on entry to the function.

reg2

is the register in which the value is preserved.

Usage

Use the FRAME REGISTER directive when you use a register to preserve an argument that was held in a
different register on entry to a function.

You can only use it within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

7 Directives Reference
7.33 FRAME REGISTER

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-236

Non-Confidential

7.34 FRAME RESTORE
The FRAME RESTORE directive informs the assembler that the contents of specified registers have been
restored to the values they had on entry to the function.

Syntax

FRAME RESTORE {reglist}

where:

reglist

is a list of registers whose contents have been restored. There must be at least one register in the
list.

Usage

You can only use FRAME RESTORE within functions with FUNCTION and ENDFUNC or PROC and ENDP
directives. Use it immediately after the callee reloads registers from the stack. You do not have to do this
after the last instruction in a function.

reglist can contain integer registers or floating-point registers, but not both.
 Note

If your code uses a single instruction to load registers and alter the stack pointer, you can use FRAME POP
instead of using both FRAME RESTORE and FRAME ADDRESS.

Related reference
7.31 FRAME POP on page 7-234

7 Directives Reference
7.34 FRAME RESTORE

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-237

Non-Confidential

7.35 FRAME RETURN ADDRESS
The FRAME RETURN ADDRESS directive provides for functions that use a register other than LR for their
return address.

Syntax

FRAME RETURN ADDRESS reg

where:

reg

is the register used for the return address.

Usage

Use the FRAME RETURN ADDRESS directive in any function that does not use LR for its return address.
Otherwise, a debugger cannot backtrace through the function.

You can only use FRAME RETURN ADDRESS within functions with FUNCTION and ENDFUNC or PROC and
ENDP directives. Use it immediately after the FUNCTION or PROC directive that introduces the function.

 Note

Any function that uses a register other than LR for its return address is not AAPCS compliant. Such a
function must not be exported.

7 Directives Reference
7.35 FRAME RETURN ADDRESS

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-238

Non-Confidential

7.36 FRAME SAVE
The FRAME SAVE directive describes the location of saved register contents relative to the canonical
frame address.

Syntax

FRAME SAVE {reglist}, offset

where:

reglist

is a list of registers stored consecutively starting at offset from the canonical frame address.
There must be at least one register in the list.

Usage

You can only use FRAME SAVE within functions with FUNCTION and ENDFUNC or PROC and ENDP directives.

Use it immediately after the callee stores registers onto the stack.

reglist can include registers which are not required for backtracing. The assembler determines which
registers it requires to record in the DWARF call frame information.

 Note

If your code uses a single instruction to save registers and alter the stack pointer, you can use FRAME
PUSH instead of using both FRAME SAVE and FRAME ADDRESS.

Related reference
7.32 FRAME PUSH on page 7-235

7 Directives Reference
7.36 FRAME SAVE

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-239

Non-Confidential

7.37 FRAME STATE REMEMBER
The FRAME STATE REMEMBER directive saves the current information on how to calculate the canonical
frame address and locations of saved register values.

Syntax

FRAME STATE REMEMBER

Usage

During an inline exit sequence the information about calculation of canonical frame address and
locations of saved register values can change. After the exit sequence another branch can continue using
the same information as before. Use FRAME STATE REMEMBER to preserve this information, and FRAME
STATE RESTORE to restore it.

These directives can be nested. Each FRAME STATE RESTORE directive must have a corresponding FRAME
STATE REMEMBER directive.

You can only use FRAME STATE REMEMBER within functions with FUNCTION and ENDFUNC or PROC and
ENDP directives.

Example
 ; function code
 FRAME STATE REMEMBER
 ; save frame state before in-line exit sequence
 POP {r4-r6,pc}
 ; do not have to FRAME POP here, as control has
 ; transferred out of the function
 FRAME STATE RESTORE
 ; end of exit sequence, so restore state
exitB ; code for exitB
 POP {r4-r6,pc}
 ENDP

Related reference
7.38 FRAME STATE RESTORE on page 7-241
7.41 FUNCTION or PROC on page 7-244

7 Directives Reference
7.37 FRAME STATE REMEMBER

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-240

Non-Confidential

7.38 FRAME STATE RESTORE
The FRAME STATE RESTORE directive restores information about how to calculate the canonical frame
address and locations of saved register values.

Syntax

FRAME STATE RESTORE

Usage

You can only use FRAME STATE RESTORE within functions with FUNCTION and ENDFUNC or PROC and ENDP
directives.

Related reference
7.37 FRAME STATE REMEMBER on page 7-240
7.41 FUNCTION or PROC on page 7-244

7 Directives Reference
7.38 FRAME STATE RESTORE

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-241

Non-Confidential

7.39 FRAME UNWIND ON
The FRAME UNWIND ON directive instructs the assembler to produce unwind tables for this and subsequent
functions.

Syntax

FRAME UNWIND ON

Usage
You can use this directive outside functions. In this case, the assembler produces unwind tables for all
following functions until it reaches a FRAME UNWIND OFF directive.

 Note

A FRAME UNWIND directive is not sufficient to turn on exception table generation. Furthermore a FRAME
UNWIND directive, without other FRAME directives, is not sufficient information for the assembler to
generate the unwind information.

Related reference
5.26 --exceptions, --no_exceptions on page 5-124
5.27 --exceptions_unwind, --no_exceptions_unwind on page 5-125

7 Directives Reference
7.39 FRAME UNWIND ON

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-242

Non-Confidential

7.40 FRAME UNWIND OFF
The FRAME UNWIND OFF directive instructs the assembler to produce no unwind tables for this and
subsequent functions.

Syntax

FRAME UNWIND OFF

Usage

You can use this directive outside functions. In this case, the assembler produces no unwind tables for all
following functions until it reaches a FRAME UNWIND ON directive.

Related reference
5.26 --exceptions, --no_exceptions on page 5-124
5.27 --exceptions_unwind, --no_exceptions_unwind on page 5-125

7 Directives Reference
7.40 FRAME UNWIND OFF

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-243

Non-Confidential

7.41 FUNCTION or PROC
The FUNCTION directive marks the start of a function. PROC is a synonym for FUNCTION.

Syntax

label FUNCTION [{reglist1} [, {reglist2}]]

where:

reglist1
is an optional list of callee-saved AArch32 registers. If reglist1 is not present, and your
debugger checks register usage, it assumes that the AAPCS is in use. If you use empty brackets,
this informs the debugger that all AArch32 registers are caller-saved.

reglist2
is an optional list of callee-saved VFP registers. If you use empty brackets, this informs the
debugger that all VFP registers are caller-saved.

Usage

Use FUNCTION to mark the start of functions. The assembler uses FUNCTION to identify the start of a
function when producing DWARF call frame information for ELF.

FUNCTION sets the canonical frame address to be R13 (SP), and the frame state stack to be empty.

Each FUNCTION directive must have a matching ENDFUNC directive. You must not nest FUNCTION and
ENDFUNC pairs, and they must not contain PROC or ENDP directives.

You can use the optional reglist parameters to inform the debugger about an alternative procedure call
standard, if you are using your own. Not all debuggers support this feature. See your debugger
documentation for details.

If you specify an empty reglist, using {}, this indicates that all registers for the function are caller-
saved. Typically you do this when writing a reset vector where the values in all registers are unknown on
execution. This avoids problems in a debugger if it tries to construct a backtrace from the values in the
registers.

 Note

FUNCTION does not automatically cause alignment to a word boundary (or halfword boundary for T32).
Use ALIGN if necessary to ensure alignment, otherwise the call frame might not point to the start of the
function.

Examples
 ALIGN ; Ensures alignment.
dadd FUNCTION ; Without the ALIGN directive this might not be word-aligned.
 EXPORT dadd
 PUSH {r4-r6,lr} ; This line automatically word-aligned.
 FRAME PUSH {r4-r6,lr}
 ; subroutine body
 POP {r4-r6,pc}
 ENDFUNC
func6 PROC {r4-r8,r12},{D1-D3} ; Non-AAPCS-conforming function.
 ...
 ENDP
func7 FUNCTION {} ; Another non-AAPCS-conforming function.
 ...
 ENDFUNC

Related reference
7.38 FRAME STATE RESTORE on page 7-241
7.30 FRAME ADDRESS on page 7-233
7.5 ALIGN on page 7-203

7 Directives Reference
7.41 FUNCTION or PROC

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-244

Non-Confidential

7.42 GBLA, GBLL, and GBLS
The GBLA, GBLL, and GBLS directives declare and initialize global variables.

Syntax

gblx variable

where:

gblx

is one of GBLA, GBLL, or GBLS.

variable

is the name of the variable. variable must be unique among symbols within a source file.

Usage

The GBLA directive declares a global arithmetic variable, and initializes its value to 0.

The GBLL directive declares a global logical variable, and initializes its value to {FALSE}.

The GBLS directive declares a global string variable and initializes its value to a null string, "".

Using one of these directives for a variable that is already defined re-initializes the variable.

The scope of the variable is limited to the source file that contains it.

Set the value of the variable with a SETA, SETL, or SETS directive.

Global variables can also be set with the --predefine assembler command-line option.

Examples

The following example declares a variable objectsize, sets the value of objectsize to 0xFF, and then
uses it later in a SPACE directive:

 GBLA objectsize ; declare the variable name
objectsize SETA 0xFF ; set its value
 .
 . ; other code
 .
 SPACE objectsize ; quote the variable

The following example shows how to declare and set a variable when you invoke armasm. Use this when
you want to set the value of a variable at assembly time. --pd is a synonym for --predefine.

armasm --cpu=8-A.32 --predefine "objectsize SETA 0xFF" sourcefile -o objectfile

Related reference
7.49 LCLA, LCLL, and LCLS on page 7-254
7.63 SETA, SETL, and SETS on page 7-272
5.54 --predefine "directive" on page 5-152

7 Directives Reference
7.42 GBLA, GBLL, and GBLS

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-245

Non-Confidential

7.43 GET or INCLUDE
The GET directive includes a file within the file being assembled. The included file is assembled at the
location of the GET directive. INCLUDE is a synonym for GET.

Syntax

GET filename

where:

filename

is the name of the file to be included in the assembly. The assembler accepts pathnames in either
UNIX or MS-DOS format.

Usage

GET is useful for including macro definitions, EQUs, and storage maps in an assembly. When assembly of
the included file is complete, assembly continues at the line following the GET directive.

By default the assembler searches the current place for included files. The current place is the directory
where the calling file is located. Use the -i assembler command line option to add directories to the
search path. File names and directory names containing spaces must not be enclosed in double quotes ("
").

The included file can contain additional GET directives to include other files.

If the included file is in a different directory from the current place, this becomes the current place until
the end of the included file. The previous current place is then restored.

You cannot use GET to include object files.

Examples
 AREA Example, CODE, READONLY
 GET file1.s ; includes file1 if it exists in the current place
 GET c:\project\file2.s ; includes file2
 GET c:\Program files\file3.s ; space is permitted

Related reference
7.46 INCBIN on page 7-251
7.2 About assembly control directives on page 7-200

7 Directives Reference
7.43 GET or INCLUDE

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-246

Non-Confidential

7.44 IF, ELSE, ENDIF, and ELIF
The IF, ELSE, ENDIF, and ELIF directives allow you to conditionally assemble sequences of instructions
and directives.

Syntax

 IF logical-expression
 …;code
 {ELSE
 …;code}
 ENDIF

where:

logical-expression

is an expression that evaluates to either {TRUE} or {FALSE}.

Usage

Use IF with ENDIF, and optionally with ELSE, for sequences of instructions or directives that are only to
be assembled or acted on under a specified condition.

IF...ENDIF conditions can be nested.

The IF directive introduces a condition that controls whether to assemble a sequence of instructions and
directives. [is a synonym for IF.

The ELSE directive marks the beginning of a sequence of instructions or directives that you want to be
assembled if the preceding condition fails. | is a synonym for ELSE.

The ENDIF directive marks the end of a sequence of instructions or directives that you want to be
conditionally assembled.] is a synonym for ENDIF.

The ELIF directive creates a structure equivalent to ELSE IF, without the requirement for nesting or
repeating the condition.

Using ELIF

Without using ELIF, you can construct a nested set of conditional instructions like this:

 IF logical-expression
 instructions
 ELSE
 IF logical-expression2
 instructions
 ELSE
 IF logical-expression3
 instructions
 ENDIF
 ENDIF
 ENDIF

A nested structure like this can be nested up to 256 levels deep.

You can write the same structure more simply using ELIF:

 IF logical-expression
 instructions
 ELIF logical-expression2
 instructions
 ELIF logical-expression3
 instructions
 ENDIF

This structure only adds one to the current nesting depth, for the IF...ENDIF pair.

7 Directives Reference
7.44 IF, ELSE, ENDIF, and ELIF

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-247

Non-Confidential

Examples

The following example assembles the first set of instructions if NEWVERSION is defined, or the alternative
set otherwise:

Assembly conditional on a variable being defined

 IF :DEF:NEWVERSION
 ; first set of instructions or directives
 ELSE
 ; alternative set of instructions or directives
 ENDIF

Invoking armasm as follows defines NEWVERSION, so the first set of instructions and directives are
assembled:

armasm --cpu=8-A.32 --predefine "NEWVERSION SETL {TRUE}" test.s

Invoking armasm as follows leaves NEWVERSION undefined, so the second set of instructions and
directives are assembled:

armasm --cpu=8-A.32 test.s

The following example assembles the first set of instructions if NEWVERSION has the value {TRUE}, or the
alternative set otherwise:

Assembly conditional on a variable value

 IF NEWVERSION = {TRUE}
 ; first set of instructions or directives
 ELSE
 ; alternative set of instructions or directives
 ENDIF

Invoking armasm as follows causes the first set of instructions and directives to be assembled:

armasm --cpu=8-A.32 --predefine "NEWVERSION SETL {TRUE}" test.s

Invoking armasm as follows causes the second set of instructions and directives to be assembled:

armasm --cpu=8-A.32 --predefine "NEWVERSION SETL {FALSE}" test.s

Related reference
6.25 Relational operators on page 6-192
7.2 About assembly control directives on page 7-200

7 Directives Reference
7.44 IF, ELSE, ENDIF, and ELIF

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-248

Non-Confidential

7.45 IMPORT and EXTERN
The IMPORT and EXTERN directives provide the assembler with a name that is not defined in the current
assembly.

Syntax

directive symbol {[SIZE=n]}

directive symbol {[type]}

directive symbol [attr{,type}{,SIZE=n}]

directive symbol [WEAK {,attr}{,type}{,SIZE=n}]

where:

directive

can be either:

IMPORT

imports the symbol unconditionally.

EXTERN

imports the symbol only if it is referred to in the current assembly.

symbol

is a symbol name defined in a separately assembled source file, object file, or library. The
symbol name is case-sensitive.

WEAK

prevents the linker generating an error message if the symbol is not defined elsewhere. It also
prevents the linker searching libraries that are not already included.

attr

can be any one of:

DYNAMIC

sets the ELF symbol visibility to STV_DEFAULT.

PROTECTED

sets the ELF symbol visibility to STV_PROTECTED.

HIDDEN

sets the ELF symbol visibility to STV_HIDDEN.

INTERNAL

sets the ELF symbol visibility to STV_INTERNAL.

type

specifies the symbol type:

DATA

symbol is treated as data when the source is assembled and linked.

CODE

symbol is treated as code when the source is assembled and linked.

7 Directives Reference
7.45 IMPORT and EXTERN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-249

Non-Confidential

ELFTYPE=n

symbol is treated as a particular ELF symbol, as specified by the value of n, where n
can be any number from 0 to 15.

If unspecified, the linker determines the most appropriate type.

n
specifies the size and can be any 32-bit value. If the SIZE attribute is not specified, the
assembler calculates the size:
• For PROC and FUNCTION symbols, the size is set to the size of the code until its ENDP or

ENDFUNC.
• For other symbols, the size is the size of instruction or data on the same source line. If there

is no instruction or data, the size is zero.

Usage

The name is resolved at link time to a symbol defined in a separate object file. The symbol is treated as a
program address. If [WEAK] is not specified, the linker generates an error if no corresponding symbol is
found at link time.

If [WEAK] is specified and no corresponding symbol is found at link time:
• If the reference is the destination of a B or BL instruction, the value of the symbol is taken as the

address of the following instruction. This makes the B or BL instruction effectively a NOP.
• Otherwise, the value of the symbol is taken as zero.

Example

The example tests to see if the C++ library has been linked, and branches conditionally on the result.

 AREA Example, CODE, READONLY
 EXTERN __CPP_INITIALIZE[WEAK] ; If C++ library linked, gets the
 ; address of __CPP_INITIALIZE
 ; function.
 LDR r0,=__CPP_INITIALIZE ; If not linked, address is zeroed.
 CMP r0,#0 ; Test if zero.
 BEQ nocplusplus ; Branch on the result.

The following examples show the use of the SIZE attribute:

 EXTERN symA [SIZE=4]
 EXTERN symA [DATA, SIZE=4]

Related reference
7.27 EXPORT or GLOBAL on page 7-229
Related information
ELF for the Arm Architecture

7 Directives Reference
7.45 IMPORT and EXTERN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-250

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044-/index.html

7.46 INCBIN
The INCBIN directive includes a file within the file being assembled. The file is included as it is, without
being assembled.

Syntax

INCBIN filename

where:

filename

is the name of the file to be included in the assembly. The assembler accepts pathnames in either
UNIX or MS-DOS format.

Usage

You can use INCBIN to include data, such as executable files, literals, or any arbitrary data. The contents
of the file are added to the current ELF section, byte for byte, without being interpreted in any way.
Assembly continues at the line following the INCBIN directive.

By default, the assembler searches the current place for included files. The current place is the directory
where the calling file is located. Use the -i assembler command-line option to add directories to the
search path. File names and directory names containing spaces must not be enclosed in double quotes ("
").

Example
 AREA Example, CODE, READONLY
 INCBIN file1.dat ; Includes file1 if it exists in the current place
 INCBIN c:\project\file2.txt ; Includes file2.

7 Directives Reference
7.46 INCBIN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-251

Non-Confidential

7.47 INFO
The INFO directive supports diagnostic generation on either pass of the assembly.

Syntax

INFO numeric-expression, string-expression{, severity}

where:

numeric-expression

is a numeric expression that is evaluated during assembly. If the expression evaluates to zero:

• No action is taken during pass one.
• string-expression is printed as a warning during pass two if severity is 1.
• string-expression is printed as a message during pass two if severity is 0 or not

specified.

If the expression does not evaluate to zero:
• string-expression is printed as an error message and the assembly fails irrespective of

whether severity is specified or not (non-zero values for severity are reserved in this
case).

string-expression

is an expression that evaluates to a string.

severity

is an optional number that controls the severity of the message. Its value can be either 0 or 1. All
other values are reserved.

Usage

INFO provides a flexible means of creating custom error messages.

! is very similar to INFO, but has less detailed reporting.

Examples
 INFO 0, "Version 1.0"
 IF endofdata <= label1
 INFO 4, "Data overrun at label1"
 ENDIF

Related concepts
6.12 String expressions on page 6-179
6.14 Numeric expressions on page 6-181
Related reference
7.8 ASSERT on page 7-210

7 Directives Reference
7.47 INFO

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-252

Non-Confidential

7.48 KEEP
The KEEP directive instructs the assembler to retain named local labels in the symbol table in the object
file.

Syntax

KEEP {label}

where:

label

is the name of the local label to keep. If label is not specified, all named local labels are kept
except register-relative labels.

Usage
By default, the only labels that the assembler describes in its output object file are:
• Exported labels.
• Labels that are relocated against.

Use KEEP to preserve local labels. This can help when debugging. Kept labels appear in the Arm
debuggers and in linker map files.

KEEP cannot preserve register-relative labels or numeric local labels.

Example
label ADC r2,r3,r4
 KEEP label ; makes label available to debuggers
 ADD r2,r2,r5

Related concepts
6.10 Numeric local labels on page 6-177
Related reference
7.52 MAP on page 7-259

7 Directives Reference
7.48 KEEP

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-253

Non-Confidential

7.49 LCLA, LCLL, and LCLS
The LCLA, LCLL, and LCLS directives declare and initialize local variables.

Syntax

lclx variable

where:

lclx

is one of LCLA, LCLL, or LCLS.

variable

is the name of the variable. variable must be unique within the macro that contains it.

Usage

The LCLA directive declares a local arithmetic variable, and initializes its value to 0.

The LCLL directive declares a local logical variable, and initializes its value to {FALSE}.

The LCLS directive declares a local string variable, and initializes its value to a null string, "".

Using one of these directives for a variable that is already defined re-initializes the variable.

The scope of the variable is limited to a particular instantiation of the macro that contains it.

Set the value of the variable with a SETA, SETL, or SETS directive.

Example
 MACRO ; Declare a macro
$label message $a ; Macro prototype line
 LCLS err ; Declare local string
 ; variable err.
err SETS "error no: " ; Set value of err
$label ; code
 INFO 0, "err":CC::STR:$a ; Use string
 MEND

Related reference
7.42 GBLA, GBLL, and GBLS on page 7-245
7.63 SETA, SETL, and SETS on page 7-272
7.51 MACRO and MEND on page 7-256

7 Directives Reference
7.49 LCLA, LCLL, and LCLS

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-254

Non-Confidential

7.50 LTORG
The LTORG directive instructs the assembler to assemble the current literal pool immediately.

Syntax

LTORG

Usage

The assembler assembles the current literal pool at the end of every code section. The end of a code
section is determined by the AREA directive at the beginning of the following section, or the end of the
assembly.

These default literal pools can sometimes be out of range of some LDR, VLDR, and WLDR pseudo-
instructions. Use LTORG to ensure that a literal pool is assembled within range.

Large programs can require several literal pools. Place LTORG directives after unconditional branches or
subroutine return instructions so that the processor does not attempt to execute the constants as
instructions.

The assembler word-aligns data in literal pools.

Example
 AREA Example, CODE, READONLY
start BL func1
func1 ; function body
 ; code
 LDR r1,=0x55555555 ; => LDR R1, [pc, #offset to Literal Pool 1]
 ; code
 MOV pc,lr ; end function
 LTORG ; Literal Pool 1 contains literal &55555555.
data SPACE 4200 ; Clears 4200 bytes of memory starting at current location.
 END ; Default literal pool is empty.

7 Directives Reference
7.50 LTORG

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-255

Non-Confidential

7.51 MACRO and MEND
The MACRO directive marks the start of the definition of a macro. Macro expansion terminates at the MEND
directive.

Syntax

These two directives define a macro. The syntax is:

 MACRO
{$label} macroname{$cond} {$parameter{,$parameter}...}
 ; code
 MEND

where:

$label

is a parameter that is substituted with a symbol given when the macro is invoked. The symbol is
usually a label.

macroname

is the name of the macro. It must not begin with an instruction or directive name.

$cond

is a special parameter designed to contain a condition code. Values other than valid condition
codes are permitted.

$parameter

is a parameter that is substituted when the macro is invoked. A default value for a parameter can
be set using this format:

$parameter="default value"

Double quotes must be used if there are any spaces within, or at either end of, the default value.

Usage

If you start any WHILE...WEND loops or IF...ENDIF conditions within a macro, they must be closed
before the MEND directive is reached. You can use MEXIT to enable an early exit from a macro, for
example, from within a loop.

Within the macro body, parameters such as $label, $parameter or $cond can be used in the same way
as other variables. They are given new values each time the macro is invoked. Parameters must begin
with $ to distinguish them from ordinary symbols. Any number of parameters can be used.

$label is optional. It is useful if the macro defines internal labels. It is treated as a parameter to the
macro. It does not necessarily represent the first instruction in the macro expansion. The macro defines
the locations of any labels.

Use | as the argument to use the default value of a parameter. An empty string is used if the argument is
omitted.

In a macro that uses several internal labels, it is useful to define each internal label as the base label with
a different suffix.

Use a dot between a parameter and following text, or a following parameter, if a space is not required in
the expansion. Do not use a dot between preceding text and a parameter.

You can use the $cond parameter for condition codes. Use the unary operator :REVERSE_CC: to find the
inverse condition code, and :CC_ENCODING: to find the 4-bit encoding of the condition code.

Macros define the scope of local variables.

7 Directives Reference
7.51 MACRO and MEND

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-256

Non-Confidential

Macros can be nested.

Examples

A macro that uses internal labels to implement loops:

 ; macro definition
 MACRO ; start macro definition
$label xmac $p1,$p2
 ; code
$label.loop1 ; code
 ; code
 BGE $label.loop1
$label.loop2 ; code
 BL $p1
 BGT $label.loop2
 ; code
 ADR $p2
 ; code
 MEND ; end macro definition
 ; macro invocation
abc xmac subr1,de ; invoke macro
 ; code ; this is what is
abcloop1 ; code ; is produced when
 ; code ; the xmac macro is
 BGE abcloop1 ; expanded
abcloop2 ; code
 BL subr1
 BGT abcloop2
 ; code
 ADR de
 ; code

A macro that produces assembly-time diagnostics:

 MACRO ; Macro definition
 diagnose $param1="default" ; This macro produces
 INFO 0,"$param1" ; assembly-time diagnostics
 MEND ; (on second assembly pass)
 ; macro expansion
 diagnose ; Prints blank line at assembly-time
 diagnose "hello" ; Prints "hello" at assembly-time
 diagnose | ; Prints "default" at assembly-time

When variables are being passed in as arguments, use of | might leave some variables unsubstituted. To
work around this, define the | in a LCLS or GBLS variable and pass this variable as an argument instead of
|. For example:

 MACRO ; Macro definition
 m2 $a,$b=r1,$c ; The default value for $b is r1
 add $a,$b,$c ; The macro adds $b and $c and puts result in $a.
 MEND ; Macro end
 MACRO ; Macro definition
 m1 $a,$b ; This macro adds $b to r1 and puts result in $a.
 LCLS def ; Declare a local string variable for |
def SETS "|" ; Define |
 m2 $a,$def,$b ; Invoke macro m2 with $def instead of |
 ; to use the default value for the second argument.
 MEND ; Macro end

A macro that uses a condition code parameter:

 AREA codx, CODE, READONLY
; macro definition
 MACRO
 Return$cond
 [{ARCHITECTURE} <> "4"
 BX$cond lr
 |
 MOV$cond pc,lr
]
 MEND
; macro invocation
fun PROC
 CMP r0,#0
 MOVEQ r0,#1
 ReturnEQ
 MOV r0,#0
 Return

7 Directives Reference
7.51 MACRO and MEND

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-257

Non-Confidential

 ENDP
 END

Related concepts
3.22 Use of macros on page 3-63
6.4 Assembly time substitution of variables on page 6-171
Related reference
7.53 MEXIT on page 7-260
7.42 GBLA, GBLL, and GBLS on page 7-245
7.49 LCLA, LCLL, and LCLS on page 7-254

7 Directives Reference
7.51 MACRO and MEND

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-258

Non-Confidential

7.52 MAP
The MAP directive sets the origin of a storage map to a specified address.

Syntax

MAP expr{,base-register}

where:

expr
is a numeric or PC-relative expression:
• If base-register is not specified, expr evaluates to the address where the storage map

starts. The storage map location counter is set to this address.
• If expr is PC-relative, you must have defined the label before you use it in the map. The map

requires the definition of the label during the first pass of the assembler.

base-register

specifies a register. If base-register is specified, the address where the storage map starts is
the sum of expr, and the value in base-register at runtime.

Usage

Use the MAP directive in combination with the FIELD directive to describe a storage map.

Specify base-register to define register-relative labels. The base register becomes implicit in all labels
defined by following FIELD directives, until the next MAP directive. The register-relative labels can be
used in load and store instructions.

The MAP directive can be used any number of times to define multiple storage maps.

The storage-map location counter, {VAR}, is set to the same address as that specified by the MAP directive.
The {VAR} counter is set to zero before the first MAP directive is used.

^ is a synonym for MAP.

Examples
 MAP 0,r9
 MAP 0xff,r9

Related concepts
1.3 How the assembler works on page 1-19
Related reference
7.29 FIELD on page 7-232
1.4 Directives that can be omitted in pass 2 of the assembler on page 1-21

7 Directives Reference
7.52 MAP

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-259

Non-Confidential

7.53 MEXIT
The MEXIT directive exits a macro definition before the end.

Usage

Use MEXIT when you require an exit from within the body of a macro. Any unclosed WHILE...WEND
loops or IF...ENDIF conditions within the body of the macro are closed by the assembler before the
macro is exited.

Example
 MACRO
$abc example abc $param1,$param2
 ; code
 WHILE condition1
 ; code
 IF condition2
 ; code
 MEXIT
 ELSE
 ; code
 ENDIF
 WEND
 ; code
 MEND

Related reference
7.51 MACRO and MEND on page 7-256

7 Directives Reference
7.53 MEXIT

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-260

Non-Confidential

7.54 NOFP
The NOFP directive ensures that there are no floating-point instructions in an assembly language source
file.

Syntax

NOFP

Usage

Use NOFP to ensure that no floating-point instructions are used in situations where there is no support for
floating-point instructions either in software or in target hardware.

If a floating-point instruction occurs after the NOFP directive, an Unknown opcode error is generated and
the assembly fails.

If a NOFP directive occurs after a floating-point instruction, the assembler generates the error:

Too late to ban floating point instructions

and the assembly fails.

7 Directives Reference
7.54 NOFP

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-261

Non-Confidential

7.55 OPT
The OPT directive sets listing options from within the source code.

Syntax

OPT n

where:

n

is the OPT directive setting. The following table lists the valid settings:

Table 7-2 OPT directive settings

OPT n Effect

1 Turns on normal listing.

2 Turns off normal listing.

4 Page throw. Issues an immediate form feed and starts a new page.

8 Resets the line number counter to zero.

16 Turns on listing for SET, GBL and LCL directives.

32 Turns off listing for SET, GBL and LCL directives.

64 Turns on listing of macro expansions.

128 Turns off listing of macro expansions.

256 Turns on listing of macro invocations.

512 Turns off listing of macro invocations.

1024 Turns on the first pass listing.

2048 Turns off the first pass listing.

4096 Turns on listing of conditional directives.

8192 Turns off listing of conditional directives.

16384 Turns on listing of MEND directives.

32768 Turns off listing of MEND directives.

Usage

Specify the --list= assembler option to turn on listing.

By default the --list= option produces a normal listing that includes variable declarations, macro
expansions, call-conditioned directives, and MEND directives. The listing is produced on the second pass
only. Use the OPT directive to modify the default listing options from within your code.

You can use OPT to format code listings. For example, you can specify a new page before functions and
sections.

7 Directives Reference
7.55 OPT

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-262

Non-Confidential

Example
 AREA Example, CODE, READONLY
start ; code
 ; code
 BL func1
 ; code
 OPT 4 ; places a page break before func1
func1 ; code

Related reference
5.40 --list=file on page 5-138

7 Directives Reference
7.55 OPT

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-263

Non-Confidential

7.56 QN, DN, and SN
The QN, DN, and SN directives define names for Advanced SIMD and floating-point registers.

Syntax

name directive expr{.type}{[x]}

where:

directive

is QN, DN, or SN.

name

is the name to be assigned to the extension register. name cannot be the same as any of the
predefined names.

expr
Can be:
• An expression that evaluates to a number in the range:

— 0-15 if you are using QN in A32/T32 Advanced SIMD code.
— 0-31 otherwise.

• A predefined register name, or a register name that has already been defined in a previous
directive.

type

is any Advanced SIMD or floating-point datatype.

[x]

is only available for Advanced SIMD code. [x] is a scalar index into a register.

type and [x] are Extended notation.

Usage

Use QN, DN, or SN to allocate convenient names to extension registers, to help you to remember what you
use each one for.

The QN directive defines a name for a specified 128-bit extension register.

The DN directive defines a name for a specified 64-bit extension register.

The SN directive defines a name for a specified single-precision floating-point register.
 Note

Avoid conflicting uses of the same register under different names.

You cannot specify a vector length in a DN or SN directive.

Examples
energy DN 6 ; defines energy as a symbol for
 ; floating-point double-precision register 6
mass SN 16 ; defines mass as a symbol for
 ; floating-point single-precision register 16

Extended notation examples
varA DN d1.U16
varB DN d2.U16
varC DN d3.U16
 VADD varA,varB,varC ; VADD.U16 d1,d2,d3
index DN d4.U16[0]

7 Directives Reference
7.56 QN, DN, and SN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-264

Non-Confidential

result QN q5.I32
 VMULL result,varA,index ; VMULL.U16 q5,d1,d4[0]

7 Directives Reference
7.56 QN, DN, and SN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-265

Non-Confidential

7.57 RELOC
The RELOC directive explicitly encodes an ELF relocation in an object file.

Syntax

RELOC n, symbol

RELOC n

where:

n

must be an integer in the range 0 to 255 or one of the relocation names defined in the
Application Binary Interface for the Arm® Architecture.

symbol

can be any PC-relative label.

Usage

Use RELOC n, symbol to create a relocation with respect to the address labeled by symbol.

If used immediately after an A32 or T32 instruction, RELOC results in a relocation at that instruction. If
used immediately after a DCB, DCW, or DCD, or any other data generating directive, RELOC results in a
relocation at the start of the data. Any addend to be applied must be encoded in the instruction or in the
data.

If the assembler has already emitted a relocation at that place, the relocation is updated with the details in
the RELOC directive, for example:

DCD sym2 ; R_ARM_ABS32 to sym32
RELOC 55 ; ... makes it R_ARM_ABS32_NOI

RELOC is faulted in all other cases, for example, after any non-data generating directive, LTORG, ALIGN, or
as the first thing in an AREA.

Use RELOC n to create a relocation with respect to the anonymous symbol, that is, symbol 0 of the symbol
table. If you use RELOC n without a preceding assembler generated relocation, the relocation is with
respect to the anonymous symbol.

Examples
IMPORT impsym
LDR r0,[pc,#-8]
RELOC 4, impsym
DCD 0
RELOC 2, sym
DCD 0,1,2,3,4 ; the final word is relocated
RELOC 38,sym2 ; R_ARM_TARGET1
DCD impsym
RELOC R_ARM_TARGET1 ; relocation code 38

Related information
Application Binary Interface for the Arm Architecture

7 Directives Reference
7.57 RELOC

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-266

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.swdev.abi/index.html

7.58 REQUIRE
The REQUIRE directive specifies a dependency between sections.

Syntax

REQUIRE label

where:

label

is the name of the required label.

Usage

Use REQUIRE to ensure that a related section is included, even if it is not directly called. If the section
containing the REQUIRE directive is included in a link, the linker also includes the section containing the
definition of the specified label.

7 Directives Reference
7.58 REQUIRE

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-267

Non-Confidential

7.59 REQUIRE8 and PRESERVE8
The REQUIRE8 and PRESERVE8 directives specify that the current file requires or preserves eight-byte
alignment of the stack.

 Note

This directive is required to support non-ABI conforming toolchains. It has no effect on AArch64
assembly and is not required when targeting AArch64.

Syntax

REQUIRE8 {bool}

PRESERVE8 {bool}

where:

bool

is an optional Boolean constant, either {TRUE} or {FALSE}.

Usage

Where required, if your code preserves eight-byte alignment of the stack, use PRESERVE8 to set the PRES8
build attribute on your file. If your code does not preserve eight-byte alignment of the stack, use
PRESERVE8 {FALSE} to ensure that the PRES8 build attribute is not set. Use REQUIRE8 to set the REQ8
build attribute. If there are multiple REQUIRE8 or PRESERVE8 directives in a file, the assembler uses the
value of the last directive.

The linker checks that any code that requires eight-byte alignment of the stack is only called, directly or
indirectly, by code that preserves eight-byte alignment of the stack.

 Note

If you omit both PRESERVE8 and PRESERVE8 {FALSE}, the assembler decides whether to set the PRES8
build attribute or not, by examining instructions that modify the SP. Arm recommends that you specify
PRESERVE8 explicitly.

You can enable a warning by using the --diag_warning 1546 option when invoking armasm.

This gives you warnings like:

"test.s", line 37: Warning: A1546W: Stack pointer update potentially breaks 8 byte stack
alignment
 37 00000044 STMFD sp!,{r2,r3,lr}

Examples
REQUIRE8
REQUIRE8 {TRUE} ; equivalent to REQUIRE8
REQUIRE8 {FALSE} ; equivalent to absence of REQUIRE8
PRESERVE8 {TRUE} ; equivalent to PRESERVE8
PRESERVE8 {FALSE} ; NOT exactly equivalent to absence of PRESERVE8

Related reference
5.21 --diag_warning=tag[,tag,…] on page 5-119
Related information
Eight-byte Stack Alignment

7 Directives Reference
7.59 REQUIRE8 and PRESERVE8

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-268

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/ka4127.html

7.60 RLIST
The RLIST (register list) directive gives a name to a set of general-purpose registers in A32/T32 code.

Syntax

name RLIST {list-of-registers}

where:

name
is the name to be given to the set of registers. name cannot be the same as any of the predefined
names.

list-of-registers
is a comma-delimited list of register names and register ranges. The register list must be
enclosed in braces.

Usage

Use RLIST to give a name to a set of registers to be transferred by the LDM or STM instructions.

LDM and STM always put the lowest physical register numbers at the lowest address in memory, regardless
of the order they are supplied to the LDM or STM instruction. If you have defined your own symbolic
register names it can be less apparent that a register list is not in increasing register order.

Use the --diag_warning 1206 assembler option to ensure that the registers in a register list are supplied
in increasing register order. If registers are not supplied in increasing register order, a warning is issued.

Example
Context RLIST {r0-r6,r8,r10-r12,pc}

7 Directives Reference
7.60 RLIST

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-269

Non-Confidential

7.61 RN
The RN directive defines a name for a specified register.

Syntax

name RN expr

where:

name

is the name to be assigned to the register. name cannot be the same as any of the predefined
names.

expr

evaluates to a register number from 0 to 15.

Usage

Use RN to allocate convenient names to registers, to help you to remember what you use each register for.
Be careful to avoid conflicting uses of the same register under different names.

Examples
regname RN 11 ; defines regname for register 11
sqr4 RN r6 ; defines sqr4 for register 6

7 Directives Reference
7.61 RN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-270

Non-Confidential

7.62 ROUT
The ROUT directive marks the boundaries of the scope of numeric local labels.

Syntax

{name} ROUT

where:

name

is the name to be assigned to the scope.

Usage

Use the ROUT directive to limit the scope of numeric local labels. This makes it easier for you to avoid
referring to a wrong label by accident. The scope of numeric local labels is the whole area if there are no
ROUT directives in it.

Use the name option to ensure that each reference is to the correct numeric local label. If the name of a
label or a reference to a label does not match the preceding ROUT directive, the assembler generates an
error message and the assembly fails.

Example
 ; code
routineA ROUT ; ROUT is not necessarily a routine
 ; code
3routineA ; code ; this label is checked
 ; code
 BEQ %4routineA ; this reference is checked
 ; code
 BGE %3 ; refers to 3 above, but not checked
 ; code
4routineA ; code ; this label is checked
 ; code
otherstuff ROUT ; start of next scope

Related concepts
6.10 Numeric local labels on page 6-177
Related reference
7.6 AREA on page 7-205

7 Directives Reference
7.62 ROUT

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-271

Non-Confidential

7.63 SETA, SETL, and SETS
The SETA, SETL, and SETS directives set the value of a local or global variable.

Syntax

variable setx expr

where:

variable

is the name of a variable declared by a GBLA, GBLL, GBLS, LCLA, LCLL, or LCLS directive.

setx

is one of SETA, SETL, or SETS.

expr
is an expression that is:
• Numeric, for SETA.
• Logical, for SETL.
• String, for SETS.

Usage

The SETA directive sets the value of a local or global arithmetic variable.

The SETL directive sets the value of a local or global logical variable.

The SETS directive sets the value of a local or global string variable.

You must declare variable using a global or local declaration directive before using one of these
directives.

You can also predefine variable names on the command line.

Restrictions

The value you can specify using a SETA directive is limited to 32 bits. If you exceed this limit, the
assembler reports an error. A possible workaround in A64 code is to use an EQU directive instead of SETA,
although EQU defines a constant, whereas GBLA and SETA define a variable.

For example, replace the following code:

 GBLA MyAddress
 MyAddress SETA 0x0000008000000000

with:

 MyAddress EQU 0x0000008000000000

Examples
 GBLA VersionNumber
VersionNumber SETA 21
 GBLL Debug
Debug SETL {TRUE}
 GBLS VersionString
VersionString SETS "Version 1.0"

Related concepts
6.12 String expressions on page 6-179
6.14 Numeric expressions on page 6-181
6.17 Logical expressions on page 6-184

7 Directives Reference
7.63 SETA, SETL, and SETS

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-272

Non-Confidential

Related reference
7.42 GBLA, GBLL, and GBLS on page 7-245
7.49 LCLA, LCLL, and LCLS on page 7-254
5.54 --predefine "directive" on page 5-152

7 Directives Reference
7.63 SETA, SETL, and SETS

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-273

Non-Confidential

7.64 SPACE or FILL
The SPACE directive reserves a zeroed block of memory. The FILL directive reserves a block of memory
to fill with a given value.

Syntax

{label} SPACE expr

{label} FILL expr{,value{,valuesize}}

where:

label

is an optional label.

expr

evaluates to the number of bytes to fill or zero.

value

evaluates to the value to fill the reserved bytes with. value is optional and if omitted, it is 0.
value must be 0 in a NOINIT area.

valuesize

is the size, in bytes, of value. It can be any of 1, 2, or 4. valuesize is optional and if omitted, it
is 1.

Usage

Use the ALIGN directive to align any code following a SPACE or FILL directive.

% is a synonym for SPACE.

Example
 AREA MyData, DATA, READWRITE
data1 SPACE 255 ; defines 255 bytes of zeroed store
data2 FILL 50,0xAB,1 ; defines 50 bytes containing 0xAB

Related concepts
6.14 Numeric expressions on page 6-181
Related reference
7.5 ALIGN on page 7-203
7.15 DCB on page 7-217
7.16 DCD and DCDU on page 7-218
7.21 DCQ and DCQU on page 7-223
7.22 DCW and DCWU on page 7-224

7 Directives Reference
7.64 SPACE or FILL

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-274

Non-Confidential

7.65 THUMB directive
The THUMB directive instructs the assembler to interpret subsequent instructions as T32 instructions, using
the UAL syntax.

 Note

Not supported for AArch64 state.

Syntax

THUMB

Usage

In files that contain code using different instruction sets, the THUMB directive must precede T32 code
written in UAL syntax.

If necessary, this directive also inserts one byte of padding to align to the next halfword boundary.

This directive does not assemble to any instructions. It also does not change the state. It only instructs
armasm to assemble T32 instructions as appropriate, and inserts padding if necessary.

Example

This example shows how you can use ARM and THUMB directives to switch state and assemble both A32
and T32 instructions in a single area.

 AREA ToT32, CODE, READONLY ; Name this block of code
 ENTRY ; Mark first instruction to execute
 ARM ; Subsequent instructions are A32
start
 ADR r0, into_t32 + 1 ; Processor starts in A32 state
 BX r0 ; Inline switch to T32 state
 THUMB ; Subsequent instructions are T32
into_t32
 MOVS r0, #10 ; New-style T32 instructions

Related reference
7.7 ARM or CODE32 directive on page 7-209
7.11 CODE16 directive on page 7-213

7 Directives Reference
7.65 THUMB directive

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-275

Non-Confidential

7.66 TTL and SUBT
The TTL directive inserts a title at the start of each page of a listing file. The SUBT directive places a
subtitle on the pages of a listing file.

Syntax

TTL title

SUBT subtitle

where:

title

is the title.

subtitle

is the subtitle.

Usage

Use the TTL directive to place a title at the top of each page of a listing file. If you want the title to appear
on the first page, the TTL directive must be on the first line of the source file.

Use additional TTL directives to change the title. Each new TTL directive takes effect from the top of the
next page.

Use SUBT to place a subtitle at the top of each page of a listing file. Subtitles appear in the line below the
titles. If you want the subtitle to appear on the first page, the SUBT directive must be on the first line of
the source file.

Use additional SUBT directives to change subtitles. Each new SUBT directive takes effect from the top of
the next page.

Examples
 TTL First Title ; places title on first and subsequent pages of listing file.
 SUBT First Subtitle ; places subtitle on second and subsequent pages of listing file.

7 Directives Reference
7.66 TTL and SUBT

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-276

Non-Confidential

7.67 WHILE and WEND
The WHILE directive starts a sequence of instructions or directives that are to be assembled repeatedly.
The sequence is terminated with a WEND directive.

Syntax

WHILE logical-expression
 code
WEND

where:

logical-expression

is an expression that can evaluate to either {TRUE} or {FALSE}.

Usage

Use the WHILE directive, together with the WEND directive, to assemble a sequence of instructions a
number of times. The number of repetitions can be zero.

You can use IF...ENDIF conditions within WHILE...WEND loops.

WHILE...WEND loops can be nested.

Example
 GBLA count ; declare local variable
count SETA 1 ; you are not restricted to
 WHILE count <= 4 ; such simple conditions
count SETA count+1 ; In this case, this code is
 ; code ; executed four times
 ; code ;
 WEND

Related concepts
6.17 Logical expressions on page 6-184
Related reference
7.2 About assembly control directives on page 7-200

7 Directives Reference
7.67 WHILE and WEND

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-277

Non-Confidential

7.68 WN and XN
The WN, and XN directives define names for registers in A64 code.

The WN directive defines a name for a specified 32-bit register.

The XN directive defines a name for a specified 64-bit register.

Syntax

name directive expr

where:

name
is the name to be assigned to the register. name cannot be the same as any of the predefined
names.

directive
is WN or XN.

expr
evaluates to a register number from 0 to 30.

Usage

Use WN and XN to allocate convenient names to registers in A64 code, to help you to remember what you
use each register for. Be careful to avoid conflicting uses of the same register under different names.

Examples
sqr4 WN w16 ; defines sqr4 for register w16
regname XN 21 ; defines regname for register x21

7 Directives Reference
7.68 WN and XN

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

7-278

Non-Confidential

Chapter 8
armasm-Specific Instruction Set Features

Describes the additional support that armasm provides for the Arm instruction set.

It contains the following sections:
• 8.1 armasm support for the CSDB instruction on page 8-280.
• 8.2 A32 and T32 pseudo-instruction summary on page 8-281.
• 8.3 ADRL pseudo-instruction on page 8-282.
• 8.4 CPY pseudo-instruction on page 8-284.
• 8.5 LDR pseudo-instruction on page 8-285.
• 8.6 MOV32 pseudo-instruction on page 8-287.
• 8.7 NEG pseudo-instruction on page 8-288.
• 8.8 UND pseudo-instruction on page 8-289.

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8-279

Non-Confidential

8.1 armasm support for the CSDB instruction
For conditional CSDB instructions that specify a condition {c} other than AL in A32, and for any
condition {c} used inside an IT block in T32, then armasm rejects conditional CSDB instructions,
outputs an error message, and aborts.

For example:

• For A32 code:

"test2.s", line 4: Error: A1895E: The specified condition results in UNPREDICTABLE
behaviour
 4 00000000 CSDBEQ

• For T32 code:

"test2.s", line 8: Error: A1603E: This instruction inside IT block has UNPREDICTABLE
results
 8 00000006 CSDBEQ

You can relax this behavior by using:
• The --diag-suppress=1895 option for A32 code.
• The --diag-suppress=1603 option for T32 code.

You can also use the --unsafe option with these options. However, this option disables many
correctness checks.

8 armasm-Specific Instruction Set Features
8.1 armasm support for the CSDB instruction

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8-280

Non-Confidential

8.2 A32 and T32 pseudo-instruction summary
An overview of the pseudo-instructions available in the A32 and T32 instruction sets.

Table 8-1 Summary of pseudo-instructions

Mnemonic Brief description See

ADRL pseudo-instruction Load program or register-relative address (medium range) 8.3 ADRL pseudo-instruction on page 8-282

CPY pseudo-instruction Copy 8.4 CPY pseudo-instruction on page 8-284

LDR pseudo-instruction Load Register pseudo-instruction 8.5 LDR pseudo-instruction on page 8-285

MOV32 pseudo-instruction Move 32-bit immediate to register 8.6 MOV32 pseudo-instruction on page 8-287

NEG pseudo-instruction Negate 8.7 NEG pseudo-instruction on page 8-288

UND pseudo-instruction Generate an architecturally undefined instruction. 8.8 UND pseudo-instruction on page 8-289

8 armasm-Specific Instruction Set Features
8.2 A32 and T32 pseudo-instruction summary

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8-281

Non-Confidential

8.3 ADRL pseudo-instruction
Load a PC-relative or register-relative address into a register.

Syntax

ADRL{cond} Rd,label

where:

cond
is an optional condition code.

Rd
is the register to load.

label
is a PC-relative or register-relative expression.

Usage

ADRL always assembles to two 32-bit instructions. Even if the address can be reached in a single
instruction, a second, redundant instruction is produced.

If the assembler cannot construct the address in two instructions, it generates an error message and the
assembly fails. You can use the LDR pseudo-instruction for loading a wider range of addresses.

ADRL is similar to the ADR instruction, except ADRL can load a wider range of addresses because it
generates two data processing instructions.

ADRL produces position-independent code, because the address is PC-relative or register-relative.

If label is PC-relative, it must evaluate to an address in the same assembler area as the ADRL pseudo-
instruction.

If you use ADRL to generate a target for a BX or BLX instruction, it is your responsibility to set the T32 bit
(bit 0) of the address if the target contains T32 instructions.

Architectures and range

The available range depends on the instruction set in use:

A32
The range of the instruction is any value that can be generated by two ADD or two SUB
instructions. That is, any value that can be produced by the addition of two values, each of
which is 8 bits rotated right by any even number of bits within a 32-bit word.

T32, 32-bit encoding
±1MB bytes to a byte, halfword, or word-aligned address.

T32, 16-bit encoding
ADRL is not available.

The given range is relative to a point four bytes (in T32 code) or two words (in A32 code) after the
address of the current instruction.

 Note

ADRL is not available in Armv6‑M and Armv8‑M Baseline.

Related concepts
6.5 Register-relative and PC-relative expressions on page 6-172
3.4 Load immediate values on page 3-39
Related reference
8.5 LDR pseudo-instruction on page 8-285

8 armasm-Specific Instruction Set Features
8.3 ADRL pseudo-instruction

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8-282

Non-Confidential

Related information
Arm Architecture Reference Manual

8 armasm-Specific Instruction Set Features
8.3 ADRL pseudo-instruction

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8-283

Non-Confidential

http://infocenter.arm.com/help/topic/com.arm.doc.subset.architecture.reference/

8.4 CPY pseudo-instruction
Copy a value from one register to another.

Syntax

CPY{cond} Rd, Rm

where:

cond
is an optional condition code.

Rd
is the destination register.

Rm
is the register holding the value to be copied.

Operation

The CPY pseudo-instruction copies a value from one register to another, without changing the condition
flags.

CPY Rd, Rm assembles to MOV Rd, Rm.

Architectures

This pseudo-instruction is available in A32 code and in T32 code.

Register restrictions

Using SP or PC for both Rd and Rm is deprecated.

Condition flags

This instruction does not change the condition flags.

Related reference
MOV (A32/T32)

8 armasm-Specific Instruction Set Features
8.4 CPY pseudo-instruction

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8-284

Non-Confidential

8.5 LDR pseudo-instruction
Load a register with either a 32-bit immediate value or an address.

 Note

This describes the LDR pseudo-instruction only, and not the LDR instruction.

Syntax

LDR{cond}{.W} Rt, =expr

LDR{cond}{.W} Rt, =label_expr

where:

cond

is an optional condition code.

.W

is an optional instruction width specifier.

Rt

is the register to be loaded.

expr

evaluates to a numeric value.

label_expr

is a PC-relative or external expression of an address in the form of a label plus or minus a
numeric value.

Usage

When using the LDR pseudo-instruction:

• If the value of expr can be loaded with a valid MOV or MVN instruction, the assembler uses that
instruction.

• If a valid MOV or MVN instruction cannot be used, or if the label_expr syntax is used, the assembler
places the constant in a literal pool and generates a PC-relative LDR instruction that reads the constant
from the literal pool.

 Note

— An address loaded in this way is fixed at link time, so the code is not position-independent.
— The address holding the constant remains valid regardless of where the linker places the ELF

section containing the LDR instruction.

The assembler places the value of label_expr in a literal pool and generates a PC-relative LDR
instruction that loads the value from the literal pool.

If label_expr is an external expression, or is not contained in the current section, the assembler places a
linker relocation directive in the object file. The linker generates the address at link time.

If label_expr is either a named or numeric local label, the assembler places a linker relocation directive
in the object file and generates a symbol for that local label. The address is generated at link time. If the
local label references T32 code, the T32 bit (bit 0) of the address is set.

8 armasm-Specific Instruction Set Features
8.5 LDR pseudo-instruction

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8-285

Non-Confidential

The offset from the PC to the value in the literal pool must be less than ±4KB (in an A32 or 32-bit T32
encoding) or in the range 0 to +1KB (16-bit T32 encoding). You are responsible for ensuring that there is
a literal pool within range.

If the label referenced is in T32 code, the LDR pseudo-instruction sets the T32 bit (bit 0) of label_expr.
 Note

In RealView® Compilation Tools (RVCT) v2.2, the T32 bit of the address was not set. If you have code
that relies on this behavior, use the command line option --untyped_local_labels to force the
assembler not to set the T32 bit when referencing labels in T32 code.

LDR in T32 code

You can use the .W width specifier to force LDR to generate a 32-bit instruction in T32 code. LDR.W
always generates a 32-bit instruction, even if the immediate value could be loaded in a 16-bit MOV, or
there is a literal pool within reach of a 16-bit PC-relative load.

If the value to be loaded is not known in the first pass of the assembler, LDR without .W generates a 16-bit
instruction in T32 code, even if that results in a 16-bit PC-relative load for a value that could be
generated in a 32-bit MOV or MVN instruction. However, if the value is known in the first pass, and it can
be generated using a 32-bit MOV or MVN instruction, the MOV or MVN instruction is used.

In UAL syntax, the LDR pseudo-instruction never generates a 16-bit flag-setting MOV instruction. Use the
--diag_warning 1727 assembler command line option to check when a 16-bit instruction could have
been used.

You can use the MOV32 pseudo-instruction for generating immediate values or addresses without loading
from a literal pool.

Examples
 LDR r3,=0xff0 ; loads 0xff0 into R3
 ; => MOV.W r3,#0xff0
 LDR r1,=0xfff ; loads 0xfff into R1
 ; => LDR r1,[pc,offset_to_litpool]
 ; ...
 ; litpool DCD 0xfff
 LDR r2,=place ; loads the address of
 ; place into R2
 ; => LDR r2,[pc,offset_to_litpool]
 ; ...
 ; litpool DCD place

Related concepts
6.3 Numeric constants on page 6-170
6.5 Register-relative and PC-relative expressions on page 6-172
6.10 Numeric local labels on page 6-177
Related reference
5.62 --untyped_local_labels on page 5-160
8.6 MOV32 pseudo-instruction on page 8-287

8 armasm-Specific Instruction Set Features
8.5 LDR pseudo-instruction

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8-286

Non-Confidential

8.6 MOV32 pseudo-instruction
Load a register with either a 32-bit immediate value or any address.

Syntax

MOV32{cond} Rd, expr

where:

cond
is an optional condition code.

Rd
is the register to be loaded. Rd must not be SP or PC.

expr

can be any one of the following:

symbol
A label in this or another program area.

#constant
Any 32-bit immediate value.

symbol + constant
A label plus a 32-bit immediate value.

Usage

MOV32 always generates two 32-bit instructions, a MOV, MOVT pair. This enables you to load any 32-bit
immediate, or to access the whole 32-bit address space.

The main purposes of the MOV32 pseudo-instruction are:
• To generate literal constants when an immediate value cannot be generated in a single instruction.
• To load a PC-relative or external address into a register. The address remains valid regardless of

where the linker places the ELF section containing the MOV32.
 Note

An address loaded in this way is fixed at link time, so the code is not position-independent.

MOV32 sets the T32 bit (bit 0) of the address if the label referenced is in T32 code.

Architectures

This pseudo-instruction is available in A32 and T32.

Examples
 MOV32 r3, #0xABCDEF12 ; loads 0xABCDEF12 into R3
 MOV32 r1, Trigger+12 ; loads the address that is 12 bytes
 ; higher than the address Trigger into R1

Related reference
Condition code suffixes

8 armasm-Specific Instruction Set Features
8.6 MOV32 pseudo-instruction

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8-287

Non-Confidential

8.7 NEG pseudo-instruction
Negate the value in a register.

Syntax

NEG{cond} Rd, Rm

where:

cond
is an optional condition code.

Rd
is the destination register.

Rm
is the register containing the value that is subtracted from zero.

Operation

The NEG pseudo-instruction negates the value in one register and stores the result in a second register.

NEG{cond} Rd, Rm assembles to RSBS{cond} Rd, Rm, #0.

Architectures

The 32-bit encoding of this pseudo-instruction is available in A32 and T32.

There is no 16-bit encoding of this pseudo-instruction available T32.

Register restrictions

In A32 instructions, using SP or PC for Rd or Rm is deprecated. In T32 instructions, you cannot use SP or
PC for Rd or Rm.

Condition flags

This pseudo-instruction updates the condition flags, based on the result.

Related reference
ADD (A32/T32)

8 armasm-Specific Instruction Set Features
8.7 NEG pseudo-instruction

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8-288

Non-Confidential

8.8 UND pseudo-instruction
Generate an architecturally undefined instruction.

Syntax

UND{cond}{.W} {#expr}

where:

cond
is an optional condition code.

.W
is an optional instruction width specifier.

expr

evaluates to a numeric value. The following table shows the range and encoding of expr in the
instruction, where Y shows the locations of the bits that encode for expr and V is the 4 bits that
encode for the condition code.

If expr is omitted, the value 0 is used.

Table 8-2 Range and encoding of expr

Instruction Encoding Number of bits for expr Range

A32 0xV7FYYYFY 16 0-65535

T32 32-bit encoding 0xF7FYAYFY 12 0-4095

T32 16-bit encoding 0xDEYY 8 0-255

Usage

An attempt to execute an undefined instruction causes the Undefined instruction exception.
Architecturally undefined instructions are expected to remain undefined.

UND in T32 code

You can use the .W width specifier to force UND to generate a 32-bit instruction in T32 code. UND.W
always generates a 32-bit instruction, even if expr is in the range 0-255.

Disassembly

The encodings that this pseudo-instruction produces disassemble to DCI.

Related reference
Condition code suffixes

8 armasm-Specific Instruction Set Features
8.8 UND pseudo-instruction

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

8-289

Non-Confidential

Chapter 9
Via File Syntax

Describes the syntax of via files accepted by armasm.

It contains the following sections:
• 9.1 Overview of via files on page 9-291.
• 9.2 Via file syntax rules on page 9-292.

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

9-290

Non-Confidential

9.1 Overview of via files
Via files are plain text files that allow you to specify assembler command-line arguments and options.

Typically, you use a via file to overcome the command-line length limitations. However, you might want
to create multiple via files that:
• Group similar arguments and options together.
• Contain different sets of arguments and options to be used in different scenarios.

 Note

In general, you can use a via file to specify any command-line option to a tool, including --via. This
means that you can call multiple nested via files from within a via file.

Via file evaluation
When the assembler is invoked it:
1. Replaces the first specified --via via_file argument with the sequence of argument words

extracted from the via file, including recursively processing any nested --via commands in the via
file.

2. Processes any subsequent --via via_file arguments in the same way, in the order they are
presented.

That is, via files are processed in the order you specify them, and each via file is processed completely
including processing nested via files before processing the next via file.

Related reference
9.2 Via file syntax rules on page 9-292
5.64 --via=filename on page 5-162

9 Via File Syntax
9.1 Overview of via files

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

9-291

Non-Confidential

9.2 Via file syntax rules
Via files must conform to some syntax rules.

• A via file is a text file containing a sequence of words. Each word in the text file is converted into an
argument string and passed to the tool.

• Words are separated by whitespace, or the end of a line, except in delimited strings, for example:

--bigend --reduce_paths (two words)

--bigend--reduce_paths (one word)
• The end of a line is treated as whitespace, for example:

--bigend
--reduce_paths

This is equivalent to:

--bigend --reduce_paths
• Strings enclosed in quotation marks ("), or apostrophes (') are treated as a single word. Within a

quoted word, an apostrophe is treated as an ordinary character. Within an apostrophe delimited word,
a quotation mark is treated as an ordinary character.

Use quotation marks to delimit filenames or path names that contain spaces, for example:

--errors C:\My Project\errors.txt (three words)

--errors "C:\My Project\errors.txt" (two words)

Use apostrophes to delimit words that contain quotes, for example:

-DNAME='"ARM Compiler"' (one word)
• Characters enclosed in parentheses are treated as a single word, for example:

--option(x, y, z) (one word)

--option (x, y, z) (two words)
• Within quoted or apostrophe delimited strings, you can use a backslash (\) character to escape the

quote, apostrophe, and backslash characters.
• A word that occurs immediately next to a delimited word is treated as a single word, for example:

--errors"C:\Project\errors.txt"

This is treated as the single word:

--errorsC:\Project\errors.txt
• Lines beginning with a semicolon (;) or a hash (#) character as the first nonwhitespace character are

comment lines. A semicolon or hash character that appears anywhere else in a line is not treated as
the start of a comment, for example:

-o objectname.axf ;this is not a comment

A comment ends at the end of a line, or at the end of the file. There are no multi-line comments, and
there are no part-line comments.

Related concepts
9.1 Overview of via files on page 9-291
Related reference
5.64 --via=filename on page 5-162

9 Via File Syntax
9.2 Via file syntax rules

100069_0612_00_en Copyright © 2014–2019 Arm Limited or its affiliates. All rights
reserved.

9-292

Non-Confidential

	Arm® Compiler armasm User Guide
	Table of Contents
	List of Figures
	List of Figures
	Preface
	About this book
	Using this book
	Glossary
	Typographic conventions
	Feedback
	Feedback on this product
	Feedback on content

	Other information

	1 : Overview of the Assembler
	1.1 : About the Arm® Compiler toolchain assemblers
	1.2 : Key features of the armasm assembler
	1.3 : How the assembler works
	1.4 : Directives that can be omitted in pass 2 of the assembler
	1.5 : Support level definitions

	2 : Structure of Assembly Language Modules
	2.1 : Syntax of source lines in assembly language
	2.2 : Literals
	2.3 : ELF sections and the AREA directive
	2.4 : An example armasm syntax assembly language module

	3 : Writing A32/T32 Assembly Language
	3.1 : About the Unified Assembler Language
	3.2 : Syntax differences between UAL and A64 assembly language
	3.3 : Register usage in subroutine calls
	3.4 : Load immediate values
	3.5 : Load immediate values using MOV and MVN
	3.6 : Load immediate values using MOV32
	3.7 : Load immediate values using LDR Rd, =const
	3.8 : Literal pools
	3.9 : Load addresses into registers
	3.10 : Load addresses to a register using ADR
	3.11 : Load addresses to a register using ADRL
	3.12 : Load addresses to a register using LDR Rd, =label
	3.13 : Other ways to load and store registers
	3.14 : Load and store multiple register instructions
	3.15 : Load and store multiple register instructions in A32 and T32
	3.16 : Stack implementation using LDM and STM
	3.17 : Stack operations for nested subroutines
	3.18 : Block copy with LDM and STM
	3.19 : Memory accesses
	3.20 : The Read-Modify-Write operation
	3.21 : Optional hash with immediate constants
	3.22 : Use of macros
	3.23 : Test-and-branch macro example
	3.24 : Unsigned integer division macro example
	3.25 : Instruction and directive relocations
	3.26 : Symbol versions
	3.27 : Frame directives
	3.28 : Exception tables and Unwind tables

	4 : Using armasm
	4.1 : armasm command-line syntax
	4.2 : Specify command-line options with an environment variable
	4.3 : Using stdin to input source code to the assembler
	4.4 : Built-in variables and constants
	4.5 : Identifying versions of armasm in source code
	4.6 : Diagnostic messages
	4.7 : Interlocks diagnostics
	4.8 : Automatic IT block generation in T32 code
	4.9 : T32 branch target alignment
	4.10 : T32 code size diagnostics
	4.11 : A32 and T32 instruction portability diagnostics
	4.12 : T32 instruction width diagnostics
	4.13 : Two pass assembler diagnostics
	4.14 : Using the C preprocessor
	4.15 : Address alignment in A32/T32 code
	4.16 : Address alignment in A64 code
	4.17 : Instruction width selection in T32 code

	5 : armasm Command-line Options
	5.1 : --16
	5.2 : --32
	5.3 : --apcs=qualifier…qualifier
	5.4 : --arm
	5.5 : --arm_only
	5.6 : --bi
	5.7 : --bigend
	5.8 : --brief_diagnostics, --no_brief_diagnostics
	5.9 : --checkreglist
	5.10 : --cpreproc
	5.11 : --cpreproc_opts=option[,option,…]
	5.12 : --cpu=list
	5.13 : --cpu=name
	5.14 : --debug
	5.15 : --depend=dependfile
	5.16 : --depend_format=string
	5.17 : --diag_error=tag[,tag,…]
	5.18 : --diag_remark=tag[,tag,…]
	5.19 : --diag_style={arm|ide|gnu}
	5.20 : --diag_suppress=tag[,tag,…]
	5.21 : --diag_warning=tag[,tag,…]
	5.22 : --dllexport_all
	5.23 : --dwarf2
	5.24 : --dwarf3
	5.25 : --errors=errorfile
	5.26 : --exceptions, --no_exceptions
	5.27 : --exceptions_unwind, --no_exceptions_unwind
	5.28 : --execstack, --no_execstack
	5.29 : --execute_only
	5.30 : --fpmode=model
	5.31 : --fpu=list
	5.32 : --fpu=name
	5.33 : -g
	5.34 : --help
	5.35 : -idir[,dir, …]
	5.36 : --keep
	5.37 : --length=n
	5.38 : --li
	5.39 : --library_type=lib
	5.40 : --list=file
	5.41 : --list=
	5.42 : --littleend
	5.43 : -m
	5.44 : --maxcache=n
	5.45 : --md
	5.46 : --no_code_gen
	5.47 : --no_esc
	5.48 : --no_hide_all
	5.49 : --no_regs
	5.50 : --no_terse
	5.51 : --no_warn
	5.52 : -o filename
	5.53 : --pd
	5.54 : --predefine "directive"
	5.55 : --reduce_paths, --no_reduce_paths
	5.56 : --regnames
	5.57 : --report-if-not-wysiwyg
	5.58 : --show_cmdline
	5.59 : --thumb
	5.60 : --unaligned_access, --no_unaligned_access
	5.61 : --unsafe
	5.62 : --untyped_local_labels
	5.63 : --version_number
	5.64 : --via=filename
	5.65 : --vsn
	5.66 : --width=n
	5.67 : --xref

	6 : Symbols, Literals, Expressions, and Operators
	6.1 : Symbol naming rules
	6.2 : Variables
	6.3 : Numeric constants
	6.4 : Assembly time substitution of variables
	6.5 : Register-relative and PC-relative expressions
	6.6 : Labels
	6.7 : Labels for PC-relative addresses
	6.8 : Labels for register-relative addresses
	6.9 : Labels for absolute addresses
	6.10 : Numeric local labels
	6.11 : Syntax of numeric local labels
	6.12 : String expressions
	6.13 : String literals
	6.14 : Numeric expressions
	6.15 : Syntax of numeric literals
	6.16 : Syntax of floating-point literals
	6.17 : Logical expressions
	6.18 : Logical literals
	6.19 : Unary operators
	6.20 : Binary operators
	6.21 : Multiplicative operators
	6.22 : String manipulation operators
	6.23 : Shift operators
	6.24 : Addition, subtraction, and logical operators
	6.25 : Relational operators
	6.26 : Boolean operators
	6.27 : Operator precedence
	6.28 : Difference between operator precedence in assembly language and C

	7 : Directives Reference
	7.1 : Alphabetical list of directives
	7.2 : About assembly control directives
	7.3 : About frame directives
	7.4 : ALIAS
	7.5 : ALIGN
	7.6 : AREA
	7.7 : ARM or CODE32 directive
	7.8 : ASSERT
	7.9 : ATTR
	7.10 : CN
	7.11 : CODE16 directive
	7.12 : COMMON
	7.13 : CP
	7.14 : DATA
	7.15 : DCB
	7.16 : DCD and DCDU
	7.17 : DCDO
	7.18 : DCFD and DCFDU
	7.19 : DCFS and DCFSU
	7.20 : DCI
	7.21 : DCQ and DCQU
	7.22 : DCW and DCWU
	7.23 : END
	7.24 : ENDFUNC or ENDP
	7.25 : ENTRY
	7.26 : EQU
	7.27 : EXPORT or GLOBAL
	7.28 : EXPORTAS
	7.29 : FIELD
	7.30 : FRAME ADDRESS
	7.31 : FRAME POP
	7.32 : FRAME PUSH
	7.33 : FRAME REGISTER
	7.34 : FRAME RESTORE
	7.35 : FRAME RETURN ADDRESS
	7.36 : FRAME SAVE
	7.37 : FRAME STATE REMEMBER
	7.38 : FRAME STATE RESTORE
	7.39 : FRAME UNWIND ON
	7.40 : FRAME UNWIND OFF
	7.41 : FUNCTION or PROC
	7.42 : GBLA, GBLL, and GBLS
	7.43 : GET or INCLUDE
	7.44 : IF, ELSE, ENDIF, and ELIF
	7.45 : IMPORT and EXTERN
	7.46 : INCBIN
	7.47 : INFO
	7.48 : KEEP
	7.49 : LCLA, LCLL, and LCLS
	7.50 : LTORG
	7.51 : MACRO and MEND
	7.52 : MAP
	7.53 : MEXIT
	7.54 : NOFP
	7.55 : OPT
	7.56 : QN, DN, and SN
	7.57 : RELOC
	7.58 : REQUIRE
	7.59 : REQUIRE8 and PRESERVE8
	7.60 : RLIST
	7.61 : RN
	7.62 : ROUT
	7.63 : SETA, SETL, and SETS
	7.64 : SPACE or FILL
	7.65 : THUMB directive
	7.66 : TTL and SUBT
	7.67 : WHILE and WEND
	7.68 : WN and XN

	8 : armasm-Specific Instruction Set Features
	8.1 : armasm support for the CSDB instruction
	8.2 : A32 and T32 pseudo-instruction summary
	8.3 : ADRL pseudo-instruction
	8.4 : CPY pseudo-instruction
	8.5 : LDR pseudo-instruction
	8.6 : MOV32 pseudo-instruction
	8.7 : NEG pseudo-instruction
	8.8 : UND pseudo-instruction

	9 : Via File Syntax
	9.1 : Overview of via files
	9.2 : Via file syntax rules

