
Learn the architecture - A64 Instruction Set
Architecture
1.2

Guide
Non-Confidential
Copyright © 2022–2023 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
102374_0102_01_en

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Learn the architecture - A64 Instruction Set Architecture
Guide

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-
01

25 April 2022 Non-
Confidential

Initial release

0100-
02

30 June 2022 Non-
Confidential

Fix typo in TBZ instruction in Program flow - loops and
decisions

0100-
03

14 July 2022 Non-
Confidential

Fix typo in “Logical and integer arithmetic instruction format”
diagram

0101-
01

3 November
2022

Non-
Confidential

Updates to vector matrix data, floating point and Related
information chapters

0101-
02

14 June 2023 Non-
Confidential

Fix typo in Loads and stores chapter

0102-
01

5 December
2023

Non-
Confidential

Updates to floating point chapter

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 51

https://www.arm.com/company/policies/trademarks

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 51

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Contents

Contents

1. Overview...7

2. Why you should care about the ISA..8

3. Instruction sets in the Arm architecture...9

4. Instruction set resources.. 10

5. Simple sequential execution.. 11

6. Registers in AArch64 - general-purpose registers... 12

7. Registers in AArch64 - other registers... 14

8. Registers in AArch64 - system registers.. 15

9. Data processing - arithmetic and logic operations.. 17

10. Data processing - floating point...19
10.1 Support for 8-bit and 16-bit floating point... 19
10.2 Is floating point support optional?...20

11. Data processing - bit manipulation... 21

12. Data processing - extension and saturation... 23
12.1 Test yourself..23
12.2 Sub-register-sized integer data processing.. 24

13. Data processing - format conversion..25

14. Data processing - vector and matrix data... 26

15. Loads and stores.. 28

16. Loads and stores - size...29

17. Loads and stores - zero and sign extension..30

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Contents

17.1 Task..31

18. Loads and stores - addressing.. 32

19. Loads and stores - load pair and store pair...34

20. Loads and stores - using floating point registers...35

21. Loads and stores - specialist instructions.. 36
21.1 Load-Acquire and Release..36
21.2 The 64-byte atomic load and stores...36
21.3 Loads and stores to optimize memcpy() style operations...37

22. Program flow...38

23. Program flow - loops and decisions..39
23.1 Unconditional branch instructions... 39
23.2 Conditional branch instructions..39
23.3 Test yourself..40

24. Program flow - generating condition code..41
24.1 Test yourself..42

25. Program flow - conditional select instructions...43

26. Function calls.. 45

27. Procedure Call Standard...46

28. System calls... 48

29. Check your knowledge...49

30. Related information...50

31. Next steps..51

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Overview

1. Overview
An Instruction Set Architecture (ISA) is part of the abstract model of a computer. It defines how
software controls the processor.

The Arm ISA allows you to write software and firmware that conforms to the Arm specifications.
This mean that, if your software or firmware conforms to the specifications, any Arm-based
processor will execute it in the same way.

This guide introduces the A64 instruction set, used in the 64-bit Armv8-A architecture, also known
as AArch64.

We will not cover every single instruction in this guide. All instructions are detailed in the Arm
Architecture Reference Manual. Instead, we will introduce the format of the instructions, the
different types of instruction, and how code written in assembler can interact with compiler-
generated code.

At the end of this guide, you can Check your knowledge. You will have learned about the main
classes of instructions, the syntax of data-processing instructions, and how the use of W and X
registers affects instructions. The key outcome that we hope you will learn from this guide is to be
able to explain how generated assembler code maps to C statements, when given a C program and
the compiler output for it. Finally, this guide will show you how to write a function in assembler
that can be called from C.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 51

https://developer.arm.com/documentation/ddi0487/
https://developer.arm.com/documentation/ddi0487/

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Why you should care about the ISA

2. Why you should care about the ISA
As developers, you may not need to write directly in assembler in our day-to-day role. However,
assembler is still important in some areas, such as the first stage boot software or some low-level
kernel activities.

Even if you are not writing assembly code directly, understanding what the instruction set can do,
and how the compiler makes use of those instructions, can help you to write more efficient code. It
can also help you to understand the output of the compiler. This can be useful when debugging.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Instruction sets in the Arm architecture

3. Instruction sets in the Arm architecture
Armv8-A supports three instruction sets: A32, T32 and A64.

The A64 instruction set is used when executing in the AArch64 Execution state. It is a fixed-length
32-bit instruction set. The 64 in the name refers to the use of this instruction by the AArch64
Execution state. It does not refer to the size of the instructions in memory.

The A32 and T32 instruction sets are also referred to as Arm and Thumb, respectively. These
instruction sets are used when executing in the AArch32 Execution state. In this guide, we do not
cover the A32 and T32 instruction sets. To find out more about these instruction sets, see Related
information.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Instruction set resources

4. Instruction set resources
Each version of the Arm architecture has its own Arm Architecture Reference Manual, which can
be found on the Arm Developer website. Every Arm ARM provides a detailed description of each
instruction, including:

• Encoding - the representation of the instruction in memory.

• Arguments - inputs to the instruction.

• Pseudocode - what the instruction does, as expressed in Arm pseudocode language.

• Restrictions - when the instruction cannot be used, or the exceptions it can trigger.

The instruction descriptions for A64 are also available in XML and HTML. The XML and HTML
formats are useful if you need to refer to the instructions often. The XML and HTML formats can
be found on the Arm Developer website. You can find a link in Related information. The XML can
be downloaded as a compressed archive and the HTML can be viewed and searched using a web
browser.

The information in the XML/HTML and the Arm Architecture Reference Manual are
taken from the same source but may be formatted slightly differently.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Simple sequential execution

5. Simple sequential execution
The Arm architecture describes instructions following a Simple Sequential Execution (SSE) model.
This means that the processor behaves as if the processor fetched, decoded and executed one
instruction at a time, and in the order in which the instructions appeared in memory.

In practice, modern processors have pipelines that can execute multiple instructions at once, and
may do so out of order. This diagram shows an example pipeline for an Arm Cortex processor:

Figure 5-1: Example Cortex pipeline

You will remember that the architecture is a functional description. This means that it does not
specify how an individual processor works. Each processor must behave consistently with the
simple sequential execution model, even if it is reordering instructions internally.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Registers in AArch64 - general-purpose registers

6. Registers in AArch64 - general-purpose
registers

Most A64 instructions operate on registers. The architecture provides 31 general purpose registers.
Each register can be used as a 64-bit X register (X0..X30), or as a 32-bit W register (W0..W30).
These are two separate ways of looking at the same register. For example, this register diagram
shows that W0 is the bottom 32 bits of X0, and W1 is the bottom 32 bits of X1:

Figure 6-1: Register diagram

For data processing instructions, the choice of X or W determines the size of the operation. Using
X registers will result in 64-bit calculations, and using W registers will result in 32-bit calculations.
This example performs a 32-bit integer addition:

ADD W0, W1, W2

This example performs a 64-bit integer addition:

ADD X0, X1, X2

When a W register is written, as seen in the example above, the top 32 bits of the 64-bit register
are zeroed.

There is a separate set of 32 registers used for floating point and vector operations. These registers
are 128-bit, but like the general-purpose registers, can be accessed in several ways. Bx is 8 bits, Hx
is 16 bits and so on to Qx which is 128 bits.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Registers in AArch64 - general-purpose registers

Figure 6-2: Register diagram

The name you use for the register determines the size of the calculation. This example performs a
32-bit floating point addition:

FADD S0, S1, S2

This example performs a 64-bit floating point addition:

FADD D0, D1, D2

These registers can also be referred to as V registers. When the V form is used, the register is
treated as being a vector. This means that it is treated as though it contains multiple independent
values, instead of a single value. This example performs vector floating point addition:

FADD V0.2D, V1.2D, V2.2D

This example performs vector integer addition:

ADD V0.2D, V1.2D, V2.2D

We will look at vector instructions in more detail later in this guide.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Registers in AArch64 - other registers

7. Registers in AArch64 - other registers
Here are some other registers in the A64 that you should know about:

• The zero registers, XZR and WZR, always read as 0 and ignore writes.

• You can use the stack pointer (SP) as the base address for loads and stores. You can also use the
stack pointer with a limited set of data-processing instructions, but it is not a regular general
purpose register. Armv8-A has multiple stack pointers, and each one is associated with a
specific Exception level. When SP is used in an instruction, it means the current stack pointer.
The guide to the exception model explains how the stack pointer is selected.

• X30 is used as the Link Register and can be referred to as LR. Separate registers, ELR_ELx,
are used for returning from exceptions. This is discussed in more detail in the guide to the
exception model.

• The Program Counter (PC) is not a general-purpose register in A64, and it cannot be used with
data processing instructions. The PC can be read using:

ADR Xd, .

The ADR instruction returns the address of a label, calculated based on the current location. Dot (.)
means ‘here’, so the shown instruction is returning the address of itself. This is equivalent to reading
the PC. Some branch instructions, and some load/store operations, implicitly use the value of the
PC.

In the A32 and T32 instruction sets, the PC and SP are general purpose registers.
This is not the case in A64 instruction set.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Registers in AArch64 - system registers

8. Registers in AArch64 - system registers
As well as general purpose registers, the architecture defines system registers. System registers are
used to configure the processor and to control systems such as the MMU and exception handling.

System registers cannot be used directly by data processing or load/store instructions. Instead, the
contents of a system register need to be read into an X register, operated on, and then written back
to the system register. There are two specialist instructions for accessing system registers:

MRS Xd, <system register>

reads the system register into Xd.

MSR <system register>, Xn

writes Xn to the system register.

System registers are specified by name, for example SCTLR_EL1:

MRS X0, SCTLR_EL1

reads SCTLR_EL1 into X0.

System register names end with _ELx. The _ELx specifies the minimum privilege necessary to
access the register. For example:

SCTLR_EL1

requires EL1 or higher privilege.

SCTLR_EL2

requires EL2 or higher privilege.

SCTLR_EL3

requires EL3 privilege

Attempting to access the register with insufficient privilege results in an exception.

Sometimes you will see _EL12 or _EL01. These are used as part of virtualization.
Refer to the guide on virtualization for more information.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Registers in AArch64 - system registers

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Data processing - arithmetic and logic operations

9. Data processing - arithmetic and logic
operations

The basic format of logical and integer arithmetic instructions is:

Figure 9-1: Logical and integer arithmetic instruction format

The parts of the instruction are as follows:

• Operation defines what the instruction does. For example, ADD does addition and AND
performs a logical AND. An S can be added to the operation to set flags. For example, ADD
becomes ADDS. This s tells the processor to update the ALU flags based on the result of
instruction. We discuss ALU flags in the section on generating condition code.

• Destination is the destination of the instruction is always a register, and specifies where the
result of the operation is placed. Most instructions have a single destination register. A few
instructions have two destination registers. When the destination is a W register, the upper 32
bits of the corresponding X register are set to 0.

• Operand 1 will always be a register. This is the first input to the instruction.

• Operand 2 will be a register or a constant, and is the second input to the instruction When
operand 2 is a register, it may include an optional shift. When operand 2 is a constant, it is
encoded within the instruction itself. This means that the range of constants available is limited.

You should be aware of a couple of special cases, such as the MOV and MVN instructions. MOV
moves a constant, or the contents of another register, into the register specified as the destination.
MOV and MVN only require a single input operand, which can be either a register or a constant, as
shown here:

 MOV X0, #1

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Data processing - arithmetic and logic operations

sets: X0 = 1

 MVN W0, W1

sets: W0 = ~W1

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Data processing - floating point

10. Data processing - floating point
Floating-point operations follow the same format as integer data-processing instructions and use
floating-point registers. Like with the integer data-processing instructions, the size of the operation
determines the size of the register that is used. The operation part of a floating-point instruction
always starts with an F. For example, this instruction sets H0 = H1 / H2 with half precision:

FDIV H0, H1, H2

This instruction sets S0 = S1 + S2 with single precision:

FADD S0, S1, S2

This instruction sets D0 = D1 - D2 with double precision:

FSUB D0, D1, D2

10.1 Support for 8-bit and 16-bit floating point
The Arm architecture includes support for 16-bit and 8-bit floating-point formats.

Figure 10-1: Differences between data formats

Armv8.2-A added support for 16-bit floating point, FP16. Support for FP16 is optional from
Armv8.2-A, becoming mandatory if SVE or SVE2 is implemented, meaning that it is effectively
mandatory in Armv9-A.

BFloat16, often abbreviated to BF16, is an alternative 16-bit floating-point storage format. BF16 is
optionally supported from Armv8.2-A, but becomes mandatory in Arm8.6-A and Armv9.1-A. BF16
has recently emerged as a format tailored specifically to high-performance processing of Neural
Networks (NNs)

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Data processing - floating point

The difference between the FP16 and BF16 formats is how the bits are divided between the
exponent and fraction, as shown in the diagram above. BF16 has the same exponent range as
FP32, but with fewer bits for the fraction. This makes converting between BF16 and FP32 simpler,
as BF16 is effectively a lower precision version of FP32.

For more information on BF16, see AWS Graviton3 featuring Arm Neoverse V1 is up to 1.8x faster
than x86 for deep learning inference workloads blog.

In 2022 Arm, Intel, and Nvidia announced their collaboration on FP8, an interchange format that
allows software ecosystems to share NN models easily and support the continuous advancement
of AI computing capabilities. FP8 support is introduced as optional feature from Armv9.2-A.
FP8 introduces a pair of formats: E5M2 and E4M3. These two formats give different trade-offs
between precision and range.

When working with FP8, which format (E5M2 and E4M3) is used is selected by fields in the FPMR
register. Different formats can be selected for the different inputs to an instruction, allowing for
efficient working with datasets in different formats.

10.2 Is floating point support optional?
No. Support for floating point is mandatory in Armv8-A. The architecture specifies that it is
required whenever a rich operating system, such as Linux, is used.

You are technically permitted to omit floating point support, if you are running an entirely
proprietary software stack. Most toolchains, including GCC and Arm Compiler 6, will assume
floating point support.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 51

https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/machine-learning-inference-on-aws-graviton3
https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/machine-learning-inference-on-aws-graviton3

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Data processing - bit manipulation

11. Data processing - bit manipulation
There are a set of instructions for manipulating bits within a register. This figure shows some
examples:

Figure 11-1: Example set of instructions for manipulating bits within a register

The BFI instruction inserts a bit field into a register. In the preceding figure, BFI is taking a 6-bit
field from the source register (W0) and inserting it at bit position 9 in the destination register.

UBFX extracts a bit field. In the preceding figure, UBFX is taking a 7-bit field from bit position 18 in
the source register, and placing it in the destination register.

Other instructions can reverse byte or bit order, as you can see in this figure:

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Data processing - bit manipulation

Figure 11-2: Instructions that reverse byte or bit order

REV16 and RBIT are particularly useful when you are handling data that is in a different endianness.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Data processing - extension and saturation

12. Data processing - extension and
saturation

Sometimes it is necessary to convert data from one size to another. The SXTx (sign extend)
and UXTx (unsign extend) instructions are available for this conversion. In this conversion, the x
determines the size of the data being extended, as shown in this figure:

Figure 12-1: Data size conversion example

In the first instruction SXTB, the B means byte. It takes the bottom byte of W0 and sign extends it to
32 bits.

UXTH is an unsigned extension of a halfword (H). It takes the bottom 16 bits of W1 and zero extends
it to 32 bits.

The first two examples have W registers as a destination, meaning the extension is to 32 bits. The
third example has an X register, meaning the sign extension is to 64 bits.

12.1 Test yourself
Write an instruction to sign extend a byte in W5 to 64 bits, placing the result in X7.

SXTB X7, W5

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Data processing - extension and saturation

12.2 Sub-register-sized integer data processing
Some instructions perform saturating arithmetic. This means that if the result is larger or smaller
than the destination can hold, then the result is set to the largest or smallest value of the
destination’s integer range.

The data-processing instructions can efficiently handle 32-bit data and 64-bit data. In practice, you
often see saturation instructions when handling sub-register calculations. Sub-register calculations
are calculations of 16 bits or 8 bits. This table shows some examples of sub-register calculations in
C and the generated assembler code:

C Generated assembler

uint32_t add32(uint32_t a, uint32_t b) { return a+b; } add32: W0,W1,W0 RET\

uint16_t uadd16(uint16_t a, uint16_t b) { return a+b; } uadd16:AND W8,W1,#0xffffADD W0,W8,W0,UXTHRET

int16_t sadd16(int16_t a, int16_t b) { return a+b; } sadd16:SXTH W8,W1ADD W0,W8,W0,SXTHRET

In the first example in the table, the 32-bit addition maps onto W registers and therefore can be
handled easily.

For the 16-bit examples in the table, an extra instruction is necessary. The third example in the
table takes the 16-bit inputs, extends them to 32 bits, and then performs the addition. The
sequence converts the 16-bit input to 32 bits, using:

SXTH W8,W1

Then, this instruction performs the addition and saturates the result to signed 16 bits:

ADD W0,W8,W0,SXTH

Adding , SXTH to the end of the operand list of the ADD operation causes the result to use
saturating arithmetic. Because the destination is a W register, the ADD will saturate to a 16-bit
integer range.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Data processing - format conversion

13. Data processing - format conversion
We have seen that the MOV and MVN instructions copy the value from one register to another.
Similarly, FMOV can be used to copy between floating-point and general purpose registers.

However, using FMOV copies the literal bit pattern between the registers. There are also instructions
that can convert to the closest representation, as this figure shows:

Figure 13-1: EMOV example

In this example, imagine that X0 contains the value 2 (positive integer 2):

X0 = 0x0000_0000_0000_0002

Then, the following sequence is executed:

FMOV D0, X0

SCVTF D1, X0

Both instructions “copy” X0 into a D register. However, the results are quite different:

D0 = 0x0000_0000_0000_0002 = 9.88131e-324

D1 = 0x4000_0000_0000_0002 = 2.0

The FMOV copied the literal bit pattern, which is a very different value when interpreted as a
floating-point value. The SCVTF converted the value in X0 to the closest equivalent in floating-point.

Similarly, FCVTxx can be used to convert a floating-point value to its closest integer representation.
In this instance, different values of xx control the rounding mode used.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Data processing - vector and matrix data

14. Data processing - vector and matrix
data

The A64 architecture also provides support for vector data processing. The two types of vector
processing available are:

• Advanced SIMD, which is also known as NEON.

• Scalable Vector Extension (SVE and SVE2). SVE was introduced in Armv8-A and was optimised
for HPC workloads. Armv9-A introduced SVE2, which extends the base SVE to enable more
use cases.

Figure 14-1: SVE and SVE2

We will cover both types of vector processing in a later guide on vector programming.

The name Advanced SIMD derives from the existence of SIMD instructions that
operated on regular 32-bit general-purpose registers in Armv6. In Armv7, the term
Advanced SIMD was used for instructions that could operate on 128-bit vectors.
The Armv6 style instructions do not exist in A64, but the naming convention
remains.

Armv9-A also introduced the optional Scalable Matrix Extensions (SME and SME2). SME builds on
SVE2, adding new capabilities to efficiently process matrices. Key features include:

• Matrix tile storage

• Load, store, insert, and extract tile vectors, including on-the-fly transposition

• Outer product of SVE vectors

• Streaming SVE mode
Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 26 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Data processing - vector and matrix data

SME provides outer-product instructions to accelerate matrix operations. SME2 significantly
extends the capabilities with instructions for multi-vector operations, multi-vector predicates, range
prefetches and 2b/4b weight compression.

Figure 14-2: SME and SME2

The new instructions enable SME2 to accelerate more workloads than the original SME. Including
GEMV, Non-Linear Solvers, Small and Sparse Matrices, and Feature Extraction or tracking.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Loads and stores

15. Loads and stores
The basic load and store operations are: LDR (load) and STR (store). These operations transfer a
single value between memory and the general-purpose registers. The syntax for these instructions
is:

LDR<Sign><Size> <Destination>, [<address>]

STR<Size> <Source>, [<address>]

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Loads and stores - size

16. Loads and stores - size
The size of the load or store is determined by the register type X or W and the Size field. X is used
for 64 bits and W is used for 32 bits. For example, this instruction loads 32 bits from address into
W0:

LDR W0, [<address>]

This instruction loads 64 bits from address into X0:

LDR X0, [<address>]

The Size field allows you to load a sub-register sized quantity of data. For example, this instruction
stores the bottom byte (B) of W0 to address:

STRB W0, [<address>]

This instruction stores the bottom halfword (H) of W0 to address:

STRH W0, [<address>]

Finally, this instruction stores the bottom word (W) of X0 to address:

STRW X0, [<address>]

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Loads and stores - zero and sign extension

17. Loads and stores - zero and sign
extension

By default, when a sub-register-sized quantity of data is loaded, the rest of the register is zeroed, as
shown in this figure:

Figure 17-1: Zeroed register example

Remember that whenever a W register is written, the top half of the X register is
zeroed.

Adding an S to the operation causes the value to be sign extended instead. How far the size
extension goes depends on whether the target is a W or X register, as shown in this figure:

Figure 17-2: Size extension example

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Loads and stores - zero and sign extension

17.1 Task
If the byte at address 0x8000 contains the value 0x1F, what would be the result of LDRSB X4?

LDRSB is performing a byte load with sign extension to 64 bits. The most significant bit of the
loaded value will be replicated to fill the 64-bit register. The loaded value, 0x1F, has its top bit
clear. Therefore, the value in X4 will be 0x0000_0000_0000_001F.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Loads and stores - addressing

18. Loads and stores - addressing
The addresses for load and store instructions appear within the square brackets, as shown in this
example:

LDR W0, [X1]

There are several addressing modes that define how the address is formed.

• Base register - The simplest form of addressing is a single register. Base register is an X register
that contains the full, or absolute, virtual address of the data being accessed, as you can see in
this figure:

Figure 18-1: Base register example

• Offset addressing modes - An offset can be applied optionally to the base address, as you can
see in this figure:

Figure 18-2: Offset example

In the preceding figure, X1 contains the base address and #12 is a byte offset from that address.
This means that the accessed address is X1+12. The offset can be either a constant or another
register. This type of addressing might be used for structs, for example. The compiler maintains
a pointer to the base of struct using the offset to select different members.

• Pre-index addressing modes - In the instruction syntax, pre-indexing is shown by adding an
exclamation mark ! after the square brackets, as this figure shows:

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Loads and stores - addressing

Figure 18-3: Pre-indexing example

Pre-indexed addressing is like offset addressing, except that the base pointer is updated as
a result of the instruction. In the preceding figure, X1 would have the value X1+12 after the
instruction has completed.

• Post-index addressing modes - With post-index addressing, the value is loaded from the
address in the base pointer, and then the pointer is updated, as this figure shows:

Figure 18-4: Post-indexing example

Post-index addressing is useful for popping off the stack. The instruction loads the value from
the location pointed at by the stack pointer, and then moves the stack pointer on to the next
full location in the stack.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Loads and stores - load pair and store pair

19. Loads and stores - load pair and store
pair

So far, we have discussed the load and store of a single register. A64 also has load (LDP) and store
pair (STP) instructions.

These LDP and STP pair instructions transfer two registers to and from memory. Registers are
processed in operand order, from left-to-right. That is, the first register operand is loaded or stored
first, and the second register operand is loaded or stored next.

Consider the following examples.

The first instruction loads [X0] into W3, and loads [X0 + 4] into W7:

LDP W3, W7, [X0]

This second instruction stores D0 to [X4] and stores D1 to [X4 + 8]:

STP D0, D1, [X4]

Load and store pair instructions are often used for pushing, and popping off the stack. This first
instruction pushes X0 and X1 onto the stack:

STP X0, X1, [SP, #-16]!

This second instruction pops X0 and X1 from the stack:

LDP X0, X1, [SP], #16

Remember that in AArch64 the stack-pointer must be 128-bit aligned.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Loads and stores - using floating point registers

20. Loads and stores - using floating point
registers

Loads and stores can also be carried out using the floating-point registers, as we will see here. The
first instruction loads 64-bits from [X0] into D1:

LDR D1, [X0]

This second instruction stores 128-bits from Q0 to [X0 + X1]:

STR Q0, [X0, X1]

Finally, this instruction loads a pair of 128-bit values from X5, then increments X5 by 256:

LDP Q1, Q3, [X5], #256

There are some restrictions:

• The size is specified by the register type only.

• There is no option to sign extend loads.

• The address must still be an X register.

Load and stores using floating-point registers can be found in unexpected cases. It is common for
memcpy() type routines to use them. This is because the wider register means that fewer iterations
are needed. Just because your code does not use floating-point values, don’t assume that you
won’t need to use the floating-point registers.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Loads and stores - specialist instructions

21. Loads and stores - specialist
instructions

The A64 instruction set also includes some load and store instructions for more specialist use
cases.

21.1 Load-Acquire and Release
These are load and stores instructions with implicit memory barriers.

21.2 The 64-byte atomic load and stores
A growing trend in enterprise systems is the introduction of accelerators that can be accessed using
a 64-byte atomic loads or stores. These are used to add items to queues and can, in some cases,
signal success or failure of the enqueue operation.

To support this new breed of accelerators, Armv8.7-A and Armv9.2-A add support for a 64-byte
atomic load (LD64B) instruction and three store (ST64Bx) instructions are added to the architecture.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Loads and stores - specialist instructions

Figure 21-1: Architecture diagram

21.3 Loads and stores to optimize memcpy() style
operations

The memcpy()/memset() family of functions are widely used across many workloads. It is therefore
important that they run as efficiently as possible. To enable a standard optimized implementation
of these functions, which will be efficient across different processor implementations, A64 includes
the CPYx and SETx instructions.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Program flow

22. Program flow
Ordinarily, a processor executes instructions in program order. This means that a processor
executes instructions in the same order that they are set in memory. One way to change this order
is to use branch instructions. Branch instructions change the program flow and are used for loops,
decisions and function calls.

The A64 instruction set also has some conditional branch instructions. These are instructions that
change the way they execute, based on the results of previous instructions.

Armv8.3-A and Armv8.5-A introduced instructions to protect against return-
oriented programming and jump-oriented programming.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Program flow - loops and decisions

23. Program flow - loops and decisions
In this section, we will examine how loops and decisions let you change the flow of your program
code using branch instructions. There are two types of branch instructions: unconditional and
conditional.

23.1 Unconditional branch instructions
There are two types of unconditional branch instructions; B which means Branch and BR which
means Branch with Register.

The unconditional branch instruction B <label> performs a direct, PC-relative, branch to <label>.
The offset from the current PC to the destination is encoded within the instruction. The range is
limited by the space available within the instruction to record the offset and is +/-128MB.

When you use BR <Xn>, BR performs an indirect, or absolute, branch to the address specified in Xn.

23.2 Conditional branch instructions
The conditional branch instruction B.<cond> <label> is the conditional version of the B instruction.
The branch is only taken if the condition <cond> is true. The range is limited to +/-1MB.

The condition is tested against the ALU flags stored in PSTATE and needs to be generated by a
previous instruction such as a compare (CMP).

CBZ <Xn> <label> and CBNZ <Xn> <label>

This instruction branches to <label> if Xn contains 0 (CBZ), and branches to label if Xn does not
contain 0 (CBNZ).

TBZ <Xn>, #<imm>, <label> and TBNZ <Xn>, #<imm>, <label>

The TBZ and TBNZ instructions work in a similar way to the CBZ and CBNZ instructions, but test the
single bit specified by <imm> rather than the entire register value.

The direct, or PC-relative, branches store the offset to the destination within the
instruction. The conditional branches have a smaller range. This is because some
bits are needed to store the condition itself, which leaves fewer bits for the offset.

Mapping these on to what you might write in C, the following examples show how branches are
used for loops and decisions.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Program flow - loops and decisions

Consider the following C code:

if (a == 5)
 b = 5;

Typical output from a compiler for the above C code might be as follows:

 CMP W0, #5
 B.NE skip
 MOV W8, #5
skip:

Consider the following C code:

while (a != 0)
{
 b = b + c;
 a = a - 1;
}

Typical output from a compiler for the above C code might be as follows:

loop:
 CBZ W8, skip
 ADD W9, W9, W10
 SUB W8, W8, #1
 B loop
skip:

The labels shown in the output would not be created by a compiler. They are
included here to aid readability.

23.3 Test yourself
There is no conditional indirect branch instruction in A64. How could you construct an instruction
sequence that performs an absolute branch to the address in X1, if X5 contains 0?

There is no single correct answer, but something like this would be acceptable:

 CMP X5, XZR // Compare X5 with zero
 B.NE skip // If X5!=0 branch past BR
 BR X1
skip:
…

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Program flow - generating condition code

24. Program flow - generating condition
code

In Program flow - loops and decisions, we learned that the <cond> is tested against the ALU flags
stored in PSTATE.

The ALU flags are set as a side effect of data-processing instructions. To recap, an S at the end
operation causes the ALU flags to be updated. This is an example of an instruction in which the ALU
flags are not updated:

ADD X0, X1, X2

This is an example of an instruction in which the ALU flags are updated with the use of S:

ADDS X0, X1, X2

This method allows software to control when the flags are updated or not updated. The flags can
be used by subsequent condition instructions. Let’s take the following code as an example:

SUBS X0, X5, #1

AND X1, X7, X9

B.EQ label

The SUBS instruction performs a subtract and updates the ALU flags. Then the AND instruction
performs an and operation, and does not update the ALU flags. Finally, the B.EQ instruction
performs a conditional branch, using flags set as result of the subtract.

The flags are:

• N - Negative

• C - Carry

• V - Overflow

• Z - Zero

Let’s take the Z flag as an example. If the result of the operation was zero, then the Z flag is set to
1. For example, here the Z flag will be set if X5 is 1, otherwise it will be cleared:

SUBS X0, X5, #1

The condition codes map on to these flags and come in pairs. Let’s take EQ (equal) and NE (not
equal) as an example, and see how they map to the Z flag:

The EQ code checks for Z==1. The NE code checks for Z==0.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Program flow - generating condition code

Taking the following code as an example:

SUBS W0, W7, W9 // W0 = W7 - W9

B.EQ label

In the first line, we have a subtract operation. Because we used the S suffix, this subtract operation
sets the Z flag if the result is zero. In the final line, there is a branch to label if Z==1.

If w7==w9, the result of the subtraction will be zero, and the Z flag would have been set. Therefore,
the branch to label will be taken if w7 and w9 are equal.

In addition to the regular data-processing instructions, other instructions are available that only
update the ALU flags:

• CMP - Compare

• TST - Test

These instructions are aliases of other instructions. For example:

CMP X0, X7 //an alias of SUBS XZR, X0, X7

TST W5, #1 //an alias of ANDS WZR, W5, #1

By using the Zero register as a destination, we are discarding the result of the operation and only
updating the ALU flags.

24.1 Test yourself
The examples we seen so far have used the EQ and NE conditions. Write a sequence that will set
X0 to 5 if the result of (X5 - X6) is negative. To do this, you will need to look up the full list of
condition codes in the Arm Architecture Reference Manual.

There are several sequences you could write. Here is one example:

SUBS XZR, X5, X6
B.PL 1a //Branch is positive or zero
MOV X0, #5 //Only executed if result was negative
1:
...

A conditional select instruction might be a better choice here.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Program flow - conditional select instructions

25. Program flow - conditional select
instructions

So far, we have seen examples that use branches to handle decisions. The A64 instruction set
also provides conditional select instructions. In many cases, these instructions can be used as an
alternative to branches.

There are many variants, but the basic form is:

CSEL Xd, Xn, Xm, cond

This means that:

if cond then

 Xd = Xn

else

 Xd = Xm

You can see an example in this code:

CMP W1, #0

CSEL W5, W6, W7, EQ

Which gives the same result as:

if (W1==0) then

 W5 = W6

 else

 W5 = W7

There are variants that combine another operation with the conditional select. For example, CSINC
performs a select and addition:

CSINC Xd, Xn, Xm, cond

This means that:

 if cond then

 Xd = Xn

 else

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Program flow - conditional select instructions

 Xd = Xm + 1

To just conditionally increment, you could write:

 CSINC X0, X0, X0, cond

Which equates to:

if cond then

 X0 = X0

 else

 X0 = X0 + 1

The architecture provides an alias, CINC, for this command. Note however that CINC inverts the
logic of CSINC:

• CSINC X0, X0, X0, cond leaves X0 unchanged if cond is true and increments X0 if cond is false

• CINC X0, X0, cond increments X0 if cond is true and leaves X0 unchanged if cond is false

Compilers choose the most efficient method to implement the functionality in your program.
Compilers will often use a conditional select for small if … else statements performing simple
operations, because conditional selects can be more efficient than branches.

Here are some simple if ... else examples that compare implementations using branches to
equivalent implementations using conditional select instructions:

C Branching Conditional select

if (a != 0) b = b + 1; CMP W0, #0 B.EQ else ADD W1, W1, #1 else: … CMP W0, #0 CINC W1, W1, NE

if (a == 0) y = y + 1;
else y = y - 1;

CMP W0, #0 B.NE else ADD W1, W1, #1 B end
else: SUB W1, W1, #1 end: …

CMP W0, #0 SUB W2, W1, #1
CSINC W1, W2, W1, NE

In these types of examples, conditional selects have some advantages. The sequences are shorter
and take the same number of instructions, regardless of the outcome.

Importantly, conditional selects also remove the need to branch. In modern processors, this kind of
branch can be difficult for the branch prediction logic to predict correctly. A mispredicted branch
can have a negative effect on performance, it is better that you remove branches where possible.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Function calls

26. Function calls
When calling a function or sub-routine, we need a way to get back to the caller when finished.
Adding an L to the B or BR instructions turns them into a branch with link. This means that a return
address is written into LR (X30) as part of the branch.

The names LR and X30 are interchangeable. An assembler, such as GNU GAS or
armclang, will accept both.

There is a specialist function return instruction, RET. This performs an indirect branch to the address
in the link register. Together, this means that we get:

Figure 26-1: RET

The figure shows the function foo() written in GAS syntax assembler. The keyword
.global exports the symbol and .type indicates that the exported symbol is a
function.

Why do we need a special function return instruction? Functionally, BR LR would do the same job
as RET. Using RET tells the processor that this is a function return. Most modern processors, and
all Cortex-A processors, support branch prediction. Knowing that this is a function return allows
processors to more accurately predict the branch.

Branch predictors guess the direction the program flow will take across branches. The guess is
used to decide what to load into a pipeline with instructions waiting to be processed. If the branch
predictor guesses correctly, the pipeline has the correct instructions and the processor does not
have to wait for instructions to be loaded from memory.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Procedure Call Standard

27. Procedure Call Standard
The Arm architecture places few restrictions on how general purpose registers are used. To recap,
integer registers and floating-point registers are general purpose registers. However, if you want
your code to interact with code that is written by someone else, or with code that is produced by a
compiler, then you need to agree rules for register usage. For the Arm architecture, these rules are
called the Procedure Call Standard, or PCS.

The PCS specifies:

• Which registers are used to pass arguments into the function.

• Which registers are used to return a value to the function doing the calling, known as the caller.

• Which registers the function being called, which is known as the callee, can corrupt.

• Which registers the callee cannot corrupt.

Consider a function foo(), being called from main():

Figure 27-1: PCS example

The PCS says that the first argument is passed in X0, the second argument in X1, and so on up to
X7. Any further arguments are passed on the stack. Our function, foo(), takes two arguments: b
and c. Therefore, b will be in W0 and c will be in W1.

Why W and not X? Because the arguments are a 32-bit type, and therefore we only need a W
register.

In C++, X0 is used to pass the implicit this pointer that points to the called function.

Next, the PCS defines which registers can be corrupted, and which registers cannot be corrupted.
If a register can be corrupted, then the called function can overwrite without needing to restore, as
this table of PCS register rules shows:

X0-X7 X8-X15 X16-X23 X24-X30

Parameter and Result Registers (X0-
X7)

XR (X8) IP0 (X16) Callee-saved Registers (X24-
X28)

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Procedure Call Standard

X0-X7 X8-X15 X16-X23 X24-X30
- Corruptible Registers (X9-

X15)
IP1 (X17) FP (X29)

- - PR (X18) LR (X30)

- - Callee-saved Registers (X19-
X23)

-

For example, the function foo() can use registers X0 to X15 without needing to preserve their
values. However, if foo() wants to use X19 to X28 it must save them to stack first, and then restore
from the stack before returning.

Some registers have special significance in the PCS:

• XR - This is an indirect result register. If foo() returned a struct, then the memory for struct
would be allocated by the caller, main() in the earlier example. XR is a pointer to the memory
allocated by the caller for returning the struct.

• IP0 and IP1 - These registers are intra-procedure-call corruptible registers. These registers can
be corrupted between the time that the function is called and the time that it arrives at the first
instruction in the function. These registers are used by linkers to insert veneers between the
caller and callee. Veneers are small pieces of code. The most common example is for branch
range extension. The branch instruction in A64 has a limited range. If the target is beyond that
range, then the linker needs to generate a veneer to extend the range of the branch.

• FP - Frame pointer.

• LR - X30 is the link register (LR) for function calls.

We previously introduced the ALU flags, which are used for conditional branches and
conditional selects. The PCS says that the ALU flags do not need to be preserved
across a function call.

There is a similar set of rules for the floating-point registers:

D0-D7 D8-D15 D16-D23 D24-D31

Parameter and Result Registers (D0-
D7)

Callee-saved Registers (D8-
D15)

Callee-saved Registers (D16-
D31)

Callee-saved Registers (D16-
D31)

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

System calls

28. System calls
Sometimes it is necessary for software to request a function from a more privileged entity. This
might happen when, for example, an application requests that the OS opens a file.

Figure 28-1: Application request example

In A64, there are special instructions for making such system calls. These instructions cause an
exception, which allows controlled entry into a more privileged Exception level.

• SVC Supervisor call causes an exception targeting EL1. Used by an application to call the OS.

• HVC Hypervisor call causes an exception targeting EL2. Used by an OS to call the hypervisor,
not available at EL0.

• SMC Secure monitor call causes an exception targeting EL3. Used by an OS or hypervisor to call
the EL3 firmware, not available at EL0.

If an exception is executed from an Exception level higher than the target exception level, then
the exception is taken to the current Exception level. This means that an SVC at EL2 would cause
exception entry to EL2. Similarly, an HVC at EL3 causes exception entry to EL3. This is consistent
with the rule that an exception can never cause the processor to lose privilege.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Check your knowledge

29. Check your knowledge
Answer the following questions to check your knowledge.

According to the PCS, for the function uint32_t foo(uint64_t a, uint64_t b), which registers
will used to pass in a and b, and to return the result?

a will be passed in X0 and b will be passed in X1. The result will be returned in W0.

What instruction does a 64-bit floating-point addition of D0 and D1, then places the result in D5?
FADD D5, D0, D1

What does this instruction do? LDRSH W0, [X1, #8]
It loads 16-bits from the address X1+8 and sign extends the result to 32 bits, placing the
result in W0.

What instruction is most commonly used for a function return?
RET

Which register is used to store the return address when calling a function?
X30, which can also be referred as LR.

What does executing an SVC instruction in an application do?
It would cause an exception, leading to entry into the OS.

After executing SUB W5, W8, W4, what is in the upper 32 bits of X5?
0s (zeroes). Whenever a W register is written, the upper 32 bits of the mapped X register are
zeroed.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 51

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Related information

30. Related information
Here are some resources related to material in this guide:

• Vectors: Neon guide

• Vectors: SVE guide

• SVE examples: SVE Programming Examples

• Building an embedded image guide

• Arm architecture and reference manuals for information on the extensions to Armv8.3-A and
Armv8.5-A instruction sets, vector data-processing instructions, Advance SIMD and SVE

• Arm community

• ARM Assembly Language

• Building an ELF Image for an Armv8-A Fixed Virtual Platform

• Changing Exception Level and Security State with an Armv8-A Fixed Virtual Platform

• Cortex-A Programmer’s Guide

• Retargeting and Enabling Exceptions with an ELF Image

Here are some resources related to topics in this guide:

Instruction set resources
• Arm A64 instruction descriptions

Procedure Call Standard
• Procedure Call Standard (PCS) for the ARM 64-bit Architecture (AArch64)

Useful links to training:
• Introduction to Armv8-A

• Overview - ISA

• Architecture profiles

• What does architecture consist of?

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 51

https://developer.arm.com/documentation/102159/0400/?lang=en
https://developer.arm.com/documentation/102699/0100/?lang=en
https://developer.arm.com/documentation/dai0548/b/?lang=en
https://developer.arm.com/documentation/102432/
https://developer.arm.com/documentation/
https://community.arm.com/
https://www.oreilly.com/library/view/arm-assembly-language/9781482229851/
https://community.arm.com/tools/b/blog/posts/building-an-elf-image-for-an-armv8-fixed-virtual-platform-2065554406?_ga=2.127587979.741188165.1546853606-1030419087.1544695588
https://community.arm.com/tools/b/blog/posts/changing-exception-level-and-security-state-with-an-armv8a-fixed-virtual-platform
https://developer.arm.com/docs/den0013/latest/cortex-a-series-programmers-guide-version-40
https://community.arm.com/tools/b/blog/posts/retargeting-and-enabling-exceptions-in-an-elf-image
https://developer.arm.com/documentation/ddi0602/latest
https://developer.arm.com/docs/ihi0042/latest
https://training.developer.arm.com/topics/33842
https://training.developer.arm.com/contents/409521
https://training.developer.arm.com/contents/393692
https://training.developer.arm.com/contents/400899

Learn the architecture - A64 Instruction Set Architecture
Guide

Document ID: 102374_0102_01_en
1.2

Next steps

31. Next steps
Using the Arm Instruction Set Architecture (ISA), you can write software or firmware that any
Arm-based processor will execute in the same way, if that software or firmware conforms to the
Arm specifications. In this guide, we introduced the A64 instruction set, which is used in Armv8-
A AArch64. We introduced the format of the instructions, the different types of instruction, and
how code written in assembler can interact with compiler-generated code. We explained the main
classes of instructions, the syntax of data-processing instructions, and how the use of W and X
registers affects instructions.

Based on the material learned in this guide, you can explain how generated assembler code maps
to C statements when given a C program and compiler output, and how to write a function in
assembler that can be called from C. You will also understand how to find detailed descriptions for
each instruction on the Arm Developer website, and concepts such as registers, data processing,
program flow, and loads and stores.

To keep learning about the Armv8-A architecture, see more in our series of guides.

To check your knowledge of A64 assembler, try the ISA lab exercises (coming soon). The lab
exercises require the Arm DS-5, Ultimate Edition. A 30-day evaluation version is available and can
be used to complete the exercises.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 51

https://developer.arm.com/architectures/learn-the-architecture

	Learn the architecture - A64 Instruction Set Architecture Guide
	Contents
	1. Overview
	2. Why you should care about the ISA
	3. Instruction sets in the Arm architecture
	4. Instruction set resources
	5. Simple sequential execution
	6. Registers in AArch64 - general-purpose registers
	7. Registers in AArch64 - other registers
	8. Registers in AArch64 - system registers
	9. Data processing - arithmetic and logic operations
	10. Data processing - floating point
	10.1 Support for 8-bit and 16-bit floating point
	10.2 Is floating point support optional?

	11. Data processing - bit manipulation
	12. Data processing - extension and saturation
	12.1 Test yourself
	12.2 Sub-register-sized integer data processing

	13. Data processing - format conversion
	14. Data processing - vector and matrix data
	15. Loads and stores
	16. Loads and stores - size
	17. Loads and stores - zero and sign extension
	17.1 Task

	18. Loads and stores - addressing
	19. Loads and stores - load pair and store pair
	20. Loads and stores - using floating point registers
	21. Loads and stores - specialist instructions
	21.1 Load-Acquire and Release
	21.2 The 64-byte atomic load and stores
	21.3 Loads and stores to optimize memcpy() style operations

	22. Program flow
	23. Program flow - loops and decisions
	23.1 Unconditional branch instructions
	23.2 Conditional branch instructions
	23.3 Test yourself

	24. Program flow - generating condition code
	24.1 Test yourself

	25. Program flow - conditional select instructions
	26. Function calls
	27. Procedure Call Standard
	28. System calls
	29. Check your knowledge
	30. Related information
	31. Next steps

