
AMBA-PV Extensions to TLM
Version 2.0

User Guide

Non-Confidential
Copyright © 2014–2018, 2020–2023 Arm Limited (or
its affiliates).
All rights reserved.

Issue 11
100962_0200_11_en

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV Extensions to TLM
User Guide

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue Date Confidentiality Change

A 31 May 2014 Non-
Confidential

New document for Fast Models v9.0, from DUI0455H
for v8.3.

B 30 November
2014

Non-
Confidential

Update for v9.1.

C 28 February
2015

Non-
Confidential

Update for v9.2.

D 31 May 2015 Non-
Confidential

Update for v9.3.

E 31 August 2015 Non-
Confidential

Update for v9.4.

F 30 November
2015

Non-
Confidential

Update for v9.5.

G 29 February
2016

Non-
Confidential

Update for v9.6.

H 31 May 2016 Non-
Confidential

Update for v10.0.

I 31 August 2016 Non-
Confidential

Update for v10.1.

J 11 November
2016

Non-
Confidential

Update for v10.2.

K 17 February
2017

Non-
Confidential

Update for v10.3.

0200-
00

31 May 2017 Non-
Confidential

Update for v11.0. Document numbering scheme has
changed.

0200-
01

31 August 2017 Non-
Confidential

Update for v11.1.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Issue Date Confidentiality Change

0200-
02

17 November
2017

Non-
Confidential

Update for v11.2.

0200-
03

23 February
2018

Non-
Confidential

Update for v11.3.

0200-
04

22 June 2018 Non-
Confidential

Update for v11.4.

0200-
05

22 September
2020

Non-
Confidential

Update for v11.12.

0200-
06

29 June 2021 Non-
Confidential

Update for v11.15.

0200-
07

16 February
2022

Non-
Confidential

Update for v11.17.

0200-
08

15 June 2022 Non-
Confidential

Update for v11.18.

0200-
09

14 September
2022

Non-
Confidential

Update for v11.19.

0200-
10

7 December
2022

Non-
Confidential

Update for v11.20.

0200-
11

6 December
2023

Non-
Confidential

Update for v11.23.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 83

https://www.arm.com/company/policies/trademarks

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 83

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Contents

Contents

1. Introduction.. 9
1.1 Conventions..9
1.2 Other information...10
1.3 Useful resources... 10

2. Introduction to AMBA-PV Extensions to TLM 2.0..12
2.1 AMBA-PV classes and interfaces... 12

3. AMBA-PV extension class... 14
3.1 Attributes and methods..16
3.1.1 Class definitions...16
3.1.2 Constructors, copying, and addressing.. 20
3.1.3 Default values and modifiability of attributes..20
3.1.4 Burst length attribute...22
3.1.5 Burst size attribute... 22
3.1.6 Burst type attribute..23
3.1.7 ID attribute...23
3.1.8 Privileged attribute..23
3.1.9 Non-secure attribute..24
3.1.10 Physical address space attribute...24
3.1.11 Exclusive attribute.. 24
3.1.12 Locked attribute.. 25
3.1.13 Bufferable attribute..25
3.1.14 Modifiable/cacheable attribute... 26
3.1.15 Read allocate attribute.. 26
3.1.16 Write allocate attribute...27
3.1.17 Read other allocate attribute...27
3.1.18 Write other allocate attribute..27
3.1.19 Quality of Service (QoS) attribute.. 28
3.1.20 Region attribute.. 28
3.1.21 Domain attribute...28
3.1.22 Snoop attribute... 29
3.1.23 Bar attribute...29

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Contents

3.1.24 DVM messages... 30
3.1.25 Response attribute... 33
3.1.26 ACE response attributes PassDirty and IsShared... 34
3.1.27 ACE snoop response attributes DataTransfer, Error, and WasUnique....................................... 35
3.1.28 Response array attribute...35
3.1.29 Data organization..36
3.1.30 Direct memory interface...37
3.1.31 Debug transport interface..37
3.2 AMBA signal mapping...37
3.3 Mapping for AMBA buses..39
3.4 Basic transactions...41
3.4.1 Fixed burst example... 41
3.4.2 Incremental burst example..42
3.4.3 Wrapped burst example..42
3.4.4 Unaligned burst example...43

4. AMBA-PV classes...45
4.1 Class description...45
4.1.1 AMBA-PV extension...45
4.1.2 Core interfaces.. 46
4.1.3 User layer..48
4.1.4 Sockets...49
4.1.5 ACE sockets... 49
4.1.6 Bridges... 50
4.1.7 Memory... 52
4.1.8 Exclusive monitor..53
4.1.9 Bus decoder... 53
4.1.10 Protocol checker... 54
4.1.11 Signaling.. 55
4.1.12 User and transport layers...57
4.1.13 Transaction memory management..60
4.2 Class summary.. 60
4.2.1 Classes and interfaces... 60
4.2.2 Classes for virtual platforms...62
4.2.3 Classes for side-band signals... 63

5. Example systems.. 65
Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 7 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Contents

5.1 Configuring the examples...65
5.2 Bridge example..65
5.2.1 Building and running the bridge example... 66
5.3 Debug example... 67
5.3.1 Building and running the debug example... 67
5.4 DMA example..69
5.4.1 Building and running the DMA example...69
5.5 Exclusive example...72
5.5.1 Building and running the exclusive example.. 72

6. Creating AMBA-PV compliant models..74
6.1 Creating an AMBA-PV master.. 74
6.2 Creating an AMBA-PV slave..74
6.3 Creating an AMBA-PV interconnect..75
6.4 Creating an AMBA-PV ACE master...76
6.5 Creating an AMBA-PV ACE slave.. 76

7. AMBA-PV protocol checker.. 77
7.1 AMBA protocol check selection: check_protocol()... 77
7.2 Recommended checks: recommend_on()..78
7.3 Checks that the protocol checker performs.. 78
7.3.1 About the protocols... 78
7.3.2 Architecture checks.. 79
7.3.3 Extension checks...79
7.3.4 Address checks..80
7.3.5 Data checks..80
7.3.6 Response checks... 81
7.3.7 Exclusive access checks...81
7.3.8 Cacheability checks.. 82

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Introduction

1. Introduction
This document is the specification of the classes and interfaces in the AMBA-PV Extensions to
TLM 2.0.

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Convention Use

italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system
failure or damage.

Requirements for the system. Not following these requirements might result in
system failure or damage.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 83

https://developer.arm.com/glossary

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Introduction

Requirements for the system. Not following these requirements will result in system
failure or damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm® website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

1.3 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 83

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary
http://developer.arm.com/documentation

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Introduction

Arm® product resources Document ID Confidentiality

AMBA, https://developer.arm.com/Architectures/AMBA - Non-Confidential

AMBA-PV Extensions to TLM 2.0 Reference Manual DUI 0847 Non-Confidential

Arm® architecture and specifications Document ID Confidentiality

AMBA® AHB Protocol Specification IHI 0033 Non-Confidential

AMBA® APB Protocol Specification IHI 0024 Non-Confidential

AMBA® AXI and ACE Protocol Specification IHI 0022 Non-Confidential

Non-Arm® resources Document ID Organization

Accellera Systems Initiative - http://www.accellera.org

IEEE 1666-2011, IEEE Standard for Standard SystemC Language Reference Manual IEEE 1666-2011 http://ieee.org

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 83

https://developer.arm.com/Architectures/AMBA
https://developer.arm.com/documentation/dui0847/latest
https://developer.arm.com/documentation/ihi0033/latest
https://developer.arm.com/documentation/ihi0024/latest/
https://developer.arm.com/documentation/ihi0022/latest/
http://www.accellera.org/
http://standards.ieee.org/
http://www.adobe.com

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Introduction to AMBA-PV Extensions to TLM 2.0

2. Introduction to AMBA-PV Extensions to
TLM 2.0

The AMBA-PV Extensions to TLM 2.0 (AMBA-PV) map AMBA® buses on top of TLM 2.0.

Its key features are:

• Dedicated to the Programmer’s View (PV), this class focuses on high-level, functionally accurate,
transaction modeling. Low-level signals, for example, channel handshake, are not important at
that level.

• This class is the standard for the modeling of AMBA® ACE, AXI, AHB, and APB buses with TLM
2.0.

• Targeted at Loosely Timed (LT) coding style of TLM 2.0, this class includes blocking transport,
Direct Memory Interface (DMI), and debug interfaces.

• Interoperable, this class permits models using the mapped AMBA® buses to work in an
Accellera-compliant SystemC environment.

2.1 AMBA-PV classes and interfaces
AMBA-PV classes and interfaces are layered on top of the TLM 2.0 library. AMBA-PV specializes
TLM 2.0 classes and interfaces to handle AMBA® buses control information such as Secure, Non-
secure, and privileged.

In addition, AMBA-PV provides a framework that minimizes the effort that is required to write TLM
2.0 models that communicate over the AMBA® buses.

AMBA® buses add the following specific features to the TLM 2.0 Generic Payload (GP):

• Addressing options support.

• Protection-unit support.

• Cache support.

• Atomic accesses support.

• Quality of Service (QoS) support.

• Multiple region support.

• Coherency support.

• Barrier transactions.

• Distributed Virtual Memory (DVM) support.

The AMBA-PV extensions to the TLM 2.0 Base Protocol (BP) covers the following:

• Definition of AMBA-PV extension and trait classes.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Introduction to AMBA-PV Extensions to TLM 2.0

• Specialization of TLM 2.0 sockets and interfaces.

• Use of TLM 2.0 b_transport() blocking transport interface only.

In addition, AMBA-PV defines classes and interfaces for the modeling of side-band signals, for
example, interrupts.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

3. AMBA-PV extension class
AMBA-PV defines an extension class amba_pv_extension, to the TLM 2.0 GP class
tlm_generic_payload.

This extension class targets AMBA® buses modeling, using an LT coding style, and features
attributes for the modeling of:

• Burst length, from 1 to 256 data transfers per burst.

• Burst transfer size of 8-1024 bits.

• Wrapping, incrementing, and non-incrementing burst types.

• Atomic operations, using exclusive or locked accesses.

◦ Arm recommends that you use locked accesses only to support legacy
devices, because of their impact on the interconnect performance and their
unavailability in AXI4 and ACE.

◦ The AMBA-PV bus decoder model does not support locked accesses.

• System-level caching and buffering control.

• Secure and privileged accesses.

• Quality of Service (QoS) indication.

• Multiple regions.

• Cache coherency transactions (ACE-Lite).

• Bi-directional cache coherency transactions (ACE).

• Distributed Virtual Memory (DVM) transactions.

This extension class does not model any of the following:

• Separate address/control and data phases.

• Separate read and write data channels.

• Ability to issue multiple outstanding addresses.

• Out-of-order transaction completion.

• Optional extensions that cover signaling for low-power operation.

• Split transactions.

• Undefined-length bursts.

• User-defined signals.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

Undefined-length bursts are specific to the AHB bus. They can be modeled as
incrementing bursts of defined length, providing the master knows the total
transfer length. AHB bus specifies a 1KB address boundary that bursts must not
cross. This limits the length of an undefined-length burst.

It additionally supports unaligned burst start addresses and unaligned write data transfers using
byte strobes.

AMBA-PV defines a new trait class amba_pv_protocol_types that features:

• Support for most of the TLM 2.0 BP rules.

• Word length equals burst size.

• No part-words.

• Byte enables on write transactions only.

• Byte enable length is a multiple of the burst size.

• Simulated endianness equals host endianness.

This class is used for the TYPES template parameter with TLM 2.0 classes and interfaces.

When using amba_pv_protocol_types with TLM 2.0 classes and interfaces, the following additional
rules apply to the TLM 2.0 GP attributes:

• The data length attribute must be greater than or equal to the burst size times the burst length.

• The streaming width attribute must be equal to the burst size for a fixed burst.

• The byte enable pointer attribute must be NULL on read transactions.

• If nonzero, the byte enable length attribute shall be a multiple of the burst size on write
transactions.

• If the address attribute is not aligned on the burst size, only the address of the first burst beat
must be unaligned, the subsequent beats addresses being aligned.

This does not enforce any requirements on slaves for read transactions, and this
must be represented with appropriate byte enables for write transactions.

You must use the AMBA-PV Extension class with AMBA-PV sockets, that is, sockets parameterized
with the amba_pv_protocol_types traits class. This follows the rules set out in the section Define a
new protocol traits class containing a typedef for tlm_generic_payload of the IEEE Standard for Standard
SystemC® Language Reference Manual, January 2012. The AMBA-PV Extension class is a mandatory
extension for the modeling of AMBA® buses. For more information, see the section Non-ignorable
and mandatory extensions in the same document.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

3.1 Attributes and methods
The AMBA-PV extension classes contain a set of private attributes and a set of public access
functions to get and set the values of these attributes. This section describes these attributes and
functions.

3.1.1 Class definitions

This section describes the class definitions.

The amba_pv_control base class includes attributes that relate to system-level caches, protection
units, atomic accesses, QoS, multiple regions, cache coherency, barrier transactions, and DVM. The
amba_pv_control class is used as an argument to the user layer interface methods.

namespace amba_pv {
enum amba_pv_domain_t {
 AMBA_PV_NON_SHAREABLE = 0x0,
 AMBA_PV_INNER_SHAREABLE = 0x1,
 AMBA_PV_OUTER_SHAREABLE = 0x2,
 AMBA_PV_SYSTEM = 0x3
};
std::string amba_pv_domain_string(amba_pv_domain_t);
enum amba_pv_bar_t {
 AMBA_PV_RESPECT_BARRIER = 0x0,
 AMBA_PV_MEMORY_BARRIER = 0x1,
 AMBA_PV_IGNORE_BARRIER = 0x2,
 AMBA_PV_SYNCHRONISATION_BARRIER = 0x3
};
std::string amba_pv_bar_string(amba_pv_bar_t);
enum amba_pv_snoop_t {
 AMBA_PV_READ_NO_SNOOP = 0x0,
 AMBA_PV_READ_ONCE = 0x0,
 AMBA_PV_READ_CLEAN = 0x2,
 AMBA_PV_READ_NOT_SHARED_DIRTY = 0x3,
 AMBA_PV_READ_SHARED = 0x1,
 AMBA_PV_READ_UNIQUE = 0x7,
 AMBA_PV_CLEAN_UNIQUE = 0xB,
 AMBA_PV_CLEAN_SHARED = 0x8,
 AMBA_PV_CLEAN_INVALID = 0x9,
 AMBA_PV_MAKE_UNIQUE = 0xC,
 AMBA_PV_MAKE_INVALID = 0xD,
 AMBA_PV_WRITE_NO_SNOOP = 0x0,
 AMBA_PV_WRITE_UNIQUE = 0x0,
 AMBA_PV_WRITE_LINE_UNIQUE = 0x1,
 AMBA_PV_WRITE_BACK = 0x3,
 AMBA_PV_WRITE_CLEAN = 0x2,
 AMBA_PV_EVICT = 0x4,
 AMBA_PV_BARRIER = 0x0,
 AMBA_PV_DVM_COMPLETE = 0xE,
 AMBA_PV_DVM_MESSAGE = 0xF
};
std::string amba_pv_snoop_read_string(amba_pv_snoop_t,amba_pv_domain_t,amba_pv_bar_t);
std::string amba_pv_snoop_write_string(amba_pv_snoop_t,amba_pv_domain_t,amba_pv_bar_t);

enum amba_pv_physical_address_space_t {
 AMBA_PV_SECURE_PAS = 0x0,
 AMBA_PV_NON_SECURE_PAS = 0x1,
 AMBA_PV_ROOT_PAS = 0x2,
 AMBA_PV_REALM_PAS = 0x3
};

class amba_pv_control {

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

 public:
 amba_pv_control();
 void set_id(unsigned int);
 unsigned int get_id() const;
 void set_privileged(bool = true);
 bool is_privileged() const;
 void set_non_secure(bool = true);
 bool is_non_secure() const;
 void set_physical_address_space(amba_pv_physical_address_space_t);
 amba_pv_physical_address_space_t get_physical_address_space() const;
 void set_instruction(bool = true);
 bool is_instruction() const;
 void set_exclusive(bool = true);
 bool is_exclusive() const;
 void set_locked(bool = true);
 bool is_locked() const;
 void set_bufferable(bool = true);
 bool is_bufferable() const;
 void set_cacheable(bool = true);
 bool is_cacheable() const;
 void set_read_allocate(bool = true);
 bool is_read_allocate() const;
 void set_write_allocate(bool = true);
 bool is_write_allocate() const;
 void set_modifiable(bool = true);
 bool is_modifiable() const;
 void set_read_other_allocate(bool = true);
 bool is_read_other_allocate() const;
 void set_write_other_allocate(bool = true);
 bool is_write_other_allocate() const;
 void set_gathering(bool = true);
 bool is_gathering() const;
 void set_reordering(bool = true);
 bool is_reordering() const;
 void set_transient(bool = true);
 bool is_transient() const;
 void set_translated_access(bool);
 bool is_translated_access() const;
 void set_mmu_flow_type(unsigned int);
 unsigned int get_mmu_flow_type() const;
 void set_qos(unsigned int);
 unsigned int get_qos() const;
 void set_region(unsigned int);
 unsigned int get_region() const;
 void set_snoop(amba_pv_snoop_t);
 amba_pv_snoop_t get_snoop() const;
 void set_domain(amba_pv_domain_t);
 amba_pv_domain_t get_domain() const;
 void set_bar(amba_pv_bar_t);
 amba_pv_bar_t get_bar() const;
 void set_user(unsigned int);
 unsigned int get_user() const;
};
enum amba_pv_resp_t {
 AMBA_PV_OKAY = 0x0,
 AMBA_PV_EXOKAY = 0x1,
 AMBA_PV_SLVERR = 0x2,
 AMBA_PV_DECERR = 0x3,
};
std::string amba_pv_resp_string(amba_pv_resp_t);
amba_pv_resp_t amba_pv_resp_from_tlm(tlm::tlm_response_status);
tlm::tlm_response_status amba_pv_resp_to_tlm(amba_pv_resp_t);
class amba_pv_response {
 public:
 amba_pv_response();
 amba_pv_response(amba_pv_resp_t);
 void set_resp(amba_pv_resp_t);
 amba_pv_resp_t get_resp() const;
 bool is_okay() const;
 void set_okay();
 bool is_exokay() const;

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

 void set_exokay();
 bool is_slverr() const;
 void set_slverr();
 bool is_decerr() const;
 void set_decerr();
 bool is_pass_dirty() const;
 void set_pass_dirty(bool=true);
 bool is_shared() const;
 void set_shared(bool=true);
 bool is_snoop_data_transfer() const;
 void set_snoop_data_transfer(bool=true);
 bool is_snoop_error() const;
 void set_snoop_error(bool=true);
 bool is_snoop_was_unique() const;
 void set_snoop_was_unique(bool=true);
 void reset();
};
enum amba_pv_dvm_message_t {
 AMBA_PV_TLB_INVALIDATE = 0x0,
 AMBA_PV_BRANCH_PREDICTOR_INVALIDATE = 0x1,
 AMBA_PV_PHYSICAL_INSTRUCTION_CACHE_INVALIDATE = 0x2,
 AMBA_PV_VIRTUAL_INSTRUCTION_CACHE_INVALIDATE = 0x3,
 AMBA_PV_SYNC = 0x4,
 AMBA_PV_HINT = 0x6
};
std::string amba_pv_dvm_message_string(amba_pv_dvm_message_t);
enum amba_pv_dvm_os_t {
 AMBA_PV_HYPERVISOR_OR_GUEST = 0x0,
 AMBA_PV_GUEST = 0x2,
 AMBA_PV_HYPERVISOR = 0x3
};
std::string amba_pv_dvm_os_string(amba_pv_dvm_os_t);
enum amba_pv_dvm_security_t {
 AMBA_PV_SECURE_AND_NON_SECURE = 0x0,
 AMBA_PV_SECURE_ONLY = 0x2,
 AMBA_PV_NON_SECURE_ONLY = 0x3
};
std::string amba_pv_dvm_security_string(amba_pv_dvm_security_t);
class amba_pv_dvm {
 public:
 amba_pv_dvm();
 void set_dvm_transaction(unsigned int);
 unsigned int get_dvm_transaction() const;
 void set_dvm_additional_address(sc_dt::uint64);
 bool is_dvm_additional_address_set() const;
 sc_dt::uint64 get_dvm_additional_address() const;
 void set_dvm_vmid(unsigned int);
 bool is_dvm_vmid_set() const;
 unsigned int get_dvm_vmid() const;
 void set_dvm_asid(unsigned int);
 bool is_dvm_asid_set() const;
 unsigned int get_dvm_asid() const;
 void set_dvm_virtual_index(unsigned int);
 bool is_dvm_virtual_index_set() const;
 unsigned int get_dvm_virtual_index() const;
 void set_dvm_completion(bool /* completion */ = true);
 bool is_dvm_completion_set() const;
 void set_dvm_message_type(amba_pv_dvm_message_t);
 amba_pv_dvm_message_t get_dvm_message_type() const;
 void set_dvm_os(amba_pv_dvm_os_t);
 amba_pv_dvm_os_t get_dvm_os() const;
 void set_dvm_security(amba_pv_dvm_security_t);
 amba_pv_dvm_security_t get_dvm_security() const;
 void reset();
};
enum amba_pv_burst_t {
 AMBA_PV_FIXED = 0,
 AMBA_PV_INCR,
 AMBA_PV_WRAP
};
std::string amba_pv_burst_string(amba_pv_burst_t);

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

class amba_pv_extension:
 public tlm::tlm_extension<amba_pv_extension>,
 public amba_pv_control
 public amba_pv_dvm {
 public:
 amba_pv_extension();
 amba_pv_extension(size_t, const amba_pv_control *);
 amba_pv_extension(size_t,
 size_t,
 const amba_pv_control *,
 amba_pv_burst_t);
 virtual tlm::tlm_extension_base * clone() const;
 virtual void copy_from(tlm::tlm_extension_base const &);
 void set_length(unsigned int);
 unsigned int get_length() const;
 void set_size(unsigned int);
 unsigned int get_size() const;
 void set_burst(amba_pv_burst_t);
 amba_pv_burst_t get_burst() const;
 void set_resp(amba_pv_resp_t);
 amba_pv_resp_t get_resp() const;
 bool is_okay() const;
 void set_okay();
 bool is_exokay() const;
 void set_exokay();
 bool is_slverr() const;
 void set_slverr();
 bool is_decerr() const;
 void set_decerr();
 bool is_pass_dirty() const;
 void set_pass_dirty(bool);
 bool is_shared() const;
 void set_shared(bool);
 bool is_snoop_data_transfer() const;
 void set_snoop_data_transfer(bool=true);
 bool is_snoop_error() const;
 void set_snoop_error(bool=true);
 bool is_snoop_was_unique() const;
 void set_snoop_was_unique(bool=true);
 void set_response_array_ptr(amba_pv_response*);
 amba_pv_response* get_response_array_ptr();
 void set_response_array_complete(bool=true);
 bool is_response_array_complete();
 void reset();
 void reset(unsigned int,
 const amba_pv_control *);
 void reset(unsigned int,
 unsigned int,
 const amba_pv_control *,
 amba_pv_burst_t);
};
sc_dt::uint64 amba_pv_address(const sc_dt::uint64 &,
 unsigned int,
 unsigned int,
 amba_pv_burst_t,
 unsigned int);
}

Related information
User layer on page 47

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

3.1.2 Constructors, copying, and addressing

The default constructors must set the AMBA-PV extension attributes to their default values.

The constructor amba_pv_extension(size_t, const amba_pv_control *) must set the burst
size attribute value to the value passed as argument, and must set the attributes values of the
amba_pv_control base class to the values of the attributes of the amba_pv_control object whose
address is passed as argument, if not NULL.

The constructor amba_pv_extension(size_t, size_t, const amba_pv_control *,
amba_pv_burst_t) must set the burst size attribute value to the value passed as argument, must set
the burst length attribute value to the value passed as argument, must set the burst type attribute
value to the value passed as argument, and must set the attribute values of the amba_pv_control
base class to the values of the attributes of the amba_pv_control object whose address is passed as
argument, if not NULL

The virtual method clone() must create a copy of the AMBA-PV extension object, including all its
attributes.

The virtual method copy_from() must modify the current AMBA-PV extension object by copying
the attributes of another AMBA-PV extension object.

The global function amba_pv_address() must compute the address of a transfer or beat within a
burst given the transaction address, burst length, burst size, burst type, and beat number.

3.1.3 Default values and modifiability of attributes

The master must set the value of every AMBA-PV extension attribute prior to passing the
transaction object through an interface method call.

Table 3-1: Default values and modifiability of the AMBA-PV extension attributes

Attribute Default value Modifiable by interconnect Modifiable by slave

Burst length 1 No No

Burst size 8 No No

Burst type AMBA_PV_INCR No No

ID 0 Yes No

Privileged false No No

Non-secure false No No

Instruction false No No

Exclusive false Yes 1 No

Locked false No No

Bufferable false No No

1 As in the case of an exclusive monitor that flattens the exclusive access before passing it downstream.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

Attribute Default value Modifiable by interconnect Modifiable by slave

Modifiable/cacheable2 false No No

Read allocate false No No

Write allocate false No No

Read other allocate false No No

Write other allocate false No No

QoS 0 Yes No

Region 0 No No

Domain AMBA_PV_NON_SHAREABLE No No

Snoop AMBA_PV_READ_NO_SNOOP3 No No

Bar AMBA_PV_RESPECT_BARRIER No No

Response AMBA_PV_OKAY Yes Yes

PassDirty false Yes Yes

IsShared false Yes Yes

DataTransfer4 false Yes Yes

Error4 false Yes Yes

WasUnique4 false Yes Yes

ResponseArray null No No

ResponseArray complete false Yes Yes

If an AMBA-PV extension object is re-used, the modifiability rules cease to apply at the end of the
lifetime of the corresponding transaction instance. The rules re-apply if the AMBA-PV extension
object is re-used for a new transaction.

After adding the AMBA-PV extension to a transaction object and passing that transaction
object as an argument to an interface method call (b_transport(), get_direct_mem_ptr(), or
transport_dbg()), the master must not modify any of the AMBA-PV extension attributes during
the lifetime of the transaction.

An interconnect can modify the ID attribute, but only before passing the corresponding
transaction as an argument to an interface method call (b_transport(), get_direct_mem_ptr(), or
transport_dbg()) on the forward path. When the interconnect has passed a pointer to the AMBA-
PV extension to a downstream model, it is not permitted to modify the ID of that extension object
again during the entire lifetime of the corresponding transaction.

As a consequence of the above rule, the ID attribute is valid immediately on entering any of the
method calls b_transport(), get_direct_mem_ptr(), or transport_dbg(). Following the return
from any of those calls, the ID attribute has the value set by the interconnect furthest downstream.

2 The modifiable attribute is identical to the cacheable attribute but has been renamed in AXI4 to better describe the
required functionality.

3 AMBA_PV_WRITE_NO_SNOOP and AMBA_PV_READ_NO_SNOOP have the same encoding representation.
4 These attributes are only valid responses to upstream snoops, typically from interconnect to master.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

The interconnect and slave can modify the response attribute at any time between having
first received the corresponding transaction object and the time at which they pass a
response upstream by returning control from the b_transport(), get_direct_mem_ptr(), or
transport_dbg() methods.

The master can assume it is seeing the value of the AMBA-PV extension response attribute only
after it has received a response for the corresponding transaction.

If the AMBA-PV extension is used for the direct memory or debug transport interfaces, the
modifiability rules given here must apply to the appropriate attributes of the AMBA-PV extension,
namely the ID, privileged, non-secure, and instruction attributes.

3.1.4 Burst length attribute

This attribute specifies the number of data transfers that occur within this burst.

It must have a value between 1 and 256 for defined-length burst. Additional restrictions apply
depending on the value of the burst type attribute.

The method set_length() must set this attribute to the value passed as argument. The method
get_length() must return the value of this attribute.

The default value of this attribute must be 1, for single transfer.

This attribute is specific to the AXI, ACE, and AHB buses. It is ignored for transactions modeling
transfers on the APB bus.

The maximum burst length value for AXI3 and AHB buses is 16, and the maximum value for AXI4
and ACE buses is 256.

Related information
Extension checks on page 79

3.1.5 Burst size attribute

This attribute specifies the maximum number of data bytes to transfer in each beat, or data
transfer, within a burst. It must have a value of 1, 2, 4, 8, 16, 32, 64, or 128.

The method set_size() must set this attribute to the value passed as argument. The method
get_size() must return the value of this attribute.

The value of this attribute must be less than or equal to BUSWIDTH / 8, where BUSWIDTH is the
template parameter of the socket classes from AMBA-PV (or classes derived from these) and
expressed in bits.

The default value of this attribute must be 8, for 64-bit wide transfer.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

This attribute is specific to the AXI, ACE, and AHB buses. It is ignored for transactions modeling
transfers on the APB bus.

3.1.6 Burst type attribute

This attribute specifies the burst type.

The method set_burst() must set this attribute to the value passed as argument. The method
get_burst() must return the value of this attribute.

A transaction with a burst type attribute value of AMBA_PV_WRAP must have an aligned address.

The default value of this attribute must be AMBA_PV_INCR, for incrementing burst.

This attribute is specific to the AXI, ACE, and AHB buses. It is ignored for transactions modeling
transfers on the APB bus.

3.1.7 ID attribute

This attribute is mainly used for exclusive accesses.

The method set_id() must set this attribute to the value passed as argument. The method
get_id() must return the value of this attribute.

This attribute must be set by the master originating the transaction. The interconnect must modify
this attribute to ensure its uniqueness across all its masters before passing the transaction to the
addressed slave.

The default value of this attribute must be 0.

This attribute is specific to the AXI, ACE, and AHB buses. It is ignored for transactions modeling
transfers on the APB bus.

3.1.8 Privileged attribute

This attribute enables masters to indicate their processing mode. A privileged transaction typically
has a greater level of access within the system.

The method set_privileged() must set this attribute to the value passed as argument. The
method is_privileged() must return the value of this attribute.

The default value of this attribute must be false.

This attribute is specific to the AXI, ACE, and AHB buses. It is ignored for transactions modeling
transfers on the APB bus.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

3.1.9 Non-secure attribute

This attribute enables differentiating between secure and non-secure transactions.

The method set_non_secure() must set this attribute to the value passed as argument. The
method is_non_secure() must return the value of this attribute.

The default value of this attribute must be false.

This attribute is specific to the AXI and ACE buses. It is ignored for transactions modeling transfers
on the AHB and APB buses.

3.1.10 Physical address space attribute

This attribute enables differentiating between secure, non-secure, root, or realm transactions.

The method set_physical_address_space() sets this attribute to the value passed as the
argument. The method get_physical_address_space() returns the value of this attribute.

The default value is secure (AMBA_PV_SECURE_PAS).

3.1.11 Exclusive attribute

This attribute selects exclusive access, and the response attribute indicates the success or failure of
the exclusive access.

The method set_exclusive() must set this attribute to the value passed as argument. The method
is_exclusive() must return the value of this attribute.

The AMBA-PV package provides an exclusive monitor model that supports exclusive access and
that can be added before your slave. It removes the requirement for your slave to model additional
logic to support exclusive access.

Arm recommends that masters do not use the direct memory interface for exclusive accesses.

The address of an exclusive access must be aligned to the total number of bytes in the transaction
as determined by the value of the burst size attribute multiplied by the value of the burst length
attribute.

The number of bytes to be transferred in an exclusive access must be a power of 2 and less than or
equal to 128.

Arm recommends that every exclusive write has an earlier outstanding exclusive read with the
same value for the ID attribute.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

Arm recommends that the value of the address, burst size, and burst length attributes of an
exclusive write with a given value for the ID attribute is the same as the value of the address, burst
size, and burst length attributes of the preceding exclusive read with the same value for the ID
attribute.

An AMBA_PV_EXOKAY value for the response attribute can only be given to an exclusive access.

This attribute must not have the value true together with the locked attribute.

The default value of this attribute must be false.

This attribute is specific to the AXI and ACE buses. It is ignored for transactions modeling transfers
on the AHB and APB buses.

Related information
Exclusive monitor on page 52
Response attribute on page 32

3.1.12 Locked attribute

Locked transactions, those for which this attribute has the value true, require that the interconnect
prevents any other transactions occurring while the locked sequence is in progress and can thus
have an impact on the interconnect performance.

The method set_locked() must set this attribute to the value passed as argument. The method
is_locked() must return the value of this attribute.

Arm recommends that locked accesses are only used to support legacy devices. Locked
transactions are currently not supported by the AMBA-PV bus decoder.

This attribute must not have the value true together with the exclusive attribute.

The default value of this attribute must be false.

This attribute is specific to the AXI3 and AHB buses. It is ignored for transactions modeling
transfers on the APB, AXI4, and ACE buses.

3.1.13 Bufferable attribute

This attribute specifies whether or not the associated transaction is bufferable.

The method set_bufferable() must set this attribute to the value passed as argument. The
method is_bufferable() must return the value of this attribute.

A bufferable transaction can be delayed in reaching its final destination. This is usually only relevant
to writes.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

The default value of this attribute must be false.

This attribute is specific to the AXI and AHB buses. It is ignored for transactions modeling transfers
on the APB bus.

3.1.14 Modifiable/cacheable attribute

The modifiable attribute specifies whether the associated transaction is modifiable.

The methods set_modifiable() and set_cacheable() must set this attribute to the value passed
as argument. The methods is_modifiable() and is_cacheable() must return the value of this
attribute.

For write transactions, a number of different writes can be merged together. For read transactions,
a location can be pre-fetched or can be fetched only once for multiple reads. To determine if a
transaction must be cached, use this attribute with the read allocate and write allocate attributes.

The default value of this attribute must be false.

This attribute is specific to the AXI and AHB buses. It is ignored for transactions modeling transfers
on the APB bus.

The cacheable attribute used by the AXI3 and AHB buses has been renamed this attribute for
AXI4 and ACE to better describe the required function of the attribute. The actual functionality is
unchanged.

Related information
Read allocate attribute on page 26
Write allocate attribute on page 26

3.1.15 Read allocate attribute

This attribute specifies whether or not this transaction must be allocated if it is a read and it misses
in the cache.

The method set_read_allocate() must set this attribute to the value passed as argument. The
method is_read_allocate() must return the value of this attribute.

The value of this attribute must not be set to true if the value of the modifiable attribute is set to
false.

The default value of this attribute must be false.

This attribute is specific to the AXI and ACE buses. It is ignored for transactions modeling transfers
on the AHB and APB buses.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

3.1.16 Write allocate attribute

This attribute specifies whether or not this transaction must be allocated if it is a write and it
misses in the cache.

The method set_write_allocate() must set this attribute to the value passed as argument. The
method is_write_allocate() must return the value of this attribute.

The value of this attribute must not be set to true if the value of the modifiable attribute is set to
false.

The default value of this attribute must be false.

This attribute is specific to the AXI and ACE buses. It is ignored for transactions modeling transfers
on the AHB and APB buses.

3.1.17 Read other allocate attribute

This attribute indicates that the location could have been previously allocated in the cache because
of a write transaction or because of the actions of another master.

The value of this attribute must not be set to true if the value of the modifiable attribute is set to
false.

The method set_read_other_allocate() sets this attribute to the value passed as argument. The
method is_read_other_allocate() returns the value of this attribute.

The default value of this attribute is false.

This attribute is specific to the AXI4 and ACE buses. It is ignored for transactions modeling
transfers on the AHB and APB buses.

To maintain compatibility with AXI3, this attribute may also be accessed using the write allocate
attribute methods set_write_allocate() and is_write_allocate().

3.1.18 Write other allocate attribute

This attribute indicates that the location could have been previously allocated in the cache because
of a read transaction or because of the actions of another master.

The method set_write_other_allocate() sets this attribute to the value passed as argument. The
method is_write_other_allocate() returns the value of this attribute.

The value of this attribute must not be set to true if the value of the modifiable attribute is set to
false.

The default value of this attribute is false.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

This attribute is specific to the AXI4 and ACE buses. It is ignored for transactions modeling
transfers on the AHB and APB buses.

To maintain compatibility with AXI3, this attribute may also be accessed using the read allocate
attribute methods set_read_allocate() and is_read_allocate().

3.1.19 Quality of Service (QoS) attribute

This attribute supports Quality of Service (QoS) schemes.

The bus protocol does not specify the exact use of the QoS identifier but recommends that it is
used as a priority indicator.

The method set_qos() sets this attribute to the value passed as argument. The method get_qos()
returns the value of this attribute.

The default value of this attribute is 0, which indicates that the interface is not participating in any
QoS scheme.

This attribute is specific to the AXI4 and ACE buses. It is ignored for transactions modeling
transfers on the AXI3, AHB and APB buses.

For AXI4 and ACE this indicator attribute value must be between 0 and 15 inclusive.

3.1.20 Region attribute

This attribute supports multiple region interfaces. It uniquely identifies a region.

The method set_region() sets this attribute to the value passed as argument. The method
get_region() returns the value of this attribute.

The default value of this attribute is 0.

This attribute is specific to the AXI4 and ACE buses. It is ignored for transactions modeling
transfers on the AXI3, AHB and APB buses.

For AXI4 and ACE the value of this indicator attribute must be between 0 and 15 inclusive.

3.1.21 Domain attribute

This attribute indicates the shareability domain for a transaction.

The method set_domain() sets this attribute to the value passed as argument. The method
get_domain() returns the value of this attribute.

The default value of this attribute is AMBA_PV_NON_SHAREABLE.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

This attribute is specific to ACE buses. It is ignored for transactions modeling transfers on the AXI,
AHB and APB buses.

The encoding of the value of this attribute exactly matches the encoding used on the ACE
channels AWDOMAIN and ARDOMAIN.

3.1.22 Snoop attribute

This attribute specifies the transaction type for shareable transactions.

The method set_snoop() sets this attribute to the value passed as argument. The method
get_snoop() returns the value of this attribute.

The default value of this attribute is encoded as 0 which for read transactions represents
AMBA_PV_READ_NO_SNOOP and for write transactions AMBA_PV_WRITE_NO_SNOOP.

The meaning of a given snoop attribute value encoding is dependent on the domain and bar
attribute values and whether the transaction is a read or a write.

This attribute is specific to ACE buses. It is ignored for transactions modeling transfers on the AXI,
AHB, and APB buses.

The encoding of this attribute value exactly matches the encoding used on the ACE channels
AWSNOOP and ARSNOOP.

3.1.23 Bar attribute

This attribute indicates barrier information for the transaction.

The method set_bar() sets this attribute to the value passed as argument. The method get_bar()
returns the value of this attribute.

The default value of this attribute is AMBA_PV_RESPECT_BARRIER.

This attribute is specific to ACE buses. It is ignored for transactions modeling transfers on the AXI,
AHB and APB buses.

The encoding of this attribute value exactly matches the encoding used on the ACE channels
AWBAR and ARBAR.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

3.1.24 DVM messages

To provide a Programmer’s View (PV) model of Distributed Virtual Memory (DVM) transactions, the
AMBA-PV extension class contains a set of private attributes and a set of public access methods
for DVM messages.

A given transaction only represents a DVM message if the snoop attribute is set to
AMBA_PV_DVM_MESSAGE.

DVM messages are specific to ACE and ACE-Lite buses. They are ignored for transactions
modeling transfers on the AXI, AHB and APB buses.

3.1.24.1 DVM default values

This section defines the DVM default values.

Table 3-2: DVM default values for the AMBA-PV extension attributes

Attribute Default value Default set status

VMID 0 false

ASID 0 false

Virtual Index 0 false

Completion false -

Message type AMBA_PV_TLB_INVALIDATE -

Operating system AMBA_PV_HYPERVISOR_OR_GUEST -

Security AMBA_PV_SECURE_AND_NON_SECURE -

Additional address 0 false

DVM transaction 0 -

3.1.24.2 DVM VMID attribute

This attribute defines the Virtual Machine Identifier for some DVM operations.

The method is_dvm_vmid_set() returns true if this attribute has been set. If the VMID attribute
has not been set then this attribute value should not be used.

The method get_dvm_vmid() returns the value of this attribute. The method set_dvm_vmid() sets
the value of this attribute.

This attribute is not set by default. The default value of this attribute is 0.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

3.1.24.3 DVM ASID attribute

This attribute defines the Address Space Identifier for some DVM operations.

The method is_dvm_asid_set() returns true if this attribute has been set. If this attribute has not
been set then this attribute value should not be used.

The method get_dvm_asid() returns the value of this attribute. The method set_dvm_asid() sets
the value of this attribute.

This attribute is not set by default. The default value of this attribute is 0.

3.1.24.4 DVM Virtual Index attribute

You can use this attribute as part of the physical address by physical instruction cache invalidate
DVM messages.

The method is_dvm_virtual_index_set() returns true if this attribute has been set. If this
attribute has not been set then this attribute value should not be used.

The method get_dvm_virtual_index() returns the value of this attribute. The method
set_dvm_virtual_index() sets the value of this attribute.

This attribute is not set by default. The default value of this attribute is 0.

3.1.24.5 DVM Completion attribute

This attribute identifies whether completion is required for DVM Sync messages.

The method is_dvm_completion_set() returns true if this attribute has been set. The method
set_dvm_completion() sets the value of this attribute.

By default this attribute has the value false.

3.1.24.6 DVM Message type attribute

This attribute specifies the required DVM operation.

The method get_dvm_message_type() returns the value of this attribute. The method
set_dvm_message_type() sets the value of this attribute.

By default this attribute has the value AMBA_PV_TLB_INVALIDATE.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

3.1.24.7 DVM Operating system attribute

This attribute specifies the operating system that the DVM operation applies to.

The method get_dvm_os() returns the value of this attribute. The method set_dvm_os() sets the
value of this attribute.

By default this attribute has the value AMBA_PV_HYPERVISOR_OR_GUEST.

3.1.24.8 DVM Security attribute

This attribute specifies how the DVM operation applies to the secure and non-secure worlds.

The method get_dvm_security() returns the value of this attribute. The method
set_dvm_security() sets the value of this attribute.

By default this attribute has the value AMBA_PV_SECURE_AND_NON_SECURE.

3.1.24.9 DVM Additional address attribute

This attribute defines the additional address required by some DVM operations.

The method is_dvm_additional_address_set() returns true if this attribute has been set. If this
attribute has not been set then this attribute value should not be used.

The method get_dvm_additional_address() returns the value of this attribute. The method
set_dvm_additional_address() sets the value of this attribute.

This attribute is not set by default. The default value of this attribute is 0.

3.1.24.10 DVM transaction encoding

For ACE buses the DVM attributes are packed and encoded into the least significant 32 bits of the
address channel.

The method get_dvm_transaction() returns the value of the VMID, ASID, Virtual Index,
Completion, Message type, Operating system, and Security attributes as they would be packed and
encoded on the address channel.

The method set_dvm_transaction() sets the value of the VMID, ASID, Virtual Index, Completion,
Message type, Operating system, and Security attributes using a single 32-bit value encoded as the
attributes would be packed and encoded on the address channel.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

3.1.25 Response attribute

This section describes the response attribute.

The method set_resp() must set the response attribute to the value passed as argument. The
method get_resp() must return the value of the response attribute.

The method is_okay() must return true if and only if the value of the response attribute
is AMBA_PV_OKAY. The method set_okay() must set the value of the response attribute to
AMBA_PV_OKAY.

The method is_exokay() must return true if and only if the value of the response attribute
is AMBA_PV_EXOKAY. The method set_exokay() must set the value of the response attribute to
AMBA_PV_EXOKAY.

The method is_slverr() must return true if and only if the value of the response attribute
is AMBA_PV_SLVERR. The method set_slverr() must set the value of the response attribute to
AMBA_PV_SLVERR.

The method is_decerr() must return true if and only if the value of the response attribute
is AMBA_PV_DECERR. The method set_decerr() must set the value of the response attribute to
AMBA_PV_DECERR.

The method is_incomplete() must return true if and only if the value of the response attribute is
AMBA_PV_INCOMPLETE. The method set_incomplete() must set the value of the response attribute
to AMBA_PV_INCOMPLETE.

Table 3-3: AMBA-PV responses

Value Interpretation

AMBA_PV_OKAY A normal access success, or an exclusive access failure.

AMBA_PV_EXOKAY Either the read or write portion of an exclusive access has been successful.

AMBA_PV_SLVERR The access has reached the slave successfully, but the slave returned an error condition to the originating
master.

AMBA_PV_DECERR There is no slave at the transaction address. This is typically generated by an interconnect component.

AMBA_PV_INCOMPLETE The slave did not attempt to perform the access.

The response attribute must be set to AMBA_PV_OKAY by the master, and might be overwritten by
the slave or the interconnect.

If the slave is able to execute the transaction, it must set the response attribute to AMBA_PV_OKAY. If
not, the slave must set the response attribute to AMBA_PV_SLVERR.

If the interconnect is able to pass the transaction downstream to the addressed slave, it must
not overwrite the response attribute. If not, the interconnect must set the response attribute to
AMBA_PV_DECERR.

The default value of the response attribute must be AMBA_PV_OKAY.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

The slave or interconnect is responsible for setting the response attribute before returning control
from the b_transport() method of the TLM 2.0 blocking transport interface.

Arm recommends that the master always checks the value of the response attribute after the
completion of the transaction.

The global function amba_pv_resp_string() must return the response value passed as argument as
a text string.

The global function amba_pv_resp_from_tlm() must translate the TLM 2.0 response status value
passed as argument into an AMBA-PV response value. The global function amba_pv_resp_to_tlm()
must translate the AMBA-PV response value passed as argument into a TLM 2.0 response status
value.

Table 3-4: Translation between AMBA-PV response and TLM 2.0 response status

AMBA-PV response TLM 2.0 response status

AMBA_PV_OKAY TLM_OK_RESPONSE

AMBA_PV_EXOKAY TLM_OK_RESPONSE 5

AMBA_PV_SLVERR TLM_GENERIC_ERROR_RESPONSE, TLM_COMMAND_ERROR_RESPONSE, TLM_BURST_ERROR_RESPONSE,
TLM_BYTE_ENABLE_ERROR_RESPONSE

AMBA_PV_DECERR TLM_ADDRESS_ERROR_RESPONSE

AMBA_PV_INCOMPLETE TLM_INCOMPLETE_RESPONSE

3.1.26 ACE response attributes PassDirty and IsShared

On ACE and ACE-Lite buses the additional response attributes PassDirty and IsShared are
supported.

When true the PassDirty attribute indicates that before the snoop process, the cache line was held
in a Dirty state and the responsibility for writing the cache line back to memory is being passed to
the initiating master or interconnect.

The method is_pass_dirty() returns the value of the response PassDirty signal. The method
set_pass_dirty() sets the value of the PassDirty attribute.

The default value of the PassDirty attribute is false.

When true the IsShared attribute indicates that the snooped cache retains a copy of the cache line
after the snoop process has completed.

The method is_shared() returns the value of the response IsShared attribute. The method
set_shared() sets the value of the IsShared attribute.

The default value of the IsShared attribute is false.

5 The exclusive attribute of the associated transaction must have a value of true.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

3.1.27 ACE snoop response attributes DataTransfer, Error, and WasUnique

On ACE buses additional snoop response attributes DataTransfer, Error and WasUnique are
supported.

When true the DataTransfer attribute indicates that the snoop response includes a transfer of
data.

The method is_snoop_data_transfer() returns the value of the DataTransfer attribute. The
method set_snoop_data_transfer() sets the value of the DataTransfer attribute.

The default value of the DataTransfer attribute is false.

When true the Error attribute indicates that the snooped cache line is in error.

The method is_snoop_error() returns the value of the Error attribute. The method
set_snoop_error() sets the value of the Error attribute.

The default value of the Error attribute is false.

When true the WasUnique attribute indicates that the snooped cache line was held in a Unique
state before the snoop process.

The method is_snoop_was_unique() returns the value of the snoop response WasUnique attribute.
The method set_snoop_was_unique() sets the value of the WasUnique attribute.

The default value of the WasUnique attribute is false.

3.1.28 Response array attribute

The response array provides an alternative path for slaves to return response status; with a
separate response status for each beat of a burst transaction.

The method get_response_array_ptr() returns a pointer to the response array or null if the
master has not set an array response pointer. The method set_response_array_ptr() sets a
pointer to a response array.

The method set_response_array_complete() is used by the slave to set the response array
completion flag that when true indicates that the elements of the response array have been
set with response data. The method is_response_array_complete() returns the status of the
response array completion flag.

If a response array is going to be made available it is the responsibility of the master to set the
response array pointer. The size of the response array must be at least as large as the burst length
attribute.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

A slave can choose to use the response attribute to report response status with a single response
for the entire transaction even if a response array has been made available. But a slave can also
optionally check for a response array and if an array pointer is available set the response status in
the response array instead of using the response attribute. The slave must not set elements of the
response array beyond the value of the burst length attribute.

If a slave uses the response array it must set the response array completion flag to true.

The master reads response status from the response attribute unless it has both set an array
response pointer and the slave has set the response array completion status to true.

3.1.28.1 Response array element attributes

These attributes have the same semantics and accessors as the equivalent response attributes.

Table 3-5: AMBA-PV response array element attributes

Attribute Default value Set methods Get methods

Response AMBA_PV_OK set_resp(), set_okay(), set_exokay(),
set_slverr(), set_decerr()

get_resp(), is_okay(), is_exokay(),
is_slverr(), is_decerr()

PassDirty false set_pass_dirty() is_pass_dirty()

IsShared false set_is_shared() is_shared()

DataTransfer false set_snoop_data_transfer() is_snoop_data_transfer()

Error false set_snoop_error() is_snoop_error()

WasUnique false set_snoop_was_unique() is_snoop_was_unique()

Related information
Response attribute on page 32
ACE response attributes PassDirty and IsShared on page 34
ACE snoop response attributes DataTransfer, Error, and WasUnique on page 35

3.1.29 Data organization

In general, the organization of the AMBA-PV data array is in “bus order”, independent of the
organization of local storage within the master or the slave.

The contents of the data and byte enable arrays must be interpreted using the burst size attribute
of the AMBA-PV extension. The size of a transferred word, or beat, within a transaction, is defined
by the burst size attribute. The data array must not contain part-word, even when the transaction
address is unaligned.

The word boundaries within the data and byte enable arrays must be address-aligned, that is, they
must fall on addresses that are integer multiples of the burst size. The data length attribute must be
greater than or equal to the burst size times the burst length.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

The local address of a word or beat within the data array is given by the amba_pv_address()
function:

 amba_pv_address(address, burst_length, burst_size, burst_type, N);

where N denotes the beat number as in 1-16.

3.1.30 Direct memory interface

For the AMBA-PV protocol, any of the AMBA-PV extension attributes can further indicate the
address of the requested DMI access. The master must set them.

The slave can service DMI requests differently depending on the value of any AMBA-PV extension
attributes. Arm recommends that the master sets all AMBA-PV extension attributes before
requesting DMI access.

Related information
Default values and modifiability of attributes on page 20

3.1.31 Debug transport interface

For the AMBA-PV protocol, any of the AMBA-PV extension attributes can further indicate the
address of the debug access. The master must set them.

The slave can service debug accesses differently depending on the value of any AMBA-PV
extension attributes. Arm® recommends that the master sets all AMBA-PV extension attributes
before performing debug accesses.

Related information
Default values and modifiability of attributes on page 20

3.2 AMBA signal mapping
This section describes the relationships between the AMBA® hardware signals and the private
attributes of the AMBA-PV extension and the TLM 2.0 Generic Payload.

The tlm_generic_payload::m_length attribute must be greater than or equal to
amba_pv_addressing::m_size multiplied by amba_pv_addressing::m_length.

For fixed bursts, the tlm_generic_payload::m_streaming_width attribute holds the same
information as the amba_pv_addressing::m_size attribute.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

Table 3-6: Address channels

Signal Variable Description

AxID amba_pv_control::m_id ID.

AxADDR tlm_generic_payload::m_address Address.

AxADDR amba_pv_extension::m_dvm_transaction DVM
message
attributes.

AxLEN amba_pv_extension::m_length Burst length.

AxSIZE amba_pv_extension::m_size Burst size.

AxBURST amba_pv_extension::m_burst Burst type.

AxLOCK amba_pv_control::m_exclusive amba_pv_control::m_locked Lock type.

AxCACHE amba_pv_control::m_bufferable amba_pv_control::m_modifiable amba_pv_
control::m_axcache_allocate_bit2 amba_pv_control::m_axcache_allocate_bit3

Cache type.

AxPROT amba_pv_control::m_privileged amba_pv_control::m_non_secure amba_
pv_control::m_instruction

Protection
type.

AxQOS amba_pv_control::m_qos Quality of
service type.

AxREGION amba_pv_control::m_region Region type.

AxDOMAIN amba_pv_control::m_domain Domain
type.

AxSNOOP amba_pv_control::m_snoop Snoop type.

AxBAR amba_pv_control::m_bar Barrier type.

AxUSER amba_pv_control::m_user User defined
signals.

AxMMUFLOW amba_pv_control::m_mmu_flow_type MMU flow
type.

Table 3-7: Write data and response channels

Signal Variable Description

WID, BID amba_pv_control::m_id ID.

WDATA tlm_generic_payload::m_data tlm_generic_payload::m_length Write data.

WSTRB tlm_generic_payload::m_byte_enable tlm_generic_payload::m_byte_enable_length Write strobes.

BRESP tlm_generic_payload::m_response_status amba_pv_extension::m_response Write response.

Table 3-8: Read data channels

Signal Variable Description

RID amba_pv_extension::m_id ID.

RDATA tlm_generic_payload::m_data tlm_generic_payload::m_length Read data.

RRESP tlm_generic_payload::m_response_status amba_pv_extension::m_response Read response.

Table 3-9: Snoop data channels

Signal Variable Description

CDDATA tlm_generic_payload::m_data tlm_generic_payload::m_length Snoop data.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

Signal Variable Description

CRRESP tlm_generic_payload::m_response_status amba_pv_extension::m_response Snoop response.

Table 3-10: Unmapped signals

Signal Variable Description

xVALID Not applicable at PV level. Address/data/response valid.

xREADY Not applicable at PV level. Address/data/response ready.

xLAST Not applicable at PV level. Read/write last.

xACK Not applicable at PV level. Read/Write acknowledge.

3.3 Mapping for AMBA buses
This section describes the control signal mappings, response mappings, and response bit mappings
for AMBA® buses.

The following table shows the control signal mappings for AXI, ACE, and AHB buses. The APB bus
does not use these control signals.

Table 3-11: Signal mappings for amba_pv_control

amba_pv_control ACE, ACE-Lite AXI4 AXI3 AHB AMBA5
AHB

CHI

bool is_privileged() const; void
set_privileged(bool = true);

AxPROT[0] AxPROT[0] AxPROT[0] HPROT[1] HPROT[1] -

bool is_instruction() const; void
set_instruction(bool = true);

AxPROT[2] AxPROT[2] AxPROT[2] HPROT[0] HPROT[0] -

bool is_non_secure() const; void
set_non_secure(bool = true);

AxPROT[1] AxPROT[1] AxPROT[1] - - NS

bool is_locked() const; void set_
locked(bool = true);

- - AxLOCK = 2 HLOCK HLOCK -

bool is_exclusive() const; void
set_exclusive(bool = true);

AxLOCK AxLOCK AxLOCK = 1 - - Excl

void set_bufferable(bool = true);
bool is_bufferable() const;

AxCACHE[0] AxCACHE[0] AxCACHE[0] HPROT[2] HPROT[2] MemAttr[3:0],
SnpAttr[1:0],
Order[1:0]

void set_cacheable(bool = true);
bool is_cacheable() const;

- - AxCACHE[1] HPROT[3] HPROT[3] MemAttr[2]

void set_modifiable(bool = true);
bool is_modifiable() const;

AxCACHE[1] AxCACHE[1] - - - MemAttr[3:0],
SnpAttr[1:0],
Order[1:0]

void set_read_allocate(bool =
true); bool is_read_allocate()
const;

AxCACHE[2] AxCACHE[2] AxCACHE[2] - HPROT[5] MemAttr[3]

void set_write_allocate(bool =
true); bool is_write_allocate()
const;

AxCACHE[3] AxCACHE[3] AxCACHE[3] - HPROT[5] MemAttr[3]

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

amba_pv_control ACE, ACE-Lite AXI4 AXI3 AHB AMBA5
AHB

CHI

void set_read_other_allocate(bool
= true); bool is_read_other_
allocate() const;

AxCACHE[3] AxCACHE[3] - - HPROT[4] -

void set_write_other_
allocate(bool = true); bool is_
write_other_allocate() const;

AxCACHE[2] AxCACHE[2] - - HPROT[4] -

void set_qos(unsigned int);
unsigned int get_qos() const;

AxQOS[3:0] AxQOS[3:0] - - - QOS[3:0]

void set_region(unsigned int);
unsigned int get_region() const;

AxREGION[3:0] AxREGION[3:0] - - - -

void set_domain(amba_pv_
domain_t); amba_pv_domain_t get_
domain() const;6

AxDOMAIN[1:0] - - - HPROT[6] SnpAttr[1:0]

void set_snoop(amba_pv_snoop_t);
amba_pv_snoop_t get_snoop()
const;

AxSNOOP[3:0] - - - - REQ channel
Opcode[4:0]

void set_bar(amba_pv_bar_t); amba_
pv_bar_t get_bar() const;

AxBAR[1:0] - - - - -

void set_user(unsigned int);
unsigned int get_user() const;

AxUSER AxUSER AxUSER HxUSER HxUSER -

The following table shows the response mappings for AXI, ACE, AHB, and APB buses:

Table 3-12: Response mappings for amba_pv_resp_t

amba_pv_resp_t AXI xRESP AHB HRESP AMBA5 AHB APB PSLVERR

AMBA_PV_OKAY OKAY OKAY OKAY LOW

AMBA_PV_EXOKAY EXOKAY - EXOKAY -

AMBA_PV_SLVERR SLVERR ERROR ERROR HIGH

AMBA_PV_DECERR DECERR ERROR ERROR HIGH

PSLVERR signal support is not a requirement for APB peripherals. If a peripheral
does not support this signal then the corresponding appropriate response is
AMBA_PV_OKAY.

The following table shows the additional response bit mappings for the ACE bus:

Table 3-13: Mappings for additional ACE bus response bits

amba_pv_extension and amba_pv_response ACE ACE-Lite

bool is_pass_dirty() const; void set_pass_dirty(bool = true); RRESP[2],
CRRESP[2]

RRESP[2]

6 For masters use set_domain(HPROT[6] ? AMBA_PV_INNER_SHAREABLE : AMBA_PV_NON_SHAREABLE),
and for slaves use HPROT[6] = get_domain() != AMBA_PV_NON_SHAREABLE.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

amba_pv_extension and amba_pv_response ACE ACE-Lite

bool is_shared() const; void set_shared(bool = true); RRESP[3],
CRRESP[2]

RRESP[3]

bool is_snoop_data_transfer() const; void set_snoop_data_transfer(bool =
true);

CRRESP[0] -

bool is_snoop_error() const; void set_snoop_error(bool = true); CRRESP[1] -

bool is_snoop_was_unique() const; void set_snoop_was_unique(bool = true); CRRESP[4] -

3.4 Basic transactions
This section gives examples of basic AMBA-PV transactions. Each example shows the data
organization and the attributes usage.

3.4.1 Fixed burst example

This example shows a fixed read burst of four transfers.

In this figure each row represents a transfer:

Figure 3-1: Fixed read burst of four transfers

3Address: 0x0
Burst size: 32 bits
Burst type: fixed
Burst length: 4 transfers

2 1 0 m_data[0..3]
6 5 4 m_data[4..7]

B A 9 8 m_data[8..11]
F D C m_data[12..15]

m_address = 0x0
m_address = 0x0
m_address = 0x0
m_address = 0x0E

7

The data organization is the same whether this burst happens on 32-bit or on 64-
bit buses.

The attributes of the TLM 2.0 GP are as follows:

m_command = TLM_READ_COMMAND;
m_address = 0x0;
m_data_length = 16;
m_streaming_width = 4;

The attributes of the AMBA-PV extension are as follows:

m_burst = AMBA_PV_FIXED;
m_length = 4;
m_size = 4;

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

This transaction is specific to the AMBA® 3 AXI protocol.

3.4.2 Incremental burst example

This example shows an incremental write burst of four transfers.

In this figure each row represents a transfer:

Figure 3-2: Incremental write burst of four transfers

3Address: 0x0
Burst size: 32 bits
Burst type: incremental
Burst length: 4 transfers

2 1 0 m_data[0..3]
6 5 4 m_data[4..7]

B A 9 8 m_data[8..11]
F D C m_data[12..15]

m_address = 0x0
m_address = 0x4
m_address = 0x8
m_address = 0xCE

7

The data organization is the same whether this burst happens on 32-bit or on 64-
bit buses.

The attributes of the TLM 2.0 GP are as follows:

m_command = TLM_WRITE_COMMAND;
m_address = 0x0;
m_data_length = 16;
m_streaming_width = 16;

The attributes of the AMBA-PV extension are as follows:

m_burst = AMBA_PV_INCR;
m_length = 4;
m_size = 4;

3.4.3 Wrapped burst example

This example shows a wrapped burst of four transfers.

In this figure, each row represents a transfer:

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

Figure 3-3: Wrapped burst of four transfers

7Address: 0x4
Burst size: 32 bits
Burst type: wrapped
Burst length: 4 transfers

6 5 4 m_data[0..3]
A 9 8 m_data[4..7]

F E D C m_data[8..11]
3 1 0 m_data[12..15]

m_address = 0x4
m_address = 0x8
m_address = 0xC
m_address = 0x02

B

The data organization is the same whether this burst happens on 32-bit or on 64-
bit buses.

The attributes of the TLM 2.0 GP are as follows:

m_command = TLM_WRITE_COMMAND;
m_address = 0x4;
m_data_length = 16;
m_streaming_width = 16;

The attributes of the AMBA-PV extension are as follows:

m_burst = AMBA_PV_WRAP;
m_length = 4;
m_size = 4;

3.4.4 Unaligned burst example

This example shows an unaligned incremental write burst of four transfers.

In this figure each row represents a transfer. The shaded cells indicate bytes that are not
transferred, based on the address and byte enable attributes.

Figure 3-4: Unaligned write burst

3Address: 0x3
Burst size: 32 bits
Burst type: incremental
Burst length: 4 transfers

2 1 0 m_data[0..3]
6 5 4 m_data[4..7]

B A 9 8 m_data[8..11]
F D C m_data[12..15]

m_address = 0x3
m_address = 0x4
m_address = 0x8
m_address = 0xCE

7

The data organization is the same whether this burst happens on 32-bit or on 64-
bit buses.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV extension class

The attributes of the TLM 2.0 GP are as follows:

m_command = TLM_WRITE_COMMAND;
m_address = 0x3;
m_data_length = 16;
m_byte_enable_length = 16;
m_byte_enable_ptr = {0x00, 0x00, 0x00, 0xFF...};
m_streaming_width = 16;

The attributes of the AMBA-PV extension are as follows:

m_burst = AMBA_PV_INCR;
m_length = 4;
m_size = 4;

This transaction is specific to the AMBA® 3 AXI bus.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

4. AMBA-PV classes
This chapter describes the AMBA-PV class hierarchy and each major class.

4.1 Class description
This section describes the relationships between the AMBA-PV classes and interfaces (which use
the amba_pv namespace) and TLM 2.0 classes and interfaces.

4.1.1 AMBA-PV extension

The AMBA-PV extension class (amba_pv_extension) extends the tlm_extension class and provides
support for AMBA® 4 buses specific addressing options and additional control information.

The additional control information provided by the AMBA® 4 buses is modeled by the
amba_pv_control class. It is also used by the user interface methods.

The additional transaction information required by DVM operations is modeled by the amba_pv_dvm
class.

The amba_pv_attributes class provides support for additional user-defined attributes in the
form of additional named attributes (namely a map). To use this class, you must define the
AMBA_PV_INCLUDE_ATTRIBUTES macro at compile time.

The amba_pv_attributes class might impact simulation performance.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

Figure 4-1: Extension hierarchy

amba_pv_attributes

tlm_extension amba_pv_control amba_pv_dvm

amba_pv_extension

T

Related information
User layer on page 47

4.1.2 Core interfaces

The AMBA-PV core interfaces comprise transport and snoop interfaces.

amba_pv_fw_transport_if

Tagged variant of tlm_fw_transport_if, must be implemented by AMBA-PV slave modules.

amba_pv_bw_transport_if

Tagged variant of tlm_bw_transport_if, must be implemented by AMBA-PV master modules.

amba_pv_bw_snoop_if

Tagged variant of tlm_fw_transport_if.

amba_pv_bw_transport_and_snoop_if

Tagged variant of tlm_fw_transport_if and tlm_bw_transport_if, which must be
implemented by AMBA-PV ACE master modules. This class is a simple composite of the
amba_pv_bw_transport_if and amba_pv_bw_snoop_if.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

The core interfaces are part of the transport layer.

Figure 4-2: Core interfaces and user layer

amba_pv_bw_transport_if amba_pv_fw_transport_if amba_pv_if

amba_pv_master_base
amba_pv_slave_base

amba_pv_bw_transport_if amba_pv_bw_snoop_if

amba_pv_bw_transport_and_snoop_if

amba_pv_ace_master_base

BUSWIDTH

BUSWIDTH

Related information
User and transport layers on page 56

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

4.1.3 User layer

The user layer comprises an interface and base classes for modules.

amba_pv_if<>

User-layer transaction interface providing read(), write(), burst_read(), burst_write(),
debug_read(), debug_write(), get_direct_mem_ptr() convenience methods.

amba_pv_master_base

Base class for AMBA-PV master modules, to be bound to amba_pv_master_socket<>,
provides default implementations of invalidate_direct_mem_ptr().

amba_pv_slave_base<>

Base class for AMBA-PV slave modules, to be bound to amba_pv_slave_socket<>, provides
with conversion of b_transport() and transport_dbg() into user-layer methods, and default
implementations of transport_dbg() and get_direct_mem_ptr().

amba_pv_ace_master_base

Base class for AMBA-PV ACE master modules, to be bound to
amba_pv_ace_master_socket<>, provides default implementations of
invalidate_direct_mem_ptr(), b_snoop() and snoop_dbg().

Related information
User and transport layers on page 56

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

4.1.4 Sockets

Both AMBA-PV socket classes provide socket identification/tagging. The master-socket class also
implements the amba_pv_if user-layer interface.

Figure 4-3: Sockets

amba_pv_socket_base

amba_pv_master_socket

BUSWIDTH

amba_pv_if

BUSWIDTH

simple_initiator_socket_tagged

MODULE, BUSWIDTH, TYPES

simple_target_socket_tagged

MODULE, BUSWIDTH, TYPES

amba_pv_slave_socket

BUSWIDTH

4.1.5 ACE sockets

These sockets have an extra socket as a private data member.

The amba_pv_ace_master_socket<> class provides:

• All the functions of amba_pv_master_socket<>.

• An amba_pv_snoop_socket<> as a private data member.

The amba_pv_ace_slave_socket<> class provides:

• All the functions of amba_pv_slave_socket<>.

• An amba_pv_master_socket<> as a private data member.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

Figure 4-4: ACE sockets

-snoop

amba_pv_socket_base

amba_pv_snoop_socket

simple_target_socket_tagged

amba_pv_master_socket

amba_pv_ace_master_socket

amba_pv_master_socket

amba_pv_slave_socket

amba_pv_ace_slave_socket

BUSWIDTH

BUSWIDTH BUSWIDTH

BUSWIDTH

BUSWIDTHBUSWIDTH

MODULE, BUSWIDTH, TYPES

1

-snoop

1

11

4.1.6 Bridges

The amba_pv_to_tlm_bridge<> and amba_pv_from_tlm_bridge<> classes bridge between TLM 2.0
BP and AMBA-PV.

If bridging from TLM 2.0 BP to AMBA-PV, the following rules are checked:

• The address attribute must be aligned to the bus width for burst transactions and to the data
length for single transactions.

• The data length attribute must be a multiple of the bus width for burst transactions.

• The streaming width attribute must be equal to the bus width for fixed burst transactions.

• The byte enable pointer attribute must be NULL on read transactions.

• The byte enable length attribute must be equal to the data length for single write transactions
and a multiple of the bus width for burst write transactions, if nonzero.

If bridging from AMBA-PV to TLM 2.0 BP, wrapping bursts are translated into sequential
(incremental) bursts.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

Figure 4-5: AMBA-PV to TLM bridges

1

1

* *

*

*

simple_initiator_socket amba_pv_slave_socket

amba_pv_to_tlm_bridge

sc_module

amba_pv_from_tlm_bridge

amba_pv_master_socketsimple_target_socket

MODULE, BUSWIDTH, TYPES BUSWIDTH

BUSWIDTH

*

+amba_pv_m

+amba_pv_s

+tlm_m

+tlm_s

MODULE, BUSWIDTH, TYPES BUSWIDTH

1

1

BUSWIDTH

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

4.1.7 Memory

Memories can be represented by either a simple model or an advanced model. The advanced
model, class amba_pv_memory<>, supports optimized heap usage, save, and restore.

Figure 4-6: Memory

amba_pv_memory

amba_pv_slave_base

BUSWIDTH

amba_pv_memory_base

amba_pv_slave_socket

amba_pv_simple_memory

sc_module

+amba_pv_s1 +amba_pv_s1

BUSWIDTH

BUSWIDTH

BUSWIDTH BUSWIDTH

* *

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

4.1.8 Exclusive monitor

The amba_pv_exclusive_monitor<> class provides exclusive access support and can be added
before any AMBA-PV slave.

Figure 4-7: Monitor

+amba_pv_s

*1

+amba_pv_m

sc_module amba_pv_bw_transport_ifamba_pv_fw_transport_if

amba_pv_master_socket

1*

BUSWIDTH

amba_pv_exclusive_monitoramba_pv_slave_socket

BUSWIDTH BUSWIDTH

1

*1

+amba_pv_m

4.1.9 Bus decoder

The amba_pv_decoder<> class routes transactions through to the appropriate slave depending on
the transaction address. It can load its address map from a stream or file.

The amba_pv_decoder<> class does not support locked transactions. Any locked
transaction are handled as if not locked.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

Figure 4-8: Bus decoder

+amba_pv_s

+amba_pv_m

-map

sc_moduleamba_pv_bw_transport_if amba_pv_fw_transport_if

amba_pv_master_socket

amba_pv_decoder

amba_pv_address_map

BUSWIDTH

BUSWIDTH, NUMMASTERS, NUMSLAVES

*

*

*

1

1

1

amba_pv_slave_socket

BUSWIDTH

-map

4.1.10 Protocol checker

The amba_pv_protocol_checker<> class is used for confirming that a model complies with AMBA®

bus protocols.

The transactions that pass through are checked against the AMBA® bus protocols. Errors are
reported using the SystemC reporting mechanism.

The AMBA-PV protocol checker does not perform any TLM 2.0 BP checks.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

Figure 4-9: Protocol checker

*

1

sc_module amba_pv_fw_transport_ifamba_pv_bw_transport_if

amba_pv_slave_socket

amba_pv_protocol_checker

amba_pv_master_socket

BUSWIDTH

1

*
+amba_pv_m

+amba_pv_s

BUSWIDTH

BUSWIDTH

*

Related information
AMBA-PV protocol checker on page 77

4.1.11 Signaling

The Signal API defines classes and interfaces for the modeling of side-band signals such as
interrupts.

There are two variants:

• The Signal variant permits components to indicate a signal state change to other components
and uses the signal_ prefix.

• The SignalState variant permits the other components to passively query the current state of
the signal and uses the signal_state_ prefix.

The Signal API features immediate propagation of the signal state (no update phase or time elapse)
and does not require intermediate storage of the signal state in a channel.

The Signal classes and interfaces feature a STATE template parameter.

These Signal classes and interfaces are provided as part of AMBA-PV as an
alternative to using SystemC sc_signal<> for side-band signal modeling at PV level.
The SystemC sc_signal<> is implemented as a primitive channel using the request/

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

update mechanism. This introduces extra processes, resulting in extra delta cycles in
the simulation, and prevents immediate propagation of the signal state.

Figure 4-10: Signaling

sc_module
signal_transport_if

STATE

signal_if sc_port

IF, N, POL

signal_to_sc_bridge signal_slave_base signal_master_port

signal_state_transport_if signal_state_if

signal_state_to_sc_bridge signal_state_slave_base signal_state_master_port

signal_export_base

signal_slave_export signal_state_slave_export

sc_export

IF

STATE

STATE STATE

STATE

STATE

STATE

STATE STATE

STATE

STATESTATE

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

4.1.12 User and transport layers

The AMBA-PV user and transport layers manage interactions between the master and slave.

4.1.12.1 Forward calls from master to slave

These calls go from the user layer through the transport layer and back to the user layer.

Figure 4-11: Master to slave calls

IF ACE Master ACE Slave

read/write()
get_direct_mem_ptr()
debug_read/write()

b_transport()
get_direct_mem_ptr()
transport_dbg()

amba_pv_if amba_pv_slave_base

amba_pv_fw_transport_if amba_pv_master_socket amba_pv_slave_socket

amba_pv_master_socket

The amba_pv_if<> interface is implemented by the master socket. Class amba_pv_slave_base<>
inherits from this interface. The interface defines the following member functions:

• read().

• read_burst().

• write().

• write_burst().

• get_direct_mem_ptr().

• debug_read().

• debug_write().

The amba_pv_fw_transport_if interface is an AMBA-PV core interface. Class
amba_pv_slave_base<> also inherits from this interface. The interface defines the following member
functions:

• b_transport().

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

• get_direct_mem_ptr().

• transport_dbg().

4.1.12.2 Backward calls from slave to master

These calls go from the user layer through the transport layer and back to the user layer.

Figure 4-12: Slave to master calls

IF ACE Master ACE Slave

invalidate_direct_mem_ptr()

amba_pv_bw_transport_if amba_pv_master_base

amba_pv_bw_transport_if amba_pv_slave_socket

invalidate_direct_mem_ptr()

amba_pv_master_socket

amba_pv_slave_socket

The amba_pv_bw_transport_if interface is an AMBA-PV core interface. It defines the
invalidate_direct_mem_ptr() member function to invalidate pointers that were previously
established for a DMI region in the slave and features tagging through its socket identification
parameter.

4.1.12.3 Forward and backward calls with ACE sockets

This section describes how ACE sockets work.

The forward calls from ACE masters to ACE slaves follow a similar flow to the flow for the non-
ACE sockets.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

Figure 4-13: ACE master to slave calls

IF ACE Master ACE Slave

b_transport()
get_direct_mem_ptr()
transport_dbg()

amba_pv_fw_transport_if amba_pv_slave_base

amba_pv_fw_transport_if amba_pv_ace_master_socket amba_pv_ace_slave_socket

b_transport()
get_direct_mem_ptr()
transport_dbg()

b_transport()
get_direct_mem_ptr()
transport_dbg()

The user layer is not useful for modeling ACE transactions because the extra response attributes
required by ACE are not available in amba_pv_control. This is to maintain source level compatibility
with previous versions of AMBA-PV.

Figure 4-14: ACE slave to master calls

IF ACE Master ACE Slave

invalidate_direct_mem_ptr()
b_snoop()
snoop_dbg()

invalidate_direct_mem_ptr()
b_snoop()
snoop_dbg()

amba_pv_bw_transport_and_snoop_if amba_pv_ace_master_base

amba_pv_master_socket

amba_pv_bw_transport_and_snoop_if amba_pv_ace_master_socket amba_pv_ace_slave_socket

amba_pv_fw_transport_if amba_pv_snoop_socket

b_transport()
transport_dbg()

b_transport()
transport_dbg()

b_snoop()
snoop_dbg()

b_snoop()
snoop_dbg()

invalidate_direct_mem_ptr()

1

1 1

1

-snoop -snoop

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

The amba_pv_bw_transport_and_snoop_if interface is an AMBA-PV core interface. Class
amba_pv_ace_master_base<> also inherits from this interface. The interface defines the following
member functions:

invalidate_direct_mem_ptr()

Invalidate pointers that were previously returned via get_direct_mem_ptr().

b_snoop()

Equivalent function to the forward method b_transport() but used for transactions in the
upstream slave to master direction.

snoop_dbg()

Equivalent function to the forward method transport_dbg() but used for transactions in the
upstream slave to master direction.

4.1.13 Transaction memory management

amba_pv_trans_pool and amba_pv_trans_ptr provide efficient memory management of AMBA-PV
transactions, via a transactions pool and dedicated smart pointers.

The class manages extensions alongside the transactions: each transaction that returns from the
pool has an extension that is associated with it.

4.2 Class summary
This section summarizes the AMBA-PV classes and interfaces.

4.2.1 Classes and interfaces

This section defines the AMBA-PV classes and interfaces.

amba_pv_attributes

This class supports user-defined attributes.

amba_pv_ace_master_base

The base class for AMBA-PV ACE master modules.

amba_pv_ace_master_socket<>

The socket to be instantiated on the master side for full ACE modeling.

amba_pv_ace_slave_socket<>

The socket to be instantiated on the slave side for full ACE modeling.

amba_pv_bw_snoop_if

A tagged variant of the tlm_bw_transport_if interface, for AMBA-PV ACE master modules
to implement.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

amba_pv_bw_transport_and_snoop_if

A simple combination of the interfaces amba_pv_bw_snoop_if and amba_pv_bw_transport_if.

amba_pv_bw_transport_if

A tagged variant of the tlm_bw_transport_if interface, for AMBA-PV master modules to
implement.

amba_pv_control

This class supports control information that is part of the AMBA® buses.

amba_pv_dvm

This class provides transaction information for DVM operations.

amba_pv_extension

This class is the AMBA-PV extension type.

amba_pv_fw_transport_if

This interface is a tagged variant of the tlm_fw_transport_if interface, for AMBA-PV slave
modules to implement.

amba_pv_if<>

The user-layer transaction interface.

amba_pv_master_base

The base class for AMBA-PV master modules.

amba_pv_master_socket<>

The socket to be instantiated on the master side. This socket is also automatically instantiated
on the slave side when an amba_pv_ace_slave_socket<> is instantiated.

amba_pv_slave_base<>

The base class for AMBA-PV slave modules.

amba_pv_slave_socket<>

The socket to be instantiated on the slave side.

amba_pv_snoop_socket<>

This socket is automatically instantiated on the master side when an
amba_pv_ace_master_socket<> is instantiated.

amba_pv_trans_pool

This class implements the tlm::tlm_mm_interface and provides a memory pool from which
to allocate and free transactions.

amba_pv_trans_ptr

This smart pointer retains sole ownership of a transaction through a pointer and releases that
transaction when the amba_pv_trans_ptr goes out of scope.

The templated AMBA-PV classes and interfaces have a BUSWIDTH parameter.

An AMBA-PV bus master invokes methods on its amba_pv_master_socket to generate burst read
and write requests on the AMBA-PV bus and check the returned responses.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

An AMBA-PV bus slave implements read() and write() methods to process requests and return
the associated responses.

The TLM 2.0 b_transport() blocking interface is the basic mechanism that implements this
master-slave interaction. In addition, AMBA-PV uses the extension mechanism to extend TLM 2.0
and provide maximum interoperability.

• For the full list of classes and interfaces, see the AMBA-PV header files. The
top-level file is amba_pv.h which contains includes for the other header files.

• All AMBA-PV classes and interfaces use the amba_pv namespace.

4.2.2 Classes for virtual platforms

This section describes these classes and interfaces for modeling virtual platform components.

amba_pv_ace_simple_probe<>

This simple probe with ACE support dumps the contents of transactions, including snoops.

amba_pv_address_map

This class defines the address map structures.

amba_pv_decoder<>

This class is the bus decoder model.

amba_pv_exclusive_monitor<>

This class supports AMBA® 3 exclusive accesses.

amba_pv_from_tlm_bridge<>

This class is the bridge module for interface between TLM 2.0 BP and AMBA-PV. It provides
interoperability at subsystem boundaries. The component uses the TLM 2.0 extension
mechanism.

amba_pv_memory<>

This class is the advanced memory model that features optimized heap usage, save, and
restore.

amba_pv_memory_base<>

The base class for memory models.

amba_pv_protocol_checker<>

The protocol checker that is used for conforming that a platform or model complies with the
AMBA-PV protocol.

amba_pv_simple_memory<>

The simple memory model.

amba_pv_simple_probe<>

The simple probe component that dumps the contents of transactions.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

amba_pv_to_tlm_bridge<>

The bridge module for interface between TLM 2.0 BP and AMBA-PV. It provides
interoperability at subsystem boundaries. The component uses the TLM 2.0 extension
mechanism.

These templated classes and interfaces have a BUSWIDTH parameter.

4.2.3 Classes for side-band signals

This section describes these classes and interfaces for modeling side-band signals.

There are variants with or without get_state() access function to passively query the current state
of the signal.

signal_export_base<>

The Signal export base class.

signal_from_sc_bridge<>

The generic bridge module from sc_signal<> to Signal.

signal_if<>

The user-layer interface for Signal.

signal_master_port<>

The port to instantiate on the Signal master side.

signal_request<>

The Signal request type.

signal_response<>

The Signal response type.

signal_slave_export<>

The export to instantiate on the Signal slave side.

signal_slave_base<>

The base class for Signal slave modules.

signal_state_if<>

The user-layer interface for SignalState.

signal_state_nonblocking_transport_if<>

The core non-blocking transport interface for SignalState.

signal_state_to_sc_bridge<>

A generic bridge module from SignalState to sc_signal<>.

signal_state_from_sc_bridge<>

The generic bridge module from sc_signal<> to SignalState.

signal_state_master_port<>

The port to instantiate on the SignalState master side.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV classes

signal_state_slave_base<>

The base class for SignalState slave modules.

signal_state_slave_export<>

The export to instantiate on the SignalState slave side.

signal_to_sc_bridge<>

The generic bridge module between Signal and sc_signal<>.

signal_nonblocking_transport_if<>

The core non-blocking transport interface for the Signal.

The templated Signal classes and interfaces have a STATE parameter.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Example systems

5. Example systems
This chapter describes how to build and run the example systems, in $MAXCORE_HOME/AMBA-PV.

5.1 Configuring the examples
This section describes how to configure the AMBA-PV examples.

The examples are installed with AMBA-PV and located in $MAXCORE_HOME/AMBA-PV.

They use SystemC and TLM headers and libraries and require the SYSTEMC_HOME environment
variable to be set to the SystemC installation directory. This variable is set when AMBA-PV is
installed. To use a different copy of SystemC or TLM, modify the variable before building the
examples.

SystemC and TLM headers and libraries are installed in $MAXCORE_HOME/Accellera, which contains
releases of the SystemC and TLM packages and patch files. The patch files document the required
changes to the SystemC and TLM packages available from Accellera. The SystemC and TLM
packages are link-compatible with the Accellera download version.

The AMBA-PV examples rely on a certain directory structure for libraries and header files. The
structure of the Accellera packages is different because AMBA-PV supports a different range of
compilers. To use the original Accellera packages with the AMBA-PV examples, apply a set of patch
files to the Accellera package that adjusts the directory names. To rebuild the packages, follow the
instructions from the README.txt file available in the $MAXCORE_HOME/Accellera/source directory.

On Linux hosts, running the make command in each example directory generates an executable that
consists of the example name followed by .x (for example, dma.x, or bridge.x).

On Microsoft Windows hosts, Arm provides Microsoft Visual Studio project files (for example,
bridge_VC20XX.vcxproj).

Related information
Accellera

5.2 Bridge example
This example illustrates bridging to and from the TLM BP using the amba_pv_to_tlm_bridge<> and
amba_pv_from_tlm_bridge<> classes.

It is based on the exclusive example, and features:

• A simple memory, class amba_pv_simple_memory<>.

• An exclusive access monitor, class amba_pv_exclusive_monitor<>.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 83

http://www.accellera.org

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Example systems

• Two masters competing for access to this memory, the first performs exclusive accesses while
the second performs regular accesses.

• An amba_pv_to_tlm_bridge<> to amba_pv_from_tlm_bridge<> bridges chain inserted between
the masters and the memory.

• A bus decoder, class amba_pv_bus_decoder<>, routing transactions from the masters to the
exclusive access monitor.

Figure 5-1: Bridge example system

master1 amba2tlm
bridge

tlm2amba
bridge

bus
decoder

exclusive
monitor memory

master2

initiator/master socket target/slave socket

The example is located in $MAXCORE_HOME/AMBA-PV/examples/bridge_example.

Related information
Exclusive example on page 71

5.2.1 Building and running the bridge example

This section describes how to build and run this example.

About this task
To build the debug version:

• Under Linux, enter at the command prompt:

make DEBUG=y clean all

• Under Microsoft Windows, open bridge_VC20XX.vcxproj with Microsoft Visual Studio and
build the bridge project, with the Debug configuration active.

To build the release version of this example:

• Under Linux, enter at the command prompt:

make DEBUG=n clean all

• Under Microsoft Windows, open bridge_VC20XX.vcxproj with Microsoft Visual Studio and
build the bridge project, with the Release configuration active.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Example systems

Under Linux, the make clean command is optional.

To run this example, enter at the command prompt:

• Under Linux:

./bridge.x

• Under Microsoft Windows:

bridge.exe

5.3 Debug example
This example illustrates the use of AMBA-PV debug transfers between a master and a slave.

Figure 5-2: Debug example system

master slave

master
socket slave socket

The example is located in $MAXCORE_HOME/AMBA-PV/examples/dbg_example.

5.3.1 Building and running the debug example

This section describes how to build and run this example.

About this task
To build the debug version:

• Under Linux:

make DEBUG=y clean all

• Under Microsoft Windows, open dbg_VC20XX.vcxproj with Microsoft Visual Studio and build
the dbg project, with the Debug configuration active.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Example systems

To build the release version:

• Under Linux, enter at the command prompt:

make DEBUG=n clean all

• Under Microsoft Windows, open dbg_VC20XX.vcxproj with Microsoft Visual Studio and build
the dbg project, with the Release configuration active.

Under Linux, the make clean command is optional.

To run this example, enter at the command prompt:

• Under Linux:

./dbg.x

• Under Microsoft Windows:

dbg.exe

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Example systems

5.4 DMA example
This example illustrates the use of AMBA-PV burst transfers and the Signal API in a system
comprising a simple DMA model programmed to perform transfers between two memories.
Additionally, it illustrates the use of DMI for simulation performance optimization.

Figure 5-3: DMA example system

testbench

bus
decoder

memorydma

master socket slave socket

memory

port export

This example comprises the following components:

• A simple test bench to program the DMA transfers.

• An AMBA-PV bus decoder, class amba_pv_decoder<>, to route transactions between the system
components.

• A simple DMA model, implementing a producer-consumer scheme and capable of using DMI
for memory transfers.

• Two AMBA-PV memories, class amba_pv_memory<>.

The example is located in $MAXCORE_HOME/AMBA-PV/examples/dma_example.

5.4.1 Building and running the DMA example

This section describes how to build and run this example.

About this task
To build the debug version:

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Example systems

• Under Linux, enter at the command prompt:

make DEBUG=y clean all

• Under Microsoft Windows, open dma_VC20XX.vcxproj with Microsoft Visual Studio and build
the dma project, with the Debug configuration active.

To build the release version of this example:

• Under Linux, enter at the command prompt:

make DEBUG=n clean all

• Under Microsoft Windows, open dma_VC20XX.vcxproj with Microsoft Visual Studio and build
the dma project, with the Release configuration active.

Under Linux, the make clean command is optional.

To run this example, enter at the command prompt:

• Under Linux:

./dma.x

• Under Microsoft Windows:

dma.exe

To run this example over a giving number of transfers, enter at the command prompt:

• Under Linux:

./dma.x 400000

• Under Microsoft Windows:

dma.exe 400000

Where 40000 specifies the number of transfers to run.

Simulation statistics are displayed as follows:

module created - 400000 runs
dma module created
Simulation starts...
Simulation ends
--- Simulation statistics: ---
Total transactions executed : 4400000

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Example systems

Total KBytes transferred : 210938
Total simulation time : 18446744.000000 sec.
Real simulation time : 10.200000 sec.
Transactions per sec. : 431372.557
KBytes transferred per sec. : 20680.147
--

To run this example with DMI enabled, enter at the command prompt:

• Under Linux:

--dmi 400000

• Under Microsoft Windows:

--dmi 400000

Simulation statistics are displayed:

module created - 400000 runs
dma module created
Simulation starts...
Simulation ends
--- Simulation statistics: ---
Total transactions executed : 4400000
Total KBytes transferred : 210938
Total simulation time : 18446744.000000 sec.
Real simulation time : 2.180000 sec.
Transactions per sec. : 2018348.562
KBytes transferred per sec. : 96760.318
--

These figures are examples. They do not constitute any reference in terms of timing.
They vary with the host configuration.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Example systems

5.5 Exclusive example
This example illustrates the use of specific AMBA® protocol control information with exclusive
access to a simple memory through an exclusive access monitor.

Figure 5-4: Exclusive example system

master1 bus
decoder

exclusive
monitor memory

master2

master
socket

slave
socket

master1

This example comprises the following components:

• A simple memory, class amba_pv_simple_memory<>.

• An exclusive access monitor, class amba_pv_exclusive_monitor<>.

• Three masters competing for access to this memory, the first two perform exclusive accesses
while the third performs regular accesses.

• A bus decoder, class amba_pv_decoder<>, to route transactions from the masters to the
exclusive access monitor.

This example also features a PROBE version which includes an intermediate probe component, class
amba_pv_simple_probe<>, to print the contents of transactions exchanged between the masters
and the exclusive monitor.

The example is located in $MAXCORE_HOME/AMBA-PV/examples/exclusive_example.

5.5.1 Building and running the exclusive example

This section describes how to build and run this example.

About this task
To build the debug version:

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Example systems

• Under Linux, enter at the command prompt:

make DEBUG=y clean all

• Under Microsoft Windows, open exclusive_VC20XX.vcxproj with Microsoft Visual Studio and
build the exclusive project, with the Debug configuration active.

To build the release version:

• Under Linux, enter at the command prompt:

make DEBUG=n clean all

• Under Microsoft Windows, open exclusive_VC20XX.vcxproj with Microsoft Visual Studio and
build the exclusive project, with the Release configuration active.

To build the PROBE version:

• Under Linux, enter at the command prompt:

make DEBUG=n clean probe

• Under Microsoft Windows, open exclusive_VC20XX.vcxproj with Microsoft Visual Studio and
build the exclusive project, with the Probe configuration active.

Under Linux, the make clean command is optional.

To run this example, enter at the command prompt:

• Under Linux:

./exclusive.x

• Under Microsoft Windows:

exclusive.exe

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Creating AMBA-PV compliant models

6. Creating AMBA-PV compliant models
This chapter describes a set of guidelines for the creation of AMBA-PV-compliant models of
masters, slaves, and interconnect components.

6.1 Creating an AMBA-PV master
This section describes how to create an AMBA-PV master.

Procedure
1. Derive the master class from class amba_pv_master_base (in addition to sc_module).
2. Instantiate one master socket of class amba_pv_master_socket for each connection to an

AMBA® bus. Specify a distinct identifier for each socket.
3. Implement the method invalidate_direct_mem_ptr().

A master does not need to implement this method explicitly if it does not support DMI.
4. Set every attribute of each amba_pv_control object before passing it as an argument to

read(), write(), burst_read(), burst_write(), get_direct_mem_ptr(), debug_read(), or
debug_write().

5. On completion of the transaction, check the returned response value.

6.2 Creating an AMBA-PV slave
This section describes how to create an AMBA-PV slave.

Procedure
1. Derive the slave class from class amba_pv_slave_base (in addition to sc_module).

A memory slave can derive from class amba_pv_memory_base instead.
2. Instantiate one slave socket of class amba_pv_slave_socket for each connection to an AMBA®

bus. Specify a distinct identifier for each socket.
3. Implement the methods read(), write(), get_direct_mem_ptr(), debug_read(), and

debug_write().
A slave does not need to implement any other method than read() and write() if it does not
support DMI or debug transactions.

4. In the implementations of the read() and write() methods, inspect and act on the parameters,
and on the attributes of the AMBA-PV extension (amba_pv_control object). Instead of
implementing the requested functionality, a slave might choose to return an AMBA_PV_SLVERR
error response. Return an AMBA_PV_OKAY response to indicate the success of the transfer.

5. In the implementation of get_direct_mem_ptr(), either return false, or inspect and act on the
parameters, and on the attributes of the AMBA-PV extension (amba_pv_control object), and set
the return value and all the attributes of the DMI descriptor (class tlm_dmi) appropriately.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Creating AMBA-PV compliant models

6. In the implementation of debug_read() and debug_write(), either return 0, or inspect and act
on the parameters, and on the attributes of the AMBA-PV extension (amba_pv_control object).
Return the number of bytes read/written.

6.3 Creating an AMBA-PV interconnect
This section describes how to create an AMBA-PV interconnect.

Procedure
1. Derive the interconnect class from classes amba_pv_fw_transport_if and

amba_pv_bw_transport_if (in addition to sc_module).
2. Instantiate one master or slave socket of class amba_pv_master_socket or

amba_pv_slave_socket, respectively, for each connection to an AMBA® bus. Specify a distinct
identifier for each socket.
The interconnect can alternatively use the class amba_pv_socket_array for master and slave
sockets.

3. Implement the method invalidate_direct_mem_ptr() for master sockets, and the methods
b_transport(), get_direct_mem_ptr(), and transport_dbg() for slave sockets.
Each master/slave socket is identified by its socket_id, the first parameter of those methods.

4. Pass on incoming method calls as appropriate on both the forward and backward paths.
The interconnect does not need to implement the get_direct_mem_ptr() method explicitly
if it does not support DMI. Similarly, the interconnect does not need to implement the
transport_dbg() method explicitly if it does not support debug.

5. In the implementation of b_transport(), the only AMBA-PV extension attributes modifiable by
an interconnect component are the ID and the response attributes.

6. In the implementation of get_direct_mem_ptr() and transport_dbg(), the only AMBA-PV
extension attribute modifiable by a bus decoder component is the ID attribute.

7. Do not modify any other attributes. A component needing to modify any other AMBA-PV
extension attributes must construct a new extension object, and thereby become a master in its
own right.

8. Decode the generic payload address attribute on the forward path and modify the address
attribute if necessary according to the location of the slave in the address map. This applies to
transport, DMI, and debug interfaces.
The interconnect can use the class amba_pv_address_map for representing the address map.

9. In the implementation of get_direct_mem_ptr(), do not modify the DMI descriptor (tlm_dmi)
attributes on the forward path. Do modify the DMI start address and end address, and DMI
access attributes appropriately on the return path.

10. In the implementation of invalidate_direct_mem_ptr(), modify the address range arguments
before passing the call along the backward path.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

Creating AMBA-PV compliant models

6.4 Creating an AMBA-PV ACE master
This section describes how to create an AMBA-PV ACE master.

Procedure
1. Derive the master class from class amba_pv_ace_master_base (in addition to sc_module).
2. Instantiate one master socket of class amba_pv_ace_master_socket for each connection to an

AMBA® bus. Specify a distinct identifier for each socket.
3. Implement the method invalidate_direct_mem_ptr().

An ACE master does not need to implement this method explicitly if it does not support DMI.
4. Implement the methods b_snoop() and snoop_dbg().

An ACE master does not need to implement the method snoop_dbg() if it does not support
debug transactions.

5. Create and set an amba_pv_extension object. Set a pointer to this extension object in an
amba_pv_transaction object before passing the amba_pv_transaction object as an argument to
b_transport() or transport_dbg().

6. On completion of the transaction, check the returned response status.

6.5 Creating an AMBA-PV ACE slave
This section describes how to create an AMBA-PV ACE slave.

Procedure
1. Derive the slave class from class amba_pv_slave_base (in addition to sc_module).
2. Instantiate one slave socket of class amba_pv_ace_slave_socket for each connection to an

AMBA® ACE bus. Specify a distinct identifier for each socket.
3. Implement the methods b_transport(), get_direct_mem_ptr(), and transport_dbg().

A slave does not need to implement any other method than b_transport() if it does not
support DMI or debug transactions.

4. In the implementations of the b_transport() method obtain a pointer to the
amba_pv_extension object using get_extension(). Inspect and act upon the attributes in the
extension object. The transaction response should be set in the extension object. Rather than
implementing the requested functionality, a slave may choose to return an AMBA_PV_SLVERR
error response. Setting an AMBA_PV_OKAY response indicates the success of the transfer.

5. In the implementation of get_direct_mem_ptr(), either return false, or inspect and act on the
parameters, and on the attributes of the AMBA-PV extension, and set the return value and all
the attributes of the DMI descriptor (class tlm_dmi) appropriately.

6. In the implementation of transport_dbg(), either return 0, or obtain a pointer to the AMBA-PV
extension. Inspect and act on the parameters, and on the attributes of the AMBA-PV extension.
Return the number of bytes read/written.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV protocol checker

7. AMBA-PV protocol checker
This chapter describes the AMBA-PV protocol checker and the checks it performs.

You can use the AMBA-PV protocol checker with any model that is designed to implement the
AMBA-PV protocol. You can instantiate the protocol checker, class amba_pv_protocol_checker,
between any pair of AMBA-PV master and slave sockets. You can instantiate the protocol checker,
class amba_pv_ace_protocol_checker, between any pair of AMBA-PV ACE master and slave
sockets.

The behavior of the model you test is checked against the protocol by a set of checks in the
protocol checker. The transactions that pass through are checked against the AMBA-PV protocol.
Errors are reported using the SystemC reporting mechanism. All errors are reported with a message
type of "amba_pv_protocol_checker" and with a severity of SC_ERROR. Recommendations are
reported with a severity of SC_WARNING. Their reporting can be disabled.

The AMBA-PV protocol checker tests your model against the AMBA® AXI3 protocol by default.
You can configure the protocol checker to specifically test your model against one of the ACE,
AXI4, AHB, or APB protocols.

The AMBA-PV protocol checker does not perform any TLM 2.0 BP checks.

7.1 AMBA protocol check selection: check_protocol()
The check_protocol() method configures the AMBA® protocol checks performed by the protocol
checker.

Table 7-1: AMBA® protocol checks method

Name Allowed values Default value Description of check

check_protocol() AMBA_PV_APB, AMBA_PV_AHB,
AMBA_PV_AXI, AMBA_PV_AXI3,
AMBA_PV_AXI4_LITE, AMBA_PV_AXI4,
AMBA_PV_ACE_LITE, AMBA_PV_ACE

AMBA_PV_AXI3 Select the AMBA® protocol checks to perform.
Note that AMBA_PV_AXI is the same as
AMBA_PV_AXI3. Arm deprecates the use of
AMBA_PV_AXI.

The protocol checker tests your model against the selected AMBA® protocol.

If check_protocol is called to select checking against a protocol other than AXI3, this warning is
issued:

Warning: amba_pv_protocol_checker: PROTOCOL-NAME protocol rules have been selected by
 check_protocol()

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV protocol checker

where PROTOCOL-NAME is the selected protocol.

If check_protocol(AMBA_PV_APB) is called to select checking against the APB protocol, this warning
is issued:

Warning: amba_pv_protocol_checker: APB protocol rules have been selected by check_protocol()

7.2 Recommended checks: recommend_on()
The recommend_on() method enables or disables the reporting of protocol recommendations by the
protocol checker.

Table 7-2: Reporting of protocol recommendations method

Name Allowed values Default value Description

recommend_on() true, false true Enable or disable reporting of protocol recommendations.

If recommend_on(false) is called to disable reporting of protocol recommendations, this warning is
issued:

Warning: amba_pv_protocol_checker: All AMBA-PV recommended rules have been disabled by
 recommend_on()

7.3 Checks that the protocol checker performs
This section describes the checks that the protocol checker performs, and the areas of the
specifications that they apply to.

7.3.1 About the protocols

The checker uses the following protocols:

• AMBA® APB Protocol Specification.

• AMBA® 3 AHB-Lite Protocol Specification.

• AMBA® AXI and ACE Protocol Specification.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 83

http://developer.arm.com/docs/ihi0024/latest/amba-apb-protocol-version-20-specification
http://developer.arm.com/docs/ihi0033/latest/amba-3-ahb-lite-protocol-v10-specification
http://developer.arm.com/docs/ihi0022/latest/amba-axitm-and-acetm-protocol-specification-axi3tm-axi4tm-and-axi4-litetm-ace-and-ace-litetm

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV protocol checker

7.3.2 Architecture checks

This section describes the architecture checks performed by the protocol checker.

Table 7-3: Architecture checks performed by the protocol checker

Bus types Description of check AMBA® APB
Protocol
Specification

AMBA® 3 AHB-Lite
Protocol Specification

AMBA® 4 AXI and ACE
Protocol Specification

APB The data bus can be up to 32 bits wide. Section 2.1 AMBA®

APB signals
- -

AHB Recommended that the minimum data
bus width is 32 bits.

- Section 6.1 Data bus width -

AHB The data bus can be 8, 16, 32, 64, 128,
256, 512, or 1024 bits wide.

- Section 6.1 Data bus width -

AXI4-Lite The data bus can be 32 or 64 bits wide. - - Section B1.1 Definition of
AXI4-Lite

AXI3, AXI4,
ACE-Lite

The data bus can be 32, 64, 128, 256,
512, or 1024 bits wide.

- - Section A1.3.1 Channel
definition

7.3.3 Extension checks

This section describes the extension checks performed by the protocol checker.

Table 7-4: Extension checks performed by the protocol checker

Bus types Description of check AMBA® APB
Protocol
Specification

AMBA® 3 AHB-Lite
Protocol Specification

AMBA® 4 AXI and ACE
Protocol Specification

All The amba_pv_extension pointer cannot be
NULL.

- - -

All The size of any transfer must not exceed the
bus width of the sockets in the transaction.

- Section 3.4 Transfer
size

Section A3.4.1 Burst size

APB, AXI4-
Lite

The size of any transfer must equal the bus
width of the sockets in the transaction.

Section 2.1
AMBA® APB signals

- Section B1.1.1 AXI4 signals
not supported in AXI4-Lite

AHB, AXI3,
AXI4, ACE-
Lite

The size of any transfer must be 1, 2, 4, 8, 16,
32, 64, or 128 bytes.

- Section 3.4 Transfer
size

Section A3.4.1 Burst size

APB, AXI4-
Lite

All transactions are single transfers. Section 2.1
AMBA® APB signals

- Section B1.1.1 AXI4 signals
not supported in AXI4-Lite

AHB A transaction of burst type WRAP must have a
length of 4, 8, or 16.

- Section 3.5 Burst
operation

-

AHB A burst must have a type INCR or WRAP. - Section 3.5 Burst
operation

-

AXI3, AXI4,
ACE-Lite

A transaction of burst type WRAP must have a
length of 2, 4, 8, or 16.

- - Section A3.4.1 Burst length

AXI3 A transaction can have a burst length 1-16. - - Section A3.4.1 Burst length

AXI4, ACE-
Lite

A transaction can have a burst length 1-256. - - Section A3.4.1 Burst length

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV protocol checker

Bus types Description of check AMBA® APB
Protocol
Specification

AMBA® 3 AHB-Lite
Protocol Specification

AMBA® 4 AXI and ACE
Protocol Specification

APB, AHB,
AXI3

Quality of Service values are not supported. Section 2.1
AMBA® APB signals

Section 2.2 Master
signals

Section A8 AXI4 Additional
Signalling

APB, AHB,
AXI3

Region values are not supported. Section 2.1
AMBA® APB signals

Section 2.2 Master
signals

Section A8 AXI4 Additional
Signalling

AXI4, ACE-
Lite

Quality of Service values can be 0-15. - - Section A8.1.1 QoS
interface signals

AXI4, ACE-
Lite

Region values can be 0-15. - - Section A8.2.1 Additional
interface signals

7.3.4 Address checks

This section describes the address checks performed by the protocol checker.

Table 7-5: Address checks performed by the protocol checker

Bus types Description of check AMBA® APB
Protocol
Specification

AMBA® 3 AHB-Lite
Protocol Specification

AMBA® 4 AXI and ACE
Protocol Specification

APB, AHB,
AXI4-Lite

All transactions must have an aligned
address.

Section 2.1 AMBA®

APB signals
Section 3.5 Burst
operation

Section B1.1.1 Signal list

AHB A burst cannot cross a 1KB boundary. - Section 3.5 Burst
operation

-

AXI3, AXI4,
ACE-Lite

A burst cannot cross a 4KB boundary. - - Section A3.4.1 Burst length

AXI3, AXI4,
ACE-Lite

A transaction with a burst type of WRAP
must have an aligned address.

- - Section A3.4.1 Burst length

7.3.5 Data checks

This section describes the data checks performed by the protocol checker.

Table 7-6: Data checks performed by the protocol checker

Bus types Description of check AMBA® APB
Protocol
Specification

AMBA® 3 AHB-Lite
Protocol Specification

AMBA® 4 AXI and ACE
Protocol Specification

All Transaction data length is greater than or equal
to the beat size times the burst length.

- - -

APB, AHB,
AXI4-Lite

All transactions must have a NULL byte enable
pointer.

Section 2.1 AMBA®

APB signals
Section 2.2 Master
signals

Section B1.1.1 Signal list

AXI3, AXI4,
ACE-Lite

Read transactions must have a NULL byte
enable pointer.

- - Section A2.6 Read data
channel signals

AXI3, AXI4,
ACE-Lite

The byte enable length is a multiple of the
transfer size for a write transaction.

- - -

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV protocol checker

Bus types Description of check AMBA® APB
Protocol
Specification

AMBA® 3 AHB-Lite
Protocol Specification

AMBA® 4 AXI and ACE
Protocol Specification

AHB, AXI3,
AXI4, ACE-
Lite

The streaming width is equal to the beat size
for transactions with burst type FIXED.

- - -

7.3.6 Response checks

This section describes the response checks performed by the protocol checker.

Table 7-7: Response checks performed by the protocol checker

Bus types Description of check AMBA® APB
Protocol
Specification

AMBA® 3 AHB-Lite
Protocol Specification

AMBA® 4 AXI and ACE
Protocol Specification

APB, AXI4-
Lite

A response array is not appropriate as all
transactions are single transfers.

Section 2.1 AMBA®

APB signals
- Section B1.1.1 AXI4 signals not

supported in AXI4-Lite

APB, AHB A response can be OKAY or SLVERR. Section 2.1 AMBA®

APB signals
Section 5.1 Slave transfer
response

-

AXI4-Lite An EXOKAY response is not supported. - - Section B1.1.1 AXI4 signals
modified in AXI4-Lite

AXI3, AXI4,
ACE-Lite

An EXOKAY response can only be given to
an exclusive transaction.

- - A3.4.4 Read and write response
structure

7.3.7 Exclusive access checks

This section describes the exclusive access checks performed by the protocol checker.

Table 7-8: Exclusive access checks performed by the protocol checker

Bus
types

Description of check AMBA® APB
Protocol
Specification

AMBA® 3 AHB-
Lite Protocol
Specification

AMBA® 4 AXI
and ACE Protocol
Specification

APB,
AXI4-
Lite

A transaction cannot be exclusive or locked. Section 2.1
AMBA® APB
signals

- Section B1.1.1 AXI4
signals not supported
in AXI4-Lite

AHB A transaction cannot be exclusive. - Section 2.2
Master signals

-

AXI3 A transaction cannot be exclusive and locked. - - Section A7.4 Atomic
access signaling

AXI3 Recommended that locked transactions are only used to support legacy
devices.

- - Section A7.4.1
Legacy considerations

AXI4,
ACE-
Lite

Locked accesses are not supported. - - Section A7.3 Locked
accesses

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV protocol checker

Bus
types

Description of check AMBA® APB
Protocol
Specification

AMBA® 3 AHB-
Lite Protocol
Specification

AMBA® 4 AXI
and ACE Protocol
Specification

AXI3,
AXI4,
ACE-
Lite

The maximum number of bytes that can be transferred in an exclusive
burst is 128.

- - Section A7.2.4
Exclusive access
restrictions

AXI3,
AXI4,
ACE-
Lite

The number of bytes transferred in an exclusive access burst must be a
power of 2.

- - Section A7.2.4
Exclusive access
restrictions

AXI4 The burst length for an exclusive access must not exceed 16 transfers. - - Section A7.2.4
Exclusive access
restrictions

AXI3,
AXI4,
ACE-
Lite

The address of an exclusive transaction is aligned to the total number of
bytes in the transaction.

- - Section A7.2.4
Exclusive access
restrictions

AXI3,
AXI4,
ACE-
Lite

Recommended that every exclusive write has an earlier outstanding
exclusive read with the same ID.

- - Section A7.2.4
Exclusive access
restrictions

AXI3,
AXI4,
ACE-
Lite

Recommended that the address, size and length of an exclusive write
with a given ID is the same as the address, size and length of the
preceding exclusive read with the same ID.

- - Section A7.2.4
Exclusive access
restrictions

7.3.8 Cacheability checks

This section describes the cacheability checks performed by the protocol checker.

Table 7-9: Cacheability checks performed by the protocol checker

Bus
types

Description of check AMBA®

APB
Protocol
Specification

AMBA® 3
AHB-Lite
Protocol
Specification

AMBA® 4 AXI and ACE Protocol
Specification

APB,
AXI4-
Lite

All transactions are non-cacheable, non-bufferable. Section 2.1
AMBA® APB
signals lists
no signals.

- Section B1.1.1 AXI4 signals not supported in
AXI4-Lite

AHB Allocate attributes are not supported. - Section
2.2 Master
signals lists
no signals.

-

AXI3,
AXI4,
ACE-Lite

When a transaction is not modifiable then allocate
attributes are not set.

- - Section A4.4 “Memory types”.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 83

AMBA-PV Extensions to TLM User Guide Document ID: 100962_0200_11_en
Version 2.0

AMBA-PV protocol checker

Bus
types

Description of check AMBA®

APB
Protocol
Specification

AMBA® 3
AHB-Lite
Protocol
Specification

AMBA® 4 AXI and ACE Protocol
Specification

APB,
AHB,
AXI3,
AXI4,
AXI4-
Lite

Cache coherent transactions are not supported. - - Section C1.3.2 “Changes to existing AXI
channels”.

ACE-
Lite,
ACE

A barrier transaction must have a barrier transaction
type.

- - Table C3-7 “Permitted read address control
signal combinations”.

ACE A coherent transaction must be inner or outer
shareable.

- - Table C3-7 “Permitted read address control
signal combinations” and Table C3-8
“Permitted write address control signal
combinations”.

ACE-Lite The only permitted coherent transaction type is
ReadOnce.

- - Table C3-11 “ACE-Lite permitted read
address control signal combinations”.

ACE,
ACE-Lite

A cache maintenance transaction cannot target the
system domain.

- - Table C3-7 “Permitted read address control
signal combinations”.

ACE,
ACE-Lite

A DVM transaction must be inner or outer shareable. - - Table C3-7 “Permitted read address control
signal combinations”.

ACE,
ACE-Lite

The permitted read transaction groups are Non-
snooping, Coherent, Cache maintenance, Barrier and
DVM.

- - Table C3-7 “Permitted read address control
signal combinations” and Table C3-11
“ACE-Lite permitted read address control
signal combinations”.

ACE-Lite Memory update transactions are not permitted. - - Table C3-12 “ACE-Lite permitted write
address control signal combinations”.

ACE A WriteClean or WriteBack transaction cannot target
the system domain.

- - Table C3-8 “Permitted write address
control signal combinations”.

ACE An Evict transaction must be inner or outer
shareable.

- - Table C3-8 “Permitted write address
control signal combinations”.

ACE,
ACE-Lite

The permitted write transaction groups are Non-
snooping, Coherent, Memory update (ACE) and
Barrier.

- - Table C3-8 “Permitted write address
control signal combinations” and Table
C3-12 “ACE-Lite permitted write address
control signal combinations”.

ACE Snoop transaction type must be ReadOnce,
ReadShared, ReadClean, ReadNotSharedDirty,
ReadUnique, CleanShared, CleanInvalid, MakeInvalid,
DVMComplete or DVMMessage.

- - Table C3-19 “ACSNOOP encodings”.

Copyright © 2014–2018, 2020–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 83

	AMBA-PV Extensions to TLM User Guide
	Contents
	1. Introduction
	1.1 Conventions
	1.2 Other information
	1.3 Useful resources

	2. Introduction to AMBA-PV Extensions to TLM 2.0
	2.1 AMBA-PV classes and interfaces

	3. AMBA-PV extension class
	3.1 Attributes and methods
	3.1.1 Class definitions
	3.1.2 Constructors, copying, and addressing
	3.1.3 Default values and modifiability of attributes
	3.1.4 Burst length attribute
	3.1.5 Burst size attribute
	3.1.6 Burst type attribute
	3.1.7 ID attribute
	3.1.8 Privileged attribute
	3.1.9 Non-secure attribute
	3.1.10 Physical address space attribute
	3.1.11 Exclusive attribute
	3.1.12 Locked attribute
	3.1.13 Bufferable attribute
	3.1.14 Modifiable/cacheable attribute
	3.1.15 Read allocate attribute
	3.1.16 Write allocate attribute
	3.1.17 Read other allocate attribute
	3.1.18 Write other allocate attribute
	3.1.19 Quality of Service (QoS) attribute
	3.1.20 Region attribute
	3.1.21 Domain attribute
	3.1.22 Snoop attribute
	3.1.23 Bar attribute
	3.1.24 DVM messages
	3.1.24.1 DVM default values
	3.1.24.2 DVM VMID attribute
	3.1.24.3 DVM ASID attribute
	3.1.24.4 DVM Virtual Index attribute
	3.1.24.5 DVM Completion attribute
	3.1.24.6 DVM Message type attribute
	3.1.24.7 DVM Operating system attribute
	3.1.24.8 DVM Security attribute
	3.1.24.9 DVM Additional address attribute
	3.1.24.10 DVM transaction encoding

	3.1.25 Response attribute
	3.1.26 ACE response attributes PassDirty and IsShared
	3.1.27 ACE snoop response attributes DataTransfer, Error, and WasUnique
	3.1.28 Response array attribute
	3.1.28.1 Response array element attributes

	3.1.29 Data organization
	3.1.30 Direct memory interface
	3.1.31 Debug transport interface

	3.2 AMBA signal mapping
	3.3 Mapping for AMBA buses
	3.4 Basic transactions
	3.4.1 Fixed burst example
	3.4.2 Incremental burst example
	3.4.3 Wrapped burst example
	3.4.4 Unaligned burst example

	4. AMBA-PV classes
	4.1 Class description
	4.1.1 AMBA-PV extension
	4.1.2 Core interfaces
	4.1.3 User layer
	4.1.4 Sockets
	4.1.5 ACE sockets
	4.1.6 Bridges
	4.1.7 Memory
	4.1.8 Exclusive monitor
	4.1.9 Bus decoder
	4.1.10 Protocol checker
	4.1.11 Signaling
	4.1.12 User and transport layers
	4.1.12.1 Forward calls from master to slave
	4.1.12.2 Backward calls from slave to master
	4.1.12.3 Forward and backward calls with ACE sockets

	4.1.13 Transaction memory management

	4.2 Class summary
	4.2.1 Classes and interfaces
	4.2.2 Classes for virtual platforms
	4.2.3 Classes for side-band signals

	5. Example systems
	5.1 Configuring the examples
	5.2 Bridge example
	5.2.1 Building and running the bridge example

	5.3 Debug example
	5.3.1 Building and running the debug example

	5.4 DMA example
	5.4.1 Building and running the DMA example

	5.5 Exclusive example
	5.5.1 Building and running the exclusive example

	6. Creating AMBA-PV compliant models
	6.1 Creating an AMBA-PV master
	6.2 Creating an AMBA-PV slave
	6.3 Creating an AMBA-PV interconnect
	6.4 Creating an AMBA-PV ACE master
	6.5 Creating an AMBA-PV ACE slave

	7. AMBA-PV protocol checker
	7.1 AMBA protocol check selection: check_protocol()
	7.2 Recommended checks: recommend_on()
	7.3 Checks that the protocol checker performs
	7.3.1 About the protocols
	7.3.2 Architecture checks
	7.3.3 Extension checks
	7.3.4 Address checks
	7.3.5 Data checks
	7.3.6 Response checks
	7.3.7 Exclusive access checks
	7.3.8 Cacheability checks

