
Helium Programmers Guide Coding for Helium
Version 1.1

Non-Confidential
Copyright © 2020 Arm Limited (or its affiliates).
All rights reserved.

Issue 02
102095_0101_02_en

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Helium Programmers Guide Coding for Helium

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 17 April 2020 Non-Confidential Initial release

0101-02 1 June 2020 Non-Confidential Updated images

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 34

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 34

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 34

mailto:terms@arm.com

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Contents

Contents

1. Overview...6

2. Before you begin...7

3. Options for writing Helium-enabled code..8

4. Enabling Helium..11

5. Helium-enhanced libraries..13

6. Auto-vectorization and Helium...16

7. Helium intrinsics... 21

8. Mixing C/C++ and Helium assembly code...26

9. Related information... 33

10. Next steps..34

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 34

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Overview

1. Overview
This guide provides information and examples for software programmers who want to use Arm
Helium technology. We will discuss the benefits and drawbacks of the different approaches
available, and examine real-world code examples to help you understand the key issues.

Arm Helium technology is the M-Profile Vector Extension (MVE) for the Arm Cortex-M processor
series. Helium is an extension of the Armv8.1-M architecture and delivers a significant performance
uplift for machine learning (ML) and digital signal processing (DSP) applications. For introductory
information about Helium, please see the Introduction to Helium guide.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 34

https://developer.arm.com/documentation/#cf%5Bnavigationhierarchiesproducts%5D=Architectures,Instruction%20Sets,SIMD%20ISAs,Helium,MVE%20Intrinsics

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Before you begin

2. Before you begin
This guide forms part of the Helium Programmer’s Guide. If you are not familiar with Helium, you
should start by reading the Introduction to Helium guide.

The sections of this guide contain code examples. These code examples are available to download
as a ZIP file.

The examples in this guide use the Arm Compiler 6 toolchain, designed for embedded application
development running on bare-metal devices. If you do not already have access to Arm Compiler 6,
it is included in the 30-day free trial of Arm Development Studio Gold Edition.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 34

https://developer.arm.com/documentation/#cf%5Bnavigationhierarchiesproducts%5D=Architectures,Instruction%20Sets,SIMD%20ISAs,Helium,MVE%20Intrinsics
https://developer.arm.com/-/media/Files/downloads/helium-programmers-guide/HeliumProgrammersGuide-CodingForHelium-Example.zip
https://developer.arm.com/-/media/Files/downloads/helium-programmers-guide/HeliumProgrammersGuide-CodingForHelium-Example.zip
https://developer.arm.com/downloads/-/arm-compiler-for-embedded

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Options for writing Helium-enabled code

3. Options for writing Helium-enabled code
Programming in any high-level language is a tradeoff between the ease of writing code, and the
amount of control that you have over the low-level instructions that are output by the compiler.
This is true when targeting Helium-enabled hardware. The goal is to ensure that wherever your
code contains vectorization opportunities where operations could be performed in parallel, Helium
instructions are used.

At one end of the spectrum, you could write all your code in standard C/C++ and leave the
implementation decisions to the compiler. If you are using an auto-vectorizing compiler, and
your code is straightforward, this can produce excellent results. The compiler generates Helium
instructions for all the vectorizable portions of your code.

The benefit of this approach is that it requires very little effort from the programmer, except for
writing standard C/C++ code.

The drawback of this approach is that, if the compiler does not do what you want, for whatever
reason, you might not have enough control to change that situation. For example, if your code is
complex, the compiler might miss a vectorization opportunity and fail to use Helium. Modifying
your code to follow best practices might be enough to help the compiler identify the vectorization
opportunity, but you cannot be sure.

At the other end of the spectrum, you could write all your Helium code by hand in assembly. This
gives you full control over the instructions used, but at the cost of vastly increased programmer
effort.

The different options available for writing Helium-enabled code are:

• Helium-enabled libraries

• Auto-vectorization

• Helium intrinsics

• Assembly code

Helium-enabled libraries
Libraries that support Helium provide one of the easiest ways to take advantage of Helium.

Libraries provide a suite of functions that you can use in your own code. When you compile for a
Helium-enabled target, a library variant using Helium instructions is selected. When you compile
for a target that does not support Helium, a library variant using standard Arm instructions is
selected. This means that the same source code can easily be compiled for both Helium-enabled
targets and non-Helium-enabled targets.

Examples of Helium-enabled libraries include:

• CMSIS-DSP - A suite of common signal processing functions for use on Cortex-M processor-
based devices.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 34

https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Options for writing Helium-enabled code

• CMSIS-NN - A collection of efficient neural network kernels that are developed to maximize
the performance, and minimize the memory footprint, of neural networks on Cortex-M
processor cores.

Libraries are easy to incorporate into your code, and the implementations of the functions have
already been optimized. For example, CMSIS-DSP has been designed to provide many of the
functions that you would need to write signal-processing code like audio filters or Fast Fourier
Transform (FFT).

The disadvantage of libraries is that you only have access to the functions that the library designer
has provided.

Auto-vectorization
Auto-vectorization features in your compiler can automatically optimize your code to take
advantage of Helium.

Auto-vectorization means allowing the compiler to automatically identify the areas of your code
that would benefit from Single Instruction Multiple Data (SIMD) optimizations.

The benefit of using auto-vectorization is that the programmer leaves everything to the compiler.

The disadvantage of auto-vectorization is that, if the compiler does not do what you want, you
might not have enough control to change that situation. For example, the compiler might fail
to identify that a particular part of your code is vectorizable. You can use coding best practices
to help the compiler identify that code is vectorizable, but they might not be enough to guide
the compiler in the right direction. In these situations, you might toned to use other options, for
example intrinsics or inline assembly, to ensure that Helium instructions are used.

Helium intrinsics
Helium intrinsics are function calls that the compiler replaces with appropriate Helium instructions.
Using Helium intrinsics gives you direct, low-level access to the exact Helium instructions that you
want, all from C/C++ code.

The benefit of using intrinsics is that they provide almost as much control as writing assembly
language, but leave details like register allocation to the compiler, so that developers can focus on
the algorithms.

The disadvantage of using Helium intrinsics is that programming with intrinsics can be more
complex than writing standard C/C++ code, and requires the programmer to learn about the
available Helium intrinsics.

Assembly code
For very high performance, hand-coded Helium assembly code is an alternative approach for
experienced programmers.

You can use pure assembly code modules (.s files) in your code, or you can use inline assembly
code to embed assembler instructions in your C and C++ code.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 34

https://www.keil.com/pack/doc/CMSIS/NN/html/index.html

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Options for writing Helium-enabled code

The benefit of using assembly code is that it provides absolute control over the Helium instructions
that are used.

The disadvantage of using assembly code is that writing assembly code can be a very complex
process that most people would rather not have to do. Optimizing hand-written assembly code
often requires detailed knowledge of the target hardware pipeline, especially for in-order Cortex-
M processors. You might need to write and maintain different code variants for different targets to
achieve optimal performance.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 34

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Enabling Helium

4. Enabling Helium
Helium is an optional extension to the Armv8.1-M architecture. This means that Helium may or
may not be present on your target.

Because of this, you should check whether Helium is available on your target before running
Helium code. This applies whether you are using a software model or a hardware target.

Enabling Helium on the ARM_AEMv8M Fixed Virtual Platform
FVP models provide a number of different parameters to configure the optional features of the
model.

See the Fast Models Reference Manual for a complete list of all ARM_AEMv8M parameters.

To enable Helium on the ARM_AEMv8M FVP, set the following parameters:

• cpu0.enable_helium_extension=1

• cpu0.vfp-present=1

• cpu0.vfp-enable_at_reset=1

Checking if Helium is present for hardware targets
The Media and VFP Feature Register 1 (MVFR1), describes the features that are provided by the
floating-point extension. In particular, the MVFR1.MVE bitfields, bits [11:8], indicate support for the
M-profile vector extension.

The possible values of this field are:

• 0b0000 indicates that Helium instructions are not available.

• 0b0001 indicates that Helium integer instructions are available, but Helium floating-point
instructions are not available.

• 0b0010 indicates that Helium integer and floating-point instructions are available.

For more information, see the Armv8-M Architecture Reference Manual.

The __ARM_FEATURE_MVE macro provides another mechanism for checking whether Helium is
present.

Enabling Helium for hardware targets
For hardware targets, access control registers specify whether Helium instructions are available
from privileged and unprivileged code.

• The Non-secure Access Control Register (NSACR) specifies the Non-secure access permissions
for Helium in bitfields CP10 and CP11. The possible values of these fields are:

◦ 0 - Non-secure accesses to the Floating-point Extension or MVE, unless otherwise
specified, generate a NOCP UsageFault.

◦ 1 - Non-secure access to the Floating-point Extension or MVE is permitted.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 34

https://developer.arm.com/documentation/100964/1119/fast-models-components/core-components/armaemv8mct
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/102095/0100/Enabling-Helium?lang=en

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Enabling Helium

• The Coprocessor Access Control Register (CPACR) specifies the access privileges for Helium in
bit field CP10. The possible values of this field are:

◦ 0b00 - All accesses to the FP Extension and MVE result in NOCP UsageFault.

◦ 0b01 - Unprivileged accesses to the FP Extension and MVE result in NOCP UsageFault.

◦ 0b11 - Full access to the FP Extension and MVE. For more information, see the Armv8-M
Architecture Reference Manual.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 34

https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/ddi0553/latest

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Helium-enhanced libraries

5. Helium-enhanced libraries
Libraries provide a suite of functions you can use in your own code. Helium-enahanced libraries
provide implementations of those functions that use Helium instructions.

When you compile for a Helium-enabled target, a library variant using Helium instructions is
selected. When you compile for a target that does not support Helium, a library variant using
standard Arm instructions is selected. This means that you can easily compile the same source code
for both Helium and non-Helium enabled targets.

Examples of Helium-enabled libraries include:

• CMSIS-DSP - A suite of common signal processing functions for use on Cortex-M processor-
based devices

• CMSIS-NN - A collection of efficient neural network kernels that are developed to maximize
the performance, and minimize the memory footprint, of neural networks on Cortex-M
processor cores

In this section of the guide, we examine the CMSIS-DSP library to see how to use libraries to write
Helium-enabled code.

Getting the CMSIS-DSP library
The CMSIS-DSP library provides functions that are specifically designed for signal processing. The
library provides over sixty common signal processing and mathematical functions for various data
types.

CMSIS is the Arm Cortex Microcontroller Software Interface Standard. CMSIS provides a vendor-
independent hardware abstraction layer for microcontrollers that are based on Arm Cortex
processors. CMSIS defines generic tool interfaces and enables consistent device support.
Its software interfaces simplify software reuse, reduce the learning curve for microcontroller
developers, and improve time to market for new devices.

CMSIS is integrated into IDEs like Keil MDK and Arm Development Studio, but can also be used
with a standalone compiler.

To use CMSIS:

• For Keil MDK, use the MDK Pack Installer to install the ARM::CMSIS pack.

• For Arm Development Studio, use the Pack Manager to install the Generic > ARM.CMSIS pack.

• For a standalone compiler, download CMSIS from git hub and follow the instructions for using
CMSIS with Arm Compiler 6.

Writing code using the CMSIS-DSP library
The CMSIS-DSP pack includes various examples. For example, the variance example demonstrates
the use of basic math functions to calculate the variance of an input sequence.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 34

https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
https://www.keil.com/pack/doc/CMSIS/NN/html/index.html
https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
https://www2.keil.com/mdk5/packinstaller/
https://developer.arm.com/Additional%20Resources/Video%20Tutorials/Pack%20Manager%20in%20Development%20Studio
https://github.com/ARM-software/CMSIS_5/releases
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/using-cmsis-with-arm-compiler-6-without-an-ide
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/using-cmsis-with-arm-compiler-6-without-an-ide
https://www.keil.com/pack/doc/CMSIS/DSP/html/group__groupExamples.html
https://www.keil.com/pack/doc/CMSIS/DSP/html/group__VarianceExample.html

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Helium-enhanced libraries

Let’s examine the source code of this example to look at some key features:

#include "arm_math.h"

The preceding code shows the CMSIS-DSP header file that declares the basic math functions used
by the example. This code must be included to use the CMSIS-DSP functions.

The following code shows how the variance example uses CMSIS-DSP library functions to
implement an algorithm that calculates the statistical variance of an input stream. The CMSIS-DSP
functions are arm_fill_f32(), arm_dot_prod_f32(), and arm_mult_f32():

.

.

.
/* Calculation of mean value of input */
/* x' = 1/blockSize * (x(0)* 1 + x(1) * 1 + ... + x(n-1) * 1) */
/* Fill wire1 buffer with 1.0 value */
arm_fill_f32(1.0, wire1, blockSize);

/* Calculate the dot product of wire1 and wire2 */
/* (x(0)* 1 + x(1) * 1 + ...+ x(n-1) * 1) */
arm_dot_prod_f32(testInput_f32, wire1, blockSize, &mean);

/* Calculation of 1/blockSize */
oneByBlockSize = 1.0 / (blockSize);

/* 1/blockSize * (x(0)* 1 + x(1) * 1 + ... + x(n-1) * 1) */
arm_mult_f32(&mean, &oneByBlockSize, &mean, 1);

.

.

.

The CMSIS-DSP functions used in this example are:

• arm_fill_f32() fills a constant value into a floating-point vector.

• arm_dot_prod_f32() calculates the dot product of floating-point vectors.

• arm_mult_f32() performs floating-point vector multiplication.

All available CMSIS-DSP functions are described in the CMSIS DSP Software Library Reference.

Compiling CMSIS-DSP code for Helium
When compiling for a Helium-enabled target, the compiler will automatically select the CMSIS-DSP
variant that uses Helium instructions.

For example, in Arm Development Studio select Generic Armv8.1-M Main (MVE Integer) to target
any Helium-enabled Armv8-M platform, as shown in the following screenshot:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 34

https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Helium-enhanced libraries

Figure 5-1: ds select helium target

When compiling with a standalone compiler, you must ensure that the CMSIS header files are on
the include path, and the CMSIS libraries are on the library path.

For example, to target the architecture, use this command:

armclang -target arm-arm-none-eabi -march=armv8.1-m.main+mve.fp+fp.dp
 -I <cmsis_dir>/DSP/Include/ -L <cmsis_dir>/DSP/Lib/ ...

To target the Cortex-M55, use this command:

armclang -target arm-arm-none-eabi -mcpu=cortex-m55 -I <cmsis_dir>/DSP/Include/
 -L <cmsis_dir>/DSP/Lib/ ...

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 34

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Auto-vectorization and Helium

6. Auto-vectorization and Helium
There are many different ways to write code that takes advantage of Helium technology. Writing
hand-optimized assembly kernels, or C code containing Helium intrinsics, provides a high level of
control over the Helium code in your software. However, these methods can result in significant
lack of portability and engineering complexity costs.

Often a high-quality compiler can generate code which is just as good, but requires significantly
less design time. Auto-vectorization is the process of allowing the compiler to automatically identify
opportunities in your code to use Helium instructions.

Auto-vectorization includes the following compilation techniques:

• Loop vectorization – Unrolling loops to reduce the number of iterations, while performing more
operations in each iteration.

• Superword-Level Parallelism (SLP) vectorization – Bundling scalar operations together to use
full width Helium instructions.

Auto-vectorizing compilers for Cortex-M processors include Arm Compiler 6 and LLVM-clang.

The benefits of relying on compiler auto-vectorization include:

• Programs implemented in high-level languages are portable, if there are no architecture-specific
code elements like inline assembly or intrinsics.

• Modern compilers can perform advanced optimizations automatically.

• Targeting a given micro-architecture can be as easy as setting a single compiler option.
Optimizing an assembly program requires deep knowledge of the target hardware.

However, auto-vectorization might not be the right choice in all situations:

• While source code can be architecture agnostic, it may have to be compiler specific to get the
best code generation.

• Small changes in a high-level language or the compiler options can result in significant and
unpredictable changes in generated code.

Using the compiler to generate Helium instructions is appropriate for most projects. Other methods
for exploiting Helium are necessary only when the generated code does not deliver the necessary
performance, or when particular hardware features are not supported by high-level languages.

Compiling for Helium with Arm Compiler 6
To enable automatic vectorization, you must specify appropriate compiler options.

These compiler options must do the following:

• Target a processor that has Helium capabilities

• Specify an optimization level that includes auto-vectorization

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 34

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Auto-vectorization and Helium

Specifying a Helium-capable target
If you want to run code on one processor, you can target that specific processor with the -mcpu
option. Performance is optimized for the micro-architectural specifics of that processor. However,
code is only guaranteed to run on that processor.

Alternatively, if you want your code to run on a range of processors, you can target an architecture
with the -march option. Generated code runs on any processor implementation of that target
architecture, but performance might be impacted.

In both cases, you can use one of the following feature modifiers to enable Helium:

• +mve enables MVE instructions for integer operations.

• +mve.fp enables MVE instructions for integer and single-precision floating-point operations.

• +mve.fp+fp.dp enables MVE instructions for integer, single-precision, and double-precision
floating-point operations.

The Helium extension is always enabled on the Cortex-M55, so there is no need to use a feature
modifier. Targeting the processor is sufficient to generate Helium code, as in the following
command:

armclang --target arm-arm-none-eabi -mcpu=cortex-m55 ...

To target Helium for any Helium-enabled Armv8-M platform, you must specify a feature modifier,
as in the following command:

armclang -target arm-arm-none-eabi -march=armv8.1-m.main+mve.fp+fp.dp ...

Specifying an auto-vectorizing optimization level
Arm Compiler 6 provides a wide range of optimization levels, selected with the -O option.

The following table defines the available optimization levels:

Option Description Auto-vectorization

-O0 Minimum optimization Never

-O1 Restricted optimization Disabled by default.

-O2 High optimization Enabled by default.

-O3 Very high optimization Enabled by default.

-Os Reduce code size, balancing code size against code speed Enabled by default.

-Oz Smallest possible code size Enabled by default.

-Ofast Optimize for high performance beyond -O3 Enabled by default.

-Omax Optimize for high performance beyond -Ofast Enabled by default.

See Selecting optimization options, in the Arm Compiler User Guide and -O, in the Arm Compiler
armclang Reference Guide for more details about these options.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 34

https://developer.arm.com/documentation/100748/0612/using-common-compiler-options/selecting-optimization-options
https://developer.arm.com/documentation/100067/0612/
https://developer.arm.com/documentation/100067/0612/

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Auto-vectorization and Helium

Auto-vectorization is enabled by default at optimization level -O2 and higher. The -fno-vectorize
option lets you disable auto-vectorization.

At optimization level -O1, auto-vectorization is disabled by default. The -fvectorize option lets you
enable auto-vectorization.

At optimization level -O0, auto-vectorization is always disabled. If you specify the -fvectorize
option, the compiler ignores it.

To enable auto-vectorization, do one of the following:

• Select an optimization level of -O2 or higher.

• Select an optimization level of -O1 and specify -fvectorize.

Helium auto-vectorization example
The following Helium auto-vectorization example shows how an auto-vectorizing compiler
identifies optimization opportunities in source code, and uses Helium instructions to maximize
performance.

The example function clips floating point values if they fall outside of a specified range. The
function takes the following parameters:

• *pSrc, a pointer to an array input data

• *pDst, a pointer to an array where output data will be stored

• low, the lower bound of the clipping range. Input data values lower than low are replaced with
low.

• high, the upper bound of the clipping range. Input data values higher than high are replaced
with high.

• numSamples, the number of data values in the input array (and therefore also the output array
once the function has finished).

The example function is implemented as follows:

#include "arm_math.h"
void arm_clip_f32(float32_t * pSrc, float32_t * pDst, float32_t low, float32_t high,
 uint32_t N) {

for (uint32_t i = 0; i < N; i++) {

float32_t x = pSrc[i];

if (x > high)

x = high;

if (x < low)

x = low;

pDst[i] = x;

}

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 34

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Auto-vectorization and Helium

}

Compile this code with Arm Compiler 6 as follows:

armclang -target arm-arm-none-eabi -march=armv8.1-m.main+mve.fp+fp.dp -Ofast
 -S arm_clip_f32.c

In this example, using the -S option means that the compiler outputs the disassembly of the
compiled code to the file arm_clip_f32.s.

Examining the arm_clip_f32.s file shows the instructions the compiler has generated:

...
 dls lr, lr
.LBB0_13: @ =>This Inner Loop Header: Depth=1
 vldrw.u32 q3, [r4], #16
 vminnm.f32 q3, q3, q1
 vmaxnm.f32 q3, q3, q2
 vstrb.8 q3, [r3], #16
 le lr, .LBB0_13 ...

The Helium instruction VLDRW.U32 loads our data into vector lanes. In this example the data values
are 32-bit, so each vector is loaded with four data values at a time.

The VCMP.F32 Helium instructions then compare those vector lanes concurrently against the upper
and lower clipping values.

Helium predication instructions such as VPST selectively perform the clipping operation only on
data where the comparison reveals that clipping is needed.

Coding best practice for auto-vectorization
As an implementation becomes more complicated, the likelihood that the compiler can auto-
vectorize the code decreases.

For example, loops with the following characteristics are particularly difficult, or impossible, to
vectorize:

• Loops with interdependencies between different loop iterations

• Loops with break clauses

• Loops with complex conditions

Arm recommends modifying your source code implementation to eliminate these situations where
possible.

For example, a necessary condition for auto-vectorization is that the number of iterations in the
loop size must be known at the start of the loop. Break conditions mean that the loop size may
not be knowable at the start of the loop, which will prevent auto-vectorization. If it is not possible
to completely avoid a break condition, it may be worthwhile breaking up the loops into multiple
vectorizable and non-vectorizable parts.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 34

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Auto-vectorization and Helium

A full discussion of the compiler directives that are used to control vectorization of loops can be
found in the LLVM-Clang documentation, but the two most important are:

• #pragma clang loop vectorize(enable)

• #pragma clang loop interleave(enable)

These pragmas are hints to the compiler to perform Superword Level Parallelism (SLP) and loop
vectorization respectively. They are [COMMUNITY] features of Arm Compiler.

More detailed guides covering auto-vectorization are available for the Arm C/C++ Compiler Linux
user-space compiler, although many of the points apply across LLVM-Clang variants:

• Arm C/C++ Compiler: Coding best practice for auto-vectorization

• Arm C/C++ Compiler: Using pragmas to control auto-vectorization

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 34

https://developer.arm.com/documentation/100748/0612/supporting-reference-information/support-level-definitions
https://developer.arm.com/documentation/101458/2210/Optimize/Coding-best-practice-for-auto-vectorization
https://developer.arm.com/documentation/101458/2210/Optimize/Control-auto-vectorization-with-pragmas

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Helium intrinsics

7. Helium intrinsics
Intrinsics are functions whose precise implementation is known to a compiler. The Helium intrinsics
are a set of C and C++ functions that are defined in the header file arm_mve.h. The Arm compilers
and GCC support these intrinsics.

Helium intrinsics provide direct access to Helium instructions from C and C++ code without having
to write assembly code by hand. The intrinsics map to short assembly kernels which are inlined
into the calling code. Also, the compiler handles register allocation and pipeline optimization. This
means that many difficulties that are faced by the assembly programmer are avoided.

See the Arm MVE Intrinsics Reference Architecture specification (also available as interactive
HTML) for a list of all the Helium intrinsics. This specification forms part of the Arm C Language
Extensions (ACLE).

Using the Helium intrinsics has several benefits:

• Powerful: Intrinsics give the programmer direct access to the Helium instruction set without the
need for hand-written assembly code.

• Portable: Hand-written Helium assembly instructions might need to be rewritten for different
target processors. C and C++ code containing Helium intrinsics can be compiled for a new
target with minimal or no code changes.

• Flexible: The programmer can exploit Helium when needed, or use C/C++ otherwise, while
avoiding many low-level engineering concerns.

However, intrinsics might not be the right choice in all situations:

• It is more difficult to use Helium intrinsics than to import a library or rely on a compiler.

• Hand-optimized assembly code might offer the greatest scope for performance improvement
even if it is more difficult to write.

Helium header file
The header file arm_mve.h defines the Helium intrinsics. You must include this header file in every
source file that uses Helium intrinsics.

You should test the __ARM_FEATURE_MVE macro before including the header. The __ARM_FEATURE_MVE
macro is a 2-bit bitmap indicating M-profile Vector Extension (MVE) support:

• Bit 0 indicates whether Helium integer instructions are available.

• Bit 1 indicates whether Helium floating-point instructions are available.

The valid values of __ARM_FEATURE_MVE are therefore:

• 0 indicates that Helium is not available.

• 1 indicates that only the Helium integer intrinsics are available.

• 3 indicates that both the Helium integer and floating-point intrinsics are available.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 34

https://developer.arm.com/documentation/101809/latest
https://developer.arm.com/architectures/instruction-sets/intrinsics/
https://developer.arm.com/architectures/instruction-sets/intrinsics/
https://developer.arm.com/Architectures/Arm%20C%20Language%20Extensions
https://developer.arm.com/Architectures/Arm%20C%20Language%20Extensions

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Helium intrinsics

The __ARM_FEATURE_MVE macro should be tested to check that Helium is enabled on the target
platform before including the header:

#if (__ARM_FEATURE_MVE & 3) == 3
#include <arm_mve.h>
 // MVE integer and floating point intrinsics are now available to use. //
#elif __ARM_FEATURE_MVE & 1
#include <arm_mve.h>
 // MVE integer intrinsics are now available to use. //
#endif

Namespaces
By default, Helium intrinsics occupy both the user namespace and the __arm_ namespace.

That is, both these lines of code are equivalent:

vecDst = vmulq_f32(vecA, vecB);
vecDst = __arm_vmulq_f32(vecA, vecB);

Defining the macro __ARM_MVE_PRESERVE_USER_NAMESPACE hides the definition of the user
namespace variants:

#define __ARM_MVE_PRESERVE_USER_NAMESPACE
vecDst = vmulq_f32(vecA, vecB); //Invalid. User namespace variants are
 hidden.
vecDst = __arm_vmulq_f32(vecA, vecB); // Valid.

Compiling code containing Helium intrinsics with Arm Compiler 6
To compile code containing Helium intrinsics, you must do the following:

• Include the Helium intrinsics header file arm_mve.h in your code

• Specify compiler options that identify a target with Helium capabilities.

The preceding steps are the minimum that you must do to enable Helium intrinsics to be compiled
into Helium instructions. However, you might also want to have the compiler perform auto-
vectorization. This will allow you to identify further opportunities in your code to improve
performance with Helium. In this case, specify an appropriate optimization level to enable auto-
vectorization.

To target Helium for any Helium-enabled Armv8-M platform:

armclang -target arm-arm-none-eabi -march=armv8.1-m.main+mve.fp+fp.dp ...

Helium intrinsics example
This example shows how you can use Helium intrinsics to perform vector multiplication.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 34

https://developer.arm.com/documentation/102095/0100/Helium-intrinsics?lang=en
https://developer.arm.com/documentation/102095/0100/Helium-intrinsics?lang=en
https://developer.arm.com/documentation/102095/0100/Helium-intrinsics?lang=en

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Helium intrinsics

Vector multiplication multiplies the value of the elements in the first source vector by the
respective elements in the second source vector, then writes the result to a destination vector
register. That is:

[Ai, Aj, Bk, ...] x [Bi, Bj, Bk, ...] = [(Ai x Bi) , (Aj x Bj) , (Ak x Bk) ...]

The main() function does the following:

• Creates two source data arrays, each containing eight floating-point numbers

• Calls the my_mult_f32_intr() function, passing the following arguments:

◦ Pointers to the two input arrays to use as the data source

◦ The block size in memory of the input arrays

◦ A pointer to the A_src array, to use as the result destination. The result will therefore
overwrite the original data.

The my_mult_f32_intr() function does the following:

• Uses the block size to calculate how many vector loop iterations are required. Because we are
dealing with 32-bit floating-point values, and the * * Helium registers are 128 bits wide, we can
operate on four data values in each iteration.

• Loads data from the input arrays into the Helium vector registers, four values at a time

• Performs the vector multiplication on the input vectors

• Stores the result vector into the destination array

• Advances the array pointers by the size of four data elements

• Decrements the loop counter, and loops around until all loop iterations have finished

The my_mult_f32_intr() function is implemented as follows:

#include <stdio.h>
#include <arm_mve.h>

void my_mult_f32_intr(
 float32_t * pSrcA, float32_t * pSrcB,
 float32_t * pDst, uint32_t blockSize) {

 // Calculate memory block size for 4 x lanes of float32_t data
 const int blkSize_F32 = 4 * sizeof(float32_t);

 // Calculate how many loop iterations are required:
 // size of array / size of 4 data items
 int blkCnt = blockSize / blkSize_F32;

 // Create source and destination vectors, configured for 4 lanes of float32_t data
 float32x4_t vecA, vecB, vecDst;

 // Main loop
 while (blkCnt > 0U) {
 // Load source vectors with data from the input arrays
 vecA = vldrwq_f32(pSrcA);
 vecB = vldrwq_f32(pSrcB);

 // Perform vector multiplication

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 34

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Helium intrinsics

 vecDst = vmulq_f32(vecA, vecB);

 // Store the result vector into the destination array
 vstrwq_f32(pDst, vecDst);

 // Decrement the loop count
 blkCnt--;

 // Advance source and destination pointer addresses by the size of 4 data
 elements
 pSrcA += blkSize_F32;
 pSrcB += blkSize_F32;
 pDst += blkSize_F32;
 }
}

int main() {
 // Setup data in input arrays
 float32_t A_src[] = {1.1, 7.9, 8.2, 2.1, 5.3, 2.2, 3.1, 6.9};
 float32_t B_src[] = {7.2, 2.7, 9.9, 8.2, 1.3, 1.1, 6.9, 2.4};

 // Call the multiplication function
 my_mult_f32_intr(&A_src[0], &B_src[0], &A_src[0], sizeof(A_src));

 return 0;
}

The following table shows some additional information about the intrinsics that are used:

Intrinsic Description

vldrwq_f32 Loads consecutive elements from memory into a destination vector register.

vmulq_f32 Multiplies the value of the elements in the first source vector register by the respective elements in the second source
vector register. The result is then written to the destination vector r egister.

vstrwq_f32 Stores consecutive elements to memory from a vector register.

You can compile this code with Arm Compiler 6 as follows:

armclang -target arm-arm-none-eabi -march=armv8.1-m.main+mve.fp+fp.dp
 -Ofast -S my_mult_f32_intr.c

In this example, using the -S option means that the compiler outputs the disassembly of the
compiled code to the file my_mult_f32_intr.s.

Examining the my_mult_f32_intr.s file shows the instructions that the compiler has generated:

 ...
.LBB0_1: @ =>This Inner Loop Header: Depth=1
 vldrw.u32 q0, [r1]
 vldrw.u32 q1, [r0]
 adds r1, #64
 adds r0, #64
 vmul.f32 q0, q1, q0
 vstrw.32 q0, [r2]
 adds r2, #64
 le lr, .LBB0_1
 ...

Here we can see that:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 34

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Helium intrinsics

• The vldrwq_f32 intrinsics compile to vldrw.u32 instructions.

• The vmulq_f32 intrinsic compiles to a vmul.f32 instruction.

• The vstrwq_f32 intrinsic compiles to a vstrw.32 instruction.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 34

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Mixing C/C++ and Helium assembly code

8. Mixing C/C++ and Helium assembly code
Arm Compiler 6 provides an inline assembler that enables you to incorporate assembly code
directly in your C or C++ source code. The benefit of using inline assembly rather than writing pure
assembly code is that you can read and write C variables directly.

Introduction to inline assembly
The __asm keyword provides the mechanism to incorporate inline GCC syntax assembly code into a
function.

For example, here is a simple example that uses a single inline ADD assembly instruction:

#include <stdio.h>

int add(int i, int j)
{
 int res = 0;
 __asm (
 "ADD %[result], %[input_i], %[input_j]"
 : [result] "=r" (res)
 : [input_i] "r" (i), [input_j] "r" (j)
);
 return res;
}

int main(void)
{
 int a = 1;
 int b = 2;
 int c = 0;

 c = add(a,b);

 printf("Result of %d + %d = %d\n", a, b, c);
}

The general form of the __asm inline assembly statement is:

__asm(
 code
 [: output_operand_list
 [: input_operand_list
 [: clobbered_register_list]]]
);

Where:

• code is the assembly code.

In our example, this is:

"ADD %[result], %[input_i], %[input_j]"

This single instruction adds two inputs, represented by the symbolic names input_i and
input_j, and assigns the sum to the symbolic name result.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 34

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Mixing C/C++ and Helium assembly code

• output_operand_list maps output symbolic names to C variable names.

In our example, there is just one output:

: [result]"=r" (res)

This indicates that the symbolic name result maps to the C variable res. The "=r" constraint
indicates that value resides in a register, and that any previous value in that register is
overwritten.

• input_operand_list maps input symbolic names to C variable names.

In our example, there are two inputs:

: [input_i] "r" (i), [input_j] "r" (j)

This indicates that the symbolic name input_i maps to the C variable i, and input_j maps to j.

• clobbered_register_list is a comma-separated list of register names. These are registers that
the assembly code potentially modifies, but for which the final value is not important. Including
a register in the clobber list prevents the compiler from using that register for other purposes in
the code.

In our example, there are no clobbered registers, because only the previously declared input
and result registers are used.

Constraints and modifiers let you tell the compiler how values will be used in the assembly code.
In our example, we used the "=r"constraint to identify that the output register is overridden. There
are many other constraints that let you identify more complex requirements. For example, you can
use the %Q and %R constraint modifiers to access the lower and higher halves of a 64-bit register
pair.

The Arm Compiler Reference Guide: armclang Inline Assembler provides more information about
inline assembly, constraints, and modifiers.

For more information about GCC and the format used by the __asm keyword, see the Gnu
documentation.

Complex vector dot product example
Helium is ideally suited for the types of operations that are commonly performed by DSP and ML
applications.

This example shows how you can use inline assembly and Helium instructions to calculate the
vector dot product of two arrays of complex numbers.

Complex numbers have two parts: real and imaginary, expressed as:

a + bi

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 34

https://developer.arm.com/documentation/101754/0619/armclang-reference/armclang-inline-assembler
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://en.wikipedia.org/wiki/Complex_number

Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Mixing C/C++ and Helium assembly code

Each complex number is therefore represented as a pair of numbers, a and b.

The example uses the Q31 fixed-point numbers format to represent the data. In the Q31 format, 1
bit is used to represent the sign (0 for positive, 1 for negative) and the remaining 31 bits represent
the fractional data. The Q31 format can therefore express numbers in the range -1 to almost 1.

For example:

Q31 value (decimal) Q31 value (hex) Floating-point value

0 0x0000 0000 0

1 0x0000 0001 0.0000000004656613

984267707 0x3AAA BBBB 0.4583353674970567

2147483647 0x7FFF FFFF 0.9999999995343387

-2,147,483,648 0x8000 0000 -1

-1,288,490,189 0xB333 3333 -0.6000000000931323

-1 0xFFFF FFFF -0.0000000004656613

For two complex numbers:

a + bi
c + di

The vector dot product is calculated as:

((a x c) – (b x d)) + ((a x d) + (b x c))i
~~~~~~~~~~~~~~~~~~~   ~~~~~~~~~~~~~~~~~~~
         ^                     ^
         |                     |
     Real part           Imaginary part

To calculate the dot product for vectors of complex numbers, the individual dot products for each
input pair are summed.

That is, the underlying algorithm is:

realResult = 0;
imagResult = 0;
for (n = 0; n < numSamples; n++) {
    realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
    imagResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
}

Where:

• realResult is the real component of the summed dot products.

• imagResult is the imaginary component of the summed dot products.

• pSrcA and pSrcB are pointers to the two input arrays. Each input array contains complex
numbers with the real and imaginary parts interleaved. * That is, the array {1, 2, 3, 4, 5, 6}
represents the three complex numbers 1 + 2i, 3 + 4i, 5 + 6i.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 34



Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Mixing C/C++ and Helium assembly code

• numSamples is the number of complex number pairs in each input array.

We can implement this algorithm using inline assembly code using Helium instructions as follows:

void my_cmplx_dot_prod_q31(
  q31_t * pSrcA,
  q31_t * pSrcB,
  uint32_t numSamples,
  q63_t * realResult,
  q63_t * imagResult)
{
  __asm volatile (
        "   clrm                    {r4-r7}                 \n"
        "   wlstp.32                lr, %[cnt], 1f          \n"
        "2:                                                 \n"
        "   vldrw.32                q0, [%[pA]], 16         \n"
        "   vldrw.32                q1, [%[pB]], 16         \n"
        "   vrmlsldavha.s32         r4, r5, q0, q1          \n"
        "   vrmlaldavhax.s32        r6, r7, q0, q1          \n"
        "   letp                    lr, 2b                  \n"
        "1:                                                 \n"
        "   asrl                    r4, r5, #6              \n"
        "   asrl                    r6, r7, #6              \n"
        "   strd                    r4, r5, [%[realResult]] \n"
        "   strd                    r6, r7, [%[imagResult]] \n"
        :[pA] "+r"(pSrcA),[pB] "+r"(pSrcB)
        :[cnt] "r"(numSamples * 2), [realResult] "r"(realResult),
         [imagResult] "r"(imagResult)
        :"r4", "r5", "r6", "r7", "lr", "memory");
}

Key features of this code include:

• The WLSTP (While Loop Start with Tail Predication) and LETP (Loop End) instructions form the
main loop. This loop iterates over all elements of the input arrays, decrementing numSamples by
one on each loop and continuing until it reaches zero.

• The VLDRW (Vector Load Register) instruction loads the next two complex numbers from each
array into Helium registers Q0 and Q1.

• The real component of the dot product is calculated by the VRMLSLDAVHA (Vector Rounding
Multiply Subtract Long Dual Accumulate Across Vector Returning High 64 bits) instruction. This
instruction multiplies corresponding elements from the vectors in the registers Q0 and Q1. The
results of the pairs of multiply instructions are subtracted from each other. Finally, the scalar
result is then added to the running total that is held in the two registers R5 (high 32 bits) and R4
(low 32 bits). This implements the following part of the algorithm:

realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];

The following diagram illustrates this calculation:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 34



Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Mixing C/C++ and Helium assembly code

Figure 8-1: ARM1564 Update to Images ST2 V8

• The imaginary component of the dot product is calculated by the VRMLALDAVHAX (Vector
Rounding Multiply Subtract Long Dual Accumulate Across Vector Returning High 64 bits
With Exchange) instruction. This instruction first swaps the values in each pair of values read
from the first source register Q1, before multiplying them with the values from the second
source register Q0. The results of the pairs of multiply operations are combined by adding them
together. Finally, the scalar result is then added to the running total held in the two registers R7
(high 32 bits) and R6 (low 32 bits).

This implements the following part of the algorithm:

imagResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];

The following diagram illustrates this calculation:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 34



Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Mixing C/C++ and Helium assembly code

Figure 8-2: ARM1564 Update to Images ST2 V7

Re(A0) Im(A0) Re(A1) Im(A1)Q0

Re(B0) Im(B0) Re(B1)

R7 R6

Im(B1)Q1

VRMLALDAVHAX

• The ASRL (Arithmetic Shift Right Long) instruction performs an arithmetic shift right by 6 bits, to
convert the result into a Q16.48 number.

• The STRD (Store Register Dual) instruction returns the real and imaginary components of the
result by writing them to the result registers.

The following complete code example shows how to interface between the C and assembly code:

#include <arm_mve.h>
#include <arm_math.h>
#include <stdio.h>

void my_cmplx_dot_prod_q31(
  q31_t * pSrcA,
  q31_t * pSrcB,
  uint32_t numSamples,
  q63_t * realResult,
  q63_t * imagResult)
{
  __asm volatile (
        "   clrm                    {r4-r7}                 \n"
        "   wlstp.32                lr, %[cnt], 1f          \n"
        "2:                                                 \n"
        "   vldrw.32                q0, [%[pA]], 16         \n"
        "   vldrw.32                q1, [%[pB]], 16         \n"
        "   vrmlsldavha.s32         r4, r5, q0, q1          \n"
        "   vrmlaldavhax.s32        r6, r7, q0, q1          \n"
        "   letp                    lr, 2b                  \n"
        "1:                                                 \n"
        "   asrl                    r4, r5, #6              \n"
        "   asrl                    r6, r7, #6              \n"
        "   strd                    r4, r5, [%[realResult]] \n"
        "   strd                    r6, r7, [%[imagResult]] \n"
        :[pA] "+r"(pSrcA),[pB] "+r"(pSrcB)
        :[cnt] "r"(numSamples * 2), [realResult] "r"(realResult),
         [imagResult] "r"(imagResult)
        :"r4", "r5", "r6", "r7", "lr", "memory");
}

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 34



Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Mixing C/C++ and Helium assembly code

int main() {
  // Setup data in input arrays
  q31_t A_src[] = {947483647, 834662098, 111222333, 555666777, 101202303, 
                      555000222, 432654876, 999888777};
  q31_t B_src[] = {147483647, 623333999, 623957233, 876543098, 337744884, 
                      112233445, 909808707, 543098765};

  // Create pointers to the two input arrays
  q31_t *pA_src = A_src;
  q31_t *pB_src = B_src;

  // Setup result variables
  q63_t res_real;
  q63_t res_imag;

  // Create pointers to the two result variables
  q63_t *pres_real = &res_real;
  q63_t *pres_imag = &res_imag;

  // Get the number of elements in the array
  int num_array_elements = sizeof(A_src) / sizeof(q31_t);

  // Divide by 2 to get the number of vector elements 
  //  (each vector element is a pair: a real and a complex component)
  int num_vector_elements = num_array_elements / 2;

  // Call the dot product function, reusing one of the input arrays as the result
 array
  my_cmplx_dot_prod_q31(pA_src, pB_src, num_vector_elements, pres_real, pres_imag);

  // Print the result
  printf("\n\nreal=%lld ; complex=%lld\n", (long long)res_real, (long
 long)res_imag);

 return 0;
}

You can compile this code with Arm Compiler 6 as follows:

armclang -target arm-arm-none-eabi -march=armv8.1-m.main+mve.fp+fp.dp test.c

Further reading
• Q fixed-point number format (Wikipedia)

• GCC Documentation: How to Use Inline Assembly Language in C Code

• Arm Compiler Reference Guide: armclang Inline Assembler

• Arm Compiler User Guide: Writing inline assembly code

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 34

https://en.wikipedia.org/wiki/Q_(number_format)
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://developer.arm.com/documentation/101754/0619/armclang-reference/armclang-inline-assembler
https://developer.arm.com/documentation/100748/0613/


Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1

Related information

9. Related information
Here are some resources related to material in this guide:

• Armv8-M Architecture Reference Manual

• Procedure Call Standard for the Arm Architecture (AAPCS)

• Arm C Language Extensions (ACLE).

• Arm MVE Intrinsics Reference Architecture specification (also available as interactive HTML).

• Arm Compiler 6 toolchain

• Fast Models Reference Manual

• CMSIS DSP Software Library Reference

• Arm Compiler Reference Guide: -O

• Arm Compiler Reference Guide: armclang Inline Assembler

• Arm Compiler Reference Guide: Coding best practice for auto-vectorization

• Arm Compiler Reference Guide: Using pragmas to control auto-vectorization

• Arm Compiler User Guide: Selecting optimization options

• Arm Compiler User Guide: Writing inline assembly code

• Arm Compiler User Guide, Calling assembly functions from C and C++

• GCC Documentation: How to Use Inline Assembly Language in C Code

• Complex numbers (Wikipedia)

• Q fixed-point number format (Wikipedia)

• Making Helium" blog post series:

◦ Making Helium: Why not just add Neon? (1/4)

◦ Making Helium: Sudoku, registers and rabbits (2/4)

◦ Making Helium: Going around in circles (3/4)

◦ Making Helium: Bringing Amdahl’s law to heel (4/4)

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 34

https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/dui0041/c/ARM-Procedure-Call-Standard/
https://developer.arm.com/Architectures/Arm%20C%20Language%20Extensions
https://developer.arm.com/documentation/101809/latest
https://developer.arm.com/architectures/instruction-sets/intrinsics/
https://developer.arm.com/downloads/-/arm-compiler-for-embedded
https://developer.arm.com/documentation/100964/1119/
https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
https://developer.arm.com/documentation/100067/0612/
https://developer.arm.com/documentation/101754/0619/armclang-reference/armclang-inline-assembler
https://developer.arm.com/documentation/100748/0613/
https://developer.arm.com/documentation/101458/2210/Optimize/Control-auto-vectorization-with-pragmas
https://developer.arm.com/documentation/100748/0612/using-common-compiler-options/selecting-optimization-options
https://developer.arm.com/documentation/100748/0613/
https://developer.arm.com/documentation/100748/0619/using-assembly-and-intrinsics-in-c-or-c-code/calling-assembly-functions-from-c-and-c
https://gcc.gnu.org/onlinedocs/gcc/Using-Assembly-Language-with-C.html
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Q_(number_format)
https://community.arm.com/arm-research/b/articles/posts/making-helium-why-not-just-add-neon
https://community.arm.com/arm-research/b/articles/posts/making-helium-sudoku-registers-and-rabbits
https://community.arm.com/arm-research/b/articles/posts/making-helium-going-around-in-circles
https://community.arm.com/arm-research/b/articles/posts/making-helium-bringing-amdahl-s-law-to-heel


Helium Programmers Guide Coding for Helium Document ID: 102095_0101_02_en
Version 1.1
Next steps

10. Next steps
This guide has introduced a number of different techniques for writing Helium-enabled code.

After reading this guide, you will be ready to start writing your own code. The examples supplied
with this guide are a good place to start learning. Further examples can be found by examining the
source code for the various examples in the CMSIS-DSP pack.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 34

https://www.keil.com/pack/doc/CMSIS/DSP/html/group__groupExamples.html

	Helium Programmers Guide Coding for Helium
	Contents
	1. Overview
	2. Before you begin
	3. Options for writing Helium-enabled code
	4. Enabling Helium
	5. Helium-enhanced libraries
	6. Auto-vectorization and Helium
	7. Helium intrinsics
	8. Mixing C/C++ and Helium assembly code
	9. Related information
	10. Next steps

