
Learn the Architecture - Getting started with A64
exercises
Version 1.0

Guide
Non-Confidential
Copyright © 2020, 2023 Arm Limited (or its affiliates).
All rights reserved.

Issue 02
102422_0100_02_en

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Learn the Architecture - Getting started with A64 exercises
Guide

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 21 February 2020 Non-Confidential Initial release

0100-02 24 November 2023 Non-Confidential Minor Updates

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 30

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 30

mailto:terms@arm.com

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Contents

Contents

1. Overview...6
1.1 Before you begin.. 6
1.2 Support files... 6
1.3 Tools required.. 6

2. Data processing and flow control...7
2.1 Get started... 7
2.2 Implement an assembler function...9
2.3 Run the completed image.. 10
2.4 Debug your image..12

3. Accessing memory... 14
3.1 Get started...14
3.2 Implement byte by byte copying..15
3.3 Run the completed image.. 16
3.4 Implement multi-byte copying...17

4. System control...18
4.1 Get started...18
4.2 Implement the startup code.. 19
4.3 Floating point traps..20
4.4 Detect which core the software is running on... 20
4.5 Install a vector table.. 20
4.6 Run the completed image.. 21

5. Example solutions...25
5.1 Data processing and flow control solution.. 25
5.2 Access memory solution...25
5.3 System control solution.. 27

6. GAS syntax reference..29

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Overview

1. Overview
The purpose of this set of exercises is to let you try out your knowledge of A64 assembler. It can
help consolidate the knowledge that you have gained from other guides in our series, and can help
you become familiar with the Arm development tools.

1.1 Before you begin
This set of exercises assumes that you are familiar with the A64 instruction set. To learn more
about the A64 instruction set, read our Armv8-A Instruction Set Architecture guide.

This set of exercises also assumes that you are familiar, in general, with embedded programming
and the C language. The Arm tools that we use in the exercises use GAS syntax for assembler. If
you are not familiar with GAS syntax for assembler, see GAS syntax reference.

Detailed instruction and system register descriptions are not included in these exercises. To
complete the exercises, refer the A64 and system register descriptions on Arm Developer.

Example solutions contained worked solutions to the exercises.

1.2 Support files
Accompanying these exercises are a set of support files. These files provide framework projects to
get you started.

1.3 Tools required
These exercises rely on the Arm Development Studio for compilation tools, debugging, and a
simulation platform. If you do not already have a copy of Arm Development Studio, you can
download an evaluation copy.

You do not need any experience with Arm Development Studio IDE to complete the exercises. If
you have used the tools before, you might want to skip the sections that explain the interface for
new users.

We wrote these exercises using Arm Development Studio 2019.0. If you are using
a later version of the tools, some of the screenshots in these exercises may look
different to what you see.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 30

https://developer.arm.com/architectures/learn-the-architecture/aarch64-instruction-set-architecture
https://developer.arm.com/documentation/102422/0100/GAS-syntax-reference?lang=en
https://developer.arm.com/-/media/Files/downloads/Common%20Task%20Tutorials%20Samples/Getting%20started%20with%20A64%20Exercises.zip?revision=a1845ec8-e605-4005-a2e7-31fc98c21a1c&la=en&hash=E62F8B3A86DD4E0DE1077051D75D99F8BEEAC538
https://developer.arm.com/tools-and-software/embedded/arm-development-studio/evaluate

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Data processing and flow control

2. Data processing and flow control
In this first exercise, you will write a simple assembler function, which will then be called from C. A
framework project is provided, so you only need to implement the function body. To complete the
exercise, you will need to use data processing instructions, conditional operations, and a knowledge
of the Procedure Call Standard (PCS).

Like all the exercises, there is more than one valid solution. This means that your answer may not
match the suggested solution that is shown in Example solutions.

2.1 Get started
First, load the provided framework project into Arm Development Studio, following these steps:

1. Launch the Arm Development Studio.

2. Click the Import Project icon or go to File -> Import.

3. Select General then Existing Projects into Workspace. Click Next.

4. Click Browse and navigate to where you downloaded the files that accompany the exercise.
Select 1_gcd

5. Click Finish to import the project into Arm Development Studio.

The imported project then appears in the Project Explorer pane, as illustrated in this screenshot:

Figure 2-1: View of the imported project in the project explorer

You might need to expand the project to see the files.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 30

https://developer.arm.com/documentation/102422/0100/Example-solutions?lang=en

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Data processing and flow control

Within the GCD project, you should see the following files:

startup.s

This is a simple reset handler. You will not need to modify this file for this exercise.

main.c

This contains the C main() function, and implements a simple test harness for the function that
you will develop.

gcd.s

This is an A64 assembler file. This file contains an empty function definition that you will complete.

This exercise does not go into detail about the structure of the project or how it is built. If you are
interested in how to construct an embedded image with Arm Compiler 6, see Building your first
embedded image.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 30

https://developer.arm.com/common-tasks/building-your-first-embedded-image
https://developer.arm.com/common-tasks/building-your-first-embedded-image

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Data processing and flow control

2.2 Implement an assembler function
In this exercise, you implement Euclid’s algorithm for finding the greatest common denominator
(GCD) of two integers. The algorithm is illustrated in the following flow chart:

Figure 2-2: Algorithm flow chart

To complete this exercise, follow these steps:

1.Open the file gcd.s This file contains the outline for the GCD function, as you can see in the
following code:

 .global gcd
 // uint32_t gcd(uint32_t a, uint32_t b)
 .type gcd, @function
gcd:
 //
 //
 // ADD YOUR CODE HERE
 //
 //

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Data processing and flow control

The function takes two 32-bit unsigned integers as arguments, a and b. The function returns a
single 32-bit unsigned integer, which is the GCD of the two arguments.

2.Attempt to implement the function body using A64 assembler. You might want to read the
sections Arithmetic and logic operations and Program flow in the Armv8-A Instruction Set
Architecture (ISA)

Here are a few things for you to consider before getting started:

• Which registers will the arguments a and b be passed in?

• Given that 32-bit types are being used, what kind of general-purpose register should be used?

• Which register should the return value be in?

• How do you return from the function?

2.3 Run the completed image
After you have completed the function, you can test it using the Fixed Virtual Platform (FVP)
models that are provided with Arm Development Studio. Follow these steps:

3.Right-click on the project and select Build Project. Or, select Build Project from the Project menu.
You will see the Console tab, which is near the bottom of the screen in a fresh installation. The
Console tab shows the build messages. If the project builds successfully, the output will look like
what you can see in the following screenshot:

Figure 2-3: Screenshot of console tab

4.Check for any errors. If there are any, correct them and try to rebuild the project. Once you have
successfully built your image, you can test it using the FVP models. This exercise uses an FVP with
a single-core Cortex-A53 processor.

5.Double-click on the A64 - GCD.launcher file in the project, as shown in the following screenshot:

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 30

https://developer.arm.com/architectures/learn-the-architecture/aarch64-instruction-set-architecture
https://developer.arm.com/architectures/learn-the-architecture/aarch64-instruction-set-architecture

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Data processing and flow control

Figure 2-4: Pointing to A64-GCD.launch in Project Explorer

The Edit Configuration window opens.

6.Click Debug to launch the simulation. The debugger will launch the model, load the image, and
run to the start of main(). You should see something that looks like the following screenshot:

Figure 2-5: Screenshot of the debug simulation

The icons in the Debug Control tab let you run, stop, or step the model, as shown here in this detail
from the larger screenshot:

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Data processing and flow control

Figure 2-6: Screenshot of debug controls

7.Click the green arrow icon to run the model. The output from the simulator will be shown in the
Target Console tab. The output for a successful run looks like what you can see in the following
output log:

terminal_0: Listening for serial connection on port 5000
terminal_1: Listening for serial connection on port 5001
terminal_2: Listening for serial connection on port 5002
terminal_3: Listening for serial connection on port 5003
CADI server started listening to port 7000
Info: FVP_Base_Cortex_A53x1: CADI Debug Server started for ARM Models...
CADI server is reported on port 7000
GCD Workbook: The GCD of 50 and 75 is 25

2.4 Debug your image
This section introduces the Arm Developer Studio controls for debugging. If you are new to the
Arm Developer Studio, you can work through this section. If have used Arm Developer Studio side
before, or the DS-5 Debugger, you can skip this section.

To begin, we want a fresh simulation. Follow these steps:

1. Disconnect from the model using the Disconnect from Target in Debug Control pane.

2. Double-click on the entry for the model connection, to reconnect to the model.

The connection is pre-configured to run the simulation to the start of main().

At the start of the program, the Debug Control tab provides controls for running and stepping:

• Run - The simulation executes until it hits a breakpoint, or until it reaches the end of the
program.

• Step Source Line - moves the simulation on either one C statement or one A64 instruction. The
icon in Debug Control controls whether a C statement or A64 instruction is stepped.

• Step over or Step out are useful for functions. Step-over a function call will move execution to
the next instruction after the function has returned. Step-out will move execution on until the
current function as returned.

The current value of registers, or for C variables, can found in the Registers and Variables pane, as
you can see in this screenshot:

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Data processing and flow control

Figure 2-7: Screenshot of registers tabs

Figure 2-8: Screenshot of variables pane

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Accessing memory

3. Accessing memory
Data processing and flow control concentrated on data processing and flow control instructions.
In this exercise, we show how to access memory with load and store instructions. To do this, we
implement our own simple memory copy (memcpy) routine.

3.1 Get started
Like with Data processing and flow control, a framework project is provided to get you started.
Follow these steps:

1.Import the 2_memcpy project into the Arm Development Studio. The imported project then
appears in the Project Explorer pane, as you can see in the following screenshot:

Figure 3-1: Screenshot of project explorer

You should see the following files in the memcpy project:

• startup.s

This is a simple reset handler. You will not need to modify this file for this exercise. Unlike Data
processing and flow control, this startup file includes code to configure and enable the MMU.

• main.c

This contains the C main() function, and implements a simple test harness for the function that
you will develop.

• memcpy.s

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 30

https://developer.arm.com/documentation/102422/0100/Data-processing-and-flow-control?lang=en

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Accessing memory

This is an A64 assembler file. This file contains an empty function definition that you will
complete.

3.2 Implement byte by byte copying
2.Open memcpy.s.

The following code shows the empty function that we are going to implement:

 .global my_memcpy
 // void my_memcpy(uint8_t* src, uint8_t* dst, uint32_t size_in_bytes)
 .type my_memcpy, @function
my_memcpy:
 //
 //
 // ADD YOUR CODE HERE
 //
 //

 RET

The function takes three arguments:

• src - a pointer to the source buffer, which points to first data item

• dst - a pointer to the destination buffer, which points to first empty location

• size_in_bytes - the number of bytes to be copied

For this exercise, we can assume that the pointers are to memory that is marked as Normal and
that strict alignment checking is not enabled. This means that unaligned accesses are permitted.
There are several possible approaches to implementing the function. We start with the simplest
approach, which is a byte by byte copy. In pseudocode, we can represent this as you can see here:

 while size_in_bytes greater than 0
 load byte from src
 increment src pointer by 1
 store byte to dst
 increment dst pointer by 1
 decrement size_in_bytes by 1

3.Implement the function, copying one byte at a time. Here are a few things to consider before
getting started:

• What size are addresses in AArch64?

• How will you update the pointers after each iteration?

• What is the syntax for loading a sub-register sized quantity?

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Accessing memory

3.3 Run the completed image
Once you have completed the function, you can test it using the Fixed Virtual Platform (FVP)
models that are provided with Arm Development Studio.

4.Right-click on the project and select Build Project to build the project.

As in Data processing and flow control, the Console tab shows the build messages. If the project
builds successfully, the output will look like what you can see in this screenshot:

Figure 3-2: Screenshot of console tab

5.Check for any errors. If there are any, correct them and try to rebuild the project. When you have
successfully built your image, test it using the FVP models. This exercise uses an FVP with a single-
core Cortex-A53 processor.

6.Launch the model using the A64 - memcpy.launch script in the project.

7.Click the green arrow icon to run the model. The Target Console tab shows the output from the
simulator. The output for a successful run looks like this code:

terminal_0: Listening for serial connection on port 5000
terminal_1: Listening for serial connection on port 5001
terminal_2: Listening for serial connection on port 5002
terminal_3: Listening for serial connection on port 5003
CADI server started listening to port 7000
Info: FVP_Base_Cortex_A53x1: CADI Debug Server started for ARM Models...
CADI server is reported on port 7000
Memcpy Workbook: Finished successfully

Every time you launch the model, you will see a window open, like the one that is shown here:

Figure 3-3: Fast models simulation screen

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 30

https://developer.arm.com/documentation/102422/0100/Data-processing-and-flow-control?lang=en

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Accessing memory

This window represents the LCD and switches of the simulated platform. These exercises do
not use these features, but there is something else of interest. Total Instr reports the number of
instructions that the simulator has executed since it was launched.

8.Make a note of the instruction count after running your implementation.

Your figure might be different to that shown in the screenshot. The total instruction
count 7,453 is based on the reference solution with Arm Compiler 6.12.

3.4 Implement multi-byte copying
Copying one byte at a time is simple, but inefficient. For most copy operations, we want to transfer
more than one byte at a time, so that we can reduce the number of iterations. We might also try
to issue multiple loads and stores for each iteration. The next step is to modify my_memcpy() to use
load and store pair instructions with X registers. This means that 128 bits, not 8 bits, are copied
per iteration. The code needs also be able to handle data which is not a multiple of 128 bits in size.
Follow these steps:

9.Modify the my_memcpy() function to use the LDP and STP instructions with X registers for the
first iterations. Use smaller accesses for the last few bytes of the data.

10.Re-run the test program and check the instruction count. Has it changed? You should see
that the instruction count has gone down. This screenshot shows the result using the reference
solution:

Figure 3-4: Fast models screenshot simulation

Remember that this is the instruction count for the entire program, not just the running of
my_memcpy(). But we can see that the more complex implementation has reduced the number of
instructions needed to copy the data (7,453 instead of 6,778), at least with this size of buffer. The
larger the data set, the bigger the reduction. However, with very small amounts of data, the new
implementation might be slower.

11.Experiment with different sizes of data and different implementations of the copy routine.
Consider using the wider floating-point registers.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

System control

4. System control
This exercise looks at the instructions for accessing system and special registers. System and special
registers control the operation of the processor, for example cache configuration. Typically, system
and special registers are programmed in start-up code, before switching to a C environment.

In Data processing and flow control and Accessing memory a startup.s file was provided,
containing a very minimal reset handler. In this exercise, you will implement this file yourself. If you
have a problem, look at the startup.s that is provided for the other examples as a reference.

4.1 Get started
Like with Accessing memory, a framework project is provided to get you started. Follow these
steps:

1.Import the 3_sys_regs project into the Arm Development Studio. The imported project then
appears in the Project Explorer pane, as you can see in this screenshot:

Figure 4-1: Screenshot of project explorer tab.

Within the **sys_reg**

• main.c

A simple “hello world” C program.

• startup.s

This is the startup code that we will complete in the exercise.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

System control

4.2 Implement the startup code
2.Open startup.s. The framework code is shown here:

.global start64
 .type start64, @function
start64:
 // Check which core is running
 // ----------------------------
 // Core 0.0.0.0 should continue to execute
 // All other cores should be put into sleep (WFI)
 //
 // Your code here
 //
 // Disable trapping of CPTR_EL2 accesses or use of Adv.SIMD/FPU
 // ---
 //
 // Your code here
 //
 // Install EL3 vector table
 // -------------------------
 //
 // Your code here
 //
 // The effect of changes to the system registers are
 // only guaranteed to be visible after a context
 // synchronization event. See the Barriers guide
 ISB
 // Branch to scatter loading and C library init code
 // ---
 .global __main
 B __main

This example runs in EL3. For this exercise, we do not consider what would be necessary to switch
Exception levels. There are three pieces of functionality that we need to implement:

• Detection of which core is being run on

We will run the example on a multiprocessor model, but the example is not written to be multi-
threaded and needs to just run on core 0 (affinity 0.0.0.0). The startup code needs to check the
ID of the core. If the ID of the core is not 0.0.0.0 then software should put the core to sleep
using the WFI instruction.

• Clearing floating-point trap

The floating-point traps are Unknown at reset, but the C compiler assumes that floating-point
operations are available before the C library initialization code (__main) is called. The startup
code needs to ensure that the traps on accesses to the FPU are cleared.

• Install the EL3 vector table

Unlike earlier versions of the Arm architecture, in AArch64 there is no default vector table
location. Software must install a vector table before the first exceptions are generated. This
example does not use exceptions itself, but it is good practice to install a simple vector table to
capture unexpected exceptions.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

System control

4.3 Floating point traps
The comment in startup.s tells us that the register that controls the FPU traps is CPTR_EL3. Let’s
start by looking at the register description. The register contains several trap controls:

• TCPAC - Trap lower Exception level accesses to CPTR_EL2 and CPACR_EL1

• TAM - Trap lower Exception level accesses to AMU

• TTA - Trap accesses to trace registers

• TFP - Trap EL3 use of FP registers

If you read the description of each field, you will find that a value of 0 means do not trap.
Therefore, in this case we want to set the register to 0.

3.Write a sequence which will set CPTR_EL3 to 0.

4.4 Detect which core the software is running on
Each core has a unique affinity number, formatted as four 8-bit fields, as you can see here:

<aff3>.<aff2>.<aff1>.<aff0>

The affinity of a core can be read from the MPIDR_EL1 register. Unlike Data processing and flow
control and Accessing memory, this exercise uses a model that contains multiple cores. However,
the software is only written to run on one core. This means that the startup code must check
which core it is running on, and if it is not core 0.0.0.0, the code should put the core to sleep using
a WFI.

4.Implement code that reads MPIDR_EL1 and check the affinity value, putting the core to sleep if not
0.0.0.0.

Things to consider:

• What is the format of the MPIDR_EL1 register?

• How will you extract and compare the full affinity value?

• What will happen if the secondary cores are unexpectedly woken from standby?

4.5 Install a vector table
The provided project includes a simple vector table at the end of startup.s. The format of the
table, and how exceptions are handled more generally, is beyond the scope of these exercises. For
more information, refer to Exception model. For this exercise, we need to write the address of the
vector table into the Vector Table Base Address register (VBAR_EL3). To do this, we need to know

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 30

https://developer.arm.com/documentation/ddi0595/2021-12/
https://developer.arm.com/architectures/learn-the-architecture/exception-model

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

System control

the address of the vector table. Let’s look at the vector table in the project, which is shown in the
following code:

 .global vector_table
vector_table:
// --
// Current EL with SP0
// --
 .balign 128
sync_current_el_sp0:
 B . // Synchronous
 ...

The label vector_table marks the start of the table. We need to write the address of this label to
VBAR_EL3. There are two pseudo instructions which allow you to get the address of a label:

• ADR Xd, <label>

• LDR Xd, =<label>

ADR only works for labels that are within the same compilation unit. LDR can also be used for
imported global symbols.

5.Complete the code to set the EL3 vector table location, using either of these instructions.

There are two similar operations for LDR:

• LDR Xd, <label> Returns in Xd the value at <label>

• LDR Xd, =<label> Returns in Xd the address of <label>

4.6 Run the completed image
When you have completed the function, you can test it using the Fixed Virtual Platform (FVP)
models that are provided with Arm Development Studio.

6.Right-click on the project and select Build Project to build the project. Like in Accessing memory,
the Console tab shows the build messages. If the project builds successfully, the output will look
like what you can see in the following screenshot:

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

System control

Figure 4-2: Screenshot of console tab

7.Check for any errors. If there are any, correct them and try to rebuild the project.

If you look at the link command that is being issued for the image, it includes “—
entry=start64”. This tells the compiler to set the entry point of the image to the
label start64, which is the beginning of the startup code. The entry point is the
address that the PC will be set to when the image is loaded into the simulation.

When you have successfully built your image, you can try it out. Follow these steps:

8.Use the A64 - sys reg.launch script in the project to launch the model. The model used for this
exercise contains a dual-core Cortex-A72 processor and a quad-core Cortex-A53 processor. The
affinity values for these cores are:

• 0.0.0.0 Cortex-A72, core 0

• 0.0.0.1 Cortex-A72, core 1

• 0.0.1.0 Cortex-A53, core 0

• 0.0.1.1 Cortex-A53, core 1

• 0.0.1.2 Cortex-A53, core 2

• 0.0.1.3 Cortex-A53, core 3

The debugger is configured to connect to the two Cortex-A72 cores, as you can see in the
following screenshot:

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

System control

Figure 4-3: Screenshot of debug control

The different debugger panes, like Source view and Register view, can only show information for
one core at a time. The Debug Control pane selects which core’s information is currently being
displayed. In the preceding screenshot, you can see that core 0, ARM_Cortex-A72_0, is selected. If
core 1 is selected, the Debug Control pane looks like what you can see in this screenshot:

Figure 4-4: Screenshot of debug control

Using the Register pane, we can manually check the MPIR_EL1 (AArch64 -> System -> ID) value that
is reported by each core:

• ARM_Cortex-A72_0: 0x0000000080000000 -> affinity 0.0.0.0

• ARM_Cortex-A72_1: 0x0000000080000001 -> affinity 0.0.0.1

9.Step through the first few instructions of the image that is connected to core 0, to confirm that it
is correctly checking the ID.

10.Disconnect and re-launch the model, this time stepping through the image on core 1 to
compare the results. When you are satisfied that your code is working, run the image. The output
from the simulator is shown in the Target Console tab. The output for a successful run looks like
this code:

terminal_0: Listening for serial connection on port 5000
terminal_1: Listening for serial connection on port 5001
terminal_2: Listening for serial connection on port 5002
terminal_3: Listening for serial connection on port 5003

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

System control

CADI server started listening to port 7000
Info: FVP_Base_Cortex_A72x2_A53x4: CADI Debug Server started for ARM Models...
CADI server is reported on port 7000
Hello world

The startup file for this example is basic, and a real image would perform more initialization. To
explore this topic, see the Bare Metal Boot guide.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 30

https://developer.arm.com/documentation/dai0527/a/

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Example solutions

5. Example solutions
This section gives solutions to this set of exercises. There is more than one way of implementing
the exercises, so your own solution might look different and still be correct.

5.1 Data processing and flow control solution
The GCD algorithm that is shown in the flow chart in Data processing and flow control can be
directly implemented in A64, as you can see in this code:

gcd:
 CMP w0, w1 // Compare a and b
 B.EQ end // If they are equal, skip to the end
 B.LS less_than // If unsigned less than, branch to b = b -a
 SUB w0, w0, w1 // a = a - b
 B gcd // Branch back to start
less_than:
 SUB w1, w1, w0 // b = b - a
 B gcd // Branch back to start
end:
 RET

The code is using the LS condition, which equates to Unsigned lower or same. Alternatively, we
could have checked for the Unsigned higher (HI) condition.

There are also Signed Greater Than (GT) and Signed Less Than (LS) conditions. These conditions are
not used, because the code is treating the passed-in values as being unsigned. However, with the
single set of test values that is used in the test program, you would get the same result.

Another way to implement the GCD algorithm is to use the conditional select instructions, as you
can see in this code:

gcd:
 SUBS w2, w0, w1 // tmp = a - b, with ALU flag update
 CSEL w0, w2, w0, HI // IF "unsigned higher" THEN a = tmp ELSE a = a
 CSNEG w1, w1, w2, HI // IF "unsigned higher" THEN b = b ELSE neg(tmp)
 B.NE gcd // Branch back to start
 RET

This solution is more efficient, because it uses fewer branches. Instead, the conditional select
instructions are used to select the correct new value for a and b on each iteration.

5.2 Access memory solution
For the byte by byte copy shown in Accessing memory, here is a simple implementation:

my_memcpy:
 CBZ w2, end // Check for number of bytes being 0

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Example solutions

 LDRB w3, [x0], #1 // Load byte[n] from src, post-incrementing pointer
 STRB w3, [x1], #1 // Store byte[n] to dst, post-incrementing pointer
 SUBS w2, w2, #1 // Decrement number of bytes, updating ALU flags
 B.NE my_memcpy // Branch if number of bytes remaining not 0

As discussed in Accessing memory, copying one byte at a time is inefficient. Here is a possible
solution for multi-byte copying:

my_memcpy:
 // Loop until there is less than 16-bytes of data left
 CMP w2, #15
 B.LS my_memcpy_last_15_bytes
 LDP x3, x4, [x0], #16
 STP x3, x4, [x1], #16
 SUB w2, w2, #16
 B my_memcpy
 // Loop until there is less that 4-bytes of data left
my_memcpy_last_15_bytes:
 CMP w2, #3
 B.LS my_memcpy_last_3_bytes
 LDR w3, [x0], #4
 STR w3, [x1], #4
 SUB w2, w2, #4
 B my_memcpy_last_15_bytes
 // Copy the last remaining bytes (3 or fewer)
my_memcpy_last_3_bytes:
 CBZ w2, my_memcpy_end
 LDRB w3, [x0], #1
 STRB w3, [x1], #1
 SUB w2, w2, #1
 B my_memcpy_last_3_bytes
my_memcpy_end:
 RET

This implementation improves on the previous code by using larger registers, and by copying
multiple registers for each iteration. We could extend the code further by doing multiple LDP and
STPs instructions per iteration and using the wider Q registers for the operations. In part, how we
optimized the function might depend on what we expect the typical data size to be.

If you experiment with the C library memcpy(), you will see that the Arm-provided library provides
multiple implementations. The compiler will attempt to select the one that is most appropriate to
the context. For this exercise, modifying main() to call memcpy() results in the following code:

0x0000000080001804: LDP q0,q1,[x8,#0]
0x0000000080001808: ADRP x9,{pc}+0x4000 ; 0x80005808
0x000000008000180C: ADD x9,x9,#0x110
0x0000000080001810: LDUR q2,[x8,#0x4c]
0x0000000080001814: LDP q4,q3,[x8,#0x30]
0x0000000080001818: STP q0,q1,[x9,#0]
0x000000008000181C: LDR q1,[x8,#0x20]
0x0000000080001820: MOV w10,#0xbeef
0x0000000080001824: MOV x1,xzr
0x0000000080001828: MOVK w10,#0xdead,LSL #16
0x000000008000182C: STUR q2,[x9,#0x4c]
0x0000000080001830: STP q4,q3,[x9,#0x30]
0x0000000080001834: STR w10,[x8,#0x5c]
0x0000000080001838: STR q1,[x9,#0x20]

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Example solutions

You can get the disassembly of an ELF image or object by double-clicking on the file
within the Project Explorer tab and then selecting Disassembly.

In this instance, the compiler has optimized the output by fully inlining the code that is needed to
perform the copy operation. The compiler could do this because the size of the copied data and
the source and destination were both known at compile time.

This output was generated using Arm Compiler 6.12. The exact output for different compiler
versions might vary.

5.3 System control solution
The System control recreates the startup code that is used in Data processing and flow control.
Here is some code from the startup.s file that is provided with the GCD project:

 .type start64, @function
start64:
 // Check which core is running
 // ----------------------------
 // Core 0.0.0.0 should continue to execute
 // All other cores should be put into sleep (WFI)
 MRS x0, MPIDR_EL1
 UBFX x1, x0, #32, #8 // Extract Aff3
 BFI w0, w1, #24, #8 // Insert Aff3 into bits [31:24], so that [31:0]
 // is now Aff3.Aff2.Aff1.Aff0
 // Using w register means bits [63:32] are zeroed
 CBZ w0, primary_core // If 0.0.0.0, branch to code for primary core
1:
 WFI // If not 0.0.0.0, then go to sleep
 B 1b

Aff2, Aff1 and Aff0 are stored consecutively in bits [23:0]. However, Aff3 is store in bits [39:32],
with other fields in bits[31:24]. This register layout makes comparison more difficult. The code is
extracting aff3 from the upper half of the register, then inserting it into bits [31:21] to make all the
affinity fields consecutive.

The core with affinity 0.0.0.0 will branch to the primary_core label and continue with the rest of
the start-up code. The other cores will execute the WFI instruction and go into Standby mode. If
the cores are inadvertently woken from standby, there is a simple loop to capture them.

The code to initialize the floating-point traps is shown here:

// Disable trapping of CPTR_EL2 accesses or use of Adv.SIMD/FPU
 // ---
 MSR CPTR_EL3, xzr // Write 0, clearing all trap bits
 // The effect of changes to the system registers are
 // only guaranteed to be visible after a context
 // synchronization event. See the Barriers guide
 ISB

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

Example solutions

We want to clear all the trap bits to 0. The simplest way to do this is to write the zero-register, XZR,
into the system register.

For installing the vector table, use this code:

 // Install EL3 vector table
 // -------------------------
 LDR x0, =vector_table
 MSR VBAR_EL3, x0

The solution uses the LDR instruction, but ADR would also have worked.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

GAS syntax reference

6. GAS syntax reference
This set of exercises uses the GNU Assembler (GAS) syntax, which is the syntax that is required by
Arm Compiler 6. A full description of the GAS syntax is beyond the scope of these exercises. This
section briefly introduces the important pieces of syntax that are needed to complete the exercises.

Here is an example of a short assembler file containing a single function:

 .section GCD,"ax"
 .align 3

 .global gcd
 // uint32_t gcd(uint32_t a, uint32_t b)
 .type gcd, @function
gcd:
 //
 //
 // ADD YOUR CODE HERE
 //
 //

 RET

Going through the code line by line:

.section GCD, "ax"

This directive defines an ELF section, giving it the name GCD and marking it as executable (“ax”). An
ELF section is the smallest block of code and data that a compiler or linker can work on.

.align 3

The align directive sets the starting alignment of the code, in this case to 23 bytes.

.global gcd

The global directive can be used to either:

• Export a symbol that is defined within this file, making the symbol globally visible

• Import a symbol that will be defined somewhere else

In this example, the symbol gcd is defined in this file, therefore it is exporting the symbol.

.type gcd, @function

The type directive tells the tools what a symbol refers to. In this example we are saying that the
symbol gcd refers to a function.

gcd:

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 30

Learn the Architecture - Getting started with A64 exercises
Guide

Document ID: 102422_0100_02_en
Version 1.0

GAS syntax reference

This line defines a label called gcd. A colon (:) is needed after the name. This is different to the
assembler syntax that used in the older Arm Compiler tools, for example, Arm Compiler 2.x, Arm
Compiler 3.x, Arm Compiler 4.x, and Arm Compiler 5.x.

Looking at the makefile that is used in the template functions, the command to assemble or
compile the source files is:

For C files:

armclang -gdwarf-3 -c -O1 –target=aarch64-arm-none-eabi <file>

For assembler files:

armclang -gdwarf-3 -c –target=aarch64-arm-none-eabi <file>

Taking the compiler arguments one at a time:

• -gdwarf-3

Tells the tool to generate debug data using the Dwarf-3 format. This is necessary to do source-
level stepping in the debugger.

• -c

This tells the tool only to compile, or assemble, the file and not link. Linking is done as a
separate step.

• -O1

For compiling C files, the level of optimization that is required. Level 1 is one of the lowest,
meaning least optimized, which is useful for debugging these simple exercises.

• –target=aarch64-arm-none-eabi

This tells the tools the target architecture ABI, in this case Arm AArch64.

We could also have added:

• -march=<version>

This would let us specify which version of the architecture to target, for example -march=armv8.1-a
means that that Armv8.1-A extensions are supported. The default is Armv8.0-A.

Copyright © 2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 30

	Learn the Architecture - Getting started with A64 exercises Guide
	Contents
	1. Overview
	1.1 Before you begin
	1.2 Support files
	1.3 Tools required

	2. Data processing and flow control
	2.1 Get started
	2.2 Implement an assembler function
	2.3 Run the completed image
	2.4 Debug your image

	3. Accessing memory
	3.1 Get started
	3.2 Implement byte by byte copying
	3.3 Run the completed image
	3.4 Implement multi-byte copying

	4. System control
	4.1 Get started
	4.2 Implement the startup code
	4.3 Floating point traps
	4.4 Detect which core the software is running on
	4.5 Install a vector table
	4.6 Run the completed image

	5. Example solutions
	5.1 Data processing and flow control solution
	5.2 Access memory solution
	5.3 System control solution

	6. GAS syntax reference

