
Learn the architecture - Introducing Neon
Version 1.0

Non-Confidential
Copyright © 2020 Arm Limited (or its affiliates).
All rights reserved.

Issue 02
102474_0100_02_en

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Learn the architecture - Introducing Neon

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-02 1 January 2020 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 17

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 17

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 17

mailto:terms@arm.com

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Contents

Contents

1. Overview...6
1.1 Before you begin.. 7

2. Data processing methodologies.. 8
2.1 Single Instruction Single Data..8
2.2 Single Instruction Multiple Data..8

3. Fundamentals of Armv8 Neon technology..11
3.1 Registers, vectors, lanes and elements..11

4. Check your knowledge... 15

5. Related information... 16
5.1 Useful links to training:... 16

6. Next step.. 17

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 17

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Overview

1. Overview
This guide introduces Arm Neon technology, the Advanced SIMD (Single Instruction Multiple Data)
architecture extension for implementation of the Armv8-A or Armv8-R architecture profiles.

Neon technology provides a dedicated extension to the Instruction Set Architecture, providing
additional instructions that can perform mathematical operations in parallel on multiple data
streams.

Figure 1-1: Single instruction, multiple data Architecture

This can improve the multimedia user experience by accelerating audio and video encoding/
decoding, user interface, 2D/3D graphics or gaming. Neon can also accelerate signal processing
algorithms and functions to speed up applications such as audio and video processing, voice and
facial recognition, computer vision and deep learning.

As a programmer, there are a number of ways you can make use of Neon technology:

• Neon-enabled open source libraries such as the Arm Compute Library provide one of the
easiest ways to take advantage of Neon.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 17

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0568/latest
https://developer.arm.com/ip-products/processors/machine-learning/compute-library

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Overview

• Auto-vectorization features in your compiler can automatically optimize your code to take
advantage of Neon.

• Neon intrinsics are function calls that the compiler replaces with appropriate Neon instructions.
This gives you direct, low-level access to the exact Neon instructions you want, all from C/C++
code.

• For very high performance, hand-coded Neon assembler can be an alternative approach for
experienced programmers.

1.1 Before you begin
If you are completely new to Arm technology, you can read the Cortex-A Series Programmer’s
Guide for general information about the Arm architecture and programming guidelines.

The information in this guide relates to Neon for Armv8. If you are developing for Armv7 devices,
you might find version 1.0 of the Neon Programmer’s Guide more appropriate for your needs.

If you are hand-coding in assembler for a specific device, refer to the Technical Reference Manual
for that processor to see microarchitectural details that can help you maximize performance. For
some processors, Arm also publishes a Software Optimization Guide which may be of use. For
example, see the Arm Cortex-A75 Technical Reference Manual and the Arm Cortex-A75 Software
Optimization Guide.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 17

https://developer.arm.com/tools-and-software/embedded/arm-compiler
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://developer.arm.com/documentation/den0013/latest
https://developer.arm.com/documentation/den0013/latest
https://developer.arm.com/documentation/den0018/latest
https://developer.arm.com/documentation/100403/latest
https://developer.arm.com/documentation/101398/0200
https://developer.arm.com/documentation/101398/0200

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Data processing methodologies

2. Data processing methodologies
When processing large sets of data, a major performance limiting factor is the amount of CPU
time taken to perform data processing instructions. This CPU time depends on the number of
instructions it takes to deal with the entire data set. And the number of instructions depends on
how many items of data each instruction can process.

2.1 Single Instruction Single Data
Most Arm instructions are Single Instruction Single Data (SISD). Each instruction performs its
specified operation on a single data source. Processing multiple data items therefore requires
multiple instructions. For example, to perform four addition operations requires four instructions to
add values from four pairs of registers:

ADD w0, w0, w5
ADD w1, w1, w6
ADD w2, w2, w7
ADD w3, w3, w8

This method is relatively slow and it can be difficult to see how different registers are related. To
improve performance and efficiency, media processing is often off-loaded to dedicated processors
such as a Graphics Processing Unit (GPU) or Media Processing Unit which can process more than
one data value with a single instruction.

If the values you are dealing with are smaller than the maximum bit size, that extra potential
bandwidth is wasted with SISD instructions. For example, when adding 8-bit values together,
each 8-bit value needs to be loaded into a separate 64-bit register. Performing large numbers
of individual operations on small data sizes does not use machine resources efficiently because
processor, registers, and data path are all designed for 64-bit calculations.

2.2 Single Instruction Multiple Data
Single Instruction Multiple Data (SIMD) instructions perform the same operation simultaneously for
multiple data items. These data items are packed as separate lanes in a larger register.

For example, the following instruction adds four pairs of single-precision (32-bit) values together.
However, in this case, the values are packed into separate lanes in two pairs of 128-bit registers.
Each lane in the first source register is then added to the corresponding lane in the second source
register, before being stored in the same lane in the destination register:

ADD V10.4S, V8.4S, V9.4S
// This operation adds two 128-bit (quadword) registers, V8 and V9,
// and stores the result in V10.
// Each of the four 32-bit lanes in each register is added separately.
// There are no carries between the lanes.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 17

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Data processing methodologies

This single instruction operates on all data values in the large register at the same time:

Figure 2-1: Single Instruction Multiple Data

Performing the four operations with a single SIMD instruction is faster than with four separate
SISD instructions.

The diagram shows 128-bit registers each holding four 32-bit values, but other combinations are
possible for Neon registers:

• Two 64-bit, four 32-bit, eight 16-bit, or sixteen 8-bit integer data elements can be operated on
simultaneously using all 128 bits of a Neon register.

• Two 32-bit, four 16-bit, or eight 8-bit integer data elements can be operated on simultaneously
using the lower 64 bits of a Neon register (in this case, the upper 64 bits of the Neon register
are unused).

The addition operations shown in the diagram are truly independent for each
lane. Any overflow or carry from lane 0 does not affect lane 1, which is an entirely
separate calculation.

Media processors, such as used in mobile devices, often split each full data register into multiple
sub-registers and perform computations on the sub-registers in parallel. If the processing for
the data sets are simple and repeated many times, SIMD can give considerable performance
improvements. It is particularly beneficial for digital signal processing or multimedia algorithms, such
as:

• Audio, video, and image processing codecs.

• 2D graphics based on rectangular blocks of pixels.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 17

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Data processing methodologies

• 3D graphics

• Color-space conversion.

• Physics simulations.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 17

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Fundamentals of Armv8 Neon technology

3. Fundamentals of Armv8 Neon
technology

Armv8-A includes both 32-bit and 64-bit Execution states, each with their own instruction sets:

• AArch64 is the name used to describe the 64-bit Execution state of the Armv8-A architecture.
In AArch64 state, the processor executes the A64 instruction set, which contains Neon
instructions (also referred to as SIMD instructions). GNU and Linux documentation sometimes
refers to AArch64 as ARM64.

• AArch32 describes the 32-bit Execution state of the Armv8-A architecture, which is almost
identical to Armv7. In AArch32 state, the processor can execute either the A32 (called ARM
in earlier versions of the architecture) or the T32 (Thumb) instruction set. The A32 and T32
instruction sets are backwards compatible with Armv7, including Neon instructions.

This guide will focus on Neon programming using A64 instructions for the AArch64 Execution state
of the Armv8-A architecture.

If you want to write Neon code to run in the AArch32 Execution state of the Armv8-A architecture,
you should refer to version 1.0 of the Neon Programmer’s Guide.

3.1 Registers, vectors, lanes and elements
If you are familiar with the Armv8-A architecture profile, you will have noticed that in AArch64
state, Armv8 cores are a 64-bit architecture and use 64-bit registers, but the Neon unit uses 128-
bit registers for SIMD processing.

This is possible because the Neon unit operates on a separate register file of 128-bit registers.
The Neon unit is fully integrated into the processor and shares the processor resources for integer
operation, loop control, and caching. This significantly reduces the area and power cost compared
to a hardware accelerator. It also uses a much simpler programming model, since the Neon unit
uses the same address space as the application.

The Neon register file is a collection of registers which can be accessed as 8-bit, 16-bit, 32-bit, 64-
bit, or 128-bit registers.

The Neon registers contain vectors of elements of the same data type. The same element position
in the input and output registers is referred to as a lane.

Usually each Neon instruction results in n operations occurring in parallel, where n is the number
of lanes that the input vectors are divided into. Each operation is contained within the lane. There
cannot be a carry or overflow from one lane to another.

The number of lanes in a Neon vector depends on the size of the vector and the data elements in
the vector.

A 128-bit Neon vector can contain the following element sizes:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 17

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Fundamentals of Armv8 Neon technology

• Sixteen 8-bit elements (operand suffix .16B, where B indicates byte)

• Eight 16-bit elements (operand suffix .8H, where H indicates halfword)

• Four 32-bit elements (operand suffix .4S, where S indicates word)

• Two 64-bit elements (operand suffix .2D, where D indicates doubleword)

A 64-bit Neon vector can contain the following element sizes (with the upper 64 bits of the 128-
bit register cleared to zero):

• Eight 8-bit elements (operand suffix .8B, where B indicates byte)

• Four 16-bit elements (operand suffix .4H, where H indicates halfword)

• Two 32-bit elements (operand suffix .2S, where S indicates word)

Figure 3-1: 64-bit and 128-bit vectors

128-bit vector

D D

S S S S

H H H H H H H H

B B B B B B B B B B B B B B B B

S S

H H H H

B B B B B B B B

Unused

Unused

Unused

64-bit vector

127 64 63 32 31 16 15 8 7 0

127 64 63 32 31 16 15 8 7 0

V0.2D

V0.4S

V0.8H

V0.16B

V31.2S

V31.4H

V31.8B

Elements in a vector are ordered from the least significant bit. That is, element 0 uses the least
significant bits of the register. Let’s look at an example of a Neon instruction. The instruction ADD
V0.8H, V1.8H, V2.8H performs a parallel addition of eight lanes of 16-bit (8 x 16 = 128) integer
elements from vectors in V1 and V2, storing the result in V0:

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 17

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Fundamentals of Armv8 Neon technology

Figure 3-2: Order of elements in a vector

Some Neon instructions act on scalars together with vectors. Instructions which use scalars specify
a lane index to refer to a specific element in a register. For example, the instruction MUL V0.4S,
V2.4S, V3.S[2] multiplies each of the four 32-bit elements in V2 by the 32-bit scalar value in lane
2 of V3, storing the result vector in V0.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 17

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Fundamentals of Armv8 Neon technology

Figure 3-3: Instructions using scalars

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 17

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Check your knowledge

4. Check your knowledge
The following questions will help you test your knowledge.

What is the difference between Neon and the Advanced SIMD Architecture?
Neon is a brand name which refers to Arm’s implementations of the Advanced SIMD
Architecture. Although the two terms are often used interchangeably, Neon is not strictly
speaking a feature of the Arm Architecture. Those looking to learn more about Neon from
the Architecture Reference Manual or the Cortex-A Technical Reference Manuals, should
therefore search for Advanced SIMD rather than Neon.

What does SIMD stand for and how can SIMD instructions speed up programs which use SISD
instructions?

SIMD stands for Single Instruction Multiple Data. Since SIMD instructions can perform more
operations than an equivalent SISD (Single Instruction Single Data) instruction, a program
using SIMD instructions can process more data per instruction on average. If the execution
time of the SIMD and SISD instructions are the same, the program will speed up.

What are the four basic ways one can use Neon?
Import a library using Neon, e.g. the Arm Compute Library or the Arm Performance Libraries.
Use a compiler supporting Neon code generation, e.g. the Arm Compilers or GCC. Use
the Neon Intrinsics in C or C++ code. Write Arm assembly which uses Advanced SIMD
instruction set.

How many Neon registers are there in the AArch64 execution state, and how can they be divided
into different lanes?

There are 32 128-bit registers, which an be divided into lanes which are 8, 16, 32, or 64 bits
wide. These same registers can also be treated as 64-bit registers with the upper bits left
unused.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 17

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Related information

5. Related information
Here are some resources related to material in this guide:

For definitive information about the SIMD instructions and registers, refer to the Arm Architecture
Reference Manual for the Armv8-A architecture profile.

The ISA exploration tools provide descriptions in XML and HTML format for the A64 Instruction
Set Architecture, including the SIMD instructions.

The Neon Intrinsics Reference provides information about Neon intrinsics - function calls that let C
and C++ programmers code directly for Neon without writing assembly.

Arm Community has a useful article that introduces Neon: Arm Neon Programming Quick
Reference.

5.1 Useful links to training:
Arm access is needed to view the trainings.

• Introduction to Armv8-A

• Overview ISA

• Arm’s other architectures

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 17

https://developer.arm.com/docs/ddi0487/latest
https://developer.arm.com/docs/ddi0487/latest
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/docs/ddi0596/b/simd-and-floating-point-instructions-alphabetic-order
https://developer.arm.com/technologies/neon/intrinsics
https://community.arm.com/
https://community.arm.com/android-community/b/android/posts/arm-neon-programming-quick-reference
https://community.arm.com/android-community/b/android/posts/arm-neon-programming-quick-reference
https://training.developer.arm.com/topics/33842
https://training.developer.arm.com/contents/409521
https://training.developer.arm.com/contents/406863

Learn the architecture - Introducing Neon Document ID: 102474_0100_02_en
Version 1.0

Next step

6. Next step
The Optimizing C Code with Neon Intrinsics tutorial provides an excellent place to start for
newcomers to Neon programming. The tutorial describes how to use Neon intrinsics by examining
an example which processes a 24-bit RGB image with interleaved pixel data.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 17

https://developer.arm.com/documentation/101725/0100/Coding-for-Neon/Optimizing-C-Code-with-Neon-Intrinsics?lang=en

	Learn the architecture - Introducing Neon
	Contents
	1. Overview
	1.1 Before you begin

	2. Data processing methodologies
	2.1 Single Instruction Single Data
	2.2 Single Instruction Multiple Data

	3. Fundamentals of Armv8 Neon technology
	3.1 Registers, vectors, lanes and elements

	4. Check your knowledge
	5. Related information
	5.1 Useful links to training:

	6. Next step

