
Learn the architecture - AArch64 memory
management
Version 1.3

Guide
Non-Confidential
Copyright © 2019, 2021, 2023 Arm Limited (or its
affiliates).
All rights reserved.

Issue 03
101811_0103_03_en

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Learn the architecture - AArch64 memory management
Guide

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-00 20 June 2019 Non-Confidential Initial release

0101-00 4 March 2021 Non-Confidential Minor corrections

0102-00 23 November 2021 Non-Confidential Armv9-A Content Updates

0103-00 6 June 2023 Non-Confidential Minor Correction

0103-01 14 June 2023 Non-Confidential Minor update

0103-02 7 November 2023 Non-Confidential Minor updates

0103-03 22 November 2023 Non-Confidential Minor update

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 33

https://www.arm.com/company/policies/trademarks

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 33

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Contents

Contents

1. Overview...7

2. What is memory management?.. 8
2.1 Why is memory management needed?...8

3. Virtual and physical addresses.. 9

4. Address spaces..10
4.1 Physical Addresses... 12
4.2 Address sizes... 14
4.3 Size of virtual addresses... 14
4.4 Size of physical addresses..16
4.5 Size of intermediate physical addresses..16
4.6 Address Space Identifiers - Tagging translations with the owning process.....................................16
4.7 Virtual Machine Identifiers - Tagging translations with the owning VM..18
4.8 Common not Private... 18

5. The Memory Management Unit (MMU)...19
5.1 Table entry... 19
5.2 Table lookup...21
5.3 Multilevel translation... 22

6. Controlling address translation Translation table format... 24

7. Translation granule...25
7.1 The starting level of address translation...25
7.2 Registers that control address translation.. 26
7.3 MMU disabled...27

8. Translation Lookaside Buffer maintenance.. 28
8.1 Format of a TLB operation.. 28

9. Address translation instructions... 30

10. Check your knowledge...31

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Contents

11. Related information...32

12. Next steps..33

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Overview

1. Overview
This guide introduces memory translation in AArch64, which is key to memory management. It
explains how virtual addresses are translated to physical addresses, the translation table format,
and how software manages the Translation Lookaside Buffers (TLBs).

This information is useful for anyone who is developing low-level code, such as boot code or
drivers. It is particularly relevant to anyone who is writing code to set up or manage the Memory
Management Unit (MMU).

At the end of this guide, you can check your knowledge. You will have learned how a virtual
address is translated to a physical address. You will be able to name the different address spaces,
and describe how the address spaces map onto the stages of translation. You will also have learned
when software must perform TLB maintenance, and the syntax of TLB maintenance commands.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

What is memory management?

2. What is memory management?
Memory management describes how access to memory in a system is controlled. The hardware
performs memory management every time that memory is accessed by either the OS or
applications. Memory management is a way of dynamically allocating regions of memory to
applications.

2.1 Why is memory management needed?
Application processors are designed to run a rich OS, such as Linux, and to support virtual memory
systems. Software that executes on the processor only sees virtual addresses, which the processor
translates into physical addresses. These physical addresses are presented to the memory system
and point to the actual physical locations in memory.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Virtual and physical addresses

3. Virtual and physical addresses
The benefit of using virtual addresses is that it allows management software, such as an Operating
System (OS), to control the view of memory that is presented to software. The OS can control
what memory is visible, the virtual address at which that memory is visible, and what accesses are
permitted to that memory. This allows the OS to sandbox applications (hiding the resources of one
application from another application) and to provide abstraction from the underlying hardware.

One benefit of using virtual addresses is that an OS can present multiple fragmented physical
regions of memory as a single, contiguous virtual address space to an application.

Virtual addresses also benefit software developers, who will not know a system’s exact memory
addresses when writing their application. With virtual addresses, software developers do not need
to concern themselves with the physical memory. The application knows that it is up to the OS and
the hardware to work together to perform the address translation.

In practice, each application can use its own set of virtual addresses that will be mapped to
different locations in the physical system. As the operating system switches between different
applications it re-programs the map. This means that the virtual addresses for the current
application will map to the correct physical location in memory.

Virtual addresses are translated to physical addresses through mappings. The mappings between
virtual addresses and physical addresses are stored in translation tables (sometimes referred to as
page tables) as this diagram shows:

Figure 3-1: A diagram showing virtual and physical addresses

Translation
Tables

Application
Data

Application
Code

DDR

Peripherals

Peripherals

Flash

SRAM

ROM

Virtual Address Space
(Addresses seen by software)

Kernel Data

Kernel Code

Translation tables are in memory and are managed by software, typically an OS or hypervisor. The
translations tables are not static, and the tables can be updated as the needs of software change.
This changes the mapping between virtual and physical addresses.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Address spaces

4. Address spaces
There are several independent virtual address spaces in AArch64. This diagram shows these virtual
address spaces:

Figure 4-1: Address spaces in Armv8-A

OS

Guest OS
Virtual Memory Map Stage 1

TTBRn_EL1 VTTBR0_EL2

TTBR0_EL2

TTBR0_EL3

Physical Memory Map
Seen by Guest OS Stage 2

NS.EL1

NS.EL0

NS.EL2

EL3

Hypervisor
Virtual memory map

Secure Monitor
Virtual memory map

Application

Hypervisor

Secure Monitor Secure Monitor
Tables

Hypervisor
Tables

Peripherals

Peripherals

Peripherals

Flash

Virtualization
Tables

RAM

RAM

RAM

Flash

The diagram shows three virtual address spaces:

• Non-secure EL0 and EL1.

• Non-secure EL2.

• EL3.

Each of these virtual address spaces is independent, and has its own settings and tables. We often
call these settings and tables ‘translation regimes’. There are also virtual address spaces for Secure
EL0, Secure EL1 and Secure EL2, but they are not shown in the diagram.

Support for Secure EL2 was added in Armv8.4-A.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Address spaces

Because there are multiple virtual address spaces, it is important to specify which address space an
address is in. For example, NS.EL2:0x8000 refers to the address 0x8000 in the Non-secure EL2
virtual address space.

The diagram also shows that the virtual addresses from Non-secure EL0 and Non-secure EL1 go
through two sets of tables. These tables support virtualization and allow the hypervisor to virtualize
the view of physical memory that is seen by a virtual machine (VM).

Armv9-A supports all the virtual addresses spaces described above for Armv8-A. Armv9-A
introduces the optional Realm Management Extension (RME). When RME is implemented,
additional translation regimes are also present:

• Realm EL1 and EL0

• Realm EL2 and EL0

• Realm EL2

In virtualization, we call the set of translations that are controlled by the OS, Stage 1. The Stage
1 tables translate virtual addresses to intermediate physical addresses (IPAs). In Stage 1 the OS
thinks that the IPAs are physical address spaces. However, the hypervisor controls a second set
of translations, which we call Stage 2. This second set of translations translates IPAs to physical
addresses. This diagram shows how the two sets of translations work:

Figure 4-2: Stage 2 IPAs to physical addresses

Translation
Tables

Translation
Tables

Virtual Address Space Physical Address Space
Intermediate Physical

Address Space

Peripherals

Kernel

Application

Stage 1 Tables Stage 2 Tables

Peripherals

Flash

DDR

Peripherals

Flash

SRAM

ROM

DDR

Although there are some minor differences in the table format, the process of Stage 1 and Stage 2
translation is usually the same.

At Arm, we use the address 0x8000 in many of our examples. 0x8000 is also the
default address for linking with the Arm linker, armlink. The address comes from an
early microcomputer, the BBC Micro Model B, which had ROM (and sideways RAM)

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Address spaces

at the address 0x8000. The BBC Micro Model B was built by a company called
Acorn, which developed the Acorn RISC Machine (ARM), and later became Arm.

4.1 Physical Addresses
As well as multiple virtual address spaces, AArch64 also has multiple physical address spaces (PAS):

• Non-secure PAS0

• Secure PAS

• Realm PAS (Armv9-A only)

• Root PAS (Armv9-A only)

Which physical address space, or spaces, a virtual address can be mapped to depends on the
current Security state of the processor. The following list shows the Security states with its
corresponding virtual address mapping destinations:

• Non-secure state: virtual addresses can only map to Non-secure physical addresses.

• Secure state: virtual addresses can map to Secure or Non-secure physical addresses.

• Realm state: virtual addresses can map to Realm or Non-secure physical addresses

• Root state: virtual address can map to any physical address space.

When in a Security state with visibility of multiple physical address spaces, the translation table
entries control which output physical address space is used. The following diagram shows the
mapping of multiple physical address spaces:

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Address spaces

Figure 4-3: Mapping of multiple physical address spaces

VA

VA IPA

IPA

IPA

IPAVA

VA

NS=0

NS=0

NS=1

NS=1

Secure PA

Architectural Physical
Address Spaces

Ro
ot

 S
ta

te
Re

al
m

 S
ta

ge
N

on
-s

ec
ur

e
St

at
e

Se
cu

re
 S

ta
te

Realm PA

Non-secure PA

Root PA

(NSE, NS)=11

(NSE, NS)=10

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Address spaces

4.2 Address sizes
AArch64 is a 64-bit architecture, but this does not mean that all addresses are 64-bit.

4.3 Size of virtual addresses
Virtual addresses are stored in a 64-bit format. As a result, the address in load instructions (LDR)
and store instructions (STR) is always specified in an X register. However, not all of the addresses in
the X register are valid.

This diagram shows the layout of the virtual address space in AArch64:

Figure 4-4: Size of virtual addresses

Virtual Address Space
For EL0/EL1 and

EL0/EL2 when E2H=1

User Space

Kernel Space

Virtual Address Space
For EL3 and

EL2 when E2H=0

Single Space

0xFFFF_FFFF_FFFF_FFFF

0xFFF0_0000_0000_0000

0x000F_FFFF_FFFF_FFFF 0x000F_FFFF_FFFF_FFFF

0x0000_0000_0000_0000 0x0000_0000_0000_0000

There are two regions for the EL0/EL1 virtual address space: kernel space and application space.
These two regions are shown on the left-hand side of the diagram, with kernel space at the top,
and application space, which is labelled ‘User space’, at the bottom of the address space. Kernel
space and user space have separate translation tables and this means that their mappings can be
kept separate.

There is a single region at the bottom of the address space for all other Exception levels. This
region is shown on the right-hand side of the diagram and is the box with no text in it.

If you set HCR_EL2.E2H to 1 it enables a configuration where a host OS runs in
EL2, and the applications of the host OS run in EL0. In this scenario, EL2 also has an
upper and a lower region.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Address spaces

Each region of address space has a size of up to 52-bits. However, each region can be
independently shrunk to a smaller size. The TnSZ fields in the TCR_ELx registers control the size
of the virtual address space. For example, this diagram shows that TCR_EL1 controls the EL0/EL1
virtual address space:

Figure 4-5: Virtual address space

Virtual Address Space

User Space

Kernel Space

0xFFFF_FFFF_FFFF_FFFF

TCR_EL1.T1SZ

TCR_EL1.T0SZ

0xFFF0_0000_0000_0000

0x000F_FFFF_FFFF_FFFF

0x0000_0000_0000_0000

The virtual address size is encoded as:

virtual address size in bytes = 264-TCR_ELx.TnSZ

The virtual address size can also be expressed as a number of address bits:

Number of address bits = 64 - TnSZ

Therefore, if TCR_EL1.T1SZ is set to 32, the size of the kernel region in the EL0/EL1 virtual address
space is 232 bytes (0xFFFF_FFFF_0000_0000 to 0xFFFF_FFFF_FFFF_FFFF). Any address
that is outside of the configured range or ranges will, when it is accessed, generate an exception
as a translation fault. The advantage of this configuration is that we only need to describe as much
of the address space as we want to use, which saves time and space. For example, imagine that
the OS kernel needs 1GB of address space (30-bit address size) for its kernel space. If the OS sets
T1SZ to 34, then only the translation table entries to describe 1GB are created, as 64 - 34 = 30.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Address spaces

All Armv8-A implementations support 48-bit virtual addresses. Support for 52-bit
virtual addresses is optional and reported by ID_AA64MMFR2_EL1. At the time of
writing, none of the Arm Cortex-A processors support 52-bit virtual addresses.

4.4 Size of physical addresses
The size of a physical address is IMPLEMENTATION DEFINED, up to a maximum of 52 bits. The
ID_AA64MMFR0_EL1 register reports the size that is implemented by the processor. For Arm
Cortex-A processors, this will usually be 40 bits or 44 bits.

In Armv8.0-A, the maximum size for a physical address is 48 bits. This was extended
to 52 bits in Armv8.2-A.

4.5 Size of intermediate physical addresses
If you specify an output address in a translation table entry that is larger than the implemented
maximum, the Memory Management Unit (MMU) will generate an exception as an address size fault.

The size of the IPA space can be configured in the same way as the virtual address space.
VTCR_EL2.T0SZ controls the size. The maximum size that can be configured is the same as the
physical address size that is supported by the processor. This means that you cannot configure a
larger IPA space than the supported physical address space.

4.6 Address Space Identifiers - Tagging translations with
the owning process

Many modern OSs have applications that all seem to run from the same address region, this is what
we have described as user space. In practice, different applications require different mappings. This
means, for example, that the translation for VA 0x8000 depends on which application is currently
running.

Ideally, we would like the translations for different applications to coexist within the Translation
Lookaside Buffers (TLBs), to prevent the need for TLB invalidates on a context switch. But how
would the processor know which version of the VA 0x8000 translation to use? In AArch64, the
answer is Address Space Identifiers (ASIDs).

For the EL0/EL1 virtual address space, translations can be marked as Global (G) or Non-Global (nG)
using the nG bit in the attributes field of the translation table entry. For example, kernel mappings

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Address spaces

are Global translations, and application mappings are Non-Global translations. Global translations
apply whichever application is currently running. Non-Global translations only apply with a specific
application.

Non-Global mappings are tagged with an ASID in the TLBs. On a TLB lookup, the ASID in the TLB
entry is compared with the currently selected ASID. If they do not match, then the TLB entry is not
used. This diagram shows a Global mapping in the kernel space with no ASID tag and a non-Global
mapping in user space with an ASID tag:

Figure 4-6: Translation look-aside buffer

User Space

Non-Global

Kernel Space

Global

0x02

0x001

Translation Look-aside Buffer (TLB)

ASID from TTBRn_EL1

0x02 Attributes

DescriptorASIDVA Tag

-- Attributes0xFFE

The diagram shows that TLB entries for multiple applications are allowed to coexist in the cache,
and the ASID determines which entry to use.

The ASID is stored in one of the two TTBRn_EL1 registers. Usually TTBR0_EL1 is used for user
space. As a result, a single register update can change both the ASID and the translation table that
it points to.

In 2023 Arm introduced the ability to specify two ASIDs simultaneously. From Armv9.5-A, software
has the option to use the ASID field in both TTBRn_EL1 registers. TTBR0_EL1.ASID is applied to
addresses in the lower portion of the virtual address space and TTBR1_EL1.ASID to addresses in
the upper portion of the virtual address space.

ASID tagging is also available in EL2, when HCR_EL2.E2H==1.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Address spaces

4.7 Virtual Machine Identifiers - Tagging translations with
the owning VM

EL0/EL1 translations can also be tagged with a Virtual Machine Identifier (VMID). VMIDs allow
translations from different VMs to coexist in the cache. This is similar to the way in which ASIDs
work for translations from different applications. In practice, this means that some translations will
be tagged with both a VMID and an ASID, and that both must match for the TLB entry to be used.

When virtualization is supported for a security state, EL0/EL1 translations are
always tagged with a VMID - even if Stage 2 translation is not enabled. This
means that if you are writing initialization code and are not using a hypervisor, it is
important to set a known VMID value before setting up the Stage 1 MMU.

4.8 Common not Private
If a system includes multiple processors, do the ASIDs and VMIDs used on one processor have the
same meaning on other processors?

For Armv8.0-A the answer is that they do not have to mean the same thing. There is no
requirement for software to use a given ASID in the same way across multiple processors. For
example, ASID 5 might be used by the calculator on one processor and by the web browser on
another processor. This means that a TLB entry that is created by one processor cannot be used by
another processor.

In practice, it is unlikely that software will use ASIDs differently across processors. It is more
common for software to use ASIDs and VMIDs in the same way on all processors in a given
system. Therefore, Armv8.2-A introduced the Common not Private (CnP) bit in the Translation Table
Base Register (TTBR). When the CnP bit is set, the software promises to use the ASIDs and VMIDs
in the same way on all processors, which allows the TLB entries that are created by one processor
to be used by another.

We have been talking about processors, however, technically, we should be
using the term, Processing Element (PE). PE is a generic term for any machine
that implements the Arm architecture. It is important here because there are
microarchitectural reasons why sharing TLBs between processors would be difficult.
But within a multithreaded processor, where each hardware thread is a PE, it is
much more desirable to share TLB entries.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

The Memory Management Unit (MMU)

5. The Memory Management Unit (MMU)
The Memory Management Unit (MMU) is responsible for the translation of virtual addresses used
by software to physical addresses used in the memory system.

The MMU contains the following:

• The table walk unit, which contains logic that reads the translation tables from memory.

• Translation Lookaside Buffers (TLBs), which cache recently used translations.

All memory addresses that are issued by software are virtual. These memory addresses are passed
to the MMU, which checks the TLBs for a recently used cached translation. If the MMU does not
find a recently cached translation, the table walk unit reads the appropriate table entry, or entries,
from memory, as shown here:

Figure 5-1: A diagram showing The MMU

Address
Translation

Translation
Tables

Memory

Caches
Table
Walk
Unit

TLBsSoftware
VA PA

Arm core MMU

A virtual address must be translated to a physical address before a memory access can take
place (because we must know which physical memory location we are accessing). This need for
translation also applies to cached data, because on Armv6 and later processors, the data caches
store data using the physical address (addresses that are physically tagged). Therefore, the address
must be translated before a cache lookup can complete.

Architecture is a behavioural specification. The caches must behave as if they are
physically tagged. An implementation might do something different, as long as this is
not software-visible.

5.1 Table entry
The translation tables work by dividing the virtual address space into equal-sized blocks and by
providing one entry in the table per block.

Entry 0 in the table provides the mapping for block 0, entry 1 provides the mapping for block 1,
and so on. Each entry contains the address of a corresponding block of physical memory and the
attributes to use when accessing the physical address.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

The Memory Management Unit (MMU)

Figure 5-2: A diagram showing table entry

Page N

: :

Page 2

Page 1

Page 0

Entry N

Entry 2

Entry 1

Entry 0

Translation
Tables

Virtual Address Space Physical Address Space

:

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

The Memory Management Unit (MMU)

5.2 Table lookup
A table lookup occurs when a translation takes place. When a translation happens, the virtual
address that is issued by the software is split in two, as shown in this diagram:

Figure 5-3: A diagram showing table look-up

PA base Attributes

Attributes

Attributes

Attributes

Attributes

Attributes

PA base

PA base

PA base

PA base

PA base

PA base Offset in block

Which entry

N 0

Offset in block

Translation Table

Virtual address issued by software

Translated address from MMU

This diagram shows a single-level lookup.

The upper-order bits, which are labelled ‘Which entry’ in the diagram, tell you which block entry to
look in and they are used as an index into the table. This entry block contains the physical address
for the virtual address.

The lower-order bits, which are labelled ‘Offset in block’ in the diagram, are an offset within that
block and are not changed by the translation.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

The Memory Management Unit (MMU)

5.3 Multilevel translation
In a single-level lookup, the virtual address space is split into equal-sized blocks. In practice, a
hierarchy of tables is used.

The first table (Level 1 table) divides the virtual address space into large blocks. Each entry in this
table can point to an equal-sized block of physical memory or it can point to another table which
subdivides the block into smaller blocks. We call this type of table a ‘multilevel table’. Here we can
see an example of a multilevel table that has three levels:

Figure 5-4: A diagram showing multilevel translation

Table

Block

Table

Block

Table

Level 2 Table

Level 2 table

Level 3 Table

Block

Virtual Address Space Physical Address Space

In Armv8-A, the maximum number of levels is four, and the levels are numbered 0 to 3.
This multilevel approach allows both larger blocks and smaller blocks to be described. The
characteristics of large and small blocks are as follows:

• Large blocks require fewer levels of reads to translate than small blocks. Plus, large blocks are
more efficient to cache in the TLBs.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

The Memory Management Unit (MMU)

• Small blocks give software fine-grain control over memory allocation. However, small blocks are
less efficient to cache in the TLBs. Caching is less efficient because small blocks require multiple
reads through the levels to translate.

To manage this trade-off, an OS must balance the efficiency of using large mappings against the
flexibility of using smaller mappings for optimum performance.

The processor does not know the size of the translation when it starts the table
lookup. The processor works out the size of the block that is being translated by
performing the table walk.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Controlling address translation Translation table format

6. Controlling address translation
Translation table format

Here we can see the different formats that are allowed for translation table entries:

Figure 6-1: Translation table format

Table Descriptor (Levels 0, 1, 2)63 0

0

0

0

63

63

63

Block Descriptor (Levels 1, 2)

Page Descriptor (Levels 3)

Fault Descriptor (Invalid Entry)

Next-level Table Address 1 1

0 1

1 1

x 0

Output Block Address

Output Block Address

Ignored

Upper Attributes

Upper Attributes

Lower Attributes

Lower Attributes

Attributes

For purposes of clarity, this diagram does not specify the width of bit fields. You can
find this information in the Arm Architecture Reference Manual Armv8, for Armv8-A
architecture profile: The VMSAv8-64 translation table format descriptors.

Each entry is 64 bits and the bottom two bits determine the type of entry.

Notice that some of the table entries are only valid at specific levels. The maximum number of
levels of tables is four, which is why there is no table descriptor for level 3 (or the fourth level),
tables. Similarly, there are no Block descriptors or Page descriptors for level 0. Because level 0
entry covers a large region of virtual address space, it does not make sense to allow blocks.

The encoding for the Table descriptor at levels 0-2 is the same as the Page
descriptor at level 3. This encoding allows ‘recursive tables’, which point back to
themselves. This is useful because it makes it easy to calculate the virtual address of
a particular page table entry so that it can be updated.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 33

https://developer.arm.com/architectures/reference-library
https://developer.arm.com/architectures/reference-library

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Translation granule

7. Translation granule
A translation granule is the smallest block of memory that can be described. Nothing smaller can be
described, only larger blocks, which are multiples of the granule.

AArch64 supports three different granule sizes: 4KB, 16KB, and 64KB.

The granule sizes that a processor supports are IMPLEMENTATION DEFINED and are reported by
ID_AA64MMFR0_EL1. All Arm Cortex-A processors support 4KB and 64KB. The selected granule
is the smallest block that can be described in the latest level table. Larger blocks can also be
described. This table shows the different block sizes for each level of table based on the selected
granule:

Level of table 4KB granule 4KB granule 16KB granule 16KB granule 64KB granule 64KB granule

Size per entry Bits used to index Size per entry Bits used to index Size per entry Bits used to index

0 512GB 47:39 128TB 47 – –

1 1GB 38:30 64GB 46:36 4TB 51:42

2 2MB 29:21 32MB 35:25 512MB 41:29

3 4KB 20:12 16KB 24:14 64KB 28:16

Before the introduction of Armv9.2-A and Armv8.7-A, there were restrictions on using 52-bit
addresses. When the selected granule is 4KB or 16KB, the maximum virtual address region size is
48 bits. Similarly, output physical addresses are limited to 48 bits. It is only when the 64KB granule
is used that the full 52 bits can be used.

TCR_EL1 has two separate fields that control the granule size for the kernel space
and the user space virtual address ranges. These fields are called TG1 for kernel
space and TG0 for user space. A potential problem for programmers is that these
two fields have different encodings.

7.1 The starting level of address translation
Together, the granule and the size of the virtual address space control the starting level of address
translation.

The previous table summarized the block size (size of virtual address range covered by a single
entry) for each granule at each level of table. From the block size, you can work out which bits of
the virtual address are used to index each level of table.

Let us take the 4KB granule as an example. This diagram shows the bits that are used to index the
different levels of table for a 4KB granule:

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Translation granule

Figure 7-1: Starting level of translation

Virtual Address bits

[47:39] [38:30] [29:21] [20:12] [11:0]

Block Offset

Imagine that, for a configuration, you set the size of the virtual address space, TCR_ELx.T0SZ, to
32. Then the size of the virtual address space, in address bits, is calculated as:

64 - T0SZ = 32-bit address space (address bits 31:0)

If we look at the previous 4KB granule diagram again, level 0 is indexed by bits 47:39. With a 32-
bit address space you do not have these bits. Therefore, the starting level of translation for your
configuration is level 1.

Next, imagine you set T0SZ to 34:

64 - T0SZ = 30-bit address space (address bits 29:0)

This time, you do not have any other bits that are used to index the level 0 table or the level 1
table, so the starting level of translation for your configuration is level 2.

As the previous diagram shows, when the size of the virtual address space reduces, you need fewer
levels of tables to describe it.

These examples are based on using the 4KB granule. The same principle applies when using 16KB
and 64KB granules, but the address bits change.

7.2 Registers that control address translation
Address translation is controlled by a combination of system registers:

• SCTLR_ELx

M - Enable Memory Management Unit (MMU).

C - Enable for data and unified caches.

EE - Endianness of translation table walks.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Translation granule

• TTBR0_ELx and TTBR1_ELx

BADDR - Physical address (PA) (or intermediate physical address, IPA, for EL0/EL1) of start of
translation table.

ASID - The Address Space Identifier for Non-Global translations.

• TCR_ELx

PS/IPS - Size of PA or IPA space, the maximum output address size.

TnSZ - Size of address space covered by table.

TGn - Granule size.

SH/IRGN/ORGN - Cacheability and shareability to be used by MMU table walks.

TBIn - Disabling of table walks to a specific table.

• MAIR_ELx

Attr - Controls the Type and cacheability in Stage 1 tables.

7.3 MMU disabled
When the MMU is disabled for a stage of translation, all addresses are flat-mapped. Flat mapping
means that the input and output addresses are the same.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Translation Lookaside Buffer maintenance

8. Translation Lookaside Buffer
maintenance

The Translation Lookaside Buffers (TLBs) cache recently used translations. This caching allows the
translations to be reused by subsequent lookups without needing to reread the tables.

The TLBs are caches of translations, not caches of the translation tables. The
difference is subtle. Several register fields control how the translation table entries
are interpreted. What is in a TLB entry is the interpretation of the translation table
entry given the configuration at the point that the tables were walked. In the Arm
Architecture Reference Manual (Arm ARM), such register fields are described as
‘permitted to be cached in a TLB’.

If you change a translation table entry, or the controls that affect how entries are interpreted, then
you need to invalidate the affected entries in the TLB. If you do not invalidate those entries, then
the processor might continue to use the old translation.

The processor is not permitted to cache a translation into the TLBs that results in any of the
following faults:

• A translation fault (unmapped address).

• An address size fault (address outside of range).

• An access flag fault.

As a result, you do not need to issue a TLB invalidate when mapping an address for the first time.
However, you do need to issue a TLB invalidate if you want to do any of the following:

• Unmap an address

Take an address that was previously valid or mapped and mark it as faulting.

• Change the mapping of an address

Change the output address or any of the attributes. For example, change an address from read-
only to read-write permissions.

• Change the way the tables are interpreted

This is less common. But, for example, if the granule size was changed, then the interpretation
of the tables also changes. Therefore, a TLB invalidate would be necessary.

8.1 Format of a TLB operation
The TLBI instruction is used to invalidate entries in the TLBs. The syntax of this instruction is:

TLBI < type >< level >{IS|OS} {, < xt >}

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Translation Lookaside Buffer maintenance

Where:

• < type > Which entries to invalidate.

All - All entries

VA - Entry matching VA and ASID in Xt

VAA - Entry matching VA in Xt, for any ASID

ASID - Any entry matching the ASID in Xt

and many more

• < level > Which address space to operate on.

E1 = EL0/1 virtual address space

E2 = EL2 virtual address space

E3 = EL3 virtual address space

• < IS|OS > Whether an operation is Inner Shareable (IS) or Outer Shareable (OS).

When IS is added to the operation, it is broadcast to the other cores in the Inner Shareable
domain.

When OS is added to the operation, it is broadcast to the other cores in the Outer Shareable
domain (Added in Armv8.4-A).

• < Xt > Which address or ASID to operate on.

Only used for operations by address or ASID.

Consider, for example, an Operating System (OS) that is updating an entry in its kernel translation
tables. A typical TLB invalidate sequence would look like this:

STR X1, [X5] // Write to translation table entry
DSB ISH // Barrier instructions - not covered in this guide
TLBI VAAE1IS , X0 // Invalidate VA specified by X0, in EL0/1
 // virtual address space for all ASIDs
DSB ISH // Barrier instructions - not covered in this guide
ISB // Synchronize context on this processor

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Address translation instructions

9. Address translation instructions
An Address Translation (AT) instruction lets the software query the translation for a specific address.
The translation that results, including the attributes, is written to the Physical Address Register,
PAR_EL1.

The syntax of the AT instruction lets you specify which translation regime to use. For example, EL2
can query the EL0/EL1 translation regime. However, EL1 cannot use the AT instruction to query
the EL2 translation regime, as this is a breach of privilege.

If the requested translation would have caused a fault, no exception is generated. Instead, the type
of fault that would have been generated is recorded in PAR_EL1.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Check your knowledge

10. Check your knowledge
Q: What is the difference between a stage and a level in address translation?

A: A stage is the process of translating an input address to an output address. For Stage 1 this is
the process of going from VA to IPA and for Stage 2 going from IPA to PA.

A level refers to the tables in a given stage of translation. It is also how a larger block can be
subdivided into smaller blocks.

Q: What is the maximum size of a physical address?

A: The maximum size of the physical address space is IMPLEMENTATION DEFINED, and up to 52 bits
(since Armv8.2-A).

Q: Which register field controls the size of the virtual address space?

A: TCR_ELx.TnSZ, or VTCR_EL2.T0SZ for Stage 2.

Q: What is a translation granule, and what are the supported sizes?

A: It is the smallest block of memory that can be described.

The supported sizes are 4KB, 16KB, and 64KB.

Q: What does the TLBI ALLE3 do?

A: It invalidates all the TLB entries for the EL3 virtual address space.

Q: Can a translation table entry that causes a Translation Fault be cached in the TLBs?

A: No, it cannot be stored in the TLBs.

Q: How are addresses mapped when the MMU is disabled?

A: Addresses are flat mapped, so that the input and output addresses are the same.

Q: What is an ASID and when does a TLB entry include an ASID?

A: An ASID is an Address Space Identifier, it identifies which application a translation is associated
with. Non-Global mappings (nG=1) are tagged with an ASID in the TLBs.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 33

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3

Related information

11. Related information
Here are some resources related to material in this guide:

Virtualization:

• For Armv8-A and Armv9-A, this topic is covered in Virtualization.

Useful links to training:

• Introduction to Armv8-A

• Memory model overview

• Memory types overview

• What does architecture consist of?

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 33

https://developer.arm.com/documentation/102142/0100
https://training.developer.arm.com/topics/33842
https://training.developer.arm.com/communities/18624/contents/394202
https://training.developer.arm.com/contents/394205
https://training.developer.arm.com/contents/400899

Learn the architecture - AArch64 memory management
Guide

Document ID: 101811_0103_03_en
Version 1.3
Next steps

12. Next steps
This guide has introduced the concept of memory management, explaining the mapping of virtual
to physical addresses. Understanding this information will help you to create your own bare-metal
page tables and understand the processes your OS performs when allocating memory.

Memory types and attributes, such as access permissions, are covered in the Memory Model guide.

As well as the Memory Management Unit (MMU) in the processor, it is increasingly common to
have MMUs for non-processor masters, such as Direct Memory Access (DMA) engines. These are
referred to as SMMUs (System MMUs) in Arm systems, and elsewhere as IOMMU.

To keep learning about the Armv8-A architecture, see more in our series of guides.

Copyright © 2019, 2021, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 33

https://developer.arm.com/documentation/102376/latest/
https://developer.arm.com/architectures/learn-the-architecture

	Learn the architecture - AArch64 memory management Guide
	Contents
	1. Overview
	2. What is memory management?
	2.1 Why is memory management needed?

	3. Virtual and physical addresses
	4. Address spaces
	4.1 Physical Addresses
	4.2 Address sizes
	4.3 Size of virtual addresses
	4.4 Size of physical addresses
	4.5 Size of intermediate physical addresses
	4.6 Address Space Identifiers - Tagging translations with the owning process
	4.7 Virtual Machine Identifiers - Tagging translations with the owning VM
	4.8 Common not Private

	5. The Memory Management Unit (MMU)
	5.1 Table entry
	5.2 Table lookup
	5.3 Multilevel translation

	6. Controlling address translation Translation table format
	7. Translation granule
	7.1 The starting level of address translation
	7.2 Registers that control address translation
	7.3 MMU disabled

	8. Translation Lookaside Buffer maintenance
	8.1 Format of a TLB operation

	9. Address translation instructions
	10. Check your knowledge
	11. Related information
	12. Next steps

