
Arm® Cortex®-M55 Processor
Revision: r1p1

Software Optimization Guide

Non-Confidential
Copyright © 2022 Arm Limited (or its affiliates).
All rights reserved.

Issue 03
102692_0101_03_en

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Arm® Cortex®-M55 Processor
Software Optimization Guide

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue Date Confidentiality Change

0101-01 11 January 2022 Confidential First release for r1p1

0101-02 7 June 2022 Confidential Second release for r1p1

0101-03 23 December 2022 Non-Confidential First non-confidential release for r1p1

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 48

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 48

https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03
Contents

Contents

1. Introduction.. 7
1.1 Conventions..7
1.2 Other information... 7
1.3 Useful resources..8

2. Overview...9
2.1 Cortex®-M55 processor overview..9
2.2 Pipeline overview..11

3. Instruction latencies...16
3.1 Instruction tables.. 16
3.2 Branch instructions.. 17
3.3 Arithmetic and Logical instructions..18
3.4 Move and Shift instructions...24
3.5 Divide and Multiply instructions...25
3.6 Load instructions...27
3.7 Store instructions..29
3.8 Miscellaneous instructions... 31
3.9 FP Data Processing instructions... 32
3.10 MVE Integer Vector instructions..34
3.11 MVE Integer Scalar instructions...40
3.12 MVE FP instructions... 42
3.13 MVE Miscellaneous instructions.. 43
3.14 MVE Load instructions... 44
3.15 MVE Store instructions.. 45

4. General behaviors...46
4.1 MVE pipeline hazard..46
4.1.1 SRF write port hazard E2... 47
4.1.2 SRF write port hazard E3... 47
4.1.3 Memory access instructions...47

A. Revisions...48

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03
Contents

A.1 Revisions...48

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Introduction

1. Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Convention Use

italic Citations.

bold Highlights interface elements, such as menu names.

Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program names, and source
code.

monospace Denotes a permitted abbreviation for a command or option. You can enter the underlined text instead of
the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be replaced by a specific value.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments. For
example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in the
Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

1.2 Other information
See the Arm® website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 48

https://developer.arm.com/glossary
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Introduction

1.3 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm® Cortex®‑M55 Processor Devices Generic
User Guide

101925 Non-Confidential

Arm® Cortex®-M55 Processor Technical
Reference Manual

101051 Non-Confidential

Getting started with Armv8.1-M based
processor: software development hints and tips

- Non-Confidential

Arm architecture and specifications Document ID Confidentiality

Arm®v8-M Architecture Reference Manual DDI 0553 Non-Confidential

Arm® Helium Technology M-Profile Vector
Extension (MVE) for Arm Cortex-M Processors
Reference Book

SBN: 978-1-911531-23-4 Non-Confidential

Helium Programmer's Guide: Introduction to
Helium

102102 Non-Confidential

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 48

http://developer.arm.com/documentation
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8_2d00_m-based-processor-software-development-hints-and-tips
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/armv8_2d00_m-based-processor-software-development-hints-and-tips
http://www.adobe.com

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Overview

2. Overview
This document provides guidelines on generating optimal sequence of instructions while writing
the assembly code for the Cortex®-M55 processor.

2.1 Cortex®-M55 processor overview
The Cortex®-M55 processor is a fully synthesizable mid-range microcontroller class processor that
implements the Arm®v8.1‑M Mainline architecture which includes support for the M‑profile Vector
Extension (MVE). The processor also supports previous Arm®v8‑M architectural features.

The design is focused on compute applications such as Digital Signal Processing (DSP) and machine
learning. The Cortex®-M55 processor is energy efficient and achieves high compute performance
across scalar and vector operations while maintaining low power consumption.

The processor can be configured to include Dual-Core Lock-Step (DCLS) functionality, which
implements a redundant copy of most of the processor logic.

To support Arm Custom Instructions (ACI), the processor includes optional Custom Datapath
Extension (CDE) modules, which are embedded inside the logic. These modules are used to execute
user-defined instructions that work on general-purpose integer, floating point, and MVE registers.

Where CDE is mentioned in this document, it is referring to the support of Arm
Custom Instructions (ACI).

The following figure shows the Cortex®-M55 processor in a typical system.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Overview

Figure 2-1: Example processor system

Processor

External
memory

Peripheral EWIC TPIU

External
CoreSight

components

DAP

DebuggerEWIC
interface

Flash

SRAMDMA

AXI Interface

SRAM

P-AHB

S-AHB EPPB

D-AHBETMITM

Trace
interface

APB

PMC-100
interface

ITCM DTCM

PMC-100
APB

EPPB

M-AXI

Terms and abbreviations
The following table defines some important terms and abbreviations used in this document.

Table 2-1: Terms and definitions

Term Expansion or Definition

MVE M-profile Vector Extension

It is also referred to as Arm Helium™ technology.

EPU Extention Processing Unit

It contains Vector Register File and performs scalar floating-point operations, and M-profile Vector Extension (MVE)
operations.

For more information, see Arm® Cortex®-M55 Processor Technical Reference Manual (101051)

DPU Data Processing Unit

It contains General Propose Register file and performs scalar integer instructions.

For more information, see Arm® Cortex®-M55 Processor Technical Reference Manual (101051)

ERF Extention Register File

It is also known as Vector Register File.

For more information, see Arm®v8-M Architecture Reference Manual (DDI 0553)

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Overview

Term Expansion or Definition

SRF Scalar Register File

It is also known as General Propose Register (GPR) file.

For more information, see Arm®v8-M Architecture Reference Manual (DDI 0553)

Beat MVE concept. The execution of ¼ of a vector operation. Because the vector length is 128 bits, one beat of a vector add
instruction equates to computing 32 bits of result data.
For more information, see Arm®v8-M Architecture Reference Manual (DDI 0553)

Tick MVE concept. One architecture tick is an atomic unit of execution in an MVE implementation. Cortex®-M55 processor is a
2-beat per tick machine. That means each tick executes 2 beats of the MVE instruction.
For more information, see Arm®v8-M Architecture Reference Manual (DDI 0553)

Scalar
instructions

Instructions that do not read or write Vector Register File ERF, that is, they only read and write SRF.

MVE scalar
instruction

MVE instructions that do not read or write MVE register bank ERF, that is, they only read and write SRF.

2.2 Pipeline overview
The Cortex®-M55 processor pipeline is 4-stages deep for integer instructions and 5-stages deep
for Floating Point (FP) and M-Profile Vector Extension (MVE) instructions.

The following diagram describes the high-level Cortex®-M55 processor pipeline. The pipeline can
be partitioned to three parts:

• Instruction Fetch Unit (IFU)

• Data Processing Unit (DPU)

• Extension Processing Unit (EPU)

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Overview

Figure 2-2: Cortex®-M55 processor Core and EPU pipeline structure

Instructions are first fetched, then decoded, and then issued into one of three execution pipelines.
The processor is fully in-order and therefore any stalls in the decode or execution stages will
prevent all instructions from progressing. FA and RET stage are symbolic stages and do not have
registers. These stages do not count as part of pipeline depth, and they are represented as dotted-
lined blocks in Figure 2-2: Cortex-M55 processor Core and EPU pipeline structure on page 12.

Table 2-2: Cortex®-M55 processor Core and EPU pipeline structure

Stage Description

FA IFU Fetch Address stage

The FA stage contains the logic required to present addresses to an instruction memory or TCM either from a branch or based on
a sequential address from a previous fetch. Branches can be generated from the DE, EX, CX and RET stages of the Core pipeline
depending on the operation forcing the change of PC.

The FA stage detects loop end for Armv8.1-M low-overhead loop operation.

The IFU always fetches 32-bits of data from memory which could consist of up to 1 32-bit Thumb instruction or 2 16-bit Thumb
instructions.

FD IFU Fetch Data stage

The FD stage accepts data from an Instruction cache or TCM and either issues it to the main pipeline or stores it in an instruction
queue.

The FD stage can issue 1 32-bit Thumb instruction or up to 2 16-bit Thumb instructions, for dual-issue, to the Core Decode stage,
which is described in 3. Instruction latencies on page 16.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Overview

DE DPU DEcode stage

The DE stage comprises the main decode logic together with register read for the main operands of most instructions and hazard
logic for the remainder of the pipeline.

The decoder can handle all scalar integer single and dual issue cases. Floating point and MVE operations are dispatched to the EPU
E0 stage for further processing.

Three register read ports can be used for scalar arithmetic, two for single issue, and the third for arithmetic dual-issue cases. The
pipeline support forwarding of results from the EX stage and CX state into DE for arithmetic instructions.

Load and store address operands are constructed from both scalar register reads and from the extended register port read in the
E0 stage (for MVE instructions where the base address is taken from a vector, Qn). When MVE is included the DE stage supports
two memory read operations for scatter or gather instructions.

The stage also contains the sequencer required to handle multi-cycle operations associated with load and store multiple and double
instructions as well as the separate sequencer required to carry out MVE scatter/gather operations to memory.

The DE stage also carries out the PC change for conditional and unconditional indirect and function return (BX LR) branches.

EX DPU Simple EXecute stage

The EX stage handles most scalar arithmetic, logical, and bit-shift operations. EX also contains the first stage of the integer divider.

This stage reads data from the register bank or CX stage for memory store operations and accumulate data for the scalar multiplier.

The EX stage carried out further branch operations, BX Rm, and CB{N}Z. Branches which require results from the ALU calculated
the PC in EX and pass the result to the FA stage in the next cycle.

All operations which can complete their computation in EX terminate in the stage and write back the result directly to the register
bank.

CX DPU Complex eXecute stage

This stage includes a second ALU which is used to handle all the SIMD and saturating instructions, along with a few complex
instructions from the regular instruction set. The stage also includes the integer multiplier and second stage of the integer divider.

Results from the CX stage are written back to the register bank using two dedicated 32-bit write ports, usually in parallel with
writes from a following instruction in EX. Most integer arithmetic instructions only use one of the write ports, however both can be
used to write 64 bits of data a limited set of scalar instructions, including Long Multiply and Long Multiply Accumulate instructions,
register transfer from the EPU and external coprocessor interface when executing MRRC.

The data phase of all load and store operations is synchronous to the CX stage of the pipeline. Scalar Load data prepared by the
LSU LS2 stage is written back using the two register write-ports. Vector load data is passed through CX and sent to the EPU E2
stage for write-back to the Extended register file. Store data from the main register bank read in EX is combined with data from the
EPU and registered into the RET stage.

Branches based on load results from the LSU, including LDR PC, [x] and LDM/POP {…., PC} and TBB/TBH obtain new address and
transfer to FA in the next cycle.

Note:
For load multiple operations which branch, the PC is loaded from the memory first.

RET DPU Retire stage

The RET stage is used to pass store data, which has been read from either the main register bank in EX or from the EPU extended
register bank in E1 to a TCM or Data cache store buffers.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Overview

LS1 Load-store address stage

Memory requests from the DPU are distributed to the appropriate structures and interfaces in the memory system including the
Data cache and M-AXI interface, TCM, the P-AHB interface, internal peripherals in the PPB memory region and the EPPB interface.
The interface selection is carried out in the LS1 stage – access to data cache and TCM RAM are carried out speculatively. Access to
other interfaces like Device memory cannot be speculative and are carried out later when the instruction has been committed.

This stage also converts unaligned access to constituent aligned access requests. During execution of these sub-requests, the
original instruction is stalled in the EX stage of the DPU.

LS2 Load-store read data phase

The LS2 stage corresponds to the data phase of the cache and TCM RAM for read accesses. Cache hit/miss result determines
whether an M-AXI access is required. This LSU stalls the DPU in this stage until read data is available.

LS3 Load-store write transfer stage
The LS3 stage is used for formatting and transferring store data from the DPU to the appropriate interfaces.

E0 EPU Decode and address transfer stage

The E0 stage decodes MVE and floating-point instructions dispatched from the DE stage.

It is also used for reading base address for MVE load and store operations from the Extended register file for computation of final
address in the EX stage.

This stage also:

• Detects and handles hazards for instruction overlap for beat-wise MVE execution.

• Handles multi-cycle operations (for example, double precision floating point arithmetic).

Note:
The EPU pipeline always operates in lock-step with the main DPU pipeline.

E1 EPU Operand register read stage

The Extension register file is read for all arithmetic operands in the E1 stage. Results from E2 and E3 can be forwarded to following
instructions of the same class, but is not supported between different classes that is, between floating point to fixed point
instructions or vector to scalar floating-point instructions.

Scalar operands are received from the DPU when required.
Store data is also read in the E1 stage and registered into E2 where it is passed over to the DPU to be written to memory.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Overview

E2 EPU arithmetic and logic stage

The E2 stage contains the structures used to carry out vector operations on all data types and scalar operations on all floating-
point data type.

The majority of arithmetic and bitwise logic operations (Scalar instruction or 2 beats of an MVE instruction) complete in a single
cycle apart from:

• Divide and square root

• Operations on double-precision data types

• Instructions which produce a scalar result across a vector

• The chained variant of scalar floating point multiply-accumulate, VMLA.F{32,16}.

Chained multiply-accumulate is carried out as a multiply operation followed by an add operation in serial in E2 with full rounding
after each operation in E3.

Double precision operations which require multiple iterations are recirculated until the full result is available.

The E2 stage is also used to transfer extended registers from the EPU to the CX stage of the DPU.

The VPR and flags in FPSCR.NZCV are updated in E2 stage.

Load data is returned from the DPU CX stage in E2 and registered to the E3. The load data-path is separated into 8 byte-lanes
support vector predications on write-back.

E3 EPU write-back stage

The results for all EPU operations are written back to the extended register file in E3 including load data transferred from the
memory system in E2 through the CX stage. All vector writes in E3 are forwarded back to E1.

MVE operations involving scalar destinations write-back their results to the register file in the DPU in E3.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

3. Instruction latencies
This chapter describes the high-level performance characteristics for most ARMv8.1M instructions.

3.1 Instruction tables
A series of tables summarizes the effective execution latency and throughput, pipelines utilized,
dual-issue ability, and special behaviors associated with each group of instructions. Cortex®-M55
processor supports limited dual-issue ability on 16-bit Thumb instructions.

In the tables that follow this section:

• Execution Latency is defined as the minimum latency seen by an operation dependent on an
instruction in the described group.

• Execution throughput is defined as the maximum throughput (in instructions or cycle) of the
specified instruction group that can be achieved in the entirety of the Cortex®-M55 processor
microarchitecture.

• Cortex®-M55 processor has 2 slots to dual issue for certain 16-bit Thumb instructions. Dual-
issue field is interpreted as:

◦ 01 dual-issuable from slot 0

◦ 00 not dual-issuable

◦ 11 dual-issuable from both slot 0 and slot 1

• Cortex®-M55 processor is a 2 beat per tick machine, and it supports overlapping up to two
beatwise MVE instructions at any time. That means, an MVE instruction can be issued after
another MVE instruction without additional stall. The beatwise MVE instruction can be
overlapped if they are using different utilized pipelines. Utilized pipelines correspond to the
execution pipelines in EPU. There are:

◦ System Registers Pipe (SY)

◦ Load/Store Pipe (LS)

◦ Integer Vector Pipe (I)

◦ Floating Point Pipe (F)

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

3.2 Branch instructions
The following tables summarize latency and throughput information for 32-bit and 16-bit Thumb
Branch instructions.

Table 3-1: Latency and throughput information for 32-bit Thumb Branch instructions

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes

Branch Future BF (T1)

BFCSEL (T2)

BFL (T4)

BFLX (T5)

BFX (T3)

1 1 1

Branch Immediate B (T3)

B (T4)

1(2) 1(1/2) 2

Branch Immediate BL (T1) 2 1/2 -

Low Overhead Loops DLS (T2)

DLSTP (T4)

LCTP (T1)

1 1 -

Low Overhead Loops LE (T1)

LE (T2)

LETP (T3)

3 1/3 -

Low Overhead Loops (While) WLS (T1)

WLSTP (T3)

1(3) 1(1/3) 3

Notes:
1 Acts as a NOP
2 If the branch immediate is a backwards branch, subsequent branches are

predicted to be taken and the latency reduces to 0 as the branch is implied.
3 If the while loop is not executed, a branch occurs which results in a 3 cycle

penalty in latency.

Table 3-2: Latency and throughput information for 16-bit Thumb Branch instructions

Instruction group 16-bit Thumb instructions Execution latency Execution throughput Dual-issue Notes

Branch Immediate B (T2) 1(2) 2 11 1

Branch Immediate BX (T1) 2 1 11 2

Branch Immediate CBNZ, CBZ (T1) 3 1 00 -

Branch Register BXNS (T1) 3 1 00 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group 16-bit Thumb instructions Execution latency Execution throughput Dual-issue Notes
Branch Register BLX, BLXNS (T1)

BLXNS (T1)

3 1 01 -

Branch, register (with destination LR) BX (T1) 3(2) 1 11 3

Notes:
1 If the branch immediate is a backwards branch, subsequent branches are

predicted to be taken and the latency reduces to 0 as the branch is implied.
2 Branch Exchange instructions using the LR execute with a reduced latency

because of a late-forwarding path implemented for the LR.
3 A conditional branch instruction can be dual-issued as the first instruction in a

pair only if the first instruction is an unconditional immediate branch (B[T2]).
If the branch immediate is a backwards branch, subsequent branches are
predicted to be taken and the latency reduces to 0 as the branch is implied.

3.3 Arithmetic and Logical instructions
The following tables summarize latency and throughput information for 32-bit and 16-bit Thumb
Arithmetic and Logical instructions.

Table 3-3: Latency and throughput information for 32-bit Thumb Arithmetic and Logical instructions

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes

Add operations ADC (immediate) (T1)

ADR (T2)

ADR (T3)

CMN (immediate) (T1)

CMP (immediate) (T2)

1 1 -

Add operations ADD (SP plus register) (T3)

SUB (SP plus register) (T3)

1(2) 1(1/2) 1

ALU SP operations ADD SP (immediate) (T3)

ADDW SP (immediate) (T4)

SUB SP (immediate) (T3)

SUBW SP (immediate) (T4)

1 1 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes
ALU operations ADC (register) (T2)

AND (register) (T2)

BIC (register) (T2)

CMN (register) (T2)

CMP (register) (T2)

EOR (register) (T2)

MVN (register) (T2)

ORR (register) (T2)

RSB (register) (T2)

SBC (register) (T2)

TEQ (register) (T2)

TST (register) (T2)

1(2) 1 2

ALU operations ADD (register) (T3)

SUB (register) (T3)

1(2) 1(1/2) 1

ALU operations ADD (immediate) (T3)

ADDW (immediate) (T4)

SUB (immediate) (T3)

SUBW (immediate) (T4)

1 1 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes
Basic ALU AND (immediate) (T1)

BFC (T1)

BFI (T1)

BIC (immediate) (T1)

CLZ (T1)

CSEL (T1)

CSINC (T1)

CSINV (T1)

CSNEG (T1)

EOR (immediate) (T1)

ORN (immediate) (T1)

ORR (immediate) (T1)

RBIT (T1)

REV (T2)

REV16 (T2)

REVSH (T2)

SBFX (T1)

UBFX (T1)

1 1 -

Basic ALU ORN (register) (T1)

ORR (register) (T2)

1(2) 1(1/2) 2

Basic ALU PKHBT, PKHTB (T1)

SEL (T1)

2 1 -

Basic Move operations MVN (immediate) (T1) 1 1 -

Saturating Arithmetic USAT (T1) 1 1 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes
Saturating Arithmetic QADD (T1)

QADD16 (T1)

QADD8 (T1)

QASX (T1)

QDADD (T1)

QDSUB (T1)

QSAX (T1)

QSUB (T1)

QSUB16 (T1)

QSUB8 (T1)

UQADD16 (T1)

UQADD8 (T1)

UQASX (T1)

UQSAX (T1)

UQSUB16 (T1)

UQSUB8 (T1)

USAD8 (T1)

USADA8 (T1)

USAT16 (T1)

USAX (T1)

USUB16 (T1)

USUB8 (T1)

2 1 -

Sign Extend Addition SXTB (T2)

SXTH (T2)

1 1 -

Sign Extend Addition SXTAB (T1)

SXTAB16 (T1)

SXTAH (T1)

SXTB16 (T1)

2 1 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes
Signed Addition SSAT (T1) 1 1 -

Signed Addition SADD16 (T1)

SADD8 (T1)

SASX (T1)

SHADD16 (T1)

SHADD8 (T1)

SHASX (T1)

SHSAX (T1)

SHSUB16 (T1)

SHSUB8 (T1)

2 1 -

Subtract operations RSB (immediate) (T2)

SBC (immediate) (T1)

1 1 -

Test operations TEQ (immediate) (T1)

TST (immediate) (T1)

1 1 -

Test operations TT, TTT, TTA, TTAT (T1) 2 1 -

Unsigned Addition UADD16 (T1)

UADD8 (T1)

UASX (T1)

UHADD16 (T1)

UHADD8 (T1)

UHASX (T1)

UHSAX (T1)

UHSUB16 (T1)

UHSUB8 (T1)

2 1 -

Zero Extend Addition UXTB (T2)

UXTH (T2)

1 1 -

Zero Extend Addition UXTAB (T1)

UXTAB16 (T1)

UXTAH (T1)

UXTB16 (T1)

2 1 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Notes:
1 If the shift amount is non-zero, then the latency is 2 and the throughput is 1.

In addition, if the result is then written to the SP, the result is recycled in EX to
perform the stack limit checks so the latency is 2 and the throughput is 1/2.
Otherwise, the latency and throughput are 1.

2 If the shift amount is non-zero, then the latency is 2 and the throughput is 1.
Otherwise, the latency and throughput are 1.

Table 3-4: Latency and throughput information for 16-bit Thumb Arithmetic and Logical instructions

Instruction group 16-bit Thumb instructions Execution latency Execution throughput Dual-issue Notes

Add operations ADD (register) (T2) 1 1 01(00) 1

Add operations ADC (register) (T1)

ADD (SP plus immediate) (T2)

ADD (register) (T1)

ADR (T1)

1 1 01 -

Add operations ADD (SP plus immediate) (T2)

ADD (SP plus register) (T2)

2 1/2 01 2

Add operations ADD (SP plus immediate) (T1)

ADD (immediate) (T1)

ADD (immediate) (T2)

1 2 11 -

Add operations ADD (SP plus immediate) (T1)

ADD (SP plus register) (T1)

2 1/2 11 2

Basic ALU CMN (register) (T1) 1 1 00 -

Basic ALU AND (register) (T1)

BIC (register) (T1)

CMP (register) (T1)

CMP (register) (T2)

EOR (register) (T1)

ORR (register) (T1)

REV (T1)

REV16 (T1)

REVSH (T1)

TST (register) (T1)

1 1 01 -

Basic ALU CMP (immediate) (T1) 1 2 11 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group 16-bit Thumb instructions Execution latency Execution throughput Dual-issue Notes
Sign Extend Addition SXTB (T1)

SXTH (T1)

1 2 11 -

Subtract operations RSB (immediate) (T1)

SBC (register) (T1)

SUB (SP minus immediate) (T1)

SUB (register) (T1)

1 1 01 -

Subtract operations SUB (immediate) (T1)

SUB (immediate) (T2)

1 2 11 -

Zero Extend Addition UXTB (T1)

UXTH (T1)

1 2 11 -

Notes:
1 Does not dual issue when Rd=PC or Rm=PC
2 When an ADD SP is performed, the result is recycled in EX to perform the

stack limit checks. This will result in a bubble being created in the pipeline.

3.4 Move and Shift instructions
The following tables summarize latency and throughput information for 32-bit and 16-bit Thumb
Move and Shift instructions.

Table 3-5: Latency and throughput information for 32-bit Thumb Move and Shift instructions

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes

Basic Move operations MOV (immediate) (T2)

MOV (immediate) (T3)

MOV (register) (T3)

MOV (register) (T3)

MOV, MOVS (register-shifted register) (T2)

MOVT (T1)

1 1 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Table 3-6: Latency and throughput information for 16-bit Thumb Move and Shift instructions

Instruction group 16-bit Thumb instructions Execution latency Execution throughput Dual-issue Notes

Basic Move operations MOV (register) (T2)

MOV, MOVS (register-shifted register) (T1)

MVN (register) (T1)

1 1 01 -

Basic Move operations MOV (immediate) (T1) 1 2 11 -

Basic Move operations MOV (T1) 1(4) 2(1/4) 11(00) 1

Notes:
1 MOV PC, Rm can only be single issued.

3.5 Divide and Multiply instructions
The following table summarize latency information for T32 and T16 Divide and Multiply
instructions.

Table 3-7: Latency and throughput information for 32-bit Thumb Divide and Multiply instructions

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes

Divide SDIV (T1)

UDIV (T1)

2-12 1/11-1 1

Multiply MUL (T2) 2 1 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes
Multiply Accumulate MLA (T1)

MLS (T1)

SMLABB, SMLABT, SMLATB, SMLATT (T1)

SMLAD, SMLADX (T1)

SMLAL (T1)

SMLALBB, SMLALBT, SMLALTB, SMLALTT (T1)

SMLALD, SMLALDX (T1)

SMLAWB, SMLAWT (T1)

SMLSD, SMLSDX (T1)

SMLSLD, SMLSLDX (T1)

SMMLA, SMMLAR (T1)

SMMLS, SMMLSR (T1)

SMMUL, SMMULR (T1)

SMUAD, SMUADX (T1)

SMULBB, SMULBT, SMULTB, SMULTT (T1)

SMULL (T1)

SMULWB, SMULWT (T1)

SMUSD, SMUSDX (T1)

SSAT16 (T1)

SSAX (T1)

SSUB16 (T1)

SSUB8 (T1)

UMAAL (T1)

UMLAL (T1)

UMULL (T1)

2 1 -

Notes:
1 Divides are performed using an iterative algorithm, and block any subsequent

divide operations until complete. Early termination is possible, depending

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Notes:
upon the data values. There are 2 main cases: (1) If it is divide-by-zero, the
operation will have 2 cycle latency and 1 instruction per cycle throughput.
(2) For other cases, let DIFF_SIGN be (Count_leading_sign_bit(Denominator)
- Count_leading_sign_bit(Numerator)) where Count_leading_sign_bit counts
leading zeros for UDIV. If DIFF_SIGN is less than zero, the operation will have
3 cycle latency and 1/2 instruction per cycle throughput. If DIFF_SIGN is
equal or greater than 0, the operation will have latency of (4 + Round_up
(DIFF_SIGN/4)) and throughput of (1/(3+ Round_up (DIFF_SIGN/4))).

Table 3-8: Latency and throughput information for 16-bit Thumb Divide and Multiply instructions

Instruction group 16-bit Thumb instructions Execution latency Execution throughput Dual-issue Notes

Multiply MUL (T1) 2 1 01 -

3.6 Load instructions
The following tables summarize latency and throughput information for 32-bit and 16-bit Thumb
Load instructions.

Table 3-9: Latency and throughput information for 32-bit Thumb Load instructions

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes

Basic Loads LDA (T1)

LDR (immediate) (T3)

LDR (immediate) (T4)

LDR (literal) (T2)

LDR (register) (T2)

2 1 -

Exclusive operations LDAEX (T1)

LDAEXB (T1)

LDAEXH (T1)

LDREX (T1)

LDREXB (T1)

LDREXD (T1)

LDREXH (T1)

2 1 -

Load Multiples LDRD (immediate) (T1)

LDRD (literal) (T1)

2 1 1

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes
Load Multiples LDM, LDMIA, LDMFD (T2)

LDMDB, LDMEA (T1)

N+1 1/N 1

Sub Word Loads LDAB (T1)

LDAH (T1)

LDRB (immediate) (T2)

LDRB (immediate) (T3)

LDRB (literal) (T1)

LDRB (register) (T2)

LDRBT (T1)

LDRH (immediate) (T2)

LDRH (immediate) (T3)

LDRH (literal) (T1)

LDRH (register) (T2)

LDRHT (T1)

LDRSB (immediate) (T1)

LDRSB (immediate) (T2)

LDRSB (literal) (T1)

LDRSB (register) (T2)

LDRSH (immediate) (T1)

LDRSH (immediate) (T2)

LDRSH (literal) (T1)

LDRSH (register) (T2)

2 1 -

Notes:
1 Cortex-M55 processor supports two 32-bit accesses per cycle.

N=floor((num_regs+1)/2).

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Table 3-10: Latency and throughput information for 16-bit Thumb Load instructions

Instruction group 16-bit Thumb instructions Execution latency Execution throughput Dual-issue Notes

Basic Loads LDR (immediate) (T1)

LDR (immediate) (T2)

LDR (literal) (T1)

LDR (register) (T1)

2 1 01 -

Load Multiples LDM, LDMIA, LDMFD (T1)

POP (multiple registers) (T3)

N+1 1/N 00 1

Sub Word Loads LDRB (immediate) (T1)

LDRB (register) (T1)

LDRH (immediate) (T1)

LDRH (register) (T1)

LDRSB (register) (T1)

LDRSH (register) (T1)

2 1 01 -

Notes:
1 Cortex-M55 processor supports two 32-bit accesses per cycle.

N=floor((num_regs+1)/2).

3.7 Store instructions
The following tables summarize latency and throughput information for 32-bit and 16-bit Thumb
Store instructions.

Table 3-11: Latency and throughput information for 32-bit Thumb Store instructions

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes

Basic Stores STR (immediate) (T3)

STR (immediate) (T4)

STR (register) (T2)

2 1 -

Exclusive operations STREX (T1)

STREXB (T1)

STREXH (T1)

2 1 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes
Store Lock Release STL (T1)

STLB (T1)

STLEX (T1)

STLEXB (T1)

STLEXH (T1)

STLH (T1)

2 1 -

Store Multiple STRD (immediate) (T1) 2 1 1

Store Multiple STM, STMIA, STMEA (T2)

STMDB, STMFD (T1)

N+1 1/N 1

Sub Word Stores STRB (immediate) (T2)

STRB (immediate) (T3)

STRB (register) (T2)

STRH (immediate) (T2)

STRH (immediate) (T3)

STRH (register) (T2)

2 1 -

Notes:
1 Cortex-M55 processor supports two 32-bit accesses per cycle.

N=floor((num_regs+1)/2).

Table 3-12: Latency and throughput information for 16-bit Thumb Store instructions

Instruction group 16-bit Thumb instructions Execution latency Execution throughput Dual-issue Notes

Basic Stores STR (immediate) (T1)

STR (immediate) (T2)

STR (register) (T1)

2 1 01 -

Store Multiple PUSH (multiple registers) (T2)

STM, STMIA, STMEA (T1)

N+1 1/N 00 1

Sub Word Stores STRB (immediate) (T1)

STRB (register) (T1)

STRH (immediate) (T1)

STRH (register) (T1)

2 1 01 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Notes:
1 Cortex-M55 processor supports two 32-bit accesses per cycle.

N=floor((num_regs+1)/2).

3.8 Miscellaneous instructions
The following tables summarize latency and throughput information for 32-bit and 16-bit Thumb
Miscellaneous instructions.

Table 3-13: Latency and throughput information for 32-bit Thumb Miscellaneous instructions

Instruction group 32-bit Thumb instructions Execution latency Execution throughput Notes

Hints PLI (immediate, literal) (T1)

PLI (immediate, literal) (T2)

PLI (immediate, literal) (T3)

PLI (register) (T1)

1 1 1

Hints PLD (literal) (T1)

PLD, PLDW (immediate) (T1)

PLD, PLDW (immediate) (T2)

PLD, PLDW (register) (T1)

1 1 -

No Operation NOP (T2) 1 1 -

Register updates CLRM (T1) N+1 1/N 2

Notes:
1 Acts as a NOP.
2 CLRM supports clearing 2 registers per cycle. N=floor((num_regs+1)/2).

Table 3-14: Latency and throughput information for 16-bit Thumb Miscellaneous instructions

Instruction group 16-bit Thumb instructions Execution latency Execution throughput Dual-issue Notes

No Operation NOP (T1) 1 2 11 -

Program Flow Control IT (T1) 1 2 11 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

3.9 FP Data Processing instructions
The following table summarizes latency and throughput information for FP Data Processing
Instructions.

Table 3-15: Latency and throughput information for FP Data Processing instructions

Instruction group Instructions Execution
latency

Execution
throughput

Notes

Continuous Vector Load VLDR (T2)

VLDR (T3)

2 1 -

Continuous Vector Load VLDR (T1) 2 1 2

Continuous Vector Load VLDM (T1)

VLLDM (T1)

VSCCLRM (T1)

(N/2)+1 1/((N/2)+1) 2

Divide (Double-precision) VDIV (T1) 29 1/28 3

Divide (Half-precision) VDIV (T1) 9 1/8 3

Divide (Single-precision) VDIV (T1) 16 1/15 3

Divide (all-precision) with Input Zero/Infinite/
NaN or Invalid Operation

VDIV (T1) 6 1/5 3

Scalar Absolute VABS (T2) 2 1 -

Scalar Arithmetic VADD (T1)

VSUB (T1)

2(15) 1(1/14) 1

Scalar Arithmetic VMAXNM (T1) 2 1 -

Scalar Compare VCMP (T1)

VCMP (T2)

2 1 -

Scalar Convert VCVT (between double-precision and single-
precision) (T1)

VCVT (between floating-point and fixed-point) (T1)

VCVT (floating-point to integer) (T1)

VCVTA, VCVTN, VCVTP, VCVTM (T1)

VCVTB (T1)

VRINTA, VRINTN, VRINTP, VRINTM (T1)

VRINTR, VRINTZ (T1)

VRINTX (T1)

2 1 -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group Instructions Execution
latency

Execution
throughput

Notes

Scalar MOV VINS (T1)

VMOV (between general-purpose register and half-
precision register) (T1)

VMOV (between general-purpose register and single-
precision register) (T1)

VMOV (between two general-purpose registers and a
doubleword register) (T1)

VMOV (between two general-purpose registers and
two single-precision registers) (T1)

VMOV (immediate) (T2)

VMOV (register) (T1)

VMOVX (T1)

2 1 -

Scalar Multiply VMUL (T1)

VNMUL (T2)

2(21) 1(1/20) 1

Scalar Multiply VFMA (T1)

VFNMA (T1)

2(24) 1(1/23) 1

Scalar Multiply VMLA (T1)

VNMLA (T1)

4(36) 1/3(1/35) 1

Scalar Negate VNEG (T1) 2 1 -

Scalar Select VSEL (T1) 2 1 -

Square Root (Double-precision) VSQRT (T1) 29 1/28 3

Square Root (Half-precision) VSQRT (T1) 9 1/8 3

Square Root (Single-precision) VSQRT (T1) 16 1/15 3

Square Root (all-precision) with Input Zero/
Infinite/NaN or Invalid Operation

VSQRT (T1) 6 1/5 3

Store VSTR (T2)

VSTR (T3)

1 1 -

Store VSTR (T1) 2 1 2

Store VLSTM (T1)

VSTM (T1)

(N/2)+1 1/((N/2)+1) 2

Notes:
1 Double-precision variants run as longer multiple-cycle instructions. The

latency and throughput of these instructions are specified inside the
parentheses.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Notes:
2 Cortex-M55 processor supports two 32-bit accesses per cycle. For single-

precision store multiple instructions, N=floor((num_regs+1)/2). For double-
precision store multiple instructions, N=(num_regs).

3 Divides are performed using an iterative algorithm and block any subsequent
divide operations until complete.

3.10 MVE Integer Vector instructions
The following table summarizes latency and throughput information for MVE Integer Vector
instructions.

Table 3-16: Latency and throughput information for MVE Integer Vector instructions

Instruction group Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

MVE Absolute VABAV (T1) 5 1/4 I & F 1

MVE Absolute VABD (T1)

VABS (T1)

VQABS (T1)

1 1/2 I -

MVE Arithmetic VMAXV, VMAXAV (T1)

VMAXV, VMAXAV (T2)

VMINV, VMINAV (T1)

VMINV, VMINAV (T2)

(64/esize) + 1 esize/64 I 2

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

MVE Arithmetic VADC (T1)

VADD (vector) (T1)

VADD (vector) (T2)

VCADD (T1)

VHADD (T1)

VHADD (T2)

VHCADD (T1)

VHSUB (T1)

VHSUB (T2)

VMAX, VMAXA (T1)

VMAX, VMAXA (T2)

VMIN, VMINA (T1)

VMIN, VMINA (T2)

VQADD (T1)

VQADD (T2)

VQSUB (T1)

VQSUB (T2)

VRHADD (T1)

VSBC (T1)

VSUB (T1)

VSUB (T2)

1 1/2 I -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

MVE Bitwise VAND (T1)

VBIC (immediate) (T1)

VBIC (register) (T1)

VEOR (T1)

VMOV (immediate) (T1)

VMVN (immediate) (T1)

VMVN (register) (T1)

VORN (T1)

VORR (T1)

VORR (immediate) (T1)

VREV16 (T1)

VREV32 (T1)

VREV64 (T1)

1 1/2 I -

MVE CLS/CLZ VCLS (T1)

VCLZ (T1)

1 1/2 I -

MVE Compare VCMP (T1)

VCMP (T2)

VCMP (T3)

VCMP (T4)

VCMP (T5)

VCMP (T6)

VPT (T1)

VPT (T2)

VPT (T3)

VPT (T4)

VPT (T5)

VPT (T6)

1 1/2 F -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

MVE Duplicate VDDUP, VDWDUP (T1)

VDDUP, VDWDUP (T2)

VIDUP, VIWDUP (T1)

VIDUP, VIWDUP (T2)

1 1/2 I 3

MVE Duplicate VDUP (T1) 1 1/2 I -

MVE MOV VMOVL (T1)

VMOVN (T1)

1 1/2 I -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

MVE Multiply VMLA (vector by scalar plus vector) (T1)

VMLAS (vector by vector plus scalar) (T1)

VMUL (T1)

VMUL (T2)

VMULH, VRMULH (T1)

VMULH, VRMULH (T2)

VMULL (integer) (T1)

VMULL (polynomial) (T1)

VQDMLADH, VQRDMLADH (T1)

VQDMLADH, VQRDMLADH (T2)

VQDMLAH, VQRDMLAH (vector by scalar plus
vector) (T1)

VQDMLAH, VQRDMLAH (vector by scalar plus
vector) (T2)

VQDMLASH, VQRDMLASH (vector by vector plus
scalar) (T1)

VQDMLASH, VQRDMLASH (vector by vector plus
scalar) (T2)

VQDMLSDH, VQRDMLSDH (T1)

VQDMLSDH, VQRDMLSDH (T2)

VQDMULH, VQRDMULH (T1)

VQDMULH, VQRDMULH (T2)

VQDMULH, VQRDMULH (T3)

VQDMULH, VQRDMULH (T4)

VQDMULL (T1)

VQDMULL (T2)

2 1/2 F -

MVE Negate VNEG (T1)

VQNEG (T1)

1 1/2 I -

MVE Select VPSEL (T1) 1 1/2 I -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

MVE Shift VBRSR (T1)

VQMOVN (T1)

VQMOVUN (T1)

VQRSHL (T1)

VQRSHL (T2)

VQRSHRN (T1)

VQRSHRUN (T1)

VQSHL, VQSHLU (T1)

VQSHL, VQSHLU (T2)

VQSHL, VQSHLU (T3)

VQSHL, VQSHLU (T4)

VQSHRN (T1)

VQSHRUN (T1)

VRSHL (T1)

VRSHL (T2)

VRSHR (T1)

VRSHRN (T1)

VSHL (T1)

VSHL (T2)

VSHL (T3)

VSHLC (T1)

VSHLL (T1)

VSHLL (T2)

VSHR (T1)

VSHRN (T1)

VSLI (T1)

VSRI (T1)

1 1/2 I -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction group Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

MVE Arithmetic to
scalar

VADDLV (T1)

VADDV (T1)

VMLADAV (T1)

VMLADAV (T2)

VMLALDAV (T1)

VMLSDAV (T1)

VMLSDAV (T2)

VMLSLDAV (T1)

VRMLALDAVH (T1)

VRMLSLDAVH (T1)

3(2) 1/2 F 3

Notes:
1 The first cycle is executed in the I pipe. The second cycle is executed in

the F pipe. Therefore, for fully overlapped execution, the older instruction
should use the non-I pipe, and the younger instruction should use the non-F
pipe.

2 Refer to 4.1.2 SRF write port hazard E3 on page 47. esize is the element
size of the instruction variant. It could be 8, 16, or 32, depending on the
variant this instruction supports.

3 Refer to 4.1.2 SRF write port hazard E3 on page 47.

3.11 MVE Integer Scalar instructions
The following table summarize and throughput information for MVE Integer Scalar instructions.

Table 3-17: Latency and throughput information for MVE Integer Scalar instructions

Instruction
group

Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

Scalar MOV VMOV (general-purpose register to vector lane) (T1)

VMOV (two general-purpose registers to two 32 bit vector
lanes) (T1)

1 1 I/F 1

Scalar MOV VMOV (two 32 bit vector lanes to two general-purpose
registers) (T1)

VMOV (vector lane to general-purpose register) (T1)

1 1 F 2

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction
group

Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

Scalar Shift ASRL (immediate) (T1)

ASRL (register) (T1)

LSLL (immediate) (T1)

LSLL (register) (T1)

LSRL (immediate) (T1)

SQRSHR (register) (T1)

SQRSHRL (register) (T1)

SQSHL (immediate) (T1)

SQSHLL (immediate) (T1)

SRSHR (immediate) (T1)

SRSHRL (immediate) (T1)

UQRSHL (register) (T1)

UQRSHLL (register) (T1)

UQSHL (immediate) (T1)

UQSHLL (immediate) (T1)

URSHR (immediate) (T1)

URSHRL (immediate) (T1)

2(5) 1(1/4) I 3

Notes:
1 Issue to the I pipe, if available; otherwise, issue to the F pipe.
2 Refer to 4.1.1 SRF write port hazard E2 on page 46.
3 When CPACR.CP10 != 0b00, the instruction is executed in the EPU with

shorter latency and larger throughput. When CPACR.CP10 == 0b00, the
instruction is executed in the DPU with longer latency and smaller throughput
with the value in the parentheses.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

3.12 MVE FP instructions
The following table summarizes latency and throughput information for MVE FP instructions.

Table 3-18: Latency and throughput information for MVE FP instructions

Instruction
group

Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

MVE Absolute VABD (floating-point) (T1)

VABS (floating-point) (T1)

2 1/2 F -

MVE Arithmetic VMAXNMV, VMAXNMAV (floating-point) (T1)

VMAXNMV, VMAXNMAV (floating-point) (T2)

VMINNMV, VMINNMAV (floating-point) (T1)

VMINNMV, VMINNMAV (floating-point) (T2)

(64/esize) + 1 esize/64 F 1

MVE Arithmetic VADD (floating-point) (T1)

VADD (floating-point) (T2)

VCADD (floating-point) (T1)

VMAXNM, VMAXNMA (floating-point) (T1)

VMAXNM, VMAXNMA (floating-point) (T2)

VMINNM, VMINNMA (floating-point) (T1)

VMINNM, VMINNMA (floating-point) (T2)

VSUB (floating-point) (T1)

VSUB (floating-point) (T2)

2 1/2 F -

MVE Compare VPT (floating-point) (T1)

VPT (floating-point) (T2)

2 1/2 F 2

MVE Compare VCMP (floating-point) (T1)

VCMP (floating-point) (T2)

2 1/2 F -

MVE Convert VCVT (between floating-point and fixed-point) (T1)

VCVT (between floating-point and integer) (T1)

VCVT (between single and half-precision floating-point)
(T1)

VCVT (from floating-point to integer) (T1)

VRINT (floating-point) (T1)

2 1/2 F -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Instruction
group

Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

MVE Multiply VCMLA (floating-point) (T1)

VCMUL (floating-point) (T1)

VFMA (vector by scalar plus vector, floating-point) (T1)

VFMA, VFMS (floating-point) (T1)

VFMA, VFMS (floating-point) (T2)

VFMAS (vector by vector plus scalar, floating-point)
(T1)

VMUL (floating-point) (T1)

VMUL (floating-point) (T2)

2 1/2 F -

MVE Negate VNEG (floating-point) (T1) 2 1/2 F -

Notes:
1 Refer to 4.1.1 SRF write port hazard E2 on page 46. esize is the element

size of the instruction variant. It could be 8, 16, or 32, depending on the
variant this instruction supports.

2 Cannot overlap with the following I pipe instructions, because there is no
forwarding path from F to I.

3.13 MVE Miscellaneous instructions
The following table summarize latency and throughput information for MVE Miscellaneous
instructions.

Table 3-19: Latency and throughput information for MVE Miscellaneous instructions

Instruction group Instructions Execution latency Execution throughput Utilized pipeline Notes

System VCTP (T1)

VLDR (System Register) (T1)

VMRS (T1)

VMSR (T1)

VPNOT (T1)

VPST (T1)

VSTR (System Register) (T1)

1 1 SY 1

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

Notes:
1 Instructions with utilized pipeline SY can overlap with themselves.

3.14 MVE Load instructions
The following table summarizes latency and throughput information for MVE Load instructions.

Table 3-20: Latency and throughput information for MVE Load instructions

Instruction group Instructions Execution
latency

Execution
throughput

Utilized
pipeline

Notes

Continuous Vector
Load

VLDRB, VLDRH, VLDRW (T1)

VLDRB, VLDRH, VLDRW (T2)

VLDRB, VLDRH, VLDRW (T5)

VLDRB, VLDRH, VLDRW (T6)

VLDRB, VLDRH, VLDRW (T7)

1 1/2 LS -

Continuous Vector
Load

VLD2 (T1)

VLD4 (T1)

2 1/2 LS -

Gather Load VLDRB, VLDRH, VLDRW, VLDRD (vector)
(T1)

(64/esize) + 1 esize/64 LS 1

Gather Load VLDRB, VLDRH, VLDRW, VLDRD (vector)
(T2)

VLDRB, VLDRH, VLDRW, VLDRD (vector)
(T3)

VLDRB, VLDRH, VLDRW, VLDRD (vector)
(T4)

(64/esize) + 1 esize/64 LS 2

Gather Load VLDRB, VLDRH, VLDRW, VLDRD (vector)
(T5)

1(2) 1/2 I & LS 3

Gather Load VLDRB, VLDRH, VLDRW, VLDRD (vector)
(T6)

2 1/4 I & LS 3

Notes:
1 Gather loads cannot read forwarded data, so the latency of the preceding

instruction will have an additional latency of 4. esize is the element size of
the instruction variant. It could be 8, 16, or 32, depending on the variant this
instruction supports.

2 esize is the element size of the instruction variant. It could be 8, 16, or 32,
depending on the variant this instruction supports.

3 The first cycle is executed in the LS pipe. The second cycle is executed in
the I pipe. Therefore for fully overlapped execution, the older instruction
should use the non-LS pipe, and the younger instruction should use the non-I
pipe.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

Instruction latencies

3.15 MVE Store instructions
The following tables summarize latency and throughput information for MVE Store instructions.

Table 3-21: Latency and throughput information for MVE Store instructions

Instruction group Instructions Execution latency Execution throughput Utilized pipeline Notes

Scatter Store VSTRB, VSTRH, VSTRW, VSTRD (vector) (T1)

VSTRB, VSTRH, VSTRW, VSTRD (vector) (T2)

VSTRB, VSTRH, VSTRW, VSTRD (vector) (T3)

VSTRB, VSTRH, VSTRW, VSTRD (vector) (T4)

1 esize/64 LS 1

Scatter Store VSTRB, VSTRH, VSTRW, VSTRD (vector) (T5) 2 1/2 I & LS 2

Scatter Store VSTRB, VSTRH, VSTRW, VSTRD (vector) (T6) 2 1/4 I & LS 2

Store VSTRB, VSTRH, VSTRW (T1)

VSTRB, VSTRH, VSTRW (T2)

1 1/2 LS 1

Store VSTRB, VSTRH, VSTRW (T5)

VSTRB, VSTRH, VSTRW (T6)

VSTRB, VSTRH, VSTRW (T7)

1 1/2 LS 2

Store VST2 (T1)

VST4 (T1)

1 1/2 LS -

Notes:
1 esize is the element size of the instruction variant. It could be 8, 16, or

32, depending on the variant this instruction supports. If the data to store
depends on a preceding instruction, the preceding instruction latency is not
affected.

2 If the data to store depends on a preceding instruction, the preceding
instruction latency is not affected.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

General behaviors

4. General behaviors
This chapter describes the general behaviors of of MVE ARMv8.1M instructions.

4.1 MVE pipeline hazard
MVE vector instructions are issued as 2 micro-ops. Each micro-op operates on 64 bits of data and
is also known as a tick. Overlapping means tick1 of an MVE instruction can execute in parallel to a
tick0 of the succeeding MVE instruction.

For MVE instructions, the decision of whether to overlap is made in the E0 stage. The decoded
instruction is checked against the current micro-ops in its pipeline and the control determines
whether this instruction can be overlapped based on resource or data availability. Therefore, if any
hazards occur, an E0 stall will prevent any overlapping.

In Cortex®-M55 processor, a newer MVE instruction can overlap with the older MVE instruction if
the older tick1 does not use the same pipe as the newer tick0. Utilized pipeline can be referred to
in the instruction latency tables.

There are sets of scalar instructions which are allowed to overlap with tick1 of the preceding vector
instruction. These are the following:

• Immediate branches (B, BL and also CB[N]Z)

• Low-overhead-loop instructions

• Branch Future (these are just NOP)

• Integer arithmetic, except DIV, CSEL (all), MVE scalar shifts, and PC modifying

• Load or store, except LSMs and PC modifying

The following micro-architectural limitations need to be considered, which can affect scalar and
vector overlap:

• Arithmetic instructions cannot overlap with vector load or stores with base writeback to a
scalar register.

• Any instruction which checks the stack limit does not overlap.

• A scalar cannot overlap with a vector instruction marked with an implicit LE, that is, the last
instruction in a low-overhead-loop.

• If there is dependency between the scalar and vector instruction, then it is unlikely to overlap.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03

General behaviors

4.1.1 SRF write port hazard E2

Instructions that write to the SRF in E2 cannot overlap with other instructions that write to the
SRF in E2. All instructions referred from latency tables to this section write to the SRF in E2.

4.1.2 SRF write port hazard E3

Instructions that write to the SRF in E3 cannot overlap with other instructions that write to the
SRF in E3. All instructions referred from latency tables to this section write to the SRF in E3.

4.1.3 Memory access instructions

This section provides a high-level detail of the Memory access.

TCM banks
The TCM in Cortex®-M55 processor is 4 banks of 32-bit word per bank. If the load addresses in
a vector load instruction are in the same bank, for example, 0x2001000 and 0x20010010, there
will be a bank conflict, which means they cannot be loaded in the same cycle. Addresses are in the
same bank if their bits [3:2] are the same. In such cases, there will be a 1 cycle penalty.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 48

Arm® Cortex®-M55 Processor Software Optimization Guide Document ID: 102692_0101_03_en
Issue: 03
Revisions

Appendix A Revisions
This appendix gives the technical changes between released issues of this book.

A.1 Revisions
The following tables show changes in the book issues.

Table A-1: Issue 0101-01

Change Location

First release -

Table A-2: Differences between issue 0101-01 and issue 0101-02

Change Location

Updated the Pipeline description 2.2 Pipeline overview on page 11

Table A-3: Differences between issue 0101-02 and issue 0101-03

Change Location

First non-confidential release -

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 48

	Arm® Cortex®-M55 Processor Software Optimization Guide
	Contents
	1. Introduction
	1.1 Conventions
	1.2 Other information
	1.3 Useful resources

	2. Overview
	2.1 Cortex®-M55 processor overview
	2.2 Pipeline overview

	3. Instruction latencies
	3.1 Instruction tables
	3.2 Branch instructions
	3.3 Arithmetic and Logical instructions
	3.4 Move and Shift instructions
	3.5 Divide and Multiply instructions
	3.6 Load instructions
	3.7 Store instructions
	3.8 Miscellaneous instructions
	3.9 FP Data Processing instructions
	3.10 MVE Integer Vector instructions
	3.11 MVE Integer Scalar instructions
	3.12 MVE FP instructions
	3.13 MVE Miscellaneous instructions
	3.14 MVE Load instructions
	3.15 MVE Store instructions

	4. General behaviors
	4.1 MVE pipeline hazard
	4.1.1 SRF write port hazard E2
	4.1.2 SRF write port hazard E3
	4.1.3 Memory access instructions

	A. Revisions
	A.1 Revisions

