Tutorial Version 1.80 ARMKE"—

Creating a Middleware Application using CMSIS Components Microcontroller Tools

A b St raCt The latest version of this document is here: developer.arm.com/docs/kan268

This tutorial shows how to read the contents of a text file from a USB memory stick attached to a development board. After
pressing an update button on the touch screen, the content is shown on the LCD. The tutorial explains the required steps to
create the application on an STM32F429I-Discovery board. Still, it can be easily ported to other underlying hardware using
MDK-Professional Middleware, Keil RTX5 and CMSIS, the Cortex Microcontroller Software Interface Standard.

Contents
AADSTIACT ...t R R R R R R R Rt R R R Rt r s 1
L1 (T (8ot T o RSO S TSP PO PRSPPSO 2
S0 AT UL TS - T PSS RUPPRRIN 3
g e =T BTSSR 4
Set up the WOrKShOP ENVIFONMENT ..ot e e s te et e st e s st e s taesbe e te e s teasaesseesaeesbeeteeneeaneennee e 4
STEP L2 CFEALE 8 PFOJECT.....vieitiitiietiite ittt b bt b et bbbt b bbb b e e b bbbt bbb e bbb bbbttt 5
Create a New Project for the EVAIULION BOAITcoueiiiiiiiiieieiite ettt et b et et 5
SELUD the DEDUQG AGGPLEN ... c.eeceiecee et et e st e e s te e teesee e st e aas e te e teesteeseeaseesseesseesteenteeneeansenssenreenseeeeeneeas 6
STEP 2: AU CIMSIS-RTOS ...ttt b bbbt E b E e R R s £ e b s b b s e e e b st e bRt e b bt s b b et b bt nn b 7
Add and configure CMSIS-RTOS RTX for a simple BIinky appliCation ..o 7
I ST Lo I 1T TSP 9
Step 3: Add USB Host With Mass StOrage SUPPOITeoieee ettt ettt et e b e s e ste et e e ste e aessaesneesneesaeennas 10
Configure the CMSIS-Driver for USB COMPONENT..........c.coiiiiieiiee e ste ettt te e te s ae e ste e steesreebeenbeenbesnee e 10
Add the USB Host middleware component to the PrOJECT...........cviiiiiiiiiiierieeee et 11
Configure the CMSIS-Driver fOr the USB HOSE.........coiiiiiiie ittt 11
Configure the stack and thread MEMOIY FESOUICTESccviiieiierieeieeie e st este e ste et e et e teeste e e e aesseesteesteesteenseenseensensee e 12
Add the user code that accesses the USB StOrage GEVICE........civiiiiieiii ettt ste e re e ae e e sreesteesaeebeene s 12
Step 4: Add the Graphical USEr INTEITACEoiviiiiiiiiiei bbbttt st sr e ebe e 15
UNerstanding the HAIGWATEc.oiiiiiiiiie ettt bbb b bbbt bbbt et b et b bbbt b b 15
Add the Graphic Core and Graphics DiSplay INTEIFaCE.ceiuiiiiiie bbb 15
Add the code to output “Hello World” to the LCD diSplaycccooiriiiiiiiiiiiiii e 16
Step 5: Design and Add the Graphics to be Displayed 0n the LCDccoiiiiiiiiiiiiesceeee e 17
Configure GUIBuUilder and Use it to Create the GraphiCsccocciiereiiiiese e 17
Add LogViewerDLG.c to the Project and RUN the GUI ..ot e 18
Step 6: Add the TOUCH SCIrEEN INTEITACEocuiiiiiieieieee e bbbttt e e bbb e b e be et e e et saesbesbeaneas 19
SEFIAL WITE VIBWET SUMIMATY ...ttt sttt sttt sttt sttt b e b e e b e e bt se e b e eb e s e e E e e bt ne e st ekt e b e s e ekt nb e st ek e sbeseabenb et ebenbe e ebennes 21
DOCUMEBNT RESOUICESiiuteiiitie ittt et s iee ettt ekttt ekt ettt e sttt e bt e e ke e e st e e ek et 2 ab et e bt e e sk e e e b e e e bt e ke e ekt e e ke e e ke e e beeebbeenbeeebbeenbneebneans 22
20T OSSOSO ORI URPRPRUR 22
F N o] o] 1o 1T T N\ Lo (=1 SO TP 22
USETUL ARIM WWEIDSTEESot e R et r Rt r et n et r et nrens 22

Keil Products and Contact INTOIMAtIONociiiiiiiie ettt s e s b b e s sate s s b b e e sbb e s sbbessbee s srbessneeesres 23

https://developer.arm.com/documentation/kan268

Creating a Middleware Application using CMSIS Components with MDK Version 5

Introduction

This workshop explains creating a software framework for a sophisticated microcontroller application using CMSIS and
Middleware components. During this workshop, a demo application is created that implements the following functions:

¢ Read the content of a Test.txt file from a USB memory stick.
e Provide an update button on a touch screen.
e Show the content on a graphical display.

Application

User Code Templates

main.c GUI_SingleThread.c I| LogViewerDLG.c USBH_MSC.c

CMSIS-RTOS RTX

Timer.c

Thread.c File System Graphics USB Host MSC

Touchscreen

CMSIS-Driver

Device
Startup STM32Cube HAL STM32Cube Framework

startup_stm32f429xx.s .
system_stm32f429x0x.c GPIO - stm32f4xx_hal_conf.h RTE_Device.h
CMSIS-CORE

stm32f429xx.h stm32f4xx.h core_cm*h

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 2

Creating a Middleware Application using CMSIS Components with MDK Version 5

Software Stack

The application is created by using user code templates. These templates are part of software components such as the
Middleware, CMSIS-RTOS or the STM32F4xx Device Family Pack (DFP). Some other source files are automatically
generated, such as the code that creates the graphical user interface (GUI) on the external display.

CMSIS-RTOS RTX is a real-time operating system that is part of Keil MDK and adheres to the CMSIS specification. It is
used to control the application.

The Board support files enable the user to quickly develop code for the hardware used here. It provides a simple API to
control LEDs, the touch screen and the LCD interface. Other components support push buttons, joysticks, A/D converters or
other external devices.

Middleware provides TCP/IP networking stacks, USB communication, Graphics, and File access. The Middleware used in
this application is part of MDK-Professional and uses several CMSIS-Driver components.

CMSIS-Driver is an API that defines generic peripheral driver interfaces for Middleware, making it reusable across
compliant devices. It connects microcontroller peripherals with Middleware that implements, e.g. communication stacks, file
systems, or graphic user interfaces. CMSIS drivers are available for several microcontroller families and are part of the DFPs.
The DFP contains the support for the Device in terms of startup and system code, a configuration file for the CMSIS-Driver
and a device family-specific software framework with a hardware abstraction layer (HAL).

The basis for the software framework is CMSIS-Core which implements the basic run-time system for a Cortex-M device
and gives the user access to the processor core and the device peripherals. The device header files adhere to the CMSIS-Core
standard and help the user to access the underlying hardware.

The STM32F32F429I1Discovery Kit with the USB Stick connected to USB User OTG Connector.

The LCD displays the screen created in the Graphical Display section in Steps 4, 5 and 6. In our example in this tutorial, the
display will be rotated by 90 ° from that shown above.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 3

Creating a Middleware Application using CMSIS Components with MDK Version 5

Prerequisites
To run through the workshop, you need to install the following software. Directions are given below:

e MDK-ARM Version 5.38a or later (https://www.keil.com/demo/eval/arm.htm, http://www?2.keil.com/mdk5).

o Avalid MDK-Professional license, e.g. provided by
- afree of charge 30 days limited license key (https://www.keil.com/MDKEvaluationRequest/)
- or the MDK Community Edition (https://www2.keil.com/mdk5/editions/community).

o Keil::MDK-Middleware 7.16.0 or higher, ARM::CMSIS 5.9.0 or higher, Keil::ARM_Compiler 1.7.2 or higher,
Keil::MDK-Middleware_Graphics 1.2.0

o Keil::STM32F4 _DFP 2.17.0 (or later), which includes the STM32F4291-Discovery Board Support Package (BSP).
We will download this from the Internet using Pack Installer.

e STM32F429I1-Discovery Kit (www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF259090).

Note: The Solder bridge SB9 must be bridged for the Serial Wire Viewer (SWV) to work. A soldering iron is
needed.

Set up the Workshop Environment
Install MDK:

1. Install Keil MDK Version 5.38a or later. Use the default folder C:\Keil_v5

2. After the initial Keil MDK installation, the Pack Installer utility opens up. Read the Welcome message and close it.
Install the STM32F4xx Software Pack:

1. If Pack Installer is not open, first open puVision®: . Then open Pack Installer by clicking on its icon:
2. The bottom right corner should display ONLINE: 1ONINE | |f jt shows OFFLINE, connect your PC to the Internet.

3. Locate the Pack by entering stm32f4 at the Search tab on the left. Next, find the Keil::STM32F4xx_DFP at the

Pack tab on the right. Click Install at the latest Pack Fic. Badks Wiow: tidp
version offered. The installation will commence. i DeviccRsTiiucietinni R EDD
i i i 4] Devices | Boards b (4]] Padlsl Examples
4. The Pack Installer confirms the successful installation. [Search_stmaata | - X Pack Action
Device i Sty = Device Specific 3 Packs
Note that these other required Software Packs in this list are T ST |
pre_lnsta"ed. 5% STM32F4 Series 211 Devices #-Keil::STM32NUCLEO_B... Up to date
=1 Generic 85 Packs
- Keil::MDK-Middleware
- ARM:CMSIS

- Keil::ARM_Compiler
- Keil::MDK-Middleware_Graphics

Install your MDK-Professional license.
1. Request a free 30-day trial of MDK-Professional https://www.keil.com/MDKEvaluationRequest/

2. With the Product Serial Number (PSN) received, activate your license:
https://developer.arm.com/documentation/101454/0110/License-Management/Single-User-License/Installing-a-LIC

3. For more information and license installation instructions, see: www.keil.com/download/license/

Install the ST-Link USB Drivers:

1. Open the Windows Explorer as administrator and navigate to C:\Keil_v5\ARM\STLink\USBDriver

2. Double-click on stlink_winusb_install.bat to install the required USB drivers for the onboard ST-Link debug
adapter. The drivers will install it in the usual fashion.

3. Update the ST-Link firmware by executing C:\Keil_v5\ARM\STLink\ST-LinkUpgrade.exe. The best ST-Link
firmware to use is V3J11M3 or later. You can identify the version installed on your board with this Upgrade utility.
The Discovery board must be connected to your PC with a USB-Mini cable to change its firmware.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 4

https://www.keil.com/demo/eval/arm.htm
http://www2.keil.com/mdk5
https://www.keil.com/MDKEvaluationRequest/
https://www2.keil.com/mdk5/editions/community
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF259090
https://www.keil.com/MDKEvaluationRequest/
https://developer.arm.com/documentation/101454/0110/License-Management/Single-User-License/Installing-a-LIC
https://www.keil.com/download/license/

Creating a Middleware Application using CMSIS Components with MDK Version 5

Step 1: Create a Project

Create a New Project for the Evaluation Board
Create a project with initialization files and the main module:

1.
2.

sw

®

In the main pVision menu, select Project = New uVision Project. The Create New Project window
Create a suitable folder in the typical fashion and name your project. We will use C:\USB, and
the project name will be USB. When you save the project, the project file name will be
USB.uvprojx.

The Select Device for Target window opens. Select STM32F429ZI1Tx:

Click on OK, and the Manage Run-Time Environment (RTE) window opens:

Expand the various options as shown and select CMSIS:Core, Device:Startup. Select OK and
open Options For Target — C/C++(AC6). Select at Language C C99. Return to the RTE.

B Mono

Variant
32F463IDISCOVERY

Most devices provide additional hardware abstraction
layers listed under the Device component. The
STM32Cube HAL is a list of available drivers for the
STM32F429. It requires a framework. Select
STM32Cube Framework (API):Classic. For more
information, click on the link STM32Cube Framework
which opens the documentation.

ARM Compiler

MOK-Plus
MOK-Plus

In the Sel. column, you see some orange blocks. Click on o
Resolve in the Validation Output window, and these will
turn green.

Click OK to close this window
In the Project window, expand all the items and have a
look at the files that pVision has added to your project:

Add the main.c file: i

1. Right-click on Source Group 1 -select Add New Item to Group 'Source Group 1'...
2. Inthe window that opens, select User Code Template. Select the 'main’ module for
STM32Cube HAL. It initializes the STM32Cube HAL and configures the clock
system. Click on Add. ER =
Set the CPU Clock Speed: IER===T -
The external crystal oscillator on the development kit has a frequency of 8 MHz.
1. Open the Options for Target tab. Select C/C++.
2. Enter HSE_VALUE=8000000 in the Define box. The HSE_VALUE represents the reecomy
crystal frequency. This will set the CPU clock to 168 MHz in system_stmf4xx.c. Define: [HSE_VALUE=8000000
3. Also, select at Warnings: AC5 Like Warnings.
4. Click on OK to close this window. Wamings: |ACike Wamings ¥
b= e Bt e S S g
5. Open main.c, search for SystemClock_Config() and set 8 as . | e e e i
RCC_OsclnitStruct.PLL.PLLM 164 R&ELE:OSCI;xitSc;uc\::PL;:PLLM {::|,: ‘
6. Select File = Save All or press 'j
:l"'_:i:
7. Compile the project source files: == There will be no errors or warnings displayed in the Build Output window. If

you get any errors or warnings, please correct this before configuring the ST-Link V2 Debug Adapter.

At this point: We have created a new MDK 5 project called USB.uvprojx. We have set the CPU clock speed and added the
CMSIS environment, a main.c file and compiled the source files to test everything.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com §

Creating a Middleware Application using CMSIS Components with MDK Version 5

Setup

the Debug Adapter

Select the ST-Link V2 Debug Adapter:

oD

If you see an error or nothing in the SWDIO box, you must fix this before

Select Target Options @~ or ALT-F7. Select the Debug tab. Liier Db | s |
In the Use box, select “ST-Link Debugger”.

Click on Settings. In the Port box, select SW (for Serial-Wire Debug SWD).
In the SWDIO box, you must see a valid IDCODE and ARM CoreSight

SW Device

* Lse: IST—I_ink Debugger j Settings |

SW-DP. This indicates that puVision is connected to the STM32's debug

IDCODE | Device Name

module.

SWDIO| mzBADI477 ARM CoreSight SW-DP

continuing. Make sure the board is connected.
Configure the Serial Wire Viewer (SWV):

1.

Select the Trace tab. In the Core Clock box, enter 168 MHz and Core Clock: | 168.000000 Mz [Trace Enable
select Trace Enable. This sets the speed of the SWV UART signal
and debugger timing displays. Unselect EXCTRC (Exception Tracing). Leave all other settings at their defaults.

Note: Solder Bridge SB9 must be bridged for SWV to function.
Select the Flash programming algorithm:

2.
3.

4
5.
6
7

Insert a

1.
2.
3.

6.
7.

Select the Flash Download tab. Programming Algariim

Confirm the STM32F4xx 2 MB Flash programming “_LDM on | Devcesas | DevceType | AddessFange |
. . STM32F&ec 2MB Flash 2M On-chip Flash 08000000H - 0B1FFFFFH

algorithm is selected as shown here:

If not, click on Add to choose it.
Click on OK twice to return to the main menu.

Next, enter pVision's Debug mode: Q

Click on the RUN icon .
The program is now running.

global variable in the Watch window:

In the Project tab under Device, double-click on system_stm32f4xx.c to open it up.

Find the variable SystemCoreClock. It is declared near line 137.

Right-click on it and select Add SystemCoreClock to... and select Watch 1. Watch 1 will automatically open if it
is not already open and display this variable.

In the Watch 1 window, right-click on SystemCoreClock in the Name column and unselect Hexadecimal Display.

SystemCoreClock will now be displayed with the correct frequency
Of 168 MHZ Mame Value Type

Note: You can add variables to the Watch and Memory windows @ SystemCoreClock |163000000 ArEpneEalE
while running your program. " <Enter expressions

Stop the program. @ See the Disassembly window. The program E1Call Stack = Locals || Watch1 | B Memory 1
counter (R15) will be at a B instruction in the SysTick_Handler.
The B instruction is a branch of itself. Stopping in the bisassembly

SysTick Handler can be avoided by adding the user X000002 02 RAEE B UXU80002627 PERUSVIRARIEE
code template "Exception Handlers and Peripheral oxos000264 ETFE B | 0x03000264 SysTick Hendler
IRQ". As we will use CMSIS-RTOS RTX, this is not S 8 :

required here. 417 ENDP

The yellow arrow {>is the program Counter (PC).
Exit Debug mode. @

At this point: We have selected the debug adapter, enabled the Serial Wire Viewer trace (SWV) and selected the Flash
programmer. We also demonstrated how to display the CPU clock in a Watch window.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com g

Creating a Middleware Application using CMSIS Components with MDK Version 5

Step 2: Add CMSIS-RTOS

Add and configure CMSIS-RTOS RTX for a simple Blinky application

Select and Configure RTX RTOS: 5 & cwsis ’
¥ CORE v 5.6.0
1. Open the Manage Run-Time Environment (RTE) window: @ 3 |E = L
2. Under CMSIS:RTOS2 (API), select Keil RTX5 with Variant 4 DsP
#- € RTOS (API) 1.00
Source as shown here - & RS2 (aP) 213
3. Press OK ¢ T o v|554

4.

In the Project window, note that new files are added under the CMSIS hea&di'ﬁ‘g'; e.g. RTX_CM4F.lib, rtx_lib.c,
RTX_Config.c and RTX_Config.h

Add a Thread Template

1.

w

In the Project window under Target 1, right-click Source Group 1 and select Add New Item Group "Source
Group1'...

In the window that opens, select User Code Template.

Select at the CMSIS component the CMSIS-RTOS2 Thread.

Click on Add. Note that Thread.c is added to the Source Group 1 in the = - e o
Project window. igz SystemCoreClockUpdate () ;

In main.c near line 79, enter extern int Init Thread(void) ; B | [

and after /* Add your application code here */ enter Init_Thread() ;

Add the Timer.c source file and add Timer Initialization Function Call:

1.

w N

In the Project window under Target 1, right-click Source Group 1 and select Add New Item Group ‘'Source
Group1'...

In the window that opens, select User Code Template. Select CMSIS-RTOS2 Timer.

Click on Add. Note Timer.c is added to the Source Group 1 in the Project window.

In Thread.c near line 10, add this line: extern int as; =

In1t Tlmers (VOld) ; zz Elvoid Thread (void *argument) {
..and in function Thread() add Init Timers () ; | me——
Init_Timers() creates two timers: Timerl (a one-shot) and Timer2, whichisa 227 ™3 fiie cice cone neve
1-second periodic timer. Timer2 calls a callback function. = ’L e

chb }

Select File = Save All or 'j

Compile the project source files by clicking on the Rebuild icon . There will be no errors or warnings in the
Build Output window. If there are any errors or warnings, please correct them before continuing.

Demonstrating the Timer is Working:

N =

4,

5.
6.

Program the Flash and enter Debug mode: @ Click on the RUN icon.
The program is running.

In Timer.c, at the Timer2_Callback() function, 28 // Periodic Timer Example

near "ne 32 seta breaprint by CIiCking on the 30 Hstatic void Timer2 Callback (void const *arg)
! : ! 31 // add user code here

grey box. A red circle will appear. The grey box ® 32

indicates that assembly language instructions are
present, and a hardware breakpoint will be legal.
The program will soon stop here.

Click on RUN , and in 1 second, and it will stop here again when the Timer2 is activated.
Remove the breakpoint for the next step.

At this point: We added the RTX RTOS to your project. We enabled a periodic Timer and demonstrated that the program
was running.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 7

Creating a Middleware Application using CMSIS Components with MDK Version 5

Blink the LED:

1. Exit Debug mode. @

2. Open the Manage Run-Time Environment window: @
3. Expand the Board Support (ensure that STM32F429I-

4 i Software Component Sel. Variant v
Discovery is selected — see the red arrow) 29 Board Support ————» | STMIRRLDiscof 7] 1.

4. Under Board Support:LED (API) select LED @ € Buttons (AP] 1.

5. Click OK to close this window. =€ LED (AP 1

In the Project window, the new header Board Support contains I v v | L
the file LED_F429Discovery.c., used to configure the 1/O pins & @ Touchscreen (APY 1

of the LEDs with a LED _Initialize() routine. The LED_On() and LED_Off() functions control the LEDs.

Add C Code to Blink LED LD3:
In Thread.c and Timer.c, add #include "Board LED.h"

TIP: You can also select #includes from a list: ,
e Select a line in a source code file and right-click on it. e i Wi it
‘0ggle Header/Code File RTE_Components.h // Component selection

o Select Insert "#include file'. A menu opens up with provided 4 nerenoesespont g | Bt /Bosrs spporti£D
#includes that you can select from.

1. InThread.c, next to Init_Timers(), add LED_Initialize();

2. InTimer.c, near line 10, add this line:
static int timer cnt = 0;

3. In Timer.c inside the Timer2_Callback function near line 23, add this code in the user code section (replace the line
//add user code here):
timer cnt++; T
if (timer_cnt & 1) LED On (0); o ety

if (timer_cnt & 1) LED On (0):

else LED_Off (0) ; 27 . slse LED_Off (0) ;

lback (void const *arg) {

Select File/Save All or 'j

Compile the project: There will be no errors or warnings in the Build Output window.

Program the Flash and enter Debug mode: @

Click on RUN.
LED PG13 (green) will now blink according to your created Timer.
Leave the program running for the next steps.

TIP: Inthe LED On function call: (0) is the green LED. Using (1) will blink the red LED.

wCooN o g A

At this point: We have selected a LED driver from the CMSIS-Pack BSP to create a blinking LED. Using a timer, we have
created a simple program that blinks this LED every 1 second.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com @

Creating a Middleware Application using CMSIS Components with MDK Version 5

RTX Kernel Awareness
System Analyzer:
1. Enable the Event Recorder in the RTE-Compiler component. Teom

2. Atthe Project window in the Compiler Tab, open the file EventRecorderConf.h | 3" T i
and select the Configuration Wizard.
Expand the Event Recorder group.

3.
4. Ensure that the DWT Cycle Counter is set.
5
6

STM32F4291-Discovery h

Open at the Project tree the CMSIS tab.

Open the file RTX_Config.h and select the Configuration % s}
Wizard.] r

7. At Event Recorder Configuration, enable the Global 5 E
Initialization. ~j° -

Compiler v

L

8. Save all files, build and flash the project.

9. Start the Debugger and open the System Analyzer from the toolbar or via the V|ew Analysis Wlndows System
Analyzer menu. Run your project for a few seconds and stop it.

10. You see now our Threads in the System Analyzer window:

System Analyzer
H @8 || |l Je| &
4 Threads |
Idle {255) |
Event Recorder ThreadSwiiched - RIX Thread 0]
RTX5 RTOS |
4 Thread Events Thi{ Running p00638) < Thread (0x20000638) [Runnlng]
osRtxIdle Thread (0x200086b0) [Ready =
osRtxTimerThread ((x200086f4) |

Thread (0x20000638)

Exit the Debug mode. @

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com @

Creating a Middleware Application using CMSIS Components with MDK Version 5

Step 3: Add USB Host with Mass Storage Support
Configure the CMSIS-Driver for the USB component

To correctly configure the USB Host Middleware, it is necessary to understand the USB User connector available on the

target hardware.

1 ‘ 2 ‘ 3 | N
usA
- 5 _PAg 4 s pDD P10 B2 55 SDCEEL -
PAJ0. 15 TAT 3 ;i‘l}““m ggf ER)] BS SDNEL E .‘E‘fl
— FE1S] TTA 7 Al o p AT 0 SDRWE
P il e s PAL RS 0 NLO CREE e —
g T T pas Po T - — T ILT o = SBIE
N BAT 41| ot Pos [118__PC5 PG BT 11 SDREAS eryry N
T j Tpag e 23 Pos [122__Poo GiBA . PHI-OSCIN B35, 0 = 4
PO TSl 53635 e s 7 Pas_ G2 T EAT % 3l - { il
T 5 oAt 0 | bhs 7 —mox PGI0_G3 TSR]
KO TS dilid] T PA%) T 0 G TS SDRCAS -2t =
K P milldd] —EA10 M| e o |2 D10 Bl G5 | ez
A1 _103 | DALY o [0 —won S 44 VSYNC - PHI . PHI-OSC OUT RS7, 20 jeay,
e oy U ME N Vo S ! i] 7 T X loiit SB20 { el
EGETS AL 105 | pal = oL Cs HSYNC -t
o PH0] TTPAIT TV | H ol 5] =z T B
5 o] paid T 85 T 1 BOX -
KO0 T3],) 3 WEX DCY-wRY pC
B0 4 15 pED 7 DO SCL e
TEs o = B 3 7 DOTCLE o-LABLE. PCI4 -~ PCI40SCIIIN Bs3,, 0 TE=s
T il BT B = £} B16 a1 !
= B3 pEs [+ - N
e P85 255 [) i3 317
- T om0 27 [7 Ca08G-00g-32788 | | o
% TE = = —___PCIS-05C3) OUT Rss 0 | ™ =1
Gl - 5 5817 155
xo— 1| ol P Nor Fitred
- 1 e PEIl 5 !)
B s Ml PEIL [Y,
Hm— T BBl PEL3 (= —
= . PEI: PEI
— 18 2mls PEIS
-l 0]
27| b == |
[} b 5 S [1I2 Ell I
G o] oc] M il
(o B PRI o
e o [s‘
5 35t pes pr
<t | pcs Pes [o
= PCT T = -
=] H 0
= (5 v | 558 T -
EI0_111] 200 b} 5 .
CIT 111z 5 o0
[PR VE ! T bl
1] R 7] .
PCHOTTIN : 2 5T s
o PCI+-0SCI2IN = w 22— vop
BISOSCI OUT 9] pe15.08C32 0UT E -
58 0 08
51 5 <
%} 7 71 T i ca2 —Lgal
PHO-0SC N b . 1] 1 13F | 2mF
PHI-O0SC_IN 2G3 L T
PHTO5C 30 D oscouT o S} A = uF STNGIFEIETS T
3 563 : =
NRST 25 1 = P A
WEST ¥RST 566 i — .
BO0TO BT, ¥ | poome BGT f = 5 ;g
e BGE
RSP PNA | T 3 T
VD=, plzfl’g 5 510 3 Ag C1
o| om0 o 3 eIl 5 a7 AT £l o
le—— 7 AT 1A% AT T i i
B2l pony [TG i MEMS eTT STMicroelectronics
R
ol o i} Tiie
ek STM32F4291-DISCO - STM32F429ZIT6 MCU
STNGIETOZITS
TmheaMBT07F Fev B 1[PCE.SCH] Damenaaiis | Skete o 7
1 2 3 4

The STM32F4291 Discovery Kit provides a USB connector that interfaces with the USB OTG High-speed STM32F429
peripheral via the on-chip full-speed PHY (GPIOB.14 and GPIOB.15). The VBUS power on/off pin is active low on

GPIOC.4. The Overcurrent Detection pin is active low on GPIOC.5. Since
we are only using the USB Host interface we can ignore the remaining OTG

Books

18

pins.
This schematic is part of the Software Pack for the STM32F4. You access
these documents using the Books tab. Other documents found here are

datasheets, STMicroelectronics Getting Started Guides, ARM compiler and
pVision manuals and more.

EF‘l-:-je-:t @Books {} Functions [].,Template:

E--m Tools User's Guide

@ Release Motes

- Complete User's Guide Selection
G ARM Compiler v5.04u2
[—jm Device Data Books
&% STM32F40x/41:¢/42/43x Reference Manual
&% STM32F427/429 Data Sheet
-G STM32F42x/43x Errata Sheet
- Cortex-M4 Generic User Guide
% STM32F40 HAL Drivers
=il Board Data Bocks
G Getting Started (STM32F4291-Discovery)
@ User Manual (STM32F4291-Discovery)
% Bill of Materials (STM32F4291-Discovery)
@ Gerber Files (STM32F4291-Discovery)
- Schematics (STM32F429]-Discovery)
. STM32F4291-Discovery Web Page (STM32F4291-Discovery)

N

———

Application Note: 268 www.keil.com | 0

Creating a Middleware Application using CMSIS Components with MDK Version 5

Add the USB Host middleware component to the project

As we want to connect a USB memory stick to the development board, we need to add support for the USB Mass Storage
Class (MSC) to the project:

1. Open the RTE window: @ 54 Use
2. Ensure the MDK-Pro Variant is set for the File System, Graphics, L@ CORE r
Network and USB components. % Device 0
3. Under USB:Host, select MSC as shown here: ¥ Host 13
Make sure you do not accidentally select MSC in the Device header. We "’ Device
are setting the STM32 up as a Host and not a Device. =4 Host
4. Under CMSIS Driver:USB Host (API), select High-speed e s =
5. Click Resolve to add other mandatory middleware components. o INise =
6. Click OK to close this window. o
Connect USB Host 0 to the hardware and increase stack size:
1. Inthe Project window, under the USB heading, double-click on oot
ption | Value

USBH_Config_0.c (Host) to open it.
2. Click on its Configuration Wizard tab and then on Expand All.
3. Set Connect to Hardware via Driver_USBH# to 1.
4. Note: Driver_USBHL1 represents the USB OTG High-speed
interface. This is the CMSIS Driver that is configured in the

[=-USE Host 0

- Zonnect to hardware via Driver_USBH# 1 I
- Contraller Interface Settings

[#-O5 Resources Settings

prEVIous Step Memory Pool Address
5. Keep the default value of 1024 bytes for the Core Thread & 0S Resources Settings
Stack Size. | Core Thread Stacksize __RB%

6. Select File/Save All or 'ﬂ
Configure the CMSIS-Driver for the USB Host

1. Inthe Project window, under the Device header, double-click on RTE_Device.h to open it for editing.
2. Open the Configuration Wizzard

3. Expand SPI5 (Serial Peripheral Interface 5)

4

Configure the SPI5 Pins as shown in this screen
29 Device Option Value

_] #--SPI3 (Serial Peripheral Interface 3) [Driver_SPI3] l_
| startup_stm32f429xx.s (Startup) [--SP14 (Serial Peripheral Interface 4) [Driver_SPI4] [~
] stm32f4xx_hal_conf.h (STM32Cube Framework:Classic) [} SPI5 (Serial Peripheral Interface 5) [Driver_SPI5] |7
& _1 system_stm32f4xx.c (Startup) SPI5_MISO Pin PF8
(53] ﬁ stm32fdxx_hal.c (STM32Cube HAL:Common) SPI5_MOSI Pin PF9
[E] ﬁ stm32fdxx_hal_cortex.c (STM32Cube HAL:Cortex) SPI5_SCK Pin PF7 v
B ﬁ stm32fdxx_hal_gpio.c (STM32Cube HAL:GPIO) SPI5_NSS Pin Not Used
5% tm2fdvy hal mar - (STAM22C1he HAL-PWR) I 1 NAAARY Ll
U Vi 1 unsspeeu]
5. Enable USB OTG High-Speed and change the PHY Interface “ “’jgp‘:"f(*;fy::ff:m e
to On—chip FU“-SpGGd PHY. | PHY Interface On-chip full-speed PHY |
Enable Host [Driver_USBH1] as shown here: i
=R Host [Driver USBH1] 2
Set the hardware parameters for the USB OTG High-speed interface precisely as e 'LVOW
shown here: Port
= Both Ports must be GPIOC; the first Bit is 4, and the second Bit is 5. | M — 3
;\:;ve State I(.;:la:) -
Bit 5

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com | |

Creating a Middleware Application using CMSIS Components with MDK Version 5

Configure the Stack, Heap and Thread memory resources

The resource requirements of the USB component can be found in the Middleware documentation that is accessible using the
link next to the USB component in the Manage Run-
Time Environment window:

o4 Us MDK-Pro 6.23 USE Communication with varicus device (Iassas]
¥ CORE [v 623 USE Core for Cortex-M

Configure Heap and Thread Stack USB sizes:
1. Inthe Project window under the Device heading, double-click on startup_stm32f429xx.s to open it.

2. Select its Configuration Wizard tab. =
3. Confirm the Stack Size is set to 0x400 bytes and Heap Size is set to 0x200. Stack Size (in Bytes) 0x0000 0400
4. Under the CMSIS heading, double-click on RTX_Config.h to open it. & Heap Configuration

Heap Size (in Bytes) 0x0000 0200

Set the Default Drive Letter:

1. Inthe Project window under the File System heading, double-clickon gption Value
FS_Config.c to open it. & -FAT File System

2. Select the Configuration Wizard tab.

3. For a USB mass storage drive, the File System component expects the
drive letter to be U0. So change Initial Current Drive to UO:

[#- Embedded File System

Initial Current Drive juo: ~

4. Select File/Save All or 'j
{“."

5. Compile the project:
No errors or warnings will be generated as shown in the Build Output window. Please correct any errors or warnings before
you continue.

| Next, we will add the user code to access a USB Device (the USB stick)

Add the user code that accesses the USB storage device

Add USBH_MSCC and USBH_MSCh Coguonent Name
1. Right-click on Source Group 1 in the Project window again. Select Add New @ EMSi
item to Group 'Source Groupl'... 2 uss
2. Select User Code Template Host:Custom Class | USB Host Generic Custom Class

Host:Custom Class | USB Host Prolific PL2303

3. Under the USB heading and in the Name column, select USB Host Mass [55 Host Mos: Storage Access
Storage Access and click on Add.

The files USBH_MSC.c and USBH_MSC.h are now added to your project under the Source Group 1 heading.

5. These provide the relevant access functions for the USB storage device.

6. Select File/Save All or 'ﬂ

e

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com |2

Creating a Middleware Application using CMSIS Components with MDK Version 5

We will use a CMSIS-RTOS thread to implement access to a file on the USB stick.
Modify Thread.c (that was already included in Step2, “Add a Thread Template™):
To allow file access, we add and save the following application code in the module Thread.c:

#include <stdio.h>
#include "main.h"

#include "cmsis_os2.h" // CMSIS RTOS header file
#include "Board LED.h" // Board Support:LED
#include "USBH_MSC.h" // Access storage via USB Host

char fbuf[200] = { 0 };
extern int Init Timers (void);

R S
&3 Thread 1 'Thread Name': Sample thread
R O 5 5 5 5 05 05 5 55 05 5 55 55 0 05 55 05 5 55 55 0 55 05 05 5 55 55 0 05 55 05 5 55 55 0 0 55 05 5 55 55 0 05 55 0 05 55 5 0 55 55 05 5 55 05 0 55 55 05 5 55 05 0 55 55 05 5 65 05 0o e 5 e 5
*/
osThreadId t tid Thread; // thread id
void Thread (void const *argument) ; // thread function

int Init_Thread (void) ({

tid Thread = osThreadNew((void *) (uint32_t)Thread, NULL, NULL)
if (tid Thread == NULL) ({
return(-1) ;
}
return (0) ;

}

void Thread (void const *argument) ({
static unsigned int result;
static FILE *f;

Init Timers() ;
LED_Initialize();
USBH Initialize (0);

while (1) {
result = USBH_MSC_DriveMount ("UO:");
if (result == USBH_MSC_OK) {
f = fopen ("Test.txt", "r");
if (£f) {
fread (fbuf, sizeof (fbuf), 1, f);
fclose (f):;
}

}
osDelay (1000) ;

At this point: On this page, we added the code to open, read and close the data in file Test.txt located in a USB stick
connected to USB User.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com | 3

Creating a Middleware Application using CMSIS Components with MDK Version 5

Prepare a USB memory stick:

1. Take a USB memory stick, label it USB USER, and create a file called Test.txt containing the message Keil
Middleware and CMSIS-Pack using ASCII characters.
2. Plug this stick with an adapter cable into the STM32F4291-Discovery board.

Build and RUN:
1. Compile the project:
2. Enter Debug mode: @
3. Click on the Memory 1 tab. Enter fbuf in this window:
4. Right-click anywhere in the data field area and select : :
Ascii Address: [fbuf
5. Seta breakpoint in Thread.con fclose (f) near
line 35. 0x20000144: Feil Middleware and CHM5I5-Pack...
OXZ000012T: v uuvevnnne s nnnnsnnraseneasnnenses
6. Click on RUN.
7. The text will appear in the Memory 1 window in a few seconds.
8. The program will stop at the hardware breakpoint.
9. To repeat this sequence, click on the RESET icon % and then RUN .'L
10. Stop the program and leave the Debugger.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com | 4

Creating a Middleware Application using CMSIS Components with MDK Version 5

Step 4: Add the Graphical User Interface

Understanding the Hardware
To correctly configure the Graphic Interface it is necessary to understand the schematics. Here’s another excerpt from the
schematics showing the LCD connections.

The STM32F429 has a high-speed RGB interface (red) connected to the LCD. SPI (blue) is connected to the Device’s SPI5
interface to configure the display. The Touch Screen connects via 12C (green) to the microcontroller’s 12C3 interface.

VSYNC
™ToX VSYNC
[CHSYNC C5X
> HSYNC
TE TE
RDX RDX
WBX D?X WRX DCX TI2C3 SCL 1293 SCL
DCX SCL 12C3 SDA
DCX SCL I2C3 SDA
Interfaces: SDA 1P INT1
SDA TP INTI
RGB ENABLE
DOTCLK ELTAELID NRST
SP DOTCLK NRST
Add the Graphic Core and Graphics Display Interface
Select the emWin graphics components: I8 Manage Run-Time Environment
1. Open the Manage Run-Time Environment window: @ e e v
2. Under Board Support:emWin LCD (API), select emWin LCD. o %
This component is the interface to the board LCD display. @ 2 Drvers
3. Select Graphics:Core. This will be used for the User interface. el
4. Click Resolve to add the missing CMSIS-Drivers. g N I
5. Click OK to close this window. : : cuss
: 3 Ccmpile:wy ARM Compiler
@ € Device
£ Q Eile System MDK-Pro, & v
- ¢ CECI |0] =l
¥ CORE v
@ UNC Server 1

Configure Memory for Graphics Core
The Graphics Core uses a dedicated memory for its features that needs configuration.

In the Project window under the Graphics heading, double-click on GUIConf.c to open it. GUIConf.c configures
the Graphics Core. The default configuration exceeds the memory of our system. We change the memory size to

1.

0x4000, which is sufficient for many applications (refer to
the emWin User Manual).
Change the GUT_NUMBYTES define near line 55 to 0x4000

Select File/Save All or 'ﬂ

fine GUI_NUMBYTES 0x4000

What we have at this point: The graphics hardware configuration is complete.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com | §

Creating a Middleware Application using CMSIS Components with MDK Version 5

Add the code to output “Hello World” to the LCD
Add The Graphics Thread and start the thread in main.c:

1. Inthe Project window under Target 1, right-click Source Group 1 and select Add New Item to Group “Source
Group 1'...

2. Select User Code Template.

3. From the Graphics heading, select emWin GUI Thread for Single-
Tasking Execution Model. [[—
Note: Single-task execution is where one thread (task) calls the emWin Q] "‘
functions. This reduces the memory footprint and is sufficient for many R
applications. Only one thread can call the GUI functions (refer to the Execution Model in the emWin User Manual).

4. Click on Add, and the file GUI_Single_Thread.c is part of your project.

Modify the RTX for this new thread
(=) Object specific Memory allocation v
1. Open at the CMSIS-tab RTX_Config.h Number of user Threads 6
2. Modlfy the Thread Configuration as ShOWI’] Number of user Threads with default Stack size 2
here: Total Stack size [bytes] for user Threads with user-provided Stack size 1000

Default Thread Stack size [bytes] 4096
Idle Thread Stack size [bytes] 512
Idle Thread TrustZone Module Identifier 0
Stack overrun checking]
Stack usage watermark [
Processor mode for Thread execution Privileged mode

Add the text that will display on the LCD:

1. In the Project window under the Source Group 1 heading, double- 3 Pargume)
click on GUI_SingleThread.c to open it. %

2. Near line 24, just before the while (1) loop, add:
GUI_DispString("Hello World!"); -

3. Select File/Save All or 'j

Modify Thread.c

You can now demonstrate the display of the string “Hello World!” on the LCD —in .
30 [Jvoid Thread (void const *argument) {
ThreadC 31 | static unsigned int result;
32 static FILE *f;
1. near line 10 add: BSP_SDRAM Init() ; 51 | 1nsc_Timess 0
2. and extern int Init GUIThread (void); B
- . - 37 | BSP_SDRAM Init():
3. Extend the includes with S | Tait frortead())

39 |

#include “stm32f429i discovery_ SDram.h”

4. Select File/Save All or ﬂ

e @ N

Build and run your project:

Compile the project:
Program the Flash and enter Debug mode: @

Click on RUN.
The LCD will display Hello World!

a P D PP

Stop the processor o Exit Debug mode. @

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com | §

Creating a Middleware Application using CMSIS Components with MDK Version 5

Step 5: Design and Add the Graphics to be displayed on the LCD
Configure GUIBuilder and Use it to Create the Graphics

emWin provides a tool called GUIBuilder to design the graphics that will display on the LCD screen. pVision allows you to
execute GUIBuilder from within.

1. Open the Manage Run-Time Environment window: @
2. Under Graphics:Tools select GUI Builder
3. Click OK

Create a shortcut on the pVision Tools menu:

1. Inthe main puVision menu, select Tools 2> X

Customize Tools Menu. The window below opens
up.

2. This will allow you to add a shortcut to your tools
menu to launch GUIBuilder. This only needs to be
done once for every installation of MDK-ARM and

G UIBuilder

not every project you may E:reate. [| Eam e ip et
3. Click on the Insert icon *.. (or press the Insert key). I Run Minimized
4. Enter the text GUIBuilder as shown and press ™ Run Independent
Enter.
5. Inthe Command and Initial Folder boxes enter
ARTE\Graphics\GUIBuilder.exe and .\ . Command: I."-.HTE"-.Glaphi-:s"-.GUIBuiIder.exe _|
6. Click on OK to close it. e | _l
Arguments: I
oK | Cancel | Hep |
7. Click on Tools in pVision, and the new GUIBuilder menu item will display like this: [ves Windowfiele
8. Click on GUIBuilder, and it will start. e ren
Lint All C-5curce Files
Customize Tools Menu...
GUIBuilder
Create the Frame:
1. Click on the Framewin icon: A box will be created labelled Framewin. :"’pert" I ‘L"a'“:_ — |
2. With the FrameWin box selected, change the Property Name from FrameWin to x,f,;": ,:,c'g e
LogViewer. yPos g
3. Inthe property column, enter xSize = 240 and ySize = 320. This specifies the size ﬁg:is =
of the LCD. Extra bytes 0
4. Press Enter.

Add the Multi Edit Widget

1. Click on the Multiedit icon:
2. Click and drag to fill the LogViewer area, as shown below. Leave a space at the bottom for the button.

[Bt] Property I Value |
Add the Bl{tton: . EPELI;E ;Ipdate
1. Click on the Button icon: yPos 245
2. Use your mouse to size and position as shown below: x5ize 210

3. With the Button selected, change the Property Name to Update. |1 20
. .. wtra bytes 0
4. Click Enter to finish.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com | 7

Creating a Middleware Application using CMSIS Components with MDK Version 5

Save and Export your GUI:

1.

2.
3.

Select File = Save. A C source file with
your GUI design is created and saved into e

your pVision project root folder. The file ron][Cre: Dropdoun

Franeuin
name is derived from your parent GUI (Ttem 1 ||
element; in this case, the name is q . EE o [Eait W\, Header PP
- 2
LogViewerDLG.c. Them 3
You will neeq to add this to your project. e
Close GUIBuilder. L] Muttiedit | Y
sl Update

Property | Value |

Mame LogViewer

xPos a

yPos 0

xSize 260

ySize 396 Update

Extra bytes 0

|R.eady

Add LogViewerDLG.c to the Project and Run the GUI
Adding your GUI design file LogViewerDLG.c to Your Project:

1.
2.

o0k w

LN

Build and RUN:

o N

In the pVision Project window, right-click on “Source Group 1.
Select Add Existing Files to Group 'Source Group 1'...
Note: Choose Existing rather than New as previously.

In the window that opens up, select the file LogViewerDLG.c. Click on Add once and then Close.

LogViewerDLG.c is now added to your project.

In the Project window, under Source Group 1, double-click LogViewerDLG.c to open it for editing.
Near line 70, add this line to reference the file buffer fouf: extern char fbuf[200];

Create the GUI Design:

In the pVision Project window under Source Group 1, double-click on GUI_SingleThread.c to edit it.

In GUI_SingleThread.c, near line 4 add this line: #include "dialog.h"

In GUI_SingleThread.c, near line 5 add this line: extern WM _HWIN CreateLogViewer (void) ;

Comment out: //GUI_DispString("Hello World!");
Near line 26 add this line: CreateLogViewer () ;

Select File/Save All or ﬁ

Compile the project:

Enter Debug mode: @ and click on RUN.
The GUI we have just created appears on the screen:

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Step 6: Add the Touchscreen Interface

An implementation for the touchscreen interface is provided as a Software Component under Board Support. The
touchscreen hardware connects via the 12C peripheral (12C3); therefore, we will use the standard CMSIS-Driver for 12C.

Add Software Components for Touchscreen

1. Open the Manage Run-Time Environment window: @

2. Under Graphics:Input Device, select Touchscreen

3. Click Resolve to select other required components. This adds from the Board Support the Touchscreen Interface and
from the CMSIS Driver the 12C driver.

4. Click OK to close this window.

Configure the CMSIS-Driver for the 12C Interface

1. In the Project window, under the Device group, double-
click on RTE_Device.h to open it for editing.

2. Click on its Configuration Wizard tab. Option alug

3. Enable 12C3 and configure the parameters for this driver 12C2 (Inter-integrated Circuit Interface 2) [Driver 2C2] - T

] RTE_Device.h

Expand Al | Collapse Al Help [~ Show Grid

instance, as shown in the picture. Select PA8 and PC9 o QGDUC”; e;'cift:ii'ate“ Cireuit Interface 3) [Driver 2C3] p';
since these pins provide the interface to the touchscreen 12€3SDA Pin PCY
hardware. T r
4. Touchscreen is a low-bandwidth interface, so we can DMA Tx r
disable the DMA channels. This avoids DMA conflicts SPIL (Serial Peripheral Interface 1) [Driver_SPI1] r
SPI12 (Serial Peripheral Interface 2) [Diriver_SPL2] -

with other drivers.
Enable Touch support in GUI_SingleThread.c
1. Inthe Project window, under Source Group 1, double-click LogViewerDLG.c to open it for editing.

2. Near line 118 is case WM_NOTIFICATION CLICKED for the Update button; add this code:
hItem = WM GetDialogItem(pMsg->hWin, ID MULTIEDIT O0);

MULTIEDIT SetTextColor (hItem, 1, GUI_BLACK) ;
MULTIEDIT SetText (hItem, fbuf);

3. Inthe Project window, under Source Group 1, double-click GUI_SingleThread.c to open it for editing.
4. Extend GUIThread with the call of B e o ¢
GUI_TOUCH Exec() ; CO -
Build and RUN: 2o °
5. Select File/Save All or ﬂ .
{“."
6. Compile the project: ==
7. Enter Debug mode: @ and click on RUN.
8. Press the Update button on the LCD. The content of the file Test.txt appears on the screen, which completes the task

of our project:

[Middieware and CH515-Pack

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com | 9

Creating a Middleware Application using CMSIS Components with MDK Version 5

The Component Viewer

Keil RTX5 supports the Component Viewer, which shows static information and helps to analyze the operation of
software components. For a detailed description and its configuration, refer to the Component Viewer
documentation. One part of the Component Viewer is the RTX RTOS window.

Our project still is running in the Debugger.
Select View - Watch Windows > RTX RTOS

The RTX RTOS window opens. i

| Property
Arrange the window to see all ER S}’Sfem
content collected. " Kemel ID

Kernel State

The content is continuously getting D 5 T

updated. Kernel Tick Frequency

v
4
v
¥ Round Robin Tick Count
. o # Round Robin Timeout
Stop the program execution # Global Dynamic Memory
@ Stack Overrun Check
The System tab confirms, e.g. the v
RTX version in use or the Default @
Stack Size that we have configured in ¥ ISR FIFO Queue
Step 4, “% Object specific Memory allocation
= % Threads
You see also all the Threads created =% id: 0x200111B0 "Thread"
with their current statuses. @ State
@ Priority
@ Attributes
¥ Waiting
4 Stack
@ Flags
@ Wait Flags
¥ id: 0x200111F4 "GUIThread"
@)% id: 0x20011348 "osRixIdleThread"
% id: 0x2001138C "osRixTimerThread"
@ “4% id: 0x200113D0 "USBHO_Core_Thread"
=% Timers
“% id: 0x20013E60
% id: 0x20008F00
- id: 0x20008F28
% id: 0x20008F90
2% Semaphores

AP ia.nannti1an

¥ Stack Usage Watermark
Default Thread Stack Size

Value

|RTXV5.5.4

| osKernelRunning

1000
5

3 BasezrbxiOO'O87E28, Size: 32768, Used: 440, Max used: 440
| Disabled

' Disabled

| 4096

| Size: 16, Used: 0

| osThreadBlocked, osPriorityNormal, Stack Used: 2%
osThreadBlocked

| osPriorityNormal

‘ osThreadDetached

Delay, Tmeout 185
|Used: 2% [112]

|0x00000000 L)
0x00001 FFF, osFIagsWaitAny

| osThreadReady, osPriorityldle, Stack Used: 5%
osThreadRunning, osPriorityldle, Stack Used: unknown
osThreadBlocked, osPriorityHigh, Stack Used: 29% |
os'i'hreadBlocked, ostiorityAboveNormal, Stack Used: ...

Sfopped, Tick: 0
| Stopped, Tick: 0

I vl
Totooo. 1 RA_... 1

RTX RTOS | USB Device and Host

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 20

https://developer.arm.com/documentation/101407/0538/Debugging/Debug-Windows-and-Dialogs/Component-Viewer

Creating a Middleware Application using CMSIS Components with MDK Version 5

Serial Wire Viewer Summary

Serial Wire Viewer (SWV) is a 1-bit data-trace. It is output on the SWO pin, which is shared with the JTAG TDO pin. This
means you cannot use JTAG and SWV together. Instead, use Serial Wire Debug (SWD or SW), a two-pin alternative to
JTAG with about the same capabilities. SWD is selected inside the pVision IDE and is easy to use.

1.

2.

The STM329F4291 Disco board must have the Solder Bridge SB9 bridged. SB9 is located on the bottom of the
board close to jumper Idd. If SB9 is open, SWV will not work. The board is shipped with SB9, not bridged.

The Core Clock: is the CPU frequency and must be set accurately. In this tutorial, 168 MHz is used. The clock
frequency is probably wrong if you see ITM frames in the Trace Records window of a number other than 0 or 31 or
no frames at all.

SWV is configured in the Cortex-M Target Setup in the Trace tab. In Edit mode: Select Target Options &N or
ALT-F7 and select the Debug tab. Select Settings: Then select the Trace tab. In Debug mode: Select Debug/Debug
Settings.. and then select the Trace tab.

Many STM32 processors need a particular initialization file to get SWV and/or ETM trace to function. This file is
not required for this board as pVision accomplishes this during entry into Debug mode. Contact Keil tech support if
you use a different STM32 processor and cannot get SWV working. SWOxx.ini files are provided in many pVision
example projects that you can use. Insert it just below where you choose the debug adapter.

If SWV stops working, you can get it working by exiting and re-entering Debug mode. In rare cases, you might also
have to cycle the board power. Constant improvements to the ST-Link V2 firmware are helping in this regard.
SWV outputs its data over a 1-bit SWO pin. Overloading can be typical depending on how much information you
have selected to be displayed. Reducing the information to only what you really need helps limit the activity of
variables. Using a ULINKpro on boards equipped with a 20 CoreSight ETM connector enables the SWV
information to be output on the 4-bit ETM trace port.

For more information on STM32F4291-Discovery board see: www.keil.com/appnotes/docs/apnt_253.asp

Watch, Memory windows and Serial Wire Viewer can display:

Global and Static variables. Raw addresses: i.e. *((unsigned long *)0x20000004)
Structures.

Peripheral registers — just read or write to them.

Can’t see local variables. (just make them global or static).

Cannot see DMA transfers — DMA bypasses CPU and CoreSight and CPU by definition.
You might have to qualify or copy your variables from the Symbol window fully.

Serial Wire Viewer (SWV) displays in various ways:

PC Samples.

A printf facility that does not use a UART.

Data reads. Graphical format display in the Logic Analyzer: Up to 4 variables can be graphed.
Exception and interrupt events.

All these are Timestamped.

CPU counters.

Instruction Trace (ETM):

ETM Trace records where the program has been. Assembly instructions are all recorded.

Assembly is linked to C source when available (this is up to your program).

A recorded history of the program execution in the order it happened.

Provides Performance Analysis and Code Coverage. Higher SWV performance.

ETM needs a Keil ULINKpro to provide the connection to the 4-bit Trace Port found on many STM32 processors.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 2]

http://www.keil.com/appnotes/docs/apnt_253.asp

Creating a Middleware Application using CMSIS Components with MDK Version 5

Document Resources

Books

Getting Started MDK 5: www.keil.com/mdk5/.

Keil MDK ...resources that help you to get started https://community.arm.com/support-forums/f/keil-
forum/49652/keil-mdk-resources-that-help-you-to-get-started

A good list of books on ARM processors: www.arm.com/support/resources/arm-books/index.php
MVision contains a window titled Books. Many documents, including data sheets, are located there.

A list of resources is located at; www.arm.com/products/processors/cortex-m/index.php (Resources tab).
The Definitive Guide to the ARM Cortex-M0/MO0+ by Joseph Yiu. Search the web for retailers.

The Definitive Guide to the ARM Cortex-M3/M4 by Joseph Yiu. Search the web for retailers.
Embedded Systems: Introduction to Arm Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano.
MOOC: Massive Open Online Class: University of Texas: http://users.ece.utexas.edu/~valvano/

Application Notes

1. Overview of application notes: www.keil.com/appnotes

2. Keil MDK for Functional Safety Applications: www.keil.com/safety

3. Using DAVE with pVision: www.keil.com/appnotes/files/apnt_258.pdf

1. Using Cortex-M3 and Cortex-M4 Fault Exceptions www.keil.com/appnotes/files/apnt209.pdf

2. CAN Primer using NXP LPC1700: www.keil.com/appnotes/files/apnt_247.pdf

3. CAN Primer using the STM32F Discovery Kit www.keil.com/appnotes/docs/apnt_236.asp

4. Segger emWin GUIBUuilder with pVision™ www.keil.com/appnotes/files/apnt_234.pdf

5. Porting a mbed project to Keil MDK™ www.keil.com/appnotes/docs/apnt_207.asp

6. MDK-ARM™ Compiler Optimizations www.keil.com/appnotes/docs/apnt_202.asp

7. Using uVision with CodeSourcery GNU www.keil.com/appnotes/docs/apnt_199.asp

8. RTXCMSIS-RTOS in MDK 5 http://www.keil.com/pack/doc/cmsis_rtx/index.html
9. Lazy Stacking on the Cortex-M4 www.arm.com and search for DAI0298A

10. Sending ITM printf to external Windows applications: www.keil.com/appnotes/docs/apnt_240.asp

11. Barrier Instructions http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
12. Cortex Debug Connectors: http://www.keil.com/support/man/docs/ulinkpro/ulinkpro_cs_connectors.htm

Useful ARM Websites

ocoupwdE

ARM Community Forums: www.keil.com/forum and http://community.arm.com/groups/tools/content
ARM University Program: www.arm.com/university. Email: university@arm.com

ARM Accredited Engineer Program: www.arm.com/aae

mbed™: http://mbed.org

CMSIS standard: www.arm.com/cmsis

CMSIS documentation: www.keil.com/cmsis

For comments or corrections on this document please email bob.boys@arm.com.

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 22

http://www2.keil.com/mdk5/
https://community.arm.com/support-forums/f/keil-forum/49652/keil-mdk-resources-that-help-you-to-get-started
https://community.arm.com/support-forums/f/keil-forum/49652/keil-mdk-resources-that-help-you-to-get-started
http://www.arm.com/support/resources/arm-books/index.php
http://www.arm.com/products/processors/cortex-m/index.php
http://users.ece.utexas.edu/~valvano/
http://www.keil.com/appnotes
http://www.keil.com/safety
http://www.keil.com/appnotes/files/apnt_258.pdf
http://www.keil.com/appnotes/files/apnt209.pdf
http://www.keil.com/appnotes/files/apnt_247.pdf
http://www.keil.com/appnotes/docs/apnt_236.asp
http://www.keil.com/appnotes/files/apnt_234.pdf
http://www.keil.com/appnotes/docs/apnt_207.asp
http://www.keil.com/appnotes/docs/apnt_202.asp
http://www.keil.com/appnotes/docs/apnt_199.asp
http://www.keil.com/pack/doc/cmsis_rtx/index.html
http://www.arm.com/
http://www.keil.com/appnotes/docs/apnt_240.asp
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
http://www.keil.com/support/man/docs/ulinkpro/ulinkpro_cs_connectors.htm
http://www.keil.com/forum
http://community.arm.com/groups/tools/content
http://www.arm.com/
mailto:university@arm.com
http://www.arm.com/aae
http://mbed.org/
http://www.arm.com/cmsis
http://www.keil.com/cmsis
mailto:bob.boys@arm.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

Keil Products and Contact Information
Keil Microcontroller Development Kit (MDK-ARM™)
https://developer.arm.com/Tools%20and%20Software/Keil%20MDK#Editions

MDK-Lite (Evaluation version) - $0

MDK Community Edition — $0, full-featured, for non-commercial use

MDK-Essential (unlimited compile and debug code and data size Cortex-M, ARM7 and ARM9)
MDK-Plus, like MDK Professional, but no USB Host and IPv6 support

MDK-Professional (includes File System, IPv4, IPv6, USB Device, USB Host and Graphic User Interface)
ARM Compiler Qualification Kit: for Safety Certification Applications

USB-JTAG adapter (for Flash programming too)

e ULINK2 — Programming and Debug adapter, https://developer.arm.com/Tools%20and%20Software/ULINK2

e ULINK Plus - isolated debug connection, power measurement, and I/O for test automation
https://developer.arm.com/Tools%20and%20Software/UL INKplus

e ULINKpro - Faster operation and Flash programming, Cortex-Mx SWV & ETM trace
https://developer.arm.com/Tools%20and%20Software/UL INKpro

e ULINKpro D — Faster operation and Flash programming, Cortex-Mx SWV, no ETM trace.

For special promotional or quantity pricing and offers, please contact Keil Sales.
Contact sales.us@keil.com 800-348-8051 for USA prices.
Contact sales.intl@keil.com +49 89/456040-20 for pricing in other countries.

CMSIS-RTOS RTX is now provided under a BSD license.

All versions, including MDK-Lite, include CMSIS-RTOS RTX with source
code!

Keil includes free DSP libraries for the Cortex-M family. o mcneem

Call your distributor for details on current pricing, specials and quantity : e
discounts. Sales can also provide advice about the various tools options . l _

Development Km‘

available to you. They will help you find various labs and appnotes that are
useful.

http://www.keil.com/distis/
All products are available from stock.

All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. Go to www.arm.com/university
to view various programs and resources.

Keil supports many other Infineon processors, including 8051 and C166 series processors. See the Keil Device Database® on
www.keil.com/dd for the complete list of Infineon support. This information is also included in MDK.

For more information:

Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com or +49 89/456040-20
Keil Technical Support in the USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.
For the latest version of this document, go to www.keil.com/appnotes/docs/apnt 268.asp

CMSIS documentation: www.arm.com/cmsis

ARMCORTEX 3 CMSIS ARMKEIL
Processor Technology v COMPLIANT Microcontroller Tools

Software Interface Standard

Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 23

https://developer.arm.com/Tools%20and%20Software/Keil%20MDK#Editions
https://developer.arm.com/Tools%20and%20Software/ULINK2
https://developer.arm.com/Tools%20and%20Software/ULINKplus
https://developer.arm.com/Tools%20and%20Software/ULINKpro
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
http://www.keil.com/distis/
http://www.arm.com/
http://www.keil.com/dd
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
mailto:support.us@keil.com
mailto:support.intl@keil.com
http://www.keil.com/appnotes/docs/apnt_268.asp
http://www.arm.com/cmsis

