
The latest version of this document is here: developer.arm.com/docs/kan268

Tutorial Version 1.8.0
Creating a Middleware Application using CMSIS Components

Abstract
This tutorial shows how to read the contents of a text file from a USB memory stick attached to a development board. After

pressing an update button on the touch screen, the content is shown on the LCD. The tutorial explains the required steps to

create the application on an STM32F429I-Discovery board. Still, it can be easily ported to other underlying hardware using

MDK-Professional Middleware, Keil RTX5 and CMSIS, the Cortex Microcontroller Software Interface Standard.

Contents
Abstract .. 1

Introduction ... 2

Software Stack ... 3

Prerequisites ... 4

Set up the Workshop Environment .. 4

Step 1: Create a Project... 5

Create a New Project for the Evaluation Board ... 5

Setup the Debug Adapter ... 6

Step 2: Add CMSIS-RTOS ... 7

Add and configure CMSIS-RTOS RTX for a simple Blinky application .. 7

RTX Kernel Awareness ... 9

Step 3: Add USB Host with Mass Storage Support .. 10

Configure the CMSIS-Driver for USB component .. 10

Add the USB Host middleware component to the project ... 11

Configure the CMSIS-Driver for the USB Host .. 11

Configure the stack and thread memory resources .. 12

Add the user code that accesses the USB storage device ... 12

Step 4: Add the Graphical User Interface ... 15

Understanding the Hardware ... 15

Add the Graphic Core and Graphics Display Interface.. 15

Add the code to output “Hello World” to the LCD display ... 16

Step 5: Design and Add the Graphics to be Displayed on the LCD .. 17

Configure GUIBuilder and Use it to Create the Graphics ... 17

Add LogViewerDLG.c to the Project and Run the GUI .. 18

Step 6: Add the Touch Screen Interface .. 19

Serial Wire Viewer Summary ... 21

Document Resources ... 22

Books ... 22

Application Notes .. 22

Useful ARM Websites ... 22

Keil Products and Contact Information .. 23

https://developer.arm.com/documentation/kan268

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 2

Introduction
This workshop explains creating a software framework for a sophisticated microcontroller application using CMSIS and

Middleware components. During this workshop, a demo application is created that implements the following functions:

• Read the content of a Test.txt file from a USB memory stick.

• Provide an update button on a touch screen.

• Show the content on a graphical display.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 3

Software Stack

The application is created by using user code templates. These templates are part of software components such as the

Middleware, CMSIS-RTOS or the STM32F4xx Device Family Pack (DFP). Some other source files are automatically

generated, such as the code that creates the graphical user interface (GUI) on the external display.

CMSIS-RTOS RTX is a real-time operating system that is part of Keil MDK and adheres to the CMSIS specification. It is

used to control the application.

The Board support files enable the user to quickly develop code for the hardware used here. It provides a simple API to

control LEDs, the touch screen and the LCD interface. Other components support push buttons, joysticks, A/D converters or

other external devices.

Middleware provides TCP/IP networking stacks, USB communication, Graphics, and File access. The Middleware used in

this application is part of MDK-Professional and uses several CMSIS-Driver components.

CMSIS-Driver is an API that defines generic peripheral driver interfaces for Middleware, making it reusable across

compliant devices. It connects microcontroller peripherals with Middleware that implements, e.g. communication stacks, file

systems, or graphic user interfaces. CMSIS drivers are available for several microcontroller families and are part of the DFPs.

The DFP contains the support for the Device in terms of startup and system code, a configuration file for the CMSIS-Driver

and a device family-specific software framework with a hardware abstraction layer (HAL).

The basis for the software framework is CMSIS-Core which implements the basic run-time system for a Cortex-M device

and gives the user access to the processor core and the device peripherals. The device header files adhere to the CMSIS-Core

standard and help the user to access the underlying hardware.

The STM32F32F429IDiscovery Kit with the USB Stick connected to USB User OTG Connector.

The LCD displays the screen created in the Graphical Display section in Steps 4, 5 and 6. In our example in this tutorial, the

display will be rotated by 90 º from that shown above.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 4

Prerequisites
To run through the workshop, you need to install the following software. Directions are given below:

• MDK-ARM Version 5.38a or later (https://www.keil.com/demo/eval/arm.htm, http://www2.keil.com/mdk5).

• A valid MDK-Professional license, e.g. provided by

- a free of charge 30 days limited license key (https://www.keil.com/MDKEvaluationRequest/)

- or the MDK Community Edition (https://www2.keil.com/mdk5/editions/community).

• Keil::MDK-Middleware 7.16.0 or higher, ARM::CMSIS 5.9.0 or higher, Keil::ARM_Compiler 1.7.2 or higher,

Keil::MDK-Middleware_Graphics 1.2.0

• Keil::STM32F4_DFP 2.17.0 (or later), which includes the STM32F429I-Discovery Board Support Package (BSP).

We will download this from the Internet using Pack Installer.

• STM32F429I-Discovery Kit (www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF259090).

Note: The Solder bridge SB9 must be bridged for the Serial Wire Viewer (SWV) to work. A soldering iron is

needed.

Set up the Workshop Environment
Install MDK:

1. Install Keil MDK Version 5.38a or later. Use the default folder C:\Keil_v5

2. After the initial Keil MDK installation, the Pack Installer utility opens up. Read the Welcome message and close it.

Install the STM32F4xx Software Pack:

1. If Pack Installer is not open, first open µVision®: . Then open Pack Installer by clicking on its icon:

2. The bottom right corner should display ONLINE: If it shows OFFLINE, connect your PC to the Internet.

3. Locate the Pack by entering stm32f4 at the Search tab on the left. Next, find the Keil::STM32F4xx_DFP at the

Pack tab on the right. Click Install at the latest Pack

version offered. The installation will commence.

4. The Pack Installer confirms the successful installation.

Note that these other required Software Packs in this list are

pre-installed:

- Keil::MDK-Middleware

- ARM::CMSIS

- Keil::ARM_Compiler

- Keil::MDK-Middleware_Graphics

Install your MDK-Professional license.

1. Request a free 30-day trial of MDK-Professional https://www.keil.com/MDKEvaluationRequest/

2. With the Product Serial Number (PSN) received, activate your license:

https://developer.arm.com/documentation/101454/0110/License-Management/Single-User-License/Installing-a-LIC

3. For more information and license installation instructions, see: www.keil.com/download/license/

Install the ST-Link USB Drivers:

1. Open the Windows Explorer as administrator and navigate to C:\Keil_v5\ARM\STLink\USBDriver

2. Double-click on stlink_winusb_install.bat to install the required USB drivers for the onboard ST-Link debug

adapter. The drivers will install it in the usual fashion.

3. Update the ST-Link firmware by executing C:\Keil_v5\ARM\STLink\ST-LinkUpgrade.exe. The best ST-Link

firmware to use is V3J11M3 or later. You can identify the version installed on your board with this Upgrade utility.

The Discovery board must be connected to your PC with a USB-Mini cable to change its firmware.

https://www.keil.com/demo/eval/arm.htm
http://www2.keil.com/mdk5
https://www.keil.com/MDKEvaluationRequest/
https://www2.keil.com/mdk5/editions/community
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF259090
https://www.keil.com/MDKEvaluationRequest/
https://developer.arm.com/documentation/101454/0110/License-Management/Single-User-License/Installing-a-LIC
https://www.keil.com/download/license/

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 5

Step 1: Create a Project

Create a New Project for the Evaluation Board
Create a project with initialization files and the main module:

1. In the main µVision menu, select Project → New µVision Project. The Create New Project window opens up.

2. Create a suitable folder in the typical fashion and name your project. We will use C:\USB, and

the project name will be USB. When you save the project, the project file name will be

USB.uvprojx.

3. The Select Device for Target window opens. Select STM32F429ZITx:

4. Click on OK, and the Manage Run-Time Environment (RTE) window opens:

5. Expand the various options as shown and select CMSIS:Core, Device:Startup. Select OK and

open Options For Target – C/C++(AC6). Select at Language C C99. Return to the RTE.

6. Most devices provide additional hardware abstraction

layers listed under the Device component. The

STM32Cube HAL is a list of available drivers for the

STM32F429. It requires a framework. Select

STM32Cube Framework (API):Classic. For more

information, click on the link STM32Cube Framework

which opens the documentation.

7. In the Sel. column, you see some orange blocks. Click on

Resolve in the Validation Output window, and these will

turn green.

8. Click OK to close this window

9. In the Project window, expand all the items and have a

look at the files that µVision has added to your project:

Add the main.c file:

1. Right-click on Source Group 1 -select Add New Item to Group 'Source Group 1'…

2. In the window that opens, select User Code Template. Select the 'main' module for

STM32Cube HAL. It initializes the STM32Cube HAL and configures the clock

system. Click on Add.

Set the CPU Clock Speed:

The external crystal oscillator on the development kit has a frequency of 8 MHz.

1. Open the Options for Target tab. Select C/C++.

2. Enter HSE_VALUE=8000000 in the Define box. The HSE_VALUE represents the

crystal frequency. This will set the CPU clock to 168 MHz in system_stmf4xx.c.

3. Also, select at Warnings: AC5 Like Warnings.

4. Click on OK to close this window.

5. Open main.c, search for SystemClock_Config() and set 8 as

RCC_OscInitStruct.PLL.PLLM

6. Select File → Save All or press

7. Compile the project source files: There will be no errors or warnings displayed in the Build Output window. If

you get any errors or warnings, please correct this before configuring the ST-Link V2 Debug Adapter.

At this point: We have created a new MDK 5 project called USB.uvprojx. We have set the CPU clock speed and added the

CMSIS environment, a main.c file and compiled the source files to test everything.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 6

Setup the Debug Adapter
Select the ST-Link V2 Debug Adapter:

1. Select Target Options or ALT-F7. Select the Debug tab.

2. In the Use box, select “ST-Link Debugger”.

3. Click on Settings. In the Port box, select SW (for Serial-Wire Debug SWD).

4. In the SWDIO box, you must see a valid IDCODE and ARM CoreSight

SW-DP. This indicates that µVision is connected to the STM32's debug

module.

If you see an error or nothing in the SWDIO box, you must fix this before

continuing. Make sure the board is connected.

Configure the Serial Wire Viewer (SWV):

1. Select the Trace tab. In the Core Clock box, enter 168 MHz and

select Trace Enable. This sets the speed of the SWV UART signal

and debugger timing displays. Unselect EXCTRC (Exception Tracing). Leave all other settings at their defaults.

Note: Solder Bridge SB9 must be bridged for SWV to function.

Select the Flash programming algorithm:

2. Select the Flash Download tab.

3. Confirm the STM32F4xx 2 MB Flash programming

algorithm is selected as shown here:

If not, click on Add to choose it.

4. Click on OK twice to return to the main menu.

5. Next, enter µVision's Debug mode:

6. Click on the RUN icon .

7. The program is now running.

Insert a global variable in the Watch window:

1. In the Project tab under Device, double-click on system_stm32f4xx.c to open it up.

2. Find the variable SystemCoreClock. It is declared near line 137.

3. Right-click on it and select Add SystemCoreClock to… and select Watch 1. Watch 1 will automatically open if it

is not already open and display this variable.

4. In the Watch 1 window, right-click on SystemCoreClock in the Name column and unselect Hexadecimal Display.

SystemCoreClock will now be displayed with the correct frequency

of 168 MHz.

Note: You can add variables to the Watch and Memory windows

while running your program.

5. Stop the program. See the Disassembly window. The program

counter (R15) will be at a B instruction in the SysTick_Handler.

The B instruction is a branch of itself. Stopping in the

SysTick Handler can be avoided by adding the user

code template "Exception Handlers and Peripheral

IRQ". As we will use CMSIS-RTOS RTX, this is not

required here.

6. The yellow arrow is the program Counter (PC).

7. Exit Debug mode.

At this point: We have selected the debug adapter, enabled the Serial Wire Viewer trace (SWV) and selected the Flash

programmer. We also demonstrated how to display the CPU clock in a Watch window.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 7

Step 2: Add CMSIS-RTOS

Add and configure CMSIS-RTOS RTX for a simple Blinky application
Select and Configure RTX RTOS:

1. Open the Manage Run-Time Environment (RTE) window:

2. Under CMSIS:RTOS2 (API), select Keil RTX5 with Variant

Source as shown here

3. Press OK

4. In the Project window, note that new files are added under the CMSIS heading – e.g. RTX_CM4F.lib, rtx_lib.c,

RTX_Config.c and RTX_Config.h

Add a Thread Template

1. In the Project window under Target 1, right-click Source Group 1 and select Add New Item Group 'Source

Group 1'…

2. In the window that opens, select User Code Template.

3. Select at the CMSIS component the CMSIS-RTOS2 Thread.

4. Click on Add. Note that Thread.c is added to the Source Group 1 in the

Project window.

5. In main.c near line 79, enter extern int Init_Thread(void);

6. and after /* Add your application code here */ enter Init_Thread();

Add the Timer.c source file and add Timer Initialization Function Call:

1. In the Project window under Target 1, right-click Source Group 1 and select Add New Item Group 'Source

Group 1'…

2. In the window that opens, select User Code Template. Select CMSIS-RTOS2 Timer.

3. Click on Add. Note Timer.c is added to the Source Group 1 in the Project window.

4. In Thread.c near line 10, add this line: extern int
Init_Timers(void);

5. …and in function Thread() add Init_Timers();

Init_Timers() creates two timers: Timer1 (a one-shot) and Timer2, which is a

1-second periodic timer. Timer2 calls a callback function.

6. Select File → Save All or .

7. Compile the project source files by clicking on the Rebuild icon . There will be no errors or warnings in the

Build Output window. If there are any errors or warnings, please correct them before continuing.

Demonstrating the Timer is Working:

1. Program the Flash and enter Debug mode: Click on the RUN icon.

2. The program is running.

3. In Timer.c, at the Timer2_Callback() function,

near line 32, set a breakpoint by clicking on the

grey box. A red circle will appear. The grey box

indicates that assembly language instructions are

present, and a hardware breakpoint will be legal.

4. The program will soon stop here.

5. Click on RUN , and in 1 second, and it will stop here again when the Timer2 is activated.

6. Remove the breakpoint for the next step.

At this point: We added the RTX RTOS to your project. We enabled a periodic Timer and demonstrated that the program

was running.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 8

Blink the LED:

1. Exit Debug mode.

2. Open the Manage Run-Time Environment window:

3. Expand the Board Support (ensure that STM32F429I-

Discovery is selected – see the red arrow)

4. Under Board Support:LED (API) select LED

5. Click OK to close this window.

In the Project window, the new header Board Support contains

the file LED_F429Discovery.c., used to configure the I/O pins

of the LEDs with a LED_Initialize() routine. The LED_On() and LED_Off() functions control the LEDs.

Add C Code to Blink LED LD3:

In Thread.c and Timer.c, add #include "Board_LED.h"

TIP: You can also select #includes from a list:

• Select a line in a source code file and right-click on it.

• Select Insert '#include file'. A menu opens up with provided

#includes that you can select from.

1. In Thread.c, next to Init_Timers(), add LED_Initialize();

2. In Timer.c, near line 10, add this line:
static int timer_cnt = 0;

3. In Timer.c inside the Timer2_Callback function near line 23, add this code in the user code section (replace the line

//add user code here):
timer_cnt++;

if (timer_cnt & 1) LED_On (0);

else LED_Off(0);

4. Select File/Save All or .

5. Compile the project: There will be no errors or warnings in the Build Output window.

6. Program the Flash and enter Debug mode:

7. Click on RUN.

8. LED PG13 (green) will now blink according to your created Timer.

9. Leave the program running for the next steps.

TIP: In the LED_On function call: (0) is the green LED. Using (1) will blink the red LED.

At this point: We have selected a LED driver from the CMSIS-Pack BSP to create a blinking LED. Using a timer, we have

created a simple program that blinks this LED every 1 second.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 9

RTX Kernel Awareness
System Analyzer:

1. Enable the Event Recorder in the RTE-Compiler component.

2. At the Project window in the Compiler Tab, open the file EventRecorderConf.h

and select the Configuration Wizard.

3. Expand the Event Recorder group.

4. Ensure that the DWT Cycle Counter is set.

5. Open at the Project tree the CMSIS tab.

6. Open the file RTX_Config.h and select the Configuration

Wizard.

7. At Event Recorder Configuration, enable the Global

Initialization.

8. Save all files, build and flash the project.

9. Start the Debugger and open the System Analyzer from the toolbar or via the View - Analysis Windows - System

Analyzer menu. Run your project for a few seconds and stop it.

10. You see now our Threads in the System Analyzer window:

Exit the Debug mode.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 10

Step 3: Add USB Host with Mass Storage Support

Configure the CMSIS-Driver for the USB component
To correctly configure the USB Host Middleware, it is necessary to understand the USB User connector available on the

target hardware.

The STM32F429I Discovery Kit provides a USB connector that interfaces with the USB OTG High-speed STM32F429

peripheral via the on-chip full-speed PHY (GPIOB.14 and GPIOB.15). The VBUS power on/off pin is active low on

GPIOC.4. The Overcurrent Detection pin is active low on GPIOC.5. Since

we are only using the USB Host interface we can ignore the remaining OTG

pins.

This schematic is part of the Software Pack for the STM32F4. You access

these documents using the Books tab. Other documents found here are

datasheets, STMicroelectronics Getting Started Guides, ARM compiler and

µVision manuals and more.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 11

Add the USB Host middleware component to the project
As we want to connect a USB memory stick to the development board, we need to add support for the USB Mass Storage

Class (MSC) to the project:

1. Open the RTE window:

2. Ensure the MDK-Pro Variant is set for the File System, Graphics,

Network and USB components.

3. Under USB:Host, select MSC as shown here:

Make sure you do not accidentally select MSC in the Device header. We

are setting the STM32 up as a Host and not a Device.

4. Under CMSIS Driver:USB Host (API), select High-speed

5. Click Resolve to add other mandatory middleware components.

6. Click OK to close this window.

Connect USB Host 0 to the hardware and increase stack size:

1. In the Project window, under the USB heading, double-click on

USBH_Config_0.c (Host) to open it.

2. Click on its Configuration Wizard tab and then on Expand All.

3. Set Connect to Hardware via Driver_USBH# to 1.

4. Note: Driver_USBH1 represents the USB OTG High-speed

interface. This is the CMSIS Driver that is configured in the

previous step.

5. Keep the default value of 1024 bytes for the Core Thread

Stack Size.

6. Select File/Save All or .

Configure the CMSIS-Driver for the USB Host
1. In the Project window, under the Device header, double-click on RTE_Device.h to open it for editing.

2. Open the Configuration Wizzard

3. Expand SPI5 (Serial Peripheral Interface 5)

4. Configure the SPI5 Pins as shown in this screen

5. Enable USB OTG High-Speed and change the PHY Interface

to On-chip Full-speed PHY.

6. Enable Host [Driver_USBH1] as shown here:

7. Set the hardware parameters for the USB OTG High-speed interface precisely as

shown here:

▪ Both Ports must be GPIOC; the first Bit is 4, and the second Bit is 5.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 12

Configure the Stack, Heap and Thread memory resources
The resource requirements of the USB component can be found in the Middleware documentation that is accessible using the

link next to the USB component in the Manage Run-

Time Environment window:

Configure Heap and Thread Stack USB sizes:

1. In the Project window under the Device heading, double-click on startup_stm32f429xx.s to open it.

2. Select its Configuration Wizard tab.

3. Confirm the Stack Size is set to 0x400 bytes and Heap Size is set to 0x200.

4. Under the CMSIS heading, double-click on RTX_Config.h to open it.

Set the Default Drive Letter:

1. In the Project window under the File System heading, double-click on

FS_Config.c to open it.

2. Select the Configuration Wizard tab.

3. For a USB mass storage drive, the File System component expects the

drive letter to be U0. So change Initial Current Drive to U0:

4. Select File/Save All or .

5. Compile the project:

No errors or warnings will be generated as shown in the Build Output window. Please correct any errors or warnings before

you continue.

Next, we will add the user code to access a USB Device (the USB stick)

Add the user code that accesses the USB storage device

Add USBH_MSC.c and USBH_MSC.h:

1. Right-click on Source Group 1 in the Project window again. Select Add New

item to Group 'Source Group1'…

2. Select User Code Template.

3. Under the USB heading and in the Name column, select USB Host Mass

Storage Access and click on Add.

4. The files USBH_MSC.c and USBH_MSC.h are now added to your project under the Source Group 1 heading.

5. These provide the relevant access functions for the USB storage device.

6. Select File/Save All or

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 13

We will use a CMSIS-RTOS thread to implement access to a file on the USB stick.

Modify Thread.c (that was already included in Step2, “Add a Thread Template”):

To allow file access, we add and save the following application code in the module Thread.c:

#include <stdio.h>

#include "main.h"

#include "cmsis_os2.h" // CMSIS RTOS header file

#include "Board_LED.h" // Board Support:LED

#include "USBH_MSC.h" // Access storage via USB Host

char fbuf[200] = { 0 };

extern int Init_Timers (void);

/*---

-

 * Thread 1 'Thread_Name': Sample thread

 *---

*/

osThreadId_t tid_Thread; // thread id

void Thread (void const *argument); // thread function

int Init_Thread (void) {

 tid_Thread = osThreadNew((void *)(uint32_t)Thread, NULL, NULL);

 if (tid_Thread == NULL) {

 return(-1);

 }

 return(0);

}

void Thread (void const *argument) {

 static unsigned int result;

 static FILE *f;

 Init_Timers();

 LED_Initialize();

 USBH_Initialize (0);

 while (1) {

 result = USBH_MSC_DriveMount ("U0:");

 if (result == USBH_MSC_OK) {

 f = fopen ("Test.txt", "r");

 if (f) {

 fread (fbuf, sizeof (fbuf), 1, f);

 fclose (f);

 }

 }

 osDelay (1000);

 }

}

At this point: On this page, we added the code to open, read and close the data in file Test.txt located in a USB stick

connected to USB User.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 14

Prepare a USB memory stick:

1. Take a USB memory stick, label it USB USER, and create a file called Test.txt containing the message Keil

Middleware and CMSIS-Pack using ASCII characters.

2. Plug this stick with an adapter cable into the STM32F429I-Discovery board.

Build and RUN:

1. Compile the project: .

2. Enter Debug mode:

3. Click on the Memory 1 tab. Enter fbuf in this window:

4. Right-click anywhere in the data field area and select

Ascii

5. Set a breakpoint in Thread.c on fclose (f) near

line 35.

6. Click on RUN.

7. The text will appear in the Memory 1 window in a few seconds.

8. The program will stop at the hardware breakpoint.

9. To repeat this sequence, click on the RESET icon and then RUN .

10. Stop the program and leave the Debugger.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 15

Step 4: Add the Graphical User Interface

Understanding the Hardware
To correctly configure the Graphic Interface it is necessary to understand the schematics. Here’s another excerpt from the

schematics showing the LCD connections.

The STM32F429 has a high-speed RGB interface (red) connected to the LCD. SPI (blue) is connected to the Device’s SPI5

interface to configure the display. The Touch Screen connects via I2C (green) to the microcontroller’s I2C3 interface.

Interfaces:

RGB

SPI

I2

Add the Graphic Core and Graphics Display Interface
Select the emWin graphics components:

1. Open the Manage Run-Time Environment window:

2. Under Board Support:emWin LCD (API), select emWin LCD.

This component is the interface to the board LCD display.

3. Select Graphics:Core. This will be used for the User interface.

4. Click Resolve to add the missing CMSIS-Drivers.

5. Click OK to close this window.

Configure Memory for Graphics Core

The Graphics Core uses a dedicated memory for its features that needs configuration.

1. In the Project window under the Graphics heading, double-click on GUIConf.c to open it. GUIConf.c configures

the Graphics Core. The default configuration exceeds the memory of our system. We change the memory size to

0x4000, which is sufficient for many applications (refer to

the emWin User Manual).

2. Change the GUI_NUMBYTES define near line 55 to 0x4000

3. Select File/Save All or .

What we have at this point: The graphics hardware configuration is complete.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 16

Add the code to output “Hello World” to the LCD
Add The Graphics Thread and start the thread in main.c:

1. In the Project window under Target 1, right-click Source Group 1 and select Add New Item to Group ‘Source

Group 1'...

2. Select User Code Template.

3. From the Graphics heading, select emWin GUI Thread for Single-

Tasking Execution Model.

Note: Single-task execution is where one thread (task) calls the emWin

functions. This reduces the memory footprint and is sufficient for many

applications. Only one thread can call the GUI functions (refer to the Execution Model in the emWin User Manual).

4. Click on Add, and the file GUI_Single_Thread.c is part of your project.

Modify the RTX for this new thread

1. Open at the CMSIS-tab RTX_Config.h

2. Modify the Thread Configuration as shown

here:

Add the text that will display on the LCD:

1. In the Project window under the Source Group 1 heading, double-

click on GUI_SingleThread.c to open it.

2. Near line 24, just before the while(1) loop, add:
GUI_DispString("Hello World!");

3. Select File/Save All or .

Modify Thread.c

You can now demonstrate the display of the string “Hello World!” on the LCD – in

Thread.c

1. near line 10 add: BSP_SDRAM_Init();
2. and extern int Init_GUIThread (void);
3. Extend the includes with

#include “stm32f429i_discovery_SDram.h”

4. Select File/Save All or .

Build and run your project:

1. Compile the project:

2. Program the Flash and enter Debug mode:

3. Click on RUN.

4. The LCD will display Hello World!

5. Stop the processor . Exit Debug mode.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 17

Step 5: Design and Add the Graphics to be displayed on the LCD

Configure GUIBuilder and Use it to Create the Graphics
emWin provides a tool called GUIBuilder to design the graphics that will display on the LCD screen. µVision allows you to

execute GUIBuilder from within.

1. Open the Manage Run-Time Environment window:

2. Under Graphics:Tools select GUI Builder

3. Click OK

Create a shortcut on the µVision Tools menu:

1. In the main µVision menu, select Tools →

Customize Tools Menu. The window below opens

up.

2. This will allow you to add a shortcut to your tools

menu to launch GUIBuilder. This only needs to be

done once for every installation of MDK-ARM and

not every project you may create.

3. Click on the Insert icon (or press the Insert key).

4. Enter the text GUIBuilder as shown and press

Enter.

5. In the Command and Initial Folder boxes enter

.\RTE\Graphics\GUIBuilder.exe and .\ .

6. Click on OK to close it.

7. Click on Tools in µVision, and the new GUIBuilder menu item will display like this:

8. Click on GUIBuilder, and it will start.

Create the Frame:

1. Click on the Framewin icon: A box will be created labelled Framewin.

2. With the FrameWin box selected, change the Property Name from FrameWin to

LogViewer.

3. In the property column, enter xSize = 240 and ySize = 320. This specifies the size

of the LCD.

4. Press Enter.

Add the Multi Edit Widget

1. Click on the Multiedit icon:

2. Click and drag to fill the LogViewer area, as shown below. Leave a space at the bottom for the button.

Add the Button:

1. Click on the Button icon:

2. Use your mouse to size and position as shown below:

3. With the Button selected, change the Property Name to Update.

4. Click Enter to finish.

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 18

Save and Export your GUI:

1. Select File → Save. A C source file with

your GUI design is created and saved into

your µVision project root folder. The file

name is derived from your parent GUI

element; in this case, the name is

LogViewerDLG.c.

2. You will need to add this to your project.

3. Close GUIBuilder.

Add LogViewerDLG.c to the Project and Run the GUI
Adding your GUI design file LogViewerDLG.c to Your Project:

1. In the µVision Project window, right-click on “Source Group 1”.

2. Select Add Existing Files to Group 'Source Group 1'…

Note: Choose Existing rather than New as previously.

3. In the window that opens up, select the file LogViewerDLG.c. Click on Add once and then Close.

4. LogViewerDLG.c is now added to your project.

5. In the Project window, under Source Group 1, double-click LogViewerDLG.c to open it for editing.

6. Near line 70, add this line to reference the file buffer fbuf: extern char fbuf[200];

Create the GUI Design:

1. In the µVision Project window under Source Group 1, double-click on GUI_SingleThread.c to edit it.

2. In GUI_SingleThread.c, near line 4 add this line: #include "dialog.h"

3. In GUI_SingleThread.c, near line 5 add this line: extern WM_HWIN CreateLogViewer(void);

4. Comment out: //GUI_DispString("Hello World!");

5. Near line 26 add this line: CreateLogViewer();

Build and RUN:

1. Select File/Save All or .

2. Compile the project:

3. Enter Debug mode: and click on RUN.

4. The GUI we have just created appears on the screen:

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 19

Step 6: Add the Touchscreen Interface
An implementation for the touchscreen interface is provided as a Software Component under Board Support. The

touchscreen hardware connects via the I2C peripheral (I2C3); therefore, we will use the standard CMSIS-Driver for I2C.

Add Software Components for Touchscreen

1. Open the Manage Run-Time Environment window:

2. Under Graphics:Input Device, select Touchscreen

3. Click Resolve to select other required components. This adds from the Board Support the Touchscreen Interface and

from the CMSIS Driver the I2C driver.

4. Click OK to close this window.

Configure the CMSIS-Driver for the I2C Interface

1. In the Project window, under the Device group, double-

click on RTE_Device.h to open it for editing.

2. Click on its Configuration Wizard tab.

3. Enable I2C3 and configure the parameters for this driver

instance, as shown in the picture. Select PA8 and PC9

since these pins provide the interface to the touchscreen

hardware.

4. Touchscreen is a low-bandwidth interface, so we can

disable the DMA channels. This avoids DMA conflicts

with other drivers.

Enable Touch support in GUI_SingleThread.c

1. In the Project window, under Source Group 1, double-click LogViewerDLG.c to open it for editing.

2. Near line 118 is case WM_NOTIFICATION_CLICKED for the Update button; add this code:

hItem = WM_GetDialogItem(pMsg->hWin, ID_MULTIEDIT_0);

MULTIEDIT_SetTextColor (hItem, 1, GUI_BLACK);

MULTIEDIT_SetText(hItem, fbuf);

3. In the Project window, under Source Group 1, double-click GUI_SingleThread.c to open it for editing.

4. Extend GUIThread with the call of
GUI_TOUCH_Exec();

Build and RUN:

5. Select File/Save All or .

6. Compile the project:

7. Enter Debug mode: and click on RUN.

8. Press the Update button on the LCD. The content of the file Test.txt appears on the screen, which completes the task

of our project:

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 20

The Component Viewer
Keil RTX5 supports the Component Viewer, which shows static information and helps to analyze the operation of
software components. For a detailed description and its configuration, refer to the Component Viewer
documentation. One part of the Component Viewer is the RTX RTOS window.

Our project still is running in the Debugger.

Select View → Watch Windows → RTX RTOS

The RTX RTOS window opens.

Arrange the window to see all

content collected.

The content is continuously getting

updated.

Stop the program execution .

The System tab confirms, e.g. the

RTX version in use or the Default

Stack Size that we have configured in

Step 4.

You see also all the Threads created

with their current statuses.

https://developer.arm.com/documentation/101407/0538/Debugging/Debug-Windows-and-Dialogs/Component-Viewer

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 21

Serial Wire Viewer Summary
Serial Wire Viewer (SWV) is a 1-bit data-trace. It is output on the SWO pin, which is shared with the JTAG TDO pin. This

means you cannot use JTAG and SWV together. Instead, use Serial Wire Debug (SWD or SW), a two-pin alternative to

JTAG with about the same capabilities. SWD is selected inside the µVision IDE and is easy to use.

1. The STM329F429I Disco board must have the Solder Bridge SB9 bridged. SB9 is located on the bottom of the

board close to jumper ldd. If SB9 is open, SWV will not work. The board is shipped with SB9, not bridged.

2. The Core Clock: is the CPU frequency and must be set accurately. In this tutorial, 168 MHz is used. The clock

frequency is probably wrong if you see ITM frames in the Trace Records window of a number other than 0 or 31 or

no frames at all.

3. SWV is configured in the Cortex-M Target Setup in the Trace tab. In Edit mode: Select Target Options or

ALT-F7 and select the Debug tab. Select Settings: Then select the Trace tab. In Debug mode: Select Debug/Debug

Settings.. and then select the Trace tab.

4. Many STM32 processors need a particular initialization file to get SWV and/or ETM trace to function. This file is

not required for this board as µVision accomplishes this during entry into Debug mode. Contact Keil tech support if

you use a different STM32 processor and cannot get SWV working. SWOxx.ini files are provided in many µVision

example projects that you can use. Insert it just below where you choose the debug adapter.

5. If SWV stops working, you can get it working by exiting and re-entering Debug mode. In rare cases, you might also

have to cycle the board power. Constant improvements to the ST-Link V2 firmware are helping in this regard.

6. SWV outputs its data over a 1-bit SWO pin. Overloading can be typical depending on how much information you

have selected to be displayed. Reducing the information to only what you really need helps limit the activity of

variables. Using a ULINKpro on boards equipped with a 20 CoreSight ETM connector enables the SWV

information to be output on the 4-bit ETM trace port.

7. For more information on STM32F429I-Discovery board see: www.keil.com/appnotes/docs/apnt_253.asp

Watch, Memory windows and Serial Wire Viewer can display:

• Global and Static variables. Raw addresses: i.e. *((unsigned long *)0x20000004)

• Structures.

• Peripheral registers – just read or write to them.

• Can’t see local variables. (just make them global or static).

• Cannot see DMA transfers – DMA bypasses CPU and CoreSight and CPU by definition.

• You might have to qualify or copy your variables from the Symbol window fully.

Serial Wire Viewer (SWV) displays in various ways:

• PC Samples.

• A printf facility that does not use a UART.

• Data reads. Graphical format display in the Logic Analyzer: Up to 4 variables can be graphed.

• Exception and interrupt events.

• All these are Timestamped.

• CPU counters.

Instruction Trace (ETM):

• ETM Trace records where the program has been. Assembly instructions are all recorded.

• Assembly is linked to C source when available (this is up to your program).

• A recorded history of the program execution in the order it happened.

• Provides Performance Analysis and Code Coverage. Higher SWV performance.

• ETM needs a Keil ULINKpro to provide the connection to the 4-bit Trace Port found on many STM32 processors.

http://www.keil.com/appnotes/docs/apnt_253.asp

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 22

Document Resources

Books

• Getting Started MDK 5: www.keil.com/mdk5/.

• Keil MDK ...resources that help you to get started https://community.arm.com/support-forums/f/keil-

forum/49652/keil-mdk-resources-that-help-you-to-get-started

• A good list of books on ARM processors: www.arm.com/support/resources/arm-books/index.php

• µVision contains a window titled Books. Many documents, including data sheets, are located there.

• A list of resources is located at: www.arm.com/products/processors/cortex-m/index.php (Resources tab).

• The Definitive Guide to the ARM Cortex-M0/M0+ by Joseph Yiu. Search the web for retailers.

• The Definitive Guide to the ARM Cortex-M3/M4 by Joseph Yiu. Search the web for retailers.

• Embedded Systems: Introduction to Arm Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano.

• MOOC: Massive Open Online Class: University of Texas: http://users.ece.utexas.edu/~valvano/

Application Notes
1. Overview of application notes: www.keil.com/appnotes

2. Keil MDK for Functional Safety Applications: www.keil.com/safety

3. Using DAVE with µVision: www.keil.com/appnotes/files/apnt_258.pdf

1. Using Cortex-M3 and Cortex-M4 Fault Exceptions www.keil.com/appnotes/files/apnt209.pdf

2. CAN Primer using NXP LPC1700: www.keil.com/appnotes/files/apnt_247.pdf

3. CAN Primer using the STM32F Discovery Kit www.keil.com/appnotes/docs/apnt_236.asp

4. Segger emWin GUIBuilder with µVision™ www.keil.com/appnotes/files/apnt_234.pdf

5. Porting a mbed project to Keil MDK™ www.keil.com/appnotes/docs/apnt_207.asp

6. MDK-ARM™ Compiler Optimizations www.keil.com/appnotes/docs/apnt_202.asp

7. Using µVision with CodeSourcery GNU www.keil.com/appnotes/docs/apnt_199.asp

8. RTX CMSIS-RTOS in MDK 5 http://www.keil.com/pack/doc/cmsis_rtx/index.html

9. Lazy Stacking on the Cortex-M4 www.arm.com and search for DAI0298A

10. Sending ITM printf to external Windows applications: www.keil.com/appnotes/docs/apnt_240.asp

11. Barrier Instructions http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html

12. Cortex Debug Connectors: http://www.keil.com/support/man/docs/ulinkpro/ulinkpro_cs_connectors.htm

Useful ARM Websites
1. ARM Community Forums: www.keil.com/forum and http://community.arm.com/groups/tools/content

2. ARM University Program: www.arm.com/university. Email: university@arm.com

3. ARM Accredited Engineer Program: www.arm.com/aae

4. mbed™: http://mbed.org

5. CMSIS standard: www.arm.com/cmsis

6. CMSIS documentation: www.keil.com/cmsis

For comments or corrections on this document please email bob.boys@arm.com.

http://www2.keil.com/mdk5/
https://community.arm.com/support-forums/f/keil-forum/49652/keil-mdk-resources-that-help-you-to-get-started
https://community.arm.com/support-forums/f/keil-forum/49652/keil-mdk-resources-that-help-you-to-get-started
http://www.arm.com/support/resources/arm-books/index.php
http://www.arm.com/products/processors/cortex-m/index.php
http://users.ece.utexas.edu/~valvano/
http://www.keil.com/appnotes
http://www.keil.com/safety
http://www.keil.com/appnotes/files/apnt_258.pdf
http://www.keil.com/appnotes/files/apnt209.pdf
http://www.keil.com/appnotes/files/apnt_247.pdf
http://www.keil.com/appnotes/docs/apnt_236.asp
http://www.keil.com/appnotes/files/apnt_234.pdf
http://www.keil.com/appnotes/docs/apnt_207.asp
http://www.keil.com/appnotes/docs/apnt_202.asp
http://www.keil.com/appnotes/docs/apnt_199.asp
http://www.keil.com/pack/doc/cmsis_rtx/index.html
http://www.arm.com/
http://www.keil.com/appnotes/docs/apnt_240.asp
http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
http://www.keil.com/support/man/docs/ulinkpro/ulinkpro_cs_connectors.htm
http://www.keil.com/forum
http://community.arm.com/groups/tools/content
http://www.arm.com/
mailto:university@arm.com
http://www.arm.com/aae
http://mbed.org/
http://www.arm.com/cmsis
http://www.keil.com/cmsis
mailto:bob.boys@arm.com

Creating a Middleware Application using CMSIS Components with MDK Version 5

 Copyright © 2023 Arm Ltd. All rights reserved

Application Note: 268 www.keil.com 23

Keil Products and Contact Information

Keil Microcontroller Development Kit (MDK-ARM™)

https://developer.arm.com/Tools%20and%20Software/Keil%20MDK#Editions

• MDK-Lite (Evaluation version) - $0

• MDK Community Edition – $0, full-featured, for non-commercial use

• MDK-Essential (unlimited compile and debug code and data size Cortex-M, ARM7 and ARM9)

• MDK-Plus, like MDK Professional, but no USB Host and IPv6 support

• MDK-Professional (includes File System, IPv4, IPv6, USB Device, USB Host and Graphic User Interface)

• ARM Compiler Qualification Kit: for Safety Certification Applications

USB-JTAG adapter (for Flash programming too)

• ULINK2 – Programming and Debug adapter, https://developer.arm.com/Tools%20and%20Software/ULINK2

• ULINK Plus - isolated debug connection, power measurement, and I/O for test automation

https://developer.arm.com/Tools%20and%20Software/ULINKplus

• ULINKpro – Faster operation and Flash programming, Cortex-Mx SWV & ETM trace

https://developer.arm.com/Tools%20and%20Software/ULINKpro

• ULINKpro D – Faster operation and Flash programming, Cortex-Mx SWV, no ETM trace.

For special promotional or quantity pricing and offers, please contact Keil Sales.

Contact sales.us@keil.com 800-348-8051 for USA prices.

Contact sales.intl@keil.com +49 89/456040-20 for pricing in other countries.

CMSIS-RTOS RTX is now provided under a BSD license.

All versions, including MDK-Lite, include CMSIS-RTOS RTX with source

code!

Keil includes free DSP libraries for the Cortex-M family.

Call your distributor for details on current pricing, specials and quantity

discounts. Sales can also provide advice about the various tools options

available to you. They will help you find various labs and appnotes that are

useful.

http://www.keil.com/distis/

All products are available from stock.

All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. Go to www.arm.com/university

to view various programs and resources.

Keil supports many other Infineon processors, including 8051 and C166 series processors. See the Keil Device Database® on

www.keil.com/dd for the complete list of Infineon support. This information is also included in MDK.

For more information:

Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com or +49 89/456040-20

Keil Technical Support in the USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

For the latest version of this document, go to www.keil.com/appnotes/docs/apnt_268.asp

CMSIS documentation: www.arm.com/cmsis

https://developer.arm.com/Tools%20and%20Software/Keil%20MDK#Editions
https://developer.arm.com/Tools%20and%20Software/ULINK2
https://developer.arm.com/Tools%20and%20Software/ULINKplus
https://developer.arm.com/Tools%20and%20Software/ULINKpro
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
http://www.keil.com/distis/
http://www.arm.com/
http://www.keil.com/dd
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
mailto:support.us@keil.com
mailto:support.intl@keil.com
http://www.keil.com/appnotes/docs/apnt_268.asp
http://www.arm.com/cmsis

