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Overview

1. Overview
Arm Performance Libraries provide optimized standard core math libraries for high-performance
computing applications on Arm processors. The library routines, which are available through both
Fortran and C interfaces, include:

• BLAS - Basic Linear Algebra Subprograms (including XBLAS, the extended precision BLAS).

• LAPACK 3.10.0 - a comprehensive package of higher level linear algebra routines.

• FFT functions - a set of Fast Fourier Transform routines for real and complex data using the
FFTW interface.

• Sparse linear algebra.

• libamath - a subset of libm, which is a set of optimized mathematical functions.

• libastring - a subset of libc, which is a set of optimized string functions.

Arm Performance Libraries are built with OpenMP across many BLAS, LAPACK, FFT, and sparse
routines in order to maximize your performance in multi-processor environments.
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Installation

2. Installation
This guide contains instructions to install on the following operating systems:

• Install on Linux

• Install on Apple MacOS

• Install on Windows

Note: To use Arm Performance Libraries functions in your code, you must include the header file
<armpl.h>. This header file is located in /opt/arm/<armpl_dir>/include/, or <install_dir>/
<armpl_dir>/include/ if you have installed to a different location than the default. If you use FFTs,
you will also need to include the fftw3.h header file. If you include other legacy header files such
as blas.h or lapack.h, they will also work.

2.1 Install on Linux
To install Arm Performance Libraries:

1. Extract the downloaded package and change directory into the resulting directory:

tar -xvf <package_name>.tar
cd <package_name>

Replace <package_name> with the full name of the downloaded package.

2. Run the installation script as a privileged user and pass any options to configure the installation:

./arm-performance-libraries_<version>_*.sh <options>

Where <options> can be one or more of:

Option Description

-a, –accept Automatically accept the EULA (the EULA still displays).

-l, –list-packages List the installer packages

-i, –install-to <location> Install to the given directory.

Use this option if you do not have sudo rights to install to /opt/arm or another central
location.

-s, –save-packages-to
<location>

Save packages to given directory.

-f, –force Force an install attempt to a non empty directory.

-h, –help Display this table in the form of a help message in the terminal

3. The installer displays the EULA and prompts you to agree to the terms. Type ‘yes’ at the prompt
to continue
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The packages are installed to <install_dir>/<package_name>, where <install_dir> defaults
to /opt/arm if not explicitly provided using the –install-to option.

2.2 Install on Apple MacOS
To install Arm Performance Libraries:

1. Mount the disk image by double clicking the icon of the downloaded package, or by running
from a terminal:

hdiutil attach <package_name>.dmg

Replace <package_name> with the name of the downloaded package.

2. Run the installation script as a privileged user and pass any options to configure the installation:

/Volumes/<package_name>_installer/<package_name>_install.sh <options>

<options> can be one or more of:

Option Description

-y Automatically accept the EULA (the EULA does not display).

—install_dir=<location> Install to the given directory.

Use this option if you do not have required privileges.

-h Display this table in the form of a help message in the terminal.

3. The installer displays the EULA and prompts you to agree to the terms. Type ‘y’ at the prompt
to continue.

The packages are installed to <install_dir>/<package_name>, where <install_dir> defaults to
/opt/arm if not explicitly provided using the --install_dir option.

in case you selected -y and want to read the EULA later, it is available at:

<install_dir>/arm-performance-libraries_<version>/license_terms/
license_agreement.txt

2.3 Install on Windows
To install Arm Performance Libraries:

1. Unpack and extract the zip file:
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• Locate the downloaded zip file in the Windows File Explorer.

• Double click on the file, and then click on the “Extract all” button at the top of the File
Explorer.

• In the pop-up window, select a location to unpack Arm Performance Libraries into on your
system, and click on Extract.

2. Update your environment variables:

• Using the Windows Search feature, search for “System Properties”. Click on “Best Match”.

• In the System Properties window click on “Environment Variables”.

• Add a new environment variable called ARMPL_DIR, which should have the value

<install location>\arm-performance-libraries_23.10\armpl_23.10

where <install location> is the location in which you unpacked Arm Performance Libraries in
step 1 above.

• Next, add %ARMPL_DIR%\bin to the list of directories in the PATH environment variable.

• Read the enclosed Release Notes and examples to find out how to link your application
to the library in a command terminal. Users wishing to use Arm PL from within MSVC are
referred to Microsoft’s online documentation.
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Environment configuration

3. Environment configuration
This section describes how to load the correct environment module for Arm Performance Libraries.

Procedure

Use the following steps to load the Arm Performance Libraries module:

1. Use this command to see which environment modules are available:

module avail

Note: You might need to configure the MODULEPATH environment variable to include the
installation directory:

export MODULEPATH=$MODULEPATH:/opt/arm/modulefiles/

2. Load the appropriate module for the OS and version of GCC that you are using.

For example:

module load armpl/22.0_gcc-11.2 

Tip: Consider adding the module load command to your .profile to run it automatically every
time you log in.
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4. Compile and test the examples
Arm Performance Libraries include a number of example programs to compile and run. The
examples are located in /opt/arm/<armpl_dir>/examples/, or <install_dir>/<armpl_dir>/
examples/, if you have installed to a different location than the default.

The examples directory contains the following:

• A Makefile to build and execute all of the example programs.

• A number of different C examples, *.c.

• A number of different Fortran examples, *.f90.

• Expected output for each example, *.expected.

The Makefile compiles and runs each example, and compares the generated output to the expected
output. Any differences are flagged as errors.

To compile the examples and run the tests, use the following command:

make

The Makefile produces output similar to the following sample:

Compiling program armplinfo.f90:
gfortran -c -mcpu=native -I../include armplinfo.f90 -o armplinfo.o
Linking program armplinfo.exe:
gfortran -mcpu=native armplinfo.o -L../lib -larmpl -lm -o armplinfo.exe
Running program armplinfo.exe:
LD_LIBRARY_PATH=/opt/arm/arm-linux-compiler-0.0_Generic-AArch64_RHEL-8_aarch64-
linux/lib ./armplinfo.exe > armplinfo.res
ARMPL (ARM Performance Libraries) 

... 

Testing: no example difference files were generated.
Test passed OK

4.1 Example: fftw_dft_r2c_1d_c_example.c
The fftw_dft_r2c_1d_c_example.c example does the following:

• Creates an FFT plan for a one-dimensional, real-to-Hermitian Fourier transform, and a plan for
its inverse, Hermitian-to-real transform.

• Executes the first plan to output the transformed values in y.

• Destroys the first plan.

• Prints the components of the transform.

• Executes the second plan to get the original data, unscaled.
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• Destroys the second plan.

• Outputs the original and restored values, scaled (they should be identical).

/*
 * fftw_dft_r2c_1d: FFT of a real sequence
 *
 * ARMPL version 22.0 Copyright Arm 2022
 */
#include <armpl.h>
#include <complex.h>
#include <fftw3.h>
#include <math.h>
#include <stdio.h>
int main(void) {
#define NMAX 20
        double xx[NMAX];
        double x[NMAX];
        // The output vector is of size (n/2)+1 as it is Hermitian
        fftw_complex y[NMAX / 2 + 1];
        printf(
            "ARMPL example: FFT of a real sequence using fftw_plan_dft_r2c_1d\n");
        printf(
            "----------------------------------------------------------------\n");
        printf("\n");
        /* The sequence of double data */
        int n = 7;
        x[0] = 0.34907;
        x[1] = 0.54890;
        x[2] = 0.74776;
        x[3] = 0.94459;
        x[4] = 1.13850;
        x[5] = 1.32850;
        x[6] = 1.51370;
        // Use dcopy to copy the values into another array (preserve input)
        cblas_dcopy(n, x, 1, xx, 1);
        // Initialise a plan for a real-to-complex 1d transform from x->y
        fftw_plan forward_plan = fftw_plan_dft_r2c_1d(n, x, y, FFTW_ESTIMATE);
        // Initialise a plan for a complex-to-real 1d transform from y->x (inverse)
        fftw_plan inverse_plan = fftw_plan_dft_c2r_1d(n, y, x, FFTW_ESTIMATE);
        // Execute the forward plan and then deallocate the plan
        /* NOTE: FFTW does NOT compute a normalised transform -
         * returned array will contain unscaled values */
        fftw_execute(forward_plan);
        fftw_destroy_plan(forward_plan);
        printf("Components of discrete Fourier transform:\n");
        printf("\n");
        int j;
        for (j = 0; j <= n / 2; j++)
                // Scale factor of 1/sqrt(n) to output normalised data
                printf("%4d   (%7.4f%7.4f)\n", j + 1, creal(y[j]) / sqrt(n),
                       cimag(y[j]) / sqrt(n));
        // Execute the reverse plan and then deallocate the plan
        /* NOTE: FFTW does NOT compute a normalised transform -
         * returned array will contain unscaled values */
        fftw_execute(inverse_plan);
        fftw_destroy_plan(inverse_plan);
        printf("\n");
        printf("Original sequence as restored by inverse transform:\n");
        printf("\n");
        printf("       Original  Restored\n");
        for (j = 0; j < n; j++)
                // Scale factor of 1/n to output normalised data
                printf("%4d   %7.4f   %7.4f\n", j + 1, xx[j], x[j] / n);
        return 0;
} 
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To compile and run the example take a copy of the code from <install-dir>/examples and follow
the steps below:

1. To generate an object file, compile the source fftw_dft_r2c_1d_c_example.c:

Compiler Command

gcc gcc fftw_dft_r2c_1d_c_example.o -L<install_dir>/lib -o fftw_dft_r2c_1d_c_example.exe -larmpl_lp64 -lm

2. Link the object into an executable:

Compiler Command

gcc gcc fftw_dft_r2c_1d_c_example.o -L<install_dir>/lib -o fftw_dft_r2c_1d_c_example.exe -larmpl_lp64 -lm

The linker and compiler options are:

• -L<install_dir>/lib adds the Arm Performance Libraries location to the library search
path.

• -larmpl_lp64 links against Arm Performance Libraries.

• -lm links against the standard math libraries.

3. Run the executable on your Arm system.

./fftw_dft_r2c_1d_c_example.exe

The executable produces output as follows:

ARMPL example: FFT of a real sequence using fftw_plan_dft_r2c_1d
----------------------------------------------------------------
Components of discrete Fourier transform:
   1   ( 2.4836 0.0000)
   2   (-0.2660 0.5309)
   3   (-0.2577 0.2030)
   4   (-0.2564 0.0581)
Original sequence as restored by inverse transform:
       Original  Restored
   1    0.3491    0.3491
   2    0.5489    0.5489
   3    0.7478    0.7478
   4    0.9446    0.9446
   5    1.1385    1.1385
   6    1.3285    1.3285
   7    1.5137    1.5137
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Optimized math routines - libamath

5. Optimized math routines - libamath
libamath contains AArch64-optimized versions of the following scalar functions, in both single and
double precision: exponential (exp, exp2), logarithm (log, log2, log10), and error functions (erf,
erfc). In addition, optimized single precision sine and cosine functions are included (sinf, cosf,
sincosf).

libamath also contains vectorized versions (Neon and SVE) of all of the common math.h functions
in libm.

You must explicitly link to the libamath library before linking to libm. For example:

gcc code_with_math_routines.c -lamath -lm

gfortran code_with_math_routines.f -lamath -lm
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Optimized string routines - libastring

6. Optimized string routines - libastring
libastring provides a set of replacement string.h functions which are optimized for AArch64: bcmp,
memchr, memcpy, memmove, memset, strchr, strchrnul, strcmpstrcpy, strlen, strncmp, strnlen.

You must explicitly link to the libastring library to benefit from the performance increase. For
example:

gcc code_with_string_routines.c -lastring

gfortran code_with_string_routines.f -lastring
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Library selection

7. Library selection
To instruct your compiler to load the optimum version of Arm Performance Libraries for your target
architecture and implementation, you can use -larmpl option.

Supported options and arguments are:

GCC flag Description

-DINTEGER32 (Compile)

-larmpl_lp64  (Link)

Use 32-bit integers.

-DINTEGER32 (Compile)

-larmpl_lp64  (Link)

Use 64-bit integers.

-larmpl_lp64 Use the single-threaded library.

-larmpl_lp64_mp Use the OpenMP multi-threaded library.

7.1 Linking against static libraries
The Arm Performance Libraries are supplied in both static and shareable versions, libarmpl_lp64.a
and libarmpl_lp64.so. By default, the commands given above link to the shareable version of the
library, libarmpl_lp64.so, if that version exists in the specified directory.

To force linking to the static library, add the -static option.
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8. Documentation
The Arm Performance Libraries Reference Guide is available on the Arm Developer website.
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