
Get started with Arm Performance Libraries
(standalone version)
0100-00

Non-Confidential
Copyright © 2023 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
109408_0100_00_en

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Get started with Arm Performance Libraries (standalone version)

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-00 16 October 2023 Non-Confidential Document Migration

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 17

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 17

mailto:terms@arm.com

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00
Contents

Contents

1. Overview...6

2. Installation...7
2.1 Install on Linux.. 7
2.2 Install on Apple MacOS.. 8
2.3 Install on Windows...8

3. Environment configuration...10

4. Compile and test the examples.. 11
4.1 Example: fftw_dft_r2c_1d_c_example.c...11

5. Optimized math routines - libamath... 14

6. Optimized string routines - libastring... 15

7. Library selection..16
7.1 Linking against static libraries..16

8. Documentation..17

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Overview

1. Overview
Arm Performance Libraries provide optimized standard core math libraries for high-performance
computing applications on Arm processors. The library routines, which are available through both
Fortran and C interfaces, include:

• BLAS - Basic Linear Algebra Subprograms (including XBLAS, the extended precision BLAS).

• LAPACK 3.10.0 - a comprehensive package of higher level linear algebra routines.

• FFT functions - a set of Fast Fourier Transform routines for real and complex data using the
FFTW interface.

• Sparse linear algebra.

• libamath - a subset of libm, which is a set of optimized mathematical functions.

• libastring - a subset of libc, which is a set of optimized string functions.

Arm Performance Libraries are built with OpenMP across many BLAS, LAPACK, FFT, and sparse
routines in order to maximize your performance in multi-processor environments.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Installation

2. Installation
This guide contains instructions to install on the following operating systems:

• Install on Linux

• Install on Apple MacOS

• Install on Windows

Note: To use Arm Performance Libraries functions in your code, you must include the header file
<armpl.h>. This header file is located in /opt/arm/<armpl_dir>/include/, or <install_dir>/
<armpl_dir>/include/ if you have installed to a different location than the default. If you use FFTs,
you will also need to include the fftw3.h header file. If you include other legacy header files such
as blas.h or lapack.h, they will also work.

2.1 Install on Linux
To install Arm Performance Libraries:

1. Extract the downloaded package and change directory into the resulting directory:

tar -xvf <package_name>.tar
cd <package_name>

Replace <package_name> with the full name of the downloaded package.

2. Run the installation script as a privileged user and pass any options to configure the installation:

./arm-performance-libraries_<version>_*.sh <options>

Where <options> can be one or more of:

Option Description

-a, –accept Automatically accept the EULA (the EULA still displays).

-l, –list-packages List the installer packages

-i, –install-to <location> Install to the given directory.

Use this option if you do not have sudo rights to install to /opt/arm or another central
location.

-s, –save-packages-to
<location>

Save packages to given directory.

-f, –force Force an install attempt to a non empty directory.

-h, –help Display this table in the form of a help message in the terminal

3. The installer displays the EULA and prompts you to agree to the terms. Type ‘yes’ at the prompt
to continue

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Installation

The packages are installed to <install_dir>/<package_name>, where <install_dir> defaults
to /opt/arm if not explicitly provided using the –install-to option.

2.2 Install on Apple MacOS
To install Arm Performance Libraries:

1. Mount the disk image by double clicking the icon of the downloaded package, or by running
from a terminal:

hdiutil attach <package_name>.dmg

Replace <package_name> with the name of the downloaded package.

2. Run the installation script as a privileged user and pass any options to configure the installation:

/Volumes/<package_name>_installer/<package_name>_install.sh <options>

<options> can be one or more of:

Option Description

-y Automatically accept the EULA (the EULA does not display).

—install_dir=<location> Install to the given directory.

Use this option if you do not have required privileges.

-h Display this table in the form of a help message in the terminal.

3. The installer displays the EULA and prompts you to agree to the terms. Type ‘y’ at the prompt
to continue.

The packages are installed to <install_dir>/<package_name>, where <install_dir> defaults to
/opt/arm if not explicitly provided using the --install_dir option.

in case you selected -y and want to read the EULA later, it is available at:

<install_dir>/arm-performance-libraries_<version>/license_terms/
license_agreement.txt

2.3 Install on Windows
To install Arm Performance Libraries:

1. Unpack and extract the zip file:

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Installation

• Locate the downloaded zip file in the Windows File Explorer.

• Double click on the file, and then click on the “Extract all” button at the top of the File
Explorer.

• In the pop-up window, select a location to unpack Arm Performance Libraries into on your
system, and click on Extract.

2. Update your environment variables:

• Using the Windows Search feature, search for “System Properties”. Click on “Best Match”.

• In the System Properties window click on “Environment Variables”.

• Add a new environment variable called ARMPL_DIR, which should have the value

<install location>\arm-performance-libraries_23.10\armpl_23.10

where <install location> is the location in which you unpacked Arm Performance Libraries in
step 1 above.

• Next, add %ARMPL_DIR%\bin to the list of directories in the PATH environment variable.

• Read the enclosed Release Notes and examples to find out how to link your application
to the library in a command terminal. Users wishing to use Arm PL from within MSVC are
referred to Microsoft’s online documentation.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 17

https://learn.microsoft.com/en-us/cpp/build/reference/dot-lib-files-as-linker-input?view=msvc-170

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Environment configuration

3. Environment configuration
This section describes how to load the correct environment module for Arm Performance Libraries.

Procedure

Use the following steps to load the Arm Performance Libraries module:

1. Use this command to see which environment modules are available:

module avail

Note: You might need to configure the MODULEPATH environment variable to include the
installation directory:

export MODULEPATH=$MODULEPATH:/opt/arm/modulefiles/

2. Load the appropriate module for the OS and version of GCC that you are using.

For example:

module load armpl/22.0_gcc-11.2

Tip: Consider adding the module load command to your .profile to run it automatically every
time you log in.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Compile and test the examples

4. Compile and test the examples
Arm Performance Libraries include a number of example programs to compile and run. The
examples are located in /opt/arm/<armpl_dir>/examples/, or <install_dir>/<armpl_dir>/
examples/, if you have installed to a different location than the default.

The examples directory contains the following:

• A Makefile to build and execute all of the example programs.

• A number of different C examples, *.c.

• A number of different Fortran examples, *.f90.

• Expected output for each example, *.expected.

The Makefile compiles and runs each example, and compares the generated output to the expected
output. Any differences are flagged as errors.

To compile the examples and run the tests, use the following command:

make

The Makefile produces output similar to the following sample:

Compiling program armplinfo.f90:
gfortran -c -mcpu=native -I../include armplinfo.f90 -o armplinfo.o
Linking program armplinfo.exe:
gfortran -mcpu=native armplinfo.o -L../lib -larmpl -lm -o armplinfo.exe
Running program armplinfo.exe:
LD_LIBRARY_PATH=/opt/arm/arm-linux-compiler-0.0_Generic-AArch64_RHEL-8_aarch64-
linux/lib ./armplinfo.exe > armplinfo.res
ARMPL (ARM Performance Libraries)

...

Testing: no example difference files were generated.
Test passed OK

4.1 Example: fftw_dft_r2c_1d_c_example.c
The fftw_dft_r2c_1d_c_example.c example does the following:

• Creates an FFT plan for a one-dimensional, real-to-Hermitian Fourier transform, and a plan for
its inverse, Hermitian-to-real transform.

• Executes the first plan to output the transformed values in y.

• Destroys the first plan.

• Prints the components of the transform.

• Executes the second plan to get the original data, unscaled.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Compile and test the examples

• Destroys the second plan.

• Outputs the original and restored values, scaled (they should be identical).

/*
 * fftw_dft_r2c_1d: FFT of a real sequence
 *
 * ARMPL version 22.0 Copyright Arm 2022
 */
#include <armpl.h>
#include <complex.h>
#include <fftw3.h>
#include <math.h>
#include <stdio.h>
int main(void) {
#define NMAX 20
 double xx[NMAX];
 double x[NMAX];
 // The output vector is of size (n/2)+1 as it is Hermitian
 fftw_complex y[NMAX / 2 + 1];
 printf(
 "ARMPL example: FFT of a real sequence using fftw_plan_dft_r2c_1d\n");
 printf(
 "--\n");
 printf("\n");
 /* The sequence of double data */
 int n = 7;
 x[0] = 0.34907;
 x[1] = 0.54890;
 x[2] = 0.74776;
 x[3] = 0.94459;
 x[4] = 1.13850;
 x[5] = 1.32850;
 x[6] = 1.51370;
 // Use dcopy to copy the values into another array (preserve input)
 cblas_dcopy(n, x, 1, xx, 1);
 // Initialise a plan for a real-to-complex 1d transform from x->y
 fftw_plan forward_plan = fftw_plan_dft_r2c_1d(n, x, y, FFTW_ESTIMATE);
 // Initialise a plan for a complex-to-real 1d transform from y->x (inverse)
 fftw_plan inverse_plan = fftw_plan_dft_c2r_1d(n, y, x, FFTW_ESTIMATE);
 // Execute the forward plan and then deallocate the plan
 /* NOTE: FFTW does NOT compute a normalised transform -
 * returned array will contain unscaled values */
 fftw_execute(forward_plan);
 fftw_destroy_plan(forward_plan);
 printf("Components of discrete Fourier transform:\n");
 printf("\n");
 int j;
 for (j = 0; j <= n / 2; j++)
 // Scale factor of 1/sqrt(n) to output normalised data
 printf("%4d (%7.4f%7.4f)\n", j + 1, creal(y[j]) / sqrt(n),
 cimag(y[j]) / sqrt(n));
 // Execute the reverse plan and then deallocate the plan
 /* NOTE: FFTW does NOT compute a normalised transform -
 * returned array will contain unscaled values */
 fftw_execute(inverse_plan);
 fftw_destroy_plan(inverse_plan);
 printf("\n");
 printf("Original sequence as restored by inverse transform:\n");
 printf("\n");
 printf(" Original Restored\n");
 for (j = 0; j < n; j++)
 // Scale factor of 1/n to output normalised data
 printf("%4d %7.4f %7.4f\n", j + 1, xx[j], x[j] / n);
 return 0;
}

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Compile and test the examples

To compile and run the example take a copy of the code from <install-dir>/examples and follow
the steps below:

1. To generate an object file, compile the source fftw_dft_r2c_1d_c_example.c:

Compiler Command

gcc gcc fftw_dft_r2c_1d_c_example.o -L<install_dir>/lib -o fftw_dft_r2c_1d_c_example.exe -larmpl_lp64 -lm

2. Link the object into an executable:

Compiler Command

gcc gcc fftw_dft_r2c_1d_c_example.o -L<install_dir>/lib -o fftw_dft_r2c_1d_c_example.exe -larmpl_lp64 -lm

The linker and compiler options are:

• -L<install_dir>/lib adds the Arm Performance Libraries location to the library search
path.

• -larmpl_lp64 links against Arm Performance Libraries.

• -lm links against the standard math libraries.

3. Run the executable on your Arm system.

./fftw_dft_r2c_1d_c_example.exe

The executable produces output as follows:

ARMPL example: FFT of a real sequence using fftw_plan_dft_r2c_1d
--
Components of discrete Fourier transform:
 1 (2.4836 0.0000)
 2 (-0.2660 0.5309)
 3 (-0.2577 0.2030)
 4 (-0.2564 0.0581)
Original sequence as restored by inverse transform:
 Original Restored
 1 0.3491 0.3491
 2 0.5489 0.5489
 3 0.7478 0.7478
 4 0.9446 0.9446
 5 1.1385 1.1385
 6 1.3285 1.3285
 7 1.5137 1.5137

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Optimized math routines - libamath

5. Optimized math routines - libamath
libamath contains AArch64-optimized versions of the following scalar functions, in both single and
double precision: exponential (exp, exp2), logarithm (log, log2, log10), and error functions (erf,
erfc). In addition, optimized single precision sine and cosine functions are included (sinf, cosf,
sincosf).

libamath also contains vectorized versions (Neon and SVE) of all of the common math.h functions
in libm.

You must explicitly link to the libamath library before linking to libm. For example:

gcc code_with_math_routines.c -lamath -lm

gfortran code_with_math_routines.f -lamath -lm

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Optimized string routines - libastring

6. Optimized string routines - libastring
libastring provides a set of replacement string.h functions which are optimized for AArch64: bcmp,
memchr, memcpy, memmove, memset, strchr, strchrnul, strcmpstrcpy, strlen, strncmp, strnlen.

You must explicitly link to the libastring library to benefit from the performance increase. For
example:

gcc code_with_string_routines.c -lastring

gfortran code_with_string_routines.f -lastring

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Library selection

7. Library selection
To instruct your compiler to load the optimum version of Arm Performance Libraries for your target
architecture and implementation, you can use -larmpl option.

Supported options and arguments are:

GCC flag Description

-DINTEGER32 (Compile)

-larmpl_lp64 (Link)

Use 32-bit integers.

-DINTEGER32 (Compile)

-larmpl_lp64 (Link)

Use 64-bit integers.

-larmpl_lp64 Use the single-threaded library.

-larmpl_lp64_mp Use the OpenMP multi-threaded library.

7.1 Linking against static libraries
The Arm Performance Libraries are supplied in both static and shareable versions, libarmpl_lp64.a
and libarmpl_lp64.so. By default, the commands given above link to the shareable version of the
library, libarmpl_lp64.so, if that version exists in the specified directory.

To force linking to the static library, add the -static option.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 17

Get started with Arm Performance Libraries (standalone
version)

Document ID: 109408_0100_00_en
0100-00

Documentation

8. Documentation
The Arm Performance Libraries Reference Guide is available on the Arm Developer website.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 17

https://developer.arm.com/docs/101004/latet/arm-performance-libraries-reference-guide

	Get started with Arm Performance Libraries (standalone version)
	Contents
	1. Overview
	2. Installation
	2.1 Install on Linux
	2.2 Install on Apple MacOS
	2.3 Install on Windows

	3. Environment configuration
	4. Compile and test the examples
	4.1 Example: fftw_dft_r2c_1d_c_example.c

	5. Optimized math routines - libamath
	6. Optimized string routines - libastring
	7. Library selection
	7.1 Linking against static libraries

	8. Documentation

