
Arm® Architecture Reference
Manual Supplement, The

Scalable Matrix Extension
(SME), for Armv9-A

Document number DDI0616

Document quality EAC

Document version B.a

Document confidentiality Non-confidential

Document build information 5084c744 Tuesday, 22 August 2023 at 19:40

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Arm® Architecture Reference Manual Supplement, The Scalable
Matrix Extension (SME), for Armv9-A

Release information

Date Version Changes

2023/Aug/18 B.a • Second release, including SME2 and EAC maintenance updates to SME.

2022/Feb/07 A.a • First release.

ii

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks
.

Copyright © 2022-2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349 version 21.0

Product Status

The information in this document is final; that is, it is for a developed product.

The information in this Manual is at EAC quality, which means that:

• All features of the specification are described in the manual.
• Information can be used for software and hardware development.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

http://www.arm.com/company/policies/trademarks

Contents

Arm® Architecture Reference Manual Supplement, The Scalable
Matrix Extension (SME), for Armv9-A

Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME),
for Armv9-A . ii

Release information . ii
Non-Confidential Proprietary Notice . iii
Product Status . iii

Preface
About this supplement . xvi
Conventions . xvii

Typographical conventions . xvii
Numbers . xvii
Pseudocode descriptions . xvii
Asterisks in instruction mnemonics . xvii
Assembler syntax descriptions . xviii

Rules-based writing . xix
Content item identifiers . xix
Content item rendering . xix
Content item classes . xix

Additional reading . xxi
Feedback . xxii

Feedback on this book . xxii
Progressive terminology commitment . xxiii

Part A Introduction

Chapter A1 SME Introduction
A1.1 About the Scalable Matrix Extension . 25

Chapter A2 Architecture Features and Extensions
A2.1 Extensions and features defined by SME . 27
A2.2 Changes to existing features and extension requirements 28

Part B SME Application Level Programmers’ Model

Chapter B1 Application processing modes
B1.1 Overview . 30
B1.2 Process state . 31

B1.2.1 PSTATE.SM . 32
B1.2.2 PSTATE.ZA . 33
B1.2.3 Changing PSTATE.SM and PSTATE.ZA 33
B1.2.4 TPIDR2_EL0 . 34

Chapter B2 Architectural state
B2.1 Architectural state summary . 35
B2.2 SME ZA storage . 37

B2.2.1 ZA array vector access . 37

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

Contents

B2.2.2 ZA tile access . 37
B2.2.3 Accessing an 8-bit element ZA tile . 38
B2.2.4 Accessing a 16-bit element ZA tile . 39
B2.2.5 Accessing a 32-bit element ZA tile . 40
B2.2.6 Accessing a 64-bit element ZA tile . 41
B2.2.7 Accessing a 128-bit element ZA tile . 42

B2.3 ZA storage layout . 43
B2.3.1 ZA array vector and tile slice mappings 43
B2.3.2 Tile mappings . 43
B2.3.3 Horizontal tile slice mappings . 44
B2.3.4 Vertical tile slice mappings . 45
B2.3.5 Mixed horizontal and vertical tile slice mappings 46

B2.4 SME2 Multi-vector operands . 48
B2.4.1 Z multi-vector operands . 48
B2.4.2 ZA multi-slice operands . 48
B2.4.3 ZA multi-vector operands . 49

B2.5 SME2 Multi-vector predication . 56
B2.6 SME2 Lookup table . 58

Chapter B3 Floating-point behaviors
B3.1 Overview . 59
B3.2 Supported floating-point data types . 60
B3.3 BFloat16 behaviors . 61

B3.3.1 Common BFloat16 behaviors . 61
B3.3.2 Standard BFloat16 behaviors . 61
B3.3.3 Extended BFloat16 behaviors . 61

B3.4 Floating-point behaviors in Streaming SVE mode 63
B3.5 Floating-point behaviors targeting the ZA array 64

Part C SME System Level Programmers’ Model

Chapter C1 System management
C1.1 Overview . 66

C1.1.1 Identification . 67
C1.1.2 Traps and exceptions . 67
C1.1.3 Vector lengths . 68
C1.1.4 Streaming execution priority . 70

C1.2 Processor behavior . 71
C1.2.1 Exception priorities . 71
C1.2.2 Synchronous Data Abort . 73
C1.2.3 Validity of SME and SVE state . 73
C1.2.4 Streaming execution priority for shared implementations 74
C1.2.5 Security considerations . 76

C1.3 Changes to existing System registers . 77
C1.3.1 CPACR_EL1 . 77
C1.3.2 CPTR_EL2 . 77
C1.3.3 CPTR_EL3 . 77
C1.3.4 ESR_EL1, ESR_EL2, and ESR_EL3 77
C1.3.5 HCR_EL2 . 78
C1.3.6 HCRX_EL2 . 78
C1.3.7 HFGRTR_EL2 . 79
C1.3.8 HFGWTR_EL2 . 79
C1.3.9 ID_AA64PFR1_EL1 . 79
C1.3.10 ID_AA64ZFR0_EL1 . 79

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

Contents

C1.3.11 SCR_EL3 . 80
C1.3.12 SCTLR_EL1 . 80
C1.3.13 SCTLR_EL2 . 80
C1.3.14 ZCR_EL1, ZCR_EL2, and ZCR_EL3 80

C1.4 SME-specific System registers . 81
C1.4.1 ID_AA64SMFR0_EL1 . 81
C1.4.2 SMCR_EL1 . 81
C1.4.3 SMCR_EL2 . 81
C1.4.4 SMCR_EL3 . 81
C1.4.5 SMIDR_EL1 . 81
C1.4.6 SMPRI_EL1 . 81
C1.4.7 SMPRIMAP_EL2 . 82
C1.4.8 SVCR . 82

Chapter C2 Interaction with other A-profile architectural features
C2.1 Watchpoints . 84

C2.1.1 Reporting watchpoints . 84
C2.2 Self-hosted debug . 88
C2.3 External debug . 89
C2.4 Memory Tagging Extension (MTE) . 90
C2.5 Reliability, Availability, and Serviceability (RAS) 91
C2.6 Memory Partitioning and Monitoring (MPAM) 92

C2.6.1 MPAMSM_EL1 . 92
C2.6.2 MPAM2_EL2 . 92

C2.7 Transactional Memory Extension (TME) . 93
C2.8 Memory consistency model . 94

Part D SME Instruction Set

Chapter D1 SME instructions
D1.1 SME and SME2 data-processing instructions 97

D1.1.1 ADD (to vector) . 97
D1.1.2 ADD (array accumulators) . 99
D1.1.3 ADD (array results, multiple and single vector) 101
D1.1.4 ADD (array results, multiple vectors) . 103
D1.1.5 ADDHA . 105
D1.1.6 ADDSPL . 107
D1.1.7 ADDSVL . 108
D1.1.8 ADDVA . 109
D1.1.9 BFCVT . 111
D1.1.10 BFCVTN . 112
D1.1.11 BFDOT (multiple and indexed vector) 113
D1.1.12 BFDOT (multiple and single vector) . 115
D1.1.13 BFDOT (multiple vectors) . 117
D1.1.14 BFMLAL (multiple and indexed vector) 119
D1.1.15 BFMLAL (multiple and single vector) 122
D1.1.16 BFMLAL (multiple vectors) . 124
D1.1.17 BFMLSL (multiple and indexed vector) 126
D1.1.18 BFMLSL (multiple and single vector) 129
D1.1.19 BFMLSL (multiple vectors) . 131
D1.1.20 BFMOPA . 133
D1.1.21 BFMOPS . 135
D1.1.22 BFVDOT . 137
D1.1.23 BMOPA . 139

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vi

Contents

D1.1.24 BMOPS . 141
D1.1.25 CNTP . 143
D1.1.26 FADD . 145
D1.1.27 FCLAMP . 147
D1.1.28 FCVT . 149
D1.1.29 FCVTN . 150
D1.1.30 FCVTZS . 151
D1.1.31 FCVTZU . 153
D1.1.32 FDOT (multiple and indexed vector) . 155
D1.1.33 FDOT (multiple and single vector) . 157
D1.1.34 FDOT (multiple vectors) . 159
D1.1.35 FMAX (multiple and single vector) . 161
D1.1.36 FMAX (multiple vectors) . 163
D1.1.37 FMAXNM (multiple and single vector) 165
D1.1.38 FMAXNM (multiple vectors) . 167
D1.1.39 FMIN (multiple and single vector) . 169
D1.1.40 FMIN (multiple vectors) . 171
D1.1.41 FMINNM (multiple and single vector) 173
D1.1.42 FMINNM (multiple vectors) . 175
D1.1.43 FMLA (multiple and indexed vector) . 177
D1.1.44 FMLA (multiple and single vector) . 180
D1.1.45 FMLA (multiple vectors) . 182
D1.1.46 FMLAL (multiple and indexed vector) 184
D1.1.47 FMLAL (multiple and single vector) . 187
D1.1.48 FMLAL (multiple vectors) . 189
D1.1.49 FMLS (multiple and indexed vector) . 191
D1.1.50 FMLS (multiple and single vector) . 194
D1.1.51 FMLS (multiple vectors) . 196
D1.1.52 FMLSL (multiple and indexed vector) 198
D1.1.53 FMLSL (multiple and single vector) . 201
D1.1.54 FMLSL (multiple vectors) . 203
D1.1.55 FMOPA (widening) . 205
D1.1.56 FMOPA (non-widening) . 207
D1.1.57 FMOPS (widening) . 209
D1.1.58 FMOPS (non-widening) . 211
D1.1.59 FRINTA . 213
D1.1.60 FRINTM . 215
D1.1.61 FRINTN . 217
D1.1.62 FRINTP . 219
D1.1.63 FSUB . 221
D1.1.64 FVDOT . 223
D1.1.65 LD1B (scalar plus immediate, consecutive registers) 225
D1.1.66 LD1B (scalar plus scalar, consecutive registers) 227
D1.1.67 LD1B (scalar plus immediate, strided registers) 229
D1.1.68 LD1B (scalar plus scalar, strided registers) 231
D1.1.69 LD1B (scalar plus scalar, tile slice) . 233
D1.1.70 LD1D (scalar plus immediate, consecutive registers) 235
D1.1.71 LD1D (scalar plus scalar, consecutive registers) 237
D1.1.72 LD1D (scalar plus immediate, strided registers) 239
D1.1.73 LD1D (scalar plus scalar, strided registers) 241
D1.1.74 LD1D (scalar plus scalar, tile slice) . 243
D1.1.75 LD1H (scalar plus immediate, consecutive registers) 245
D1.1.76 LD1H (scalar plus scalar, consecutive registers) 247
D1.1.77 LD1H (scalar plus immediate, strided registers) 249
D1.1.78 LD1H (scalar plus scalar, strided registers) 251

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

vii

Contents

D1.1.79 LD1H (scalar plus scalar, tile slice) . 253
D1.1.80 LD1Q . 255
D1.1.81 LD1W (scalar plus immediate, consecutive registers) 257
D1.1.82 LD1W (scalar plus scalar, consecutive registers) 259
D1.1.83 LD1W (scalar plus immediate, strided registers) 261
D1.1.84 LD1W (scalar plus scalar, strided registers) 263
D1.1.85 LD1W (scalar plus scalar, tile slice) . 265
D1.1.86 LDNT1B (scalar plus immediate, consecutive registers) 267
D1.1.87 LDNT1B (scalar plus scalar, consecutive registers) 269
D1.1.88 LDNT1B (scalar plus immediate, strided registers) 271
D1.1.89 LDNT1B (scalar plus scalar, strided registers) 273
D1.1.90 LDNT1D (scalar plus immediate, consecutive registers) 275
D1.1.91 LDNT1D (scalar plus scalar, consecutive registers) 277
D1.1.92 LDNT1D (scalar plus immediate, strided registers) 279
D1.1.93 LDNT1D (scalar plus scalar, strided registers) 281
D1.1.94 LDNT1H (scalar plus immediate, consecutive registers) 283
D1.1.95 LDNT1H (scalar plus scalar, consecutive registers) 285
D1.1.96 LDNT1H (scalar plus immediate, strided registers) 287
D1.1.97 LDNT1H (scalar plus scalar, strided registers) 289
D1.1.98 LDNT1W (scalar plus immediate, consecutive registers) 291
D1.1.99 LDNT1W (scalar plus scalar, consecutive registers) 293
D1.1.100 LDNT1W (scalar plus immediate, strided registers) 295
D1.1.101 LDNT1W (scalar plus scalar, strided registers) 297
D1.1.102 LDR (vector) . 299
D1.1.103 LDR (ZT0) . 301
D1.1.104 LUTI2 (two registers) . 302
D1.1.105 LUTI2 (four registers) . 304
D1.1.106 LUTI2 (single) . 306
D1.1.107 LUTI4 (two registers) . 307
D1.1.108 LUTI4 (four registers) . 309
D1.1.109 LUTI4 (single) . 311
D1.1.110 MOV (tile to vector, two registers) . 312
D1.1.111 MOV (tile to vector, four registers) . 315
D1.1.112 MOV (array to vector, two registers) . 318
D1.1.113 MOV (array to vector, four registers) . 319
D1.1.114 MOV (tile to vector, single) . 320
D1.1.115 MOV (vector to tile, two registers) . 323
D1.1.116 MOV (vector to tile, four registers) . 326
D1.1.117 MOV (vector to array, two registers) . 329
D1.1.118 MOV (vector to array, four registers) . 330
D1.1.119 MOV (vector to tile, single) . 331
D1.1.120 MOVA (tile to vector, two registers) . 334
D1.1.121 MOVA (tile to vector, four registers) . 337
D1.1.122 MOVA (array to vector, two registers) 340
D1.1.123 MOVA (array to vector, four registers) 342
D1.1.124 MOVA (tile to vector, single) . 344
D1.1.125 MOVA (vector to tile, two registers) . 347
D1.1.126 MOVA (vector to tile, four registers) . 350
D1.1.127 MOVA (vector to array, two registers) 353
D1.1.128 MOVA (vector to array, four registers) 355
D1.1.129 MOVA (vector to tile, single) . 357
D1.1.130 MOVT (ZT0 to scalar) . 360
D1.1.131 MOVT (scalar to ZT0) . 361
D1.1.132 PEXT (predicate) . 362
D1.1.133 PEXT (predicate pair) . 364

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

Contents

D1.1.134 PTRUE . 366
D1.1.135 RDSVL . 367
D1.1.136 SCLAMP . 368
D1.1.137 SCVTF . 370
D1.1.138 SDOT (2-way, multiple and indexed vector) 372
D1.1.139 SDOT (2-way, multiple and single vector) 374
D1.1.140 SDOT (2-way, multiple vectors) . 376
D1.1.141 SDOT (4-way, multiple and indexed vector) 378
D1.1.142 SDOT (4-way, multiple and single vector) 381
D1.1.143 SDOT (4-way, multiple vectors) . 383
D1.1.144 SEL . 385
D1.1.145 SMAX (multiple and single vector) . 387
D1.1.146 SMAX (multiple vectors) . 389
D1.1.147 SMIN (multiple and single vector) . 391
D1.1.148 SMIN (multiple vectors) . 393
D1.1.149 SMLAL (multiple and indexed vector) 395
D1.1.150 SMLAL (multiple and single vector) . 398
D1.1.151 SMLAL (multiple vectors) . 400
D1.1.152 SMLALL (multiple and indexed vector) 402
D1.1.153 SMLALL (multiple and single vector) . 406
D1.1.154 SMLALL (multiple vectors) . 409
D1.1.155 SMLSL (multiple and indexed vector) 412
D1.1.156 SMLSL (multiple and single vector) . 415
D1.1.157 SMLSL (multiple vectors) . 417
D1.1.158 SMLSLL (multiple and indexed vector) 419
D1.1.159 SMLSLL (multiple and single vector) . 423
D1.1.160 SMLSLL (multiple vectors) . 426
D1.1.161 SMOPA (2-way) . 429
D1.1.162 SMOPA (4-way) . 431
D1.1.163 SMOPS (2-way) . 434
D1.1.164 SMOPS (4-way) . 436
D1.1.165 SQCVT (two registers) . 439
D1.1.166 SQCVT (four registers) . 440
D1.1.167 SQCVTN . 441
D1.1.168 SQCVTU (two registers) . 442
D1.1.169 SQCVTU (four registers) . 443
D1.1.170 SQCVTUN . 444
D1.1.171 SQDMULH (multiple and single vector) 445
D1.1.172 SQDMULH (multiple vectors) . 447
D1.1.173 SQRSHR (two registers) . 449
D1.1.174 SQRSHR (four registers) . 450
D1.1.175 SQRSHRN . 452
D1.1.176 SQRSHRU (two registers) . 454
D1.1.177 SQRSHRU (four registers) . 455
D1.1.178 SQRSHRUN . 457
D1.1.179 SRSHL (multiple and single vector) . 459
D1.1.180 SRSHL (multiple vectors) . 461
D1.1.181 ST1B (scalar plus immediate, consecutive registers) 463
D1.1.182 ST1B (scalar plus scalar, consecutive registers) 465
D1.1.183 ST1B (scalar plus immediate, strided registers) 467
D1.1.184 ST1B (scalar plus scalar, strided registers) 469
D1.1.185 ST1B (scalar plus scalar, tile slice) . 471
D1.1.186 ST1D (scalar plus immediate, consecutive registers) 473
D1.1.187 ST1D (scalar plus scalar, consecutive registers) 475
D1.1.188 ST1D (scalar plus immediate, strided registers) 477

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

ix

Contents

D1.1.189 ST1D (scalar plus scalar, strided registers) 479
D1.1.190 ST1D (scalar plus scalar, tile slice) . 481
D1.1.191 ST1H (scalar plus immediate, consecutive registers) 483
D1.1.192 ST1H (scalar plus scalar, consecutive registers) 485
D1.1.193 ST1H (scalar plus immediate, strided registers) 487
D1.1.194 ST1H (scalar plus scalar, strided registers) 489
D1.1.195 ST1H (scalar plus scalar, tile slice) . 491
D1.1.196 ST1Q . 493
D1.1.197 ST1W (scalar plus immediate, consecutive registers) 495
D1.1.198 ST1W (scalar plus scalar, consecutive registers) 497
D1.1.199 ST1W (scalar plus immediate, strided registers) 499
D1.1.200 ST1W (scalar plus scalar, strided registers) 501
D1.1.201 ST1W (scalar plus scalar, tile slice) . 503
D1.1.202 STNT1B (scalar plus immediate, consecutive registers) 505
D1.1.203 STNT1B (scalar plus scalar, consecutive registers) 507
D1.1.204 STNT1B (scalar plus immediate, strided registers) 509
D1.1.205 STNT1B (scalar plus scalar, strided registers) 511
D1.1.206 STNT1D (scalar plus immediate, consecutive registers) 513
D1.1.207 STNT1D (scalar plus scalar, consecutive registers) 515
D1.1.208 STNT1D (scalar plus immediate, strided registers) 517
D1.1.209 STNT1D (scalar plus scalar, strided registers) 519
D1.1.210 STNT1H (scalar plus immediate, consecutive registers) 521
D1.1.211 STNT1H (scalar plus scalar, consecutive registers) 523
D1.1.212 STNT1H (scalar plus immediate, strided registers) 525
D1.1.213 STNT1H (scalar plus scalar, strided registers) 527
D1.1.214 STNT1W (scalar plus immediate, consecutive registers) 529
D1.1.215 STNT1W (scalar plus scalar, consecutive registers) 531
D1.1.216 STNT1W (scalar plus immediate, strided registers) 533
D1.1.217 STNT1W (scalar plus scalar, strided registers) 535
D1.1.218 STR (vector) . 537
D1.1.219 STR (ZT0) . 539
D1.1.220 SUB (array accumulators) . 540
D1.1.221 SUB (array results, multiple and single vector) 542
D1.1.222 SUB (array results, multiple vectors) . 544
D1.1.223 SUDOT (multiple and indexed vector) 546
D1.1.224 SUDOT (multiple and single vector) . 548
D1.1.225 SUMLALL (multiple and indexed vector) 550
D1.1.226 SUMLALL (multiple and single vector) 553
D1.1.227 SUMOPA . 555
D1.1.228 SUMOPS . 558
D1.1.229 SUNPK . 561
D1.1.230 SUVDOT . 563
D1.1.231 SVDOT (2-way) . 565
D1.1.232 SVDOT (4-way) . 567
D1.1.233 UCLAMP . 569
D1.1.234 UCVTF . 571
D1.1.235 UDOT (2-way, multiple and indexed vector) 573
D1.1.236 UDOT (2-way, multiple and single vector) 575
D1.1.237 UDOT (2-way, multiple vectors) . 577
D1.1.238 UDOT (4-way, multiple and indexed vector) 579
D1.1.239 UDOT (4-way, multiple and single vector) 582
D1.1.240 UDOT (4-way, multiple vectors) . 584
D1.1.241 UMAX (multiple and single vector) . 586
D1.1.242 UMAX (multiple vectors) . 588
D1.1.243 UMIN (multiple and single vector) . 590

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

x

Contents

D1.1.244 UMIN (multiple vectors) . 592
D1.1.245 UMLAL (multiple and indexed vector) 594
D1.1.246 UMLAL (multiple and single vector) . 597
D1.1.247 UMLAL (multiple vectors) . 599
D1.1.248 UMLALL (multiple and indexed vector) 601
D1.1.249 UMLALL (multiple and single vector) 605
D1.1.250 UMLALL (multiple vectors) . 608
D1.1.251 UMLSL (multiple and indexed vector) 611
D1.1.252 UMLSL (multiple and single vector) . 614
D1.1.253 UMLSL (multiple vectors) . 616
D1.1.254 UMLSLL (multiple and indexed vector) 618
D1.1.255 UMLSLL (multiple and single vector) 622
D1.1.256 UMLSLL (multiple vectors) . 625
D1.1.257 UMOPA (2-way) . 628
D1.1.258 UMOPA (4-way) . 630
D1.1.259 UMOPS (2-way) . 633
D1.1.260 UMOPS (4-way) . 635
D1.1.261 UQCVT (two registers) . 638
D1.1.262 UQCVT (four registers) . 639
D1.1.263 UQCVTN . 640
D1.1.264 UQRSHR (two registers) . 641
D1.1.265 UQRSHR (four registers) . 642
D1.1.266 UQRSHRN . 644
D1.1.267 URSHL (multiple and single vector) . 646
D1.1.268 URSHL (multiple vectors) . 648
D1.1.269 USDOT (multiple and indexed vector) 650
D1.1.270 USDOT (multiple and single vector) . 652
D1.1.271 USDOT (multiple vectors) . 654
D1.1.272 USMLALL (multiple and indexed vector) 656
D1.1.273 USMLALL (multiple and single vector) 659
D1.1.274 USMLALL (multiple vectors) . 661
D1.1.275 USMOPA . 663
D1.1.276 USMOPS . 666
D1.1.277 USVDOT . 669
D1.1.278 UUNPK . 671
D1.1.279 UVDOT (2-way) . 673
D1.1.280 UVDOT (4-way) . 675
D1.1.281 UZP (four registers) . 677
D1.1.282 UZP (two registers) . 679
D1.1.283 WHILEGE . 681
D1.1.284 WHILEGT . 683
D1.1.285 WHILEHI . 685
D1.1.286 WHILEHS . 687
D1.1.287 WHILELE . 689
D1.1.288 WHILELO . 691
D1.1.289 WHILELS . 693
D1.1.290 WHILELT . 695
D1.1.291 ZERO (tile) . 697
D1.1.292 ZERO (ZT0) . 699
D1.1.293 ZIP (four registers) . 700
D1.1.294 ZIP (two registers) . 702

D1.2 SVE2 data-processing instructions . 704
D1.2.1 BFMLSLB (vectors) . 704
D1.2.2 BFMLSLB (indexed) . 706
D1.2.3 BFMLSLT (vectors) . 708

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xi

Contents

D1.2.4 BFMLSLT (indexed) . 710
D1.2.5 FCLAMP . 712
D1.2.6 FDOT (vectors) . 714
D1.2.7 FDOT (indexed) . 716
D1.2.8 PFALSE . 718
D1.2.9 PSEL . 719
D1.2.10 REVD . 721
D1.2.11 SCLAMP . 723
D1.2.12 SDOT (2-way, vectors) . 725
D1.2.13 SDOT (2-way, indexed) . 727
D1.2.14 SQCVTN . 729
D1.2.15 SQCVTUN . 730
D1.2.16 SQRSHRN . 731
D1.2.17 SQRSHRUN . 733
D1.2.18 UCLAMP . 735
D1.2.19 UDOT (2-way, vectors) . 737
D1.2.20 UDOT (2-way, indexed) . 739
D1.2.21 UQCVTN . 741
D1.2.22 UQRSHRN . 742
D1.2.23 WHILEGE (predicate pair) . 744
D1.2.24 WHILEGT (predicate pair) . 746
D1.2.25 WHILEHI (predicate pair) . 748
D1.2.26 WHILEHS (predicate pair) . 750
D1.2.27 WHILELE (predicate pair) . 752
D1.2.28 WHILELO (predicate pair) . 754
D1.2.29 WHILELS (predicate pair) . 756
D1.2.30 WHILELT (predicate pair) . 758

D1.3 Base A64 instructions . 760
D1.3.1 MSR (immediate) . 760
D1.3.2 RPRFM . 764
D1.3.3 SMSTART . 767
D1.3.4 SMSTOP . 769

Part E Appendices

Chapter E1 Instructions affected by SME
E1.1 Illegal instructions in Streaming SVE mode . 773

E1.1.1 Illegal Advanced SIMD instructions . 773
E1.1.2 Illegal SVE instructions . 781

E1.2 Unimplemented SVE instructions . 785
E1.3 Reduced performance in Streaming SVE mode 786

E1.3.1 Scalar floating-point instructions . 786
E1.3.2 SVE instructions . 786

Chapter E2 SME Shared pseudocode
E2.1 Pseudocode functions . 789

E2.1.1 AArch64.CheckFPAdvSIMDEnabled . 789
E2.1.2 BFDotAdd . 789
E2.1.3 BFNeg . 789
E2.1.4 CheckFPAdvSIMDEnabled64 . 790
E2.1.5 CheckNonStreamingSVEEnabled . 790
E2.1.6 CheckSMEAccess . 790
E2.1.7 CheckSMEAndZAEnabled . 790
E2.1.8 CheckSMEEnabled . 791

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xii

Contents

E2.1.9 CheckSMEZT0Enabled . 791
E2.1.10 CheckStreamingSVEAndZAEnabled 792
E2.1.11 CheckStreamingSVEEnabled . 792
E2.1.12 CounterToPredicate . 792
E2.1.13 CurrentNSVL . 793
E2.1.14 CurrentSVL . 793
E2.1.15 CurrentVL . 793
E2.1.16 EncodePredCount . 794
E2.1.17 FPAdd_ZA . 794
E2.1.18 FPDot . 794
E2.1.19 FPDotAdd . 796
E2.1.20 FPDotAdd_ZA . 796
E2.1.21 FPMulAdd_ZA . 796
E2.1.22 FPMulAddH_ZA . 796
E2.1.23 FPProcessDenorms4 . 797
E2.1.24 FPProcessNaNs4 . 797
E2.1.25 FPSub_ZA . 797
E2.1.26 HaveEBF16 . 798
E2.1.27 HaveSME . 798
E2.1.28 HaveSME2 . 798
E2.1.29 HaveSMEF64F64 . 798
E2.1.30 HaveSMEI16I64 . 798
E2.1.31 ImplementedSMEVectorLength . 798
E2.1.32 InStreamingMode . 799
E2.1.33 IsFullA64Enabled . 799
E2.1.34 IsMerging . 799
E2.1.35 IsOriginalSVEEnabled . 799
E2.1.36 IsSMEEnabled . 800
E2.1.37 IsSVEEnabled . 801
E2.1.38 Lookup . 801
E2.1.39 MaybeZeroSVEUppers . 801
E2.1.40 PredCountTest . 802
E2.1.41 ResetSMEState . 802
E2.1.42 ResetSVEState . 802
E2.1.43 SetPSTATE_SM . 802
E2.1.44 SetPSTATE_SVCR . 802
E2.1.45 SetPSTATE_ZA . 803
E2.1.46 SMEAccessTrap . 803
E2.1.47 System . 803
E2.1.48 ZAhslice . 803
E2.1.49 ZAslice . 804
E2.1.50 ZAtile . 804
E2.1.51 ZAvector . 805
E2.1.52 ZAvslice . 805
E2.1.53 ZT0 . 805

Chapter E3 System registers affected by SME
E3.1 SME-Specific System registers . 808

E3.1.1 ID_AA64SMFR0_EL1, SME Feature ID register 0 809
E3.1.2 MPAMSM_EL1, MPAM Streaming Mode Register 814
E3.1.3 SMCR_EL1, SME Control Register (EL1) 817
E3.1.4 SMCR_EL2, SME Control Register (EL2) 823
E3.1.5 SMCR_EL3, SME Control Register (EL3) 828
E3.1.6 SMIDR_EL1, Streaming Mode Identification Register 831
E3.1.7 SMPRI_EL1, Streaming Mode Priority Register 834

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiii

Contents
Contents

E3.1.8 SMPRIMAP_EL2, Streaming Mode Priority Mapping Register 837
E3.1.9 SVCR, Streaming Vector Control Register 842
E3.1.10 TPIDR2_EL0, EL0 Read/Write Software Thread ID Register 2 847
E3.1.11 EDHSR, External Debug Halting Syndrome Register 850

E3.2 Changes to existing System registers . 853
E3.2.1 CPACR_EL1, Architectural Feature Access Control Register 854
E3.2.2 CPTR_EL2, Architectural Feature Trap Register (EL2) 861
E3.2.3 CPTR_EL3, Architectural Feature Trap Register (EL3) 873
E3.2.4 FAR_EL1, Fault Address Register (EL1) 878
E3.2.5 FAR_EL2, Fault Address Register (EL2) 883
E3.2.6 FAR_EL3, Fault Address Register (EL3) 887
E3.2.7 FPCR, Floating-point Control Register 890
E3.2.8 HCRX_EL2, Extended Hypervisor Configuration Register 903
E3.2.9 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register 913
E3.2.10 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register 941
E3.2.11 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1 . . . 964
E3.2.12 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1 973
E3.2.13 ID_AA64ZFR0_EL1, SVE Feature ID register 0 979
E3.2.14 MPAM2_EL2, MPAM2 Register (EL2) 984
E3.2.15 SCR_EL3, Secure Configuration Register 992
E3.2.16 SCTLR_EL1, System Control Register (EL1)1015
E3.2.17 SCTLR_EL2, System Control Register (EL2) 1047
E3.2.18 EDDEVID1, External Debug Device ID register 11082

Chapter E4 Glossary terms

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xiv

Preface

xv

About this supplement

IRFSSZ This supplement is the Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME),
for Armv9-A.

ILZCVC This supplement describes the changes and additions introduced by SME to the Armv9-A architecture.

IFMHRZ This supplement also describes the changes and additions introduced by The Scalable Matrix Extension version 2
(SME2) to the Armv9-A architecture.

IHMDXX In this supplement, unless stated otherwise, when SME is used, the behavior also applies to SME2.

ICDMPR For SME, this supplement is to be read with the following documents:

• Arm® Architecture Reference Manual for A-profile architecture [1]
• Arm® Architecture Registers, for A-profile architecture [2]
• Arm® A64 Instruction Set Architecture, for A-profile architecture [3]

Together, the supplement and these documents provide a full description of the Armv9-A Scalable Matrix Extension,
and the Armv9-A Scalable Matrix Extension version 2.

This supplement is organized into parts:

• SME Application Level Programmers’ Model

Describes how the PE at an application level is altered by the implementation of SME.

• SME System Level Programmers’ Model

Describes how the PE at a system level is altered by the implementation of SME.

• SME Instruction Set

Describes the extensions made for SME to the A64 instruction set.

• Appendices

Provides reference information relating to the SME. This includes summarized information about the
instruction set, imported shared pseudocode and System register data, and a glossary that defines terms used
in this document that have a specialized meaning.

xvi

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document
• A URL, for example http://developer.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for
example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Asterisks in instruction mnemonics

Some behavior descriptions in this manual apply to a group of similar instructions that start with the same
characters. In these situations, an * might be inserted at the end of a series of characters as a wildcard.

xvii

http://developer.arm.com

Preface
Conventions

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xviii

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

• Declaration
• Rule
• Goal
• Information

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions
of the specification.

Content item rendering

In this document, a content item is rendered with a token of the following format in the left margin: Liiiii

• L is a label that indicates the content class of the content item.
• iiiii is the identifier of the content item.

Content item classes

Declaration

A Declaration is a statement that does one or more of the following:

• Introduces a concept
• Introduces a term
• Describes the structure of data
• Describes the encoding of data

A Declaration does not describe behavior.

A Declaration is rendered with the label D.

xix

Preface
Rules-based writing

Rule

A Rule is a statement that describes the behavior of a compliant implementation.

A Rule explains what happens in a particular situation.

A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Goal

A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.

A Goal is comparable to a “business requirement” or an “emergent property.”

A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information

An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label I.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

xx

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer (https://developer.arm.com) for access to Arm documentation.

[1] Arm® Architecture Reference Manual for A-profile architecture. (ARM DDI 0487) Arm Ltd.

[2] Arm® Architecture Registers, for A-profile architecture. (ARM DDI 0601) Arm Ltd.

[3] Arm® A64 Instruction Set Architecture, for A-profile architecture. (ARM DDI 0602) Arm Ltd.

[4] Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring
(MPAM), for A-profile architecture. (ARM DDI 0598) Arm Ltd.

[5] Arm® Architecture Reference Manual Supplement, The Transactional Memory Extension (TME), for A-profile
architecture. (ARM DDI 0617) Arm Ltd.

xxi

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have any comments or queries about our documentation, create a ticket at https://support.developer.arm.com.

As part of the ticket, include:

• The title, (Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME), for
Armv9-A).

• The number, (DDI0616 B.a).
• The section name to which your comments refer.
• The page number(s) to which your comments refer.
• The rule identifier(s) to which your comments refer, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

xxii

https://support.developer.arm.com

Inclusive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms@arm.com.

xxiii

Part A
Introduction

Chapter A1
SME Introduction

A1.1 About the Scalable Matrix Extension

IYVCPK The Scalable Matrix Extension (SME) defines:

• Architectural state capable of holding two-dimensional matrix tiles.
• A Streaming SVE processing mode, which supports execution of SVE2 instructions with a vector length that

matches the tile width.
• Instructions that accumulate the outer product of two vectors into a tile.
• Load, store, and move instructions that transfer a vector to or from a tile row or column.

The extension also defines System registers and fields that identify the presence and capabilities of SME, and
enable and control its behavior at each Exception level.

IPYQMB The Scalable Matrix Extension version 2 (SME2) extends the SME architecture to increase the number of
applications that can benefit from the computational efficiency of SME, beyond its initial focus on outer products
and matrix-matrix multiplication.

SME2 adds data processing instructions with multi-vector operands and a multi-vector predication mechanism.
These include:

• Multi-vector multiply-accumulate instructions, that read SVE Z vectors and accumulate into ZA array vectors
to permit reuse of the SME outer product hardware for vector operations, including widening multiplies that
accumulate into more vectors than they read.

• Multi-vector load, store, move, permute, and convert instructions, that read and write multiple SVE Z vectors
to preprocess inputs and post-process outputs of the multi-vector multiply-accumulate instructions.

• An alternative predication mechanism to the SVE predication mechanism, to control operations performed
on multiple vector registers.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

Chapter A1. SME Introduction
A1.1. About the Scalable Matrix Extension

SME2 also adds:

• A Range Prefetch hint instruction to prepare the memory system to prefetch and retain a set of strided address
ranges in the most appropriate cache levels.

• Compressed neural network capability using dedicated lookup table instructions and outer product instructions
that support binary neural networks.

• A 512-bit architectural register, ZT0, to support the lookup table feature.

ISQCGB Unless otherwise specified by this document, the behaviors of instructions and architectural state when the PE is in
Streaming SVE mode are as described in Arm® Architecture Reference Manual for A-profile architecture [1].

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

Chapter A2
Architecture Features and Extensions

A2.1 Extensions and features defined by SME

SME inherits the rules for architectural features and extensions from Arm® Architecture Reference Manual for
A-profile architecture [1]. This specification describes changes to those rules, and defines any features added by
SME.

RPDXHJ SME is represented by the feature FEAT_SME.

RQFSVK FEAT_SME is an OPTIONAL extension from Armv9.2.

IVQCZZ The following list summarizes the OPTIONAL SME features:

• FEAT_SME_FA64, support the full A64 instruction set in Streaming SVE mode.
• FEAT_SME_F64F64, Double-precision floating-point outer product instructions.
• FEAT_SME_I16I64, 16-bit to 64-bit integer widening outer product instructions.
• FEAT_EBF16, support for Extended BFloat16 mode.

RKXCXC FEAT_SME_FA64 requires FEAT_SVE2.

RKQDDR SME2 represents a version of the SME architecture that implements FEAT_SME2.

RSZZTV FEAT_SME2 is an OPTIONAL extension from Armv9.2.

RBCCQL FEAT_SME2 requires FEAT_SME.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

Chapter A2. Architecture Features and Extensions
A2.2. Changes to existing features and extension requirements

A2.2 Changes to existing features and extension requirements

RDSHWS If SME is implemented, the following features are also implemented:

• FEAT_HCX.
• FEAT_FGT.
• FEAT_FCMA.
• FEAT_FP16.
• FEAT_FHM.
• FEAT_BF16.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

Part B
SME Application Level Programmers’ Model

Chapter B1
Application processing modes

B1.1 Overview

SME extends the AArch64 application level programmers’ model with added processing modes and related
instructions, architectural state, and registers:

• The PSTATE.SM control to enable an execution mode, known as Streaming SVE mode.
• The PSTATE.ZA control to enable access to ZA storage, and to the ZT0 register when SME2 is implemented.
• The Special-purpose register, SVCR, which provides read/write access to PSTATE.SM and PSTATE.ZA from any

Exception level.
• The SMSTART and SMSTOP instructions, aliases of the MSR (immediate) instruction, that can set or clear
PSTATE.SM, PSTATE.ZA, or both PSTATE.SM and PSTATE.ZA from any Exception level.

• A software thread ID register to manage per-thread SME context, TPIDR2_EL0.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

Chapter B1. Application processing modes
B1.2. Process state

B1.2 Process state

DXDPXS A PE that implements SME has a Streaming SVE mode.

DJYVLM Streaming SVE register state is the vector registers Z0-Z31 and predicate registers P0-P15 that can be accessed by
SME, SVE, Advanced SIMD, and floating-point instructions when the PE is in Streaming SVE mode.

DDMZFR Streaming SVE register state includes the SVE FFR predicate register if FEAT_SME_FA64 is implemented and
enabled at the current Exception level.

IXXKGV If SME is implemented, a PE has the following additional architectural state:

• Streaming SVE register state.
• ZA storage.
• When SME2 is implemented, the ZT0 register.

IZTTNW A PE enters Streaming SVE mode to access Streaming SVE vector and predicate register state.

INXQFB If SME is implemented, this does not imply that FEAT_SVE and FEAT_SVE2 are implemented by the PE when it
is not in Streaming SVE mode.

IRNTPX When the PE is in Streaming SVE mode, a different set of vector lengths might be available for SVE instructions,
as specified in C1.1.3 Vector lengths.

ITDSPN When the PE is in Streaming SVE mode, the performance characteristics of some instructions might be significantly
reduced, as specified in E1.3 Reduced performance in Streaming SVE mode.

INWFQX SME extends a PE’s Process state or PSTATE with the SM and ZA fields. The PSTATE fields can be modified by the
SMSTART and SMSTOP instructions, and can also be read and written using the SVCR register.

IDHSSW The PSTATE.SM field controls the use of Streaming SVE mode.

INVWRT The PSTATE.ZA field controls all of the following:

• Access to ZA storage.
• Access to the ZT0 register, when SME2 is implemented.

IDVPDL The SMSTART instruction does either or both of the following:

• Enters Streaming SVE mode.
• Enables the ZA storage, and when SME2 is implemented enables the ZT0 register.

IQQZTL The SMSTOP instruction does either or both of the following:

• Exits Streaming SVE mode.
• Disables the ZA storage, and when SME2 is implemented disables the ZT0 register.

INKJKL After entering Streaming SVE mode, subsequent SMSTART and SMSTOP instructions might be used to enable and
disable the ZA storage, and the ZT0 register when SME2 is implemented, for different phases of execution within
Streaming SVE mode, before using a final SMSTOP instruction to exit Streaming SVE mode.

DWHXDZ SME and SME2 instructions are the instructions defined by the SME architecture in Chapter D1 SME instructions.

DNHNFF A legal instruction is an implemented instruction that can be executed by a PE when PSTATE.SM and PSTATE.ZA

are in the required state, unless its execution at the current Exception level is prevented by a configurable trap or
enable.

DHZFSG An illegal instruction is an implemented instruction whose attempted execution by a PE when PSTATE.SM and
PSTATE.ZA are not in the required state causes an SME illegal instruction exception to be taken, unless its execution
at the current Exception level is prevented by a higher-priority configurable trap or enable.

See also:

• MSR (immediate).
• SMSTART.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

Chapter B1. Application processing modes
B1.2. Process state

• SMSTOP.
• C1.1.3 Vector lengths.
• C1.2.3 Validity of SME and SVE state.
• C1.3.4 ESR_EL1, ESR_EL2, and ESR_EL3.
• C1.4.8 SVCR.
• Chapter E1 Instructions affected by SME.

B1.2.1 PSTATE.SM

IYYQJK The value of PSTATE.SM can be changed by executing the MSR instructions that access the SVCR. For more
information, see B1.2.3 Changing PSTATE.SM and PSTATE.ZA.

DPRGHY The PE is in Streaming SVE mode when the Effective value of PSTATE.SM is 1.

RVJZBC When the PE is in Streaming SVE mode:

• Streaming SVE register state is valid.
• SME and SME2 instructions that access the Streaming SVE register state are legal.
• SME and SME2 instructions that do not access the ZA storage or ZT0 register are legal.
• SME and SME2 instructions that access the ZA storage or ZT0 register are legal if ZA storage is enabled.
• Legal instructions that access SVE or SIMD&FP registers access the Streaming SVE register state.

IYDRPH The SVE FFR predicate register is not architecturally visible when the PE is in Streaming SVE mode if
FEAT_SME_FA64 is not implemented or not enabled at the current Exception level.

RCKSBS When the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level:

• Most Advanced SIMD instructions are illegal, as described in E1.1.1 Illegal Advanced SIMD instructions.
• Some SVE and SVE2 instructions are illegal, as described in E1.1.2 Illegal SVE instructions.
• Most other instructions implemented by the PE, including scalar floating-point instructions, remain legal.

DDVDTY The PE is not in Streaming SVE mode when the Effective value of PSTATE.SM is 0.

RXBBFD When the PE is not in Streaming SVE mode:

• Streaming SVE register state is not valid.
• SME and SME2 instructions that access the Streaming SVE register state are illegal.
• SME LDR (vector), STR (vector), and ZERO (tile) instructions that access the ZA storage are legal if ZA is

enabled, and all other instructions that access the ZA storage are illegal.
• SME2 LDR (ZT0), STR (ZT0), and ZERO (ZT0) instructions that access the ZT0 register are legal if ZA is

enabled, and all other instructions that access the ZT0 register are illegal.
• The MSR and MRS instructions that directly access the SME SVCR register are legal.
• Instructions which access SVE or SIMD&FP registers access the Non-streaming SVE or SIMD&FP register

state.
• All other instructions implemented by the PE are legal.

RRSWFQ When the Effective value of PSTATE.SM is changed by any means from 0 to 1, an entry to Streaming SVE mode is
performed, and each implemented bit of SVE registers Z0-Z31, P0-P15, and FFR in the new mode is set to zero.

RKFRQZ When the Effective value of PSTATE.SM is changed by any means from 1 to 0, an exit from Streaming SVE mode is
performed, and each implemented bit of SVE registers Z0-Z31, P0-P15, and FFR in the new mode is set to zero.

RMHTLZ When the Effective value of PSTATE.SM is changed by any means from 0 to 1, or from 1 to 0, the FPSR is set to the
value 0x0000_0000_0800_009f, in which all of the cumulative status bits are set to 1.

IYTZVD Statements which refer to the value of the SVE vector registers, Z0-Z31, implicitly also refer to the lower bits
of those registers accessed by the SIMD&FP register names V0-V31, Q0-Q31, D0-D31, S0-S31, H0-H31, and
B0-B31.

See also:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

Chapter B1. Application processing modes
B1.2. Process state

• C1.1.2 Traps and exceptions.
• C1.4.8 SVCR.

B1.2.2 PSTATE.ZA

IGJZLD The value of PSTATE.ZA can be changed by executing the MSR instructions that access the SVCR. For more
information, see B1.2.3 Changing PSTATE.SM and PSTATE.ZA.

DHBFWD The following are enabled when PSTATE.ZA is 1:

• The ZA storage.
• When SME2 is implemented, the ZT0 register.

RSFWMY When ZA storage is enabled:

• The contents of ZA storage, and the ZT0 register when SME2 is implemented, are valid and are retained by
hardware irrespective of whether the PE is in Streaming SVE mode.

• SME and SME2 instructions that access the ZA storage or the ZT0 register are legal and can be executed,
unless execution is prevented by some other trap or exception.

DVLMFC The following are disabled when PSTATE.ZA is 0:

• The ZA storage.
• When SME2 is implemented, the ZT0 register.

RJHMYL When ZA storage is disabled:

• The contents of ZA storage, and the ZT0 register when SME2 is implemented, are not valid.
• SME and SME2 instructions that access the ZA storage or the ZT0 register are illegal.
• There is no effect on other instructions implemented by the PE.

RYRZRM When PSTATE.ZA is changed by any means from 0 to 1, all implemented bits of the ZA storage, and the ZT0 register
when SME2 is implemented, are set to zero.

ILRDZR When PSTATE.ZA is changed from 1 to 0, there is no architecturally defined effect on the ZA storage, and the ZT0
register when SME2 is implemented, because the contents of ZA storage and the ZT0 register cannot be observed
when PSTATE.ZA is 0.

IQWCJS When PSTATE.ZA is changed from 0 to 1, or 1 to 0, there is no effect on the SVE vector and predicate registers and
the FPSR if PSTATE.SM is not changed.

See also:

• B2.6 SME2 Lookup table.
• C1.1.2 Traps and exceptions.
• C1.4.8 SVCR.

B1.2.3 Changing PSTATE.SM and PSTATE.ZA

DQRSXV The following MSR (immediate) instructions are provided to independently set or clear PSTATE.SM, PSTATE.ZA, or
both PSTATE.SM and PSTATE.ZA respectively:

• MSR SVCRSM, #<imm1>.
• MSR SVCRZA, #<imm1>.
• MSR SVCRSMZA, #<imm1>.

RMPQWY MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are permitted to be executed from any Exception level.

DYGDXX The SMSTART instruction is the preferred alias of the following instructions:

• MSR SVCRSM, #1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

Chapter B1. Application processing modes
B1.2. Process state

• MSR SVCRZA, #1.
• MSR SVCRSMZA, #1.

DDZTDH The SMSTOP instruction is the preferred alias of the following instructions:

• MSR SVCRSM, #0.
• MSR SVCRZA, #0.
• MSR SVCRSMZA, #0.

ISZYBC Access to SVCR through the MRS and MSR (register) instructions might be used where a calling convention or ABI
requires saving, restoring, or testing of PSTATE.SM and PSTATE.ZA, and are permitted to be executed from any
Exception level. However, the MSR (immediate) instructions might be higher performance than the MSR (register)
instruction, so the MSR (immediate) instructions are preferred for explicit changes to PSTATE.SM and PSTATE.ZA.

IHNNJR The PE might consume less power when PSTATE.SM is 0 and PSTATE.ZA is 0.

See also:

• MSR (immediate).
• SMSTART.
• SMSTOP.
• C1.4.8 SVCR.

B1.2.4 TPIDR2_EL0

DFJMMT If SME is implemented, the register TPIDR2_EL0 is added.

ISLNHN The Software Thread ID Register #2 provides additional thread identifying information that can be read and written
from all Exception levels.

IQPMJN This register is reserved for use by the ABI to manage per-thread SME context.

See also:

• TPIDR2_EL0.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

Chapter B2
Architectural state

B2.1 Architectural state summary

DXJCGQ The Effective Streaming SVE vector length (SVL) is a power of two in the range 128 to 2048 bits inclusive.

INBPPM When the PE is in Streaming SVE mode, the Effective SVE vector length (VL) is equal to SVL.

This might be different from the value of VL when the PE is not in Streaming SVE mode, as described in C1.1.3
Vector lengths.

DJBVYJ In a vector of SVL bits:

• SVLB is the number of 8-bit elements.
• SVLH is the number of 16-bit elements.
• SVLS is the number of 32-bit elements.
• SVLD is the number of 64-bit elements.
• SVLQ is the number of 128-bit elements.

SVL [bits] SVLB SVLH SVLS SVLD SVLQ

128 16 8 4 2 1

256 32 16 8 4 2

512 64 32 16 8 4

1024 128 64 32 16 8

2048 256 128 64 32 16

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

Chapter B2. Architectural state
B2.1. Architectural state summary

See also:

• Chapter B1 Application processing modes.
• C1.1.3 Vector lengths.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

Chapter B2. Architectural state
B2.2. SME ZA storage

B2.2 SME ZA storage

DSSXPL The ZA storage is an architectural register state consisting of a two-dimensional ZA array of [SVLB × SVLB] bytes.

B2.2.1 ZA array vector access

RFFWNB The ZA array can be accessed as vectors of SVL bits.

DPPPCM An untyped vector access to the ZA array is represented by ZA[N], where N is in the range 0 to SVLB-1 inclusive.

DDTVZN In SME LDR (vector) and STR (vector) instructions, an untyped ZA array vector is selected by the sum of a 32-bit
general-purpose vector select register Wv and an immediate vector select offset offs, modulo SVLB.

DYXHFR The preferred disassembly for an untyped ZA array vector is ZA[Wv, offs], where offs is an immediate in the range
0-15 inclusive.

DCRJPC The ZA array can be accessed as vectors of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit elements.

DWMVZT An elementwise vector access to the ZA array is indicated by appending a vector index “[N]” to the ZA array name
and element size qualifier, where N is in the range 0 to SVLB-1 inclusive, as follows:

• An 8-bit element vector access to the ZA array is represented by ZA.B[N].
• A 16-bit element vector access to the ZA array is represented by ZA.H[N].
• A 32-bit element vector access to the ZA array is represented by ZA.S[N].
• A 64-bit element vector access to the ZA array is represented by ZA.D[N].
• A 128-bit element vector access to the ZA array is represented by ZA.Q[N].

B2.2.2 ZA tile access

DVSVMX A ZA tile is a square, two-dimensional sub-array of elements within the ZA array.

IWLRTV Depending on the element size with which it is accessed, the ZA array is treated as containing one or more ZA
tiles, as described in the following sections.

DDWMYT A ZA tile is indicated by appending the tile number to the ZA name.

DZGBHT A ZA tile slice is a one-dimensional set of horizontally or vertically contiguous elements within a ZA tile.

RPZNWB A vector access to a tile reads or writes a ZA tile slice.

INFXHH A ZA tile can be accessed as vectors of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit elements.

IYZDBS A ZA tile can be accessed as horizontal slices of SVL bits.

RGPVSZ A ZA tile is accessed as horizontal slices if the V field in the accessing instruction opcode is 0.

DTRHTX An access to horizontal tile slices is indicated by an “H” suffix on the ZA tile name.

IHBYTT A ZA tile can be accessed as vertical slices of SVL bits.

RGPPPK A ZA tile is accessed as vertical slices if the V field in the accessing instruction opcode is 1.

DWSBVG An access to vertical tile slices is indicated by a “V” suffix on the ZA tile name.

RTWWTL In SME instructions, the tile slice is selected by the sum of a 32-bit general-purpose slice index register Ws and an
immediate slice index offset offs, modulo the number of slices in the named tile.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

Chapter B2. Architectural state
B2.2. SME ZA storage

B2.2.3 Accessing an 8-bit element ZA tile

DHMSNH An 8-bit element ZA tile is indicated by a “.B” qualifier following the tile name.

DNLCNH There is a single tile named ZA0.B which consists of [SVLB × SVLB] 8-bit elements and occupies all of the ZA
storage.

RNBSMJ An access to a horizontal or vertical 8-bit element ZA tile slice reads or writes SVLB 8-bit elements.

DNMHLM An access to a horizontal or vertical 8-bit element ZA tile slice is indicated by appending a slice index “[N]” to the
tile name, direction suffix, and qualifier. For example, where N is in the range 0 to SVLB-1 inclusive:

• ZA0H.B[N] indicates a horizontal 8-bit element ZA tile slice selection.
• ZA0V.B[N] indicates a vertical 8-bit element ZA tile slice selection.

IJVTNY Horizontal and vertical ZA0.B slice accesses are illustrated in the following diagram for SVL of 256 bits:ZA0.B (SVL = 256 bits)

ZA
0V

.B
[3
1]

ZA
0V

.B
[0
]

ZA
0V

.B
[1
6]

ZA0H.B[0]

ZA0H.B[15]

ZA0H.B[31]

RDCSDX An access to the horizontal slice ZA0H.B[N] reads or writes the SVLB bytes in ZA array vector ZA.B[N].

RFHYSQ An access to the vertical slice ZA0V.B[N] reads or writes the 8-bit element [N] within each horizontal slice of
ZA0.B.

DCDDVV The preferred disassembly is:

• ZA0H.B[Ws, offs], for a horizontal 8-bit element ZA tile slice selection.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

Chapter B2. Architectural state
B2.2. SME ZA storage

• ZA0V.B[Ws, offs], for a vertical 8-bit element ZA tile slice selection.

Where offs is an immediate in the range 0-15 inclusive.

B2.2.4 Accessing a 16-bit element ZA tile

DLNXPD A 16-bit element ZA tile is indicated by a “.H” qualifier following the tile name.

DGWZDM There are two tiles named ZA0.H and ZA1.H. Each tile consists of [SVLH × SVLH] 16-bit elements, and occupies
half of the ZA storage.

RNMGXG An access to a horizontal or vertical 16-bit element ZA tile slice reads or writes SVLH 16-bit elements.

DDHKMC An access to a horizontal or vertical 16-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where t is 0 or 1, and N is in the range 0 to SVLH-1
inclusive:

• ZAtH.H[N] indicates a horizontal 16-bit element ZA tile slice selection.
• ZAtV.H[N] indicates a vertical 16-bit element ZA tile slice selection.

IZSWJW Horizontal and vertical ZAt.H slice accesses, where t is 0 or 1, are illustrated in the following diagram for SVL of
256 bits:

ZAtH.H[15]

ZA
tV

.H
[1
5]

ZA
tV

.H
[8
]

ZA
tV

.H
[0
]

ZAtH.H[0]

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

Chapter B2. Architectural state
B2.2. SME ZA storage

RBTLQC An access to the horizontal slice ZAtH.H[N] reads or writes the SVLH 16-bit elements in ZA array vector ZA.H[t +
2 * N].

RNGJBJ An access to the vertical slice ZAtV.H[N] reads or writes the 16-bit element [N] within each horizontal slice of
ZAt.H.

DRHQJT The preferred disassembly is as follows:

• ZAtH.H[Ws, offs], for a horizontal 16-bit element ZA tile slice selection.
• ZAtV.H[Ws, offs], for a vertical 16-bit element ZA tile slice selection.

Where t is 0 or 1, and offs is an immediate in the range 0-7 inclusive.

B2.2.5 Accessing a 32-bit element ZA tile

DHBKZV A 32-bit element ZA tile is indicated by a “.S” qualifier following the tile name.

DRDRRT There are four tiles named ZA0.S, ZA1.S, ZA2.S, and ZA3.S. Each tile consists of [SVLS × SVLS] 32-bit elements,
and occupies a quarter of the ZA storage.

RXFPPL An access to a horizontal or vertical 32-bit element ZA tile slice reads or writes SVLS 32-bit elements.

DJFPSJ An access to a horizontal or vertical 32-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where t is 0, 1, 2, or 3, and N is in the range 0 to SVLS-1
inclusive:

• ZAtH.S[N] indicates a horizontal 32-bit element ZA tile slice selection.
• ZAtV.S[N] indicates a vertical 32-bit element ZA tile slice selection.

ISZXZR Horizontal and vertical ZAt.S slice accesses, where t is 0, 1, 2, or 3, are illustrated in the following diagram for
SVL of 256 bits:

ZA
tV

.S
[7
]

ZA
tV

.S
[0
]

ZAtH.S[0]

ZAtH.S[7]

RJBJZY An access to the horizontal slice ZAtH.S[N] reads or writes the SVLS 32-bit elements in ZA array vector ZA.S[t +
4 * N].

RGBYSJ

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

Chapter B2. Architectural state
B2.2. SME ZA storage

An access to the vertical slice ZAtV.S[N] reads or writes the 32-bit element [N] within each horizontal slice of
ZAt.S.

DLQLJH The preferred disassembly is:

• ZAtH.S[Ws, offs], for a horizontal 32-bit element ZA tile slice selection.
• ZAtV.S[Ws, offs], for a vertical 32-bit element ZA tile slice selection.

Where t is 0, 1, 2, or 3, and offs is 0, 1, 2, or 3.

B2.2.6 Accessing a 64-bit element ZA tile

DTWMMM A 64-bit element ZA tile is indicated by a “.D” qualifier following the tile name.

DTHPSD There are eight tiles named ZA0.D, ZA1.D, ZA2.D, ZA3.D, ZA4.D, ZA5.D, ZA6.D, and ZA7.D. Each tile consists
of [SVLD × SVLD] 64-bit elements, and occupies an eighth of the ZA storage.

RZXYBQ An access to a horizontal or vertical 64-bit element ZA tile slice reads or writes SVLD 64-bit elements.

DDCXSX An access to a horizontal or vertical 64-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where t is in the range 0-7 inclusive, and N is in the
range 0 to SVLD-1 inclusive:

• ZAtH.D[N] indicates a horizontal 64-bit element ZA tile slice selection.
• ZAtV.D[N] indicates a vertical 64-bit element ZA tile slice selection.

ILGJZC Horizontal and vertical ZAt.D slice accesses, where t is in the range 0-7 inclusive, are illustrated in the following
diagram for SVL of 256 bits:

ZAtH.D[0]

ZAtH.D[3]

ZA
tV

.D
[3
]

ZA
tV

.D
[0
]

RCVVJK An access to the horizontal slice ZAtH.D[N] reads or writes the SVLD 64-bit elements in ZA array vector ZA.D[t +
8 * N].

RJYQKK An access to the vertical slice ZAtV.D[N] reads or writes the 64-bit element [N] within each horizontal slice of
ZAt.D.

DMQQPX The preferred disassembly is:

• ZAtH.D[Ws, offs], for a horizontal 64-bit element ZA tile slice selection.
• ZAtV.D[Ws, offs], for a vertical 64-bit element ZA tile slice selection.

Where t is in the range 0-7 inclusive, and offs is 0 or 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

Chapter B2. Architectural state
B2.2. SME ZA storage

B2.2.7 Accessing a 128-bit element ZA tile

DGZDSH A 128-bit element ZA tile is indicated by a “.Q” qualifier following the tile name.

DRPMJL There are 16 tiles named ZA0.Q, ZA1.Q, ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZA7.Q, ZA8.Q, ZA9.Q, ZA10.Q,
ZA11.Q, ZA12.Q, ZA13.Q, ZA14.Q, and ZA15.Q. Each tile consists of [SVLQ × SVLQ] 128-bit elements, and
occupies 1/16 of the ZA storage.

RQGHPF An access to a horizontal or vertical 128-bit element ZA tile slice reads or writes SVLQ 128-bit elements.

DRLQKW An access to a horizontal or vertical 128-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where t is in the range 0-15 inclusive, and N is in the
range 0 to SVLQ-1 inclusive:

• ZAtH.Q[N] indicates a horizontal 128-bit element ZA tile slice selection.
• ZAtV.Q[N] indicates a vertical 128-bit element ZA tile slice selection.

IYQPWS Horizontal and vertical ZAt.Q slice accesses, where t is in the range 0-15 inclusive, are illustrated in the following
diagram for SVL of 256 bits:

ZAtH.Q[0]

ZA
tV

.Q
[1
]

RPJTQJ An access to the horizontal slice ZAtH.Q[N] reads or writes the SVLQ 128-bit elements in ZA array vector ZA.Q[t
+ 16 * N].

RTRJFZ An access to the vertical slice ZAtV.Q[N] reads or writes the 128-bit element [N] within each horizontal slice of
ZAt.Q.

DVCLJP The preferred disassembly is:

• ZAtH.Q[Ws, 0], for a horizontal 128-bit element ZA tile slice selection.
• ZAtV.Q[Ws, 0], for a vertical 128-bit element ZA tile slice selection.

Where t is in the range 0-15 inclusive, and the slice index offset is always zero.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

Chapter B2. Architectural state
B2.3. ZA storage layout

B2.3 ZA storage layout

B2.3.1 ZA array vector and tile slice mappings

IPYTLW Each horizontal tile slice corresponds to one ZA array vector.

The horizontal slice mappings for all tile sizes are illustrated by this table:

ZA Array
Vector

8-bit element Tile
Horizontal Slice

16-bit element Tile
Horizontal Slice

32-bit element Tile
Horizontal Slice

64-bit element Tile
Horizontal Slice

128-bit element Tile
Horizontal Slice

ZA[0] ZA0H.B[0] ZA0H.H[0] ZA0H.S[0] ZA0H.D[0] ZA0H.Q[0]

ZA[1] ZA0H.B[1] ZA1H.H[0] ZA1H.S[0] ZA1H.D[0] ZA1H.Q[0]

ZA[2] ZA0H.B[2] ZA0H.H[1] ZA2H.S[0] ZA2H.D[0] ZA2H.Q[0]

ZA[3] ZA0H.B[3] ZA1H.H[1] ZA3H.S[0] ZA3H.D[0] ZA3H.Q[0]

ZA[4] ZA0H.B[4] ZA0H.H[2] ZA0H.S[1] ZA4H.D[0] ZA4H.Q[0]

ZA[5] ZA0H.B[5] ZA1H.H[2] ZA1H.S[1] ZA5H.D[0] ZA5H.Q[0]

ZA[6] ZA0H.B[6] ZA0H.H[3] ZA2H.S[1] ZA6H.D[0] ZA6H.Q[0]

ZA[7] ZA0H.B[7] ZA1H.H[3] ZA3H.S[1] ZA7H.D[0] ZA7H.Q[0]

ZA[8] ZA0H.B[8] ZA0H.H[4] ZA0H.S[2] ZA0H.D[1] ZA8H.Q[0]

ZA[9] ZA0H.B[9] ZA1H.H[4] ZA1H.S[2] ZA1H.D[1] ZA9H.Q[0]

ZA[10] ZA0H.B[10] ZA0H.H[5] ZA2H.S[2] ZA2H.D[1] ZA10H.Q[0]

ZA[11] ZA0H.B[11] ZA1H.H[5] ZA3H.S[2] ZA3H.D[1] ZA11H.Q[0]

ZA[12] ZA0H.B[12] ZA0H.H[6] ZA0H.S[3] ZA4H.D[1] ZA12H.Q[0]

ZA[13] ZA0H.B[13] ZA1H.H[6] ZA1H.S[3] ZA5H.D[1] ZA13H.Q[0]

ZA[14] ZA0H.B[14] ZA0H.H[7] ZA2H.S[3] ZA6H.D[1] ZA14H.Q[0]

ZA[15] ZA0H.B[15] ZA1H.H[7] ZA3H.S[3] ZA7H.D[1] ZA15H.Q[0]

if applicable
ZA[16] to
ZA[SVLB-1]

.

B2.3.2 Tile mappings

IYVYJP The smallest ZA tile granule is the 128-bit element tile. When the ZA storage is viewed as an array of tiles, the
larger 64-bit, 32-bit, 16-bit, and 8-bit element tiles overlap multiple 128-bit element tiles as follows:

Tile Overlaps

ZA0.B ZA0.Q, ZA1.Q, ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZA7.Q,
ZA8.Q, ZA9.Q, ZA10.Q, ZA11.Q, ZA12.Q, ZA13.Q, ZA14.Q, ZA15.Q

ZA0.H ZA0.Q, ZA2.Q, ZA4.Q, ZA6.Q, ZA8.Q, ZA10.Q, ZA12.Q, ZA14.Q

ZA1.H ZA1.Q, ZA3.Q, ZA5.Q, ZA7.Q, ZA9.Q, ZA11.Q, ZA13.Q, ZA15.Q

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter B2. Architectural state
B2.3. ZA storage layout

Tile Overlaps

ZA0.S ZA0.Q, ZA4.Q, ZA8.Q, ZA12.Q

ZA1.S ZA1.Q, ZA5.Q, ZA9.Q, ZA13.Q

ZA2.S ZA2.Q, ZA6.Q, ZA10.Q, ZA14.Q

ZA3.S ZA3.Q, ZA7.Q, ZA11.Q, ZA15.Q

ZA0.D ZA0.Q, ZA8.Q

ZA1.D ZA1.Q, ZA9.Q

ZA2.D ZA2.Q, ZA10.Q

ZA3.D ZA3.Q, ZA11.Q

ZA4.D ZA4.Q, ZA12.Q

ZA5.D ZA5.Q, ZA13.Q

ZA6.D ZA6.Q, ZA14.Q

ZA7.D ZA7.Q, ZA15.Q

IWGZBT The architecture permits concurrent use of different element size tiles.

B2.3.3 Horizontal tile slice mappings

INJJXW The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for a 32-bit element and 64-bit
element horizontal tile slice.

Each small numbered square represents 8 bits.

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0]
1[0] 1[0] 1[0] 1[0] 0[1] [1]
2[0] 2[0] 2[0] 0[1] 0[2] [2]
3[0] 3[0] 3[0] 1[1] 0[3] [3]
4[0] 4[0] 0[1] 0[2] 0[4] [4]
5[0] 5[0] 1[1] 1[2] 0[5] [5]
6[0] 6[0] 2[1] 0[3] 0[6] [6] ZA2H.S[1]
7[0] 7[0] 3[1] 1[3] 0[7] [7]
8[0] 0[1] 0[2] 0[4] 0[8] [8]
9[0] 1[1] 1[2] 1[4] 0[9] [9]
10[0] 2[1] 2[2] 0[5] 0[10] [10]
11[0] 3[1] 3[2] 1[5] 0[11] [11]
12[0] 4[1] 0[3] 0[6] 0[12] [12]
13[0] 5[1] 1[3] 1[6] 0[13] [13]
14[0] 6[1] 2[3] 0[7] 0[14] [14]
15[0] 7[1] 3[3] 1[7] 0[15] [15]
0[1] 0[2] 0[4] 0[8] 0[16] [16]
1[1] 1[2] 1[4] 1[8] 0[17] [17]
2[1] 2[2] 2[4] 0[9] 0[18] [18]
3[1] 3[2] 3[4] 1[9] 0[19] [19]
4[1] 4[2] 0[5] 0[10] 0[20] [20] ZA4H.D[2]
5[1] 5[2] 1[5] 1[10] 0[21] [21]
6[1] 6[2] 2[5] 0[11] 0[22] [22]
7[1] 7[2] 3[5] 1[11] 0[23] [23]
8[1] 0[3] 0[6] 0[12] 0[24] [24]
9[1] 1[3] 1[6] 1[12] 0[25] [25]
10[1] 2[3] 2[6] 0[13] 0[26] [26]
11[1] 3[3] 3[6] 1[13] 0[27] [27]
12[1] 4[3] 0[7] 0[14] 0[28] [28]
13[1] 5[3] 1[7] 1[14] 0[29] [29]
14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31]

ZA storage (SVL = 256 bits)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

Chapter B2. Architectural state
B2.3. ZA storage layout

An SME vector load, store, or move instruction that accesses horizontal tile slices ZA2H.S[1] or ZA4H.D[2] treats
the slices as vectors with the following layout:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ZA2H.S[1]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ZA4H.D[2]

B2.3.4 Vertical tile slice mappings

ITNCCV The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for a 32-bit element and 64-bit
element vertical tile slice.

Each small numbered square represents 8 bits.

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0]
1[0] 1[0] 1[0] 1[0] 0[1] [1]
2[0] 2[0] 2[0] 0[1] 0[2] [2]
3[0] 3[0] 3[0] 1[1] 0[3] [3]
4[0] 4[0] 0[1] 0[2] 0[4] [4]
5[0] 5[0] 1[1] 1[2] 0[5] [5]
6[0] 6[0] 2[1] 0[3] 0[6] [6]
7[0] 7[0] 3[1] 1[3] 0[7] [7]
8[0] 0[1] 0[2] 0[4] 0[8] [8]
9[0] 1[1] 1[2] 1[4] 0[9] [9]
10[0] 2[1] 2[2] 0[5] 0[10] [10]
11[0] 3[1] 3[2] 1[5] 0[11] [11]
12[0] 4[1] 0[3] 0[6] 0[12] [12]
13[0] 5[1] 1[3] 1[6] 0[13] [13]
14[0] 6[1] 2[3] 0[7] 0[14] [14]
15[0] 7[1] 3[3] 1[7] 0[15] [15]
0[1] 0[2] 0[4] 0[8] 0[16] [16]
1[1] 1[2] 1[4] 1[8] 0[17] [17]
2[1] 2[2] 2[4] 0[9] 0[18] [18]
3[1] 3[2] 3[4] 1[9] 0[19] [19]
4[1] 4[2] 0[5] 0[10] 0[20] [20]
5[1] 5[2] 1[5] 1[10] 0[21] [21]
6[1] 6[2] 2[5] 0[11] 0[22] [22]
7[1] 7[2] 3[5] 1[11] 0[23] [23]
8[1] 0[3] 0[6] 0[12] 0[24] [24]
9[1] 1[3] 1[6] 1[12] 0[25] [25]
10[1] 2[3] 2[6] 0[13] 0[26] [26]
11[1] 3[3] 3[6] 1[13] 0[27] [27]
12[1] 4[3] 0[7] 0[14] 0[28] [28]
13[1] 5[3] 1[7] 1[14] 0[29] [29]
14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31]

ZA storage (SVL = 256 bits)
ZA2V.S[1]ZA4V.D[2]

An SME vector load, store, or move instruction which accesses vertical tile slices ZA2V.S[1] or ZA4V.D[2] treats
the slices as vectors with the following layout:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4 ZA2V.S[1]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
23 22 21 20 19 18 17 16 23 22 21 20 19 18 17 16 23 22 21 20 19 18 17 16 23 22 21 20 19 18 17 16 ZA4V.D[2]

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

45

Chapter B2. Architectural state
B2.3. ZA storage layout

B2.3.5 Mixed horizontal and vertical tile slice mappings

ICGXPJ The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for various element size tiles,
horizontal tile slices, and vertical tile slices.

Each small square represents 8 bits.

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0]
1[0] 1[0] 1[0] 1[0] 0[1] [1]
2[0] 2[0] 2[0] 0[1] 0[2] [2]
3[0] 3[0] 3[0] 1[1] 0[3] [3]
4[0] 4[0] 0[1] 0[2] 0[4] [4]
5[0] 5[0] 1[1] 1[2] 0[5] [5]
6[0] 6[0] 2[1] 0[3] 0[6] [6] ZA6H.D[0]
7[0] 7[0] 3[1] 1[3] 0[7] [7]
8[0] 0[1] 0[2] 0[4] 0[8] [8]
9[0] 1[1] 1[2] 1[4] 0[9] [9]
10[0] 2[1] 2[2] 0[5] 0[10] [10]
11[0] 3[1] 3[2] 1[5] 0[11] [11]
12[0] 4[1] 0[3] 0[6] 0[12] [12]
13[0] 5[1] 1[3] 1[6] 0[13] [13]
14[0] 6[1] 2[3] 0[7] 0[14] [14] ZA0H.H[7]
15[0] 7[1] 3[3] 1[7] 0[15] [15]
0[1] 0[2] 0[4] 0[8] 0[16] [16]
1[1] 1[2] 1[4] 1[8] 0[17] [17]
2[1] 2[2] 2[4] 0[9] 0[18] [18]
3[1] 3[2] 3[4] 1[9] 0[19] [19]
4[1] 4[2] 0[5] 0[10] 0[20] [20] ZA0H.B[20]
5[1] 5[2] 1[5] 1[10] 0[21] [21]
6[1] 6[2] 2[5] 0[11] 0[22] [22] ZA2H.S[5]
7[1] 7[2] 3[5] 1[11] 0[23] [23]
8[1] 0[3] 0[6] 0[12] 0[24] [24]
9[1] 1[3] 1[6] 1[12] 0[25] [25]
10[1] 2[3] 2[6] 0[13] 0[26] [26]
11[1] 3[3] 3[6] 1[13] 0[27] [27]
12[1] 4[3] 0[7] 0[14] 0[28] [28] ZA12H.Q[1]
13[1] 5[3] 1[7] 1[14] 0[29] [29]
14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31]

ZA3V.S[4]ZA7V.D[3] ZA0V.B[22] ZA8V.Q[0] ZA1V.H[1]

ZA storage (SVL = 256 bits)

IHVFMB It is possible to simultaneously use non-overlapping ZA array vectors within tiles of differing element sizes. For
example, tiles ZA1.H, ZA0.S, and ZA2.D have no ZA array vectors in common, as illustrated in the following
diagram for SVL of 256 bits:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

Chapter B2. Architectural state
B2.3. ZA storage layout

.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0[0] 0[0] 0[0] 0[0] 0[0] [0] ZA0H.S[0]
1[0] 1[0] 1[0] 1[0] 0[1] [1] ZA1H.H[0]
2[0] 2[0] 2[0] 0[1] 0[2] [2] ZA2H.D[0]
3[0] 3[0] 3[0] 1[1] 0[3] [3] ZA1H.H[1]
4[0] 4[0] 0[1] 0[2] 0[4] [4] ZA0H.S[1]
5[0] 5[0] 1[1] 1[2] 0[5] [5] ZA1H.H[2]
6[0] 6[0] 2[1] 0[3] 0[6] [6]
7[0] 7[0] 3[1] 1[3] 0[7] [7] ZA1H.H[3]
8[0] 0[1] 0[2] 0[4] 0[8] [8] ZA0H.S[2]
9[0] 1[1] 1[2] 1[4] 0[9] [9] ZA1H.H[4]
10[0] 2[1] 2[2] 0[5] 0[10] [10] ZA2H.D[1]
11[0] 3[1] 3[2] 1[5] 0[11] [11] ZA1H.H[5]
12[0] 4[1] 0[3] 0[6] 0[12] [12] ZA0H.S[3]
13[0] 5[1] 1[3] 1[6] 0[13] [13] ZA1H.H[6]
14[0] 6[1] 2[3] 0[7] 0[14] [14]
15[0] 7[1] 3[3] 1[7] 0[15] [15] ZA1H.H[7]
0[1] 0[2] 0[4] 0[8] 0[16] [16] ZA0H.S[4]
1[1] 1[2] 1[4] 1[8] 0[17] [17] ZA1H.H[8]
2[1] 2[2] 2[4] 0[9] 0[18] [18] ZA2H.D[2]
3[1] 3[2] 3[4] 1[9] 0[19] [19] ZA1H.H[9]
4[1] 4[2] 0[5] 0[10] 0[20] [20] ZA0H.S[5]
5[1] 5[2] 1[5] 1[10] 0[21] [21] ZA1H.H[10]
6[1] 6[2] 2[5] 0[11] 0[22] [22]
7[1] 7[2] 3[5] 1[11] 0[23] [23] ZA1H.H[11]
8[1] 0[3] 0[6] 0[12] 0[24] [24] ZA0H.S[6]
9[1] 1[3] 1[6] 1[12] 0[25] [25] ZA1H.H[12]
10[1] 2[3] 2[6] 0[13] 0[26] [26] ZA2H.D[3]
11[1] 3[3] 3[6] 1[13] 0[27] [27] ZA1H.H[13]
12[1] 4[3] 0[7] 0[14] 0[28] [28] ZA0H.S[7]
13[1] 5[3] 1[7] 1[14] 0[29] [29] ZA1H.H[14]
14[1] 6[3] 2[7] 0[15] 0[30] [30]
15[1] 7[3] 3[7] 1[15] 0[31] [31] ZA1H.H[15]

ZA storage (SVL = 256 bits)

IWDMCK It is possible to access overlapping ZA array vectors within tiles of differing element sizes. For example, tiles
ZA0.H, ZA2.S, and ZA6.D have common ZA array vectors.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

47

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

B2.4 SME2 Multi-vector operands

RKLRKJ Multi-vector operands allow certain SME2 instructions to access source and destination operands which each
consist of one of the following:

• A group of two or four SVE Z vector registers.
• A group of two or four ZA tile slices.
• A group of two, four, eight, or sixteen ZA array vectors.

B2.4.1 Z multi-vector operands

DPSTFY A multi-vector operand consisting of two or four SVE Z vector registers is called a Z multi-vector operand.

RVCXBQ A Z multi-vector operand can occupy:

• Consecutively numbered Z registers.
• Z registers with strided numbering.

DNYNRZ A Z multi-vector operand occupying two consecutively numbered Z vectors consists of Zn+0 and Zn+1, where
n+x modulo 32 is a register number in the range 0-31 inclusive.

DDZDBM A Z multi-vector operand occupying four consecutively numbered Z vectors consists of Zn+0 to Zn+3, where n+x
modulo 32 is a register number in the range 0-31 inclusive.

DVYKCM The preferred disassembly for a Z multi-vector operand of consecutively numbered Z vectors is a dash-separated
register range, for example { Z0.S-Z1.S } or { Z30.B-Z1.B }. Toolchains must also support assembler source
code that uses the alternative comma-separated list notation, for example { Z0.S, Z1.S } or { Z30.B, Z31.B, Z0.B,
Z1.B }. Disassemblers can provide an option to select between the dash-separated range and comma-separated list
notations.

DPCYZS A Z multi-vector operand occupying two Z vectors with strided register numbering consists of a first register in the
range Z0-Z7 or Z16-Z23, followed by a second register with a number that is 8 higher than the first register.

DRZTTV A Z multi-vector operand occupying four Z vectors with strided register numbering consists of a first register in the
range Z0-Z3 or Z16-Z19, followed by three registers each with a number that is 4 higher than the previous register.

DDMTSL The preferred disassembly for a Z multi-vector operand of Z vectors with strided register numbering is a
comma-separated register list, for example { Z0.D, Z8.D } or { Z0.H, Z4.H, Z8.H, Z12.H }.

B2.4.2 ZA multi-slice operands

DJMCTK A multi-vector operand consisting of two or four ZA tile slices is called a ZA multi-slice operand.

RSCHNH A ZA multi-slice operand can occupy:

• Consecutively numbered horizontal ZA tile slices.
• Consecutively numbered vertical ZA tile slices.

DJFDSB In instructions operating on ZA multi-slice operands, the lowest-numbered slice is:

• A multiple of 2 for a two-slice ZA operand.
• A multiple of 4 for a four-slice ZA operand.

The lowest-numbered slice is selected by the sum of a 32-bit general-purpose slice index register Ws and an
immediate slice index offset offs.

RXMMKZ Instructions operating on the following ZA multi-slice operands are treated as UNDEFINED:

• The four-slice operand in a 64-bit element tile when SVL is 128 bits.
• The two-slice operand in a 128-bit element tile when SVL is 128 bits.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

48

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

• The four-slice operand in a 128-bit element tile when SVL is 128 bits or 256 bits.

DGJTMX The preferred disassembly for a ZA multi-slice operand is as follows:

• ZAtH.T[Ws, offs1:offs2], for horizontal ZA two-slice operands, where offs2 = offs1 + 1.
• ZAtH.T[Ws, offs1:offs4], for horizontal ZA four-slice operands, where offs4 = offs1 + 3.
• ZAtV.T[Ws, offs1:offs2], for vertical ZA two-slice operands, where offs2 = offs1 + 1.
• ZAtV.T[Ws, offs1:offs4], for vertical ZA four-slice operands, where offs4 = offs1 + 3.

B2.4.3 ZA multi-vector operands

DRGXBK A multi-vector operand consisting of two, four, eight, or sixteen ZA array vectors is called a ZA multi-vector
operand.

DTGDRF One ZA array vector is called a ZA single-vector group.

DFCYGL Two consecutively numbered vectors in the ZA array are called a ZA double-vector group.

DGCTYB Four consecutively numbered vectors in the ZA array are called a ZA quad-vector group.

IPMQRQ The ZA multi-vector operand consists of one, two, or four vector groups, where a vector group is one of the
following:

• ZA single-vector group.
• ZA double-vector group.
• ZA quad-vector group.

IKLBYZ The SME2 architecture includes multi-vector instructions that access a ZA multi-vector operand consisting of the
same number of vector groups as there are vectors in each Z multi-vector operand.

IHPKZM The preferred disassembly for a ZA multi-vector operand consisting of two or four vector groups, defined in
declarations DKQZYZ, DJWRSN, and DTTNGH, includes the symbol VGx2 or VGx4, respectively. The symbol VGx2 or
VGx4 can optionally be omitted in assembler source code if it can be inferred from the other operands.

DCLJBX In instructions that access a ZA multi-vector operand, the lowest-numbered vector is selected by the sum of a 32-bit
general-purpose vector select register Wv and an immediate vector select offset offs, modulo one of the following
values:

• SVLB when the operand consists of one ZA vector group.
• SVLB/2 when the operand consists of two ZA vector groups.
• SVLB/4 when the operand consists of four ZA vector groups.

B2.4.3.1 ZA multi-vector operands of single-vector groups

DQFPHH In instructions where the ZA multi-vector operand consists of two single-vector groups, each vector group is held
in a separate half of the ZA array. The halves of the ZA array are as follows, where n is in the range 0 to (SVLB/2 -
1) inclusive:

• ZA[n+0].
• ZA[SVLB/2 + n+0].

DTTHGQ In instructions where the ZA multi-vector operand consists of four single-vector groups, each vector group is held
in a separate quarter of the ZA array. The quarters of the ZA array are as follows, where n is in the range 0 to
(SVLB/4 - 1) inclusive:

• ZA[n+0].
• ZA[SVLB/4 + n+0].
• ZA[SVLB/2 + n+0].
• ZA[SVLB*3/4 + n+0].

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

49

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

DKQZYZ The preferred disassembly for a ZA multi-vector operand of single-vector groups is as follows, where offs is an
immediate in the range 0-7 inclusive, and T is one of B, H, S, or D:

• ZA.T[Wv, offs, VGx2], when the operand consists of two single-vector groups.
• ZA.T[Wv, offs, VGx4], when the operand consists of four single-vector groups.

IBYBQLI The mapping between ZA multi-vector operands of single-vector groups and 32-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

ZA[0] ZA0H.S[0] ZA[0]
ZA[1] ZA0H.S[1] ZA[4]
ZA[2] ZA0H.S[2] ZA[8]
ZA[3] ZA0H.S[3] ZA[12]
ZA[4] ZA0H.S[4] ZA[16]
ZA[5] ZA0H.S[5] ZA[20]
ZA[6] ZA0H.S[6] ZA[24]
ZA[7] ZA0H.S[7] ZA[28]
ZA[8] ZA1H.S[0] ZA[1]
ZA[9] ZA1H.S[1] ZA[5]
ZA[10] ZA1H.S[2] ZA[9]
ZA[11] ZA1H.S[3] ZA[13]
ZA[12] ZA1H.S[4] ZA[17]
ZA[13] ZA1H.S[5] ZA[21]
ZA[14] ZA1H.S[6] ZA[25]
ZA[15] ZA1H.S[7] ZA[29]
ZA[16] ZA2H.S[0] ZA[2]
ZA[17] ZA2H.S[1] ZA[6]
ZA[18] ZA2H.S[2] ZA[10]
ZA[19] ZA2H.S[3] ZA[14]
ZA[20] ZA2H.S[4] ZA[18]
ZA[21] ZA2H.S[5] ZA[22]
ZA[22] ZA2H.S[6] ZA[26]
ZA[23] ZA2H.S[7] ZA[30]
ZA[24] ZA3H.S[0] ZA[3]
ZA[25] ZA3H.S[1] ZA[7]
ZA[26] ZA3H.S[2] ZA[11]
ZA[27] ZA3H.S[3] ZA[15]
ZA[28] ZA3H.S[4] ZA[19]
ZA[29] ZA3H.S[5] ZA[23]
ZA[30] ZA3H.S[6] ZA[27]
ZA[31] ZA3H.S[7] ZA[31]

ZA array vector view 32-bit ZA tile slices view

Two single-vectors ZA[2]

ZA
1

ZA
0

ZA
 1

st
 q

ua
rt

er

ZA
 1

st
 h

al
f

ZA
 2

nd
 q

ua
rt

er
ZA

 3
rd

 q
ua

rt
er

ZA
 2

nd
 h

al
f

ZA
2

ZA
 4

th
 q

ua
rt

er

ZA
3

Four single-vectors ZA[5]

ZA[2]

ZA[2]

ZA[5]

ZA[5]

ZA[5]

ZA[5]

IMLNNG The mapping between ZA multi-vector operands of single-vector groups and 64-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

50

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

ZA[0] ZA0H.D[0] ZA[0]
ZA[1] ZA0H.D[1] ZA[8]
ZA[2] ZA0H.D[2] ZA[16]
ZA[3] ZA0H.D[3] ZA[24]
ZA[4] ZA1H.D[0] ZA[1]
ZA[5] ZA1H.D[1] ZA[9]
ZA[6] ZA1H.D[2] ZA[17]
ZA[7] ZA1H.D[3] ZA[25]
ZA[8] ZA2H.D[0] ZA[2]
ZA[9] ZA2H.D[1] ZA[10]
ZA[10] ZA2H.D[2] ZA[18]
ZA[11] ZA2H.D[3] ZA[26]
ZA[12] ZA3H.D[0] ZA[3]
ZA[13] ZA3H.D[1] ZA[11]
ZA[14] ZA3H.D[2] ZA[19]
ZA[15] ZA3H.D[3] ZA[27]
ZA[16] ZA4H.D[0] ZA[4]
ZA[17] ZA4H.D[1] ZA[12]
ZA[18] ZA4H.D[2] ZA[20]
ZA[19] ZA4H.D[3] ZA[28]
ZA[20] ZA5H.D[0] ZA[5]
ZA[21] ZA5H.D[1] ZA[13]
ZA[22] ZA5H.D[2] ZA[21]
ZA[23] ZA5H.D[3] ZA[29]
ZA[24] ZA6H.D[0] ZA[6]
ZA[25] ZA6H.D[1] ZA[14]
ZA[26] ZA6H.D[2] ZA[22]
ZA[27] ZA6H.D[3] ZA[30]
ZA[28] ZA7H.D[0] ZA[7]
ZA[29] ZA7H.D[1] ZA[15]
ZA[30] ZA7H.D[2] ZA[23]
ZA[31] ZA7H.D[3] ZA[31]

ZA array vector view 64-bit ZA tile slices view

ZA
 1

st
 q

ua
rt

er

ZA
 1

st
 h

al
f

ZA
0

ZA
1

ZA
2

ZA
3

ZA
 4

th
 q

ua
rt

er

ZA
5

ZA
 2

nd
 q

ua
rt

er

ZA
4

ZA
 3

rd
 q

ua
rt

er

ZA
 2

nd
 h

al
f

ZA
6

ZA
7

Four single-vectors ZA[5] Two single-vectors ZA[2]

ZA[2]

ZA[2]

ZA[5]

ZA[5]

ZA[5]

ZA[5]

B2.4.3.2 ZA multi-vector operands of double-vector groups

DRBSQJ In instructions where the ZA multi-vector operand consists of one double-vector group, the vector group is held in
ZA array vectors ZA[n+0] to ZA[n+1], where n is a multiple of 2 in the range 0 to (SVLB - 2) inclusive.

DKKVVG In instructions where the ZA multi-vector operand consists of two double-vector groups, each vector group is held
in a separate half of the ZA array. The halves of the ZA array are as follows, where n is a multiple of 2 in the range
0 to (SVLB/2 - 2) inclusive:

• ZA[n+0] to ZA[n+1].
• ZA[SVLB/2 + n+0] to ZA[SVLB/2 + n+1].

DVMYGN In instructions where the ZA multi-vector operand consists of four double-vector groups, each vector group is held
in a separate quarter of the ZA array. The quarters of the ZA array are as follows, where n is a multiple of 2 in the
range 0 to (SVLB/4 - 2) inclusive:

• ZA[n+0] to ZA[n+1].
• ZA[SVLB/4 + n+0] to ZA[SVLB/4 + n+1].
• ZA[SVLB/2 + n+0] to ZA[SVLB/2 + n+1].
• ZA[SVLB*3/4 + n+0] to ZA[SVLB*3/4 + n+1].

DJWRSN The preferred disassembly for a ZA multi-vector operand of double-vector groups is as follows, where offs2 = offs1
+ 1, and T is one of B, H, S, or D:

• ZA.T[Wv, offs1:offs2], where offs1 is a multiple of 2 in the range 0-14 inclusive, when the operand consists
of one double-vector group.

• ZA.T[Wv, offs1:offs2, VGx2], where offs1 is a multiple of 2 in the range 0-6 inclusive, when the operand
consists of two double-vector groups.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

51

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

• ZA.T[Wv, offs1:offs2, VGx4], where offs1 is a multiple of 2 in the range 0-6 inclusive, when the operand
consists of four double-vector groups.

ILZRTK The mapping between ZA multi-vector operands of double-vector groups and 32-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

ZA[0] ZA0H.S[0] ZA[0]
ZA[1] ZA0H.S[1] ZA[4]
ZA[2] ZA0H.S[2] ZA[8]
ZA[3] ZA0H.S[3] ZA[12]
ZA[4] ZA0H.S[4] ZA[16]
ZA[5] ZA0H.S[5] ZA[20]
ZA[6] ZA0H.S[6] ZA[24]
ZA[7] ZA0H.S[7] ZA[28]
ZA[8] ZA1H.S[0] ZA[1]
ZA[9] ZA1H.S[1] ZA[5]
ZA[10] ZA1H.S[2] ZA[9]
ZA[11] ZA1H.S[3] ZA[13]
ZA[12] ZA1H.S[4] ZA[17]
ZA[13] ZA1H.S[5] ZA[21]
ZA[14] ZA1H.S[6] ZA[25]
ZA[15] ZA1H.S[7] ZA[29]
ZA[16] ZA2H.S[0] ZA[2]
ZA[17] ZA2H.S[1] ZA[6]
ZA[18] ZA2H.S[2] ZA[10]
ZA[19] ZA2H.S[3] ZA[14]
ZA[20] ZA2H.S[4] ZA[18]
ZA[21] ZA2H.S[5] ZA[22]
ZA[22] ZA2H.S[6] ZA[26]
ZA[23] ZA2H.S[7] ZA[30]
ZA[24] ZA3H.S[0] ZA[3]
ZA[25] ZA3H.S[1] ZA[7]
ZA[26] ZA3H.S[2] ZA[11]
ZA[27] ZA3H.S[3] ZA[15]
ZA[28] ZA3H.S[4] ZA[19]
ZA[29] ZA3H.S[5] ZA[23]
ZA[30] ZA3H.S[6] ZA[27]
ZA[31] ZA3H.S[7] ZA[31]

ZA
0

ZA
1

ZA
 1

st
 q

ua
rt

er

ZA
 1

st
 h

al
f

ZA
 2

nd
 q

ua
rt

er
ZA

 3
rd

 q
ua

rt
er

ZA
 2

nd
 h

al
f

ZA
2

ZA
 4

th
 q

ua
rt

er

ZA
3

ZA array vector view 32-bit ZA tile slices view

Four double-vectors ZA[0:1] Two double-vectors ZA[6:7] One double-vector ZA[28:29]

ZA[0:1]

ZA[0:1]

ZA[0:1]

ZA[0:1]

ZA[6:7]

ZA[6:7]

ZA[28:29]

IJYQTB The mapping between ZA multi-vector operands of double-vector groups and 64-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

52

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

ZA[0] ZA0H.D[0] ZA[0]
ZA[1] ZA0H.D[1] ZA[8]
ZA[2] ZA0H.D[2] ZA[16]
ZA[3] ZA0H.D[3] ZA[24]
ZA[4] ZA1H.D[0] ZA[1]
ZA[5] ZA1H.D[1] ZA[9]
ZA[6] ZA1H.D[2] ZA[17]
ZA[7] ZA1H.D[3] ZA[25]
ZA[8] ZA2H.D[0] ZA[2]
ZA[9] ZA2H.D[1] ZA[10]
ZA[10] ZA2H.D[2] ZA[18]
ZA[11] ZA2H.D[3] ZA[26]
ZA[12] ZA3H.D[0] ZA[3]
ZA[13] ZA3H.D[1] ZA[11]
ZA[14] ZA3H.D[2] ZA[19]
ZA[15] ZA3H.D[3] ZA[27]
ZA[16] ZA4H.D[0] ZA[4]
ZA[17] ZA4H.D[1] ZA[12]
ZA[18] ZA4H.D[2] ZA[20]
ZA[19] ZA4H.D[3] ZA[28]
ZA[20] ZA5H.D[0] ZA[5]
ZA[21] ZA5H.D[1] ZA[13]
ZA[22] ZA5H.D[2] ZA[21]
ZA[23] ZA5H.D[3] ZA[29]
ZA[24] ZA6H.D[0] ZA[6]
ZA[25] ZA6H.D[1] ZA[14]
ZA[26] ZA6H.D[2] ZA[22]
ZA[27] ZA6H.D[3] ZA[30]
ZA[28] ZA7H.D[0] ZA[7]
ZA[29] ZA7H.D[1] ZA[15]
ZA[30] ZA7H.D[2] ZA[23]
ZA[31] ZA7H.D[3] ZA[31]

One double-vector ZA[28:29]Two double-vectors ZA[6:7]

ZA array vector view 64-bit ZA tile slices view

ZA
0

ZA
1

ZA
 2

nd
 q

ua
rt

er
ZA

 1
st

 q
ua

rt
er

ZA
 1

st
 h

al
f

ZA
2

ZA
3

ZA
4

ZA
 3

rd
 q

ua
rt

er

ZA
 2

nd
 h

al
f

ZA
6

ZA
7

ZA
 4

th
 q

ua
rt

er

Four double-vectors ZA[0:1]

ZA
5

ZA[0:1]

ZA[0:1]

ZA[0:1]

ZA[0:1]

ZA[6:7]

ZA[6:7]

ZA[28:29]

B2.4.3.3 ZA multi-vector operands of quad-vector groups

DWSTWB In instructions where the ZA multi-vector operand consists of one quad-vector group, the vector group is held in
ZA array vectors ZA[n+0] to ZA[n+3], where n is a multiple of 4 in the range 0 to (SVLB - 4) inclusive.

DQJXHS In instructions where the ZA multi-vector operand consists of two quad-vector groups, each vector group is held in
a separate half of the ZA array. The halves of the ZA array are as follows, where n is a multiple of 4 in the range 0
to (SVLB/2 - 4) inclusive:

• ZA[n+0] to ZA[n+3].
• ZA[SVLB/2 + n+0] to ZA[SVLB/2 + n+3].

DBQWJD In instructions where the ZA multi-vector operand consists of four quad-vector groups, each vector group is held in
a separate quarter of the ZA array. The quarters of the ZA array are as follows, where n is a multiple of 4 in the
range 0 to (SVLB/4 - 4) inclusive:

• ZA[n+0] to ZA[n+3].
• ZA[SVLB/4 + n+0] to ZA[SVLB/4 + n+3].
• ZA[SVLB/2 + n+0] to ZA[SVLB/2 + n+3].
• ZA[SVLB*3/4 + n+0] to ZA[SVLB*3/4 + n+3].

DTTNGH The preferred disassembly for a ZA multi-vector operand of quad-vector groups is as follows, where offs4 = offs1 +
3, and T is one of B, H, S, or D:

• ZA.T[Wv, offs1:offs4], where: offs1 is a multiple of 4 in the range 0-12 inclusive, when the operand consists
of one quad-vector group.

• ZA.T[Wv, offs1:offs4, VGx2], where offs1 is 0 or 4, when the operand consists of two quad-vector groups.
• ZA.T[Wv, offs1:offs4, VGx4], where offs1 is 0 or 4, when the operand consists of four quad-vector groups.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

53

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

IZNSGW The mapping between ZA multi-vector operands of quad-vector groups and 32-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

Two quad-vectors ZA[4:7]

ZA[0] ZA0H.S[0] ZA[0]
ZA[1] ZA0H.S[1] ZA[4]
ZA[2] ZA0H.S[2] ZA[8]
ZA[3] ZA0H.S[3] ZA[12]
ZA[4] ZA0H.S[4] ZA[16]
ZA[5] ZA0H.S[5] ZA[20]
ZA[6] ZA0H.S[6] ZA[24]
ZA[7] ZA0H.S[7] ZA[28]
ZA[8] ZA1H.S[0] ZA[1]
ZA[9] ZA1H.S[1] ZA[5]
ZA[10] ZA1H.S[2] ZA[9]
ZA[11] ZA1H.S[3] ZA[13]
ZA[12] ZA1H.S[4] ZA[17]
ZA[13] ZA1H.S[5] ZA[21]
ZA[14] ZA1H.S[6] ZA[25]
ZA[15] ZA1H.S[7] ZA[29]
ZA[16] ZA2H.S[0] ZA[2]
ZA[17] ZA2H.S[1] ZA[6]
ZA[18] ZA2H.S[2] ZA[10]
ZA[19] ZA2H.S[3] ZA[14]
ZA[20] ZA2H.S[4] ZA[18]
ZA[21] ZA2H.S[5] ZA[22]
ZA[22] ZA2H.S[6] ZA[26]
ZA[23] ZA2H.S[7] ZA[30]
ZA[24] ZA3H.S[0] ZA[3]
ZA[25] ZA3H.S[1] ZA[7]
ZA[26] ZA3H.S[2] ZA[11]
ZA[27] ZA3H.S[3] ZA[15]
ZA[28] ZA3H.S[4] ZA[19]
ZA[29] ZA3H.S[5] ZA[23]
ZA[30] ZA3H.S[6] ZA[27]
ZA[31] ZA3H.S[7] ZA[31]

ZA array vector view

ZA
 2

nd
 q

ua
rt

er ZA
 1

st
 h

al
f

32-bit ZA tile slices view

ZA
0

ZA
 3

rd
 q

ua
rt

er

ZA
 2

nd
 h

al
f

ZA
 4

th
 q

ua
rt

er
ZA

 1
st

 q
ua

rt
er

ZA
1

ZA
3

ZA
2

Four quad-vectors ZA[0:3] One quad-vector ZA[12:15]

ZA[0:3]

ZA[0:3]

ZA[0:3]

ZA[0:3]

ZA[4:7]

ZA[4:7]

ZA[12:15]

IKBMLX The mapping between ZA multi-vector operands of quad-vector groups and 64-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

54

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

Two quad-vectors ZA[4:7]

ZA[0] ZA0H.D[0] ZA[0]
ZA[1] ZA0H.D[1] ZA[8]
ZA[2] ZA0H.D[2] ZA[16]
ZA[3] ZA0H.D[3] ZA[24]
ZA[4] ZA1H.D[0] ZA[1]
ZA[5] ZA1H.D[1] ZA[9]
ZA[6] ZA1H.D[2] ZA[17]
ZA[7] ZA1H.D[3] ZA[25]
ZA[8] ZA2H.D[0] ZA[2]
ZA[9] ZA2H.D[1] ZA[10]
ZA[10] ZA2H.D[2] ZA[18]
ZA[11] ZA2H.D[3] ZA[26]
ZA[12] ZA3H.D[0] ZA[3]
ZA[13] ZA3H.D[1] ZA[11]
ZA[14] ZA3H.D[2] ZA[19]
ZA[15] ZA3H.D[3] ZA[27]
ZA[16] ZA4H.D[0] ZA[4]
ZA[17] ZA4H.D[1] ZA[12]
ZA[18] ZA4H.D[2] ZA[20]
ZA[19] ZA4H.D[3] ZA[28]
ZA[20] ZA5H.D[0] ZA[5]
ZA[21] ZA5H.D[1] ZA[13]
ZA[22] ZA5H.D[2] ZA[21]
ZA[23] ZA5H.D[3] ZA[29]
ZA[24] ZA6H.D[0] ZA[6]
ZA[25] ZA6H.D[1] ZA[14]
ZA[26] ZA6H.D[2] ZA[22]
ZA[27] ZA6H.D[3] ZA[30]
ZA[28] ZA7H.D[0] ZA[7]
ZA[29] ZA7H.D[1] ZA[15]
ZA[30] ZA7H.D[2] ZA[23]
ZA[31] ZA7H.D[3] ZA[31]

Four quad-vectors ZA[0:3]

ZA
0

ZA
1

ZA array vector view 64-bit ZA tile slices view

ZA
 1

st
 q

ua
rt

er

ZA
 1

st
 h

al
f

ZA
 2

nd
 q

ua
rt

er
ZA

 3
rd

 q
ua

rt
er

ZA
 2

nd
 h

al
f

ZA
 4

th
 q

ua
rt

er

ZA
3

ZA
4

ZA
5

ZA
6

ZA
7

ZA
2

One quad-vector ZA[12:15]

ZA[0:3]

ZA[0:3]

ZA[0:3]

ZA[0:3]

ZA[4:7]

ZA[4:7]

ZA[12:15]

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

55

Chapter B2. Architectural state
B2.5. SME2 Multi-vector predication

B2.5 SME2 Multi-vector predication

DJFJZX SME2 introduces the multi-vector predication concept in Streaming SVE mode, named predicate-as-counter.

ILLLXP The existing SVE predication concept is referred to as predicate-as-mask.

IDSFKR SME2 multi-vector instructions interpret the lowest-numbered 16 bits of SVE predicate registers P0-P15 as a
predicate-as-counter encoding.

DQBDRH A predicate-as-counter encoding includes:

• An invert bit, that encodes whether the element count field is referring to the number of TRUE or FALSE
predicate elements.

• A variable-width element count field. This field holds an unsigned integer value of up to 14 bits, that encodes:
– When the invert bit is 0, the number of consecutive elements starting from element 0 that are TRUE,

with the remaining elements being FALSE.
– When the invert bit is 1, the number of consecutive elements starting from element 0 that are FALSE,

with the remaining elements being TRUE.
• A variable-width element size field of up to 4 bits, where the number of trailing zeroes encodes LSZ, log2 of

the element size in bytes, or an all-FALSE predicate if all 4 bits are zero.

[15]
Invert

[14:(LSZ+1)]
Element count

[LSZ:0]
Element size Meaning

X XXXXXXXXXXXXXX 1 Byte elements, count in [14:1]

X XXXXXXXXXXXXX 10 Halfword elements, count in [14:2]

X XXXXXXXXXXXX 100 Word elements, count in [14:3]

X XXXXXXXXXXX 1000 Doubleword elements, count in [14:4]

X XXXXXXXXXXX 0000 All-FALSE predicate (any element size)

DJGSYR The canonical all-TRUE predicate-as-counter encoding has an element count of zero, with the invert bit set to 1
and a nonzero element size field determined by the generating instruction.

DBJMYH The canonical all-FALSE predicate-as-counter encoding has an element count of zero, with the invert bit set to 0
and an element size field set to 0b0000.

IZPLKP A predicate-as-counter encoding can represent a consecutive element count in the range of 0 to the maximum
number of byte elements in four vectors, minus 1. The architectural maximum vector length of 2048 bits or 256
bytes therefore requires an element count of log2(1024) = 10 bits, plus one element size bit, plus the invert bit. The
additional 4 bits in the element count field are reserved.

DHWRFM In assembler syntax:

• The name Pg is used for predicate-as-mask.
• The name PNg is used for predicate-as-counter.

Both Pg and PNg refer to the same predicate register.

RYCRMW If VL is greater than 128 bits, then an instruction which writes a predicate-as-counter encoding to a predicate
register sets bits 16 and higher of that register to 0.

RSGVTC If VL is greater than 128 bits, then an instruction which reads a predicate register using the predicate-as-counter
encoding ignores bits 16 and higher of that register.

RYSTVC An instruction uses only the least significant bits in the element count field of the predicate-as-counter register
that are required to represent the number of bytes in the current vector length times four, minus 1. The instruction
ignores the more significant bits in the element count field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

56

Chapter B2. Architectural state
B2.5. SME2 Multi-vector predication

ISKKTX For example, when VL is 512 bits there are 256 byte elements in four vectors, so the predicate-as-counter encoding
requires at most an 8-bit element count field [8:1], a 1-bit size field [0], and the invert bit [15]. Therefore, when VL
is 512 bits, an instruction uses bits [15] and [8:0] from the predicate-as-counter register and ignores bits [14:9]
and [63:16].

IDKPNQ The SME2 WHILE instructions generate a predicate-as-counter encoding. These instructions have an operand that
indicates the number of vectors (2 or 4) to be controlled by this predicate, which determines:

• The maximum value that can be stored in the count.
• The number of elements that are considered Active when computing the Any Active element and Last Active

element SVE condition flags.

A canonical all-TRUE encoding is generated when the number of TRUE elements is equal to or exceeds the limit
of the number of elements in a vector times the number of vectors.

The canonical all-FALSE encoding is generated when the number of TRUE elements is zero.

IJBYVM The SME2 PTRUE instruction generates a canonical all-TRUE predicate-as-counter encoding.

IBXWKF The SVE PFALSE instruction generates the canonical all-FALSE predicate-as-counter encoding.

ITRVQQ The SME2 PEXT instruction converts a predicate-as-counter encoding into a predicate-as-mask encoding. Since a
predicate-as-counter encoding allows more predicate elements than can be represented in a predicate-as-mask
encoding, this instruction takes an operand to extract distinct portions of a wider mask corresponding to a
predicate-as-counter encoding.

IQSHRN The SME2 CNTP instruction converts a predicate-as-counter encoding into a total Active element count value that
is placed in a general-purpose register.

CNTP has an operand that indicates the limit of the number of elements to be counted. The limit corresponds to
the total number of elements in either 2 or 4 vectors.

IZMDPF Predicated SME2 multi-vector instructions interpret the value in their Governing predicate register using the
predicate-as-counter encoding to determine the number and size of consecutive Active elements. When the
element size of the instruction operation is different from the element size in the predicate-as-counter encoding, the
number of Active elements of the instruction operation is also different from the number of predicate-as-counter
Active elements.

See also:

• CNTP.
• PEXT (predicate).
• PEXT (predicate pair).
• PFALSE.
• PTRUE.
• WHILEGE.
• WHILEGT.
• WHILEHI.
• WHILEHS.
• WHILELE.
• WHILELO.
• WHILELS.
• WHILELT.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

57

Chapter B2. Architectural state
B2.6. SME2 Lookup table

B2.6 SME2 Lookup table

DKHZMV When SME2 is implemented, a PE has a 512-bit architectural register ZT0 to support the lookup table feature.

DWDJBC The ZT0 register holds 8-bit, 16-bit, or 32-bit lookup table elements that are stored in the least significant bits of
32-bit table entries. The lowest numbered 32 bits in the register hold table entry 0.

RJQXLS The lookup table in the ZT0 register can be accessed using fully packed 2-bit or 4-bit indices from a numbered
portion of one source Z vector register.

IBRRGG When the lookup table ZT0 is addressed by 2-bit indices, four different table elements (0-3) of a given element size
can be accessed. When the lookup table ZT0 is addressed by 4-bit indices, 16 different table elements (0-15) of a
given element size can be accessed.

RJKYRB The indexed 8-bit, 16-bit, or 32-bit table elements are read from the ZT0 register and packed into consecutive
elements of an SVE Z vector or Z multi-vector operand.

IHQTSR The validity and accessibility of the ZT0 register are enabled by PSTATE.ZA. For more information, see B1.2
Process state and B1.2.2 PSTATE.ZA.

See also:

• C1.1.2 Traps and exceptions.
• C1.4.8 SVCR.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

58

Chapter B3
Floating-point behaviors

B3.1 Overview

SME modifies some of the A-profile floating-point behaviors when a PE is in Streaming SVE mode, and introduces
an FPCR control which extends BFloat16 dot product calculations to support a wider range of numeric behaviors.

See also:

• FPCR.
• B1.2 Process state.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

59

Chapter B3. Floating-point behaviors
B3.2. Supported floating-point data types

B3.2 Supported floating-point data types

RVSCHZ The following BFloat16 instructions operate on the BFloat16 and the IEEE 754-2008 Single-precision floating-point
data types, as defined respectively in sections BFloat16 floating-point format and Single-precision floating-point
format of Arm® Architecture Reference Manual for A-profile architecture [1]:

• The SME BFMOPA and BFMOPS floating-point instructions defined in D1.1 SME and SME2 data-processing
instructions.

• The SME2 multi-vector BFCVT, BFCVTN, BFDOT, BFMLAL, BFMLSL, and BFVDOT floating-point instructions
defined in D1.1 SME and SME2 data-processing instructions.

• The SVE2 BFMLSLB and BFMLSLT floating-point instructions that are introduced by SME2 and defined in
D1.2 SVE2 data-processing instructions.

RBYPSW The floating-point instructions defined in Chapter D1 SME instructions operate on the IEEE 754-2008 floating-point
data types as defined in the following Arm® Architecture Reference Manual for A-profile architecture [1] sections:

• Half-precision floating-point formats (but not the Arm alternative half-precision format).
• Single-precision floating-point format.
• Double-precision floating-point format.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

60

Chapter B3. Floating-point behaviors
B3.3. BFloat16 behaviors

B3.3 BFloat16 behaviors

If FEAT_EBF16 is implemented, the Extended BFloat16 behaviors can be enabled for the BFloat16 instructions.
This section describes how the BFloat16 instruction behaviors are changed by FEAT_EBF16.

RBSHYK When ID_AA64ZFR0_EL1.BF16 and ID_AA64ISAR1_EL1.BF16 have the value 0b0010, the PE implements
FEAT_EBF16 and supports the FPCR.EBF control.

RRKGSJ If FEAT_EBF16 is implemented, then:

• FEAT_EBF16 is enabled when FPCR.EBF is 1.
• FEAT_EBF16 is not enabled when FPCR.EBF is 0.

DMVPSG Unless stated otherwise, the rules in this section describe the behaviors of the following instructions:

• The SME BFMOPA and BFMOPS instructions.
• The SME2 BFDOT and BFVDOT instructions.
• The Advanced SIMD and SVE BFDOT and BFMMLA instructions.

B3.3.1 Common BFloat16 behaviors

ICYTKF The Common BFloat16 behaviors are the behaviors currently defined in Arm® Architecture Reference Manual for
A-profile architecture [1] which are not changed by the optional FPCR.EBF control.

RRDCPW The instructions specified in DMVPSG that detect exceptional floating-point conditions produce the expected
single-precision default result but do not modify the cumulative floating-point exception flag bits,
FPSR.{IDC,IXC,UFC,OFC,DZC,IOC}.

RPFFFF The instructions specified in DMVPSG generate default NaN values, behaving as if FPCR.DN has an Effective value
of 1.

See also:

• FPSR, Floating-point Status Register in Arm® Architecture Reference Manual for A-profile architecture [1].
• FPCR.

B3.3.2 Standard BFloat16 behaviors

ICMSBQ The Standard BFloat16 behaviors are the behaviors currently defined in Arm® Architecture Reference Manual for
A-profile architecture [1] which can be changed by the FPCR.EBF control provided by FEAT_EBF16.

RJFWDV If FEAT_EBF16 is either not implemented or not enabled, then the instructions specified in DMVPSG ignore the
FPCR.RMode control and use the rounding mode defined for BFloat16 in section Round to Odd mode of Arm®

Architecture Reference Manual for A-profile architecture [1].

RWBLQD If FEAT_EBF16 is either not implemented or not enabled, then the instructions specified in DMVPSG flush
denormalized inputs and outputs to zero, behaving as if FPCR.FZ has an Effective value of 1.

RJPNSN If FEAT_EBF16 is either not implemented or not enabled, then the instructions specified in DMVPSG perform
unfused multiplies and additions with intermediate rounding of all products and sums.

B3.3.3 Extended BFloat16 behaviors

IMFJMJ The Extended BFloat16 behaviors are the behaviors that can be enabled by the FPCR.EBF control provided by
FEAT_EBF16.

RRQKQZ If FEAT_EBF16 is implemented and enabled, then the instructions specified in DMVPSG support all four IEEE 754
rounding modes selected by the FPCR.RMode control.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

61

Chapter B3. Floating-point behaviors
B3.3. BFloat16 behaviors

RJZVPD If FEAT_EBF16 is implemented and enabled, then the instructions specified in DMVPSG honor the FPCR.FZ control.

RLJGTX If FEAT_EBF16 is implemented and enabled, then the instructions specified in DMVPSG perform a fused two-way
sum-of-products for each pair of adjacent BFloat16 elements in the source vectors, without intermediate rounding
of the products, but rounding the single-precision sum before addition to the single-precision accumulator element.

RCQFQT If FEAT_EBF16 is implemented and enabled, then the instructions specified in DMVPSG generate the default NaN
as intermediate sum-of-products when any of the following are true:

• Any multiplier input is a NaN.
• Any product is infinity × 0.0.
• There are infinite products with differing signs.

RWQDBR If FEAT_EBF16 is implemented and enabled, then the instructions specified in DMVPSG generate an intermediate
sum-of-products of the same infinity when there are infinite products all with the same sign.

RYPGLB When FEAT_AFP is implemented and FEAT_EBF16 is implemented and enabled, the instructions specified in
DMVPSG honor the FPCR.AH and FPCR.FIZ controls.

IWKNML When FEAT_AFP is implemented and FEAT_EBF16 is implemented and enabled, the following alternate
floating-point behaviors affect the instructions specified in DMVPSG:

• When FPCR.AH is 1, the sign bit of a generated default NaN result is set to 1 instead of 0.
• When FPCR.AH is 1 and FPCR.FZ is 1, a denormal result, detected after rounding with an unbounded exponent

has been applied, is flushed to zero.
• When FPCR.AH is 1, the FPCR.FZ control does not cause denormalized inputs to be flushed to zero.
• When FPCR.FIZ is 1, all denormalized inputs are flushed to zero.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

62

Chapter B3. Floating-point behaviors
B3.4. Floating-point behaviors in Streaming SVE mode

B3.4 Floating-point behaviors in Streaming SVE mode

DDMPBW Unless stated otherwise, the rules in this section describe the behaviors of the following instructions:

• The floating-point instructions that are legal in Streaming SVE mode, and operate on half-precision,
single-precision, and double-precision input data types, placing their results in SIMD&FP registers or
SVE Z vector registers.

• The SVE BFMLALB and BFMLALT instructions.
• The floating-point instructions introduced by SME2 that place their results in one or more SVE Z vector

registers:
– The BFCVT, BFCVTN, FCLAMP, FCVT, FCVTN, FCVTZS, FCVTZU, FMAX, FMAXNM, FMIN, FMINNM, FRINTA, FRINTM,

FRINTN, FRINTP, SCVTF, and UCVTF instructions, as defined in D1.1 SME and SME2 data-processing
instructions.

– The BFMLSLB, BFMLSLT, FDOT, and FCLAMP instructions, as defined in D1.2 SVE2 data-processing
instructions.

RPHDZL When the PE is in Streaming SVE mode, the instructions specified in DDMPBW honor the Non-streaming scalar and
SVE floating-point behaviors, as governed by the FPCR.{DN,FZ,RMode,FZ16,AH,FIZ} controls.

RGTYSK When the PE is in Streaming SVE mode, the instructions specified in DDMPBW that detect exceptional floating-point
conditions produce the expected default result and can update the appropriate cumulative floating-point exception
flag bits in FPSR.{IDC,IXC,UFC,OFC,DZC,IOC}.

RPYSCC The floating-point behaviors followed by the FCLAMP instruction are identical to the behaviors followed when
executing FMAXNM and FMINNM in order.

RFBFNT When the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level, the Effective value of the FPCR is as if all of the IDE, IXE, UFE, OFE, DZE, and IOE floating-point
exception trap enable controls, and the NEP element preserve control, are 0 for all purposes other than a direct read
or write of the register.

See also:

• FPSR, Floating-point Status Register in Arm® Architecture Reference Manual for A-profile architecture [1].
• FPCR.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

63

Chapter B3. Floating-point behaviors
B3.5. Floating-point behaviors targeting the ZA array

B3.5 Floating-point behaviors targeting the ZA array

DHTZVK Unless stated otherwise, the rules in this section describe the behaviors of the SME and SME2 floating-point
instructions that place their results in the ZA array, except BFMOPA, BFMOPS, BFDOT, and BFVDOT.

For the behaviors of the BFloat16 instructions, see B3.3 BFloat16 behaviors.

RTGSKG The instructions specified in DHTZVK that detect exceptional floating-point conditions produce the expected
IEEE 754 default result but do not modify any of the cumulative floating-point exception flag bits,
FPSR.{IDC,IXC,UFC,OFC,DZC,IOC}.

RRKHHZ The instructions specified in DHTZVK generate default NaN values, behaving as if FPCR.DN has an Effective value
of 1.

RTCLRM The instructions specified in DHTZVK support all four IEEE 754 rounding modes selected by the FPCR.RMode

control.

RVVVNR The instructions specified in DHTZVK honor the FPCR.FZ control.

RTXKVK The instructions specified in DHTZVK that accumulate dot products of pairs of adjacent half-precision elements in
the source vectors into single-precision elements in the ZA array honor the FPCR.FZ16 control.

RJRRMJ The instructions specified in DHTZVK that multiply single elements from each source vector and accumulate their
product into the ZA array perform a fused multiply-add to each accumulator tile or multi-vector operand element
without intermediate rounding.

RNNCFV The instructions specified in DHTZVK that accumulate dot products of pairs of adjacent half-precision elements
in the source vectors into single-precision elements in the ZA array perform a fused sum-of-products without
intermediate rounding of the products, but rounding the single-precision sum before addition to the accumulator
tile or multi-vector operand element.

RQPKJC The instructions specified in DHTZVK that accumulate dot products of pairs of adjacent half-precision elements
in the source vectors into single-precision elements in the ZA array generate the default NaN as intermediate
sum-of-products when any of the following are true:

• Any multiplier input is a NaN.
• Any product is infinity × 0.0.
• There are infinite products with differing signs.

RZBLND The instructions specified in DHTZVK that accumulate dot products of pairs of adjacent half-precision elements in
the source vectors into single-precision elements in the ZA array generate an intermediate sum-of-products of the
same infinity when there are infinite products all with the same sign.

RRPSLK When FEAT_AFP is implemented, the instructions specified in DHTZVK honor the FPCR.AH and FPCR.FIZ controls.

IYPCHJ When FEAT_AFP is implemented, the following alternate floating-point behaviors affect the instructions specified
in DHTZVK:

• When FPCR.AH is 1, the sign bit of a generated default NaN result is set to 1 instead of 0.
• When FPCR.AH is 1 and FPCR.FZ is 1, a denormal result, detected after rounding with an unbounded exponent

has been applied, is flushed to zero.
• When FPCR.AH is 1, the FPCR.FZ control does not cause denormalized inputs to be flushed to zero.
• When FPCR.FIZ is 1, all denormalized single-precision and double-precision inputs are flushed to zero.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

64

Part C
SME System Level Programmers’ Model

Chapter C1
System management

C1.1 Overview

IZTQKZ The SME System Management architecture provides mechanisms for system software to:

• Discover the presence of SME.
• Discover the capabilities of SME.
• Control SME usage.
• Monitor SME usage.

The architecture consists of extensions to processor mode, the Exception model, and System registers for trap
control and identification.

IPZVYW SME extends the AArch64 System registers and processor state, by introducing the following:

• An SME presence identification field added to ID_AA64PFR1_EL1.
• An SME-specific ID register, ID_AA64SMFR0_EL1, for SME feature discovery.
• Configuration settings for SME in CPACR_EL1, CPTR_EL2, CPTR_EL3, HCR_EL2, HCRX_EL2, HFGRTR_EL2, and
HFGWTR_EL2.

• An SME exception type, with new ESR_ELx.EC and ESR_ELx.ISS encodings.
• A field in ESR_ELx.ISS to signal that an imprecise FAR_ELx value has been reported on a synchronous Data

Abort exception.
• SME controls to set the Effective Streaming SVE vector length in SMCR_EL1, SMCR_EL2, and SMCR_EL3.
• ID and control registers that influence streaming execution priority in multiprocessor systems: SMIDR_EL1,
SMPRI_EL1, and SMPRIMAP_EL2.

• Fields that enable the software thread ID register TPIDR2_EL0 in SCR_EL3, SCTLR_EL2, and SCTLR_EL1.

IHVHCP SME2 extends the SME System registers as follows:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

66

Chapter C1. System management
C1.1. Overview

• The SMTC exception syndrome field for an exception due to SME functionality in ESR_EL1, ESR_EL2, and
ESR_EL3 is extended to identify trapping of accesses to the ZT0 register.

• A value is added to the ID_AA64PFR1_EL1.SME field, to identify the presence of the ZT0 register.
• An SMEver field is added to ID_AA64SMFR0_EL1 to indicate the presence of the mandatory SME2 instructions.
• The existing F64F64 and I16I64 fields in ID_AA64SMFR0_EL1 are extended to cover multi-vector instructions

that generate double-precision and 64-bit integer results.
• A BI32I32 field is added to ID_AA64SMFR0_EL1 to identify the presence of SME2 instructions that accumulate

thirty-two 1-bit binary outer products into 32-bit integer tiles.
• A I16I32 field is added to ID_AA64SMFR0_EL1 to identify the presence of SME2 instructions that accumulate

16-bit outer products into 32-bit integer tiles.
• An EZT0 field is added to the SMCR_EL1, SMCR_EL2, and SMCR_EL3 registers, to enable access to the ZT0

register.

See also:

• C1.3.1 CPACR_EL1.
• C1.3.2 CPTR_EL2.
• C1.3.3 CPTR_EL3.
• C1.3.4 ESR_EL1, ESR_EL2, and ESR_EL3.
• C1.3.5 HCR_EL2.
• C1.3.6 HCRX_EL2.
• C1.3.7 HFGRTR_EL2.
• C1.3.8 HFGWTR_EL2.
• C1.3.9 ID_AA64PFR1_EL1.
• C1.3.11 SCR_EL3.
• C1.3.12 SCTLR_EL1.
• C1.3.13 SCTLR_EL2.
• C1.4.1 ID_AA64SMFR0_EL1.
• C1.4.2 SMCR_EL1.
• C1.4.3 SMCR_EL2.
• C1.4.4 SMCR_EL3.
• C1.4.5 SMIDR_EL1.
• C1.4.6 SMPRI_EL1.
• C1.4.7 SMPRIMAP_EL2.
• C1.4.8 SVCR.

C1.1.1 Identification

IXTNNP ID_AA64PFR1_EL1.SME indicates whether SME is implemented in a PE.

IRLFXX If SME is implemented, the SME features that are implemented in a PE are determined from ID_AA64SMFR0_EL1.

See also:

• C1.3.9 ID_AA64PFR1_EL1.
• C1.4.1 ID_AA64SMFR0_EL1.

C1.1.2 Traps and exceptions

DDMBHW The SME-related instructions that can be configured to trap by CPACR_EL1, CPTR_EL2, and CPTR_EL3 controls,
unless otherwise stated, include all of the following:

• SME data-processing instructions.
• SME mode change instructions SMSTART and SMSTOP.
• AArch64 MRS and MSR instructions which directly access any of the SVCR, SMCR_EL1, SMCR_EL2, or SMCR_EL3

registers.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

67

Chapter C1. System management
C1.1. Overview

DRGBVJ The following SME2 instructions that access the ZT0 register can be configured to trap by SMCR_ELx.EZT0 controls:

• LDR (ZT0).
• LUTI2, LUTI4.
• MOVT.
• STR (ZT0).
• ZERO (ZT0).

IMQBFG Execution of SME-related instructions can be trapped by supervisor software. The mechanisms provided are:

• CPACR_EL1, which enables execution of SME-related instructions at EL0 or EL1 to be trapped to EL1 or EL2.
• CPTR_EL2, which enables execution of SME-related instructions at EL0, EL1 or EL2 to be trapped to EL2.
• CPTR_EL3, which enables execution of SME-related instructions at any Exception level to be trapped to EL3.

ITLWWF Execution of SME2 instructions that access ZT0 can be trapped by supervisor software. The mechanisms provided
are:

• SMCR_EL1.EZT0, which enables execution of SME2 instructions that access ZT0 at EL0 or EL1 to be trapped
to EL1 or EL2.

• SMCR_EL2.EZT0, which enables execution of SME2 instructions that access ZT0 at EL0, EL1, or EL2 to be
trapped to EL2.

• SMCR_EL3.EZT0, which enables execution of SME2 instructions that access ZT0 at any Exception level to be
trapped to EL3.

IXKMKY SME adds an exception syndrome value 0b011101 (0x1D), which is used to identify instructions that are trapped by
any of the following:

• The SME controls in CPACR_EL1, CPTR_EL2, and CPTR_EL3.
• The SME2 controls SMCR_EL1.EZT0, SMCR_EL2.EZT0, and SMCR_EL3.EZT0.
• The PSTATE.SM and PSTATE.ZA modes.

IFWJZB Exceptions reported with the exception syndrome value 0b011101 (0x1D) are mapped onto the Trap type in section
Exceptions to Exception element encoding of chapter The Embedded Trace Extension and section Filtering on type
of chapter The Branch Record Buffer Extension in Arm® Architecture Reference Manual for A-profile architecture
[1].

See also:

• C1.2.1 Exception priorities.
• C1.3.1 CPACR_EL1.
• C1.3.2 CPTR_EL2.
• C1.3.3 CPTR_EL3.
• C1.3.4 ESR_EL1, ESR_EL2, and ESR_EL3.
• C1.4.2 SMCR_EL1.
• C1.4.3 SMCR_EL2.
• C1.4.4 SMCR_EL3.

C1.1.3 Vector lengths

DQQRNR The Effective Streaming SVE vector length (SVL) is the accessible length in bits of the ZA array vectors and
Streaming SVE vector registers at the current Exception level. SVL is determined by the LEN field of the appropriate
SME SMCR_ELx registers, as defined in rule RGWVHP.

IBHFWG SVL is used explicitly by the unpredicated SME LDR (vector), STR (vector), and ZERO (tile) instructions which can
access the ZA array irrespective of whether the PE is in Streaming SVE mode.

RVCQBB The Effective SVE vector length (VL) is equal to SVL when the PE is in Streaming SVE mode.

ILRBQY VL is determined by the LEN field of the ZCR_ELx registers when the PE is not in Streaming SVE mode and
FEAT_SVE is implemented.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

68

Chapter C1. System management
C1.1. Overview

RJRCSH An implementation is permitted to support any subset of the architecturally defined SVL values.

IFQKMN For example, this means that the set of supported SVLs might be discontiguous and might not start at the smallest
permitted SVL.

RRZNVH An implementation is permitted but not required to support more than one SVL.

RWDKGR An implementation is permitted to support a set of SVLs that do not overlap with the set of VLs that are supported
when the PE is not in Streaming SVE mode.

IGZRPL There is no requirement for the Maximum implemented Streaming SVE vector length to be greater than or equal
to the Maximum implemented SVE vector length.

RGWVHP The Effective Streaming SVE vector length at a given Exception level is determined from the requested length,
encoded as a multiple of 16 bytes in SMCR_EL1.LEN, SMCR_EL2.LEN, or SMCR_EL3.LEN, according to the Exception
level, following these steps:

1. If the requested length is less than the minimum implemented Streaming SVE vector length, the Effective
length is the minimum implemented Streaming SVE vector length.

2. If this is the highest implemented Exception level and the requested length is greater than the maximum
implemented Streaming SVE vector length, then the Effective length is the maximum implemented Streaming
SVE vector length.

3. If this is not the highest implemented Exception level and the requested length is greater than the Effective
length at the next more privileged implemented Exception level in the current Security state, then the Effective
length at the more privileged Exception level is used.

4. If the requested length is not supported by the implementation, then the Effective length is the highest
supported Streaming SVE vector length that is less than the requested length.

5. Otherwise, the Effective length is the requested length.

IVRRYR The set of supported values of SVL at Exception level ELx (where ELx is EL1, EL2 or EL3) can be discovered by
privileged software in a similar way to determining the set of supported values of VL. For example, when SME is
enabled by the appropriate control fields in CPACR_EL1, CPTR_EL2 and CPTR_EL3:

1. Request an out of range vector length of 8192 bytes by writing 0x1ff to SMCR_ELx[8:0].
2. Use the SME RDSVL instruction to read SVL.
3. If SMCR_ELx requests a supported Streaming SVE vector length, the requested length in bytes will be returned

by RDSVL.
4. If SMCR_ELx requests an unsupported Streaming SVE vector length, a supported length in bytes will be

returned by RDSVL.
5. If the returned length len is less than or equal to the requested vector length, and greater than 16 bytes (128

bits), then request the next lower vector length by writing (len/16)-2 to SMCR_ELx[8:0] and go to step 2.

RYRPDH When SVL changes from a smaller to a larger value without leaving Streaming SVE mode, a new area of storage
becomes architecturally visible in the Streaming SVE registers and, if enabled, the ZA storage. The values in the
area common to the previous and current length are preserved, and the values in the newly accessible area are a
CONSTRAINED UNPREDICTABLE choice between the following:

• Zero.
• The value the bits had before executing at the more constrained size.

IHGYPV The SVL might change without leaving Streaming SVE mode because of an explicit action such as a write to
SMCR_ELx, or an implicit action such as taking an exception to an Exception level with a less constrained SVL.

IPDLWX The SVL can be raised and then restored to a previous value without affecting the original contents of the Streaming
SVE registers and the ZA storage.

IFMWZZ Supervisory software must guarantee that values generated by one body of software are not observable by another
body of software in a different trust or security scope. When SVL is increased, steps must be taken to ensure the
newly accessible area does not contain values unrelated to another body of software. This might be achieved by
ensuring that the PE exits Streaming SVE mode and disables the ZA storage when performing a context switch, or
by explicitly resetting all register values.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

69

Chapter C1. System management
C1.1. Overview

IBRMMV System software provides a maximum SVL to lower-privileged software, which might further constrain the SVL.
However, system software must initialize and context switch values consistent with the maximum SVL provided
and should not make assumptions about any smaller size being in use by lower-privileged software. For example,
if a hypervisor exposes an SVL of 512 to a VM, that VM might choose to constrain SVL to 256. The hypervisor
should still save and restore 512-bit vectors to prevent leakage of values between VMs, because the VM might
later raise its SVL to 512 and must not be able to observe values created by other software in the newly visible
upper portion of the registers.

See also:

• C1.4.2 SMCR_EL1.
• C1.4.3 SMCR_EL2.
• C1.4.4 SMCR_EL3.

C1.1.4 Streaming execution priority

DDXMSW Streaming execution refers to the execution of instructions by a PE when that PE is in Streaming SVE mode.

ICMRVS Arm expects a variety of implementation styles for SME, including styles where more than one PE shares SME
and Streaming SVE compute resources.

IPQNJS Shared SME and Streaming SVE compute resources are called a Streaming Mode Compute Unit (SMCU).

IMZXWD For implementations that share an SMCU, this architecture provides per-PE mechanisms that software can use to
dynamically prioritize performance characteristics experienced by each PE.

See also:

• C1.2.4 Streaming execution priority for shared implementations.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

70

Chapter C1. System management
C1.2. Processor behavior

C1.2 Processor behavior

C1.2.1 Exception priorities

IQZNRN IZFGJP in the Prioritization of Synchronous exceptions taken to AArch64 state section of Arm® Architecture
Reference Manual for A-profile architecture [1] provides a full list of exception priorities. The rules in this section
provide additional detail for the prioritization of SME-related exceptions.

RGTKQD Exceptions due to configuration settings and modes resulting from the attempted execution of an SME
data-processing instruction are evaluated in the following order from highest to lowest priority:

1. If FEAT_SME is not implemented, then SME and SME2 instructions are UNDEFINED.
2. If FEAT_SME2 is not implemented, then SME2 instructions are UNDEFINED.
3. If CPACR_EL1.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS

code 0x0000000.
4. If CPACR_EL1.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
5. If CPTR_EL2.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS

code 0x0000000.
6. If CPTR_EL2.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
7. If CPTR_EL2.TSM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code

0x0000000.
8. If CPTR_EL2.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
9. If CPTR_EL3.ESM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code

0x0000000.
10. If CPTR_EL3.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
11. If the PE is not in Streaming SVE mode, SME and SME2 instructions that access the SVE registers Z0-Z31 or

P0-P15 generate an SME exception, reported using ESR_ELx.EC value 0x1D with ISS code 0x0000002.
12. If the ZA storage is disabled, SME and SME2 instructions that access ZA and SME2 instructions that access

ZT0 generate an SME exception, reported using ESR_ELx.EC value 0x1D with ISS code 0x0000003.
13. If accesses to ZT0 are not enabled according to RCSPYJ, then the SME2 instructions that access ZT0 generate

an SME exception, reported using ESR_ELx.EC value 0x1D with ISS code 0x0000004.
14. Otherwise, the instruction executes.

RXQKHH Exceptions due to configuration settings resulting from attempted execution of MRS or MSR instructions which
directly access one of the SVCR, SMCR_EL1, SMCR_EL2, or SMCR_EL3 registers, are evaluated in the following order
from highest to lowest priority:

1. If FEAT_SME is not implemented, then the instruction is UNDEFINED.
2. If CPACR_EL1.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D, with ISS

code 0x0000000.
3. If CPTR_EL2.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D, with ISS

code 0x0000000.
4. If CPTR_EL2.TSM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D, with ISS code

0x0000000.
5. If CPTR_EL3.ESM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D, with ISS code

0x0000000.
6. Otherwise, the instruction executes.

RPLYVH Exceptions due to configuration settings and modes resulting from the attempted execution of an SVE or SVE2
instruction when FEAT_SVE is not implemented or when the PE is in Streaming SVE mode, are evaluated in the
following order from highest to lowest priority:

1. If FEAT_SME is not implemented and FEAT_SVE is not implemented, then the instruction is UNDEFINED.
2. If FEAT_SVE is not implemented and the instruction is illegal when the PE is in Streaming SVE mode, then

the instruction is UNDEFINED.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

71

Chapter C1. System management
C1.2. Processor behavior

3. If FEAT_SME is not implemented and the instruction is defined as part of the SME architecture in D1.2
SVE2 data-processing instructions, then the instruction is UNDEFINED.

4. If CPACR_EL1.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS

code 0x0000000.
5. If CPACR_EL1.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
6. If CPTR_EL2.SMEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS

code 0x0000000.
7. If CPTR_EL2.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
8. If CPTR_EL2.TSM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code

0x0000000.
9. If CPTR_EL2.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.

10. If CPTR_EL3.ESM configures the instruction to trap, it is reported using ESR_ELx.EC value 0x1D with ISS code
0x0000000.

11. If CPTR_EL3.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
12. If the PE is in Streaming SVE mode and the SVE instruction is illegal in that mode, then an SME exception is

taken, using ESR_ELx.EC value 0x1D with ISS code 0x0000001.
13. If the PE is not in Streaming SVE mode and FEAT_SVE is not implemented, then an SME exception is taken,

using ESR_ELx.EC value 0x1D with ISS code 0x0000002.
14. Otherwise, the instruction executes.

RZTKXF Exceptions due to configuration settings resulting from the attempted execution of an SVE or SVE2 instruction
when FEAT_SVE is implemented and when the PE is not in Streaming SVE mode, are evaluated in the following
order from highest to lowest priority:

1. If FEAT_SME is not implemented and the instruction is defined as part of the SME architecture in D1.2
SVE2 data-processing instructions, then the instruction is UNDEFINED.

2. If CPACR_EL1.ZEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x19.
3. If CPACR_EL1.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
4. If CPTR_EL2.ZEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x19.
5. If CPTR_EL2.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
6. If CPTR_EL2.TZ configures the instruction to trap, it is reported using ESR_ELx.EC value 0x19.
7. If CPTR_EL2.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
8. If CPTR_EL3.EZ configures the instruction to trap, it is reported using ESR_ELx.EC value 0x19.
9. If CPTR_EL3.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.

10. Otherwise, the instruction executes.

RDTCLZ Exceptions due to configuration settings and modes resulting from the attempted execution of an AArch64
Advanced SIMD and floating-point instruction when the PE is in Streaming SVE mode are evaluated in the
following order from highest to lowest priority:

1. If CPACR_EL1.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
2. If CPTR_EL2.FPEN configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
3. If CPTR_EL2.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
4. If CPTR_EL3.TFP configures the instruction to trap, it is reported using ESR_ELx.EC value 0x07.
5. If the instruction is illegal when the PE is in Streaming SVE mode, then an SME exception is taken, using

ESR_ELx.EC value 0x1D with ISS code 0x0000001.
6. Otherwise, the instruction executes.

INWNQZ When the PE is in Streaming SVE mode or FEAT_SVE is not implemented, the CPACR_EL1.SMEN, CPTR_EL2.SMEN,
CPTR_EL2.TSM, and CPTR_EL3.ESM controls configure SVE instructions to trap, and the CPACR_EL1.ZEN,
CPTR_EL2.ZEN, CPTR_EL2.TZ, and CPTR_EL3.EZ controls do not cause any SVE instructions to be trapped.

IPKGPR When the PE is not in Streaming SVE mode and FEAT_SVE is implemented, the CPACR_EL1.ZEN, CPTR_EL2.ZEN,
CPTR_EL2.TZ, and CPTR_EL3.EZ controls configure SVE instructions to trap, and the CPACR_EL1.SMEN,
CPTR_EL2.SMEN, CPTR_EL2.TSM, and CPTR_EL3.ESM controls do not cause any SVE instructions to be trapped.

RZZBRC An Undefined Instruction exception due to the pairing of an SVE MOVPRFX with an instruction which cannot
be predictably prefixed has a higher exception priority than a PSTATE mode-dependent SME exception with

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

72

Chapter C1. System management
C1.2. Processor behavior

ESR_ELx.EC value 0x1D and an ISS code that is not 0x0000000.

See also:

• Prioritization of Synchronous exceptions taken to AArch64 state in Arm® Architecture Reference Manual for
A-profile architecture [1].

• C1.3.1 CPACR_EL1.
• C1.3.2 CPTR_EL2.
• C1.3.3 CPTR_EL3.
• C1.3.4 ESR_EL1, ESR_EL2, and ESR_EL3.
• Chapter E1 Instructions affected by SME.

C1.2.2 Synchronous Data Abort

RJXPNL If SME is implemented, then when the PE takes a Data Abort exception that sets ESR_ELx.ISV to 0 and is caused
by either an SME load/store instruction, or an SVE contiguous vector load/store instruction when the PE is in
Streaming SVE mode, the PE:

• Sets ESR_ELx.FnP to 1 if the value written to the corresponding FAR_ELx might not be the same as the faulting
virtual address that generated the Data Abort.

• Otherwise, sets ESR_ELx.FnP to 0.

RXMWQT If the PE sets ESR_ELx.ISV to 0 and ESR_ELx.FnP to 1 on taking a Data Abort exception, then the PE sets the
corresponding FAR_ELx to any address within the naturally-aligned fault granule which contains the faulting virtual
address that generated the Data Abort.

DBRGHW The naturally-aligned fault granule is one of the following:

• A 16-byte tag granule when ESR_ELx.DFSC is 0b010001, indicating a Synchronous Tag Check fault.
• An IMPLEMENTATION DEFINED granule when ESR_ELx.DFSC is 0b11010x, indicating an IMPLEMENTATION

DEFINED fault.
• Otherwise, the smallest implemented translation granule.

See also:

• FAR_EL1.
• FAR_EL2.
• FAR_EL3.
• C1.3.4 ESR_EL1, ESR_EL2, and ESR_EL3.

C1.2.3 Validity of SME and SVE state

IVBJBR The Effective values of PSTATE.SM and PSTATE.ZA configure whether SME architectural state is valid and accessible.

IWFHKZ Fields in CPACR_EL1, CPTR_EL2, and CPTR_EL3 configure whether SME-related instructions can be executed or are
trapped.

IKKFXN The fields SMCR_EL1.EZT0, SMCR_EL2.EZT0, and SMCR_EL3.EZT0 configure whether SME2 instructions that access
the ZT0 register can be executed or are trapped.

RCSPYJ When SME2 is implemented, accesses to the ZT0 register are enabled when all of the following are true:

• The access is from EL0 and SMCR_EL1.EZT0 is 1, if EL2 is implemented and enabled in the current Security
state and HCR_EL2.{E2H,TGE} is not {1,1}.

• The access is from EL1 and SMCR_EL1.EZT0 is 1.
• The access is from EL0, EL1, or EL2 and SMCR_EL2.EZT0 is 1, if EL2 is implemented and enabled in the

current Security state.
• The access is from EL0, EL1, EL2, or EL3 and SMCR_EL3.EZT0 is 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

73

Chapter C1. System management
C1.2. Processor behavior

RXCCXW The controls for trapping SME-related instructions and the controls for the validity of SME architectural state are
independent.

IJGRTR Because the trap and architectural state validity are controlled independently, the following scenarios are all
permissible:

• Instructions trap, state invalid.
– For example, an OS traps the first usage of SME-related instructions by a process.

• Instructions trap, state valid.
– For example, a process was running with valid SME architectural state and an OS configures traps to

detect when the next usage of SME architectural state occurs.
– Enabling the trap does not affect or corrupt the SME architectural state.

• Instructions permitted, state invalid.
– For example, a process is permitted to execute SME-related instructions but is currently not running in

Streaming SVE mode. SME data-processing instructions which access SVE vector or predicate registers
are illegal and are trapped, but SVE instructions operate on the Non-streaming SVE register state. The
process can execute an SMSTART instruction to enter Streaming SVE mode.

– For example, a process is running in Streaming SVE mode, but has not enabled access to the ZA storage.
SME instructions that access ZA are illegal and are trapped, but the process can execute an SMSTART

instruction to enable access to the ZA storage.
• Instructions permitted, state valid.

– For example, a process is running in Streaming SVE mode, and has enabled access to ZA storage.

RSWQGH An exception return from AArch64 to AArch32 Execution state does not change the values of PSTATE.SM and
PSTATE.ZA.

RMZLVB An exception taken from AArch32 to AArch64 Execution state does not change the values of PSTATE.SM and
PSTATE.ZA.

RGXKNK When a PE is executing in the AArch32 Execution state, the Effective value of PSTATE.SM is 0.

IMWQNV When PSTATE.SM is 1, a change in Execution state from AArch64 to AArch32, or from AArch32 to AArch64,
causes all implemented bits of the SVE registers (including SIMD&FP registers) and the FPSR to be reset to a fixed
value, which software must mitigate.

IWYKRM The Effective value of PSTATE.ZA does not change in AArch32 Execution state. Therefore, a transition between
AArch64 and AArch32 Execution state when PSTATE.ZA is 1 has no effect on the contents of ZA storage, or the
ZT0 register when SME2 is implemented.

IVGWQW An implementation might use the activity of the PSTATE.SM and PSTATE.ZA bits to influence the choice of
power-saving states for both functional units and retention of architected state.

C1.2.4 Streaming execution priority for shared implementations

IYYRZQ Execution of certain instructions by a PE in Streaming SVE mode might experience a performance dependency on
other PEs in the system that are also executing instructions in Streaming SVE mode. For example, this might occur
when a Streaming Mode Compute Unit (SMCU) is shared between PEs.

IWPQVV The architecture provides a mechanism to control the streaming execution priority of a PE, in SMPRI_EL1. The
streaming execution priority of a PE is relative to the streaming execution priority of other PEs, when a performance
dependency exists between PEs executing in Streaming SVE mode.

DDGRTS All PEs that share a given SMCU form a Priority domain.

DYQFWM Different Priority domains represent unrelated SMCUs.

RWPVQK All PEs in a Priority domain have the same value of SMIDR_EL1.Affinity.

RCVLSF PEs in differing Priority domains have different values of SMIDR_EL1.Affinity.

RGGDRC

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

74

Chapter C1. System management
C1.2. Processor behavior

The streaming execution priority in SMPRI_EL1 affects execution of a PE relative to all other PEs in the same
Priority domain.

IWVGGW System software can use the streaming execution priority mechanism to manage scenarios where multiple
concurrent software threads contend on shared SMCUs.

RRQXFC The streaming execution priority mechanism affects the execution of instructions by a shared SMCU when the PE
is in Streaming SVE mode and does not directly control the execution of other types of instruction.

IHQXBH The streaming execution priority mechanism is optional.

IKTYTD An implementation that does not share SMCUs or has no performance dependency between PEs might not need to
limit or prioritize execution of one PE relative to another.

IYBQNW The architecture considers Priority domains to be non-overlapping sets, meaning that in a shared-SMCU system a
PE is associated with at most one SMCU.

C1.2.4.1 Streaming execution context management

IPRNMJ Arm expects that the SVE- and SME-related instructions used by save, restore, and clear routines for the Streaming
SVE mode SVE register state, the ZA array state, and the ZT0 register when SME2 is implemented, are limited to
using the following SME and SVE instructions:

• SME LDR (vector) and STR (vector) instructions.
• SME2 LDR (ZT0) and STR (ZT0) instructions.
• SVE LDR (vector) and STR (vector) instructions.
• SVE LDR (predicate) and STR (predicate) instructions.
• SME ZERO (tile) instruction.
• SME2 ZERO (ZT0) instruction.
• SVE DUP (immediate) instruction with zero immediate.
• SVE PFALSE instruction.

For implementations with a shared SMCU, PEs are expected to execute these instructions in a way that experiences
a reduced effect of contention for the SMCU from other PEs, compared to other SME and SVE instructions
executed in Streaming SVE mode.

C1.2.4.2 Streaming execution priority control

IRMDCP The streaming execution priority is controlled by a 4-bit priority value. When the streaming execution priority
mechanism is not supported, the priority value is ignored.

IFJQRG A higher priority value corresponds to a higher streaming execution priority. Priority value 15 is the highest
priority.

IQHKWP The behavior of any given priority value relative to that of another PE is IMPLEMENTATION DEFINED.

C1.2.4.3 Streaming execution priority virtualization

ISQBCZ The Effective streaming execution priority is either the value configured in SMPRI_EL1, or the value of SMPRI_EL1
mapped into a new value by indexing the fields in SMPRIMAP_EL2. This choice is affected by the current Exception
level, and the HCRX_EL2.SMPME configuration.

ILSZZG A hypervisor can use SMPRIMAP_EL2 to map the virtual streaming execution priority values written into SMPRI_EL1

by a guest OS into different physical priority values.

See also:

• C1.3.6 HCRX_EL2.
• C1.4.5 SMIDR_EL1.
• C1.4.6 SMPRI_EL1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

75

Chapter C1. System management
C1.2. Processor behavior

• C1.4.7 SMPRIMAP_EL2.

C1.2.5 Security considerations

IDXRGG All SME load and store instructions adhere to the memory access permissions model in The AArch64 Virtual
Memory System Architecture chapter of Arm® Architecture Reference Manual for A-profile architecture [1].

IMGLWR SME architectural state can be access-controlled, meaning that higher levels of privilege can trap access to the
state from the same or lower levels of privilege.

For example, execution of SME instructions including entry to or exit from Streaming SVE mode in EL0 might be
trapped to EL2.

ICYPJJ System software has controls available to save and restore state between unrelated pieces of software, and must
ensure that steps are taken to preserve isolation and privacy.

ITDPHC Operations performed in Streaming SVE mode respect the requirements of PSTATE.DIT. DIT requires
data-independent timing when enabled.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

76

Chapter C1. System management
C1.3. Changes to existing System registers

C1.3 Changes to existing System registers

C1.3.1 CPACR_EL1

RQBTKS If SME is implemented, the field CPACR_EL1.SMEN is defined at bits [25:24]. For more information, see
CPACR_EL1.

IZNSLS The set of SME-related instructions trapped by this control is defined by rule DDMBHW in C1.1.2 Traps and
exceptions.

See also:

• C1.1.2 Traps and exceptions.
• C1.2.1 Exception priorities.
• C1.2.3 Validity of SME and SVE state.
• C1.3.4 ESR_EL1, ESR_EL2, and ESR_EL3.

C1.3.2 CPTR_EL2

RZXZZC If SME is implemented, FEAT_VHE is implemented, and HCR_EL2.E2H is 1, the field CPTR_EL2.SMEN is defined at
bits [25:24]. For more information, see CPTR_EL2.

RQLKFH When SME is implemented, FEAT_VHE is implemented, and HCR_EL2.E2H is 0, the field CPTR_EL2.TSM is defined
at bit [12]. For more information, see CPTR_EL2.

IDYLZC The set of SME-related instructions trapped by this control is defined by rule DDMBHW in C1.1.2 Traps and
exceptions.

See also:

• C1.1.2 Traps and exceptions.
• C1.2.1 Exception priorities.
• C1.2.3 Validity of SME and SVE state.
• C1.3.4 ESR_EL1, ESR_EL2, and ESR_EL3.

C1.3.3 CPTR_EL3

RNPVSR If SME is implemented, the field CPTR_EL3.ESM is defined at bit [12]. For more information, see CPTR_EL3.

ILGJZY The set of SME-related instructions trapped by this control is defined by rule DDMBHW in C1.1.2 Traps and
exceptions.

See also:

• C1.1.2 Traps and exceptions.
• C1.2.1 Exception priorities.
• C1.2.3 Validity of SME and SVE state.
• C1.3.4 ESR_EL1, ESR_EL2, and ESR_EL3.

C1.3.4 ESR_EL1, ESR_EL2, and ESR_EL3

DDZSWB If SME is implemented, an Exception Class value 0x1D is added to ESR_EL1, ESR_EL2, and ESR_EL3, for exceptions
taken from AArch64.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

77

Chapter C1. System management
C1.3. Changes to existing System registers

EC ISS[2:0] Meaning

0b011101 0b000 Access to SME functionality trapped as a result of CPACR_EL1.SMEN,
CPTR_EL2.SMEN, CPTR_EL2.TSM, or CPTR_EL3.ESM, that is not reported using EC
0b000000.

0b011101 0b001 Illegal Advanced SIMD, SVE, or SVE2 instruction trapped because PSTATE.SM is 1

0b011101 0b010 Illegal SME instruction trapped because PSTATE.SM is 0

0b011101 0b011 Illegal SME instruction trapped because PSTATE.ZA is 0

Other values of ISS[2:0] are reserved.

DMSSSD If SME2 is implemented, for Exception Class 0x1D, the following ISS value is added to ESR_EL1, ESR_EL2, and
ESR_EL3:

EC ISS[2:0] Meaning

0b011101 0b100 Access to the SME2 ZT0 register trapped as a result of SMCR_EL1.EZT0,
SMCR_EL2.EZT0, or SMCR_EL3.EZT0.

RDYSFV If SME is implemented, then the following field is defined in the ESR_EL1, ESR_EL2, and ESR_EL3 ISS encoding
for an exception from a Data Abort, when the EC value is 0b100100 (0x24) or 0b100101 (0x25):

Field Name Meaning

[15] FnP When ISV == 0:
FAR not Precise.
0b0 The FAR holds the faulting virtual address that generated the Data Abort.
0b1 The FAR holds any virtual address within the naturally-aligned fault granule (see

DBRGHW) that contains the faulting virtual address that generated a Data Abort
exception due to an SVE contiguous vector load/store instruction when the PE is in
Streaming SVE mode, or by an SME load/store instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C1.3.5 HCR_EL2

RBWHVR If SME is implemented, the HCR_EL2.TID3 field causes accesses to ID_AA64SMFR0_EL1 to be trapped.

RZRBBT If SME is implemented, the HCR_EL2.TID1 field causes accesses to SMIDR_EL1 to be trapped.

See also:

• HCR_EL2.
• ID_AA64SMFR0_EL1.
• SMIDR_EL1.

C1.3.6 HCRX_EL2

RYDHJV If SME is implemented, the field HCRX_EL2.SMPME is defined at bit [5]. For more information, see HCRX_EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

78

Chapter C1. System management
C1.3. Changes to existing System registers

See also:

• C1.2.4 Streaming execution priority for shared implementations.
• C1.4.6 SMPRI_EL1.
• C1.4.7 SMPRIMAP_EL2.

C1.3.7 HFGRTR_EL2

RSXDSB If SME is implemented, the fields HFGRTR_EL2.nTPIDR2_EL0 and HFGRTR_EL2.nSMPRI_EL1 are defined at bits [55]
and [54]. For more information, see HFGRTR_EL2.

See also:

• B1.2.4 TPIDR2_EL0.
• C1.4.6 SMPRI_EL1.

C1.3.8 HFGWTR_EL2

RXKLBN If SME is implemented, the fields HFGWTR_EL2.nTPIDR2_EL0 and HFGWTR_EL2.nSMPRI_EL1 are defined at bits [55]
and [54]. For more information, see HFGWTR_EL2.

See also:

• B1.2.4 TPIDR2_EL0.
• C1.4.6 SMPRI_EL1.

C1.3.9 ID_AA64PFR1_EL1

RKHPZL If SME is implemented, the field ID_AA64PFR1_EL1.SME is defined at bits [27:24].

RLYHCJ If SME2 is implemented, the value 0b0010 is added to ID_AA64PFR1_EL1.SME at bit position [27:24].

IDJQVZ A nonzero value in ID_AA64PFR1_EL1.SME does not imply that ID_AA64PFR0_EL1.SVE must also contain a nonzero
value.

See also:

• C1.3.9 ID_AA64PFR1_EL1.

C1.3.10 ID_AA64ZFR0_EL1

RSYRGK If SME is implemented, the ID_AA64ZFR0_EL1 register identifies the implemented features of the SVE instruction
set when any of ID_AA64PFR0_EL1.SVE and ID_AA64PFR1_EL1.SME are nonzero.

RJLSQK If SME is implemented, then ID_AA64ZFR0_EL1.SVEver has a nonzero value, indicating that legal SVE and SVE2
instructions can be executed when the PE is in Streaming SVE mode.

RRFZRM If SME is implemented and ID_AA64PFR0_EL1.SVE is nonzero, then FEAT_SVE2 is implemented and SVE and
SVE2 instructions can be executed when the PE is not in Streaming SVE mode.

RXFFLH If SME is implemented and ID_AA64PFR0_EL1.SVE is zero, then FEAT_SVE is not implemented and the
ID_AA64ZFR0_EL1 fields named F64MM, F32MM, SM4, SHA3, BitPerm, and AES hold the value zero.

See also:

• ID_AA64PFR0_EL1, defined in Arm® Architecture Registers, for A-profile architecture [2].
• C1.3.9 ID_AA64PFR1_EL1.
• C1.3.10 ID_AA64ZFR0_EL1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

79

Chapter C1. System management
C1.3. Changes to existing System registers

C1.3.11 SCR_EL3

RTCPTK If SME is implemented, the field SCR_EL3.EnTP2 is defined at bit [41]. For more information, see SCR_EL3.

See also:

• B1.2.4 TPIDR2_EL0.

C1.3.12 SCTLR_EL1

RNMVMQ If SME is implemented, the field SCTLR_EL1.EnTP2 is defined at bit [60]. For more information, see SCTLR_EL1.

RMXHMD When EL2 is implemented and enabled in the current Security state and HCR_EL2.{E2H, TGE} is {1, 1}, the
SCTLR_EL1.EnTP2 control has no effect on execution at EL0 and the SCTLR_EL2.EnTP2 control is used for this
purpose.

See also:

• B1.2.4 TPIDR2_EL0.

C1.3.13 SCTLR_EL2

RKGMHQ If SME is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the field SCTLR_EL2.EnTP2 is defined at bit [60]. For
more information, see SCTLR_EL2.

See also:

• B1.2.4 TPIDR2_EL0.

C1.3.14 ZCR_EL1, ZCR_EL2, and ZCR_EL3

ICRKQJ If FEAT_SVE is implemented, then the ZCR_ELx registers have their described effect on the Effective SVE vector
length only when the PE is not in Streaming SVE mode.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

80

Chapter C1. System management
C1.4. SME-specific System registers

C1.4 SME-specific System registers

C1.4.1 ID_AA64SMFR0_EL1

IDVWNQ The AArch64 SME Feature ID Register describes the set of implemented SME data-processing instructions.

DGRPHH If SME is implemented, the register ID_AA64SMFR0_EL1 is added. For more information, see
ID_AA64SMFR0_EL1.

C1.4.2 SMCR_EL1

IKKHZL The Streaming SVE Mode Control Register for EL1 configures the Effective Streaming SVE vector length and
accessibility of the SME2 ZT0 register, when executing at EL1 or EL0.

RHRTZQ If SME is implemented, the register SMCR_EL1 is added. For more information, see SMCR_EL1.

RNWXVG When EL2 is implemented and enabled in the current Security state and HCR_EL2.{E2H, TGE} is {1, 1}, the
SMCR_EL1 register has no effect on execution at EL0 and EL1 and the SMCR_EL2 register is used for this purpose.

C1.4.3 SMCR_EL2

IWTNZY The Streaming Mode Control Register for EL2 configures the Effective Streaming SVE vector length and
accessibility of the SME2 ZT0 register when executing at EL2, and at EL1 or EL0 in the same Security state as
EL2.

RJPZPH If SME is implemented, the register SMCR_EL2 is added. For more information, see SMCR_EL2.

C1.4.4 SMCR_EL3

IVVCBL The Streaming Mode Control Register for EL3 configures the Effective Streaming SVE vector length and
accessibility of the SME2 ZT0 register, when executing at EL3, EL2, EL1, or EL0.

RDBGWC If SME is implemented, the register SMCR_EL3 is added. For more information, see SMCR_EL3.

C1.4.5 SMIDR_EL1

IMZBSJ The Streaming Mode Identification Register provides additional information about the Streaming SVE mode
implementation.

DNBDMK If SME is implemented, the register SMIDR_EL1 is added. For more information, see SMIDR_EL1.

C1.4.6 SMPRI_EL1

IPJDXF The Streaming Mode Priority register configures the streaming execution priority for instructions executed in
Streaming SVE mode on a shared SMCU at any Exception level.

RJKMFH If SME is implemented, the register SMPRI_EL1 is added. For more information, see SMPRI_EL1.

RDWGZP In an implementation that shares execution resources between PEs, higher streaming execution priority values are
allocated more processing resource than other PEs configured with lower streaming execution priority values in
the same Priority domain.

RDFQLX The precise meaning and behavior of each streaming execution priority value is IMPLEMENTATION DEFINED.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

81

Chapter C1. System management
C1.4. SME-specific System registers

IBLMYK If system software does not support differentiation of streaming execution priority of threads, it is safe to use a
value of 0 for all threads.

RSBCRG All SMCUs in the system have a consistent interpretation of the streaming execution priority values.

See also:

• C1.2.4 Streaming execution priority for shared implementations.

C1.4.7 SMPRIMAP_EL2

IHVXRH The Streaming Mode Priority Mapping register maps the current virtual streaming execution priority value to a
physical streaming execution priority value for instructions executed in Streaming SVE mode on a shared SMCU at
EL1 or EL0 in the same Security state as EL2.

DCHVZD If SME is implemented, the register SMPRIMAP_EL2 is added. For more information, see SMPRIMAP_EL2.

C1.4.8 SVCR

IJGCTD The Streaming Vector Control Register provides direct access to the PSTATE.SM and PSTATE.ZA mode bits from
any Exception level.

DJXVQJ If SME is implemented, the register SVCR is added. For more information, see SVCR.

See also:

• B1.2.3 Changing PSTATE.SM and PSTATE.ZA.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

82

Chapter C2
Interaction with other A-profile architectural features

IMDMBB This section describes the interaction of SME with other aspects and features of the A-profile architecture.

It covers:

• Watchpoints.
• Self-hosted debug.
• External debug.
• Memory Tagging Extension (MTE).
• Reliability, Availability, and Serviceability (RAS).
• Memory Partitioning and Monitoring (MPAM).
• Transactional Memory Extension (TME).
• Memory consistency model.

See also:

• Arm® Architecture Reference Manual for A-profile architecture [1].
• Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring

(MPAM), for A-profile architecture [4].
• Arm® Architecture Reference Manual Supplement, The Transactional Memory Extension (TME), for A-profile

architecture [5].

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

83

Chapter C2. Interaction with other A-profile architectural features
C2.1. Watchpoints

C2.1 Watchpoints

RPDGZL For a memory access or set of contiguous memory accesses generated by an SVE contiguous vector load/store
instruction when the PE is in Streaming SVE mode, or by an SME load/store instruction, if a watchpoint matches
a range where the lowest accessed address is rounded down to the nearest multiple of 16 bytes and the highest
accessed address is rounded up to the nearest multiple of 16 bytes minus 1, but the watchpoint does not the match
the range of the original access or set of contiguous accesses, then it is CONSTRAINED UNPREDICTABLE whether
or not a Watchpoint debug event is triggered.

RXKRPV If a watchpoint matches only the rounded access address ranges of Inactive elements in a predicated vector
load/store instruction, then it does not trigger a Watchpoint debug event.

IYVSFL If a Watchpoint debug event is triggered by a match on a rounded access address range that would not have been
triggered by the original access address range, then this may report a false-positive match. Debug software must
attempt to detect and step over false-positive matches. The architecture does not permit missed, or false-negative
matches.

C2.1.1 Reporting watchpoints

RKDRCX If SME is implemented, then the following fields are added to ESR_EL1 and ESR_EL2 in the ISS encoding for an
exception from a Watchpoint exception, when the EC value is 0x34 or 0x35:

Field Name Meaning

[24] ISV RES0

[23:18] WPT Watchpoint number, 0-15 inclusive.
All other values are reserved.

[17] WPTV Watchpoint number Valid.
0b0 The WPT field is invalid, and holds an UNKNOWN value.
0b1 The WPT field is valid, and holds the number of a watchpoint that triggered a

Watchpoint debug event.

[16] WPF Watchpoint might be false-positive.
0b0 The watchpoint matched the original access or set of contiguous accesses.
0b1 The watchpoint matched an access or set of contiguous accesses where the lowest

accessed address was rounded down to the nearest multiple of 16 bytes and the
highest accessed address was rounded up to the nearest multiple of 16 bytes
minus 1, but the watchpoint might not have matched the original access or set of
contiguous accesses.

[15] FnP FAR not Precise.
This field only has meaning if the FAR is valid; that is, when the FnV field is 0. If the FnV

field is 1, the FnP field is 0.
0b0 If the FnV field is 0, the FAR holds the virtual address of an access or set of

contiguous accesses that triggered a Watchpoint debug event.
0b1 The FAR holds any address within the smallest implemented translation granule

that contains the virtual address of an access or set of contiguous accesses that
triggered a Watchpoint debug event.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

84

Chapter C2. Interaction with other A-profile architectural features
C2.1. Watchpoints

Field Name Meaning

[10] FnV FAR not Valid.
0b0 The FAR is valid, and its value is as described by the FnP field.
0b1 The FAR is invalid, and holds an UNKNOWN value.

RMFRPZ If SME is implemented, then the following field is added to the EDDEVID1 register:

Field Name Meaning

[7:4] HSR Indicates support for the External Debug Halt Status Register (EDHSR). Defined values
are:
0b0000 EDHSR not implemented, and the PE follows behaviors consistent with all of

the EDHSR fields having a zero value.
0b0001 EDHSR implemented.
All other values are reserved.
If FEAT_SME is implemented, the permitted values are 0b0000 and 0b0001.
If FEAT_SME is not implemented, the only permitted value is 0b0000.

RQBKWY If SME is implemented, then the read-only External Debug Halt Status Register (EDHSR) may be implemented at
offset 0x038. The field EDDEVID1.HSR1 indicates whether the EDHSR is implemented.

RLXGXN If the EDHSR is implemented, it is in the Core power domain.

RSDSFM If the EDHSR is implemented, then it is only valid when the PE is in Debug state and EDSCR.STATUS indicates a
Watchpoint debug event (0b101011), otherwise it has an UNKNOWN value.

The EDHSR fields are defined as follows:

Field Name Meaning

[23:18] WPT Watchpoint number, 0-15 inclusive.
All other values are reserved.

[17] WPTV Watchpoint number Valid.
0b0 The WPT field is invalid, and holds an UNKNOWN value.
0b1 The WPT field is valid, and holds the number of a watchpoint that triggered a

Watchpoint debug event.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

[16] WPF Watchpoint might be false-positive.
0b0 The watchpoint matched the original access or set of contiguous accesses.
0b1 The watchpoint matched an access or set of contiguous accesses where the lowest

accessed address was rounded down to the nearest multiple of 16 bytes and the
highest accessed address was rounded up to the nearest multiple of 16 bytes
minus 1, but the watchpoint might not have matched the original access or set of
contiguous accesses.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

85

Chapter C2. Interaction with other A-profile architectural features
C2.1. Watchpoints

Field Name Meaning

[15] FnP FAR not Precise.
This field only has meaning if the EDWAR is valid; that is, when the FnV field is 0. If the
FnV field is 1, the FnP field is 0.
0b0 If the FnV field is 0, the EDWAR holds the virtual address of an access or set of

contiguous accesses that triggered a Watchpoint debug event.
0b1 The EDWAR holds any address within the smallest implemented translation granule

that contains the virtual address of an access or set of contiguous accesses that
triggered a Watchpoint debug event.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

[10] FnV FAR not Valid.
0b0 The EDWAR is valid, and its value is as described by the FnP field.
0b1 The EDWAR is invalid, and holds an UNKNOWN value.
On a Cold reset, this field resets to an architecturally UNKNOWN value.

RXWDJT If the EDHSR is not implemented, then the PE must follow behaviors consistent with all of the EDHSR fields having a
zero value.

RCXZCY If a Watchpoint debug event is triggered by an SVE contiguous load/store instruction when the PE is in Streaming
SVE mode, or by an SME load/store instruction, then a virtual address recorded in FAR_ELx or EDWAR must be
derived from an address that is both:

• In the inclusive range between:
– The lowest address accessed by the vector instruction that triggered the watchpoint, or the lowest rounded

address as permitted by RPDGZL.
– The highest watchpointed address accessed by the vector instruction that triggered the watchpoint, or

the highest watchpointed address in the address range permitted by RPDGZL.
• Within a naturally-aligned block of memory.

RSQDKJ If an instruction generates a watchpoint match where the the watchpointed data address or data address range is
not accessed by the instruction, the PE:

• Sets ESR_ELx.WPF to 1, on taking a Watchpoint exception generated by the watchpoint match.
• Sets EDHSR.WPF to 1, on entering Debug state on a Watchpoint debug event generated by the watchpoint

match.

Otherwise, ESR_ELx.WPF or EDHSR.WPF (as applicable) is set to an IMPLEMENTATION DEFINED choice of 0 or 1.

For example, when RPDGZL applies, an SVE contiguous vector load/store instruction when the PE is in Streaming
SVE mode, or an SME load/store instruction might generate a watchpoint match for a data address or data
address range that the instruction does not access. Arm strongly recommends that ESR_ELx.WPF or EDHSR.WPF (as
applicable) is set to 0 for all other cases.

RKSSHC If a watchpoint matches an access that is due to an SVE contiguous load/store instruction when the PE is in
Streaming SVE mode, or is due to an SME load/store instruction, then the PE:

• Sets ESR_ELx.FnV to an IMPLEMENTATION DEFINED value, 0 or 1, on taking a Watchpoint exception
generated by the watchpoint match.

• Sets EDHSR.FnV to an IMPLEMENTATION DEFINED value, 0 or 1, on entering Debug state on a Watchpoint
debug event generated by the watchpoint match.

• Otherwise, ESR_ELx.FnV or EDHSR.FnV (as applicable) is set to 0.

RRLWSF When the PE sets ESR_ELx.FnV to 0 on taking a Watchpoint exception generated by the watchpoint match:

• If the lowest watchpointed address higher than or the same as the address recorded in FAR_ELx might not
have been accessed by the instruction, other than as permitted by RPDGZL, then the PE sets ESR_ELx.FnP to 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

86

Chapter C2. Interaction with other A-profile architectural features
C2.1. Watchpoints

• Otherwise, the PE sets ESR_ELx.FnP to 0.

RCJWYX When the PE sets EDHSR.FnV to 0 on entering Debug state on a Watchpoint debug event generated by a watchpoint
match:

• If the lowest watchpointed address higher than or the same as the address recorded in EDWAR might not have
been accessed by the instruction, other than as permitted by RPDGZL, then the PE sets EDHSR.FnP to 1.

• Otherwise, the PE sets EDHSR.FnP to 0.

RDTWTH When a Watchpoint exception is triggered by a watchpoint match:

• If the PE sets any of ESR_ELx.FnV, ESR_ELx.FnP, or ESR_ELx.WPF to 1, then the PE sets ESR_ELx.WPTV to 1.
• If the PE sets all of ESR_ELx.FnV, ESR_ELx.FnP, and ESR_ELx.WPF to 0, then the PE sets ESR_ELx.WPTV to an

IMPLEMENTATION DEFINED value, 0 or 1.

RBNXVL When an entry to Debug state is triggered by a watchpoint match:

• If the PE sets any of EDHSR.FnV, EDHSR.FnP, or EDHSR.WPF to 1, then the PE sets EDHSR.WPTV to 1.
• If the PE sets all of EDHSR.FnV, EDHSR.FnP, and EDHSR.WPF to 0, then the PE sets EDHSR.WPTV to an IMPLE-

MENTATION DEFINED value, 0 or 1.

RPVYNL On a watchpoint match generated by watchpoint <n>:

• If the PE sets ESR_ELx.WPTV to 1 on taking a Watchpoint exception generated by the watchpoint match, then
ESR_ELx.WPT is set to <n>.

• If the PE sets EDHSR.WPTV to 1 on entering Debug state on a Watchpoint debug event generated by the
watchpoint match, then EDHSR.WPT is set to <n>.

• Otherwise, ESR_ELx.WPT or EDHSR.WPT (as applicable) is UNKNOWN.

RKHSFH When an instruction generates multiple watchpoint matches and the PE sets ESR_ELx.WPTV or EDHSR.WPTV to 1,
then it is UNPREDICTABLE which matched watchpoint is reported in ESR_ELx.WPT or EDHSR.WPT (as applicable).

DLXZPC The naturally-aligned block of memory is all of the following:

• A power-of-two size.
• No larger than the DC ZVA block size if ESR_ELx.FnP or EDHSR.FnP (as appropriate) is 0.
• No larger than the smallest implemented translation granule if ESR_ELx.FnP or EDHSR.FnP (as appropriate) is

1.
• Contains a watchpointed address accessed by the memory access or set of contiguous memory accesses that

triggered the watchpoint, or a watchpointed address in the address range permitted by RPDGZL.

The size of the block is IMPLEMENTATION DEFINED.

There is no architectural means of discovering the size.

DLTGKY A watchpointed address is an address that a watchpoint is watching.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

87

Chapter C2. Interaction with other A-profile architectural features
C2.2. Self-hosted debug

C2.2 Self-hosted debug

ICDBZX SME has no additional effect on self-hosted debug.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

88

Chapter C2. Interaction with other A-profile architectural features
C2.3. External debug

C2.3 External debug

RXQQRS The following SME-related instructions are unchanged in Debug state:

• MOVA (tile to vector, single).
• MOVA (vector to tile, single).
• MRS SVCR.
• MSR SVCR.
• RDSVL.

RCSRRS If SME2 is implemented, the following instructions are defined only when the PE is in Debug state:

• MOVT (ZT0 to scalar).
• MOVT (scalar to ZT0).

RTNZLR All other SME-related instructions are CONSTRAINED UNPREDICTABLE in Debug state, with the same set of
CONSTRAINED UNPREDICTABLE options as other instructions in Debug state, as defined in Arm® Architecture
Reference Manual for A-profile architecture [1].

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

89

Chapter C2. Interaction with other A-profile architectural features
C2.4. Memory Tagging Extension (MTE)

C2.4 Memory Tagging Extension (MTE)

The following rules apply when the optional FEAT_MTE feature is implemented.

RBGGMD When the Memory Tagging Extension is implemented, it is IMPLEMENTATION DEFINED whether memory accesses
due to SME, SVE, and SIMD&FP load and store instructions executed when the PE is in Streaming SVE mode
will perform a Tag Check.

RGLYMK When the Memory Tagging Extension is implemented, it is IMPLEMENTATION DEFINED whether memory accesses
due to the following instructions will perform a Tag Check:

• SME LDR (vector) and STR (vector) instructions.
• SME2 LDR (ZT0) and STR (ZT0) instructions.

IRBPTM An implementation of FEAT_MTE is only expected to perform Tag Checking when the PE is in Streaming SVE
mode if it can do so with a similar relative performance impact to Tag Checking memory accesses due to SVE and
SIMD&FP load and store instructions executed when the PE is not in Streaming SVE mode.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter C2. Interaction with other A-profile architectural features
C2.5. Reliability, Availability, and Serviceability (RAS)

C2.5 Reliability, Availability, and Serviceability (RAS)

RRVYHY Rules INTXKV and RNQDWB in the RAS PE Architecture chapter of Arm® Architecture Reference Manual for A-profile
architecture [1] are extended by adding the ZA storage, and the ZT0 register when SME2 is implemented, to any
list of program-visible architectural state or registers that includes the SIMD&FP or SVE registers.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

91

Chapter C2. Interaction with other A-profile architectural features
C2.6. Memory Partitioning and Monitoring (MPAM)

C2.6 Memory Partitioning and Monitoring (MPAM)

The following System registers are modified or added when the optional FEAT_MPAM feature is implemented.

C2.6.1 MPAMSM_EL1

RPPJJP If SME and FEAT_MPAM are implemented, the register MPAMSM_EL1 is added to generate MPAM labels for
memory requests issued at any Exception level by the following instructions:

• SME load/store instructions.
• When the PE is in Streaming SVE mode, SVE and SIMD&FP load/store instructions, and SVE prefetch

instructions.

For more information, see MPAMSM_EL1.

C2.6.2 MPAM2_EL2

RLJVWP If SME, FEAT_MPAM, and EL2 are implemented, the field MPAM2_EL2.EnMPAMSM is defined at bit [50]. For more
information, see MPAM2_EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

92

Chapter C2. Interaction with other A-profile architectural features
C2.7. Transactional Memory Extension (TME)

C2.7 Transactional Memory Extension (TME)

The following rules apply when the optional FEAT_TME feature is implemented.

RKHVVR Executing a TSTART instruction when PSTATE.SM is 1 fails the transaction with the ERR cause.

RLYBMR Executing any of the following instructions while in Transactional state will cause the transaction to fail with the
ERR cause:

• An SME LDR (vector), STR (vector), or ZERO (tile) instruction.
• An SME2 LDR (ZT0), STR (ZT0), or ZERO (ZT0) instruction.

ITNZSW Any MSR instruction that writes to the PSTATE.SM or PSTATE.ZA bits in Transactional state, including the SMSTART

and SMSTOP aliases, are UNDEFINED according to the rules in Arm® Architecture Reference Manual Supplement,
The Transactional Memory Extension (TME), for A-profile architecture [5] and will cause the transaction to fail
with the ERR cause, without trapping.

For more information about the rules, see the “MSR (register)” and “MSR (immediate)” sections in Arm®

Architecture Reference Manual Supplement, The Transactional Memory Extension (TME), for A-profile architecture
[5].

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter C2. Interaction with other A-profile architectural features
C2.8. Memory consistency model

C2.8 Memory consistency model

RBQSCG Any access to memory performed by an SME load/store instruction, or an SVE load/store instruction when the
PE is in Streaming SVE mode, is subject to the same rules that govern an SVE memory access in The AArch64
Application Level Memory Model chapter of Arm® Architecture Reference Manual for A-profile architecture [1].

RSMWPF When the PE is in Streaming SVE mode, any access to memory performed by a SIMD&FP load/store instruction
is subject to the same rules that govern a SIMD&FP memory access in The AArch64 Application Level Memory
Model chapter of Arm® Architecture Reference Manual for A-profile architecture [1].

RXHFBX When the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level, any access to Device memory performed by a SIMD&FP load/store instruction is relaxed such
that it might behave as if:

• The Gathering attribute is set, regardless of the configured value of the nG attribute.
• The Reordering attribute is set, regardless of the configured value of the nR attribute.
• The Early Acknowledgement attribute is set, regardless of the configured value of the nE attribute.

Whether or not attributes are classified as mismatched is determined strictly by the memory attributes derived from
the translation table entry.

RHBBTV If a pair of memory reads access the same location, and at least one of the reads is generated by a SIMD&FP load
instruction then, for a given observer, the pair of reads is not required to satisfy the internal visibility requirement
when the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

94

Part D
SME Instruction Set

Chapter D1
SME instructions

This chapter defines the instructions added to the A64 instruction set when SME is implemented.

This content is from the 2022-12 version of Arm® A64 Instruction Set Architecture, for A-profile architecture [3],
which contains the definitive details of the instruction set.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

96

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1 SME and SME2 data-processing instructions

The following SME data-processing instructions are added by the SME or SME2 architecture.

The SME data-processing instructions are available when SME or SME2 is implemented, and are identified by the
presence of the FEAT_SME symbol, or a call to one of the HaveSME pseudocode functions.

The SME2 data-processing instructions are available when SME2 is implemented, and are identified by the
presence of the FEAT_SME2 symbol, or a call to the HaveSME2 pseudocode function.

D1.1.1 ADD (to vector)

Add replicated single vector to multi-vector with multi-vector result

Add elements of the second source vector to the corresponding elements of the two or four first source vectors and
destructively place the results in the corresponding elements of the two or four first source vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 0

15 10

1 1 0 0 0

9 5

Zdn

4 1

0

0

ADD { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 0

15 10

1 1 0 0 0

9 5

Zdn

4 2

0 0

1 0

ADD { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

97

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

size <T>
00 B
01 H
10 S
11 D

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 bits(esize) element1 = Elem[operand1, e, esize];
11 bits(esize) element2 = Elem[operand2, e, esize];
12 Elem[results[r], e, esize] = element1 + element2;
13
14 for r = 0 to nreg-1
15 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

98

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.2 ADD (array accumulators)

Add multi-vector to ZA array vector accumulators

The instruction operates on two or four ZA single-vector groups.

Destructively add all elements of the two or four source vectors to the corresponding elements of the two or four
ZA single-vector groups. The vector numbers forming the single-vector group within each half or each quarter of
the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1 0 0 0 0 0 0

21 15

Rv

14 13

1 1 1

12 10

Zm

9 6

0 1

5 4

0

3

off3

2 0

S

ADD ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zm1>.<T>-<Zm2>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(off3);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1 0 0 0 0 1 0

21 15

Rv

14 13

1 1 1

12 10

Zm

9 7

0 0 1

6 4

0

3

off3

2 0

S

ADD ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zm1>.<T>-<Zm4>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(off3);
7 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

99

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = ZAvector[vec, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 for e = 0 to elements-1
14 bits(esize) element1 = Elem[operand1, e, esize];
15 bits(esize) element2 = Elem[operand2, e, esize];
16 Elem[result, e, esize] = element1 + element2;
17 ZAvector[vec, VL] = result;
18 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

100

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.3 ADD (array results, multiple and single vector)

Add replicated single vector to multi-vector with ZA array vector results

The instruction operates on two or four ZA single-vector groups.

Add all corresponding elements of the second source vector and the two or four first source vectors and place the
results in the corresponding elements of the two or four ZA single-vector groups. The vector numbers forming the
single-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

1 1 0

12 10

Zn

9 5

1

4

0

3

off3

2 0

S

ADD ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

1 1 0

12 10

Zn

9 5

1

4

0

3

off3

2 0

S

ADD ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

101

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 for e = 0 to elements-1
14 bits(esize) element1 = Elem[operand1, e, esize];
15 bits(esize) element2 = Elem[operand2, e, esize];
16 Elem[result, e, esize] = element1 + element2;
17 ZAvector[vec, VL] = result;
18 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

102

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.4 ADD (array results, multiple vectors)

Add multi-vector to multi-vector with ZA array vector results

The instruction operates on two or four ZA single-vector groups.

Add all corresponding elements of the two or four second source vectors and first source vectors and place the
results in the corresponding elements of the two or four ZA single-vector groups. The vector numbers forming the
single-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

1 1 0

12 10

Zn

9 6

0 1

5 4

0

3

off3

2 0

S

ADD ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'0');
6 integer m = UInt(Zm:'0');
7 integer offset = UInt(off3);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

1 1 0

12 10

Zn

9 7

0 0 1

6 4

0

3

off3

2 0

S

ADD ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'00');
6 integer m = UInt(Zm:'00');
7 integer offset = UInt(off3);
8 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

103

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[n+r, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 for e = 0 to elements-1
14 bits(esize) element1 = Elem[operand1, e, esize];
15 bits(esize) element2 = Elem[operand2, e, esize];
16 Elem[result, e, esize] = element1 + element2;
17 ZAvector[vec, VL] = result;
18 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

104

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.5 ADDHA

Add horizontally vector elements to ZA tile

Add each element of the source vector to the corresponding active element of each horizontal slice of a ZA tile.
The tile elements are predicated by a pair of governing predicates. An element of a horizontal slice is considered
active if its corresponding element in the second governing predicate is TRUE and the element corresponding to its
horizontal slice number in the first governing predicate is TRUE. Inactive elements in the destination tile remain
unmodified.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 1

31 30

0 0 0 0 0 0 1

29 23

0

22

0 1

21 20

0 0 0

19 17

0

16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

V

ADDHA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer da = UInt(ZAda);

64-bit
(FEAT_SME_I16I64)

1 1

31 30

0 0 0 0 0 0 1

29 23

1

22

0 1 0 0 0

21 17

0

16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

V

ADDHA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D

1 if !HaveSMEI16I64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer da = UInt(ZAda);

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

105

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand_src = Z[n, VL];
8 bits(dim*dim*esize) operand_acc = ZAtile[da, esize, dim*dim*esize];
9 bits(dim*dim*esize) result;

10
11 for col = 0 to dim-1
12 bits(esize) element = Elem[operand_src, col, esize];
13 for row = 0 to dim-1
14 bits(esize) res = Elem[operand_acc, row*dim+col, esize];
15 if (ActivePredicateElement(mask1, row, esize) &&
16 ActivePredicateElement(mask2, col, esize)) then
17 res = res + element;
18 Elem[result, row*dim+col, esize] = res;
19
20 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

106

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.6 ADDSPL

Add multiple of Streaming SVE predicate register size to scalar register

Add the Streaming SVE predicate register size in bytes multiplied by an immediate in the range -32 to 31 to
the 64-bit source general-purpose register or current stack pointer and place the result in the 64-bit destination
general-purpose register or current stack pointer.

This instruction does not require the PE to be in Streaming SVE mode.

SME
(FEAT_SME)

0 0 0 0 0 1 0 0 0

31 23

1

22

1

21

Rn

20 16

0 1 0 1 1

15 11

imm6

10 5

Rd

4 0

ADDSPL <Xd|SP>, <Xn|SP>, #<imm>

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer d = UInt(Rd);
4 integer imm = SInt(imm6);

Assembler Symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the
"Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the
"Rn" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation
1 CheckSMEEnabled();
2 constant integer SVL = CurrentSVL;
3 integer len = imm * (SVL DIV 64);
4 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
5 bits(64) result = operand1 + len;
6
7 if d == 31 then
8 SP[] = result;
9 else

10 X[d, 64] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

107

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.7 ADDSVL

Add multiple of Streaming SVE vector register size to scalar register

Add the Streaming SVE vector register size in bytes multiplied by an immediate in the range -32 to 31 to the
64-bit source general-purpose register or current stack pointer, and place the result in the 64-bit destination
general-purpose register or current stack pointer.

This instruction does not require the PE to be in Streaming SVE mode.

SME
(FEAT_SME)

0 0 0 0 0 1 0 0 0

31 23

0

22

1

21

Rn

20 16

0 1 0 1 1

15 11

imm6

10 5

Rd

4 0

ADDSVL <Xd|SP>, <Xn|SP>, #<imm>

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer d = UInt(Rd);
4 integer imm = SInt(imm6);

Assembler Symbols

<Xd|SP> Is the 64-bit name of the destination general-purpose register or stack pointer, encoded in the
"Rd" field.

<Xn|SP> Is the 64-bit name of the source general-purpose register or stack pointer, encoded in the
"Rn" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation
1 CheckSMEEnabled();
2 constant integer SVL = CurrentSVL;
3 integer len = imm * (SVL DIV 8);
4 bits(64) operand1 = if n == 31 then SP[] else X[n, 64];
5 bits(64) result = operand1 + len;
6
7 if d == 31 then
8 SP[] = result;
9 else

10 X[d, 64] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

108

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.8 ADDVA

Add vertically vector elements to ZA tile

Add each element of the source vector to the corresponding active element of each vertical slice of a ZA tile.
The tile elements are predicated by a pair of governing predicates. An element of a vertical slice is considered
active if its corresponding element in the first governing predicate is TRUE and the element corresponding to its
vertical slice number in the second governing predicate is TRUE. Inactive elements in the destination tile remain
unmodified.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 1

31 30

0 0 0 0 0 0 1

29 23

0

22

0 1

21 20

0 0 0

19 17

1

16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

V

ADDVA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer da = UInt(ZAda);

64-bit
(FEAT_SME_I16I64)

1 1

31 30

0 0 0 0 0 0 1

29 23

1

22

0 1 0 0 0

21 17

1

16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

V

ADDVA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D

1 if !HaveSMEI16I64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer da = UInt(ZAda);

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

109

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand_src = Z[n, VL];
8 bits(dim*dim*esize) operand_acc = ZAtile[da, esize, dim*dim*esize];
9 bits(dim*dim*esize) result;

10
11 for row = 0 to dim-1
12 bits(esize) element = Elem[operand_src, row, esize];
13 for col = 0 to dim-1
14 bits(esize) res = Elem[operand_acc, row*dim+col, esize];
15 if (ActivePredicateElement(mask1, row, esize) &&
16 ActivePredicateElement(mask2, col, esize)) then
17 res = res + element;
18 Elem[result, row*dim+col, esize] = res;
19
20 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

110

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.9 BFCVT

Multi-vector floating-point convert from single-precision to packed BFloat16 format

Convert to BFloat16 from single-precision, each element of the two source vectors, and place the results in the
half-width destination elements.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

1

22

1 0 0 0 0 0 1 1 1 0 0 0

21 10

Zn

9 6

0

5

Zd

4 0

N

BFCVT <Zd>.H, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 bits(VL) result;
5
6 bits(VL) operand1 = Z[n+0, VL];
7 bits(VL) operand2 = Z[n+1, VL];
8 for e = 0 to elements-1
9 bits(32) element1 = Elem[operand1, e, 32];

10 bits(32) element2 = Elem[operand2, e, 32];
11 bits(16) res1 = FPConvertBF(element1, FPCR[]);
12 bits(16) res2 = FPConvertBF(element2, FPCR[]);
13 Elem[result, e, 16] = res1;
14 Elem[result, elements+e, 16] = res2;
15
16 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

111

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.10 BFCVTN

Multi-vector floating-point convert from single-precision to interleaved BFloat16 format

Convert to BFloat16 from single-precision, each element of the two source vectors, and place the two-way
interleaved results in the half-width destination elements.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

1

22

1 0 0 0 0 0 1 1 1 0 0 0

21 10

Zn

9 6

1

5

Zd

4 0

N

BFCVTN <Zd>.H, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 bits(VL) result;
5
6 bits(VL) operand1 = Z[n+0, VL];
7 bits(VL) operand2 = Z[n+1, VL];
8 for e = 0 to elements-1
9 bits(32) element1 = Elem[operand1, e, 32];

10 bits(32) element2 = Elem[operand2, e, 32];
11 bits(16) res1 = FPConvertBF(element1, FPCR[]);
12 bits(16) res2 = FPConvertBF(element2, FPCR[]);
13 Elem[result, 2*e + 0, 16] = res1;
14 Elem[result, 2*e + 1, 16] = res2;
15
16 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

112

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.11 BFDOT (multiple and indexed vector)

Multi-vector BFloat16 floating-point dot-product by indexed element

The instruction operates on two or four ZA single-vector groups.

The instruction computes the dot product of a pair of BF16 values held in the corresponding 32-bit elements of the
two or four first source vectors and the indexed 32-bit element of the second source vector. The single-precision
dot product results are destructively added to the corresponding single-precision elements of the two or four ZA
single-vector groups.

The BF16 pairs within the second source vector are specified using an immediate index which selects the same
BF16 pair position within each 128-bit vector segment. The element index range is from 0 to 3. The vector
numbers forming the single-vector group within each half or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME2 ZA-targeting BFloat16 numerical behaviors.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i2

11 10

Zn

9 6

0 1 1

5 3

off3

2 0

BFDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3);
6 integer index = UInt(i2);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i2

11 10

Zn

9 7

0

6

0 1

5 4

1

3

off3

2 0

BFDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3);
6 integer index = UInt(i2);
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

113

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV 32;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m, VL];
14 bits(VL) operand3 = ZAvector[vec, VL];
15 for e = 0 to elements-1
16 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
17 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = segmentbase + index;
20 bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
21 bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];
22 bits(32) sum = Elem[operand3, e, 32];
23 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
24 Elem[result, e, 32] = sum;
25 ZAvector[vec, VL] = result;
26 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

114

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.12 BFDOT (multiple and single vector)

Multi-vector BFloat16 floating-point dot-product by vector

The instruction operates on two or four ZA single-vector groups.

The instruction computes the dot product of a pair of BF16 values held in the corresponding 32-bit elements of
the two or four first source vectors and the second source vector. The single-precision dot product results are
destructively added to the corresponding single-precision elements of the two or four ZA single-vector groups. The
vector numbers forming the single-vector group within each half or each quarter of the ZA array are selected by
the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME2 ZA-targeting BFloat16 numerical behaviors.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

1 0 0

12 10

Zn

9 5

1 0

4 3

off3

2 0

BFDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3);
6 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

1 0 0

12 10

Zn

9 5

1 0

4 3

off3

2 0

BFDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3);
6 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

115

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
16 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
17 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
18 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
19 bits(32) sum = Elem[operand3, e, 32];
20 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
21 Elem[result, e, 32] = sum;
22 ZAvector[vec, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

116

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.13 BFDOT (multiple vectors)

Multi-vector BFloat16 floating-point dot-product

The instruction operates on two or four ZA single-vector groups.

The instruction computes the dot product of a pair of BF16 values held in the corresponding 32-bit elements of the
two or four first and second source vectors. The single-precision dot product results are destructively added to the
corresponding single-precision elements of the two or four ZA single-vector groups. The vector numbers forming
the single-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME2 ZA-targeting BFloat16 numerical behaviors.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1

29 23

0

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

1 0 0

12 10

Zn

9 6

0 1

5 4

0

3

off3

2 0

BFDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt(Zm:'0');
5 integer offset = UInt(off3);
6 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1

29 23

0

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

1 0 0

12 10

Zn

9 7

0

6

0

5

1

4

0

3

off3

2 0

BFDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt(Zm:'00');
5 integer offset = UInt(off3);
6 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

117

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[n+r, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
16 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
17 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
18 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
19 bits(32) sum = Elem[operand3, e, 32];
20 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
21 Elem[result, e, 32] = sum;
22 ZAvector[vec, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

118

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.14 BFMLAL (multiple and indexed vector)

Multi-vector BFloat16 floating-point multiply-add long by indexed element

The instruction operates on one, two, or four ZA double-vector groups.

This BFloat16 floating-point multiply-add long instruction widens all 16-bit BFloat16 elements in the one, two,
or four first source vectors and the indexed element of the second source vector to single-precision format, then
multiplies the corresponding elements and destructively adds these values without intermediate rounding to the
overlapping 32-bit single-precision elements of the one, two, or four ZA double-vector groups.

The BF16 elements within the second source vector are specified using a 3-bit immediate index which selects the
same element position within each 128-bit vector segment.

The lowest of the two consecutive vector numbers forming the double-vector group within all, each half, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

1

12

i3l

11 10

Zn

9 5

1

4

0

3

off3

2 0

S

BFMLAL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = FALSE;
8 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i3h

11 10

Zn

9 6

0

5

1

4

0

3

i3l

2

off2

1 0

S

BFMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = FALSE;
8 constant integer nreg = 2;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

119

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i3h

11 10

Zn

9 7

0 0

6 5

1

4

0

3

i3l

2

off2

1 0

S

BFMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = FALSE;
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV 32;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 2);
11
12 for r = 0 to nreg-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

120

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 1
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 2 * segmentbase + index;
20 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
21 bits(16) element2 = Elem[operand2, s, 16];
22 bits(32) element3 = Elem[operand3, e, 32];
23 if sub_op then element1 = BFNeg(element1);
24 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR[]);
25 ZAvector[vec + i, VL] = result;
26 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

121

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.15 BFMLAL (multiple and single vector)

Multi-vector BFloat16 floating-point multiply-add long by vector

The instruction operates on one, two, or four ZA double-vector groups.

This BFloat16 floating-point multiply-add long instruction widens all 16-bit BFloat16 elements in the one,
two, or four first source vectors and the second source vector to single-precision format, then multiplies the
corresponding elements and destructively adds these values without intermediate rounding to the overlapping
32-bit single-precision elements of the one, two, or four ZA double-vector groups. The lowest of the two
consecutive vector numbers forming the double-vector group within all, each half, or each quarter of the ZA array
are selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the number
of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 1

12 10

Zn

9 5

1

4

0

3

off3

2 0

S

BFMLAL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3:'0');
6 boolean sub_op = FALSE;
7 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

1

4

0

3

0

2

off2

1 0

S

BFMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 boolean sub_op = FALSE;
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

122

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 0 0 1 1

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

1

4

0

3

0

2

off2

1 0

S

BFMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 boolean sub_op = FALSE;
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
18 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
19 bits(32) element3 = Elem[operand3, e, 32];
20 if sub_op then element1 = BFNeg(element1);
21 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR[]);
22 ZAvector[vec + i, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

123

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.16 BFMLAL (multiple vectors)

Multi-vector BFloat16 floating-point multiply-add long

The instruction operates on two or four ZA double-vector groups.

This BFloat16 floating-point multiply-add long instruction widens all 16-bit BFloat16 elements in the two or
four first and second source vectors to single-precision format, then multiplies the corresponding elements and
destructively adds these values without intermediate rounding to the overlapping 32-bit single-precision elements
of the two or four ZA double-vector groups. The lowest of the two consecutive vector numbers forming the
double-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA double-vectors and Four ZA double-vectors

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 1

31 21

Zm

20 17

0 0

16 15

Rv

14 13

0 1 0

12 10

Zn

9 6

0

5

1

4

0

3

0

2

off2

1 0

S

BFMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt(Zm:'0');
5 integer offset = UInt(off2:'0');
6 boolean sub_op = FALSE;
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 1

31 21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 1 0

12 10

Zn

9 7

0 0

6 5

1

4

0

3

0

2

off2

1 0

S

BFMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt(Zm:'00');
5 integer offset = UInt(off2:'0');
6 boolean sub_op = FALSE;
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of two consecutive vectors, encoded as "off2" field

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

124

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

times 2.

<offsl> Is the vector select offset, pointing to last of two consecutive vectors, encoded as "off2" field
times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
18 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
19 bits(32) element3 = Elem[operand3, e, 32];
20 if sub_op then element1 = BFNeg(element1);
21 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR[]);
22 ZAvector[vec + i, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

125

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.17 BFMLSL (multiple and indexed vector)

Multi-vector BFloat16 floating-point multiply-subtract long by indexed element

The instruction operates on one, two, or four ZA double-vector groups.

This BFloat16 floating-point multiply-subtract long instruction widens all 16-bit BFloat16 elements in the one,
two, or four first source vectors and the indexed element of the second source vector to single-precision format,
then multiplies the corresponding elements and destructively subtracts these values without intermediate rounding
from the overlapping 32-bit single-precision elements of the one, two, or four ZA double-vector groups.

The BF16 elements within the second source vector are specified using a 3-bit immediate index which selects the
same element position within each 128-bit vector segment.

The lowest of the two consecutive vector numbers forming the double-vector group within all, each half, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

1

12

i3l

11 10

Zn

9 5

1

4

1

3

off3

2 0

S

BFMLSL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = TRUE;
8 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i3h

11 10

Zn

9 6

0

5

1

4

1

3

i3l

2

off2

1 0

S

BFMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = TRUE;
8 constant integer nreg = 2;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

126

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i3h

11 10

Zn

9 7

0 0

6 5

1

4

1

3

i3l

2

off2

1 0

S

BFMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = TRUE;
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV 32;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 2);
11
12 for r = 0 to nreg-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

127

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 1
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 2 * segmentbase + index;
20 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
21 bits(16) element2 = Elem[operand2, s, 16];
22 bits(32) element3 = Elem[operand3, e, 32];
23 if sub_op then element1 = BFNeg(element1);
24 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR[]);
25 ZAvector[vec + i, VL] = result;
26 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

128

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.18 BFMLSL (multiple and single vector)

Multi-vector BFloat16 floating-point multiply-subtract long by vector

The instruction operates on one, two, or four ZA double-vector groups.

This BFloat16 floating-point multiply-subtract long instruction widens all 16-bit BFloat16 elements in the one, two,
or four first source vectors and the second source vector to single-precision format, then multiplies the corresponding
elements and destructively subtracts these values without intermediate rounding from the overlapping 32-bit
single-precision elements of the one, two, or four ZA double-vector groups. The lowest of the two consecutive
vector numbers forming the double-vector group within all, each half, or each quarter of the ZA array are selected
by the sum of the vector select register and immediate offset, modulo all, half, or quarter the number of ZA array
vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 1

12 10

Zn

9 5

1

4

1

3

off3

2 0

S

BFMLSL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3:'0');
6 boolean sub_op = TRUE;
7 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

1

4

1

3

0

2

off2

1 0

S

BFMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 boolean sub_op = TRUE;
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 0 0 1 1

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

1

4

1

3

0

2

off2

1 0

S

BFMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 boolean sub_op = TRUE;
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
18 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
19 bits(32) element3 = Elem[operand3, e, 32];
20 if sub_op then element1 = BFNeg(element1);
21 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR[]);
22 ZAvector[vec + i, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

130

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.19 BFMLSL (multiple vectors)

Multi-vector BFloat16 floating-point multiply-subtract long

The instruction operates on two or four ZA double-vector groups.

This BFloat16 floating-point multiply-subtract long instruction widens all 16-bit BFloat16 elements in the two or
four first and second source vectors to single-precision format, then multiplies the corresponding elements and
destructively subtracts these values without intermediate rounding from the overlapping 32-bit single-precision
elements of the two or four ZA double-vector groups. The lowest of the two consecutive vector numbers forming
the double-vector group within each half or each quarter of the ZA array are selected by the sum of the vector
select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA double-vectors and Four ZA double-vectors

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 1

31 21

Zm

20 17

0 0

16 15

Rv

14 13

0 1 0

12 10

Zn

9 6

0

5

1

4

1

3

0

2

off2

1 0

S

BFMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt(Zm:'0');
5 integer offset = UInt(off2:'0');
6 boolean sub_op = TRUE;
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 1

31 21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 1 0

12 10

Zn

9 7

0 0

6 5

1

4

1

3

0

2

off2

1 0

S

BFMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt(Zm:'00');
5 integer offset = UInt(off2:'0');
6 boolean sub_op = TRUE;
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of two consecutive vectors, encoded as "off2" field

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

131

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

times 2.

<offsl> Is the vector select offset, pointing to last of two consecutive vectors, encoded as "off2" field
times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
18 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
19 bits(32) element3 = Elem[operand3, e, 32];
20 if sub_op then element1 = BFNeg(element1);
21 Elem[result, e, 32] = BFMulAddH_ZA(element3, element1, element2, FPCR[]);
22 ZAvector[vec + i, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

132

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.20 BFMOPA

BFloat16 sum of outer products and accumulate

The BFloat16 floating-point sum of outer products and accumulate instruction works with a 32-bit element ZA tile.

This instruction multiplies the SVLS×2 sub-matrix of BFloat16 values held in the first source vector by the
2×SVLS sub-matrix of BFloat16 values in the second source vector.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively added to
the single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and
accumulate to each of the destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of the second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME BFloat16 numerical behaviors.

SME
(FEAT_SME)

1 0

31 30

0 0 0 0 0 1 1 0 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

S

BFMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME() then UNDEFINED;
2 integer a = UInt(Pn);
3 integer b = UInt(Pm);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer da = UInt(ZAda);
7 boolean sub_op = FALSE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV 32;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*32) operand3 = ZAtile[da, 32, dim*dim*32];

10 bits(dim*dim*32) result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

133

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

11
12 for row = 0 to dim-1
13 for col = 0 to dim-1
14 // determine row/col predicates
15 boolean prow_0 = (ActivePredicateElement(mask1, 2*row + 0, 16));
16 boolean prow_1 = (ActivePredicateElement(mask1, 2*row + 1, 16));
17 boolean pcol_0 = (ActivePredicateElement(mask2, 2*col + 0, 16));
18 boolean pcol_1 = (ActivePredicateElement(mask2, 2*col + 1, 16));
19
20 bits(32) sum = Elem[operand3, row*dim+col, 32];
21 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
22 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0',

↪→16));
23 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0',

↪→16));
24 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0',

↪→16));
25 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0',

↪→16));
26 if sub_op then
27 boolean honor_altfp = FALSE; // Alternate handling ignored
28 if prow_0 then erow_0 = BFNeg(erow_0, honor_altfp);
29 if prow_1 then erow_1 = BFNeg(erow_1, honor_altfp);
30 sum = BFDotAdd(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR[]);
31
32 Elem[result, row*dim+col, 32] = sum;
33
34 ZAtile[da, 32, dim*dim*32] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

134

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.21 BFMOPS

BFloat16 sum of outer products and subtract

The BFloat16 floating-point sum of outer products and subtract instruction works with a 32-bit element ZA tile.

This instruction multiplies the SVLS×2 sub-matrix of BFloat16 values held in the first source vector by the
2×SVLS sub-matrix of BFloat16 values in the second source vector.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively subtracted
from the single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and
subtract from each of the destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of the second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME BFloat16 numerical behaviors.

SME
(FEAT_SME)

1 0

31 30

0 0 0 0 0 1 1 0 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

S

BFMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME() then UNDEFINED;
2 integer a = UInt(Pn);
3 integer b = UInt(Pm);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer da = UInt(ZAda);
7 boolean sub_op = TRUE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV 32;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*32) operand3 = ZAtile[da, 32, dim*dim*32];

10 bits(dim*dim*32) result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

135

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

11
12 for row = 0 to dim-1
13 for col = 0 to dim-1
14 // determine row/col predicates
15 boolean prow_0 = (ActivePredicateElement(mask1, 2*row + 0, 16));
16 boolean prow_1 = (ActivePredicateElement(mask1, 2*row + 1, 16));
17 boolean pcol_0 = (ActivePredicateElement(mask2, 2*col + 0, 16));
18 boolean pcol_1 = (ActivePredicateElement(mask2, 2*col + 1, 16));
19
20 bits(32) sum = Elem[operand3, row*dim+col, 32];
21 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
22 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0',

↪→16));
23 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0',

↪→16));
24 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0',

↪→16));
25 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0',

↪→16));
26 if sub_op then
27 boolean honor_altfp = FALSE; // Alternate handling ignored
28 if prow_0 then erow_0 = BFNeg(erow_0, honor_altfp);
29 if prow_1 then erow_1 = BFNeg(erow_1, honor_altfp);
30 sum = BFDotAdd(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR[]);
31
32 Elem[result, row*dim+col, 32] = sum;
33
34 ZAtile[da, 32, dim*dim*32] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

136

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.22 BFVDOT

Multi-vector BFloat16 floating-point vertical dot-product by indexed element

The instruction operates on two ZA single-vector groups.

The instruction computes the vertical dot product of the corresponding BF16 elements held in the two first
source vectors with pair of BF16 values held in the indexed 32-bit element of the second source vector. The
single-precision dot product results are destructively added to the corresponding single-precision elements of the
two ZA single-vector groups.

The BF16 pairs within the second source vector are specified using an immediate index which selects the same
BF16 pair position within each 128-bit vector segment. The element index range is from 0 to 3.

The vector numbers forming the single-vector group within each half of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the ZA operand consists of two ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME2 ZA-targeting BFloat16 numerical behaviors.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i2

11 10

Zn

9 6

0 1 1

5 3

off3

2 0

BFVDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3);
6 integer index = UInt(i2);

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV 2;
6 integer eltspersegment = 128 DIV 32;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

137

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

9 bits(VL) result;
10
11 for r = 0 to 1
12 bits(VL) operand1a = Z[n, VL];
13 bits(VL) operand1b = Z[n+1, VL];
14 bits(VL) operand2 = Z[m, VL];
15 bits(VL) operand3 = ZAvector[vec, VL];
16 for e = 0 to elements-1
17 integer segmentbase = e - (e MOD eltspersegment);
18 integer s = segmentbase + index;
19 bits(16) elt1_a = Elem[operand1a, 2 * e + r, 16];
20 bits(16) elt1_b = Elem[operand1b, 2 * e + r, 16];
21 bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
22 bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];
23 bits(32) sum = Elem[operand3, e, 32];
24 sum = BFDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
25 Elem[result, e, 32] = sum;
26 ZAvector[vec, VL] = result;
27 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

138

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.23 BMOPA

Bitwise exclusive NOR population count outer product and accumulate

This instruction works with 32-bit element ZA tile. This instruction generates an outer product of the first source
SVLS×1 vector and the second source 1×SVLS vector. Each outer product element is obtained as population count
of the bitwise XNOR result of the corresponding 32-bit elements of the first source vector and the second source
vector. Each source vector is independently predicated by a corresponding governing predicate. When either
source vector element is inactive the corresponding destination tile element remains unmodified. The resulting
SVLS×SVLS product is then destructively added to the destination tile.

SME2
(FEAT_SME2)

1 0

31 30

0 0 0 0 0 0 1 0 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

1

3

0

2

ZAda

1 0

S

BMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S, <Zm>.S

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11
12 for row = 0 to dim-1
13 bits(esize) element1 = Elem[operand1, row, esize];
14 for col = 0 to dim-1
15 bits(esize) element2 = Elem[operand2, col, esize];
16 bits(esize) element3 = Elem[operand3, row*dim + col, esize];
17 if (ActivePredicateElement(mask1, row, esize) &&
18 ActivePredicateElement(mask2, col, esize)) then
19 integer res = BitCount(NOT(element1 EOR element2));
20 if sub_op then res = -res;
21 Elem[result, row*dim + col, esize] = element3 + res;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

139

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

22 else
23 Elem[result, row*dim + col, esize] = element3;
24 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

140

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.24 BMOPS

Bitwise exclusive NOR population count outer product and subtract

This instruction works with 32-bit element ZA tile. This instruction generates an outer product of the first source
SVLS×1 vector and the second source 1×SVLS vector. Each outer product element is obtained as population count
of the bitwise XNOR result of the corresponding 32-bit elements of the first source vector and the second source
vector. Each source vector is independently predicated by a corresponding governing predicate. When either
source vector element is inactive the corresponding destination tile element remains unmodified. The resulting
SVLS×SVLS product is then destructively subtracted from the destination tile.

SME2
(FEAT_SME2)

1 0

31 30

0 0 0 0 0 0 1 0 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

1

3

0

2

ZAda

1 0

S

BMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S, <Zm>.S

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11
12 for row = 0 to dim-1
13 bits(esize) element1 = Elem[operand1, row, esize];
14 for col = 0 to dim-1
15 bits(esize) element2 = Elem[operand2, col, esize];
16 bits(esize) element3 = Elem[operand3, row*dim + col, esize];
17 if (ActivePredicateElement(mask1, row, esize) &&
18 ActivePredicateElement(mask2, col, esize)) then
19 integer res = BitCount(NOT(element1 EOR element2));
20 if sub_op then res = -res;
21 Elem[result, row*dim + col, esize] = element3 + res;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

141

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

22 else
23 Elem[result, row*dim + col, esize] = element3;
24 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

142

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.25 CNTP

Set scalar to count from predicate-as-counter

Counts the number of true elements in the source predicate and places the scalar result in the destination
general-purpose register.

SME2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1 0 0

21 19

0 0

18 17

0

16

1 0 0 0 0

15 11

vl

10

1

9

PNn

8 5

Rd

4 0

CNTP <Xd>, <PNn>.<T>, <vl>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(PNn);
4 integer d = UInt(Rd);
5 constant integer width = 2 << UInt(vl);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<PNn> Is the name of the first source scalable predicate register, with predicate-as-counter encoding,
encoded in the "PNn" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<vl> Is the vl specifier, encoded in "vl":
vl <vl>
0 VLx2
1 VLx4

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(PL) pred = P[n, PL];
6 bits(PL*4) mask = CounterToPredicate(pred<15:0>, PL*4);
7 bits(64) sum = Zeros(64);
8 constant integer limit = elements * width;
9

10 for e = 0 to limit-1
11 if ActivePredicateElement(mask, e, esize) then
12 sum = sum + 1;
13 X[d, 64] = sum;

Operational information

If PSTATE.DIT is 1:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

143

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

144

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.26 FADD

Floating-point add multi-vector to ZA array vector accumulators

The instruction operates on two or four ZA single-vector groups.

Destructively add all elements of the two or four source vectors to the corresponding elements of the two or four
ZA single-vector groups. The vector numbers forming the single-vector group within each half or each quarter of
the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1 0 0 0 0 0 0

21 15

Rv

14 13

1 1 1

12 10

Zm

9 6

0 0

5 4

0

3

off3

2 0

S

FADD ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zm1>.<T>-<Zm2>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(off3);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1 0 0 0 0 1 0

21 15

Rv

14 13

1 1 1

12 10

Zm

9 7

0 0 0

6 4

0

3

off3

2 0

S

FADD ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zm1>.<T>-<Zm4>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(off3);
7 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

145

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = ZAvector[vec, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 for e = 0 to elements-1
14 bits(esize) element1 = Elem[operand1, e, esize];
15 bits(esize) element2 = Elem[operand2, e, esize];
16 Elem[result, e, esize] = FPAdd_ZA(element1, element2, FPCR[]);
17 ZAvector[vec, VL] = result;
18 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

146

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.27 FCLAMP

Multi-vector floating-point clamp to minimum/maximum number

Clamp each floating-point element in the two or four destination vectors to between the floating-point minimum
value in the corresponding element of the first source vector and the floating-point maximum value in the
corresponding element of the second source vector and destructively place the clamped results in the corresponding
elements of the two or four destination vectors. If at least one element value contributing to a result is numeric and
the other is either numeric or a quiet NaN, then the result is the numeric value.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 16

1 1 0 0 0 0

15 10

Zn

9 5

Zd

4 1

0

0

FCLAMP { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer d = UInt(Zd:'0');
7 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 16

1 1 0 0 1 0

15 10

Zn

9 5

Zd

4 2

0 0

1 0

FCLAMP { <Zd1>.<T>-<Zd4>.<T> }, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer d = UInt(Zd:'00');
7 constant integer nreg = 4;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<T> Is the size specifier, encoded in "size":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

147

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

size <T>
00 RESERVED
01 H
10 S
11 D

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(VL) operand3 = Z[d+r, VL];

10 for e = 0 to elements-1
11 bits(esize) element1 = Elem[operand1, e, esize];
12 bits(esize) element2 = Elem[operand2, e, esize];
13 bits(esize) element3 = Elem[operand3, e, esize];
14 Elem[results[r], e, esize] = FPMinNum(FPMaxNum(element1, element3, FPCR[]),

↪→element2, FPCR[]);
15
16 for r = 0 to nreg-1
17 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

148

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.28 FCVT

Multi-vector floating-point convert from single-precision to packed half-precision

Convert to half-precision from single-precision, each element of the two source vectors, and place the results in the
half-width destination elements.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 0 0 0 0 0 1 1 1 0 0 0

21 10

Zn

9 6

0

5

Zd

4 0

N

FCVT <Zd>.H, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 bits(VL) result;
5
6 bits(VL) operand1 = Z[n+0, VL];
7 bits(VL) operand2 = Z[n+1, VL];
8 for e = 0 to elements-1
9 bits(32) element1 = Elem[operand1, e, 32];

10 bits(32) element2 = Elem[operand2, e, 32];
11 bits(16) res1 = FPConvertSVE(element1, FPCR[], 16);
12 bits(16) res2 = FPConvertSVE(element2, FPCR[], 16);
13 Elem[result, e, 16] = res1;
14 Elem[result, elements+e, 16] = res2;
15
16 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

149

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.29 FCVTN

Multi-vector floating-point convert from single-precision to interleaved half-precision

Convert to half-precision from single-precision, each element of the two source vectors, and place the two-way
interleaved results in the half-width destination elements.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 0 0 0 0 0 1 1 1 0 0 0

21 10

Zn

9 6

1

5

Zd

4 0

N

FCVTN <Zd>.H, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 bits(VL) result;
5
6 bits(VL) operand1 = Z[n+0, VL];
7 bits(VL) operand2 = Z[n+1, VL];
8 for e = 0 to elements-1
9 bits(32) element1 = Elem[operand1, e, 32];

10 bits(32) element2 = Elem[operand2, e, 32];
11 bits(16) res1 = FPConvertSVE(element1, FPCR[], 16);
12 bits(16) res2 = FPConvertSVE(element2, FPCR[], 16);
13 Elem[result, 2*e + 0, 16] = res1;
14 Elem[result, 2*e + 1, 16] = res2;
15
16 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

150

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.30 FCVTZS

Multi-vector floating-point convert to signed integer, rounding toward zero

Convert to the signed 32-bit integer nearer to zero from single-precision, each element of the two or four source
vectors, and place the results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0

31 10

Zn

9 6

0

5

Zd

4 1

0

0

U

FCVTZS { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd:'0');
4 constant integer nreg = 2;
5 boolean unsigned = FALSE;
6 FPRounding rounding = FPRounding_ZERO;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0

31 10

Zn

9 7

0

6

0

5

Zd

4 2

0 0

1 0

U

FCVTZS { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'00');
3 integer d = UInt(Zd:'00');
4 constant integer nreg = 4;
5 boolean unsigned = FALSE;
6 FPRounding rounding = FPRounding_ZERO;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

151

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 bits(32) element = Elem[operand, e, 32];

10 Elem[results[r], e, 32] = FPToFixed(element, 0, unsigned, FPCR[], rounding, 32);
11
12 for r = 0 to nreg-1
13 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

152

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.31 FCVTZU

Multi-vector floating-point convert to unsigned integer, rounding toward zero

Convert to the unsigned 32-bit integer nearer to zero from single-precision, each element of the two or four source
vectors, and place the results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0

31 10

Zn

9 6

1

5

Zd

4 1

0

0

U

FCVTZU { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd:'0');
4 constant integer nreg = 2;
5 boolean unsigned = TRUE;
6 FPRounding rounding = FPRounding_ZERO;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0

31 10

Zn

9 7

0

6

1

5

Zd

4 2

0 0

1 0

U

FCVTZU { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'00');
3 integer d = UInt(Zd:'00');
4 constant integer nreg = 4;
5 boolean unsigned = TRUE;
6 FPRounding rounding = FPRounding_ZERO;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

153

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 bits(32) element = Elem[operand, e, 32];

10 Elem[results[r], e, 32] = FPToFixed(element, 0, unsigned, FPCR[], rounding, 32);
11
12 for r = 0 to nreg-1
13 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

154

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.32 FDOT (multiple and indexed vector)

Multi-vector half-precision floating-point dot-product by indexed element

The instruction operates on two or four ZA single-vector groups.

The instruction computes the fused sum-of-products of a pair of half-precision floating-point values held in the
corresponding 32-bit elements of the two or four first source vectors and the indexed 32-bit element of the second
source vector, without intermediate rounding. The single-precision sum-of-products results are destructively added
to the corresponding single-precision elements of the two or four ZA single-vector groups.

The half-precision floating-point pairs within the second source vector are specified using an immediate index
which selects the same pair position within each 128-bit vector segment. The element index range is from 0 to 3.
The vector numbers forming the single-vector group within each half or each quarter of the ZA array are selected
by the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA array
vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i2

11 10

Zn

9 6

0 0 1

5 3

off3

2 0

FDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3);
6 integer index = UInt(i2);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i2

11 10

Zn

9 7

0

6

0 0

5 4

1

3

off3

2 0

FDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3);
6 integer index = UInt(i2);
7 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

155

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV 32;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m, VL];
14 bits(VL) operand3 = ZAvector[vec, VL];
15 for e = 0 to elements-1
16 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
17 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = segmentbase + index;
20 bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
21 bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];
22 bits(32) sum = Elem[operand3, e, 32];
23 sum = FPDotAdd_ZA(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
24 Elem[result, e, 32] = sum;
25 ZAvector[vec, VL] = result;
26 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

156

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.33 FDOT (multiple and single vector)

Multi-vector half-precision floating-point dot-product by vector

The instruction operates on two or four ZA single-vector groups.

The instruction computes the fused sum-of-products of a pair of half-precision floating-point values held in
the corresponding 32-bit elements of the two or four first source vectors and the second source vector, without
intermediate rounding. The single-precision sum-of-products results are destructively added to the corresponding
single-precision elements of the two or four ZA single-vector groups. The vector numbers forming the single-vector
group within each half or each quarter of the ZA array are selected by the sum of the vector select register and
immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

1 0 0

12 10

Zn

9 5

0 0

4 3

off3

2 0

FDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3);
6 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

1 0 0

12 10

Zn

9 5

0 0

4 3

off3

2 0

FDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3);
6 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

157

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
16 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
17 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
18 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
19 bits(32) sum = Elem[operand3, e, 32];
20 sum = FPDotAdd_ZA(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
21 Elem[result, e, 32] = sum;
22 ZAvector[vec, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

158

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.34 FDOT (multiple vectors)

Multi-vector half-precision floating-point dot-product

The instruction operates on two or four ZA single-vector groups.

The instruction computes the fused sum-of-products of a pair of half-precision floating-point values held in the
corresponding 32-bit elements of the two or four first and second source vectors, without intermediate rounding.
The single-precision sum-of-products results are destructively added to the corresponding single-precision elements
of the two or four ZA single-vector groups. The vector numbers forming the single-vector group within each half
or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1

29 23

0

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

1 0 0

12 10

Zn

9 6

0 0

5 4

0

3

off3

2 0

FDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt(Zm:'0');
5 integer offset = UInt(off3);
6 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1

29 23

0

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

1 0 0

12 10

Zn

9 7

0

6

0

5

0

4

0

3

off3

2 0

FDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt(Zm:'00');
5 integer offset = UInt(off3);
6 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

159

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[n+r, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
16 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
17 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
18 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
19 bits(32) sum = Elem[operand3, e, 32];
20 sum = FPDotAdd_ZA(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
21 Elem[result, e, 32] = sum;
22 ZAvector[vec, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

160

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.35 FMAX (multiple and single vector)

Multi-vector floating-point maximum by vector

Determine the maximum of floating-point elements of the second source vector and the corresponding floating-point
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors. If either element value is NaN then the result is NaN.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 0

15 10

0 1 0 0

9 6

0

5

Zdn

4 1

0

0

FMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'0');
5 integer m = UInt('0':Zm);
6 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 0

15 10

0 1 0 0

9 6

0

5

Zdn

4 2

0

1

0

0

FMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'00');
5 integer m = UInt('0':Zm);
6 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 RESERVED
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

161

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 bits(esize) element1 = Elem[operand1, e, esize];
11 bits(esize) element2 = Elem[operand2, e, esize];
12 Elem[results[r], e, esize] = FPMax(element1, element2, FPCR[]);
13
14 for r = 0 to nreg-1
15 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

162

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.36 FMAX (multiple vectors)

Multi-vector floating-point maximum

Determine the maximum of floating-point elements of the two or four second source vectors and the corresponding
floating-point elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors. If either element value is NaN then the result is NaN.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 1 1 0 0

16 10

0 1 0 0

9 6

0

5

Zdn

4 1

0

0

FMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'0');
5 integer m = UInt(Zm:'0');
6 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 0 1 0 1 1 1 0

17 10

0 1 0 0

9 6

0

5

Zdn

4 2

0

1

0

0

FMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'00');
5 integer m = UInt(Zm:'00');
6 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 RESERVED
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

163

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m+r, VL];
9 for e = 0 to elements-1

10 bits(esize) element1 = Elem[operand1, e, esize];
11 bits(esize) element2 = Elem[operand2, e, esize];
12 Elem[results[r], e, esize] = FPMax(element1, element2, FPCR[]);
13
14 for r = 0 to nreg-1
15 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

164

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.37 FMAXNM (multiple and single vector)

Multi-vector floating-point maximum number by vector

Determine the maximum number value of floating-point elements of the second source vector and the corresponding
floating-point elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors. If one element value is numeric and the other is a quiet NaN, then
the result is the numeric value.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 0

15 10

0 1 0 0

9 6

1

5

Zdn

4 1

0

0

FMAXNM { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'0');
5 integer m = UInt('0':Zm);
6 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 0

15 10

0 1 0 0

9 6

1

5

Zdn

4 2

0

1

0

0

FMAXNM { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'00');
5 integer m = UInt('0':Zm);
6 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 RESERVED
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

165

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 bits(esize) element1 = Elem[operand1, e, esize];
11 bits(esize) element2 = Elem[operand2, e, esize];
12 Elem[results[r], e, esize] = FPMaxNum(element1, element2, FPCR[]);
13
14 for r = 0 to nreg-1
15 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

166

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.38 FMAXNM (multiple vectors)

Multi-vector floating-point maximum number

Determine the maximum number value of floating-point elements of the two or four second source vectors and the
corresponding floating-point elements of the two or four first source vectors and destructively place the results in
the corresponding elements of the two or four first source vectors. If one element value is numeric and the other is
a quiet NaN, then the result is the numeric value.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 1 1 0 0

16 10

0 1 0 0

9 6

1

5

Zdn

4 1

0

0

FMAXNM { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'0');
5 integer m = UInt(Zm:'0');
6 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 0 1 0 1 1 1 0

17 10

0 1 0 0

9 6

1

5

Zdn

4 2

0

1

0

0

FMAXNM { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'00');
5 integer m = UInt(Zm:'00');
6 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

167

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

size <T>
00 RESERVED
01 H
10 S
11 D

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m+r, VL];
9 for e = 0 to elements-1

10 bits(esize) element1 = Elem[operand1, e, esize];
11 bits(esize) element2 = Elem[operand2, e, esize];
12 Elem[results[r], e, esize] = FPMaxNum(element1, element2, FPCR[]);
13
14 for r = 0 to nreg-1
15 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

168

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.39 FMIN (multiple and single vector)

Multi-vector floating-point minimum by vector

Determine the mininum of floating-point elements of the second source vector and the corresponding floating-point
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors. If either element value is NaN then the result is NaN.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 0

15 10

0 1 0 0

9 6

0

5

Zdn

4 1

1

0

FMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'0');
5 integer m = UInt('0':Zm);
6 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 0

15 10

0 1 0 0

9 6

0

5

Zdn

4 2

0

1

1

0

FMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'00');
5 integer m = UInt('0':Zm);
6 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 RESERVED
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

169

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 bits(esize) element1 = Elem[operand1, e, esize];
11 bits(esize) element2 = Elem[operand2, e, esize];
12 Elem[results[r], e, esize] = FPMin(element1, element2, FPCR[]);
13
14 for r = 0 to nreg-1
15 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

170

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.40 FMIN (multiple vectors)

Multi-vector floating-point minimum

Determine the mininum of floating-point elements of the two or four second source vectors and the corresponding
floating-point elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors. If either element value is NaN then the result is NaN.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 1 1 0 0

16 10

0 1 0 0

9 6

0

5

Zdn

4 1

1

0

FMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'0');
5 integer m = UInt(Zm:'0');
6 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 0 1 0 1 1 1 0

17 10

0 1 0 0

9 6

0

5

Zdn

4 2

0

1

1

0

FMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'00');
5 integer m = UInt(Zm:'00');
6 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 RESERVED
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

171

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m+r, VL];
9 for e = 0 to elements-1

10 bits(esize) element1 = Elem[operand1, e, esize];
11 bits(esize) element2 = Elem[operand2, e, esize];
12 Elem[results[r], e, esize] = FPMin(element1, element2, FPCR[]);
13
14 for r = 0 to nreg-1
15 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

172

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.41 FMINNM (multiple and single vector)

Multi-vector floating-point minimum number by vector

Determine the minimum number value of floating-point elements of the second source vector and the corresponding
floating-point elements of the two or four first source vectors and destructively place the results in the corresponding
elements of the two or four first source vectors. If one element value is numeric and the other is a quiet NaN, then
the result is the numeric value.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 0

15 10

0 1 0 0

9 6

1

5

Zdn

4 1

1

0

FMINNM { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'0');
5 integer m = UInt('0':Zm);
6 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 0

15 10

0 1 0 0

9 6

1

5

Zdn

4 2

0

1

1

0

FMINNM { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'00');
5 integer m = UInt('0':Zm);
6 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 RESERVED
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

173

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 bits(esize) element1 = Elem[operand1, e, esize];
11 bits(esize) element2 = Elem[operand2, e, esize];
12 Elem[results[r], e, esize] = FPMinNum(element1, element2, FPCR[]);
13
14 for r = 0 to nreg-1
15 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

174

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.42 FMINNM (multiple vectors)

Multi-vector floating-point minimum number

Determine the minimum number value of floating-point elements of the two or four second source vectors and the
corresponding floating-point elements of the two or four first source vectors and destructively place the results in
the corresponding elements of the two or four first source vectors. If one element value is numeric and the other is
a quiet NaN, then the result is the numeric value.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 1 1 0 0

16 10

0 1 0 0

9 6

1

5

Zdn

4 1

1

0

FMINNM { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'0');
5 integer m = UInt(Zm:'0');
6 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 0 1 0 1 1 1 0

17 10

0 1 0 0

9 6

1

5

Zdn

4 2

0

1

1

0

FMINNM { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer dn = UInt(Zdn:'00');
5 integer m = UInt(Zm:'00');
6 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

175

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

size <T>
00 RESERVED
01 H
10 S
11 D

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m+r, VL];
9 for e = 0 to elements-1

10 bits(esize) element1 = Elem[operand1, e, esize];
11 bits(esize) element2 = Elem[operand2, e, esize];
12 Elem[results[r], e, esize] = FPMinNum(element1, element2, FPCR[]);
13
14 for r = 0 to nreg-1
15 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

176

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.43 FMLA (multiple and indexed vector)

Multi-vector floating-point fused multiply-add by indexed element

The instruction operates on two or four ZA single-vector groups.

Multiply the indexed element of the second source vector by the corresponding floating-point elements of the two
or four first source vectors and destructively add without intermediate rounding to the corresponding elements of
the two or four ZA single-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 1 to 2 bits depending on the size of the element. The vector numbers
forming the single-vector group within each half or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 4 classes: Two ZA single-vectors of single precision elements , Two ZA single-vectors of
double precision elements , Four ZA single-vectors of single precision elements and Four ZA single-vectors of
double precision elements

Two ZA single-vectors of single precision elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i2

11 10

Zn

9 6

0

5

0

4

0

3

off3

2 0

S

FMLA ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.S-<Zn2>.S }, <Zm>.S[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 boolean sub_op = FALSE;
9 constant integer nreg = 2;

Two ZA single-vectors of double precision elements
(FEAT_SME_F64F64)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0 0

12 11

i1

10

Zn

9 6

0

5

0

4

0

3

off3

2 0

S

FMLA ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.D-<Zn2>.D }, <Zm>.D[<index>]

1 if !(HaveSME2() && HaveSMEF64F64()) then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 64;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

177

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i1);
8 boolean sub_op = FALSE;
9 constant integer nreg = 2;

Four ZA single-vectors of single precision elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i2

11 10

Zn

9 7

0

6

0

5

0

4

0

3

off3

2 0

S

FMLA ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.S-<Zn4>.S }, <Zm>.S[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 boolean sub_op = FALSE;
9 constant integer nreg = 4;

Four ZA single-vectors of double precision elements
(FEAT_SME_F64F64)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

0

11

i1

10

Zn

9 7

0 0

6 5

0

4

0

3

off3

2 0

S

FMLA ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.D-<Zn4>.D }, <Zm>.D[<index>]

1 if !(HaveSME2() && HaveSMEF64F64()) then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 64;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i1);
8 boolean sub_op = FALSE;
9 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors of double precision elements and two ZA single-vectors
of single precision elements variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors of double precision elements and four ZA single-vectors
of single precision elements variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

178

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA single-vectors of single precision elements and two ZA single-vectors of
single precision elements variant: is the element index, in the range 0 to 3, encoded in the
"i2" field.

For the four ZA single-vectors of double precision elements and two ZA single-vectors of
double precision elements variant: is the element index, in the range 0 to 1, encoded in the
"i1" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m, VL];
14 bits(VL) operand3 = ZAvector[vec, VL];
15 for e = 0 to elements-1
16 bits(esize) element1 = Elem[operand1, e, esize];
17 integer segmentbase = e - (e MOD eltspersegment);
18 integer s = segmentbase + index;
19 bits(esize) element2 = Elem[operand2, s, esize];
20 bits(esize) element3 = Elem[operand3, e, esize];
21 if sub_op then element1 = FPNeg(element1);
22 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR[]);
23 ZAvector[vec, VL] = result;
24 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

179

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.44 FMLA (multiple and single vector)

Multi-vector floating-point fused multiply-add by vector

The instruction operates on two or four ZA single-vector groups.

Multiply the corresponding floating-point elements of the two or four first source vector with corresponding
elements of the second source vector and destructively add without intermediate rounding to the corresponding
elements of the two or four ZA single-vector groups. The vector numbers forming the single-vector group within
each half or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

1 1 0

12 10

Zn

9 5

0

4

0

3

off3

2 0

S

FMLA ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 boolean sub_op = FALSE;
9 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

1 1 0

12 10

Zn

9 5

0

4

0

3

off3

2 0

S

FMLA ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 boolean sub_op = FALSE;
9 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

180

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) element1 = Elem[operand1, e, esize];
16 bits(esize) element2 = Elem[operand2, e, esize];
17 bits(esize) element3 = Elem[operand3, e, esize];
18 if sub_op then element1 = FPNeg(element1);
19 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR[]);
20 ZAvector[vec, VL] = result;
21 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

181

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.45 FMLA (multiple vectors)

Multi-vector floating-point fused multiply-add

The instruction operates on two or four ZA single-vector groups.

Multiply the corresponding floating-point elements of the two or four first and second source vectors and
destructively add without intermediate rounding to the corresponding elements of the two or four ZA single-vector
groups. The vector numbers forming the single-vector group within each half or each quarter of the ZA array are
selected by the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA
array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

1 1 0

12 10

Zn

9 6

0 0

5 4

0

3

off3

2 0

S

FMLA ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'0');
6 integer m = UInt(Zm:'0');
7 integer offset = UInt(off3);
8 boolean sub_op = FALSE;
9 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

1 1 0

12 10

Zn

9 7

0 0 0

6 4

0

3

off3

2 0

S

FMLA ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'00');
6 integer m = UInt(Zm:'00');
7 integer offset = UInt(off3);
8 boolean sub_op = FALSE;
9 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

182

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[n+r, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) element1 = Elem[operand1, e, esize];
16 bits(esize) element2 = Elem[operand2, e, esize];
17 bits(esize) element3 = Elem[operand3, e, esize];
18 if sub_op then element1 = FPNeg(element1);
19 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR[]);
20 ZAvector[vec, VL] = result;
21 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

183

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.46 FMLAL (multiple and indexed vector)

Multi-vector floating-point multiply-add long by indexed element

The instruction operates on one, two, or four ZA double-vector groups.

This half-precision floating-point multiply-add long instruction widens all 16-bit half-precision elements in the one,
two, or four first source vectors and the indexed element of the second source vector to single-precision format,
then multiplies the corresponding elements and destructively adds these values without intermediate rounding to
the overlapping 32-bit single-precision elements of the one, two, or four ZA double-vector groups.

The half-precision elements within the second source vector are specified using a 3-bit immediate index which
selects the same element position within each 128-bit vector segment.

The lowest of the two consecutive vector numbers forming the double-vector group within all, each half, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

1

12

i3l

11 10

Zn

9 5

0

4

0

3

off3

2 0

S

FMLAL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = FALSE;
8 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i3h

11 10

Zn

9 6

0

5

0

4

0

3

i3l

2

off2

1 0

S

FMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = FALSE;
8 constant integer nreg = 2;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

184

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i3h

11 10

Zn

9 7

0 0

6 5

0

4

0

3

i3l

2

off2

1 0

S

FMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = FALSE;
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV 32;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 2);
11
12 for r = 0 to nreg-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

185

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 1
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 2 * segmentbase + index;
20 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
21 bits(16) element2 = Elem[operand2, s, 16];
22 bits(32) element3 = Elem[operand3, e, 32];
23 if sub_op then element1 = FPNeg(element1);
24 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR[]);
25 ZAvector[vec + i, VL] = result;
26 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

186

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.47 FMLAL (multiple and single vector)

Multi-vector floating-point multiply-add long by vector

The instruction operates on one, two, or four ZA double-vector groups.

This half-precision floating-point multiply-add long instruction widens all 16-bit half-precision elements in the
one, two, or four first source vectors and the second source vector to single-precision format, then multiplies the
corresponding elements and destructively adds these values without intermediate rounding to the overlapping 32-bit
single-precision elements of the one, two, or four ZA double-vector groups. The lowest of the two consecutive
vector numbers forming the double-vector group within all, each half, or each quarter of the ZA array are selected
by the sum of the vector select register and immediate offset, modulo all, half, or quarter the number of ZA array
vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 1

12 10

Zn

9 5

0

4

0

3

off3

2 0

S

FMLAL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3:'0');
6 boolean sub_op = FALSE;
7 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

0

4

0

3

0

2

off2

1 0

S

FMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 boolean sub_op = FALSE;
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

187

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 0 0 1 1

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

0

4

0

3

0

2

off2

1 0

S

FMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 boolean sub_op = FALSE;
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
18 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
19 bits(32) element3 = Elem[operand3, e, 32];
20 if sub_op then element1 = FPNeg(element1);
21 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR[]);
22 ZAvector[vec + i, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

188

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.48 FMLAL (multiple vectors)

Multi-vector floating-point multiply-add long

The instruction operates on two or four ZA double-vector groups.

This half-precision floating-point multiply-add long instruction widens all 16-bit half-precision elements in the two
or four first and second source vectors to single-precision format, then multiplies the corresponding elements and
destructively adds these values without intermediate rounding to the overlapping 32-bit single-precision elements
of the two or four ZA double-vector groups. The lowest of the two consecutive vector numbers forming the
double-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA double-vectors and Four ZA double-vectors

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 1

31 21

Zm

20 17

0 0

16 15

Rv

14 13

0 1 0

12 10

Zn

9 6

0

5

0

4

0

3

0

2

off2

1 0

S

FMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt(Zm:'0');
5 integer offset = UInt(off2:'0');
6 boolean sub_op = FALSE;
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 1

31 21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 1 0

12 10

Zn

9 7

0 0

6 5

0

4

0

3

0

2

off2

1 0

S

FMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt(Zm:'00');
5 integer offset = UInt(off2:'0');
6 boolean sub_op = FALSE;
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of two consecutive vectors, encoded as "off2" field

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

189

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

times 2.

<offsl> Is the vector select offset, pointing to last of two consecutive vectors, encoded as "off2" field
times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
18 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
19 bits(32) element3 = Elem[operand3, e, 32];
20 if sub_op then element1 = FPNeg(element1);
21 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR[]);
22 ZAvector[vec + i, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

190

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.49 FMLS (multiple and indexed vector)

Multi-vector floating-point fused multiply-subtract by indexed element

The instruction operates on two or four ZA single-vector groups.

Multiply the indexed element of the second source vector by the corresponding floating-point elements of the
two or four first source vectors and destructively subtract without intermediate rounding from the corresponding
elements of the two or four ZA single-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 1 to 2 bits depending on the size of the element. The vector numbers
forming the single-vector group within each half or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 4 classes: Two ZA single-vectors of single precision elements , Two ZA single-vectors of
double precision elements , Four ZA single-vectors of single precision elements and Four ZA single-vectors of
double precision elements

Two ZA single-vectors of single precision elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i2

11 10

Zn

9 6

0

5

1

4

0

3

off3

2 0

S

FMLS ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.S-<Zn2>.S }, <Zm>.S[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 boolean sub_op = TRUE;
9 constant integer nreg = 2;

Two ZA single-vectors of double precision elements
(FEAT_SME_F64F64)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0 0

12 11

i1

10

Zn

9 6

0

5

1

4

0

3

off3

2 0

S

FMLS ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.D-<Zn2>.D }, <Zm>.D[<index>]

1 if !(HaveSME2() && HaveSMEF64F64()) then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 64;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

191

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i1);
8 boolean sub_op = TRUE;
9 constant integer nreg = 2;

Four ZA single-vectors of single precision elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i2

11 10

Zn

9 7

0

6

0

5

1

4

0

3

off3

2 0

S

FMLS ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.S-<Zn4>.S }, <Zm>.S[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 boolean sub_op = TRUE;
9 constant integer nreg = 4;

Four ZA single-vectors of double precision elements
(FEAT_SME_F64F64)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

0

11

i1

10

Zn

9 7

0 0

6 5

1

4

0

3

off3

2 0

S

FMLS ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.D-<Zn4>.D }, <Zm>.D[<index>]

1 if !(HaveSME2() && HaveSMEF64F64()) then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 64;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i1);
8 boolean sub_op = TRUE;
9 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors of double precision elements and two ZA single-vectors
of single precision elements variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors of double precision elements and four ZA single-vectors
of single precision elements variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

192

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA single-vectors of single precision elements and two ZA single-vectors of
single precision elements variant: is the element index, in the range 0 to 3, encoded in the
"i2" field.

For the four ZA single-vectors of double precision elements and two ZA single-vectors of
double precision elements variant: is the element index, in the range 0 to 1, encoded in the
"i1" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m, VL];
14 bits(VL) operand3 = ZAvector[vec, VL];
15 for e = 0 to elements-1
16 bits(esize) element1 = Elem[operand1, e, esize];
17 integer segmentbase = e - (e MOD eltspersegment);
18 integer s = segmentbase + index;
19 bits(esize) element2 = Elem[operand2, s, esize];
20 bits(esize) element3 = Elem[operand3, e, esize];
21 if sub_op then element1 = FPNeg(element1);
22 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR[]);
23 ZAvector[vec, VL] = result;
24 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

193

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.50 FMLS (multiple and single vector)

Multi-vector floating-point fused multiply-subtract by vector

The instruction operates on two or four ZA single-vector groups.

Multiply the corresponding floating-point elements of the two or four first source vector with corresponding
elements of the second source vector and destructively subtract without intermediate rounding from the
corresponding elements of the two or four ZA single-vector groups. The vector numbers forming the single-vector
group within each half or each quarter of the ZA array are selected by the sum of the vector select register and
immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

1 1 0

12 10

Zn

9 5

0

4

1

3

off3

2 0

S

FMLS ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 boolean sub_op = TRUE;
9 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

1 1 0

12 10

Zn

9 5

0

4

1

3

off3

2 0

S

FMLS ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 boolean sub_op = TRUE;
9 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

194

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) element1 = Elem[operand1, e, esize];
16 bits(esize) element2 = Elem[operand2, e, esize];
17 bits(esize) element3 = Elem[operand3, e, esize];
18 if sub_op then element1 = FPNeg(element1);
19 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR[]);
20 ZAvector[vec, VL] = result;
21 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

195

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.51 FMLS (multiple vectors)

Multi-vector floating-point fused multiply-subtract

The instruction operates on two or four ZA single-vector groups.

Multiply the corresponding floating-point elements of the two or four first and second source vectors and
destructively subtract without intermediate rounding from the corresponding elements of the two or four ZA
single-vector groups. The vector numbers forming the single-vector group within each half or each quarter of the
ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

1 1 0

12 10

Zn

9 6

0 0

5 4

1

3

off3

2 0

S

FMLS ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'0');
6 integer m = UInt(Zm:'0');
7 integer offset = UInt(off3);
8 boolean sub_op = TRUE;
9 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

1 1 0

12 10

Zn

9 7

0 0 0

6 4

1

3

off3

2 0

S

FMLS ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'00');
6 integer m = UInt(Zm:'00');
7 integer offset = UInt(off3);
8 boolean sub_op = TRUE;
9 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

196

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[n+r, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) element1 = Elem[operand1, e, esize];
16 bits(esize) element2 = Elem[operand2, e, esize];
17 bits(esize) element3 = Elem[operand3, e, esize];
18 if sub_op then element1 = FPNeg(element1);
19 Elem[result, e, esize] = FPMulAdd_ZA(element3, element1, element2, FPCR[]);
20 ZAvector[vec, VL] = result;
21 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

197

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.52 FMLSL (multiple and indexed vector)

Multi-vector floating-point multiply-subtract long by indexed element

The instruction operates on one, two, or four ZA double-vector groups.

This half-precision floating-point multiply-subtract long instruction widens all 16-bit half-precision elements in
the one, two, or four first source vectors and the indexed element of the second source vector to single-precision
format, then multiplies the corresponding elements and destructively subtracts these values without intermediate
rounding from the overlapping 32-bit single-precision elements of the one, two, or four ZA double-vector groups.

The half-precision elements within the second source vector are specified using a 3-bit immediate index which
selects the same element position within each 128-bit vector segment.

The lowest of the two consecutive vector numbers forming the double-vector group within all, each half, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

1

12

i3l

11 10

Zn

9 5

0

4

1

3

off3

2 0

S

FMLSL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = TRUE;
8 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i3h

11 10

Zn

9 6

0

5

0

4

1

3

i3l

2

off2

1 0

S

FMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = TRUE;
8 constant integer nreg = 2;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

198

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i3h

11 10

Zn

9 7

0 0

6 5

0

4

1

3

i3l

2

off2

1 0

S

FMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 integer index = UInt(i3h:i3l);
7 boolean sub_op = TRUE;
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV 32;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 2);
11
12 for r = 0 to nreg-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

199

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 1
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 2 * segmentbase + index;
20 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
21 bits(16) element2 = Elem[operand2, s, 16];
22 bits(32) element3 = Elem[operand3, e, 32];
23 if sub_op then element1 = FPNeg(element1);
24 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR[]);
25 ZAvector[vec + i, VL] = result;
26 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

200

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.53 FMLSL (multiple and single vector)

Multi-vector floating-point multiply-subtract long by vector

The instruction operates on one, two, or four ZA double-vector groups.

This half-precision floating-point multiply-subtract long instruction widens all 16-bit half-precision elements in
the one, two, or four first source vectors and the second source vector to single-precision format, then multiplies
the corresponding elements and destructively subtracts these values without intermediate rounding from the
overlapping 32-bit single-precision elements of the one, two, or four ZA double-vector groups. The lowest of the
two consecutive vector numbers forming the double-vector group within all, each half, or each quarter of the ZA
array are selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 1

12 10

Zn

9 5

0

4

1

3

off3

2 0

S

FMLSL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3:'0');
6 boolean sub_op = TRUE;
7 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

0

4

1

3

0

2

off2

1 0

S

FMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 boolean sub_op = TRUE;
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

201

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 0 0 1 1

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

0

4

1

3

0

2

off2

1 0

S

FMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn);
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off2:'0');
6 boolean sub_op = TRUE;
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
18 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
19 bits(32) element3 = Elem[operand3, e, 32];
20 if sub_op then element1 = FPNeg(element1);
21 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR[]);
22 ZAvector[vec + i, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

202

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.54 FMLSL (multiple vectors)

Multi-vector floating-point multiply-subtract long

The instruction operates on two or four ZA double-vector groups.

This half-precision floating-point multiply-subtract long instruction widens all 16-bit half-precision elements in the
two or four first and second source vectors to single-precision format, then multiplies the corresponding elements
and destructively subtracts these values without intermediate rounding from the overlapping 32-bit single-precision
elements of the two or four ZA double-vector groups. The lowest of the two consecutive vector numbers forming
the double-vector group within each half or each quarter of the ZA array are selected by the sum of the vector
select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA double-vectors and Four ZA double-vectors

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 1

31 21

Zm

20 17

0 0

16 15

Rv

14 13

0 1 0

12 10

Zn

9 6

0

5

0

4

1

3

0

2

off2

1 0

S

FMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt(Zm:'0');
5 integer offset = UInt(off2:'0');
6 boolean sub_op = TRUE;
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 0 1

31 21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 1 0

12 10

Zn

9 7

0 0

6 5

0

4

1

3

0

2

off2

1 0

S

FMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'00');
4 integer m = UInt(Zm:'00');
5 integer offset = UInt(off2:'0');
6 boolean sub_op = TRUE;
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of two consecutive vectors, encoded as "off2" field

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

203

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

times 2.

<offsl> Is the vector select offset, pointing to last of two consecutive vectors, encoded as "off2" field
times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 bits(16) element1 = Elem[operand1, 2 * e + i, 16];
18 bits(16) element2 = Elem[operand2, 2 * e + i, 16];
19 bits(32) element3 = Elem[operand3, e, 32];
20 if sub_op then element1 = FPNeg(element1);
21 Elem[result, e, 32] = FPMulAddH_ZA(element3, element1, element2, FPCR[]);
22 ZAvector[vec + i, VL] = result;
23 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

204

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.55 FMOPA (widening)

Half-precision floating-point sum of outer products and accumulate

The half-precision floating-point sum of outer products and accumulate instruction works with a 32-bit element
ZA tile.

This instruction widens the SVLS×2 sub-matrix of half-precision floating-point values held in the first source vector
to single-precision floating-point values and multiplies it by the widened 2×SVLS sub-matrix of half-precision
floating-point values in the second source vector to single-precision floating-point values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively added to
the single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and
accumulate to each of the destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of the second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME ZA-targeting floating-point behaviors.

SME
(FEAT_SME)

1 0

31 30

0 0 0 0 0 1 1 0 1

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

S

FMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME() then UNDEFINED;
2 integer a = UInt(Pn);
3 integer b = UInt(Pm);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer da = UInt(ZAda);
7 boolean sub_op = FALSE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV 32;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

205

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*32) operand3 = ZAtile[da, 32, dim*dim*32];

10 bits(dim*dim*32) result;
11
12 for row = 0 to dim-1
13 for col = 0 to dim-1
14 // determine row/col predicates
15 boolean prow_0 = (ActivePredicateElement(mask1, 2*row + 0, 16));
16 boolean prow_1 = (ActivePredicateElement(mask1, 2*row + 1, 16));
17 boolean pcol_0 = (ActivePredicateElement(mask2, 2*col + 0, 16));
18 boolean pcol_1 = (ActivePredicateElement(mask2, 2*col + 1, 16));
19
20 bits(32) sum = Elem[operand3, row*dim+col, 32];
21 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
22 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0',

↪→16));
23 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0',

↪→16));
24 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0',

↪→16));
25 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0',

↪→16));
26 if sub_op then
27 if prow_0 then erow_0 = FPNeg(erow_0);
28 if prow_1 then erow_1 = FPNeg(erow_1);
29 sum = FPDotAdd_ZA(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR[]);
30
31 Elem[result, row*dim+col, 32] = sum;
32
33 ZAtile[da, 32, dim*dim*32] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

206

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.56 FMOPA (non-widening)

Floating-point outer product and accumulate

The single-precision variant works with a 32-bit element ZA tile.

The double-precision variant works with a 64-bit element ZA tile.

These instructions generate an outer product of the first source vector and the second source vector. In case of the
single-precision variant, the first source is SVLS×1 vector and the second source is 1×SVLS vector. In case of the
double-precision variant, the first source is SVLD×1 vector and the second source is 1×SVLD vector.

Each source vector is independently predicated by a corresponding governing predicate. When either source vector
element is Inactive the corresponding destination tile element remains unmodified.

The resulting outer product, SVLS×SVLS in case of single-precision variant or SVLD×SVLD in case of
double-precision variant, is then destructively added to the destination tile. This is equivalent to performing
a single multiply-accumulate to each of the destination tile elements.

This instruction follows SME ZA-targeting floating-point behaviors.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 2 classes: Single-precision and Double-precision

Single-precision
(FEAT_SME)

1 0

31 30

0 0 0 0 0 0 1 0 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

S

FMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S, <Zm>.S

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;

Double-precision
(FEAT_SME_F64F64)

1 0

31 30

0 0 0 0 0 0 1 1 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

S

FMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D, <Zm>.D

1 if !HaveSMEF64F64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

207

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<ZAda> For the single-precision variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda"
field.

For the double-precision variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda"
field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11
12 for row = 0 to dim-1
13 for col = 0 to dim-1
14 bits(esize) element1 = Elem[operand1, row, esize];
15 bits(esize) element2 = Elem[operand2, col, esize];
16 bits(esize) element3 = Elem[operand3, row*dim+col, esize];
17
18 if (ActivePredicateElement(mask1, row, esize) &&
19 ActivePredicateElement(mask2, col, esize)) then
20 if sub_op then element1 = FPNeg(element1);
21 Elem[result, row*dim+col, esize] = FPMulAdd_ZA(element3, element1, element2,

↪→FPCR[]);
22 else
23 Elem[result, row*dim+col, esize] = element3;
24
25 ZAtile[da, esize, dim*dim*esize] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

208

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.57 FMOPS (widening)

Half-precision floating-point sum of outer products and subtract

The half-precision floating-point sum of outer products and subtract instruction works with a 32-bit element ZA
tile.

This instruction widens the SVLS×2 sub-matrix of half-precision floating-point values held in the first source vector
to single-precision floating-point values and multiplies it by the widened 2×SVLS sub-matrix of half-precision
floating-point values in the second source vector to single-precision floating-point values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is Inactive it is treated as having the value +0.0, but if both pairs of source vector elements that correspond
to a 32-bit destination element contain Inactive elements, then the destination element remains unmodified.

The resulting SVLS×SVLS single-precision floating-point sum of outer products is then destructively subtracted
from the single-precision floating-point destination tile. This is equivalent to performing a 2-way dot product and
subtract from each of the destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix. Similarly, each 32-bit container of the second source vector holds 2 consecutive row elements of each
column of a 2×SVLS sub-matrix.

This instruction follows SME ZA-targeting floating-point behaviors.

SME
(FEAT_SME)

1 0

31 30

0 0 0 0 0 1 1 0 1

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

S

FMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME() then UNDEFINED;
2 integer a = UInt(Pn);
3 integer b = UInt(Pm);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer da = UInt(ZAda);
7 boolean sub_op = TRUE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV 32;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

209

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*32) operand3 = ZAtile[da, 32, dim*dim*32];

10 bits(dim*dim*32) result;
11
12 for row = 0 to dim-1
13 for col = 0 to dim-1
14 // determine row/col predicates
15 boolean prow_0 = (ActivePredicateElement(mask1, 2*row + 0, 16));
16 boolean prow_1 = (ActivePredicateElement(mask1, 2*row + 1, 16));
17 boolean pcol_0 = (ActivePredicateElement(mask2, 2*col + 0, 16));
18 boolean pcol_1 = (ActivePredicateElement(mask2, 2*col + 1, 16));
19
20 bits(32) sum = Elem[operand3, row*dim+col, 32];
21 if (prow_0 && pcol_0) || (prow_1 && pcol_1) then
22 bits(16) erow_0 = (if prow_0 then Elem[operand1, 2*row + 0, 16] else FPZero('0',

↪→16));
23 bits(16) erow_1 = (if prow_1 then Elem[operand1, 2*row + 1, 16] else FPZero('0',

↪→16));
24 bits(16) ecol_0 = (if pcol_0 then Elem[operand2, 2*col + 0, 16] else FPZero('0',

↪→16));
25 bits(16) ecol_1 = (if pcol_1 then Elem[operand2, 2*col + 1, 16] else FPZero('0',

↪→16));
26 if sub_op then
27 if prow_0 then erow_0 = FPNeg(erow_0);
28 if prow_1 then erow_1 = FPNeg(erow_1);
29 sum = FPDotAdd_ZA(sum, erow_0, erow_1, ecol_0, ecol_1, FPCR[]);
30
31 Elem[result, row*dim+col, 32] = sum;
32
33 ZAtile[da, 32, dim*dim*32] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

210

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.58 FMOPS (non-widening)

Floating-point outer product and subtract

The single-precision variant works with a 32-bit element ZA tile.

The double-precision variant works with a 64-bit element ZA tile.

These instructions generate an outer product of the first source vector and the second source vector. In case of the
single-precision variant, the first source is SVLS×1 vector and the second source is 1×SVLS vector. In case of the
double-precision variant, the first source is SVLD×1 vector and the second source is 1×SVLD vector.

Each source vector is independently predicated by a corresponding governing predicate. When either source vector
element is Inactive the corresponding destination tile element remains unmodified.

The resulting outer product, SVLS×SVLS in case of single-precision variant or SVLD×SVLD in case of
double-precision variant, is then destructively subtracted from the destination tile. This is equivalent to performing
a single multiply-subtract from each of the destination tile elements.

This instruction follows SME ZA-targeting floating-point behaviors.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 2 classes: Single-precision and Double-precision

Single-precision
(FEAT_SME)

1 0

31 30

0 0 0 0 0 0 1 0 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

S

FMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.S, <Zm>.S

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;

Double-precision
(FEAT_SME_F64F64)

1 0

31 30

0 0 0 0 0 0 1 1 0

29 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

ZAda

2 0

S

FMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.D, <Zm>.D

1 if !HaveSMEF64F64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

211

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<ZAda> For the single-precision variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda"
field.

For the double-precision variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda"
field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11
12 for row = 0 to dim-1
13 for col = 0 to dim-1
14 bits(esize) element1 = Elem[operand1, row, esize];
15 bits(esize) element2 = Elem[operand2, col, esize];
16 bits(esize) element3 = Elem[operand3, row*dim+col, esize];
17
18 if (ActivePredicateElement(mask1, row, esize) &&
19 ActivePredicateElement(mask2, col, esize)) then
20 if sub_op then element1 = FPNeg(element1);
21 Elem[result, row*dim+col, esize] = FPMulAdd_ZA(element3, element1, element2,

↪→FPCR[]);
22 else
23 Elem[result, row*dim+col, esize] = element3;
24
25 ZAtile[da, esize, dim*dim*esize] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

212

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.59 FRINTA

Multi-vector floating-point round to integral value, to nearest with ties away from zero

Round to the nearest integral floating-point value, with ties rounding away from zero, each element of the two or
four source vectors, and place the results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

1

23

0

22

1 0 1

21 19

1 0

18 17

0

16

1 1 1 0 0 0

15 10

Zn

9 6

0

5

Zd

4 1

0

0

size<1> size<0>

FRINTA { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd:'0');
4 constant integer nreg = 2;
5 boolean exact = FALSE;
6 FPRounding rounding = FPRounding_TIEAWAY;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

1

23

0

22

1 1 1

21 19

1 0

18 17

0

16

1 1 1 0 0 0

15 10

Zn

9 7

0 0

6 5

Zd

4 2

0 0

1 0

size<1> size<0>

FRINTA { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'00');
3 integer d = UInt(Zd:'00');
4 constant integer nreg = 4;
5 boolean exact = FALSE;
6 FPRounding rounding = FPRounding_TIEAWAY;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

213

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 bits(32) element = Elem[operand, e, 32];

10 Elem[results[r], e, 32] = FPRoundInt(element, FPCR[], rounding, exact);
11
12 for r = 0 to nreg-1
13 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

214

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.60 FRINTM

Multi-vector floating-point round to integral value, toward minus Infinity

Round down to an integral floating-point value, each element of the two or four source vectors, and place the
results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

1

23

0

22

1 0 1

21 19

0 1

18 17

0

16

1 1 1 0 0 0

15 10

Zn

9 6

0

5

Zd

4 1

0

0

size<1> size<0>

FRINTM { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd:'0');
4 constant integer nreg = 2;
5 boolean exact = FALSE;
6 FPRounding rounding = FPRounding_NEGINF;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

1

23

0

22

1 1 1

21 19

0 1

18 17

0

16

1 1 1 0 0 0

15 10

Zn

9 7

0 0

6 5

Zd

4 2

0 0

1 0

size<1> size<0>

FRINTM { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'00');
3 integer d = UInt(Zd:'00');
4 constant integer nreg = 4;
5 boolean exact = FALSE;
6 FPRounding rounding = FPRounding_NEGINF;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

215

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 bits(32) element = Elem[operand, e, 32];

10 Elem[results[r], e, 32] = FPRoundInt(element, FPCR[], rounding, exact);
11
12 for r = 0 to nreg-1
13 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

216

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.61 FRINTN

Multi-vector floating-point round to integral value, to nearest with ties to even

Round to the nearest integral floating-point value, with ties rounding to an even value, each element of the two or
four source vectors, and place the results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

1

23

0

22

1 0 1

21 19

0 0

18 17

0

16

1 1 1 0 0 0

15 10

Zn

9 6

0

5

Zd

4 1

0

0

size<1> size<0>

FRINTN { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd:'0');
4 constant integer nreg = 2;
5 boolean exact = FALSE;
6 FPRounding rounding = FPRounding_TIEEVEN;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

1

23

0

22

1 1 1

21 19

0 0

18 17

0

16

1 1 1 0 0 0

15 10

Zn

9 7

0 0

6 5

Zd

4 2

0 0

1 0

size<1> size<0>

FRINTN { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'00');
3 integer d = UInt(Zd:'00');
4 constant integer nreg = 4;
5 boolean exact = FALSE;
6 FPRounding rounding = FPRounding_TIEEVEN;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

217

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 bits(32) element = Elem[operand, e, 32];

10 Elem[results[r], e, 32] = FPRoundInt(element, FPCR[], rounding, exact);
11
12 for r = 0 to nreg-1
13 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

218

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.62 FRINTP

Multi-vector floating-point round to integral value, toward plus Infinity

Round up to an integral floating-point value, each element of the two or four source vectors, and place the results
in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

1

23

0

22

1 0 1

21 19

0 0

18 17

1

16

1 1 1 0 0 0

15 10

Zn

9 6

0

5

Zd

4 1

0

0

size<1> size<0>

FRINTP { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd:'0');
4 constant integer nreg = 2;
5 boolean exact = FALSE;
6 FPRounding rounding = FPRounding_POSINF;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

1

23

0

22

1 1 1

21 19

0 0

18 17

1

16

1 1 1 0 0 0

15 10

Zn

9 7

0 0

6 5

Zd

4 2

0 0

1 0

size<1> size<0>

FRINTP { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'00');
3 integer d = UInt(Zd:'00');
4 constant integer nreg = 4;
5 boolean exact = FALSE;
6 FPRounding rounding = FPRounding_POSINF;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

219

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 bits(32) element = Elem[operand, e, 32];

10 Elem[results[r], e, 32] = FPRoundInt(element, FPCR[], rounding, exact);
11
12 for r = 0 to nreg-1
13 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

220

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.63 FSUB

Floating-point subtract multi-vector from ZA array vector accumulators

The instruction operates on two or four ZA single-vector groups.

Destructively subtract all elements of the two or four source vectors from the corresponding elements of the two
or four ZA single-vector groups. The vector numbers forming the single-vector group within each half or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or
quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.F64F64 indicates whether the double-precision variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1 0 0 0 0 0 0

21 15

Rv

14 13

1 1 1

12 10

Zm

9 6

0 0

5 4

1

3

off3

2 0

S

FSUB ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zm1>.<T>-<Zm2>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(off3);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1 0 0 0 0 1 0

21 15

Rv

14 13

1 1 1

12 10

Zm

9 7

0 0 0

6 4

1

3

off3

2 0

S

FSUB ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zm1>.<T>-<Zm4>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEF64F64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(off3);
7 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

221

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = ZAvector[vec, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 for e = 0 to elements-1
14 bits(esize) element1 = Elem[operand1, e, esize];
15 bits(esize) element2 = Elem[operand2, e, esize];
16 Elem[result, e, esize] = FPSub_ZA(element1, element2, FPCR[]);
17 ZAvector[vec, VL] = result;
18 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

222

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.64 FVDOT

Multi-vector half-precision floating-point vertical dot-product by indexed element

The instruction operates on two ZA single-vector groups.

The instruction computes the vertical fused sum-of-products of the corresponding half-precision floating-point
values held in the two first source vectors with pair of half-precision floating-point values in the indexed 32-bit
element of the second source vector, without intermediate rounding. The single-precision sum-of-products results
are destructively added to the corresponding single-precision elements of the two ZA single-vector groups.

The half-precision floating-point pairs within the second source vector are specified using an immediate index
which selects the same pair position within each 128-bit vector segment. The element index range is from 0 to 3.

The vector numbers forming the single-vector group within each half of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the ZA operand consists of two ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction follows SME ZA-targeting floating-point behaviors.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i2

11 10

Zn

9 6

0 0 1

5 3

off3

2 0

FVDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer n = UInt(Zn:'0');
4 integer m = UInt('0':Zm);
5 integer offset = UInt(off3);
6 integer index = UInt(i2);

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV 2;
6 integer eltspersegment = 128 DIV 32;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

223

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

9 bits(VL) result;
10
11 for r = 0 to 1
12 bits(VL) operand1a = Z[n, VL];
13 bits(VL) operand1b = Z[n+1, VL];
14 bits(VL) operand2 = Z[m, VL];
15 bits(VL) operand3 = ZAvector[vec, VL];
16 for e = 0 to elements-1
17 integer segmentbase = e - (e MOD eltspersegment);
18 integer s = segmentbase + index;
19 bits(16) elt1_a = Elem[operand1a, 2 * e + r, 16];
20 bits(16) elt1_b = Elem[operand1b, 2 * e + r, 16];
21 bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
22 bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];
23 bits(32) sum = Elem[operand3, e, 32];
24 sum = FPDotAdd_ZA(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
25 Elem[result, e, 32] = sum;
26 ZAvector[vec, VL] = result;
27 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

224

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.65 LD1B (scalar plus immediate, consecutive registers)

Contiguous load of bytes to multiple consecutive vectors (immediate index)

Contiguous load of unsigned bytes to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

LD1B { <Zt1>.B-<Zt2>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 8;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

LD1B { <Zt1>.B-<Zt4>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 8;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

225

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

226

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.66 LD1B (scalar plus scalar, consecutive registers)

Contiguous load of bytes to multiple consecutive vectors (scalar index)

Contiguous load of unsigned bytes to elements of two or four consecutive vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access
the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

LD1B { <Zt1>.B-<Zt2>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 8;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

LD1B { <Zt1>.B-<Zt4>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 8;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

227

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

228

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.67 LD1B (scalar plus immediate, strided registers)

Contiguous load of bytes to multiple strided vectors (immediate index)

Contiguous load of unsigned bytes to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

LD1B { <Zt1>.B, <Zt2>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 8;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

LD1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 8;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

229

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t, VL] = values[r];
32 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

230

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.68 LD1B (scalar plus scalar, strided registers)

Contiguous load of bytes to multiple strided vectors (scalar index)

Contiguous load of unsigned bytes to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access
the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

LD1B { <Zt1>.B, <Zt2>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 8;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

LD1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 8;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

231

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t, VL] = values[r];
34 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

232

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.69 LD1B (scalar plus scalar, tile slice)

Contiguous load of bytes to 8-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of 8-bit elements in a vector. The immediate offset is in the range 0 to 15. The memory address is
generated by a 64-bit scalar base and an optional 64-bit scalar offset which is added to the base address. Inactive
elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination vector.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

0

23

0

22

0

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

off4

3 0

msz<1> msz<0>

LD1B { ZA0<HV>.B[<Ws>, <offs>] }, <Pg>/Z, [<Xn|SP>{, <Xm>}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = 0;
7 integer offset = UInt(off4);
8 constant integer esize = 8;
9 boolean vertical = V == '1';

Assembler Symbols

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(64) base;
6 bits(64) addr;
7 bits(PL) mask = P[g, PL];
8 bits(64) moffs = X[m, 64];
9 bits(32) index = X[s, 32];

10 integer slice = (UInt(index) + offset) MOD dim;
11 bits(VL) result;
12 constant integer mbytes = esize DIV 8;
13 boolean contiguous = TRUE;
14 boolean nontemporal = FALSE;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

233

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

15 boolean tagchecked = TRUE;
16 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);
17
18 if n == 31 then
19 if AnyActiveElement(mask, esize) ||
20 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
21 CheckSPAlignment();
22 base = SP[];
23 else
24 base = X[n, 64];
25
26 for e = 0 to dim - 1
27 addr = base + UInt(moffs) * mbytes;
28 if ActivePredicateElement(mask, e, esize) then
29 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
30 else
31 Elem[result, e, esize] = Zeros(esize);
32 moffs = moffs + 1;
33
34 ZAslice[t, esize, vertical, slice, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

234

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.70 LD1D (scalar plus immediate, consecutive registers)

Contiguous load of doublewords to multiple consecutive vectors (immediate index)

Contiguous load of unsigned doublewords to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

LD1D { <Zt1>.D-<Zt2>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 64;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

LD1D { <Zt1>.D-<Zt4>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 64;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

235

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

236

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.71 LD1D (scalar plus scalar, consecutive registers)

Contiguous load of doublewords to multiple consecutive vectors (scalar index)

Contiguous load of unsigned doublewords to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

LD1D { <Zt1>.D-<Zt2>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 64;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

LD1D { <Zt1>.D-<Zt4>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 64;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

237

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

238

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.72 LD1D (scalar plus immediate, strided registers)

Contiguous load of doublewords to multiple strided vectors (immediate index)

Contiguous load of unsigned doublewords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

LD1D { <Zt1>.D, <Zt2>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 64;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

LD1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 64;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

239

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t, VL] = values[r];
32 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

240

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.73 LD1D (scalar plus scalar, strided registers)

Contiguous load of doublewords to multiple strided vectors (scalar index)

Contiguous load of unsigned doublewords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

LD1D { <Zt1>.D, <Zt2>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 64;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

LD1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 64;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

241

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t, VL] = values[r];
34 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

242

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.74 LD1D (scalar plus scalar, tile slice)

Contiguous load of doublewords to 64-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of 64-bit elements in a vector. The immediate offset is in the range 0 to 1. The memory address is
generated by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 8 and added to the base
address. Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the
destination vector.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

1

23

1

22

0

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 1

o1

0

msz<1> msz<0>

LD1D { <ZAt><HV>.D[<Ws>, <offs>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #3}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer offset = UInt(o1);
8 constant integer esize = 64;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(64) base;
6 bits(64) addr;
7 bits(PL) mask = P[g, PL];
8 bits(64) moffs = X[m, 64];
9 bits(32) index = X[s, 32];

10 integer slice = (UInt(index) + offset) MOD dim;
11 bits(VL) result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

243

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

12 constant integer mbytes = esize DIV 8;
13 boolean contiguous = TRUE;
14 boolean nontemporal = FALSE;
15 boolean tagchecked = TRUE;
16 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);
17
18 if n == 31 then
19 if AnyActiveElement(mask, esize) ||
20 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
21 CheckSPAlignment();
22 base = SP[];
23 else
24 base = X[n, 64];
25
26 for e = 0 to dim - 1
27 addr = base + UInt(moffs) * mbytes;
28 if ActivePredicateElement(mask, e, esize) then
29 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
30 else
31 Elem[result, e, esize] = Zeros(esize);
32 moffs = moffs + 1;
33
34 ZAslice[t, esize, vertical, slice, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

244

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.75 LD1H (scalar plus immediate, consecutive registers)

Contiguous load of halfwords to multiple consecutive vectors (immediate index)

Contiguous load of unsigned halfwords to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

LD1H { <Zt1>.H-<Zt2>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 16;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

LD1H { <Zt1>.H-<Zt4>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 16;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

245

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

246

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.76 LD1H (scalar plus scalar, consecutive registers)

Contiguous load of halfwords to multiple consecutive vectors (scalar index)

Contiguous load of unsigned halfwords to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

LD1H { <Zt1>.H-<Zt2>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 16;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

LD1H { <Zt1>.H-<Zt4>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 16;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

247

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

248

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.77 LD1H (scalar plus immediate, strided registers)

Contiguous load of halfwords to multiple strided vectors (immediate index)

Contiguous load of unsigned halfwords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

LD1H { <Zt1>.H, <Zt2>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 16;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

LD1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 16;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

249

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t, VL] = values[r];
32 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

250

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.78 LD1H (scalar plus scalar, strided registers)

Contiguous load of halfwords to multiple strided vectors (scalar index)

Contiguous load of unsigned halfwords to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access
the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

LD1H { <Zt1>.H, <Zt2>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 16;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

LD1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 16;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

251

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t, VL] = values[r];
34 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

252

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.79 LD1H (scalar plus scalar, tile slice)

Contiguous load of halfwords to 16-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of 16-bit elements in a vector. The immediate offset is in the range 0 to 7. The memory address is
generated by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 2 and added to the base
address. Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the
destination vector.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

0

23

1

22

0

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3

off3

2 0

msz<1> msz<0>

LD1H { <ZAt><HV>.H[<Ws>, <offs>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #1}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer offset = UInt(off3);
8 constant integer esize = 16;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(64) base;
6 bits(64) addr;
7 bits(PL) mask = P[g, PL];
8 bits(64) moffs = X[m, 64];
9 bits(32) index = X[s, 32];

10 integer slice = (UInt(index) + offset) MOD dim;
11 bits(VL) result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

253

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

12 constant integer mbytes = esize DIV 8;
13 boolean contiguous = TRUE;
14 boolean nontemporal = FALSE;
15 boolean tagchecked = TRUE;
16 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);
17
18 if n == 31 then
19 if AnyActiveElement(mask, esize) ||
20 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
21 CheckSPAlignment();
22 base = SP[];
23 else
24 base = X[n, 64];
25
26 for e = 0 to dim - 1
27 addr = base + UInt(moffs) * mbytes;
28 if ActivePredicateElement(mask, e, esize) then
29 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
30 else
31 Elem[result, e, esize] = Zeros(esize);
32 moffs = moffs + 1;
33
34 ZAslice[t, esize, vertical, slice, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

254

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.80 LD1Q

Contiguous load of quadwords to 128-bit element ZA tile slice

The slice number in the tile is selected by the slice index register, modulo the number of 128-bit elements in
a Streaming SVE vector. The memory address is generated by scalar base and optional scalar offset which is
multiplied by 16 and added to the base address. Inactive elements will not cause a read from Device memory or
signal a fault, and are set to zero in the destination vector.

SME
(FEAT_SME)

1 1 1 0 0 0 0 1 1 1 0

31 21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 0

LD1Q { <ZAt><HV>.Q[<Ws>, <offs>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #4}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer offset = 0;
8 constant integer esize = 128;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(64) base;
6 bits(64) addr;
7 bits(PL) mask = P[g, PL];
8 bits(64) moffs = X[m, 64];
9 bits(32) index = X[s, 32];

10 integer slice = (UInt(index) + offset) MOD dim;
11 bits(VL) result;
12 constant integer mbytes = esize DIV 8;
13 boolean contiguous = TRUE;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

255

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

14 boolean nontemporal = FALSE;
15 boolean tagchecked = TRUE;
16 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);
17
18 if n == 31 then
19 if AnyActiveElement(mask, esize) ||
20 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
21 CheckSPAlignment();
22 base = SP[];
23 else
24 base = X[n, 64];
25
26 for e = 0 to dim - 1
27 addr = base + UInt(moffs) * mbytes;
28 if ActivePredicateElement(mask, e, esize) then
29 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
30 else
31 Elem[result, e, esize] = Zeros(esize);
32 moffs = moffs + 1;
33
34 ZAslice[t, esize, vertical, slice, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

256

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.81 LD1W (scalar plus immediate, consecutive registers)

Contiguous load of words to multiple consecutive vectors (immediate index)

Contiguous load of unsigned words to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

LD1W { <Zt1>.S-<Zt2>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 32;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

LD1W { <Zt1>.S-<Zt4>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 32;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

257

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

258

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.82 LD1W (scalar plus scalar, consecutive registers)

Contiguous load of words to multiple consecutive vectors (scalar index)

Contiguous load of unsigned words to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

LD1W { <Zt1>.S-<Zt2>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 32;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

LD1W { <Zt1>.S-<Zt4>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 32;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

259

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

260

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.83 LD1W (scalar plus immediate, strided registers)

Contiguous load of words to multiple strided vectors (immediate index)

Contiguous load of unsigned words to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

LD1W { <Zt1>.S, <Zt2>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 32;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

LD1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 32;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

261

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t, VL] = values[r];
32 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

262

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.84 LD1W (scalar plus scalar, strided registers)

Contiguous load of words to multiple strided vectors (scalar index)

Contiguous load of unsigned words to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access
the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

LD1W { <Zt1>.S, <Zt2>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 32;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

LD1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 32;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

263

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t, VL] = values[r];
34 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

264

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.85 LD1W (scalar plus scalar, tile slice)

Contiguous load of words to 32-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of 32-bit elements in a vector. The immediate offset is in the range 0 to 3. The memory address is
generated by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 4 and added to the base
address. Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the
destination vector.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

1

23

0

22

0

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 2

off2

1 0

msz<1> msz<0>

LD1W { <ZAt><HV>.S[<Ws>, <offs>] }, <Pg>/Z, [<Xn|SP>{, <Xm>, LSL #2}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer offset = UInt(off2);
8 constant integer esize = 32;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(64) base;
6 bits(64) addr;
7 bits(PL) mask = P[g, PL];
8 bits(64) moffs = X[m, 64];
9 bits(32) index = X[s, 32];

10 integer slice = (UInt(index) + offset) MOD dim;
11 bits(VL) result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

265

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

12 constant integer mbytes = esize DIV 8;
13 boolean contiguous = TRUE;
14 boolean nontemporal = FALSE;
15 boolean tagchecked = TRUE;
16 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);
17
18 if n == 31 then
19 if AnyActiveElement(mask, esize) ||
20 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
21 CheckSPAlignment();
22 base = SP[];
23 else
24 base = X[n, 64];
25
26 for e = 0 to dim - 1
27 addr = base + UInt(moffs) * mbytes;
28 if ActivePredicateElement(mask, e, esize) then
29 Elem[result, e, esize] = Mem[addr, mbytes, accdesc];
30 else
31 Elem[result, e, esize] = Zeros(esize);
32 moffs = moffs + 1;
33
34 ZAslice[t, esize, vertical, slice, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

266

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.86 LDNT1B (scalar plus immediate, consecutive registers)

Contiguous load non-temporal of bytes to multiple consecutive vectors (immediate index)

Contiguous load non-temporal of bytes to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

LDNT1B { <Zt1>.B-<Zt2>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 8;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

LDNT1B { <Zt1>.B-<Zt4>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 8;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

267

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

268

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.87 LDNT1B (scalar plus scalar, consecutive registers)

Contiguous load non-temporal of bytes to multiple consecutive vectors (scalar index)

Contiguous load non-temporal of bytes to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

LDNT1B { <Zt1>.B-<Zt2>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 8;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

LDNT1B { <Zt1>.B-<Zt4>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 8;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

269

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

270

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.88 LDNT1B (scalar plus immediate, strided registers)

Contiguous load non-temporal of bytes to multiple strided vectors (immediate index)

Contiguous load non-temporal of bytes to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

LDNT1B { <Zt1>.B, <Zt2>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 8;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

LDNT1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 8;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

271

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t, VL] = values[r];
32 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

272

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.89 LDNT1B (scalar plus scalar, strided registers)

Contiguous load non-temporal of bytes to multiple strided vectors (scalar index)

Contiguous load non-temporal of bytes to elements of two or four strided vector registers from the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access
the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

LDNT1B { <Zt1>.B, <Zt2>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 8;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

LDNT1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>/Z, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 8;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

273

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t, VL] = values[r];
34 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

274

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.90 LDNT1D (scalar plus immediate, consecutive registers)

Contiguous load non-temporal of doublewords to multiple consecutive vectors (immediate index)

Contiguous load non-temporal of doublewords to elements of two or four consecutive vector registers from
the memory address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s
in-memory size, irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

LDNT1D { <Zt1>.D-<Zt2>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 64;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

LDNT1D { <Zt1>.D-<Zt4>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 64;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

275

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

276

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.91 LDNT1D (scalar plus scalar, consecutive registers)

Contiguous load non-temporal of doublewords to multiple consecutive vectors (scalar index)

Contiguous load non-temporal of doublewords to elements of two or four consecutive vector registers from the
memory address generated by a 64-bit scalar base and scalar index which is added to the base address. After each
element access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

LDNT1D { <Zt1>.D-<Zt2>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 64;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

LDNT1D { <Zt1>.D-<Zt4>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 64;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

277

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

278

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.92 LDNT1D (scalar plus immediate, strided registers)

Contiguous load non-temporal of doublewords to multiple strided vectors (immediate index)

Contiguous load non-temporal of doublewords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

LDNT1D { <Zt1>.D, <Zt2>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 64;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

LDNT1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 64;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

279

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t, VL] = values[r];
32 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

280

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.93 LDNT1D (scalar plus scalar, strided registers)

Contiguous load non-temporal of doublewords to multiple strided vectors (scalar index)

Contiguous load non-temporal of doublewords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

LDNT1D { <Zt1>.D, <Zt2>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 64;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

LDNT1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 64;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

281

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t, VL] = values[r];
34 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

282

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.94 LDNT1H (scalar plus immediate, consecutive registers)

Contiguous load non-temporal of halfwords to multiple consecutive vectors (immediate index)

Contiguous load non-temporal of halfwords to elements of two or four consecutive vector registers from the
memory address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s
in-memory size, irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

LDNT1H { <Zt1>.H-<Zt2>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 16;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

LDNT1H { <Zt1>.H-<Zt4>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 16;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

283

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

284

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.95 LDNT1H (scalar plus scalar, consecutive registers)

Contiguous load non-temporal of halfwords to multiple consecutive vectors (scalar index)

Contiguous load non-temporal of halfwords to elements of two or four consecutive vector registers from the
memory address generated by a 64-bit scalar base and scalar index which is added to the base address. After each
element access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

LDNT1H { <Zt1>.H-<Zt2>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 16;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

LDNT1H { <Zt1>.H-<Zt4>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 16;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

285

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

286

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.96 LDNT1H (scalar plus immediate, strided registers)

Contiguous load non-temporal of halfwords to multiple strided vectors (immediate index)

Contiguous load non-temporal of halfwords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

LDNT1H { <Zt1>.H, <Zt2>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 16;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

LDNT1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 16;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

287

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t, VL] = values[r];
32 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

288

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.97 LDNT1H (scalar plus scalar, strided registers)

Contiguous load non-temporal of halfwords to multiple strided vectors (scalar index)

Contiguous load non-temporal of halfwords to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

LDNT1H { <Zt1>.H, <Zt2>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 16;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

LDNT1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 16;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

289

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t, VL] = values[r];
34 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

290

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.98 LDNT1W (scalar plus immediate, consecutive registers)

Contiguous load non-temporal of words to multiple consecutive vectors (immediate index)

Contiguous load non-temporal of words to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

LDNT1W { <Zt1>.S-<Zt2>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 32;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 0 0

31 20

imm4

19 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

LDNT1W { <Zt1>.S-<Zt4>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 32;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

291

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

292

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.99 LDNT1W (scalar plus scalar, consecutive registers)

Contiguous load non-temporal of words to multiple consecutive vectors (scalar index)

Contiguous load non-temporal of words to elements of two or four consecutive vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

LDNT1W { <Zt1>.S-<Zt2>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 32;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 0

31 21

Rm

20 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

LDNT1W { <Zt1>.S-<Zt4>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 32;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

293

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t+r, VL] = values[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

294

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.100 LDNT1W (scalar plus immediate, strided registers)

Contiguous load non-temporal of words to multiple strided vectors (immediate index)

Contiguous load non-temporal of words to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

LDNT1W { <Zt1>.S, <Zt2>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 32;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 0 0

31 20

imm4

19 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

LDNT1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>/Z, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 32;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

295

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(PL) pred = P[g, PL];
8 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
9 array [0..3] of bits(VL) values;

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 for e = 0 to elements-1
24 if ActivePredicateElement(mask, r * elements + e, esize) then
25 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
26 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
27 else
28 Elem[values[r], e, esize] = Zeros(esize);
29
30 for r = 0 to nreg-1
31 Z[t, VL] = values[r];
32 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

296

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.101 LDNT1W (scalar plus scalar, strided registers)

Contiguous load non-temporal of words to multiple strided vectors (scalar index)

Contiguous load non-temporal of words to elements of two or four strided vector registers from the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements will not cause a read from Device memory or signal a fault, and are set to zero in the destination
vector.

A non-temporal load is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

LDNT1W { <Zt1>.S, <Zt2>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 32;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 0

31 21

Rm

20 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

LDNT1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>/Z, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 32;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

297

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 array [0..3] of bits(VL) values;
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_LOAD, nontemporal, contiguous, tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 for e = 0 to elements-1
26 if ActivePredicateElement(mask, r * elements + e, esize) then
27 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
28 Elem[values[r], e, esize] = Mem[addr, mbytes, accdesc];
29 else
30 Elem[values[r], e, esize] = Zeros(esize);
31
32 for r = 0 to nreg-1
33 Z[t, VL] = values[r];
34 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

298

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.102 LDR (vector)

Load ZA array vector

The ZA array vector is selected by the sum of the vector select register and immediate offset, modulo the number
of bytes in a Streaming SVE vector. The immediate offset is in the range 0 to 15. The memory address is generated
by a 64-bit scalar base, plus the same optional immediate offset multiplied by the current vector length in bytes.
This instruction is unpredicated.

The load is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME
(FEAT_SME)

1 1 1 0 0 0 0 1 0 0

31 22

0

21

0 0 0 0 0 0

20 15

Rv

14 13

0 0 0

12 10

Rn

9 5

0

4

off4

3 0

LDR ZA[<Wv>, <offs>], [<Xn|SP>{, #<offs>, MUL VL}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer v = UInt('011':Rv);
4 integer offset = UInt(off4);

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W12-W15, encoded in the "Rv" field.

<offs> Is the vector select offset and optional memory offset, in the range 0 to 15, defaulting to 0,
encoded in the "off4" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

Operation
1 CheckSMEAndZAEnabled();
2 constant integer SVL = CurrentSVL;
3 constant integer dim = SVL DIV 8;
4 bits(64) base;
5 integer moffs = offset * dim;
6 bits(SVL) result;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD dim;
9 boolean contiguous = TRUE;

10 boolean nontemporal = FALSE;
11 boolean tagchecked = n != 31;
12 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);
13
14 if HaveTME() && TSTATE.depth > 0 then
15 FailTransaction(TMFailure_ERR, FALSE);
16
17 if n == 31 then
18 CheckSPAlignment();
19 base = SP[];
20 else
21 base = X[n, 64];
22
23 boolean aligned = IsAligned(base + offset, 16);
24

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

299

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

25 if !aligned && AlignmentEnforced() then
26 AArch64.Abort(base + moffs, AlignmentFault(accdesc));
27
28 for e = 0 to dim-1
29 Elem[result, e, 8] = AArch64.MemSingle[base + moffs, 1, accdesc, aligned];
30 moffs = moffs + 1;
31
32 ZAvector[vec, SVL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

300

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.103 LDR (ZT0)

Load ZT0 register

Load the 64-byte ZT0 register from the memory address provided in the 64-bit scalar base register. This instruction
is unpredicated.

The load is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME2
(FEAT_SME2)

1 1

31 30

1 0 0 0 0 1 0 0

29 22

0 1

21 20

1 1 1

19 17

1

16

1 0 0 0 0 0

15 10

Rn

9 5

0

4

0

3

0

2

0 0

1 0

LDR ZT0, [<Xn|SP>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);

Assembler Symbols

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

Operation
1 CheckSMEEnabled();
2 CheckSMEZT0Enabled();
3 constant integer elements = 512 DIV 8;
4 bits(64) base;
5 bits(512) result;
6 boolean contiguous = TRUE;
7 boolean nontemporal = FALSE;
8 boolean tagchecked = n != 31;
9 AccessDescriptor accdesc = CreateAccDescSME(MemOp_LOAD, nontemporal, contiguous, tagchecked);

10
11 if HaveTME() && TSTATE.depth > 0 then
12 FailTransaction(TMFailure_ERR, FALSE);
13
14 if n == 31 then
15 CheckSPAlignment();
16 base = SP[];
17 else
18 base = X[n, 64];
19
20 boolean aligned = IsAligned(base, 16);
21
22 if !aligned && AlignmentEnforced() then
23 AArch64.Abort(base, AlignmentFault(accdesc));
24
25 for e = 0 to elements-1
26 Elem[result, e, 8] = AArch64.MemSingle[base + e, 1, accdesc, aligned];
27
28 ZT0[512] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

301

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.104 LUTI2 (two registers)

Lookup table read with 2-bit indexes

Copy 8-bit, 16-bit or 32-bit elements from ZT0 to two destination vectors using packed 2-bit indices from a
segment of the source vector register. A segment corresponds to a portion of the source vector that is consumed in
order to fill the destination vector. The segment is selected by the vector segment index modulo the total number of
segments.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 0 1 0 0 0 1

31 19

1

18

i3

17 15

1

14

size

13 12

0 0

11 10

Zn

9 5

Zd

4 1

0

0

LUTI2 { <Zd1>.<T>-<Zd2>.<T> }, ZT0, <Zn>[<index>]

1 if !HaveSME2() then UNDEFINED;
2 if size == '11' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer isize = 2;
5 integer n = UInt(Zn);
6 integer d = UInt(Zd:'0');
7 integer imm = UInt(i3);
8 constant integer nreg = 2;

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 RESERVED

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 7, encoded in the "i3" field.

Operation
1 CheckStreamingSVEEnabled();
2 CheckSMEZT0Enabled();
3 constant integer VL = CurrentVL;
4 constant integer elements = VL DIV esize;
5 integer segments = esize DIV (isize * nreg);
6 integer segment = imm MOD segments;
7 bits(VL) indexes = Z[n, VL];
8 bits(512) table = ZT0[512];
9

10 for r = 0 to nreg-1
11 integer base = (segment * nreg + r) * elements;
12 bits(VL) result = Z[d+r, VL];
13 for e = 0 to elements-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

302

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

14 integer index = UInt(Elem[indexes, base+e, isize]);
15 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
16 Z[d+r, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

303

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.105 LUTI2 (four registers)

Lookup table read with 2-bit indexes

Copy 8-bit, 16-bit or 32-bit elements from ZT0 to four destination vectors using packed 2-bit indices from a
segment of the source vector register. A segment corresponds to a portion of the source vector that is consumed in
order to fill the destination vector. The segment is selected by the vector segment index modulo the total number of
segments.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 0 1 0 0 0 1

31 19

1

18

i2

17 16

1 0

15 14

size

13 12

0 0

11 10

Zn

9 5

Zd

4 2

0 0

1 0

LUTI2 { <Zd1>.<T>-<Zd4>.<T> }, ZT0, <Zn>[<index>]

1 if !HaveSME2() then UNDEFINED;
2 if size == '11' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer isize = 2;
5 integer n = UInt(Zn);
6 integer d = UInt(Zd:'00');
7 integer imm = UInt(i2);
8 constant integer nreg = 4;

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 RESERVED

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEEnabled();
2 CheckSMEZT0Enabled();
3 constant integer VL = CurrentVL;
4 constant integer elements = VL DIV esize;
5 integer segments = esize DIV (isize * nreg);
6 integer segment = imm MOD segments;
7 bits(VL) indexes = Z[n, VL];
8 bits(512) table = ZT0[512];
9

10 for r = 0 to nreg-1
11 integer base = (segment * nreg + r) * elements;
12 bits(VL) result = Z[d+r, VL];
13 for e = 0 to elements-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

304

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

14 integer index = UInt(Elem[indexes, base+e, isize]);
15 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
16 Z[d+r, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

305

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.106 LUTI2 (single)

Lookup table read with 2-bit indexes

Copy 8-bit, 16-bit or 32-bit elements from ZT0 to one destination vector using packed 2-bit indices from a segment
of the source vector register. A segment corresponds to a portion of the source vector that is consumed in order
to fill the destination vector. The segment is selected by the vector segment index modulo the total number of
segments.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 0 1 1 0 0 1

31 19

1

18

i4

17 14

size

13 12

0 0

11 10

Zn

9 5

Zd

4 0

LUTI2 <Zd>.<T>, ZT0, <Zn>[<index>]

1 if !HaveSME2() then UNDEFINED;
2 if size == '11' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer isize = 2;
5 integer n = UInt(Zn);
6 integer d = UInt(Zd);
7 integer imm = UInt(i4);
8 constant integer nreg = 1;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 RESERVED

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 15, encoded in the "i4" field.

Operation
1 CheckStreamingSVEEnabled();
2 CheckSMEZT0Enabled();
3 constant integer VL = CurrentVL;
4 constant integer elements = VL DIV esize;
5 integer segments = esize DIV (isize * nreg);
6 integer segment = imm MOD segments;
7 bits(VL) indexes = Z[n, VL];
8 bits(512) table = ZT0[512];
9

10 for r = 0 to nreg-1
11 integer base = (segment * nreg + r) * elements;
12 bits(VL) result = Z[d+r, VL];
13 for e = 0 to elements-1
14 integer index = UInt(Elem[indexes, base+e, isize]);
15 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
16 Z[d+r, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

306

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.107 LUTI4 (two registers)

Lookup table read with 4-bit indexes

Copy 8-bit, 16-bit or 32-bit elements from ZT0 to two destination vectors using packed 4-bit indices from a
segment of the source vector register. A segment corresponds to a portion of the source vector that is consumed in
order to fill the destination vector. The segment is selected by the vector segment index modulo the total number of
segments.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 0 1 0 0 0 1

31 19

0 1

18 17

i2

16 15

1

14

size

13 12

0 0

11 10

Zn

9 5

Zd

4 1

0

0

LUTI4 { <Zd1>.<T>-<Zd2>.<T> }, ZT0, <Zn>[<index>]

1 if !HaveSME2() then UNDEFINED;
2 if size == '11' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer isize = 4;
5 integer n = UInt(Zn);
6 integer d = UInt(Zd:'0');
7 integer imm = UInt(i2);
8 constant integer nreg = 2;

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 RESERVED

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEEnabled();
2 CheckSMEZT0Enabled();
3 constant integer VL = CurrentVL;
4 constant integer elements = VL DIV esize;
5 integer segments = esize DIV (isize * nreg);
6 integer segment = imm MOD segments;
7 bits(VL) indexes = Z[n, VL];
8 bits(512) table = ZT0[512];
9

10 for r = 0 to nreg-1
11 integer base = (segment * nreg + r) * elements;
12 bits(VL) result = Z[d+r, VL];
13 for e = 0 to elements-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

307

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

14 integer index = UInt(Elem[indexes, base+e, isize]);
15 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
16 Z[d+r, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

308

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.108 LUTI4 (four registers)

Lookup table read with 4-bit indexes

Copy 16-bit or 32-bit elements from ZT0 to four destination vectors using packed 4-bit indices from a segment of
the source vector register. A segment corresponds to a portion of the source vector that is consumed in order to fill
the destination vector. The segment is selected by the vector segment index modulo the total number of segments.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 0 1 0 0 0 1

31 19

0 1

18 17

i1

16

1 0

15 14

size

13 12

0 0

11 10

Zn

9 5

Zd

4 2

0 0

1 0

LUTI4 { <Zd1>.<T>-<Zd4>.<T> }, ZT0, <Zn>[<index>]

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' || size == '11' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer isize = 4;
5 integer n = UInt(Zn);
6 integer d = UInt(Zd:'00');
7 integer imm = UInt(i1);
8 constant integer nreg = 4;

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 RESERVED
01 H
10 S
11 RESERVED

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 1, encoded in the "i1" field.

Operation
1 CheckStreamingSVEEnabled();
2 CheckSMEZT0Enabled();
3 constant integer VL = CurrentVL;
4 constant integer elements = VL DIV esize;
5 integer segments = esize DIV (isize * nreg);
6 integer segment = imm MOD segments;
7 bits(VL) indexes = Z[n, VL];
8 bits(512) table = ZT0[512];
9

10 for r = 0 to nreg-1
11 integer base = (segment * nreg + r) * elements;
12 bits(VL) result = Z[d+r, VL];
13 for e = 0 to elements-1
14 integer index = UInt(Elem[indexes, base+e, isize]);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

309

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

15 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
16 Z[d+r, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

310

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.109 LUTI4 (single)

Lookup table read with 4-bit indexes

Copy 8-bit, 16-bit or 32-bit elements from ZT0 to one destination vector using packed 4-bit indices from a segment
of the source vector register. A segment corresponds to a portion of the source vector that is consumed in order
to fill the destination vector. The segment is selected by the vector segment index modulo the total number of
segments.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 0 1 1 0 0 1

31 19

0 1

18 17

i3

16 14

size

13 12

0 0

11 10

Zn

9 5

Zd

4 0

LUTI4 <Zd>.<T>, ZT0, <Zn>[<index>]

1 if !HaveSME2() then UNDEFINED;
2 if size == '11' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer isize = 4;
5 integer n = UInt(Zn);
6 integer d = UInt(Zd);
7 integer imm = UInt(i3);
8 constant integer nreg = 1;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 RESERVED

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<index> Is the vector segment index, in the range 0 to 7, encoded in the "i3" field.

Operation
1 CheckStreamingSVEEnabled();
2 CheckSMEZT0Enabled();
3 constant integer VL = CurrentVL;
4 constant integer elements = VL DIV esize;
5 integer segments = esize DIV (isize * nreg);
6 integer segment = imm MOD segments;
7 bits(VL) indexes = Z[n, VL];
8 bits(512) table = ZT0[512];
9

10 for r = 0 to nreg-1
11 integer base = (segment * nreg + r) * elements;
12 bits(VL) result = Z[d+r, VL];
13 for e = 0 to elements-1
14 integer index = UInt(Elem[indexes, base+e, isize]);
15 Elem[result, e, esize] = Elem[table, index, 32]<esize-1:0>;
16 Z[d+r, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

311

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.110 MOV (tile to vector, two registers)

Move two ZA tile slices to two vector registers

The instruction operates on two consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 2 in the
range 0 to the number of elements in a 128-bit vector segment minus 2.

This instruction is unpredicated.

This is an alias of MOVA (tile to vector, two registers). This means:

• The encodings in this description are named to match the encodings of MOVA (tile to vector, two registers).

• The description of MOVA (tile to vector, two registers) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from 4 classes: 8-bit , 16-bit , 32-bit and 64-bit

8-bit

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 0

12 10

0 0

9 8

off3

7 5

Zd

4 1

0

0

size<1> size<0>

MOV { <Zd1>.B-<Zd2>.B }, ZA0<HV>.B[<Ws>, <offsf>:<offsl>]

is equivalent to

MOVA { <Zd1>.B-<Zd2>.B }, ZA0<HV>.B[<Ws>, <offsf>:<offsl>]

and is always the preferred disassembly.

16-bit

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 0

12 10

0 0

9 8

ZAn

7

off2

6 5

Zd

4 1

0

0

size<1> size<0>

MOV { <Zd1>.H-<Zd2>.H }, <ZAn><HV>.H[<Ws>, <offsf>:<offsl>]

is equivalent to

MOVA { <Zd1>.H-<Zd2>.H }, <ZAn><HV>.H[<Ws>, <offsf>:<offsl>]

and is always the preferred disassembly.

32-bit

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 0

12 10

0 0

9 8

ZAn

7 6

o1

5

Zd

4 1

0

0

size<1> size<0>

MOV { <Zd1>.S-<Zd2>.S }, <ZAn><HV>.S[<Ws>, <offsf>:<offsl>]

is equivalent to

MOVA { <Zd1>.S-<Zd2>.S }, <ZAn><HV>.S[<Ws>, <offsf>:<offsl>]

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

312

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

and is always the preferred disassembly.

64-bit

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 0

12 10

0 0

9 8

ZAn

7 5

Zd

4 1

0

0

size<1> size<0>

MOV { <Zd1>.D-<Zd2>.D }, <ZAn><HV>.D[<Ws>, <offsf>:<offsl>]

is equivalent to

MOVA { <Zd1>.D-<Zd2>.D }, <ZAn><HV>.D[<Ws>, <offsf>:<offsl>]

and is always the preferred disassembly.

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 2.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAn" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAn" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAn" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offsf> For the 8-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "off3" field times 2.

For the 16-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "off2" field times 2.

For the 32-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "o1" field times 2.

For the 64-bit variant: is the slice index offset, pointing to first of two consecutive slices,
with implicit value 0.

<offsl> For the 8-bit variant: is the slice index offset, pointing to last of two consecutive slices,
encoded as "off3" field times 2 plus 1.

For the 16-bit variant: is the slice index offset, pointing to last of two consecutive slices,
encoded as "off2" field times 2 plus 1.

For the 32-bit variant: is the slice index offset, pointing to last of two consecutive slices,
encoded as "o1" field times 2 plus 1.

For the 64-bit variant: is the slice index offset, pointing to last of two consecutive slices, with
implicit value 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

313

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Operation

The description of MOVA (tile to vector, two registers) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

314

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.111 MOV (tile to vector, four registers)

Move four ZA tile slices to four vector registers

The instruction operates on four consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 4 in the
range 0 to the number of elements in a 128-bit vector segment minus 4.

This instruction is unpredicated.

This is an alias of MOVA (tile to vector, four registers). This means:

• The encodings in this description are named to match the encodings of MOVA (tile to vector, four registers).

• The description of MOVA (tile to vector, four registers) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from 4 classes: 8-bit , 16-bit , 32-bit and 64-bit

8-bit

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 1

12 10

0 0

9 8

0

7

off2

6 5

Zd

4 2

0 0

1 0

size<1> size<0>

MOV { <Zd1>.B-<Zd4>.B }, ZA0<HV>.B[<Ws>, <offsf>:<offsl>]

is equivalent to

MOVA { <Zd1>.B-<Zd4>.B }, ZA0<HV>.B[<Ws>, <offsf>:<offsl>]

and is always the preferred disassembly.

16-bit

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 1

12 10

0 0

9 8

0

7

ZAn

6

o1

5

Zd

4 2

0 0

1 0

size<1> size<0>

MOV { <Zd1>.H-<Zd4>.H }, <ZAn><HV>.H[<Ws>, <offsf>:<offsl>]

is equivalent to

MOVA { <Zd1>.H-<Zd4>.H }, <ZAn><HV>.H[<Ws>, <offsf>:<offsl>]

and is always the preferred disassembly.

32-bit

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 1

12 10

0 0

9 8

0

7

ZAn

6 5

Zd

4 2

0 0

1 0

size<1> size<0>

MOV { <Zd1>.S-<Zd4>.S }, <ZAn><HV>.S[<Ws>, <offsf>:<offsl>]

is equivalent to

MOVA { <Zd1>.S-<Zd4>.S }, <ZAn><HV>.S[<Ws>, <offsf>:<offsl>]

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

315

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

and is always the preferred disassembly.

64-bit

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 1

12 10

0 0

9 8

ZAn

7 5

Zd

4 2

0 0

1 0

size<1> size<0>

MOV { <Zd1>.D-<Zd4>.D }, <ZAn><HV>.D[<Ws>, <offsf>:<offsl>]

is equivalent to

MOVA { <Zd1>.D-<Zd4>.D }, <ZAn><HV>.D[<Ws>, <offsf>:<offsl>]

and is always the preferred disassembly.

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAn" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAn" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAn" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offsf> For the 8-bit variant: is the slice index offset, pointing to first of four consecutive slices,
encoded as "off2" field times 4.

For the 16-bit variant: is the slice index offset, pointing to first of four consecutive slices,
encoded as "o1" field times 4.

For the 32-bit and 64-bit variant: is the slice index offset, pointing to first of four consecutive
slices, with implicit value 0.

<offsl> For the 8-bit variant: is the slice index offset, pointing to last of four consecutive slices,
encoded as "off2" field times 4 plus 3.

For the 16-bit variant: is the slice index offset, pointing to last of four consecutive slices,
encoded as "o1" field times 4 plus 3.

For the 32-bit and 64-bit variant: is the slice index offset, pointing to last of four consecutive
slices, with implicit value 3.

Operation

The description of MOVA (tile to vector, four registers) gives the operational pseudocode for this instruction.

Operational information

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

316

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

317

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.112 MOV (array to vector, two registers)

Move two ZA single-vector groups to two vector registers

The instruction operates on two ZA single-vector groups. The vector numbers forming the single-vector group
within each half of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the instruction operates on two ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This is an alias of MOVA (array to vector, two registers). This means:

• The encodings in this description are named to match the encodings of MOVA (array to vector, two registers).

• The description of MOVA (array to vector, two registers) gives the operational pseudocode, any CON-
STRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

31 15

Rv

14 13

0 1 0

12 10

0 0

9 8

off3

7 5

Zd

4 1

0

0

MOV { <Zd1>.D-<Zd2>.D }, ZA.D[<Wv>, <offs>{, VGx2}]

is equivalent to

MOVA { <Zd1>.D-<Zd2>.D }, ZA.D[<Wv>, <offs>{, VGx2}]

and is always the preferred disassembly.

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 2.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

Operation

The description of MOVA (array to vector, two registers) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

318

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.113 MOV (array to vector, four registers)

Move four ZA single-vector groups to four vector registers

The instruction operates on four ZA single-vector groups. The vector numbers forming the single-vector group
within each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the instruction operates on four ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This is an alias of MOVA (array to vector, four registers). This means:

• The encodings in this description are named to match the encodings of MOVA (array to vector, four registers).

• The description of MOVA (array to vector, four registers) gives the operational pseudocode, any CON-
STRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

31 15

Rv

14 13

0 1 1

12 10

0 0

9 8

off3

7 5

Zd

4 2

0 0

1 0

MOV { <Zd1>.D-<Zd4>.D }, ZA.D[<Wv>, <offs>{, VGx4}]

is equivalent to

MOVA { <Zd1>.D-<Zd4>.D }, ZA.D[<Wv>, <offs>{, VGx4}]

and is always the preferred disassembly.

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

Operation

The description of MOVA (array to vector, four registers) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

319

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.114 MOV (tile to vector, single)

Move ZA tile slice to vector register

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and immediate offset,
modulo the number of such elements in a vector. The immediate offset is in the range 0 to the number of elements
in a 128-bit vector segment minus 1.

Inactive elements in the destination vector remain unmodified.

This is an alias of MOVA (tile to vector, single). This means:

• The encodings in this description are named to match the encodings of MOVA (tile to vector, single).

• The description of MOVA (tile to vector, single) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from 5 classes: 8-bit , 16-bit , 32-bit , 64-bit and 128-bit

8-bit

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

off4

8 5

Zd

4 0

size<1> size<0> Q

MOV <Zd>.B, <Pg>/M, ZA0<HV>.B[<Ws>, <offs>]

is equivalent to

MOVA <Zd>.B, <Pg>/M, ZA0<HV>.B[<Ws>, <offs>]

and is always the preferred disassembly.

16-bit

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8

off3

7 5

Zd

4 0

size<1> size<0> Q

MOV <Zd>.H, <Pg>/M, <ZAn><HV>.H[<Ws>, <offs>]

is equivalent to

MOVA <Zd>.H, <Pg>/M, <ZAn><HV>.H[<Ws>, <offs>]

and is always the preferred disassembly.

32-bit

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 7

off2

6 5

Zd

4 0

size<1> size<0> Q

MOV <Zd>.S, <Pg>/M, <ZAn><HV>.S[<Ws>, <offs>]

is equivalent to

MOVA <Zd>.S, <Pg>/M, <ZAn><HV>.S[<Ws>, <offs>]

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

320

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

and is always the preferred disassembly.

64-bit

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 6

o1

5

Zd

4 0

size<1> size<0> Q

MOV <Zd>.D, <Pg>/M, <ZAn><HV>.D[<Ws>, <offs>]

is equivalent to

MOVA <Zd>.D, <Pg>/M, <ZAn><HV>.D[<Ws>, <offs>]

and is always the preferred disassembly.

128-bit

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 1

21 17

1

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 5

Zd

4 0

size<1> size<0> Q

MOV <Zd>.Q, <Pg>/M, <ZAn><HV>.Q[<Ws>, <offs>]

is equivalent to

MOVA <Zd>.Q, <Pg>/M, <ZAn><HV>.Q[<Ws>, <offs>]

and is always the preferred disassembly.

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAn" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAn" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAn" field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the
"ZAn" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

321

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the 128-bit variant: is the slice index offset 0.

Operation

The description of MOVA (tile to vector, single) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

322

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.115 MOV (vector to tile, two registers)

Move two vector registers to two ZA tile slices

The instruction operates on two consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 2 in the
range 0 to the number of elements in a 128-bit vector segment minus 2.

This instruction is unpredicated.

This is an alias of MOVA (vector to tile, two registers). This means:

• The encodings in this description are named to match the encodings of MOVA (vector to tile, two registers).

• The description of MOVA (vector to tile, two registers) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from 4 classes: 8-bit , 16-bit , 32-bit and 64-bit

8-bit

1 1

31 30

0 0 0 0 0 0

29 24

0

23

0

22

0 0 0 1 0 0

21 16

V

15

Rs

14 13

0 0 0

12 10

Zn

9 6

0 0

5 4

0

3

off3

2 0

size<1> size<0>

MOV ZA0<HV>.B[<Ws>, <offsf>:<offsl>], { <Zn1>.B-<Zn2>.B }

is equivalent to

MOVA ZA0<HV>.B[<Ws>, <offsf>:<offsl>], { <Zn1>.B-<Zn2>.B }

and is always the preferred disassembly.

16-bit

1 1

31 30

0 0 0 0 0 0

29 24

0

23

1

22

0 0 0 1 0 0

21 16

V

15

Rs

14 13

0 0 0

12 10

Zn

9 6

0 0

5 4

0

3

ZAd

2

off2

1 0

size<1> size<0>

MOV <ZAd><HV>.H[<Ws>, <offsf>:<offsl>], { <Zn1>.H-<Zn2>.H }

is equivalent to

MOVA <ZAd><HV>.H[<Ws>, <offsf>:<offsl>], { <Zn1>.H-<Zn2>.H }

and is always the preferred disassembly.

32-bit

1 1

31 30

0 0 0 0 0 0

29 24

1

23

0

22

0 0 0 1 0 0

21 16

V

15

Rs

14 13

0 0 0

12 10

Zn

9 6

0 0

5 4

0

3

ZAd

2 1

o1

0

size<1> size<0>

MOV <ZAd><HV>.S[<Ws>, <offsf>:<offsl>], { <Zn1>.S-<Zn2>.S }

is equivalent to

MOVA <ZAd><HV>.S[<Ws>, <offsf>:<offsl>], { <Zn1>.S-<Zn2>.S }

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

323

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

and is always the preferred disassembly.

64-bit

1 1

31 30

0 0 0 0 0 0

29 24

1

23

1

22

0 0 0 1 0 0

21 16

V

15

Rs

14 13

0 0 0

12 10

Zn

9 6

0 0

5 4

0

3

ZAd

2 0

size<1> size<0>

MOV <ZAd><HV>.D[<Ws>, <offsf>:<offsl>], { <Zn1>.D-<Zn2>.D }

is equivalent to

MOVA <ZAd><HV>.D[<Ws>, <offsf>:<offsl>], { <Zn1>.D-<Zn2>.D }

and is always the preferred disassembly.

Assembler Symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAd" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAd" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAd" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offsf> For the 8-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "off3" field times 2.

For the 16-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "off2" field times 2.

For the 32-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "o1" field times 2.

For the 64-bit variant: is the slice index offset, pointing to first of two consecutive slices,
with implicit value 0.

<offsl> For the 8-bit variant: is the slice index offset, pointing to last of two consecutive slices,
encoded as "off3" field times 2 plus 1.

For the 16-bit variant: is the slice index offset, pointing to last of two consecutive slices,
encoded as "off2" field times 2 plus 1.

For the 32-bit variant: is the slice index offset, pointing to last of two consecutive slices,
encoded as "o1" field times 2 plus 1.

For the 64-bit variant: is the slice index offset, pointing to last of two consecutive slices, with
implicit value 1.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

324

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Operation

The description of MOVA (vector to tile, two registers) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

325

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.116 MOV (vector to tile, four registers)

Move four vector registers to four ZA tile slices

The instruction operates on four consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 4 in the
range 0 to the number of elements in a 128-bit vector segment minus 4.

This instruction is unpredicated.

This is an alias of MOVA (vector to tile, four registers). This means:

• The encodings in this description are named to match the encodings of MOVA (vector to tile, four registers).

• The description of MOVA (vector to tile, four registers) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from 4 classes: 8-bit , 16-bit , 32-bit and 64-bit

8-bit

1 1

31 30

0 0 0 0 0 0

29 24

0

23

0

22

0 0

21 20

0 1 0 0

19 16

V

15

Rs

14 13

0 0 1

12 10

Zn

9 7

0 0 0

6 4

0

3

0

2

off2

1 0

size<1> size<0>

MOV ZA0<HV>.B[<Ws>, <offsf>:<offsl>], { <Zn1>.B-<Zn4>.B }

is equivalent to

MOVA ZA0<HV>.B[<Ws>, <offsf>:<offsl>], { <Zn1>.B-<Zn4>.B }

and is always the preferred disassembly.

16-bit

1 1

31 30

0 0 0 0 0 0

29 24

0

23

1

22

0 0

21 20

0 1 0 0

19 16

V

15

Rs

14 13

0 0 1

12 10

Zn

9 7

0 0 0

6 4

0

3

0

2

ZAd

1

o1

0

size<1> size<0>

MOV <ZAd><HV>.H[<Ws>, <offsf>:<offsl>], { <Zn1>.H-<Zn4>.H }

is equivalent to

MOVA <ZAd><HV>.H[<Ws>, <offsf>:<offsl>], { <Zn1>.H-<Zn4>.H }

and is always the preferred disassembly.

32-bit

1 1

31 30

0 0 0 0 0 0

29 24

1

23

0

22

0 0

21 20

0 1 0 0

19 16

V

15

Rs

14 13

0 0 1

12 10

Zn

9 7

0 0 0

6 4

0

3

0

2

ZAd

1 0

size<1> size<0>

MOV <ZAd><HV>.S[<Ws>, <offsf>:<offsl>], { <Zn1>.S-<Zn4>.S }

is equivalent to

MOVA <ZAd><HV>.S[<Ws>, <offsf>:<offsl>], { <Zn1>.S-<Zn4>.S }

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

326

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

and is always the preferred disassembly.

64-bit

1 1

31 30

0 0 0 0 0 0

29 24

1

23

1

22

0 0 0 1 0 0

21 16

V

15

Rs

14 13

0 0 1

12 10

Zn

9 7

0 0 0

6 4

0

3

ZAd

2 0

size<1> size<0>

MOV <ZAd><HV>.D[<Ws>, <offsf>:<offsl>], { <Zn1>.D-<Zn4>.D }

is equivalent to

MOVA <ZAd><HV>.D[<Ws>, <offsf>:<offsl>], { <Zn1>.D-<Zn4>.D }

and is always the preferred disassembly.

Assembler Symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAd" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAd" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAd" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offsf> For the 8-bit variant: is the slice index offset, pointing to first of four consecutive slices,
encoded as "off2" field times 4.

For the 16-bit variant: is the slice index offset, pointing to first of four consecutive slices,
encoded as "o1" field times 4.

For the 32-bit and 64-bit variant: is the slice index offset, pointing to first of four consecutive
slices, with implicit value 0.

<offsl> For the 8-bit variant: is the slice index offset, pointing to last of four consecutive slices,
encoded as "off2" field times 4 plus 3.

For the 16-bit variant: is the slice index offset, pointing to last of four consecutive slices,
encoded as "o1" field times 4 plus 3.

For the 32-bit and 64-bit variant: is the slice index offset, pointing to last of four consecutive
slices, with implicit value 3.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation

The description of MOVA (vector to tile, four registers) gives the operational pseudocode for this instruction.

Operational information

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

327

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

328

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.117 MOV (vector to array, two registers)

Move two vector registers to two ZA single-vector groups

The instruction operates on two ZA single-vector groups. The vector numbers forming the single-vector group
within each half of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the instruction operates on two ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This is an alias of MOVA (vector to array, two registers). This means:

• The encodings in this description are named to match the encodings of MOVA (vector to array, two registers).

• The description of MOVA (vector to array, two registers) gives the operational pseudocode, any CON-
STRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

1 1

31 30

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

29 15

Rv

14 13

0 1 0

12 10

Zn

9 6

0 0

5 4

0

3

off3

2 0

MOV ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.D-<Zn2>.D }

is equivalent to

MOVA ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.D-<Zn2>.D }

and is always the preferred disassembly.

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation

The description of MOVA (vector to array, two registers) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

329

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.118 MOV (vector to array, four registers)

Move four vector registers to four ZA single-vector groups

The instruction operates on four ZA single-vector groups. The vector numbers forming the single-vector group
within each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the instruction operates on four ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This is an alias of MOVA (vector to array, four registers). This means:

• The encodings in this description are named to match the encodings of MOVA (vector to array, four registers).

• The description of MOVA (vector to array, four registers) gives the operational pseudocode, any CON-
STRAINED UNPREDICTABLE behavior, and any operational information for this instruction.

1 1

31 30

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

29 15

Rv

14 13

0 1 1

12 10

Zn

9 7

0 0 0

6 4

0

3

off3

2 0

MOV ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.D-<Zn4>.D }

is equivalent to

MOVA ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.D-<Zn4>.D }

and is always the preferred disassembly.

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation

The description of MOVA (vector to array, four registers) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

330

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.119 MOV (vector to tile, single)

Move vector register to ZA tile slice

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and immediate offset,
modulo the number of such elements in a vector. The immediate offset is in the range 0 to the number of elements
in a 128-bit vector segment minus 1.

Inactive elements in the destination slice remain unmodified.

This is an alias of MOVA (vector to tile, single). This means:

• The encodings in this description are named to match the encodings of MOVA (vector to tile, single).

• The description of MOVA (vector to tile, single) gives the operational pseudocode, any CONSTRAINED
UNPREDICTABLE behavior, and any operational information for this instruction.

It has encodings from 5 classes: 8-bit , 16-bit , 32-bit , 64-bit and 128-bit

8-bit

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

off4

3 0

size<1> size<0> Q

MOV ZA0<HV>.B[<Ws>, <offs>], <Pg>/M, <Zn>.B

is equivalent to

MOVA ZA0<HV>.B[<Ws>, <offs>], <Pg>/M, <Zn>.B

and is always the preferred disassembly.

16-bit

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3

off3

2 0

size<1> size<0> Q

MOV <ZAd><HV>.H[<Ws>, <offs>], <Pg>/M, <Zn>.H

is equivalent to

MOVA <ZAd><HV>.H[<Ws>, <offs>], <Pg>/M, <Zn>.H

and is always the preferred disassembly.

32-bit

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 2

off2

1 0

size<1> size<0> Q

MOV <ZAd><HV>.S[<Ws>, <offs>], <Pg>/M, <Zn>.S

is equivalent to

MOVA <ZAd><HV>.S[<Ws>, <offs>], <Pg>/M, <Zn>.S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

331

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

and is always the preferred disassembly.

64-bit

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 1

o1

0

size<1> size<0> Q

MOV <ZAd><HV>.D[<Ws>, <offs>], <Pg>/M, <Zn>.D

is equivalent to

MOVA <ZAd><HV>.D[<Ws>, <offs>], <Pg>/M, <Zn>.D

and is always the preferred disassembly.

128-bit

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 0

21 17

1

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 0

size<1> size<0> Q

MOV <ZAd><HV>.Q[<Ws>, <offs>], <Pg>/M, <Zn>.Q

is equivalent to

MOVA <ZAd><HV>.Q[<Ws>, <offs>], <Pg>/M, <Zn>.Q

and is always the preferred disassembly.

Assembler Symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAd" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAd" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAd" field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the
"ZAd" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

For the 128-bit variant: is the slice index offset 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

332

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation

The description of MOVA (vector to tile, single) gives the operational pseudocode for this instruction.

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

333

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.120 MOVA (tile to vector, two registers)

Move two ZA tile slices to two vector registers

The instruction operates on two consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 2 in the
range 0 to the number of elements in a 128-bit vector segment minus 2.

This instruction is unpredicated.

This instruction is used by the alias MOV (tile to vector, two registers).

It has encodings from 4 classes: 8-bit , 16-bit , 32-bit and 64-bit

8-bit
(FEAT_SME2)

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 0

12 10

0 0

9 8

off3

7 5

Zd

4 1

0

0

size<1> size<0>

MOVA { <Zd1>.B-<Zd2>.B }, ZA0<HV>.B[<Ws>, <offsf>:<offsl>]

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 2;
4 constant integer esize = 8;
5 integer d = UInt(Zd:'0');
6 integer n = 0;
7 integer offset = UInt(off3:'0');
8 boolean vertical = V == '1';

16-bit
(FEAT_SME2)

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 0

12 10

0 0

9 8

ZAn

7

off2

6 5

Zd

4 1

0

0

size<1> size<0>

MOVA { <Zd1>.H-<Zd2>.H }, <ZAn><HV>.H[<Ws>, <offsf>:<offsl>]

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 2;
4 constant integer esize = 16;
5 integer d = UInt(Zd:'0');
6 integer n = UInt(ZAn);
7 integer offset = UInt(off2:'0');
8 boolean vertical = V == '1';

32-bit
(FEAT_SME2)

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 0

12 10

0 0

9 8

ZAn

7 6

o1

5

Zd

4 1

0

0

size<1> size<0>

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

334

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

MOVA { <Zd1>.S-<Zd2>.S }, <ZAn><HV>.S[<Ws>, <offsf>:<offsl>]

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 2;
4 constant integer esize = 32;
5 integer d = UInt(Zd:'0');
6 integer n = UInt(ZAn);
7 integer offset = UInt(o1:'0');
8 boolean vertical = V == '1';

64-bit
(FEAT_SME2)

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 0

12 10

0 0

9 8

ZAn

7 5

Zd

4 1

0

0

size<1> size<0>

MOVA { <Zd1>.D-<Zd2>.D }, <ZAn><HV>.D[<Ws>, <offsf>:<offsl>]

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 2;
4 constant integer esize = 64;
5 integer d = UInt(Zd:'0');
6 integer n = UInt(ZAn);
7 integer offset = 0;
8 boolean vertical = V == '1';

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 2.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAn" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAn" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAn" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offsf> For the 8-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "off3" field times 2.

For the 16-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "off2" field times 2.

For the 32-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "o1" field times 2.

For the 64-bit variant: is the slice index offset, pointing to first of two consecutive slices,

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

335

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

with implicit value 0.

<offsl> For the 8-bit variant: is the slice index offset, pointing to last of two consecutive slices,
encoded as "off3" field times 2 plus 1.

For the 16-bit variant: is the slice index offset, pointing to last of two consecutive slices,
encoded as "off2" field times 2 plus 1.

For the 32-bit variant: is the slice index offset, pointing to last of two consecutive slices,
encoded as "o1" field times 2 plus 1.

For the 64-bit variant: is the slice index offset, pointing to last of two consecutive slices, with
implicit value 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 if nreg == 4 && esize == 64 && VL == 128 then UNDEFINED;
4 integer slices = VL DIV esize;
5 bits(32) index = X[s, 32];
6 integer slice = ((UInt(index) - (UInt(index) MOD nreg)) + offset) MOD slices;
7
8 for r = 0 to nreg-1
9 bits(VL) result = ZAslice[n, esize, vertical, slice + r, VL];

10 Z[d + r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

336

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.121 MOVA (tile to vector, four registers)

Move four ZA tile slices to four vector registers

The instruction operates on four consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 4 in the
range 0 to the number of elements in a 128-bit vector segment minus 4.

This instruction is unpredicated.

This instruction is used by the alias MOV (tile to vector, four registers).

It has encodings from 4 classes: 8-bit , 16-bit , 32-bit and 64-bit

8-bit
(FEAT_SME2)

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 1

12 10

0 0

9 8

0

7

off2

6 5

Zd

4 2

0 0

1 0

size<1> size<0>

MOVA { <Zd1>.B-<Zd4>.B }, ZA0<HV>.B[<Ws>, <offsf>:<offsl>]

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 4;
4 constant integer esize = 8;
5 integer d = UInt(Zd:'00');
6 integer n = 0;
7 integer offset = UInt(off2:'00');
8 boolean vertical = V == '1';

16-bit
(FEAT_SME2)

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 1

12 10

0 0

9 8

0

7

ZAn

6

o1

5

Zd

4 2

0 0

1 0

size<1> size<0>

MOVA { <Zd1>.H-<Zd4>.H }, <ZAn><HV>.H[<Ws>, <offsf>:<offsl>]

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 4;
4 constant integer esize = 16;
5 integer d = UInt(Zd:'00');
6 integer n = UInt(ZAn);
7 integer offset = UInt(o1:'00');
8 boolean vertical = V == '1';

32-bit
(FEAT_SME2)

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 1

12 10

0 0

9 8

0

7

ZAn

6 5

Zd

4 2

0 0

1 0

size<1> size<0>

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

337

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

MOVA { <Zd1>.S-<Zd4>.S }, <ZAn><HV>.S[<Ws>, <offsf>:<offsl>]

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 4;
4 constant integer esize = 32;
5 integer d = UInt(Zd:'00');
6 integer n = UInt(ZAn);
7 integer offset = 0;
8 boolean vertical = V == '1';

64-bit
(FEAT_SME2)

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 1 1 0

21 16

V

15

Rs

14 13

0 0 1

12 10

0 0

9 8

ZAn

7 5

Zd

4 2

0 0

1 0

size<1> size<0>

MOVA { <Zd1>.D-<Zd4>.D }, <ZAn><HV>.D[<Ws>, <offsf>:<offsl>]

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 4;
4 constant integer esize = 64;
5 integer d = UInt(Zd:'00');
6 integer n = UInt(ZAn);
7 integer offset = 0;
8 boolean vertical = V == '1';

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAn" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAn" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAn" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offsf> For the 8-bit variant: is the slice index offset, pointing to first of four consecutive slices,
encoded as "off2" field times 4.

For the 16-bit variant: is the slice index offset, pointing to first of four consecutive slices,
encoded as "o1" field times 4.

For the 32-bit and 64-bit variant: is the slice index offset, pointing to first of four consecutive
slices, with implicit value 0.

<offsl> For the 8-bit variant: is the slice index offset, pointing to last of four consecutive slices,

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

338

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

encoded as "off2" field times 4 plus 3.

For the 16-bit variant: is the slice index offset, pointing to last of four consecutive slices,
encoded as "o1" field times 4 plus 3.

For the 32-bit and 64-bit variant: is the slice index offset, pointing to last of four consecutive
slices, with implicit value 3.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 if nreg == 4 && esize == 64 && VL == 128 then UNDEFINED;
4 integer slices = VL DIV esize;
5 bits(32) index = X[s, 32];
6 integer slice = ((UInt(index) - (UInt(index) MOD nreg)) + offset) MOD slices;
7
8 for r = 0 to nreg-1
9 bits(VL) result = ZAslice[n, esize, vertical, slice + r, VL];

10 Z[d + r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

339

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.122 MOVA (array to vector, two registers)

Move two ZA single-vector groups to two vector registers

The instruction operates on two ZA single-vector groups. The vector numbers forming the single-vector group
within each half of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the instruction operates on two ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is used by the alias MOV (array to vector, two registers).

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

31 15

Rv

14 13

0 1 0

12 10

0 0

9 8

off3

7 5

Zd

4 1

0

0

MOVA { <Zd1>.D-<Zd2>.D }, ZA.D[<Wv>, <offs>{, VGx2}]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer offset = UInt(off3);
4 integer d = UInt(Zd:'0');
5 constant integer nreg = 2;

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 2.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 integer vectors = VL DIV 8;
4 integer vstride = vectors DIV nreg;
5 bits(32) vbase = X[v, 32];
6 integer vec = (UInt(vbase) + offset) MOD vstride;
7
8 for r = 0 to nreg-1
9 bits(VL) result = ZAvector[vec, VL];

10 Z[d + r, VL] = result;
11 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

340

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

341

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.123 MOVA (array to vector, four registers)

Move four ZA single-vector groups to four vector registers

The instruction operates on four ZA single-vector groups. The vector numbers forming the single-vector group
within each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the instruction operates on four ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is used by the alias MOV (array to vector, four registers).

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

31 15

Rv

14 13

0 1 1

12 10

0 0

9 8

off3

7 5

Zd

4 2

0 0

1 0

MOVA { <Zd1>.D-<Zd4>.D }, ZA.D[<Wv>, <offs>{, VGx4}]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer offset = UInt(off3);
4 integer d = UInt(Zd:'00');
5 constant integer nreg = 4;

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 integer vectors = VL DIV 8;
4 integer vstride = vectors DIV nreg;
5 bits(32) vbase = X[v, 32];
6 integer vec = (UInt(vbase) + offset) MOD vstride;
7
8 for r = 0 to nreg-1
9 bits(VL) result = ZAvector[vec, VL];

10 Z[d + r, VL] = result;
11 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

342

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

343

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.124 MOVA (tile to vector, single)

Move ZA tile slice to vector register

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and immediate offset,
modulo the number of such elements in a vector. The immediate offset is in the range 0 to the number of elements
in a 128-bit vector segment minus 1.

Inactive elements in the destination vector remain unmodified.

This instruction is used by the alias MOV (tile to vector, single).

It has encodings from 5 classes: 8-bit , 16-bit , 32-bit , 64-bit and 128-bit

8-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

off4

8 5

Zd

4 0

size<1> size<0> Q

MOVA <Zd>.B, <Pg>/M, ZA0<HV>.B[<Ws>, <offs>]

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = 0;
5 integer offset = UInt(off4);
6 constant integer esize = 8;
7 integer d = UInt(Zd);
8 boolean vertical = V == '1';

16-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8

off3

7 5

Zd

4 0

size<1> size<0> Q

MOVA <Zd>.H, <Pg>/M, <ZAn><HV>.H[<Ws>, <offs>]

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(ZAn);
5 integer offset = UInt(off3);
6 constant integer esize = 16;
7 integer d = UInt(Zd);
8 boolean vertical = V == '1';

32-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 7

off2

6 5

Zd

4 0

size<1> size<0> Q

MOVA <Zd>.S, <Pg>/M, <ZAn><HV>.S[<Ws>, <offs>]

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

344

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(ZAn);
5 integer offset = UInt(off2);
6 constant integer esize = 32;
7 integer d = UInt(Zd);
8 boolean vertical = V == '1';

64-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 1

21 17

0

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 6

o1

5

Zd

4 0

size<1> size<0> Q

MOVA <Zd>.D, <Pg>/M, <ZAn><HV>.D[<Ws>, <offs>]

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(ZAn);
5 integer offset = UInt(o1);
6 constant integer esize = 64;
7 integer d = UInt(Zd);
8 boolean vertical = V == '1';

128-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 1

21 17

1

16

V

15

Rs

14 13

Pg

12 10

0

9

ZAn

8 5

Zd

4 0

size<1> size<0> Q

MOVA <Zd>.Q, <Pg>/M, <ZAn><HV>.Q[<Ws>, <offs>]

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(ZAn);
5 integer offset = 0;
6 constant integer esize = 128;
7 integer d = UInt(Zd);
8 boolean vertical = V == '1';

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<ZAn> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAn" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAn" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAn" field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the
"ZAn" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

345

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

For the 128-bit variant: is the slice index offset 0.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask = P[g, PL];
6 bits(32) index = X[s, 32];
7 integer slice = (UInt(index) + offset) MOD dim;
8 bits(VL) operand = ZAslice[n, esize, vertical, slice, VL];
9 bits(VL) result = Z[d, VL];

10
11 for e = 0 to dim-1
12 bits(esize) element = Elem[operand, e, esize];
13 if ActivePredicateElement(mask, e, esize) then
14 Elem[result, e, esize] = element;
15
16 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

346

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.125 MOVA (vector to tile, two registers)

Move two vector registers to two ZA tile slices

The instruction operates on two consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 2 in the
range 0 to the number of elements in a 128-bit vector segment minus 2.

This instruction is unpredicated.

This instruction is used by the alias MOV (vector to tile, two registers).

It has encodings from 4 classes: 8-bit , 16-bit , 32-bit and 64-bit

8-bit
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 0

29 24

0

23

0

22

0 0 0 1 0 0

21 16

V

15

Rs

14 13

0 0 0

12 10

Zn

9 6

0 0

5 4

0

3

off3

2 0

size<1> size<0>

MOVA ZA0<HV>.B[<Ws>, <offsf>:<offsl>], { <Zn1>.B-<Zn2>.B }

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 2;
4 constant integer esize = 8;
5 integer n = UInt(Zn:'0');
6 integer d = 0;
7 integer offset = UInt(off3:'0');
8 boolean vertical = V == '1';

16-bit
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 0

29 24

0

23

1

22

0 0 0 1 0 0

21 16

V

15

Rs

14 13

0 0 0

12 10

Zn

9 6

0 0

5 4

0

3

ZAd

2

off2

1 0

size<1> size<0>

MOVA <ZAd><HV>.H[<Ws>, <offsf>:<offsl>], { <Zn1>.H-<Zn2>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 2;
4 constant integer esize = 16;
5 integer n = UInt(Zn:'0');
6 integer d = UInt(ZAd);
7 integer offset = UInt(off2:'0');
8 boolean vertical = V == '1';

32-bit
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 0

29 24

1

23

0

22

0 0 0 1 0 0

21 16

V

15

Rs

14 13

0 0 0

12 10

Zn

9 6

0 0

5 4

0

3

ZAd

2 1

o1

0

size<1> size<0>

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

347

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

MOVA <ZAd><HV>.S[<Ws>, <offsf>:<offsl>], { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 2;
4 constant integer esize = 32;
5 integer n = UInt(Zn:'0');
6 integer d = UInt(ZAd);
7 integer offset = UInt(o1:'0');
8 boolean vertical = V == '1';

64-bit
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 0

29 24

1

23

1

22

0 0 0 1 0 0

21 16

V

15

Rs

14 13

0 0 0

12 10

Zn

9 6

0 0

5 4

0

3

ZAd

2 0

size<1> size<0>

MOVA <ZAd><HV>.D[<Ws>, <offsf>:<offsl>], { <Zn1>.D-<Zn2>.D }

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 2;
4 constant integer esize = 64;
5 integer n = UInt(Zn:'0');
6 integer d = UInt(ZAd);
7 integer offset = 0;
8 boolean vertical = V == '1';

Assembler Symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAd" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAd" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAd" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offsf> For the 8-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "off3" field times 2.

For the 16-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "off2" field times 2.

For the 32-bit variant: is the slice index offset, pointing to first of two consecutive slices,
encoded as "o1" field times 2.

For the 64-bit variant: is the slice index offset, pointing to first of two consecutive slices,
with implicit value 0.

<offsl> For the 8-bit variant: is the slice index offset, pointing to last of two consecutive slices,
encoded as "off3" field times 2 plus 1.

For the 16-bit variant: is the slice index offset, pointing to last of two consecutive slices,

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

348

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

encoded as "off2" field times 2 plus 1.

For the 32-bit variant: is the slice index offset, pointing to last of two consecutive slices,
encoded as "o1" field times 2 plus 1.

For the 64-bit variant: is the slice index offset, pointing to last of two consecutive slices, with
implicit value 1.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 if nreg == 4 && esize == 64 && VL == 128 then UNDEFINED;
4 integer slices = VL DIV esize;
5 bits(32) index = X[s, 32];
6 integer slice = ((UInt(index) - (UInt(index) MOD nreg)) + offset) MOD slices;
7
8 for r = 0 to nreg-1
9 bits(VL) result = Z[n + r, VL];

10 ZAslice[d, esize, vertical, slice + r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

349

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.126 MOVA (vector to tile, four registers)

Move four vector registers to four ZA tile slices

The instruction operates on four consecutive horizontal or vertical slices within a named ZA tile of the specified
element size.

The consecutive slice numbers within the tile are selected starting from the sum of the slice index register and
immediate offset, modulo the number of such elements in a vector. The immediate offset is a multiple of 4 in the
range 0 to the number of elements in a 128-bit vector segment minus 4.

This instruction is unpredicated.

This instruction is used by the alias MOV (vector to tile, four registers).

It has encodings from 4 classes: 8-bit , 16-bit , 32-bit and 64-bit

8-bit
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 0

29 24

0

23

0

22

0 0

21 20

0 1 0 0

19 16

V

15

Rs

14 13

0 0 1

12 10

Zn

9 7

0 0 0

6 4

0

3

0

2

off2

1 0

size<1> size<0>

MOVA ZA0<HV>.B[<Ws>, <offsf>:<offsl>], { <Zn1>.B-<Zn4>.B }

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 4;
4 constant integer esize = 8;
5 integer n = UInt(Zn:'00');
6 integer d = 0;
7 integer offset = UInt(off2:'00');
8 boolean vertical = V == '1';

16-bit
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 0

29 24

0

23

1

22

0 0

21 20

0 1 0 0

19 16

V

15

Rs

14 13

0 0 1

12 10

Zn

9 7

0 0 0

6 4

0

3

0

2

ZAd

1

o1

0

size<1> size<0>

MOVA <ZAd><HV>.H[<Ws>, <offsf>:<offsl>], { <Zn1>.H-<Zn4>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 4;
4 constant integer esize = 16;
5 integer n = UInt(Zn:'00');
6 integer d = UInt(ZAd);
7 integer offset = UInt(o1:'00');
8 boolean vertical = V == '1';

32-bit
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 0

29 24

1

23

0

22

0 0

21 20

0 1 0 0

19 16

V

15

Rs

14 13

0 0 1

12 10

Zn

9 7

0 0 0

6 4

0

3

0

2

ZAd

1 0

size<1> size<0>

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

350

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

MOVA <ZAd><HV>.S[<Ws>, <offsf>:<offsl>], { <Zn1>.S-<Zn4>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 4;
4 constant integer esize = 32;
5 integer n = UInt(Zn:'00');
6 integer d = UInt(ZAd);
7 integer offset = 0;
8 boolean vertical = V == '1';

64-bit
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 0

29 24

1

23

1

22

0 0 0 1 0 0

21 16

V

15

Rs

14 13

0 0 1

12 10

Zn

9 7

0 0 0

6 4

0

3

ZAd

2 0

size<1> size<0>

MOVA <ZAd><HV>.D[<Ws>, <offsf>:<offsl>], { <Zn1>.D-<Zn4>.D }

1 if !HaveSME2() then UNDEFINED;
2 integer s = UInt('011':Rs);
3 constant integer nreg = 4;
4 constant integer esize = 64;
5 integer n = UInt(Zn:'00');
6 integer d = UInt(ZAd);
7 integer offset = 0;
8 boolean vertical = V == '1';

Assembler Symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAd" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAd" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAd" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offsf> For the 8-bit variant: is the slice index offset, pointing to first of four consecutive slices,
encoded as "off2" field times 4.

For the 16-bit variant: is the slice index offset, pointing to first of four consecutive slices,
encoded as "o1" field times 4.

For the 32-bit and 64-bit variant: is the slice index offset, pointing to first of four consecutive
slices, with implicit value 0.

<offsl> For the 8-bit variant: is the slice index offset, pointing to last of four consecutive slices,
encoded as "off2" field times 4 plus 3.

For the 16-bit variant: is the slice index offset, pointing to last of four consecutive slices,
encoded as "o1" field times 4 plus 3.

For the 32-bit and 64-bit variant: is the slice index offset, pointing to last of four consecutive

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

351

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

slices, with implicit value 3.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 if nreg == 4 && esize == 64 && VL == 128 then UNDEFINED;
4 integer slices = VL DIV esize;
5 bits(32) index = X[s, 32];
6 integer slice = ((UInt(index) - (UInt(index) MOD nreg)) + offset) MOD slices;
7
8 for r = 0 to nreg-1
9 bits(VL) result = Z[n + r, VL];

10 ZAslice[d, esize, vertical, slice + r, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

352

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.127 MOVA (vector to array, two registers)

Move two vector registers to two ZA single-vector groups

The instruction operates on two ZA single-vector groups. The vector numbers forming the single-vector group
within each half of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the instruction operates on two ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is used by the alias MOV (vector to array, two registers).

SME2
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

29 15

Rv

14 13

0 1 0

12 10

Zn

9 6

0 0

5 4

0

3

off3

2 0

MOVA ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.D-<Zn2>.D }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer offset = UInt(off3);
4 integer n = UInt(Zn:'0');
5 constant integer nreg = 2;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 integer vectors = VL DIV 8;
4 integer vstride = vectors DIV nreg;
5 bits(32) vbase = X[v, 32];
6 integer vec = (UInt(vbase) + offset) MOD vstride;
7
8 for r = 0 to nreg-1
9 bits(VL) result = Z[n + r, VL];

10 ZAvector[vec, VL] = result;
11 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

353

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

354

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.128 MOVA (vector to array, four registers)

Move four vector registers to four ZA single-vector groups

The instruction operates on four ZA single-vector groups. The vector numbers forming the single-vector group
within each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the instruction operates on four ZA single-vector groups.

The preferred disassembly syntax uses a 64-bit element size, but an assembler should accept any element size if it
is used consistently for all operands. The VECTOR GROUP symbol is preferred for disassembly, but optional in
assembler source code.

This instruction is unpredicated.

This instruction is used by the alias MOV (vector to array, four registers).

SME2
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

29 15

Rv

14 13

0 1 1

12 10

Zn

9 7

0 0 0

6 4

0

3

off3

2 0

MOVA ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.D-<Zn4>.D }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 integer offset = UInt(off3);
4 integer n = UInt(Zn:'00');
5 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 integer vectors = VL DIV 8;
4 integer vstride = vectors DIV nreg;
5 bits(32) vbase = X[v, 32];
6 integer vec = (UInt(vbase) + offset) MOD vstride;
7
8 for r = 0 to nreg-1
9 bits(VL) result = Z[n + r, VL];

10 ZAvector[vec, VL] = result;
11 vec = vec + vstride;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

355

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

356

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.129 MOVA (vector to tile, single)

Move vector register to ZA tile slice

The instruction operates on individual horizontal or vertical slices within a named ZA tile of the specified element
size. The slice number within the tile is selected by the sum of the slice index register and immediate offset,
modulo the number of such elements in a vector. The immediate offset is in the range 0 to the number of elements
in a 128-bit vector segment minus 1.

Inactive elements in the destination slice remain unmodified.

This instruction is used by the alias MOV (vector to tile, single).

It has encodings from 5 classes: 8-bit , 16-bit , 32-bit , 64-bit and 128-bit

8-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

0

23

0

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

off4

3 0

size<1> size<0> Q

MOVA ZA0<HV>.B[<Ws>, <offs>], <Pg>/M, <Zn>.B

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(Zn);
5 integer d = 0;
6 integer offset = UInt(off4);
7 constant integer esize = 8;
8 boolean vertical = V == '1';

16-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

0

23

1

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3

off3

2 0

size<1> size<0> Q

MOVA <ZAd><HV>.H[<Ws>, <offs>], <Pg>/M, <Zn>.H

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(Zn);
5 integer d = UInt(ZAd);
6 integer offset = UInt(off3);
7 constant integer esize = 16;
8 boolean vertical = V == '1';

32-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

0

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 2

off2

1 0

size<1> size<0> Q

MOVA <ZAd><HV>.S[<Ws>, <offs>], <Pg>/M, <Zn>.S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

357

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(Zn);
5 integer d = UInt(ZAd);
6 integer offset = UInt(off2);
7 constant integer esize = 32;
8 boolean vertical = V == '1';

64-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 0

21 17

0

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 1

o1

0

size<1> size<0> Q

MOVA <ZAd><HV>.D[<Ws>, <offs>], <Pg>/M, <Zn>.D

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(Zn);
5 integer d = UInt(ZAd);
6 integer offset = UInt(o1);
7 constant integer esize = 64;
8 boolean vertical = V == '1';

128-bit
(FEAT_SME)

1 1 0 0 0 0 0 0

31 24

1

23

1

22

0 0 0 0 0

21 17

1

16

V

15

Rs

14 13

Pg

12 10

Zn

9 5

0

4

ZAd

3 0

size<1> size<0> Q

MOVA <ZAd><HV>.Q[<Ws>, <offs>], <Pg>/M, <Zn>.Q

1 if !HaveSME() then UNDEFINED;
2 integer g = UInt(Pg);
3 integer s = UInt('011':Rs);
4 integer n = UInt(Zn);
5 integer d = UInt(ZAd);
6 integer offset = 0;
7 constant integer esize = 128;
8 boolean vertical = V == '1';

Assembler Symbols

<ZAd> For the 16-bit variant: is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the
"ZAd" field.

For the 32-bit variant: is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the
"ZAd" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the
"ZAd" field.

For the 128-bit variant: is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the
"ZAd" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

358

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> For the 8-bit variant: is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

For the 16-bit variant: is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

For the 32-bit variant: is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

For the 64-bit variant: is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

For the 128-bit variant: is the slice index offset 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask = P[g, PL];
6 bits(VL) operand = Z[n, VL];
7 bits(32) index = X[s, 32];
8 integer slice = (UInt(index) + offset) MOD dim;
9 bits(VL) result = ZAslice[d, esize, vertical, slice, VL];

10
11 for e = 0 to dim-1
12 bits(esize) element = Elem[operand, e, esize];
13 if ActivePredicateElement(mask, e, esize) then
14 Elem[result, e, esize] = element;
15
16 ZAslice[d, esize, vertical, slice, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

359

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.130 MOVT (ZT0 to scalar)

Move 8 bytes from ZT0 to general-purpose register

Move 8 bytes to a general-purpose register from the ZT0 register at the byte offset specified by the immediate
index. This instruction is UNDEFINED in Non-debug state.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0

31 15

off3

14 12

0 0

11 10

1 1 1 1

9 6

1

5

Rt

4 0

MOVT <Xt>, ZT0[<offs>]

1 if !HaveSME2() || !Halted() then UNDEFINED;
2 integer t = UInt(Rt);
3 integer offset = UInt(off3);

Assembler Symbols

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<offs> Is the immediate byte offset, a multiple of 8 in the range of 0 to 56, encoded in the "off3"
field as <offs>/8.

Operation
1 CheckSMEEnabled();
2 CheckSMEZT0Enabled();
3 bits(512) operand = ZT0[512];
4
5 X[t, 64] = Elem[operand, offset, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

360

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.131 MOVT (scalar to ZT0)

Move 8 bytes from general-purpose register to ZT0

Move 8 bytes to the ZT0 register at the byte offset specified by the immediate index from a general-purpose register.
This instruction is UNDEFINED in Non-debug state.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0

31 15

off3

14 12

0 0

11 10

1 1 1 1

9 6

1

5

Rt

4 0

MOVT ZT0[<offs>], <Xt>

1 if !HaveSME2() || !Halted() then UNDEFINED;
2 integer t = UInt(Rt);
3 integer offset = UInt(off3);

Assembler Symbols

<offs> Is the immediate byte offset, a multiple of 8 in the range of 0 to 56, encoded in the "off3"
field as <offs>/8.

<Xt> Is the 64-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

Operation
1 CheckSMEEnabled();
2 CheckSMEZT0Enabled();
3 bits(512) result = ZT0[512];
4
5 Elem[result, offset, 64] = X[t, 64];
6 ZT0[512] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

361

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.132 PEXT (predicate)

Set predicate from predicate-as-counter

Expands the source predicate-as-counter into a four-predicate wide mask and copies one quarter of it into the
destination predicate register.

SME2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1 0 0 0 0 0 0 1 1 1 0

21 11

0

10

imm2

9 8

PNn

7 5

1

4

Pd

3 0

PEXT <Pd>.<T>, <PNn>[<imm>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt('1':PNn);
4 integer d = UInt(Pd);
5 integer part = UInt(imm2);

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<PNn> Is the name of the first source scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNn" field.

<imm> Is the element index, in the range 0 to 3, encoded in the "imm2" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(PL) pred = P[n, PL];
6 bits(PL*4) mask = CounterToPredicate(pred<15:0>, PL*4);
7 bits(PL) result;
8 constant integer psize = esize DIV 8;
9

10 for e = 0 to elements-1
11 bit pbit = PredicateElement(mask, part * elements + e, esize);
12 Elem[result, e, psize] = ZeroExtend(pbit, psize);
13
14 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

362

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

363

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.133 PEXT (predicate pair)

Set pair of predicates from predicate-as-counter

Expands the source predicate-as-counter into a four-predicate wide mask and copies two quarters of it into the
destination predicate registers.

SME2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1 0 0 0 0 0 0 1 1 1 0

21 11

1

10

0

9

i1

8

PNn

7 5

1

4

Pd

3 0

PEXT { <Pd1>.<T>, <Pd2>.<T> }, <PNn>[<imm>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt('1':PNn);
4 integer d0 = UInt(Pd);
5 integer d1 = (UInt(Pd) + 1) MOD 16;
6 integer part = UInt(i1);

Assembler Symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded in the "Pd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Pd2> Is the name of the second destination scalable predicate register, encoded in the "Pd" field.

<PNn> Is the name of the first source scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNn" field.

<imm> Is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(PL) pred = P[n, PL];
6 bits(PL*4) mask = CounterToPredicate(pred<15:0>, PL*4);
7 bits(PL) result0;
8 bits(PL) result1;
9 constant integer psize = esize DIV 8;

10
11 for e = 0 to elements-1
12 bit pbit = PredicateElement(mask, part * 2 * elements + e, esize);
13 Elem[result0, e, psize] = ZeroExtend(pbit, psize);
14
15 for e = 0 to elements-1
16 bit pbit = PredicateElement(mask, part * 2 * elements + elements + e, esize);
17 Elem[result1, e, psize] = ZeroExtend(pbit, psize);
18
19 P[d0, PL] = result0;
20 P[d1, PL] = result1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

364

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

365

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.134 PTRUE

Initialise predicate-as-counter to all active

Set the destination predicate as all-active elements, using the predicate-as-counter encoding.

SME2
(FEAT_SME2)

0 0

31 30

1 0 0 1 0 1

29 24

size

23 22

1 0 0 0 0 0 0 1 1 1 1 0

21 10

0 0 0 0 0 1

9 4

0

3

PNd

2 0

PTRUE <PNd>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer d = UInt('1':PNd);

Assembler Symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(PL) result = EncodePredCount(esize, elements, elements, FALSE, PL);
6 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

366

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.135 RDSVL

Read multiple of Streaming SVE vector register size to scalar register

Multiply the Streaming SVE vector register size in bytes by an immediate in the range -32 to 31 and place the
result in the 64-bit destination general-purpose register.

This instruction does not require the PE to be in Streaming SVE mode.

SME
(FEAT_SME)

0 0 0 0 0 1 0 0 1

31 23

0

22

1

21

1 1 1 1

20 17

1

16

0 1 0 1 1

15 11

imm6

10 5

Rd

4 0

RDSVL <Xd>, #<imm>

1 if !HaveSME() then UNDEFINED;
2 integer d = UInt(Rd);
3 integer imm = SInt(imm6);

Assembler Symbols

<Xd> Is the 64-bit name of the destination general-purpose register, encoded in the "Rd" field.

<imm> Is the signed immediate operand, in the range -32 to 31, encoded in the "imm6" field.

Operation
1 CheckSMEEnabled();
2 constant integer SVL = CurrentSVL;
3 integer len = imm * (SVL DIV 8);
4 X[d, 64] = len<63:0>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

367

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.136 SCLAMP

Multi-vector signed clamp to minimum/maximum vector

Clamp each signed element in the two or four destination vectors to between the signed minimum value in the
corresponding element of the first source vector and the signed maximum value in the corresponding element of
the second source vector and destructively place the clamped results in the corresponding elements of the two or
four destination vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 16

1 1 0 0 0 1

15 10

Zn

9 5

Zd

4 1

0

0

U

SCLAMP { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd:'0');
6 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 16

1 1 0 0 1 1

15 10

Zn

9 5

Zd

4 2

0

1

0

0

U

SCLAMP { <Zd1>.<T>-<Zd4>.<T> }, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd:'00');
6 constant integer nreg = 4;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

368

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(VL) operand3 = Z[d+r, VL];

10 for e = 0 to elements-1
11 integer element1 = SInt(Elem[operand1, e, esize]);
12 integer element2 = SInt(Elem[operand2, e, esize]);
13 integer element3 = SInt(Elem[operand3, e, esize]);
14 integer res = Min(Max(element1, element3), element2);
15 Elem[results[r], e, esize] = res<esize-1:0>;
16
17 for r = 0 to nreg-1
18 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

369

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.137 SCVTF

Multi-vector signed integer convert to floating-point

Convert to single-precision from signed 32-bit integer, each element of the two or four source vectors, and place
the results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0

31 10

Zn

9 6

0

5

Zd

4 1

0

0

U

SCVTF { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd:'0');
4 constant integer nreg = 2;
5 boolean unsigned = FALSE;
6 FPRounding rounding = FPRoundingMode(FPCR[]);

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0

31 10

Zn

9 7

0

6

0

5

Zd

4 2

0 0

1 0

U

SCVTF { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'00');
3 integer d = UInt(Zd:'00');
4 constant integer nreg = 4;
5 boolean unsigned = FALSE;
6 FPRounding rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

370

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 bits(32) element = Elem[operand, e, 32];

10 Elem[results[r], e, 32] = FixedToFP(element, 0, unsigned, FPCR[], rounding, 32);
11
12 for r = 0 to nreg-1
13 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

371

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.138 SDOT (2-way, multiple and indexed vector)

Multi-vector signed integer dot-product by indexed element

The instruction operates on two or four ZA single-vector groups.

The signed integer dot product instruction computes the dot product of two signed 16-bit integer values held in
each 32-bit element of the two or four first source vectors and two signed 16-bit integer values in the corresponding
indexed 32-bit element of the second source vector. The widened dot product result is destructively added to the
corresponding 32-bit element of the two or four ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits. The vector
numbers forming the single-vector group within each half or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i2

11 10

Zn

9 6

0

5

0

4

0

3

off3

2 0

U

SDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i2

11 10

Zn

9 7

0

6

0

5

0

4

0

3

off3

2 0

U

SDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

372

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m, VL];
14 bits(VL) operand3 = ZAvector[vec, VL];
15 for e = 0 to elements-1
16 bits(esize) sum = Elem[operand3, e, esize];
17 integer segmentbase = e - (e MOD eltspersegment);
18 integer s = segmentbase + index;
19 for i = 0 to 1
20 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
21 integer element2 = SInt(Elem[operand2, 2 * s + i, esize DIV 2]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

373

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.139 SDOT (2-way, multiple and single vector)

Multi-vector signed integer dot-product by vector

The instruction operates on two or four ZA single-vector groups.

The signed integer dot product instruction computes the dot product of two signed 16-bit integer values held in each
32-bit element of the two or four first source vectors and two signed 16-bit integer values in the corresponding 32-bit
element of the second source vector. The widened dot product result is destructively added to the corresponding
32-bit element of the two or four ZA single-vector groups. The vector numbers forming the single-vector group
within each half or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0 1 1 0

29 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

0

4

1

3

off3

2 0

U

SDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0 1 1 1

29 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

0

4

1

3

off3

2 0

U

SDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

374

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) sum = Elem[operand3, e, esize];
16 for i = 0 to 1
17 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 sum = sum + element1 * element2;
20 Elem[result, e, esize] = sum;
21 ZAvector[vec, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

375

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.140 SDOT (2-way, multiple vectors)

Multi-vector signed integer dot-product

The instruction operates on two or four ZA single-vector groups.

The signed integer dot product instruction computes the dot product of two signed 16-bit integer values held in
each 32-bit element of the two or four first source vectors and two signed 16-bit integer values in the corresponding
32-bit element of the two or four second source vectors. The widened dot product result is destructively added to
the corresponding 32-bit element of the two or four ZA single-vector groups. The vector numbers forming the
single-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1 1 1

29 21

Zm

20 17

0 0

16 15

Rv

14 13

1 0 1

12 10

Zn

9 6

0

5

0

4

1

3

off3

2 0

U

SDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(off3);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1 1 1

29 21

Zm

20 18

0 1 0

17 15

Rv

14 13

1 0 1

12 10

Zn

9 7

0 0

6 5

0

4

1

3

off3

2 0

U

SDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(off3);
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

376

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[n+r, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) sum = Elem[operand3, e, esize];
16 for i = 0 to 1
17 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 sum = sum + element1 * element2;
20 Elem[result, e, esize] = sum;
21 ZAvector[vec, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

377

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.141 SDOT (4-way, multiple and indexed vector)

Multi-vector signed integer dot-product by indexed element

The instruction operates on two or four ZA single-vector groups.

The signed integer dot product instruction computes the dot product of four signed 8-bit or 16-bit integer values
held in each 32-bit or 64-bit element of the two or four first source vectors and four signed 8-bit or 16-bit integer
values in the corresponding indexed 32-bit or 64-bit element of the second source vector. The widened dot product
result is destructively added to the corresponding 32-bit or 64-bit element of the two or four ZA single-vector
groups.

The groups within the second source vector are specified using an immediate element index which selects the
same group position within each 128-bit vector segment. The index range is from 0 to one less than the number
of groups per 128-bit segment, encoded in 1 to 2 bits depending on the size of the group. The vector numbers
forming the single-vector group within each half or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 4 classes: Two ZA single-vectors of 32-bit elements , Two ZA single-vectors of 64-bit
elements , Four ZA single-vectors of 32-bit elements and Four ZA single-vectors of 64-bit elements

Two ZA single-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i2

11 10

Zn

9 6

1

5

0

4

0

3

off3

2 0

U

SDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 2;

Two ZA single-vectors of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0 0

12 11

i1

10

Zn

9 6

0

5

0

4

1

3

off3

2 0

U

SDOT ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 64;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

378

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

6 integer offset = UInt(off3);
7 integer index = UInt(i1);
8 constant integer nreg = 2;

Four ZA single-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i2

11 10

Zn

9 7

0

6

1

5

0

4

0

3

off3

2 0

U

SDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 4;

Four ZA single-vectors of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

0

11

i1

10

Zn

9 7

0 0

6 5

0

4

1

3

off3

2 0

U

SDOT ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 64;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i1);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors of 32-bit elements and two ZA single-vectors of 64-bit
elements variant: is the name of the first scalable vector register of a multi-vector sequence,
encoded as "Zn" times 2.

For the four ZA single-vectors of 32-bit elements and four ZA single-vectors of 64-bit
elements variant: is the name of the first scalable vector register of a multi-vector sequence,
encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA single-vectors of 32-bit elements and two ZA single-vectors of 32-bit

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

379

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

elements variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the four ZA single-vectors of 64-bit elements and two ZA single-vectors of 64-bit
elements variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m, VL];
14 bits(VL) operand3 = ZAvector[vec, VL];
15 for e = 0 to elements-1
16 bits(esize) sum = Elem[operand3, e, esize];
17 integer segmentbase = e - (e MOD eltspersegment);
18 integer s = segmentbase + index;
19 for i = 0 to 3
20 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
21 integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

380

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.142 SDOT (4-way, multiple and single vector)

Multi-vector signed integer dot-product by vector

The instruction operates on two or four ZA single-vector groups.

The signed integer dot product instruction computes the dot product of four signed 8-bit or 16-bit integer values
held in each 32-bit or 64-bit element of the two or four first source vectors and four signed 8-bit or 16-bit integer
values in the corresponding 32-bit or 64-bit element of the second source vector. The widened dot product result is
destructively added to the corresponding 32-bit or 64-bit element of the two or four ZA single-vector groups. The
vector numbers forming the single-vector group within each half or each quarter of the ZA array are selected by
the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0

29 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

0

4

0

3

off3

2 0

U

SDOT ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0

29 23

sz

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

0

4

0

3

off3

2 0

U

SDOT ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

381

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) sum = Elem[operand3, e, esize];
16 for i = 0 to 3
17 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 sum = sum + element1 * element2;
20 Elem[result, e, esize] = sum;
21 ZAvector[vec, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

382

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.143 SDOT (4-way, multiple vectors)

Multi-vector signed integer dot-product

The instruction operates on two or four ZA single-vector groups.

The signed integer dot product instruction computes the dot product of four signed 8-bit or 16-bit integer values
held in each 32-bit or 64-bit element of the two or four first source vectors and four signed 8-bit or 16-bit integer
values in the corresponding 32-bit or 64-bit element of the two or four second source vectors. The widened
dot product result is destructively added to the corresponding 32-bit or 64-bit element of the two or four ZA
single-vector groups. The vector numbers forming the single-vector group within each half or each quarter of the
ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1

29 23

sz

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

1 0 1

12 10

Zn

9 6

0

5

0

4

0

3

off3

2 0

U

SDOT ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm2>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'0');
6 integer m = UInt(Zm:'0');
7 integer offset = UInt(off3);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1

29 23

sz

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

1 0 1

12 10

Zn

9 7

0 0

6 5

0

4

0

3

off3

2 0

U

SDOT ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'00');
6 integer m = UInt(Zm:'00');
7 integer offset = UInt(off3);
8 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

383

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[n+r, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) sum = Elem[operand3, e, esize];
16 for i = 0 to 3
17 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 sum = sum + element1 * element2;
20 Elem[result, e, esize] = sum;
21 ZAvector[vec, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

384

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.144 SEL

Multi-vector conditionally select elements from two vectors

Read active elements from the two or four first source vectors and inactive elements from the two or four second
source vectors and place in the corresponding elements of the two or four destination vectors.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 0

16 13

PNg

12 10

Zn

9 6

0

5

Zd

4 1

0

0

SEL { <Zd1>.<T>-<Zd2>.<T> }, <PNg>, { <Zn1>.<T>-<Zn2>.<T> }, {
↪→<Zm1>.<T>-<Zm2>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn:'0');
4 integer m = UInt(Zm:'0');
5 integer d = UInt(Zd:'0');
6 integer g = UInt('1':PNg);
7 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 1 1 0 0

17 13

PNg

12 10

Zn

9 7

0 0

6 5

Zd

4 2

0 0

1 0

SEL { <Zd1>.<T>-<Zd4>.<T> }, <PNg>, { <Zn1>.<T>-<Zn4>.<T> }, {
↪→<Zm1>.<T>-<Zm4>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn:'00');
4 integer m = UInt(Zm:'00');
5 integer d = UInt(Zd:'00');
6 integer g = UInt('1':PNg);
7 constant integer nreg = 4;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

385

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Zn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 array [0..3] of bits(VL) results;
6 bits(PL) pred = P[g, PL];
7 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
8
9 for r = 0 to nreg-1

10 bits(VL) operand1 = Z[n+r, VL];
11 bits(VL) operand2 = Z[m+r, VL];
12 for e = 0 to elements-1
13 if ActivePredicateElement(mask, r * elements + e, esize) then
14 Elem[results[r], e, esize] = Elem[operand1, e, esize];
15 else
16 Elem[results[r], e, esize] = Elem[operand2, e, esize];
17
18 for r = 0 to nreg-1
19 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

386

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.145 SMAX (multiple and single vector)

Multi-vector signed maximum by vector

Determine the signed maximum of elements of the second source vector and the corresponding elements of the
two or four first source vectors and destructively place the results in the corresponding elements of the two or four
first source vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 0

15 10

0 0 0 0

9 6

0

5

Zdn

4 1

0

0

U

SMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 2;
6 boolean unsigned = FALSE;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 0

15 10

0 0 0 0

9 6

0

5

Zdn

4 2

0

1

0

0

U

SMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 4;
6 boolean unsigned = FALSE;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

387

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 integer element1 = Int(Elem[operand1, e, esize], unsigned);
11 integer element2 = Int(Elem[operand2, e, esize], unsigned);
12 integer res = Max(element1, element2);
13 Elem[results[r], e, esize] = res<esize-1:0>;
14
15 for r = 0 to nreg-1
16 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

388

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.146 SMAX (multiple vectors)

Multi-vector signed maximum

Determine the signed maximum of elements of the two or four second source vectors and the corresponding
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 1 1 0 0

16 10

0 0 0 0

9 6

0

5

Zdn

4 1

0

0

U

SMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt(Zm:'0');
5 constant integer nreg = 2;
6 boolean unsigned = FALSE;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 0 1 0 1 1 1 0

17 10

0 0 0 0

9 6

0

5

Zdn

4 2

0

1

0

0

U

SMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt(Zm:'00');
5 constant integer nreg = 4;
6 boolean unsigned = FALSE;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

389

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m+r, VL];
9 for e = 0 to elements-1

10 integer element1 = Int(Elem[operand1, e, esize], unsigned);
11 integer element2 = Int(Elem[operand2, e, esize], unsigned);
12 integer res = Max(element1, element2);
13 Elem[results[r], e, esize] = res<esize-1:0>;
14
15 for r = 0 to nreg-1
16 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

390

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.147 SMIN (multiple and single vector)

Multi-vector signed minimum by vector

Determine the signed minimum of elements of the second source vector and the corresponding elements of the two
or four first source vectors and destructively place the results in the corresponding elements of the two or four first
source vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 0

15 10

0 0 0 0

9 6

1

5

Zdn

4 1

0

0

U

SMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 2;
6 boolean unsigned = FALSE;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 0

15 10

0 0 0 0

9 6

1

5

Zdn

4 2

0

1

0

0

U

SMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 4;
6 boolean unsigned = FALSE;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

391

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 integer element1 = Int(Elem[operand1, e, esize], unsigned);
11 integer element2 = Int(Elem[operand2, e, esize], unsigned);
12 integer res = Min(element1, element2);
13 Elem[results[r], e, esize] = res<esize-1:0>;
14
15 for r = 0 to nreg-1
16 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

392

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.148 SMIN (multiple vectors)

Multi-vector signed minimum

Determine the signed minimum of elements of the two or four second source vectors and the corresponding
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 1 1 0 0

16 10

0 0 0 0

9 6

1

5

Zdn

4 1

0

0

U

SMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt(Zm:'0');
5 constant integer nreg = 2;
6 boolean unsigned = FALSE;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 0 1 0 1 1 1 0

17 10

0 0 0 0

9 6

1

5

Zdn

4 2

0

1

0

0

U

SMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt(Zm:'00');
5 constant integer nreg = 4;
6 boolean unsigned = FALSE;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

393

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m+r, VL];
9 for e = 0 to elements-1

10 integer element1 = Int(Elem[operand1, e, esize], unsigned);
11 integer element2 = Int(Elem[operand2, e, esize], unsigned);
12 integer res = Min(element1, element2);
13 Elem[results[r], e, esize] = res<esize-1:0>;
14
15 for r = 0 to nreg-1
16 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

394

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.149 SMLAL (multiple and indexed vector)

Multi-vector signed integer multiply-add long by indexed element

The instruction operates on one, two, or four ZA double-vector groups.

This signed integer multiply-add long instruction multiplies each signed 16-bit element in the one, two, or four
first source vectors with each signed 16-bit indexed element of the second source vector, widens each product
to 32-bits and destructively adds these values to the corresponding 32-bit elements of the one, two, or four ZA
double-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to 7, encoded in 3 bits.
The lowest of the two consecutive vector numbers forming the double-vector group within all, each half, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

1

12

i3l

11 10

Zn

9 5

0

4

0

3

off3

2 0

U S

SMLAL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i3h

11 10

Zn

9 6

0

5

0

4

0

3

i3l

2

off2

1 0

U S

SMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 2;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

395

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i3h

11 10

Zn

9 7

0 0

6 5

0

4

0

3

i3l

2

off2

1 0

U S

SMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 2);
11
12 for r = 0 to nreg-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

396

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 1
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 2 * segmentbase + index;
20 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
21 integer element2 = SInt(Elem[operand2, s, esize DIV 2]);
22 bits(esize) product = (element1 * element2)<esize-1:0>;
23 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
24 ZAvector[vec + i, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

397

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.150 SMLAL (multiple and single vector)

Multi-vector signed integer multiply-add long by vector

The instruction operates on one, two, or four ZA double-vector groups.

This signed integer multiply-add long instruction multiplies each signed 16-bit element in the one, two, or four
first source vectors with each signed 16-bit element in the second source vector, widens each product to 32-bits
and destructively adds these values to the corresponding 32-bit elements of the one, two, or four ZA double-vector
groups. The lowest of the two consecutive vector numbers forming the double-vector group within all, each half,
or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo
all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 1

12 10

Zn

9 5

0

4

0

3

off3

2 0

U S

SMLAL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3:'0');
7 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

0

4

0

3

0

2

off2

1 0

U S

SMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 1

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

0

4

0

3

0

2

off2

1 0

U S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

398

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

SMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

399

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.151 SMLAL (multiple vectors)

Multi-vector signed integer multiply-add long

The instruction operates on two or four ZA double-vector groups.

This signed integer multiply-add long instruction multiplies each signed 16-bit element in the two or four first
source vectors with each signed 16-bit element in the two or four second source vectors, widens each product to
32-bits and destructively adds these values to the corresponding 32-bit elements of the two or four ZA double-vector
groups. The lowest of the two consecutive vector numbers forming the double-vector group within each half or
each quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA double-vectors and Four ZA double-vectors

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 1

31 21

Zm

20 17

0 0

16 15

Rv

14 13

0 1 0

12 10

Zn

9 6

0

5

0

4

0

3

0

2

off2

1 0

U S

SMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 1

31 21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 1 0

12 10

Zn

9 7

0 0

6 5

0

4

0

3

0

2

off2

1 0

U S

SMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of two consecutive vectors, encoded as "off2" field
times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

400

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<offsl> Is the vector select offset, pointing to last of two consecutive vectors, encoded as "off2" field
times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

401

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.152 SMLALL (multiple and indexed vector)

Multi-vector signed integer multiply-add long long by indexed element

The instruction operates on one, two, or four ZA quad-vector groups.

This signed integer multiply-add long long instruction multiplies each signed 8-bit or 16-bit element in the one,
two, or four first source vectors with each signed 8-bit or 16-bit indexed element of second source vector, widens
each product to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit or 64-bit elements
of the one, two, or four ZA quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 3 to 4 bits depending on the size of the element. The lowest of the
four consecutive vector numbers forming the quad-vector group within all, each half, or each quarter of the ZA
array are selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 6 classes: One ZA quad-vector of 32-bit elements , One ZA quad-vector of 64-bit elements ,
Two ZA quad-vectors of 32-bit elements , Two ZA quad-vectors of 64-bit elements , Four ZA quad-vectors of
32-bit elements and Four ZA quad-vectors of 64-bit elements

One ZA quad-vector of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 0

31 20

Zm

19 16

i4h

15

Rv

14 13

i4l

12 10

Zn

9 5

0

4

0

3

0

2

off2

1 0

U S

SMLALL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.B, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 1;

One ZA quad-vector of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 0 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

0

12

i3l

11 10

Zn

9 5

0

4

0

3

0

2

off2

1 0

U S

SMLALL ZA.D[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

402

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 1;

Two ZA quad-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i4h

11 10

Zn

9 6

0

5

0

4

0

3

i4l

2 1

o1

0

U S

SMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 2;

Two ZA quad-vectors of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0 0

12 11

i3h

10

Zn

9 6

0

5

0

4

0

3

i3l

2 1

o1

0

U S

SMLALL ZA.D[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 2;

Four ZA quad-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i4h

11 10

Zn

9 7

0

6

0

5

0

4

0

3

i4l

2 1

o1

0

U S

SMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 4;

Four ZA quad-vectors of 64-bit elements
(FEAT_SME_I16I64)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

403

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0 0

12 11

i3h

10

Zn

9 7

0 0

6 5

0

4

0

3

i3l

2 1

o1

0

U S

SMLALL ZA.D[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements
variant: is the vector select offset, pointing to first of four consecutive vectors, encoded as
"off2" field times 4.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements,
two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant:
is the vector select offset, pointing to first of four consecutive vectors, encoded as "o1" field
times 4.

<offsl> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements
variant: is the vector select offset, pointing to last of four consecutive vectors, encoded as
"off2" field times 4 plus 3.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements,
two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant:
is the vector select offset, pointing to last of four consecutive vectors, encoded as "o1" field
times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of a multi-vector sequence, encoded
as "Zn" times 2.

For the four ZA quad-vectors of 32-bit elements and four ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of a multi-vector sequence, encoded
as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA quad-vectors of 32-bit elements, one ZA quad-vector of 32-bit elements and
two ZA quad-vectors of 32-bit elements variant: is the element index, in the range 0 to 15,
encoded in the "i4h:i4l" fields.

For the four ZA quad-vectors of 64-bit elements, one ZA quad-vector of 64-bit elements and
two ZA quad-vectors of 64-bit elements variant: is the element index, in the range 0 to 7,
encoded in the "i3h:i3l" fields.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

404

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 4);
11
12 for r = 0 to nreg-1
13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 3
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 4 * segmentbase + index;
20 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
21 integer element2 = SInt(Elem[operand2, s, esize DIV 4]);
22 bits(esize) product = (element1 * element2)<esize-1:0>;
23 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
24 ZAvector[vec + i, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

405

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.153 SMLALL (multiple and single vector)

Multi-vector signed integer multiply-add long long by vector

The instruction operates on one, two, or four ZA quad-vector groups.

This signed integer multiply-add long long instruction multiplies each signed 8-bit or 16-bit element in the one,
two, or four first source vectors with each signed 8-bit or 16-bit element in the second source vector, widens each
product to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit or 64-bit elements
of the one, two, or four ZA quad-vector groups. The lowest of the four consecutive vector numbers forming the
quad-vector group within all, each half, or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 3 classes: One ZA quad-vector , Two ZA quad-vectors and Four ZA quad-vectors

One ZA quad-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

0 0 1

12 10

Zn

9 5

0

4

0

3

0

2

off2

1 0

U S

SMLALL ZA.<T>[<Wv>, <offsf>:<offsl>], <Zn>.<Tb>, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off2:'00');
8 constant integer nreg = 1;

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

0

4

0

3

0

2

0

1

o1

0

U S

SMLALL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

406

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

0

4

0

3

0

2

0

1

o1

0

U S

SMLALL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA quad-vector variant: is the vector select offset, pointing to first of four
consecutive vectors, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to first of four consecutive vectors, encoded as "o1" field times 4.

<offsl> For the one ZA quad-vector variant: is the vector select offset, pointing to last of four
consecutive vectors, encoded as "off2" field times 4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to last of four consecutive vectors, encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

407

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

8 bits(VL) result;
9 vec = vec - (vec MOD 4);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 3
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

408

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.154 SMLALL (multiple vectors)

Multi-vector signed integer multiply-add long long

The instruction operates on two or four ZA quad-vector groups.

This signed integer multiply-add long long instruction multiplies each signed 8-bit or 16-bit element in the two or
four first source vectors with each signed 8-bit or 16-bit element in the one, two, or four second source vectors,
widens each product to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit or 64-bit
elements of the two or four ZA quad-vector groups. The lowest of the four consecutive vector numbers forming
the quad-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA quad-vectors and Four ZA quad-vectors

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

0 0 0

12 10

Zn

9 6

0

5

0

4

0

3

0

2

0

1

o1

0

U S

SMLALL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm2>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn:'0');
6 integer m = UInt(Zm:'0');
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 0 0

12 10

Zn

9 7

0 0

6 5

0

4

0

3

0

2

0

1

o1

0

U S

SMLALL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn:'00');
6 integer m = UInt(Zm:'00');
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

409

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of four consecutive vectors, encoded as "o1" field
times 4.

<offsl> Is the vector select offset, pointing to last of four consecutive vectors, encoded as "o1" field
times 4 plus 3.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 4);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 3
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

410

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

18 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

411

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.155 SMLSL (multiple and indexed vector)

Multi-vector signed integer multiply-subtract long by indexed element

The instruction operates on one, two, or four ZA double-vector groups.

This signed integer multiply-subtract long instruction multiplies each signed 16-bit element in the one, two, or four
first source vectors with each signed 16-bit indexed element of the second source vector, widens each product to
32-bits and destructively subtracts these values from the corresponding 32-bit elements of the one, two, or four ZA
double-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to 7, encoded in 3 bits.
The lowest of the two consecutive vector numbers forming the double-vector group within all, each half, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

1

12

i3l

11 10

Zn

9 5

0

4

1

3

off3

2 0

U S

SMLSL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i3h

11 10

Zn

9 6

0

5

0

4

1

3

i3l

2

off2

1 0

U S

SMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 2;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

412

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i3h

11 10

Zn

9 7

0 0

6 5

0

4

1

3

i3l

2

off2

1 0

U S

SMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 2);
11
12 for r = 0 to nreg-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

413

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 1
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 2 * segmentbase + index;
20 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
21 integer element2 = SInt(Elem[operand2, s, esize DIV 2]);
22 bits(esize) product = (element1 * element2)<esize-1:0>;
23 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
24 ZAvector[vec + i, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

414

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.156 SMLSL (multiple and single vector)

Multi-vector signed integer multiply-subtract long by vector

The instruction operates on one, two, or four ZA double-vector groups.

This signed integer multiply-subtract long instruction multiplies each signed 16-bit element in the one, two, or
four first source vectors with each signed 16-bit element in the second source vector, widens each product to
32-bits and destructively subtracts these values from the corresponding 32-bit elements of the one, two, or four ZA
double-vector groups. The lowest of the two consecutive vector numbers forming the double-vector group within
all, each half, or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 1

12 10

Zn

9 5

0

4

1

3

off3

2 0

U S

SMLSL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3:'0');
7 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

0

4

1

3

0

2

off2

1 0

U S

SMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 1

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

0

4

1

3

0

2

off2

1 0

U S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

415

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

SMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

416

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.157 SMLSL (multiple vectors)

Multi-vector signed integer multiply-subtract long

The instruction operates on two or four ZA double-vector groups.

This signed integer multiply-subtract long instruction multiplies each signed 16-bit element in the two or four first
source vectors with each signed 16-bit element in the two or four second source vectors, widens each product to
32-bits and destructively subtracts these values from the corresponding 32-bit elements of the two or four ZA
double-vector groups. The lowest of the two consecutive vector numbers forming the double-vector group within
each half or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA double-vectors and Four ZA double-vectors

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 1

31 21

Zm

20 17

0 0

16 15

Rv

14 13

0 1 0

12 10

Zn

9 6

0

5

0

4

1

3

0

2

off2

1 0

U S

SMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 1

31 21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 1 0

12 10

Zn

9 7

0 0

6 5

0

4

1

3

0

2

off2

1 0

U S

SMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of two consecutive vectors, encoded as "off2" field
times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

417

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<offsl> Is the vector select offset, pointing to last of two consecutive vectors, encoded as "off2" field
times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

418

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.158 SMLSLL (multiple and indexed vector)

Multi-vector signed integer multiply-subtract long long by indexed element

The instruction operates on one, two, or four ZA quad-vector groups.

This signed integer multiply-subtract long long instruction multiplies each signed 8-bit or 16-bit element in the
one, two, or four first source vectors with each signed 8-bit or 16-bit indexed element of second source vector,
widens each product to 32-bits or 64-bits and destructively subtracts these values from the corresponding 32-bit or
64-bit elements of the one, two, or four ZA quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 3 to 4 bits depending on the size of the element. The lowest of the
four consecutive vector numbers forming the quad-vector group within all, each half, or each quarter of the ZA
array are selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 6 classes: One ZA quad-vector of 32-bit elements , One ZA quad-vector of 64-bit elements ,
Two ZA quad-vectors of 32-bit elements , Two ZA quad-vectors of 64-bit elements , Four ZA quad-vectors of
32-bit elements and Four ZA quad-vectors of 64-bit elements

One ZA quad-vector of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 0

31 20

Zm

19 16

i4h

15

Rv

14 13

i4l

12 10

Zn

9 5

0

4

1

3

0

2

off2

1 0

U S

SMLSLL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.B, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 1;

One ZA quad-vector of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 0 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

0

12

i3l

11 10

Zn

9 5

0

4

1

3

0

2

off2

1 0

U S

SMLSLL ZA.D[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

419

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 1;

Two ZA quad-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i4h

11 10

Zn

9 6

0

5

0

4

1

3

i4l

2 1

o1

0

U S

SMLSLL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 2;

Two ZA quad-vectors of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0 0

12 11

i3h

10

Zn

9 6

0

5

0

4

1

3

i3l

2 1

o1

0

U S

SMLSLL ZA.D[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 2;

Four ZA quad-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i4h

11 10

Zn

9 7

0

6

0

5

0

4

1

3

i4l

2 1

o1

0

U S

SMLSLL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 4;

Four ZA quad-vectors of 64-bit elements
(FEAT_SME_I16I64)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

420

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0 0

12 11

i3h

10

Zn

9 7

0 0

6 5

0

4

1

3

i3l

2 1

o1

0

U S

SMLSLL ZA.D[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements
variant: is the vector select offset, pointing to first of four consecutive vectors, encoded as
"off2" field times 4.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements,
two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant:
is the vector select offset, pointing to first of four consecutive vectors, encoded as "o1" field
times 4.

<offsl> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements
variant: is the vector select offset, pointing to last of four consecutive vectors, encoded as
"off2" field times 4 plus 3.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements,
two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant:
is the vector select offset, pointing to last of four consecutive vectors, encoded as "o1" field
times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of a multi-vector sequence, encoded
as "Zn" times 2.

For the four ZA quad-vectors of 32-bit elements and four ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of a multi-vector sequence, encoded
as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA quad-vectors of 32-bit elements, one ZA quad-vector of 32-bit elements and
two ZA quad-vectors of 32-bit elements variant: is the element index, in the range 0 to 15,
encoded in the "i4h:i4l" fields.

For the four ZA quad-vectors of 64-bit elements, one ZA quad-vector of 64-bit elements and
two ZA quad-vectors of 64-bit elements variant: is the element index, in the range 0 to 7,
encoded in the "i3h:i3l" fields.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

421

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 4);
11
12 for r = 0 to nreg-1
13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 3
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 4 * segmentbase + index;
20 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
21 integer element2 = SInt(Elem[operand2, s, esize DIV 4]);
22 bits(esize) product = (element1 * element2)<esize-1:0>;
23 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
24 ZAvector[vec + i, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

422

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.159 SMLSLL (multiple and single vector)

Multi-vector signed integer multiply-subtract long long by vector

The instruction operates on one, two, or four ZA quad-vector groups.

This signed integer multiply-subtract long long instruction multiplies each signed 8-bit or 16-bit element in the
one, two, or four first source vectors with each signed 8-bit or 16-bit element in the second source vector, widens
each product to 32-bits or 64-bits and destructively subtracts these values from the corresponding 32-bit or 64-bit
elements of the one, two, or four ZA quad-vector groups. The lowest of the four consecutive vector numbers
forming the quad-vector group within all, each half, or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 3 classes: One ZA quad-vector , Two ZA quad-vectors and Four ZA quad-vectors

One ZA quad-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

0 0 1

12 10

Zn

9 5

0

4

1

3

0

2

off2

1 0

U S

SMLSLL ZA.<T>[<Wv>, <offsf>:<offsl>], <Zn>.<Tb>, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off2:'00');
8 constant integer nreg = 1;

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

0

4

1

3

0

2

0

1

o1

0

U S

SMLSLL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

423

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

0

4

1

3

0

2

0

1

o1

0

U S

SMLSLL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA quad-vector variant: is the vector select offset, pointing to first of four
consecutive vectors, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to first of four consecutive vectors, encoded as "o1" field times 4.

<offsl> For the one ZA quad-vector variant: is the vector select offset, pointing to last of four
consecutive vectors, encoded as "off2" field times 4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to last of four consecutive vectors, encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

424

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

8 bits(VL) result;
9 vec = vec - (vec MOD 4);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 3
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

425

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.160 SMLSLL (multiple vectors)

Multi-vector signed integer multiply-subtract long long

The instruction operates on two or four ZA quad-vector groups.

This signed integer multiply-subtract long long instruction multiplies each signed 8-bit or 16-bit element in the
two or four first source vectors with each signed 8-bit or 16-bit element in the one, two, or four second source
vectors, widens each product to 32-bits or 64-bits and destructively subtracts these values from the corresponding
32-bit or 64-bit elements of the two or four ZA quad-vector groups. The lowest of the four consecutive vector
numbers forming the quad-vector group within each half or each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA quad-vectors and Four ZA quad-vectors

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

0 0 0

12 10

Zn

9 6

0

5

0

4

1

3

0

2

0

1

o1

0

U S

SMLSLL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm2>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn:'0');
6 integer m = UInt(Zm:'0');
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 0 0

12 10

Zn

9 7

0 0

6 5

0

4

1

3

0

2

0

1

o1

0

U S

SMLSLL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn:'00');
6 integer m = UInt(Zm:'00');
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

426

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of four consecutive vectors, encoded as "o1" field
times 4.

<offsl> Is the vector select offset, pointing to last of four consecutive vectors, encoded as "o1" field
times 4 plus 3.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 4);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 3
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

427

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

18 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

428

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.161 SMOPA (2-way)

Signed integer sum of outer products and accumulate

This instruction works with a 32-bit element ZA tile.

The signed integer sum of outer products and accumulate instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. The first source holds SVLS×2 sub-matrix of signed 16-bit
integer values, and the second source holds 2×SVLS sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is inactive, it is treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer sum of outer products is then destructively added to the 32-bit
integer destination tile. This is equivalent to performing a 2-way dot product and accumulate to each of the
destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix, and each 32-bit container of the second source vector holds 2 consecutive row elements of each column
of a 2×SVLS sub-matrix.

SME2
(FEAT_SME2)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 0 0

23 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

1

3

0

2

ZAda

1 0

u0 S

SMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean unsigned = FALSE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

429

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 1
17 if ActivePredicateElement(mask1, 2*row + k, esize DIV 2) &&
18 ActivePredicateElement(mask2, 2*col + k, esize DIV 2) then
19 prod = (Int(Elem[operand1, 2*row + k, esize DIV 2], unsigned) *
20 Int(Elem[operand2, 2*col + k, esize DIV 2], unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

430

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.162 SMOPA (4-way)

Signed integer sum of outer products and accumulate

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed integer sum of outer products and accumulate instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds
SVLS×4 sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of signed
8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of signed
16-bit integer values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 0

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

u0 u1 S

SMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = FALSE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 1

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

u0 u1 S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

431

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

SMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSMEI16I64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = FALSE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 3
17 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
18 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
19 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
20 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

432

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

433

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.163 SMOPS (2-way)

Signed integer sum of outer products and subtract

This instruction works with a 32-bit element ZA tile.

The signed integer sum of outer products and subtract instructions multiply the sub-matrix in the first source vector
by the sub-matrix in the second source vector. The first source holds SVLS×2 sub-matrix of signed 16-bit integer
values, and the second source holds 2×SVLS sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is inactive, it is treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer sum of outer products is then destructively subtracted from the
32-bit integer destination tile. This is equivalent to performing a 2-way dot product and subtract from each of the
destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix, and each 32-bit container of the second source vector holds 2 consecutive row elements of each column
of a 2×SVLS sub-matrix.

SME2
(FEAT_SME2)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 0 0

23 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

1

3

0

2

ZAda

1 0

u0 S

SMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean unsigned = FALSE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

434

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 1
17 if ActivePredicateElement(mask1, 2*row + k, esize DIV 2) &&
18 ActivePredicateElement(mask2, 2*col + k, esize DIV 2) then
19 prod = (Int(Elem[operand1, 2*row + k, esize DIV 2], unsigned) *
20 Int(Elem[operand2, 2*col + k, esize DIV 2], unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

435

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.164 SMOPS (4-way)

Signed integer sum of outer products and subtract

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed integer sum of outer products and subtract instructions multiply the sub-matrix in the first source vector
by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds SVLS×4
sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of signed 8-bit integer
values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of signed 16-bit integer
values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit
integer and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract
from each of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 0

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

u0 u1 S

SMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = FALSE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 1

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

ZAda

2 0

u0 u1 S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

436

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

SMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSMEI16I64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = FALSE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 3
17 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
18 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
19 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
20 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

437

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

438

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.165 SQCVT (two registers)

Multi-vector signed saturating extract narrow

Saturate the signed integer value in each element of the two source vectors to half the orginal source element width,
and place the results in the half-width destination elements.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 0 0 0 1 1 1 1 1 0 0 0

21 10

Zn

9 6

0

5

Zd

4 0

U

SQCVT <Zd>.H, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (2 * esize);
4 bits(VL) result;
5
6 for r = 0 to 1
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 integer element = SInt(Elem[operand, e, 2 * esize]);

10 Elem[result, r*elements + e, esize] = SignedSat(element, esize);
11
12 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

439

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.166 SQCVT (four registers)

Multi-vector signed saturating extract narrow

Saturate the signed integer value in each element of the four source vectors to quarter the orginal source element
width, and place the results in the quarter-width destination elements.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

sz

23

0

22

1 1 0 0 1 1 1 1 1 0 0 0

21 10

Zn

9 7

0

6

0

5

Zd

4 0

N U

SQCVT <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(sz);
3 integer n = UInt(Zn:'00');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "sz":
sz <T>
0 B
1 H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 S
1 D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);
4 bits(VL) result;
5
6 for r = 0 to 3
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 integer element = SInt(Elem[operand, e, 4 * esize]);

10 Elem[result, r*elements + e, esize] = SignedSat(element, esize);
11
12 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

440

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.167 SQCVTN

Multi-vector signed saturating extract narrow and interleave

Saturate the signed integer value in each element of the four source vectors to quarter the orginal source element
width, and place the four-way interleaved results in the quarter-width destination elements.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

sz

23

0

22

1 1 0 0 1 1 1 1 1 0 0 0

21 10

Zn

9 7

1

6

0

5

Zd

4 0

N U

SQCVTN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(sz);
3 integer n = UInt(Zn:'00');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "sz":
sz <T>
0 B
1 H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 S
1 D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);
4 bits(VL) result;
5
6 for e = 0 to elements-1
7 for i = 0 to 3
8 bits(VL) operand = Z[n+i, VL];
9 integer element = SInt(Elem[operand, e, 4 * esize]);

10 Elem[result, 4*e + i, esize] = SignedSat(element, esize);
11
12 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

441

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.168 SQCVTU (two registers)

Multi-vector signed saturating unsigned extract narrow

Saturate the signed integer value in each element of the two source vectors to unsigned integer value that is half the
orginal source element width, and place the results in the half-width destination elements.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

1

22

1 0 0 0 1 1 1 1 1 0 0 0

21 10

Zn

9 6

0

5

Zd

4 0

U

SQCVTU <Zd>.H, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (2 * esize);
4 bits(VL) result;
5
6 for r = 0 to 1
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 integer element = SInt(Elem[operand, e, 2 * esize]);

10 Elem[result, r*elements + e, esize] = UnsignedSat(element, esize);
11
12 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

442

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.169 SQCVTU (four registers)

Multi-vector signed saturating unsigned extract narrow

Saturate the signed integer value in each element of the four source vectors to unsigned integer value that is quarter
the orginal source element width, and place the results in the quarter-width destination elements.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

sz

23

1

22

1 1 0 0 1 1 1 1 1 0 0 0

21 10

Zn

9 7

0

6

0

5

Zd

4 0

N U

SQCVTU <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(sz);
3 integer n = UInt(Zn:'00');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "sz":
sz <T>
0 B
1 H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 S
1 D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);
4 bits(VL) result;
5
6 for r = 0 to 3
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 integer element = SInt(Elem[operand, e, 4 * esize]);

10 Elem[result, r*elements + e, esize] = UnsignedSat(element, esize);
11
12 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

443

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.170 SQCVTUN

Multi-vector signed saturating unsigned extract narrow and interleave

Saturate the signed integer value in each element of the four source vectors to unsigned integer value that is
quarter the orginal source element width, and place the four-way interleaved results in the quarter-width destination
elements.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

sz

23

1

22

1 1 0 0 1 1 1 1 1 0 0 0

21 10

Zn

9 7

1

6

0

5

Zd

4 0

N U

SQCVTUN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(sz);
3 integer n = UInt(Zn:'00');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "sz":
sz <T>
0 B
1 H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 S
1 D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);
4 bits(VL) result;
5
6 for e = 0 to elements-1
7 for i = 0 to 3
8 bits(VL) operand = Z[n+i, VL];
9 integer element = SInt(Elem[operand, e, 4 * esize]);

10 Elem[result, 4*e + i, esize] = UnsignedSat(element, esize);
11
12 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

444

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.171 SQDMULH (multiple and single vector)

Multi-vector signed saturating doubling multiply high by vector

Multiply then double the corresponding signed elements of the two or four first source vectors and the signed
elements of the second source vector, and destructively place the most significant half of the result in the
corresponding elements of the two or four first source vectors. Each result element is saturated to the N-bit
element’s signed integer range -2(N-1) to (2(N-1))-1.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 1

15 10

0 0 0 0 0

9 5

Zdn

4 1

0

0

SQDMULH { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 1

15 10

0 0 0 0 0

9 5

Zdn

4 2

0 0

1 0

SQDMULH { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

445

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 integer element1 = SInt(Elem[operand1, e, esize]);
11 integer element2 = SInt(Elem[operand2, e, esize]);
12 integer res = 2 * element1 * element2;
13 Elem[results[r], e, esize] = SignedSat(res >> esize, esize);
14
15 for r = 0 to nreg-1
16 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

446

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.172 SQDMULH (multiple vectors)

Multi-vector signed saturating doubling multiply high

Multiply then double the corresponding signed elements of the two or four first and second source vectors, and
destructively place the most significant half of the result in the corresponding elements of the two or four first
source vectors. Each result element is saturated to the N-bit element’s signed integer range -2(N-1) to (2(N-1))-1.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 1 1 0 1

16 10

0 0 0 0 0

9 5

Zdn

4 1

0

0

SQDMULH { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt(Zm:'0');
5 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 0 1 0 1 1 1 1

17 10

0 0 0 0 0

9 5

Zdn

4 2

0 0

1 0

SQDMULH { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt(Zm:'00');
5 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

447

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m+r, VL];
9 for e = 0 to elements-1

10 integer element1 = SInt(Elem[operand1, e, esize]);
11 integer element2 = SInt(Elem[operand2, e, esize]);
12 integer res = 2 * element1 * element2;
13 Elem[results[r], e, esize] = SignedSat(res >> esize, esize);
14
15 for r = 0 to nreg-1
16 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

448

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.173 SQRSHR (two registers)

Multi-vector signed saturating rounding shift right narrow by immediate

Shift right by an immediate value, the signed integer value in each element of the two source vectors and place the
rounded results in the half-width destination elements. Each result element is saturated to the half-width N-bit
element’s signed integer range -2(N-1) to (2(N-1))-1. The immediate shift amount is an unsigned value in the range 1
to 16.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 1

31 21

0

20

imm4

19 16

1 1 0 1 0 1

15 10

Zn

9 6

0

5

Zd

4 0

U

SQRSHR <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);
5 integer shift = esize - UInt(imm4);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (2 * esize);
4 bits(VL) result;
5 integer round_const = 1 << (shift-1);
6
7 for r = 0 to 1
8 bits(VL) operand = Z[n+r, VL];
9 for e = 0 to elements-1

10 bits(2 * esize) element = Elem[operand, e, 2 * esize];
11 integer res = (SInt(element) + round_const) >> shift;
12 Elem[result, r*elements + e, esize] = SignedSat(res, esize);
13
14 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

449

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.174 SQRSHR (four registers)

Multi-vector signed saturating rounding shift right narrow by immediate

Shift right by an immediate value, the signed integer value in each element of the four source vectors and place the
rounded results in the quarter-width destination elements. Each result element is saturated to the quarter-width
N-bit element’s signed integer range -2(N-1) to (2(N-1))-1. The immediate shift amount is an unsigned value in the
range 1 to number of bits per source element.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

tsize

23 22

1

21

imm5

20 16

1 1 0 1 1

15 11

0

10

Zn

9 7

0

6

0

5

Zd

4 0

N U

SQRSHR <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 integer esize;
3 case tsize of
4 when '00' UNDEFINED;
5 when '01' esize = 8;
6 when '1x' esize = 16;
7 integer n = UInt(Zn:'00');
8 integer d = UInt(Zd);
9 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "tsize":
tsize <T>
00 RESERVED
01 B
1x H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "tsize":
tsize <Tb>
00 RESERVED
01 S
1x D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded
in "tsize:imm5".

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

450

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 bits(VL) result;
5 integer round_const = 1 << (shift-1);
6
7 for r = 0 to 3
8 bits(VL) operand = Z[n+r, VL];
9 for e = 0 to elements-1

10 bits(4 * esize) element = Elem[operand, e, 4 * esize];
11 integer res = (SInt(element) + round_const) >> shift;
12 Elem[result, r*elements + e, esize] = SignedSat(res, esize);
13
14 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

451

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.175 SQRSHRN

Multi-vector signed saturating rounding shift right narrow by immediate and interleave

Shift right by an immediate value, the signed integer value in each element of the four source vectors and place the
four-way interleaved rounded results in the quarter-width destination elements. Each result element is saturated
to the quarter-width N-bit element’s signed integer range -2(N-1) to (2(N-1))-1. The immediate shift amount is an
unsigned value in the range 1 to number of bits per source element.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

tsize

23 22

1

21

imm5

20 16

1 1 0 1 1

15 11

1

10

Zn

9 7

0

6

0

5

Zd

4 0

N U

SQRSHRN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 integer esize;
3 case tsize of
4 when '00' UNDEFINED;
5 when '01' esize = 8;
6 when '1x' esize = 16;
7 integer n = UInt(Zn:'00');
8 integer d = UInt(Zd);
9 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "tsize":
tsize <T>
00 RESERVED
01 B
1x H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "tsize":
tsize <Tb>
00 RESERVED
01 S
1x D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded
in "tsize:imm5".

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

452

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 bits(VL) result;
5 integer round_const = 1 << (shift-1);
6
7 for e = 0 to elements-1
8 for i = 0 to 3
9 bits(VL) operand = Z[n+i, VL];

10 bits(4 * esize) element = Elem[operand, e, 4 * esize];
11 integer res = (SInt(element) + round_const) >> shift;
12 Elem[result, 4*e + i, esize] = SignedSat(res, esize);
13
14 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

453

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.176 SQRSHRU (two registers)

Multi-vector signed saturating rounding shift right unsigned narrow by immediate

Shift right by an immediate value, the signed integer value in each element of the two source vectors and place the
rounded results in the half-width destination elements. Each result element is saturated to the half-width N-bit
element’s unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned value in the range 1 to 16.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 1

31 21

1

20

imm4

19 16

1 1 0 1 0 1

15 10

Zn

9 6

0

5

Zd

4 0

U

SQRSHRU <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);
5 integer shift = esize - UInt(imm4);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (2 * esize);
4 bits(VL) result;
5 integer round_const = 1 << (shift-1);
6
7 for r = 0 to 1
8 bits(VL) operand = Z[n+r, VL];
9 for e = 0 to elements-1

10 bits(2 * esize) element = Elem[operand, e, 2 * esize];
11 integer res = (SInt(element) + round_const) >> shift;
12 Elem[result, r*elements + e, esize] = UnsignedSat(res, esize);
13
14 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

454

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.177 SQRSHRU (four registers)

Multi-vector signed saturating rounding shift right unsigned narrow by immediate

Shift right by an immediate value, the signed integer value in each element of the four source vectors and place the
rounded results in the quarter-width destination elements. Each result element is saturated to the quarter-width
N-bit element’s unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned value in the range 1
to number of bits per source element.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

tsize

23 22

1

21

imm5

20 16

1 1 0 1 1

15 11

0

10

Zn

9 7

1

6

0

5

Zd

4 0

N U

SQRSHRU <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 integer esize;
3 case tsize of
4 when '00' UNDEFINED;
5 when '01' esize = 8;
6 when '1x' esize = 16;
7 integer n = UInt(Zn:'00');
8 integer d = UInt(Zd);
9 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "tsize":
tsize <T>
00 RESERVED
01 B
1x H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "tsize":
tsize <Tb>
00 RESERVED
01 S
1x D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded
in "tsize:imm5".

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

455

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 bits(VL) result;
5 integer round_const = 1 << (shift-1);
6
7 for r = 0 to 3
8 bits(VL) operand = Z[n+r, VL];
9 for e = 0 to elements-1

10 bits(4 * esize) element = Elem[operand, e, 4 * esize];
11 integer res = (SInt(element) + round_const) >> shift;
12 Elem[result, r*elements + e, esize] = UnsignedSat(res, esize);
13
14 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

456

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.178 SQRSHRUN

Multi-vector signed saturating rounding shift right unsigned narrow by immediate and interleave

Shift right by an immediate value, the signed integer value in each element of the four source vectors and place the
four-way interleaved rounded results in the quarter-width destination elements. Each result element is saturated to
the quarter-width N-bit element’s unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned
value in the range 1 to number of bits per source element.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

tsize

23 22

1

21

imm5

20 16

1 1 0 1 1

15 11

1

10

Zn

9 7

1

6

0

5

Zd

4 0

N U

SQRSHRUN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 integer esize;
3 case tsize of
4 when '00' UNDEFINED;
5 when '01' esize = 8;
6 when '1x' esize = 16;
7 integer n = UInt(Zn:'00');
8 integer d = UInt(Zd);
9 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "tsize":
tsize <T>
00 RESERVED
01 B
1x H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "tsize":
tsize <Tb>
00 RESERVED
01 S
1x D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded
in "tsize:imm5".

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

457

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 bits(VL) result;
5 integer round_const = 1 << (shift-1);
6
7 for e = 0 to elements-1
8 for i = 0 to 3
9 bits(VL) operand = Z[n+i, VL];

10 bits(4 * esize) element = Elem[operand, e, 4 * esize];
11 integer res = (SInt(element) + round_const) >> shift;
12 Elem[result, 4*e + i, esize] = UnsignedSat(res, esize);
13
14 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

458

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.179 SRSHL (multiple and single vector)

Multi-vector signed rounding shift left by vector

Shift active signed elements of the two or four first source vectors by corresponding elements of the second
source vector and destructively place the rounded results in the corresponding elements of the two or four first
source vectors. A positive shift amount performs a left shift, otherwise a right shift by the negated shift amount is
performed.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 0

15 10

1 0

9 8

0 0

7 6

1

5

Zdn

4 1

0

0

U

SRSHL { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 0

15 10

1 0

9 8

0 0

7 6

1

5

Zdn

4 2

0

1

0

0

U

SRSHL { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

459

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 integer element = SInt(Elem[operand1, e, esize]);
11 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
12 integer res;
13 if shift >= 0 then
14 res = element << shift;
15 else
16 shift = -shift;
17 res = (element + (1 << (shift - 1))) >> shift;
18 Elem[results[r], e, esize] = res<esize-1:0>;
19
20 for r = 0 to nreg-1
21 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

460

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.180 SRSHL (multiple vectors)

Multi-vector signed rounding shift left

Shift active signed elements of the two or four first source vectors by corresponding elements of the two or four
second source vectors and destructively place the rounded results in the corresponding elements of the two or
four first source vectors. A positive shift amount performs a left shift, otherwise a right shift by the negated shift
amount is performed.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 1 1 0 0

16 10

1 0

9 8

0 0

7 6

1

5

Zdn

4 1

0

0

U

SRSHL { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt(Zm:'0');
5 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 0 1 0 1 1 1 0

17 10

1 0

9 8

0 0

7 6

1

5

Zdn

4 2

0

1

0

0

U

SRSHL { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt(Zm:'00');
5 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

461

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m+r, VL];
9 for e = 0 to elements-1

10 integer element = SInt(Elem[operand1, e, esize]);
11 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
12 integer res;
13 if shift >= 0 then
14 res = element << shift;
15 else
16 shift = -shift;
17 res = (element + (1 << (shift - 1))) >> shift;
18 Elem[results[r], e, esize] = res<esize-1:0>;
19
20 for r = 0 to nreg-1
21 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

462

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.181 ST1B (scalar plus immediate, consecutive registers)

Contiguous store of bytes from multiple consecutive vectors (immediate index)

Contiguous store of bytes from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

ST1B { <Zt1>.B-<Zt2>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 8;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

ST1B { <Zt1>.B-<Zt4>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 8;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

463

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t+r, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

464

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.182 ST1B (scalar plus scalar, consecutive registers)

Contiguous store of bytes from multiple consecutive vectors (scalar index)

Contiguous store of bytes from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access
the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

ST1B { <Zt1>.B-<Zt2>.B }, <PNg>, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 8;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

ST1B { <Zt1>.B-<Zt4>.B }, <PNg>, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 8;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

465

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t+r, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

466

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.183 ST1B (scalar plus immediate, strided registers)

Contiguous store of bytes from multiple strided vectors (immediate index)

Contiguous store of bytes from elements of two or four strided vector registers to the memory address generated
by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size, irrespective of
predication, and added to the base address.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

ST1B { <Zt1>.B, <Zt2>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 8;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

ST1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 8;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

467

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
28 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

468

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.184 ST1B (scalar plus scalar, strided registers)

Contiguous store of bytes from multiple strided vectors (scalar index)

Contiguous store of bytes from elements of two or four strided vector registers to the memory address generated
by a 64-bit scalar base and scalar index which is added to the base address. After each element access the index
value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

ST1B { <Zt1>.B, <Zt2>.B }, <PNg>, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 8;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

ST1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 8;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

469

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
30 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

470

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.185 ST1B (scalar plus scalar, tile slice)

Contiguous store of bytes from 8-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of 8-bit elements in a vector. The immediate offset is in the range 0 to 15. The memory address is
generated by a 64-bit scalar base and an optional 64-bit scalar offset which is added to the base address. Inactive
elements are not written to memory.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

0

23

0

22

1

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

off4

3 0

msz<1> msz<0>

ST1B { ZA0<HV>.B[<Ws>, <offs>] }, <Pg>, [<Xn|SP>{, <Xm>}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = 0;
7 integer offset = UInt(off4);
8 constant integer esize = 8;
9 boolean vertical = V == '1';

Assembler Symbols

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 15, encoded in the "off4" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(64) base;
6 bits(64) addr;
7 bits(PL) mask = P[g, PL];
8 bits(64) moffs = X[m, 64];
9 bits(32) index = X[s, 32];

10 integer slice = (UInt(index) + offset) MOD dim;
11 bits(VL) src;
12 constant integer mbytes = esize DIV 8;
13 boolean contiguous = TRUE;
14 boolean nontemporal = FALSE;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

471

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

15 boolean tagchecked = TRUE;
16 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
17
18 if n == 31 then
19 if AnyActiveElement(mask, esize) ||
20 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
21 CheckSPAlignment();
22 base = SP[];
23 else
24 base = X[n, 64];
25
26 src = ZAslice[t, esize, vertical, slice, VL];
27 for e = 0 to dim-1
28 addr = base + UInt(moffs) * mbytes;
29 if ActivePredicateElement(mask, e, esize) then
30 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
31 moffs = moffs + 1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

472

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.186 ST1D (scalar plus immediate, consecutive registers)

Contiguous store of doublewords from multiple consecutive vectors (immediate index)

Contiguous store of doublewords from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

ST1D { <Zt1>.D-<Zt2>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 64;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

ST1D { <Zt1>.D-<Zt4>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 64;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

473

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t+r, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

474

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.187 ST1D (scalar plus scalar, consecutive registers)

Contiguous store of doublewords from multiple consecutive vectors (scalar index)

Contiguous store of doublewords from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access
the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

ST1D { <Zt1>.D-<Zt2>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 64;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

ST1D { <Zt1>.D-<Zt4>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 64;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

475

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t+r, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

476

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.188 ST1D (scalar plus immediate, strided registers)

Contiguous store of doublewords from multiple strided vectors (immediate index)

Contiguous store of doublewords from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

ST1D { <Zt1>.D, <Zt2>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 64;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

ST1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 64;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

477

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
28 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

478

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.189 ST1D (scalar plus scalar, strided registers)

Contiguous store of doublewords from multiple strided vectors (scalar index)

Contiguous store of doublewords from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access
the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

ST1D { <Zt1>.D, <Zt2>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 64;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

ST1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 64;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

479

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
30 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

480

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.190 ST1D (scalar plus scalar, tile slice)

Contiguous store of doublewords from 64-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of 64-bit elements in a vector. The immediate offset is in the range 0 to 1. The memory address is
generated by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 8 and added to the base
address. Inactive elements are not written to memory.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

1

23

1

22

1

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 1

o1

0

msz<1> msz<0>

ST1D { <ZAt><HV>.D[<Ws>, <offs>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #3}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer offset = UInt(o1);
8 constant integer esize = 64;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA7 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 1, encoded in the "o1" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(64) base;
6 bits(64) addr;
7 bits(PL) mask = P[g, PL];
8 bits(64) moffs = X[m, 64];
9 bits(32) index = X[s, 32];

10 integer slice = (UInt(index) + offset) MOD dim;
11 bits(VL) src;
12 constant integer mbytes = esize DIV 8;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

481

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 boolean contiguous = TRUE;
14 boolean nontemporal = FALSE;
15 boolean tagchecked = TRUE;
16 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
17
18 if n == 31 then
19 if AnyActiveElement(mask, esize) ||
20 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
21 CheckSPAlignment();
22 base = SP[];
23 else
24 base = X[n, 64];
25
26 src = ZAslice[t, esize, vertical, slice, VL];
27 for e = 0 to dim-1
28 addr = base + UInt(moffs) * mbytes;
29 if ActivePredicateElement(mask, e, esize) then
30 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
31 moffs = moffs + 1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

482

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.191 ST1H (scalar plus immediate, consecutive registers)

Contiguous store of halfwords from multiple consecutive vectors (immediate index)

Contiguous store of halfwords from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

ST1H { <Zt1>.H-<Zt2>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 16;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

ST1H { <Zt1>.H-<Zt4>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 16;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

483

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t+r, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

484

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.192 ST1H (scalar plus scalar, consecutive registers)

Contiguous store of halfwords from multiple consecutive vectors (scalar index)

Contiguous store of halfwords from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access
the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

ST1H { <Zt1>.H-<Zt2>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 16;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

ST1H { <Zt1>.H-<Zt4>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 16;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

485

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t+r, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

486

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.193 ST1H (scalar plus immediate, strided registers)

Contiguous store of halfwords from multiple strided vectors (immediate index)

Contiguous store of halfwords from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

ST1H { <Zt1>.H, <Zt2>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 16;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

ST1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 16;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

487

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
28 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

488

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.194 ST1H (scalar plus scalar, strided registers)

Contiguous store of halfwords from multiple strided vectors (scalar index)

Contiguous store of halfwords from elements of two or four strided vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access
the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

ST1H { <Zt1>.H, <Zt2>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 16;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

ST1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 16;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

489

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
30 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

490

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.195 ST1H (scalar plus scalar, tile slice)

Contiguous store of halfwords from 16-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of 16-bit elements in a vector. The immediate offset is in the range 0 to 7. The memory address is
generated by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 2 and added to the base
address. Inactive elements are not written to memory.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

0

23

1

22

1

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3

off3

2 0

msz<1> msz<0>

ST1H { <ZAt><HV>.H[<Ws>, <offs>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #1}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer offset = UInt(off3);
8 constant integer esize = 16;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA1 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 7, encoded in the "off3" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(64) base;
6 bits(64) addr;
7 bits(PL) mask = P[g, PL];
8 bits(64) moffs = X[m, 64];
9 bits(32) index = X[s, 32];

10 integer slice = (UInt(index) + offset) MOD dim;
11 bits(VL) src;
12 constant integer mbytes = esize DIV 8;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

491

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 boolean contiguous = TRUE;
14 boolean nontemporal = FALSE;
15 boolean tagchecked = TRUE;
16 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
17
18 if n == 31 then
19 if AnyActiveElement(mask, esize) ||
20 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
21 CheckSPAlignment();
22 base = SP[];
23 else
24 base = X[n, 64];
25
26 src = ZAslice[t, esize, vertical, slice, VL];
27 for e = 0 to dim-1
28 addr = base + UInt(moffs) * mbytes;
29 if ActivePredicateElement(mask, e, esize) then
30 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
31 moffs = moffs + 1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

492

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.196 ST1Q

Contiguous store of quadwords from 128-bit element ZA tile slice

The slice number in the tile is selected by the slice index register, modulo the number of 128-bit elements in
a Streaming SVE vector. The memory address is generated by scalar base and optional scalar offset which is
multiplied by 16 and added to the base address. Inactive elements are not written to memory.

SME
(FEAT_SME)

1 1 1 0 0 0 0 1 1 1 1

31 21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 0

ST1Q { <ZAt><HV>.Q[<Ws>, <offs>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #4}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer offset = 0;
8 constant integer esize = 128;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA15 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset 0.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(64) base;
6 bits(64) addr;
7 bits(PL) mask = P[g, PL];
8 bits(64) moffs = X[m, 64];
9 bits(32) index = X[s, 32];

10 integer slice = (UInt(index) + offset) MOD dim;
11 bits(VL) src;
12 constant integer mbytes = esize DIV 8;
13 boolean contiguous = TRUE;
14 boolean nontemporal = FALSE;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

493

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

15 boolean tagchecked = TRUE;
16 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
17
18 if n == 31 then
19 if AnyActiveElement(mask, esize) ||
20 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
21 CheckSPAlignment();
22 base = SP[];
23 else
24 base = X[n, 64];
25
26 src = ZAslice[t, esize, vertical, slice, VL];
27 for e = 0 to dim-1
28 addr = base + UInt(moffs) * mbytes;
29 if ActivePredicateElement(mask, e, esize) then
30 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
31 moffs = moffs + 1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

494

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.197 ST1W (scalar plus immediate, consecutive registers)

Contiguous store of words from multiple consecutive vectors (immediate index)

Contiguous store of words from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

ST1W { <Zt1>.S-<Zt2>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 32;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

ST1W { <Zt1>.S-<Zt4>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 32;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

495

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t+r, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

496

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.198 ST1W (scalar plus scalar, consecutive registers)

Contiguous store of words from multiple consecutive vectors (scalar index)

Contiguous store of words from elements of two or four consecutive vector registers to the memory address
generated by a 64-bit scalar base and scalar index which is added to the base address. After each element access
the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

0

0

msz<1> msz<0> N

ST1W { <Zt1>.S-<Zt2>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 32;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

0

0

msz<1> msz<0> N

ST1W { <Zt1>.S-<Zt4>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 32;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

497

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t+r, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

498

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.199 ST1W (scalar plus immediate, strided registers)

Contiguous store of words from multiple strided vectors (immediate index)

Contiguous store of words from elements of two or four strided vector registers to the memory address generated
by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size, irrespective of
predication, and added to the base address.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

ST1W { <Zt1>.S, <Zt2>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 32;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

ST1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 32;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

499

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = FALSE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
28 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

500

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.200 ST1W (scalar plus scalar, strided registers)

Contiguous store of words from multiple strided vectors (scalar index)

Contiguous store of words from elements of two or four strided vector registers to the memory address generated
by a 64-bit scalar base and scalar index which is added to the base address. After each element access the index
value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

Zt

2 0

msz<1> msz<0> N

ST1W { <Zt1>.S, <Zt2>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 32;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

0

3

0

2

Zt

1 0

msz<1> msz<0> N

ST1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 32;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or
Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

501

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = FALSE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
30 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

502

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.201 ST1W (scalar plus scalar, tile slice)

Contiguous store of words from 32-bit element ZA tile slice

The slice number within the tile is selected by the sum of the slice index register and immediate offset, modulo
the number of 32-bit elements in a vector. The immediate offset is in the range 0 to 3. The memory address is
generated by a 64-bit scalar base and an optional 64-bit scalar offset which is multiplied by 4 and added to the base
address. Inactive elements are not written to memory.

SME
(FEAT_SME)

1 1 1 0 0 0 0 0

31 24

1

23

0

22

1

21

Rm

20 16

V

15

Rs

14 13

Pg

12 10

Rn

9 5

0

4

ZAt

3 2

off2

1 0

msz<1> msz<0>

ST1W { <ZAt><HV>.S[<Ws>, <offs>] }, <Pg>, [<Xn|SP>{, <Xm>, LSL #2}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('0':Pg);
5 integer s = UInt('011':Rs);
6 integer t = UInt(ZAt);
7 integer offset = UInt(off2);
8 constant integer esize = 32;
9 boolean vertical = V == '1';

Assembler Symbols

<ZAt> Is the name of the ZA tile ZA0-ZA3 to be accessed, encoded in the "ZAt" field.

<HV> Is the horizontal or vertical slice indicator, encoded in "V":
V <HV>
0 H
1 V

<Ws> Is the 32-bit name of the slice index register W12-W15, encoded in the "Rs" field.

<offs> Is the slice index offset, in the range 0 to 3, encoded in the "off2" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the optional 64-bit name of the general-purpose offset register, defaulting to XZR, encoded
in the "Rm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(64) base;
6 bits(64) addr;
7 bits(PL) mask = P[g, PL];
8 bits(64) moffs = X[m, 64];
9 bits(32) index = X[s, 32];

10 integer slice = (UInt(index) + offset) MOD dim;
11 bits(VL) src;
12 constant integer mbytes = esize DIV 8;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

503

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 boolean contiguous = TRUE;
14 boolean nontemporal = FALSE;
15 boolean tagchecked = TRUE;
16 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
17
18 if n == 31 then
19 if AnyActiveElement(mask, esize) ||
20 ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
21 CheckSPAlignment();
22 base = SP[];
23 else
24 base = X[n, 64];
25
26 src = ZAslice[t, esize, vertical, slice, VL];
27 for e = 0 to dim-1
28 addr = base + UInt(moffs) * mbytes;
29 if ActivePredicateElement(mask, e, esize) then
30 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
31 moffs = moffs + 1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

504

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.202 STNT1B (scalar plus immediate, consecutive registers)

Contiguous store non-temporal of bytes from multiple consecutive vectors (immediate index)

Contiguous store non-temporal of bytes from elements of two or four consecutive vector registers to the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

STNT1B { <Zt1>.B-<Zt2>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 8;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

STNT1B { <Zt1>.B-<Zt4>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 8;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

505

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t+r, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

506

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.203 STNT1B (scalar plus scalar, consecutive registers)

Contiguous store non-temporal of bytes from multiple consecutive vectors (scalar index)

Contiguous store non-temporal of bytes from elements of two or four consecutive vector registers to the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

STNT1B { <Zt1>.B-<Zt2>.B }, <PNg>, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 8;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

STNT1B { <Zt1>.B-<Zt4>.B }, <PNg>, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 8;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

507

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t+r, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

508

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.204 STNT1B (scalar plus immediate, strided registers)

Contiguous store non-temporal of bytes from multiple strided vectors (immediate index)

Contiguous store non-temporal of bytes from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

STNT1B { <Zt1>.B, <Zt2>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 8;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

STNT1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 8;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

509

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
28 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

510

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.205 STNT1B (scalar plus scalar, strided registers)

Contiguous store non-temporal of bytes from multiple strided vectors (scalar index)

Contiguous store non-temporal of bytes from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

0

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

STNT1B { <Zt1>.B, <Zt2>.B }, <PNg>, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 8;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

1

15

0

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

STNT1B { <Zt1>.B, <Zt2>.B, <Zt3>.B, <Zt4>.B }, <PNg>, [<Xn|SP>, <Xm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 8;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

511

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
30 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

512

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.206 STNT1D (scalar plus immediate, consecutive registers)

Contiguous store non-temporal of doublewords from multiple consecutive vectors (immediate index)

Contiguous store non-temporal of doublewords from elements of two or four consecutive vector registers to
the memory address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s
in-memory size, irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

STNT1D { <Zt1>.D-<Zt2>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 64;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

STNT1D { <Zt1>.D-<Zt4>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 64;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

513

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t+r, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

514

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.207 STNT1D (scalar plus scalar, consecutive registers)

Contiguous store non-temporal of doublewords from multiple consecutive vectors (scalar index)

Contiguous store non-temporal of doublewords from elements of two or four consecutive vector registers to the
memory address generated by a 64-bit scalar base and scalar index which is added to the base address. After each
element access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

STNT1D { <Zt1>.D-<Zt2>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 64;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

STNT1D { <Zt1>.D-<Zt4>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 64;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

515

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t+r, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

516

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.208 STNT1D (scalar plus immediate, strided registers)

Contiguous store non-temporal of doublewords from multiple strided vectors (immediate index)

Contiguous store non-temporal of doublewords from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

STNT1D { <Zt1>.D, <Zt2>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 64;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

STNT1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 64;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

517

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
28 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

518

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.209 STNT1D (scalar plus scalar, strided registers)

Contiguous store non-temporal of doublewords from multiple strided vectors (scalar index)

Contiguous store non-temporal of doublewords from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

0

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

STNT1D { <Zt1>.D, <Zt2>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 64;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

1

15

1

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

STNT1D { <Zt1>.D, <Zt2>.D, <Zt3>.D, <Zt4>.D }, <PNg>, [<Xn|SP>, <Xm>, LSL #3]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 64;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

519

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
30 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

520

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.210 STNT1H (scalar plus immediate, consecutive registers)

Contiguous store non-temporal of halfwords from multiple consecutive vectors (immediate index)

Contiguous store non-temporal of halfwords from elements of two or four consecutive vector registers to the
memory address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s
in-memory size, irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

STNT1H { <Zt1>.H-<Zt2>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 16;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

STNT1H { <Zt1>.H-<Zt4>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 16;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

521

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t+r, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

522

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.211 STNT1H (scalar plus scalar, consecutive registers)

Contiguous store non-temporal of halfwords from multiple consecutive vectors (scalar index)

Contiguous store non-temporal of halfwords from elements of two or four consecutive vector registers to the
memory address generated by a 64-bit scalar base and scalar index which is added to the base address. After each
element access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

STNT1H { <Zt1>.H-<Zt2>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 16;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

STNT1H { <Zt1>.H-<Zt4>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 16;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

523

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t+r, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

524

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.212 STNT1H (scalar plus immediate, strided registers)

Contiguous store non-temporal of halfwords from multiple strided vectors (immediate index)

Contiguous store non-temporal of halfwords from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

STNT1H { <Zt1>.H, <Zt2>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 16;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

STNT1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 16;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

525

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
28 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

526

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.213 STNT1H (scalar plus scalar, strided registers)

Contiguous store non-temporal of halfwords from multiple strided vectors (scalar index)

Contiguous store non-temporal of halfwords from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

0

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

STNT1H { <Zt1>.H, <Zt2>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 16;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

1

15

0

14

1

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

STNT1H { <Zt1>.H, <Zt2>.H, <Zt3>.H, <Zt4>.H }, <PNg>, [<Xn|SP>, <Xm>, LSL #1]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 16;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

527

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
30 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

528

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.214 STNT1W (scalar plus immediate, consecutive registers)

Contiguous store non-temporal of words from multiple consecutive vectors (immediate index)

Contiguous store non-temporal of words from elements of two or four consecutive vector registers to the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

STNT1W { <Zt1>.S-<Zt2>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer t = UInt(Zt:'0');
6 constant integer esize = 32;
7 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 1 1 0

31 20

imm4

19 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

STNT1W { <Zt1>.S-<Zt4>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer t = UInt(Zt:'00');
6 constant integer esize = 32;
7 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

529

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t+r, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

530

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.215 STNT1W (scalar plus scalar, consecutive registers)

Contiguous store non-temporal of words from multiple consecutive vectors (scalar index)

Contiguous store non-temporal of words from elements of two or four consecutive vector registers to the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 1

1

0

msz<1> msz<0> N

STNT1W { <Zt1>.S-<Zt2>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer t = UInt(Zt:'0');
7 constant integer esize = 32;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 0 0 0 1

31 21

Rm

20 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

Zt

4 2

0

1

1

0

msz<1> msz<0> N

STNT1W { <Zt1>.S-<Zt4>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer t = UInt(Zt:'00');
7 constant integer esize = 32;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 2.

For the four registers variant: is the name of the first scalable vector register to be transferred,
encoded as "Zt" times 4.

<Zt4> Is the name of the fourth scalable vector register to be transferred, encoded as "Zt" times 4
plus 3.

<Zt2> Is the name of the second scalable vector register to be transferred, encoded as "Zt" times 2
plus 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

531

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t+r, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

532

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.216 STNT1W (scalar plus immediate, strided registers)

Contiguous store non-temporal of words from multiple strided vectors (immediate index)

Contiguous store non-temporal of words from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and immediate index which is multiplied by the vector’s in-memory size,
irrespective of predication, and added to the base address.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

STNT1W { <Zt1>.S, <Zt2>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 2;
5 integer tstride = 8;
6 integer t = UInt(T:'0':Zt);
7 constant integer esize = 32;
8 integer offset = SInt(imm4);

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 1 1 0

31 20

imm4

19 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

STNT1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>, [<Xn|SP>{, #<imm>, MUL VL}]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer g = UInt('1':PNg);
4 constant integer nreg = 4;
5 integer tstride = 4;
6 integer t = UInt(T:'00':Zt);
7 constant integer esize = 32;
8 integer offset = SInt(imm4);

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

533

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<imm> For the two registers variant: is the optional signed immediate vector offset, a multiple of 2
in the range -16 to 14, defaulting to 0, encoded in the "imm4" field.

For the four registers variant: is the optional signed immediate vector offset, a multiple of 4
in the range -32 to 28, defaulting to 0, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) base;
7 bits(VL) src;
8 bits(PL) pred = P[g, PL];
9 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);

10 boolean contiguous = TRUE;
11 boolean nontemporal = TRUE;
12 boolean tagchecked = n != 31;
13 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
14
15 if !AnyActiveElement(mask, esize) then
16 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
17 CheckSPAlignment();
18 else
19 if n == 31 then CheckSPAlignment();
20 base = if n == 31 then SP[] else X[n, 64];
21
22 for r = 0 to nreg-1
23 src = Z[t, VL];
24 for e = 0 to elements-1
25 if ActivePredicateElement(mask, r * elements + e, esize) then
26 bits(64) addr = base + (offset * nreg * elements + r * elements + e) * mbytes;
27 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
28 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

534

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.217 STNT1W (scalar plus scalar, strided registers)

Contiguous store non-temporal of words from multiple strided vectors (scalar index)

Contiguous store non-temporal of words from elements of two or four strided vector registers to the memory
address generated by a 64-bit scalar base and scalar index which is added to the base address. After each element
access the index value is incremented, but the index register is not updated.

Inactive elements are not written to memory.

A non-temporal store is a hint to the system that this data is unlikely to be referenced again soon.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

0

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

Zt

2 0

msz<1> msz<0> N

STNT1W { <Zt1>.S, <Zt2>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 2;
6 integer tstride = 8;
7 integer t = UInt(T:'0':Zt);
8 constant integer esize = 32;

Four registers
(FEAT_SME2)

1 0 1 0 0 0 0 1 0 0 1

31 21

Rm

20 16

1

15

1

14

0

13

PNg

12 10

Rn

9 5

T

4

1

3

0

2

Zt

1 0

msz<1> msz<0> N

STNT1W { <Zt1>.S, <Zt2>.S, <Zt3>.S, <Zt4>.S }, <PNg>, [<Xn|SP>, <Xm>, LSL #2]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);
4 integer g = UInt('1':PNg);
5 constant integer nreg = 4;
6 integer tstride = 4;
7 integer t = UInt(T:'00':Zt);
8 constant integer esize = 32;

Assembler Symbols

<Zt1> For the two registers variant: is the name of the first scalable vector register Z0-Z7 or
Z16-Z23 to be transferred, encoded as "T:’0’:Zt".

For the four registers variant: is the name of the first scalable vector register Z0-Z3 or
Z16-Z19 to be transferred, encoded as "T:’00’:Zt".

<Zt2> For the two registers variant: is the name of the second scalable vector register Z8-Z15 or
Z24-Z31 to be transferred, encoded as "T:’1’:Zt".

For the four registers variant: is the name of the second scalable vector register Z4-Z7 or

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

535

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Z20-Z23 to be transferred, encoded as "T:’01’:Zt".

<Zt3> Is the name of the third scalable vector register Z8-Z11 or Z24-Z27 to be transferred, encoded
as "T:’10’:Zt".

<Zt4> Is the name of the fourth scalable vector register Z12-Z15 or Z28-Z31 to be transferred,
encoded as "T:’11’:Zt".

<PNg> Is the name of the governing scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNg" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

<Xm> Is the 64-bit name of the general-purpose offset register, encoded in the "Rm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer mbytes = esize DIV 8;
6 bits(64) offset;
7 bits(64) base;
8 bits(VL) src;
9 bits(PL) pred = P[g, PL];

10 bits(PL * nreg) mask = CounterToPredicate(pred<15:0>, PL * nreg);
11 boolean contiguous = TRUE;
12 boolean nontemporal = TRUE;
13 boolean tagchecked = TRUE;
14 AccessDescriptor accdesc = CreateAccDescSVE(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
15
16 if !AnyActiveElement(mask, esize) then
17 if n == 31 && ConstrainUnpredictableBool(Unpredictable_CHECKSPNONEACTIVE) then
18 CheckSPAlignment();
19 else
20 if n == 31 then CheckSPAlignment();
21 base = if n == 31 then SP[] else X[n, 64];
22 offset = X[m, 64];
23
24 for r = 0 to nreg-1
25 src = Z[t, VL];
26 for e = 0 to elements-1
27 if ActivePredicateElement(mask, r * elements + e, esize) then
28 bits(64) addr = base + (UInt(offset) + r * elements + e) * mbytes;
29 Mem[addr, mbytes, accdesc] = Elem[src, e, esize];
30 t = t + tstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

536

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.218 STR (vector)

Store ZA array vector

The ZA array vector is selected by the sum of the vector select register and immediate offset, modulo the number
of bytes in a Streaming SVE vector. The immediate offset is in the range 0 to 15. The memory address is generated
by a 64-bit scalar base, plus the same optional immediate offset multiplied by the current vector length in bytes.
This instruction is unpredicated.

The store is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME
(FEAT_SME)

1 1 1 0 0 0 0 1 0 0

31 22

1

21

0 0 0 0 0 0

20 15

Rv

14 13

0 0 0

12 10

Rn

9 5

0

4

off4

3 0

STR ZA[<Wv>, <offs>], [<Xn|SP>{, #<offs>, MUL VL}]

1 if !HaveSME() then UNDEFINED;
2 integer n = UInt(Rn);
3 integer v = UInt('011':Rv);
4 integer offset = UInt(off4);

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W12-W15, encoded in the "Rv" field.

<offs> Is the vector select offset and optional memory offset, in the range 0 to 15, defaulting to 0,
encoded in the "off4" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

Operation
1 CheckSMEAndZAEnabled();
2 constant integer SVL = CurrentSVL;
3 constant integer dim = SVL DIV 8;
4 bits(64) base;
5 integer moffs = offset * dim;
6 bits(SVL) src;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD dim;
9 boolean contiguous = TRUE;

10 boolean nontemporal = FALSE;
11 boolean tagchecked = n != 31;
12 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
13
14 if HaveTME() && TSTATE.depth > 0 then
15 FailTransaction(TMFailure_ERR, FALSE);
16
17 if n == 31 then
18 CheckSPAlignment();
19 base = SP[];
20 else
21 base = X[n, 64];
22
23 src = ZAvector[vec, SVL];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

537

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

24
25 boolean aligned = IsAligned(base + offset, 16);
26
27 if !aligned && AlignmentEnforced() then
28 AArch64.Abort(base + moffs, AlignmentFault(accdesc));
29
30 for e = 0 to dim-1
31 AArch64.MemSingle[base + moffs, 1, accdesc, aligned] = Elem[src, e, 8];
32 moffs = moffs + 1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

538

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.219 STR (ZT0)

Store ZT0 register

Store the 64-byte ZT0 register to the memory address provided in the 64-bit scalar base register. This instruction is
unpredicated.

The store is performed as contiguous byte accesses, with no endian conversion and no guarantee of single-copy
atomicity larger than a byte. However, if alignment is checked, then the base register must be aligned to 16 bytes.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME2
(FEAT_SME2)

1 1

31 30

1 0 0 0 0 1 0 0

29 22

1 1

21 20

1 1 1

19 17

1

16

1 0 0 0 0 0

15 10

Rn

9 5

0

4

0

3

0

2

0 0

1 0

STR ZT0, [<Xn|SP>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Rn);

Assembler Symbols

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

Operation
1 CheckSMEEnabled();
2 CheckSMEZT0Enabled();
3 constant integer elements = 512 DIV 8;
4 bits(64) base;
5 bits(512) table = ZT0[512];
6 boolean contiguous = TRUE;
7 boolean nontemporal = FALSE;
8 boolean tagchecked = n != 31;
9 AccessDescriptor accdesc = CreateAccDescSME(MemOp_STORE, nontemporal, contiguous,

↪→tagchecked);
10
11 if HaveTME() && TSTATE.depth > 0 then
12 FailTransaction(TMFailure_ERR, FALSE);
13
14 if n == 31 then
15 CheckSPAlignment();
16 base = SP[];
17 else
18 base = X[n, 64];
19
20 boolean aligned = IsAligned(base, 16);
21
22 if !aligned && AlignmentEnforced() then
23 AArch64.Abort(base, AlignmentFault(accdesc));
24
25 for e = 0 to elements-1
26 AArch64.MemSingle[base + e, 1, accdesc, aligned] = Elem[table, e, 8];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

539

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.220 SUB (array accumulators)

Subtract multi-vector from ZA array vector accumulators

The instruction operates on two or four ZA single-vector groups.

Destructively subtract all elements of the two or four source vectors from the corresponding elements of the two
or four ZA single-vector groups. The vector numbers forming the single-vector group within each half or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or
quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1 0 0 0 0 0 0

21 15

Rv

14 13

1 1 1

12 10

Zm

9 6

0 1

5 4

1

3

off3

2 0

S

SUB ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zm1>.<T>-<Zm2>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(off3);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1 0 0 0 0 1 0

21 15

Rv

14 13

1 1 1

12 10

Zm

9 7

0 0 1

6 4

1

3

off3

2 0

S

SUB ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zm1>.<T>-<Zm4>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(off3);
7 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

540

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = ZAvector[vec, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 for e = 0 to elements-1
14 bits(esize) element1 = Elem[operand1, e, esize];
15 bits(esize) element2 = Elem[operand2, e, esize];
16 Elem[result, e, esize] = element1 - element2;
17 ZAvector[vec, VL] = result;
18 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

541

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.221 SUB (array results, multiple and single vector)

Subtract replicated single vector from multi-vector with ZA array vector results

The instruction operates on two or four ZA single-vector groups.

Subtract all corresponding elements of the second source vector from the two or four first source vectors and place
the results in the corresponding elements of the two or four ZA single-vector groups. The vector numbers forming
the single-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

1 1 0

12 10

Zn

9 5

1

4

1

3

off3

2 0

S

SUB ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

1 1 0

12 10

Zn

9 5

1

4

1

3

off3

2 0

S

SUB ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

542

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 for e = 0 to elements-1
14 bits(esize) element1 = Elem[operand1, e, esize];
15 bits(esize) element2 = Elem[operand2, e, esize];
16 Elem[result, e, esize] = element1 - element2;
17 ZAvector[vec, VL] = result;
18 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

543

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.222 SUB (array results, multiple vectors)

Subtract multi-vector from multi-vector with ZA array vector results

The instruction operates on two or four ZA single-vector groups.

Subtract all corresponding elements of the two or four second source vectors from first source vectors and place
the results in the corresponding elements of the two or four ZA single-vector groups. The vector numbers forming
the single-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 64-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

1 1 0

12 10

Zn

9 6

0 1

5 4

1

3

off3

2 0

S

SUB ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<T>-<Zn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'0');
6 integer m = UInt(Zm:'0');
7 integer offset = UInt(off3);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

1 1 0

12 10

Zn

9 7

0 0 1

6 4

1

3

off3

2 0

S

SUB ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<T>-<Zn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'00');
6 integer m = UInt(Zm:'00');
7 integer offset = UInt(off3);
8 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

544

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[n+r, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 for e = 0 to elements-1
14 bits(esize) element1 = Elem[operand1, e, esize];
15 bits(esize) element2 = Elem[operand2, e, esize];
16 Elem[result, e, esize] = element1 - element2;
17 ZAvector[vec, VL] = result;
18 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

545

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.223 SUDOT (multiple and indexed vector)

Multi-vector signed by unsigned integer dot-product by indexed elements

The instruction operates on two or four ZA single-vector groups.

The signed by unsigned integer dot product instruction computes the dot product of four signed 8-bit integer values
held in each 32-bit element of the two or four first source vectors and four unsigned 8-bit integer values in the
corresponding indexed 32-bit element of the second source vector. The widened dot product result is destructively
added to the corresponding 32-bit element of the two or four ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits. The vector
numbers forming the single-vector group within each half or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i2

11 10

Zn

9 6

1

5

1

4

1

3

off3

2 0

U

SUDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i2

11 10

Zn

9 7

0

6

1

5

1

4

1

3

off3

2 0

U

SUDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

546

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m, VL];
14 bits(VL) operand3 = ZAvector[vec, VL];
15 for e = 0 to elements-1
16 bits(esize) sum = Elem[operand3, e, esize];
17 integer segmentbase = e - (e MOD eltspersegment);
18 integer s = segmentbase + index;
19 for i = 0 to 3
20 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
21 integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

547

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.224 SUDOT (multiple and single vector)

Multi-vector signed by unsigned integer dot-product by vector

The instruction operates on two or four ZA single-vector groups.

The signed by unsigned integer dot product instruction computes the dot product of four signed 8-bit integer values
held in each 32-bit element of the two or four first source vectors and four unsigned 8-bit integer values in the
corresponding 32-bit element of the second source vector. The widened dot product result is destructively added to
the corresponding 32-bit element of the two or four ZA single-vector groups. The vector numbers forming the
single-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0 0 1 0

29 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

1

4

1

3

off3

2 0

U

SUDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0 0 1 1

29 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

1

4

1

3

off3

2 0

U

SUDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

548

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) sum = Elem[operand3, e, esize];
16 for i = 0 to 3
17 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 sum = sum + element1 * element2;
20 Elem[result, e, esize] = sum;
21 ZAvector[vec, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

549

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.225 SUMLALL (multiple and indexed vector)

Multi-vector signed by unsigned integer multiply-add long long by indexed element

The instruction operates on one, two, or four ZA quad-vector groups.

This signed by unsigned integer multiply-add long long instruction multiplies each signed 8-bit element in the one,
two, or four first source vectors with each unsigned 8-bit indexed element of the second source vector, widens each
product to 32-bits and destructively adds these values to the corresponding 32-bit elements of the one, two, or four
ZA quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The element index range is from 0 to one less than the
number of elements per 128-bit segment, encoded in 4 bits. The lowest of the four consecutive vector numbers
forming the quad-vector group within all, each half, or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA quad-vector , Two ZA quad-vectors and Four ZA quad-vectors

One ZA quad-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 0

31 20

Zm

19 16

i4h

15

Rv

14 13

i4l

12 10

Zn

9 5

1

4

0

3

1

2

off2

1 0

U S

SUMLALL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.B, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 1;

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i4h

11 10

Zn

9 6

1

5

1

4

0

3

i4l

2 1

o1

0

U S

SUMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 2;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

550

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Four ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i4h

11 10

Zn

9 7

0

6

1

5

1

4

0

3

i4l

2 1

o1

0

U S

SUMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA quad-vector variant: is the vector select offset, pointing to first of four
consecutive vectors, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to first of four consecutive vectors, encoded as "o1" field times 4.

<offsl> For the one ZA quad-vector variant: is the vector select offset, pointing to last of four
consecutive vectors, encoded as "off2" field times 4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to last of four consecutive vectors, encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 15, encoded in the "i4h:i4l" fields.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 4);
11
12 for r = 0 to nreg-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

551

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 3
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 4 * segmentbase + index;
20 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
21 integer element2 = UInt(Elem[operand2, s, esize DIV 4]);
22 bits(esize) product = (element1 * element2)<esize-1:0>;
23 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
24 ZAvector[vec + i, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

552

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.226 SUMLALL (multiple and single vector)

Multi-vector signed by unsigned integer multiply-add long long by vector

The instruction operates on two or four ZA quad-vector groups.

This signed by unsigned integer multiply-add long long instruction multiplies each signed 8-bit element in the two
or four first source vectors with each unsigned 8-bit element in the second source vector, widens each product to
32-bits and destructively adds these values to the corresponding 32-bit elements of the two or four ZA quad-vector
groups. The lowest of the four consecutive vector numbers forming the quad-vector group within each half or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or
quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA quad-vectors and Four ZA quad-vectors

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

1

4

0

3

1

2

0

1

o1

0

sz U S

SUMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

1

4

0

3

1

2

0

1

o1

0

sz U S

SUMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of four consecutive vectors, encoded as "o1" field
times 4.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

553

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<offsl> Is the vector select offset, pointing to last of four consecutive vectors, encoded as "o1" field
times 4 plus 3.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 4);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 3
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

554

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.227 SUMOPA

Signed by unsigned integer sum of outer products and accumulate

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed by unsigned integer sum of outer products and accumulate instructions multiply the sub-matrix in the
first source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source
holds SVLS×4 sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of
unsigned 8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of
signed 16-bit integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 0

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

u0 u1 S

SUMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = TRUE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 1

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

u0 u1 S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

555

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

SUMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSMEI16I64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = TRUE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 3
17 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
18 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
19 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
20 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

556

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

557

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.228 SUMOPS

Signed by unsigned integer sum of outer products and subtract

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The signed by unsigned integer sum of outer products and subtract instructions multiply the sub-matrix in the first
source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source
holds SVLS×4 sub-matrix of signed 8-bit integer values, and the second source holds 4×SVLS sub-matrix of
unsigned 8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of
signed 16-bit integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit
integer and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract
from each of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 0

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

u0 u1 S

SUMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = TRUE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

0

24

1 1

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

ZAda

2 0

u0 u1 S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

558

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

SUMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSMEI16I64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = FALSE;

10 boolean op2_unsigned = TRUE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 3
17 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
18 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
19 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
20 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

559

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

560

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.229 SUNPK

Unpack and sign-extend multi-vector elements

Unpack elements from one or two source vectors and then sign-extend them to place in elements of twice their size
within the two or four destination vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0 0 1 0 1 1 1 1 0 0 0

21 10

Zn

9 5

Zd

4 1

0

0

U

SUNPK { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer n = UInt(Zn);
5 integer d = UInt(Zd:'0');
6 constant integer nreg = 2;
7 boolean unsigned = FALSE;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 1 0 1 0 1 1 1 1 0 0 0

21 10

Zn

9 6

0

5

Zd

4 2

0

1

0

0

U

SUNPK { <Zd1>.<T>-<Zd4>.<T> }, { <Zn1>.<Tb>-<Zn2>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer n = UInt(Zn:'0');
5 integer d = UInt(Zd:'00');
6 constant integer nreg = 4;
7 boolean unsigned = FALSE;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 RESERVED
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

561

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in "size":
size <Tb>
00 RESERVED
01 B
10 H
11 S

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 constant integer hsize = esize DIV 2;
5 constant integer sreg = nreg DIV 2;
6 array [0..3] of bits(VL) results;
7
8 for r = 0 to sreg-1
9 bits(VL) operand = Z[n+r, VL];

10 for i = 0 to 1
11 for e = 0 to elements-1
12 bits(hsize) element = Elem[operand, i*elements + e, hsize];
13 Elem[results[2*r+i], e, esize] = Extend(element, esize, unsigned);
14
15 for r = 0 to nreg-1
16 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

562

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.230 SUVDOT

Multi-vector signed by unsigned integer vertical dot-product by indexed element

The instruction operates on four ZA single-vector groups.

The signed by unsigned integer vertical dot product instruction computes the vertical dot product of the
corresponding signed 8-bit elements from the four first source vectors and four unsigned 8-bit integer values in the
corresponding indexed 32-bit element of the second source vector. The widened dot product result is destructively
added to the corresponding 32-bit element of the four ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits.

The vector numbers forming the single-vector group within each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the ZA operand consists of four ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i2

11 10

Zn

9 7

0

6

1

5

1

4

1

3

off3

2 0

U

SUVDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV 4;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

563

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

9 bits(VL) operand2 = Z[m, VL];
10 bits(VL) result;
11
12 for r = 0 to 3
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 integer segmentbase = e - (e MOD eltspersegment);
16 integer s = segmentbase + index;
17 bits(esize) sum = Elem[operand3, e, esize];
18 for i = 0 to 3
19 bits(VL) operand1 = Z[n+i, VL];
20 integer element1 = SInt(Elem[operand1, 4 * e + r, esize DIV 4]);
21 integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

564

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.231 SVDOT (2-way)

Multi-vector signed integer vertical dot-product by indexed element

The instruction operates on two ZA single-vector groups.

The signed integer vertical dot product instruction computes the vertical dot product of the corresponding two signed
16-bit integer values held in the two first source vectors and two signed 16-bit integer values in the corresponding
indexed 32-bit element of the second source vector. The widened dot product results are destructively added to the
corresponding 32-bit element of two ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits.

The vector numbers forming the single-vector group within each half of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the ZA operand consists of two ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i2

11 10

Zn

9 6

1

5

0

4

0

3

off3

2 0

U

SVDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV 2;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

565

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

9 bits(VL) operand2 = Z[m, VL];
10 bits(VL) result;
11
12 for r = 0 to 1
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 integer segmentbase = e - (e MOD eltspersegment);
16 integer s = segmentbase + index;
17 bits(esize) sum = Elem[operand3, e, esize];
18 for i = 0 to 1
19 bits(VL) operand1 = Z[n+i, VL];
20 integer element1 = SInt(Elem[operand1, 2 * e + r, esize DIV 2]);
21 integer element2 = SInt(Elem[operand2, 2 * s + i, esize DIV 2]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

566

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.232 SVDOT (4-way)

Multi-vector signed integer vertical dot-product by indexed element

The instruction operates on four ZA single-vector groups.

The signed integer vertical dot product instruction computes the vertical dot product of the corresponding four
signed 8-bit or 16-bit integer values held in the four first source vectors and four signed 8-bit or 16-bit integer
values in the corresponding indexed 32-bit or 64-bit element of the second source vector. The widened dot product
results are destructively added to the corresponding 32-bit or 64-bit element of the four ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the
same group position within each 128-bit vector segment. The index range is from 0 to one less than the number of
groups per 128-bit segment, encoded in 1 to 2 bits depending on the size of the group.

The vector numbers forming the single-vector group within each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the ZA operand consists of four ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i2

11 10

Zn

9 7

0

6

1

5

0

4

0

3

off3

2 0

U

SVDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);

64-bit
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

1

11

i1

10

Zn

9 7

0 0

6 5

0

4

1

3

off3

2 0

U

SVDOT ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 64;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i1);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

567

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the 32-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV 4;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) operand2 = Z[m, VL];

10 bits(VL) result;
11
12 for r = 0 to 3
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 integer segmentbase = e - (e MOD eltspersegment);
16 integer s = segmentbase + index;
17 bits(esize) sum = Elem[operand3, e, esize];
18 for i = 0 to 3
19 bits(VL) operand1 = Z[n+i, VL];
20 integer element1 = SInt(Elem[operand1, 4 * e + r, esize DIV 4]);
21 integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

568

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.233 UCLAMP

Multi-vector unsigned clamp to minimum/maximum vector

Clamp each unsigned element in the two or four destination vectors to between the unsigned minimum value in the
corresponding element of the first source vector and the unsigned maximum value in the corresponding element of
the second source vector and destructively place the clamped results in the corresponding elements of the two or
four destination vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 16

1 1 0 0 0 1

15 10

Zn

9 5

Zd

4 1

1

0

U

UCLAMP { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd:'0');
6 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 16

1 1 0 0 1 1

15 10

Zn

9 5

Zd

4 2

0

1

1

0

U

UCLAMP { <Zd1>.<T>-<Zd4>.<T> }, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd:'00');
6 constant integer nreg = 4;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

569

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(VL) operand3 = Z[d+r, VL];

10 for e = 0 to elements-1
11 integer element1 = UInt(Elem[operand1, e, esize]);
12 integer element2 = UInt(Elem[operand2, e, esize]);
13 integer element3 = UInt(Elem[operand3, e, esize]);
14 integer res = Min(Max(element1, element3), element2);
15 Elem[results[r], e, esize] = res<esize-1:0>;
16
17 for r = 0 to nreg-1
18 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

570

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.234 UCVTF

Multi-vector unsigned integer convert to floating-point

Convert to single-precision from unsigned 32-bit integer, each element of the two or four source vectors, and place
the results in the corresponding elements of the two or four destination vectors.

This instruction follows SME2 floating-point numerical behaviors corresponding to instructions that place their
results in one or more SVE Z vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0

31 10

Zn

9 6

1

5

Zd

4 1

0

0

U

UCVTF { <Zd1>.S-<Zd2>.S }, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'0');
3 integer d = UInt(Zd:'0');
4 constant integer nreg = 2;
5 boolean unsigned = TRUE;
6 FPRounding rounding = FPRoundingMode(FPCR[]);

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 1 0 0 1 0 1 1 1 0 0 0

31 10

Zn

9 7

0

6

1

5

Zd

4 2

0 0

1 0

U

UCVTF { <Zd1>.S-<Zd4>.S }, { <Zn1>.S-<Zn4>.S }

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn:'00');
3 integer d = UInt(Zd:'00');
4 constant integer nreg = 4;
5 boolean unsigned = TRUE;
6 FPRounding rounding = FPRoundingMode(FPCR[]);

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

571

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV 32;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 bits(32) element = Elem[operand, e, 32];

10 Elem[results[r], e, 32] = FixedToFP(element, 0, unsigned, FPCR[], rounding, 32);
11
12 for r = 0 to nreg-1
13 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

572

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.235 UDOT (2-way, multiple and indexed vector)

Multi-vector unsigned integer dot-product by indexed element

The instruction operates on two or four ZA single-vector groups.

The unsigned integer dot product instruction computes the dot product of two unsigned 16-bit integer values
held in each 32-bit element of the two or four first source vectors and two unsigned 16-bit integer values in the
corresponding indexed 32-bit element of the second source vector. The widened dot product result is destructively
added to the corresponding 32-bit element of the two or four ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits. The vector
numbers forming the single-vector group within each half or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i2

11 10

Zn

9 6

0

5

1

4

0

3

off3

2 0

U

UDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i2

11 10

Zn

9 7

0

6

0

5

1

4

0

3

off3

2 0

U

UDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

573

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m, VL];
14 bits(VL) operand3 = ZAvector[vec, VL];
15 for e = 0 to elements-1
16 bits(esize) sum = Elem[operand3, e, esize];
17 integer segmentbase = e - (e MOD eltspersegment);
18 integer s = segmentbase + index;
19 for i = 0 to 1
20 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
21 integer element2 = UInt(Elem[operand2, 2 * s + i, esize DIV 2]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

574

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.236 UDOT (2-way, multiple and single vector)

Multi-vector unsigned integer dot-product by vector

The instruction operates on two or four ZA single-vector groups.

The unsigned integer dot product instruction computes the dot product of two unsigned 16-bit integer values
held in each 32-bit element of the two or four first source vectors and two unsigned 16-bit integer values in the
corresponding 32-bit element of the second source vector. The widened dot product result is destructively added to
the corresponding 32-bit element of the two or four ZA single-vector groups. The vector numbers forming the
single-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0 1 1 0

29 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

1

4

1

3

off3

2 0

U

UDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0 1 1 1

29 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

1

4

1

3

off3

2 0

U

UDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

575

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) sum = Elem[operand3, e, esize];
16 for i = 0 to 1
17 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 sum = sum + element1 * element2;
20 Elem[result, e, esize] = sum;
21 ZAvector[vec, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

576

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.237 UDOT (2-way, multiple vectors)

Multi-vector unsigned integer dot-product

The instruction operates on two or four ZA single-vector groups.

The unsigned integer dot product instruction computes the dot product of two unsigned 16-bit integer values
held in each 32-bit element of the two or four first source vectors and two unsigned 16-bit integer values in
the corresponding 32-bit element of the two or four second source vectors. The widened dot product result is
destructively added to the corresponding 32-bit element of the two or four ZA single-vector groups. The vector
numbers forming the single-vector group within each half or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1 1 1

29 21

Zm

20 17

0 0

16 15

Rv

14 13

1 0 1

12 10

Zn

9 6

0

5

1

4

1

3

off3

2 0

U

UDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(off3);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1 1 1

29 21

Zm

20 18

0 1 0

17 15

Rv

14 13

1 0 1

12 10

Zn

9 7

0 0

6 5

1

4

1

3

off3

2 0

U

UDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(off3);
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

577

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[n+r, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) sum = Elem[operand3, e, esize];
16 for i = 0 to 1
17 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 sum = sum + element1 * element2;
20 Elem[result, e, esize] = sum;
21 ZAvector[vec, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

578

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.238 UDOT (4-way, multiple and indexed vector)

Multi-vector unsigned integer dot-product by indexed element

The instruction operates on two or four ZA single-vector groups.

The unsigned integer dot product instruction computes the dot product of four unsigned 8-bit or 16-bit integer
values held in each 32-bit or 64-bit element of the two or four first source vectors and four unsigned 8-bit or 16-bit
integer values in the corresponding indexed 32-bit or 64-bit element of the second source vector. The widened
dot product result is destructively added to the corresponding 32-bit or 64-bit element of the two or four ZA
single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the
same group position within each 128-bit vector segment. The index range is from 0 to one less than the number
of groups per 128-bit segment, encoded in 1 to 2 bits depending on the size of the group. The vector numbers
forming the single-vector group within each half or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 4 classes: Two ZA single-vectors of 32-bit elements , Two ZA single-vectors of 64-bit
elements , Four ZA single-vectors of 32-bit elements and Four ZA single-vectors of 64-bit elements

Two ZA single-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i2

11 10

Zn

9 6

1

5

1

4

0

3

off3

2 0

U

UDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 2;

Two ZA single-vectors of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0 0

12 11

i1

10

Zn

9 6

0

5

1

4

1

3

off3

2 0

U

UDOT ZA.D[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 64;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

579

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

6 integer offset = UInt(off3);
7 integer index = UInt(i1);
8 constant integer nreg = 2;

Four ZA single-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i2

11 10

Zn

9 7

0

6

1

5

1

4

0

3

off3

2 0

U

UDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 4;

Four ZA single-vectors of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

0

11

i1

10

Zn

9 7

0 0

6 5

1

4

1

3

off3

2 0

U

UDOT ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 64;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i1);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors of 32-bit elements and two ZA single-vectors of 64-bit
elements variant: is the name of the first scalable vector register of a multi-vector sequence,
encoded as "Zn" times 2.

For the four ZA single-vectors of 32-bit elements and four ZA single-vectors of 64-bit
elements variant: is the name of the first scalable vector register of a multi-vector sequence,
encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA single-vectors of 32-bit elements and two ZA single-vectors of 32-bit

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

580

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

elements variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the four ZA single-vectors of 64-bit elements and two ZA single-vectors of 64-bit
elements variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m, VL];
14 bits(VL) operand3 = ZAvector[vec, VL];
15 for e = 0 to elements-1
16 bits(esize) sum = Elem[operand3, e, esize];
17 integer segmentbase = e - (e MOD eltspersegment);
18 integer s = segmentbase + index;
19 for i = 0 to 3
20 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
21 integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

581

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.239 UDOT (4-way, multiple and single vector)

Multi-vector unsigned integer dot-product by vector

The instruction operates on two or four ZA single-vector groups.

The unsigned integer dot product instruction computes the dot product of four unsigned 8-bit or 16-bit integer
values held in each 32-bit or 64-bit element of the two or four first source vectors and four unsigned 8-bit or 16-bit
integer values in the corresponding 32-bit or 64-bit element of the second source vector. The widened dot product
result is destructively added to the corresponding 32-bit or 64-bit element of the two or four ZA single-vector
groups. The vector numbers forming the single-vector group within each half or each quarter of the ZA array are
selected by the sum of the vector select register and immediate offset, modulo half or quarter the number of ZA
array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0

29 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

1

4

0

3

off3

2 0

U

UDOT ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0

29 23

sz

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

1

4

0

3

off3

2 0

U

UDOT ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off3);
8 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

582

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) sum = Elem[operand3, e, esize];
16 for i = 0 to 3
17 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 sum = sum + element1 * element2;
20 Elem[result, e, esize] = sum;
21 ZAvector[vec, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

583

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.240 UDOT (4-way, multiple vectors)

Multi-vector unsigned integer dot-product

The instruction operates on two or four ZA single-vector groups.

The unsigned integer dot product instruction computes the dot product of four unsigned 8-bit or 16-bit integer
values held in each 32-bit or 64-bit element of the two or four first source vectors and four unsigned 8-bit or
16-bit integer values in the corresponding 32-bit or 64-bit element of the two or four second source vectors. The
widened dot product result is destructively added to the corresponding 32-bit or 64-bit element of the two or four
ZA single-vector groups. The vector numbers forming the single-vector group within each half or each quarter of
the ZA array are selected by the sum of the vector select register and immediate offset, modulo half or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1

29 23

sz

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

1 0 1

12 10

Zn

9 6

0

5

1

4

0

3

off3

2 0

U

UDOT ZA.<T>[<Wv>, <offs>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm2>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'0');
6 integer m = UInt(Zm:'0');
7 integer offset = UInt(off3);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1

29 23

sz

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

1 0 1

12 10

Zn

9 7

0 0

6 5

1

4

0

3

off3

2 0

U

UDOT ZA.<T>[<Wv>, <offs>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 integer v = UInt('010':Rv);
4 constant integer esize = 32 << UInt(sz);
5 integer n = UInt(Zn:'00');
6 integer m = UInt(Zm:'00');
7 integer offset = UInt(off3);
8 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

584

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[n+r, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) sum = Elem[operand3, e, esize];
16 for i = 0 to 3
17 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 sum = sum + element1 * element2;
20 Elem[result, e, esize] = sum;
21 ZAvector[vec, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

585

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.241 UMAX (multiple and single vector)

Multi-vector unsigned maximum by vector

Determine the unsigned maximum of elements of the second source vector and the corresponding elements of the
two or four first source vectors and destructively place the results in the corresponding elements of the two or four
first source vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 0

15 10

0 0 0 0

9 6

0

5

Zdn

4 1

1

0

U

UMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 2;
6 boolean unsigned = TRUE;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 0

15 10

0 0 0 0

9 6

0

5

Zdn

4 2

0

1

1

0

U

UMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 4;
6 boolean unsigned = TRUE;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

586

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 integer element1 = Int(Elem[operand1, e, esize], unsigned);
11 integer element2 = Int(Elem[operand2, e, esize], unsigned);
12 integer res = Max(element1, element2);
13 Elem[results[r], e, esize] = res<esize-1:0>;
14
15 for r = 0 to nreg-1
16 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

587

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.242 UMAX (multiple vectors)

Multi-vector unsigned maximum

Determine the unsigned maximum of elements of the two or four second source vectors and the corresponding
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 1 1 0 0

16 10

0 0 0 0

9 6

0

5

Zdn

4 1

1

0

U

UMAX { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt(Zm:'0');
5 constant integer nreg = 2;
6 boolean unsigned = TRUE;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 0 1 0 1 1 1 0

17 10

0 0 0 0

9 6

0

5

Zdn

4 2

0

1

1

0

U

UMAX { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt(Zm:'00');
5 constant integer nreg = 4;
6 boolean unsigned = TRUE;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

588

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m+r, VL];
9 for e = 0 to elements-1

10 integer element1 = Int(Elem[operand1, e, esize], unsigned);
11 integer element2 = Int(Elem[operand2, e, esize], unsigned);
12 integer res = Max(element1, element2);
13 Elem[results[r], e, esize] = res<esize-1:0>;
14
15 for r = 0 to nreg-1
16 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

589

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.243 UMIN (multiple and single vector)

Multi-vector unsigned minimum by vector

Determine the unsigned minimum of elements of the second source vector and the corresponding elements of the
two or four first source vectors and destructively place the results in the corresponding elements of the two or four
first source vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 0

15 10

0 0 0 0

9 6

1

5

Zdn

4 1

1

0

U

UMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 2;
6 boolean unsigned = TRUE;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 0

15 10

0 0 0 0

9 6

1

5

Zdn

4 2

0

1

1

0

U

UMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 4;
6 boolean unsigned = TRUE;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

590

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 integer element1 = Int(Elem[operand1, e, esize], unsigned);
11 integer element2 = Int(Elem[operand2, e, esize], unsigned);
12 integer res = Min(element1, element2);
13 Elem[results[r], e, esize] = res<esize-1:0>;
14
15 for r = 0 to nreg-1
16 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

591

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.244 UMIN (multiple vectors)

Multi-vector unsigned minimum

Determine the unsigned minimum of elements of the two or four second source vectors and the corresponding
elements of the two or four first source vectors and destructively place the results in the corresponding elements of
the two or four first source vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 1 1 0 0

16 10

0 0 0 0

9 6

1

5

Zdn

4 1

1

0

U

UMIN { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt(Zm:'0');
5 constant integer nreg = 2;
6 boolean unsigned = TRUE;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 0 1 0 1 1 1 0

17 10

0 0 0 0

9 6

1

5

Zdn

4 2

0

1

1

0

U

UMIN { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt(Zm:'00');
5 constant integer nreg = 4;
6 boolean unsigned = TRUE;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

592

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m+r, VL];
9 for e = 0 to elements-1

10 integer element1 = Int(Elem[operand1, e, esize], unsigned);
11 integer element2 = Int(Elem[operand2, e, esize], unsigned);
12 integer res = Min(element1, element2);
13 Elem[results[r], e, esize] = res<esize-1:0>;
14
15 for r = 0 to nreg-1
16 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

593

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.245 UMLAL (multiple and indexed vector)

Multi-vector unsigned integer multiply-add long by indexed element

The instruction operates on one, two, or four ZA double-vector groups.

This unsigned integer multiply-add long instruction multiplies each unsigned 16-bit element in the one, two, or
four first source vectors with each unsigned 16-bit indexed element of the second source vector, widens each
product to 32-bits and destructively adds these values to the corresponding 32-bit elements of the one, two, or four
ZA double-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to 7, encoded in 3 bits.
The lowest of the two consecutive vector numbers forming the double-vector group within all, each half, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

1

12

i3l

11 10

Zn

9 5

1

4

0

3

off3

2 0

U S

UMLAL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i3h

11 10

Zn

9 6

0

5

1

4

0

3

i3l

2

off2

1 0

U S

UMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 2;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

594

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i3h

11 10

Zn

9 7

0 0

6 5

1

4

0

3

i3l

2

off2

1 0

U S

UMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 2);
11
12 for r = 0 to nreg-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

595

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 1
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 2 * segmentbase + index;
20 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
21 integer element2 = UInt(Elem[operand2, s, esize DIV 2]);
22 bits(esize) product = (element1 * element2)<esize-1:0>;
23 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
24 ZAvector[vec + i, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

596

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.246 UMLAL (multiple and single vector)

Multi-vector unsigned integer multiply-add long by vector

The instruction operates on one, two, or four ZA double-vector groups.

This unsigned integer multiply-add long instruction multiplies each unsigned 16-bit element in the one, two, or
four first source vectors with each unsigned 16-bit element in the second source vector, widens each product
to 32-bits and destructively adds these values to the corresponding 32-bit elements of the one, two, or four ZA
double-vector groups. The lowest of the two consecutive vector numbers forming the double-vector group within
all, each half, or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 1

12 10

Zn

9 5

1

4

0

3

off3

2 0

U S

UMLAL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3:'0');
7 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

1

4

0

3

0

2

off2

1 0

U S

UMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 1

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

1

4

0

3

0

2

off2

1 0

U S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

597

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

UMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

598

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.247 UMLAL (multiple vectors)

Multi-vector unsigned integer multiply-add long

The instruction operates on two or four ZA double-vector groups.

This unsigned integer multiply-add long instruction multiplies each unsigned 16-bit element in the two or four
first source vectors with each unsigned 16-bit element in the two or four second source vectors, widens each
product to 32-bits and destructively adds these values to the corresponding 32-bit elements of the two or four ZA
double-vector groups. The lowest of the two consecutive vector numbers forming the double-vector group within
each half or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA double-vectors and Four ZA double-vectors

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 1

31 21

Zm

20 17

0 0

16 15

Rv

14 13

0 1 0

12 10

Zn

9 6

0

5

1

4

0

3

0

2

off2

1 0

U S

UMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 1

31 21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 1 0

12 10

Zn

9 7

0 0

6 5

1

4

0

3

0

2

off2

1 0

U S

UMLAL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of two consecutive vectors, encoded as "off2" field
times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

599

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<offsl> Is the vector select offset, pointing to last of two consecutive vectors, encoded as "off2" field
times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

600

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.248 UMLALL (multiple and indexed vector)

Multi-vector unsigned integer multiply-add long long by indexed element

The instruction operates on one, two, or four ZA quad-vector groups.

This unsigned integer multiply-add long long instruction multiplies each unsigned 8-bit or 16-bit element in the
one, two, or four first source vectors with each unsigned 8-bit or 16-bit indexed element of second source vector,
widens each product to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit or 64-bit
elements of the one, two, or four ZA quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 3 to 4 bits depending on the size of the element. The lowest of the
four consecutive vector numbers forming the quad-vector group within all, each half, or each quarter of the ZA
array are selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 6 classes: One ZA quad-vector of 32-bit elements , One ZA quad-vector of 64-bit elements ,
Two ZA quad-vectors of 32-bit elements , Two ZA quad-vectors of 64-bit elements , Four ZA quad-vectors of
32-bit elements and Four ZA quad-vectors of 64-bit elements

One ZA quad-vector of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 0

31 20

Zm

19 16

i4h

15

Rv

14 13

i4l

12 10

Zn

9 5

1

4

0

3

0

2

off2

1 0

U S

UMLALL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.B, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 1;

One ZA quad-vector of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 0 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

0

12

i3l

11 10

Zn

9 5

1

4

0

3

0

2

off2

1 0

U S

UMLALL ZA.D[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

601

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 1;

Two ZA quad-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i4h

11 10

Zn

9 6

0

5

1

4

0

3

i4l

2 1

o1

0

U S

UMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 2;

Two ZA quad-vectors of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0 0

12 11

i3h

10

Zn

9 6

0

5

1

4

0

3

i3l

2 1

o1

0

U S

UMLALL ZA.D[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 2;

Four ZA quad-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i4h

11 10

Zn

9 7

0

6

0

5

1

4

0

3

i4l

2 1

o1

0

U S

UMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 4;

Four ZA quad-vectors of 64-bit elements
(FEAT_SME_I16I64)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

602

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0 0

12 11

i3h

10

Zn

9 7

0 0

6 5

1

4

0

3

i3l

2 1

o1

0

U S

UMLALL ZA.D[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements
variant: is the vector select offset, pointing to first of four consecutive vectors, encoded as
"off2" field times 4.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements,
two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant:
is the vector select offset, pointing to first of four consecutive vectors, encoded as "o1" field
times 4.

<offsl> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements
variant: is the vector select offset, pointing to last of four consecutive vectors, encoded as
"off2" field times 4 plus 3.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements,
two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant:
is the vector select offset, pointing to last of four consecutive vectors, encoded as "o1" field
times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of a multi-vector sequence, encoded
as "Zn" times 2.

For the four ZA quad-vectors of 32-bit elements and four ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of a multi-vector sequence, encoded
as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA quad-vectors of 32-bit elements, one ZA quad-vector of 32-bit elements and
two ZA quad-vectors of 32-bit elements variant: is the element index, in the range 0 to 15,
encoded in the "i4h:i4l" fields.

For the four ZA quad-vectors of 64-bit elements, one ZA quad-vector of 64-bit elements and
two ZA quad-vectors of 64-bit elements variant: is the element index, in the range 0 to 7,
encoded in the "i3h:i3l" fields.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

603

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 4);
11
12 for r = 0 to nreg-1
13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 3
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 4 * segmentbase + index;
20 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
21 integer element2 = UInt(Elem[operand2, s, esize DIV 4]);
22 bits(esize) product = (element1 * element2)<esize-1:0>;
23 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
24 ZAvector[vec + i, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

604

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.249 UMLALL (multiple and single vector)

Multi-vector unsigned integer multiply-add long long by vector

The instruction operates on one, two, or four ZA quad-vector groups.

This unsigned integer multiply-add long long instruction multiplies each unsigned 8-bit or 16-bit element in the
one, two, or four first source vectors with each unsigned 8-bit or 16-bit element in the second source vector, widens
each product to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit or 64-bit elements
of the one, two, or four ZA quad-vector groups. The lowest of the four consecutive vector numbers forming the
quad-vector group within all, each half, or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 3 classes: One ZA quad-vector , Two ZA quad-vectors and Four ZA quad-vectors

One ZA quad-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

0 0 1

12 10

Zn

9 5

1

4

0

3

0

2

off2

1 0

U S

UMLALL ZA.<T>[<Wv>, <offsf>:<offsl>], <Zn>.<Tb>, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off2:'00');
8 constant integer nreg = 1;

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

1

4

0

3

0

2

0

1

o1

0

U S

UMLALL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

605

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

1

4

0

3

0

2

0

1

o1

0

U S

UMLALL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA quad-vector variant: is the vector select offset, pointing to first of four
consecutive vectors, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to first of four consecutive vectors, encoded as "o1" field times 4.

<offsl> For the one ZA quad-vector variant: is the vector select offset, pointing to last of four
consecutive vectors, encoded as "off2" field times 4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to last of four consecutive vectors, encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

606

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

8 bits(VL) result;
9 vec = vec - (vec MOD 4);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 3
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

607

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.250 UMLALL (multiple vectors)

Multi-vector unsigned integer multiply-add long long

The instruction operates on two or four ZA quad-vector groups.

This unsigned integer multiply-add long long instruction multiplies each unsigned 8-bit or 16-bit element in the
two or four first source vectors with each unsigned 8-bit or 16-bit element in the one, two, or four second source
vectors, widens each product to 32-bits or 64-bits and destructively adds these values to the corresponding 32-bit
or 64-bit elements of the two or four ZA quad-vector groups. The lowest of the four consecutive vector numbers
forming the quad-vector group within each half or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA quad-vectors and Four ZA quad-vectors

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

0 0 0

12 10

Zn

9 6

0

5

1

4

0

3

0

2

0

1

o1

0

U S

UMLALL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm2>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn:'0');
6 integer m = UInt(Zm:'0');
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 0 0

12 10

Zn

9 7

0 0

6 5

1

4

0

3

0

2

0

1

o1

0

U S

UMLALL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn:'00');
6 integer m = UInt(Zm:'00');
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

608

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of four consecutive vectors, encoded as "o1" field
times 4.

<offsl> Is the vector select offset, pointing to last of four consecutive vectors, encoded as "o1" field
times 4 plus 3.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 4);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 3
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

609

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

18 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

610

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.251 UMLSL (multiple and indexed vector)

Multi-vector unsigned integer multiply-subtract long by indexed element

The instruction operates on one, two, or four ZA double-vector groups.

This unsigned integer multiply-subtract long instruction multiplies each unsigned 16-bit element in the one, two,
or four first source vectors with each unsigned 16-bit indexed element of the second source vector, widens each
product to 32-bits and destructively subtracts these values from the corresponding 32-bit elements of the one, two,
or four ZA double-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to 7, encoded in 3 bits.
The lowest of the two consecutive vector numbers forming the double-vector group within all, each half, or each
quarter of the ZA array are selected by the sum of the vector select register and immediate offset, modulo all, half,
or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

1

12

i3l

11 10

Zn

9 5

1

4

1

3

off3

2 0

U S

UMLSL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i3h

11 10

Zn

9 6

0

5

1

4

1

3

i3l

2

off2

1 0

U S

UMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 2;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

611

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i3h

11 10

Zn

9 7

0 0

6 5

1

4

1

3

i3l

2

off2

1 0

U S

UMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 2);
11
12 for r = 0 to nreg-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

612

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 1
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 2 * segmentbase + index;
20 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
21 integer element2 = UInt(Elem[operand2, s, esize DIV 2]);
22 bits(esize) product = (element1 * element2)<esize-1:0>;
23 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
24 ZAvector[vec + i, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

613

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.252 UMLSL (multiple and single vector)

Multi-vector unsigned integer multiply-subtract long by vector

The instruction operates on one, two, or four ZA double-vector groups.

This unsigned integer multiply-subtract long instruction multiplies each unsigned 16-bit element in the one, two,
or four first source vectors with each unsigned 16-bit element in the second source vector, widens each product to
32-bits and destructively subtracts these values from the corresponding 32-bit elements of the one, two, or four ZA
double-vector groups. The lowest of the two consecutive vector numbers forming the double-vector group within
all, each half, or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA double-vector , Two ZA double-vectors and Four ZA double-vectors

One ZA double-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 1

12 10

Zn

9 5

1

4

1

3

off3

2 0

U S

UMLSL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3:'0');
7 constant integer nreg = 1;

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 0

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

1

4

1

3

0

2

off2

1 0

U S

UMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 1 1

31 20

Zm

19 16

0

15

Rv

14 13

0 1 0

12 10

Zn

9 5

1

4

1

3

0

2

off2

1 0

U S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

614

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

UMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA double-vector variant: is the vector select offset, pointing to first of two
consecutive vectors, encoded as "off3" field times 2.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to first of two consecutive vectors, encoded as "off2" field times 2.

<offsl> For the one ZA double-vector variant: is the vector select offset, pointing to last of two
consecutive vectors, encoded as "off3" field times 2 plus 1.

For the four ZA double-vectors and two ZA double-vectors variant: is the vector select offset,
pointing to last of two consecutive vectors, encoded as "off2" field times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

615

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.253 UMLSL (multiple vectors)

Multi-vector unsigned integer multiply-subtract long

The instruction operates on two or four ZA double-vector groups.

This unsigned integer multiply-subtract long instruction multiplies each unsigned 16-bit element in the two or
four first source vectors with each unsigned 16-bit element in the two or four second source vectors, widens each
product to 32-bits and destructively subtracts these values from the corresponding 32-bit elements of the two or
four ZA double-vector groups. The lowest of the two consecutive vector numbers forming the double-vector group
within each half or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA
double-vector groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional
in assembler source code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA double-vectors and Four ZA double-vectors

Two ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 1

31 21

Zm

20 17

0 0

16 15

Rv

14 13

0 1 0

12 10

Zn

9 6

0

5

1

4

1

3

0

2

off2

1 0

U S

UMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, { <Zm1>.H-<Zm2>.H }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 2;

Four ZA double-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 1

31 21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 1 0

12 10

Zn

9 7

0 0

6 5

1

4

1

3

0

2

off2

1 0

U S

UMLSL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, { <Zm1>.H-<Zm4>.H }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(off2:'0');
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of two consecutive vectors, encoded as "off2" field
times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

616

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<offsl> Is the vector select offset, pointing to last of two consecutive vectors, encoded as "off2" field
times 2 plus 1.

<Zn1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA double-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 2);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 1
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
18 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

617

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.254 UMLSLL (multiple and indexed vector)

Multi-vector unsigned integer multiply-subtract long long by indexed element

The instruction operates on one, two, or four ZA quad-vector groups.

This unsigned integer multiply-subtract long long instruction multiplies each unsigned 8-bit or 16-bit element
in the one, two, or four first source vectors with each unsigned 8-bit or 16-bit indexed element of second source
vector, widens each product to 32-bits or 64-bits and destructively subtracts these values from the corresponding
32-bit or 64-bit elements of the one, two, or four ZA quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The index range is from 0 to one less than the number
of elements per 128-bit segment, encoded in 3 to 4 bits depending on the size of the element. The lowest of the
four consecutive vector numbers forming the quad-vector group within all, each half, or each quarter of the ZA
array are selected by the sum of the vector select register and immediate offset, modulo all, half, or quarter the
number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 6 classes: One ZA quad-vector of 32-bit elements , One ZA quad-vector of 64-bit elements ,
Two ZA quad-vectors of 32-bit elements , Two ZA quad-vectors of 64-bit elements , Four ZA quad-vectors of
32-bit elements and Four ZA quad-vectors of 64-bit elements

One ZA quad-vector of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 0

31 20

Zm

19 16

i4h

15

Rv

14 13

i4l

12 10

Zn

9 5

1

4

1

3

0

2

off2

1 0

U S

UMLSLL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.B, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 1;

One ZA quad-vector of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 0 0 0

31 20

Zm

19 16

i3h

15

Rv

14 13

0

12

i3l

11 10

Zn

9 5

1

4

1

3

0

2

off2

1 0

U S

UMLSLL ZA.D[<Wv>, <offsf>:<offsl>], <Zn>.H, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

618

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 1;

Two ZA quad-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i4h

11 10

Zn

9 6

0

5

1

4

1

3

i4l

2 1

o1

0

U S

UMLSLL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 2;

Two ZA quad-vectors of 64-bit elements
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0 0

12 11

i3h

10

Zn

9 6

0

5

1

4

1

3

i3l

2 1

o1

0

U S

UMLSLL ZA.D[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 2;

Four ZA quad-vectors of 32-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i4h

11 10

Zn

9 7

0

6

0

5

1

4

1

3

i4l

2 1

o1

0

U S

UMLSLL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 4;

Four ZA quad-vectors of 64-bit elements
(FEAT_SME_I16I64)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

619

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 1 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0 0

12 11

i3h

10

Zn

9 7

0 0

6 5

1

4

1

3

i3l

2 1

o1

0

U S

UMLSLL ZA.D[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 constant integer esize = 64;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i3h:i3l);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements
variant: is the vector select offset, pointing to first of four consecutive vectors, encoded as
"off2" field times 4.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements,
two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant:
is the vector select offset, pointing to first of four consecutive vectors, encoded as "o1" field
times 4.

<offsl> For the one ZA quad-vector of 32-bit elements and one ZA quad-vector of 64-bit elements
variant: is the vector select offset, pointing to last of four consecutive vectors, encoded as
"off2" field times 4 plus 3.

For the four ZA quad-vectors of 32-bit elements, four ZA quad-vectors of 64-bit elements,
two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements variant:
is the vector select offset, pointing to last of four consecutive vectors, encoded as "o1" field
times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors of 32-bit elements and two ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of a multi-vector sequence, encoded
as "Zn" times 2.

For the four ZA quad-vectors of 32-bit elements and four ZA quad-vectors of 64-bit elements
variant: is the name of the first scalable vector register of a multi-vector sequence, encoded
as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the four ZA quad-vectors of 32-bit elements, one ZA quad-vector of 32-bit elements and
two ZA quad-vectors of 32-bit elements variant: is the element index, in the range 0 to 15,
encoded in the "i4h:i4l" fields.

For the four ZA quad-vectors of 64-bit elements, one ZA quad-vector of 64-bit elements and
two ZA quad-vectors of 64-bit elements variant: is the element index, in the range 0 to 7,
encoded in the "i3h:i3l" fields.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

620

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 4);
11
12 for r = 0 to nreg-1
13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 3
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 4 * segmentbase + index;
20 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
21 integer element2 = UInt(Elem[operand2, s, esize DIV 4]);
22 bits(esize) product = (element1 * element2)<esize-1:0>;
23 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
24 ZAvector[vec + i, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

621

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.255 UMLSLL (multiple and single vector)

Multi-vector unsigned integer multiply-subtract long long by vector

The instruction operates on one, two, or four ZA quad-vector groups.

This unsigned integer multiply-subtract long long instruction multiplies each unsigned 8-bit or 16-bit element in
the one, two, or four first source vectors with each unsigned 8-bit or 16-bit element in the second source vector,
widens each product to 32-bits or 64-bits and destructively subtracts these values from the corresponding 32-bit or
64-bit elements of the one, two, or four ZA quad-vector groups. The lowest of the four consecutive vector numbers
forming the quad-vector group within all, each half, or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 3 classes: One ZA quad-vector , Two ZA quad-vectors and Four ZA quad-vectors

One ZA quad-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

0 0 1

12 10

Zn

9 5

1

4

1

3

0

2

off2

1 0

U S

UMLSLL ZA.<T>[<Wv>, <offsf>:<offsl>], <Zn>.<Tb>, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(off2:'00');
8 constant integer nreg = 1;

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

1

4

1

3

0

2

0

1

o1

0

U S

UMLSLL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

622

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 1 0 0 0 0 0 1 0

31 23

sz

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

1

4

1

3

0

2

0

1

o1

0

U S

UMLSLL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, <Zm>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn);
6 integer m = UInt('0':Zm);
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 4;

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA quad-vector variant: is the vector select offset, pointing to first of four
consecutive vectors, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to first of four consecutive vectors, encoded as "o1" field times 4.

<offsl> For the one ZA quad-vector variant: is the vector select offset, pointing to last of four
consecutive vectors, encoded as "off2" field times 4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to last of four consecutive vectors, encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

623

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

8 bits(VL) result;
9 vec = vec - (vec MOD 4);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 3
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

624

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.256 UMLSLL (multiple vectors)

Multi-vector unsigned integer multiply-subtract long long

The instruction operates on two or four ZA quad-vector groups.

This unsigned integer multiply-subtract long long instruction multiplies each unsigned 8-bit or 16-bit element in
the two or four first source vectors with each unsigned 8-bit or 16-bit element in the one, two, or four second source
vectors, widens each product to 32-bits or 64-bits and destructively subtracts these values from the corresponding
32-bit or 64-bit elements of the two or four ZA quad-vector groups. The lowest of the four consecutive vector
numbers forming the quad-vector group within each half or each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: Two ZA quad-vectors and Four ZA quad-vectors

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

0 0 0

12 10

Zn

9 6

0

5

1

4

1

3

0

2

0

1

o1

0

U S

UMLSLL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.<Tb>-<Zn2>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm2>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn:'0');
6 integer m = UInt(Zm:'0');
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

sz

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 0 0

12 10

Zn

9 7

0 0

6 5

1

4

1

3

0

2

0

1

o1

0

U S

UMLSLL ZA.<T>[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.<Tb>-<Zn4>.<Tb> }, {
↪→<Zm1>.<Tb>-<Zm4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if sz == '1' && !HaveSMEI16I64() then UNDEFINED;
3 constant integer esize = 32 << UInt(sz);
4 integer v = UInt('010':Rv);
5 integer n = UInt(Zn:'00');
6 integer m = UInt(Zm:'00');
7 integer offset = UInt(o1:'00');
8 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

625

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<T> Is the size specifier, encoded in "sz":
sz <T>
0 S
1 D

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of four consecutive vectors, encoded as "o1" field
times 4.

<offsl> Is the vector select offset, pointing to last of four consecutive vectors, encoded as "o1" field
times 4 plus 3.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 B
1 H

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 4);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 3
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

626

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

18 integer element2 = UInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] - product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

627

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.257 UMOPA (2-way)

Unsigned integer sum of outer products and accumulate

This instruction works with a 32-bit element ZA tile.

The unsigned integer sum of outer products and accumulate instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. The first source holds SVLS×2 sub-matrix of unsigned 16-bit
integer values, and the second source holds 2×SVLS sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is inactive, it is treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer sum of outer products is then destructively added to the 32-bit
integer destination tile. This is equivalent to performing a 2-way dot product and accumulate to each of the
destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix, and each 32-bit container of the second source vector holds 2 consecutive row elements of each column
of a 2×SVLS sub-matrix.

SME2
(FEAT_SME2)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 0 0

23 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

1

3

0

2

ZAda

1 0

u0 S

UMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean unsigned = TRUE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

628

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 1
17 if ActivePredicateElement(mask1, 2*row + k, esize DIV 2) &&
18 ActivePredicateElement(mask2, 2*col + k, esize DIV 2) then
19 prod = (Int(Elem[operand1, 2*row + k, esize DIV 2], unsigned) *
20 Int(Elem[operand2, 2*col + k, esize DIV 2], unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

629

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.258 UMOPA (4-way)

Unsigned integer sum of outer products and accumulate

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned integer sum of outer products and accumulate instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds
SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of unsigned
8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of unsigned
16-bit integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 0

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

u0 u1 S

UMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = TRUE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 1

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

u0 u1 S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

630

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

UMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSMEI16I64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = TRUE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 3
17 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
18 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
19 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
20 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

631

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

632

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.259 UMOPS (2-way)

Unsigned integer sum of outer products and subtract

This instruction works with a 32-bit element ZA tile.

The unsigned integer sum of outer products and subtract instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. The first source holds SVLS×2 sub-matrix of unsigned 16-bit
integer values, and the second source holds 2×SVLS sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When a 16-bit source
element is inactive, it is treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer sum of outer products is then destructively subtracted from the
32-bit integer destination tile. This is equivalent to performing a 2-way dot product and subtract from each of the
destination tile elements.

Each 32-bit container of the first source vector holds 2 consecutive column elements of each row of a SVLS×2
sub-matrix, and each 32-bit container of the second source vector holds 2 consecutive row elements of each column
of a 2×SVLS sub-matrix.

SME2
(FEAT_SME2)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 0 0

23 21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

1

3

0

2

ZAda

1 0

u0 S

UMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean unsigned = TRUE;

Assembler Symbols

<ZAda> Is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

633

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 1
17 if ActivePredicateElement(mask1, 2*row + k, esize DIV 2) &&
18 ActivePredicateElement(mask2, 2*col + k, esize DIV 2) then
19 prod = (Int(Elem[operand1, 2*row + k, esize DIV 2], unsigned) *
20 Int(Elem[operand2, 2*col + k, esize DIV 2], unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

634

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.260 UMOPS (4-way)

Unsigned integer sum of outer products and subtract

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned integer sum of outer products and subtract instructions multiply the sub-matrix in the first source
vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source holds
SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of unsigned
8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of unsigned
16-bit integer values, and the second source holds 4×SVLD sub-matrix of unsigned 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit
integer and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract
from each of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 0

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

u0 u1 S

UMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = TRUE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 1

23 22

1

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

ZAda

2 0

u0 u1 S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

635

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

UMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSMEI16I64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = TRUE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 3
17 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
18 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
19 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
20 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

636

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

637

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.261 UQCVT (two registers)

Multi-vector unsigned saturating extract narrow

Saturate the unsigned integer value in each element of the two source vectors to half the orginal source element
width, and place the results in the half-width destination elements.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 0 0 0 1 1 1 1 1 0 0 0

21 10

Zn

9 6

1

5

Zd

4 0

U

UQCVT <Zd>.H, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (2 * esize);
4 bits(VL) result;
5
6 for r = 0 to 1
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 integer element = UInt(Elem[operand, e, 2 * esize]);

10 Elem[result, r*elements + e, esize] = UnsignedSat(element, esize);
11
12 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

638

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.262 UQCVT (four registers)

Multi-vector unsigned saturating extract narrow

Saturate the unsigned integer value in each element of the four source vectors to quarter the orginal source element
width, and place the results in the quarter-width destination elements.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

sz

23

0

22

1 1 0 0 1 1 1 1 1 0 0 0

21 10

Zn

9 7

0

6

1

5

Zd

4 0

N U

UQCVT <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(sz);
3 integer n = UInt(Zn:'00');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "sz":
sz <T>
0 B
1 H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 S
1 D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);
4 bits(VL) result;
5
6 for r = 0 to 3
7 bits(VL) operand = Z[n+r, VL];
8 for e = 0 to elements-1
9 integer element = UInt(Elem[operand, e, 4 * esize]);

10 Elem[result, r*elements + e, esize] = UnsignedSat(element, esize);
11
12 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

639

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.263 UQCVTN

Multi-vector unsigned saturating extract narrow and interleave

Saturate the unsigned integer value in each element of the four source vectors to quarter the orginal source element
width, and place the four-way interleaved results in the quarter-width destination elements.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

sz

23

0

22

1 1 0 0 1 1 1 1 1 0 0 0

21 10

Zn

9 7

1

6

1

5

Zd

4 0

N U

UQCVTN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(sz);
3 integer n = UInt(Zn:'00');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "sz":
sz <T>
0 B
1 H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "sz":
sz <Tb>
0 S
1 D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);
4 bits(VL) result;
5
6 for e = 0 to elements-1
7 for i = 0 to 3
8 bits(VL) operand = Z[n+i, VL];
9 integer element = UInt(Elem[operand, e, 4 * esize]);

10 Elem[result, 4*e + i, esize] = UnsignedSat(element, esize);
11
12 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

640

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.264 UQRSHR (two registers)

Multi-vector unsigned saturating rounding shift right narrow by immediate

Shift right by an immediate value, the unsigned integer value in each element of the two source vectors and place
the rounded results in the half-width destination elements. Each result element is saturated to the half-width N-bit
element’s unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned value in the range 1 to 16.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 1 1 1

31 21

0

20

imm4

19 16

1 1 0 1 0 1

15 10

Zn

9 6

1

5

Zd

4 0

U

UQRSHR <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);
5 integer shift = esize - UInt(imm4);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (2 * esize);
4 bits(VL) result;
5 integer round_const = 1 << (shift-1);
6
7 for r = 0 to 1
8 bits(VL) operand = Z[n+r, VL];
9 for e = 0 to elements-1

10 bits(2 * esize) element = Elem[operand, e, 2 * esize];
11 integer res = (UInt(element) + round_const) >> shift;
12 Elem[result, r*elements + e, esize] = UnsignedSat(res, esize);
13
14 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

641

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.265 UQRSHR (four registers)

Multi-vector unsigned saturating rounding shift right narrow by immediate

Shift right by an immediate value, the unsigned integer value in each element of the four source vectors and place
the rounded results in the quarter-width destination elements. Each result element is saturated to the quarter-width
N-bit element’s unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned value in the range 1
to number of bits per source element.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

tsize

23 22

1

21

imm5

20 16

1 1 0 1 1

15 11

0

10

Zn

9 7

0

6

1

5

Zd

4 0

N U

UQRSHR <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 integer esize;
3 case tsize of
4 when '00' UNDEFINED;
5 when '01' esize = 8;
6 when '1x' esize = 16;
7 integer n = UInt(Zn:'00');
8 integer d = UInt(Zd);
9 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "tsize":
tsize <T>
00 RESERVED
01 B
1x H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "tsize":
tsize <Tb>
00 RESERVED
01 S
1x D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded
in "tsize:imm5".

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

642

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 bits(VL) result;
5 integer round_const = 1 << (shift-1);
6
7 for r = 0 to 3
8 bits(VL) operand = Z[n+r, VL];
9 for e = 0 to elements-1

10 bits(4 * esize) element = Elem[operand, e, 4 * esize];
11 integer res = (UInt(element) + round_const) >> shift;
12 Elem[result, r*elements + e, esize] = UnsignedSat(res, esize);
13
14 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

643

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.266 UQRSHRN

Multi-vector unsigned saturating rounding shift right narrow by immediate and interleave

Shift right by an immediate value, the unsigned integer value in each element of the four source vectors and place
the four-way interleaved rounded results in the quarter-width destination elements. Each result element is saturated
to the quarter-width N-bit element’s unsigned integer range 0 to (2N)-1. The immediate shift amount is an unsigned
value in the range 1 to number of bits per source element.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

tsize

23 22

1

21

imm5

20 16

1 1 0 1 1

15 11

1

10

Zn

9 7

0

6

1

5

Zd

4 0

N U

UQRSHRN <Zd>.<T>, { <Zn1>.<Tb>-<Zn4>.<Tb> }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 integer esize;
3 case tsize of
4 when '00' UNDEFINED;
5 when '01' esize = 8;
6 when '1x' esize = 16;
7 integer n = UInt(Zn:'00');
8 integer d = UInt(Zd);
9 integer shift = (8 * esize) - UInt(tsize:imm5);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "tsize":
tsize <T>
00 RESERVED
01 B
1x H

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Tb> Is the size specifier, encoded in "tsize":
tsize <Tb>
00 RESERVED
01 S
1x D

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<const> Is the immediate shift amount, in the range 1 to number of bits per source element, encoded
in "tsize:imm5".

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV (4 * esize);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

644

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 bits(VL) result;
5 integer round_const = 1 << (shift-1);
6
7 for e = 0 to elements-1
8 for i = 0 to 3
9 bits(VL) operand = Z[n+i, VL];

10 bits(4 * esize) element = Elem[operand, e, 4 * esize];
11 integer res = (UInt(element) + round_const) >> shift;
12 Elem[result, 4*e + i, esize] = UnsignedSat(res, esize);
13
14 Z[d, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

645

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.267 URSHL (multiple and single vector)

Multi-vector unsigned rounding shift left by vector

Shift active unsigned elements of the two or four first source vectors by corresponding elements of the second
source vector and destructively place the rounded results in the corresponding elements of the two or four first
source vectors. A positive shift amount performs a left shift, otherwise a right shift by the negated shift amount is
performed.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 0 0

15 10

1 0

9 8

0 0

7 6

1

5

Zdn

4 1

1

0

U

URSHL { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0

21 20

Zm

19 16

1 0 1 0 1 0

15 10

1 0

9 8

0 0

7 6

1

5

Zdn

4 2

0

1

1

0

U

URSHL { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt('0':Zm);
5 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

646

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m, VL];
9 for e = 0 to elements-1

10 integer element = UInt(Elem[operand1, e, esize]);
11 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
12 integer res;
13 if shift >= 0 then
14 res = element << shift;
15 else
16 shift = -shift;
17 res = (element + (1 << (shift - 1))) >> shift;
18 Elem[results[r], e, esize] = res<esize-1:0>;
19
20 for r = 0 to nreg-1
21 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

647

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.268 URSHL (multiple vectors)

Multi-vector unsigned rounding shift left

Shift active unsigned elements of the two or four first source vectors by corresponding elements of the two or four
second source vectors and destructively place the rounded results in the corresponding elements of the two or
four first source vectors. A positive shift amount performs a left shift, otherwise a right shift by the negated shift
amount is performed.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 17

0 1 0 1 1 0 0

16 10

1 0

9 8

0 0

7 6

1

5

Zdn

4 1

1

0

U

URSHL { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zdn1>.<T>-<Zdn2>.<T> }, { <Zm1>.<T>-<Zm2>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'0');
4 integer m = UInt(Zm:'0');
5 constant integer nreg = 2;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 18

0 0 1 0 1 1 1 0

17 10

1 0

9 8

0 0

7 6

1

5

Zdn

4 2

0

1

1

0

U

URSHL { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zdn1>.<T>-<Zdn4>.<T> }, { <Zm1>.<T>-<Zm4>.<T>
↪→}

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer dn = UInt(Zdn:'00');
4 integer m = UInt(Zm:'00');
5 constant integer nreg = 4;

Assembler Symbols

<Zdn1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zdn" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

648

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zdn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 4 plus 3.

<Zdn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zdn" times 2 plus 1.

<Zm1> For the two registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 2.

For the four registers variant: is the name of the first scalable vector register of a multi-vector
sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 array [0..3] of bits(VL) results;
5
6 for r = 0 to nreg-1
7 bits(VL) operand1 = Z[dn+r, VL];
8 bits(VL) operand2 = Z[m+r, VL];
9 for e = 0 to elements-1

10 integer element = UInt(Elem[operand1, e, esize]);
11 integer shift = ShiftSat(SInt(Elem[operand2, e, esize]), esize);
12 integer res;
13 if shift >= 0 then
14 res = element << shift;
15 else
16 shift = -shift;
17 res = (element + (1 << (shift - 1))) >> shift;
18 Elem[results[r], e, esize] = res<esize-1:0>;
19
20 for r = 0 to nreg-1
21 Z[dn+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

649

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.269 USDOT (multiple and indexed vector)

Multi-vector unsigned by signed integer dot-product by indexed element

The instruction operates on two or four ZA single-vector groups.

The unsigned by signed integer dot product instruction computes the dot product of four unsigned 8-bit integer
values held in each 32-bit element of the two or four first source vectors and four signed 8-bit integer values in the
corresponding indexed 32-bit element of the second source vector. The widened dot product result is destructively
added to the corresponding 32-bit element of the two or four ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits. The vector
numbers forming the single-vector group within each half or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

1

12

i2

11 10

Zn

9 6

1

5

0

4

1

3

off3

2 0

U

USDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

1

12

i2

11 10

Zn

9 7

0

6

1

5

0

4

1

3

off3

2 0

U

USDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);
8 constant integer nreg = 4;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

650

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m, VL];
14 bits(VL) operand3 = ZAvector[vec, VL];
15 for e = 0 to elements-1
16 bits(esize) sum = Elem[operand3, e, esize];
17 integer segmentbase = e - (e MOD eltspersegment);
18 integer s = segmentbase + index;
19 for i = 0 to 3
20 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
21 integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

651

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.270 USDOT (multiple and single vector)

Multi-vector unsigned by signed integer dot-product by vector

The instruction operates on two or four ZA single-vector groups.

The unsigned by signed integer dot product instruction computes the dot product of four unsigned 8-bit integer
values held in each 32-bit element of the two or four first source vectors and four signed 8-bit integer values in the
corresponding 32-bit element of the second source vector. The widened dot product result is destructively added to
the corresponding 32-bit element of the two or four ZA single-vector groups. The vector numbers forming the
single-vector group within each half or each quarter of the ZA array are selected by the sum of the vector select
register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0 0 1 0

29 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

0

4

1

3

off3

2 0

U

USDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 0 0 1 1

29 20

Zm

19 16

0

15

Rv

14 13

1 0 1

12 10

Zn

9 5

0

4

1

3

off3

2 0

U

USDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

652

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
12 bits(VL) operand2 = Z[m, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) sum = Elem[operand3, e, esize];
16 for i = 0 to 3
17 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 sum = sum + element1 * element2;
20 Elem[result, e, esize] = sum;
21 ZAvector[vec, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

653

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.271 USDOT (multiple vectors)

Multi-vector unsigned by signed integer dot-product

The instruction operates on two or four ZA single-vector groups.

The unsigned by signed integer dot product instruction computes the dot product of four unsigned 8-bit integer
values held in each 32-bit element of the two or four first source vectors and four signed 8-bit integer values
in the corresponding 32-bit element of the two or four second source vectors. The widened dot product result
is destructively added to corresponding 32-bit element of the two or four ZA single-vector groups. The vector
numbers forming the single-vector group within each half or each quarter of the ZA array are selected by the sum
of the vector select register and immediate offset, modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA single-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA single-vectors and Four ZA single-vectors

Two ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1 0 1

29 21

Zm

20 17

0 0

16 15

Rv

14 13

1 0 1

12 10

Zn

9 6

0 0

5 4

1

3

off3

2 0

USDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.B-<Zn2>.B }, { <Zm1>.B-<Zm2>.B }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(off3);
7 constant integer nreg = 2;

Four ZA single-vectors
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 1 1 0 1

29 21

Zm

20 18

0 1 0

17 15

Rv

14 13

1 0 1

12 10

Zn

9 7

0 0 0

6 4

1

3

off3

2 0

USDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, { <Zm1>.B-<Zm4>.B }

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(off3);
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

654

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA single-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9

10 for r = 0 to nreg-1
11 bits(VL) operand1 = Z[n+r, VL];
12 bits(VL) operand2 = Z[m+r, VL];
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 bits(esize) sum = Elem[operand3, e, esize];
16 for i = 0 to 3
17 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 sum = sum + element1 * element2;
20 Elem[result, e, esize] = sum;
21 ZAvector[vec, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

655

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.272 USMLALL (multiple and indexed vector)

Multi-vector unsigned by signed integer multiply-add long long by indexed element

The instruction operates on one, two, or four ZA quad-vector groups.

This unsigned by signed integer multiply-add long long instruction multiplies each unsigned 8-bit element in the
one, two, or four first source vectors with each signed 8-bit indexed element of the second source vector, widens
each product to 32-bits and destructively adds these values to the corresponding 32-bit elements of the one, two, or
four ZA quad-vector groups.

The elements within the second source vector are specified using an immediate element index which selects the
same element position within each 128-bit vector segment. The element index range is from 0 to one less than the
number of elements per 128-bit segment, encoded in 4 bits. The lowest of the four consecutive vector numbers
forming the quad-vector group within all, each half, or each quarter of the ZA array are selected by the sum of the
vector select register and immediate offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA quad-vector , Two ZA quad-vectors and Four ZA quad-vectors

One ZA quad-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 0

31 20

Zm

19 16

i4h

15

Rv

14 13

i4l

12 10

Zn

9 5

0

4

0

3

1

2

off2

1 0

U S

USMLALL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.B, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 1;

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i4h

11 10

Zn

9 6

1

5

0

4

0

3

i4l

2 1

o1

0

U S

USMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 2;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

656

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Four ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i4h

11 10

Zn

9 7

0

6

1

5

0

4

0

3

i4l

2 1

o1

0

U S

USMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 integer index = UInt(i4h:i4l);
8 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA quad-vector variant: is the vector select offset, pointing to first of four
consecutive vectors, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to first of four consecutive vectors, encoded as "o1" field times 4.

<offsl> For the one ZA quad-vector variant: is the vector select offset, pointing to last of four
consecutive vectors, encoded as "off2" field times 4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to last of four consecutive vectors, encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 15, encoded in the "i4h:i4l" fields.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) result;

10 vec = vec - (vec MOD 4);
11
12 for r = 0 to nreg-1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

657

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

13 bits(VL) operand1 = Z[n+r, VL];
14 bits(VL) operand2 = Z[m, VL];
15 for i = 0 to 3
16 bits(VL) operand3 = ZAvector[vec + i, VL];
17 for e = 0 to elements-1
18 integer segmentbase = e - (e MOD eltspersegment);
19 integer s = 4 * segmentbase + index;
20 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
21 integer element2 = SInt(Elem[operand2, s, esize DIV 4]);
22 bits(esize) product = (element1 * element2)<esize-1:0>;
23 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
24 ZAvector[vec + i, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

658

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.273 USMLALL (multiple and single vector)

Multi-vector unsigned by signed integer multiply-add long long by vector

The instruction operates on one, two, or four ZA quad-vector groups.

This unsigned by signed integer multiply-add long long instruction multiplies each unsigned 8-bit element in the
one, two, or four first source vectors with each signed 8-bit element in the second source vector, widens each
product to 32-bits and destructively adds these values to the corresponding 32-bit elements of the one, two, or four
ZA quad-vector groups. The lowest of the four consecutive vector numbers forming the quad-vector group within
all, each half, or each quarter of the ZA array are selected by the sum of the vector select register and immediate
offset, modulo all, half, or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 3 classes: One ZA quad-vector , Two ZA quad-vectors and Four ZA quad-vectors

One ZA quad-vector
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

0 0 1

12 10

Zn

9 5

0

4

0

3

1

2

off2

1 0

sz U S

USMLALL ZA.S[<Wv>, <offsf>:<offsl>], <Zn>.B, <Zm>.B

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off2:'00');
7 constant integer nreg = 1;

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 0

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

0

4

0

3

1

2

0

1

o1

0

sz U S

USMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.B-<Zn2>.B }, <Zm>.B

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 0

31 23

0

22

1 1

21 20

Zm

19 16

0

15

Rv

14 13

0 0 0

12 10

Zn

9 5

0

4

0

3

1

2

0

1

o1

0

sz U S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

659

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

USMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn);
5 integer m = UInt('0':Zm);
6 integer offset = UInt(o1:'00');
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> For the one ZA quad-vector variant: is the vector select offset, pointing to first of four
consecutive vectors, encoded as "off2" field times 4.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to first of four consecutive vectors, encoded as "o1" field times 4.

<offsl> For the one ZA quad-vector variant: is the vector select offset, pointing to last of four
consecutive vectors, encoded as "off2" field times 4 plus 3.

For the four ZA quad-vectors and two ZA quad-vectors variant: is the vector select offset,
pointing to last of four consecutive vectors, encoded as "o1" field times 4 plus 3.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn".

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
plus 3 modulo 32.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" plus 1 modulo 32.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 4);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[(n+r) MOD 32, VL];
13 bits(VL) operand2 = Z[m, VL];
14 for i = 0 to 3
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

660

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.274 USMLALL (multiple vectors)

Multi-vector unsigned by signed integer multiply-add long long

The instruction operates on two or four ZA quad-vector groups.

This unsigned by signed integer multiply-add long long instruction multiplies each unsigned 8-bit element in the
two or four first source vectors with each signed 8-bit element in the two or four second source vectors, widens
each product to 32-bits and destructively adds these values to the corresponding 32-bit elements of the two or four
ZA quad-vector groups. The lowest of the four consecutive vector numbers forming the quad-vector group within
each half or each quarter of the ZA array are selected by the sum of the vector select register and immediate offset,
modulo half or quarter the number of ZA array vectors.

The VECTOR GROUP symbol, VGx2 or VGx4, indicates that the ZA operand consists of two or four ZA quad-vector
groups respectively. The VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source
code.

This instruction is unpredicated.

It has encodings from 2 classes: Two ZA quad-vectors and Four ZA quad-vectors

Two ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

0

22

1

21

Zm

20 17

0 0

16 15

Rv

14 13

0 0 0

12 10

Zn

9 6

0

5

0

4

0

3

1

2

0

1

o1

0

sz U S

USMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx2}], { <Zn1>.B-<Zn2>.B }, { <Zm1>.B-<Zm2>.B }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'0');
5 integer m = UInt(Zm:'0');
6 integer offset = UInt(o1:'00');
7 constant integer nreg = 2;

Four ZA quad-vectors
(FEAT_SME2)

1 1 0 0 0 0 0 1 1

31 23

0

22

1

21

Zm

20 18

0 1 0

17 15

Rv

14 13

0 0 0

12 10

Zn

9 7

0 0

6 5

0

4

0

3

1

2

0

1

o1

0

sz U S

USMLALL ZA.S[<Wv>, <offsf>:<offsl>{, VGx4}], { <Zn1>.B-<Zn4>.B }, { <Zm1>.B-<Zm4>.B }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer v = UInt('010':Rv);
4 integer n = UInt(Zn:'00');
5 integer m = UInt(Zm:'00');
6 integer offset = UInt(o1:'00');
7 constant integer nreg = 4;

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offsf> Is the vector select offset, pointing to first of four consecutive vectors, encoded as "o1" field
times 4.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

661

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<offsl> Is the vector select offset, pointing to last of four consecutive vectors, encoded as "o1" field
times 4 plus 3.

<Zn1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zn" times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm1> For the two ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 2.

For the four ZA quad-vectors variant: is the name of the first scalable vector register of a
multi-vector sequence, encoded as "Zm" times 4.

<Zm4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as
"Zm" times 4 plus 3.

<Zm2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zm" times 2 plus 1.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV nreg;
6 bits(32) vbase = X[v, 32];
7 integer vec = (UInt(vbase) + offset) MOD vstride;
8 bits(VL) result;
9 vec = vec - (vec MOD 4);

10
11 for r = 0 to nreg-1
12 bits(VL) operand1 = Z[n+r, VL];
13 bits(VL) operand2 = Z[m+r, VL];
14 for i = 0 to 3
15 bits(VL) operand3 = ZAvector[vec + i, VL];
16 for e = 0 to elements-1
17 integer element1 = UInt(Elem[operand1, 4 * e + i, esize DIV 4]);
18 integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]);
19 bits(esize) product = (element1 * element2)<esize-1:0>;
20 Elem[result, e, esize] = Elem[operand3, e, esize] + product;
21 ZAvector[vec + i, VL] = result;
22 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

662

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.275 USMOPA

Unsigned by signed integer sum of outer products and accumulate

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned by signed integer sum of outer products and accumulate instructions multiply the sub-matrix in the
first source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source
holds SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of
signed 8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of
unsigned 16-bit integer values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively added to the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit integer and
16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and accumulate to each of
the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 0

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

0

2

ZAda

1 0

u0 u1 S

USMOPA <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = FALSE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 1

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

0

4

0

3

ZAda

2 0

u0 u1 S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

663

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

USMOPA <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSMEI16I64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = FALSE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = FALSE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 3
17 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
18 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
19 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
20 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

664

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

665

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.276 USMOPS

Unsigned by signed integer sum of outer products and subtract

The 8-bit integer variant works with a 32-bit element ZA tile.

The 16-bit integer variant works with a 64-bit element ZA tile.

The unsigned by signed integer sum of outer products and subtract instructions multiply the sub-matrix in the first
source vector by the sub-matrix in the second source vector. In case of the 8-bit integer variant, the first source
holds SVLS×4 sub-matrix of unsigned 8-bit integer values, and the second source holds 4×SVLS sub-matrix of
signed 8-bit integer values. In case of the 16-bit integer variant, the first source holds SVLD×4 sub-matrix of
unsigned 16-bit integer values, and the second source holds 4×SVLD sub-matrix of signed 16-bit integer values.

Each source vector is independently predicated by a corresponding governing predicate. When an 8-bit source
element in case of 8-bit integer variant or a 16-bit source element in case of 16-bit integer variant is Inactive, it is
treated as having the value 0.

The resulting SVLS×SVLS widened 32-bit integer or SVLD×SVLD widened 64-bit integer sum of outer products
is then destructively subtracted from the 32-bit integer or 64-bit integer destination tile, respectively for 8-bit
integer and 16-bit integer instruction variants. This is equivalent to performing a 4-way dot product and subtract
from each of the destination tile elements.

In case of the 8-bit integer variant, each 32-bit container of the first source vector holds 4 consecutive column
elements of each row of a SVLS×4 sub-matrix, and each 32-bit container of the second source vector holds 4
consecutive row elements of each column of a 4×SVLS sub-matrix. In case of the 16-bit integer variant, each 64-bit
container of the first source vector holds 4 consecutive column elements of each row of a SVLD×4 sub-matrix, and
each 64-bit container of the second source vector holds 4 consecutive row elements of each column of a 4×SVLD
sub-matrix.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 0

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

0

2

ZAda

1 0

u0 u1 S

USMOPS <ZAda>.S, <Pn>/M, <Pm>/M, <Zn>.B, <Zm>.B

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 32;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = FALSE;

64-bit
(FEAT_SME_I16I64)

1 0

31 30

1 0 0 0 0

29 25

1

24

1 1

23 22

0

21

Zm

20 16

Pm

15 13

Pn

12 10

Zn

9 5

1

4

0

3

ZAda

2 0

u0 u1 S

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

666

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

USMOPS <ZAda>.D, <Pn>/M, <Pm>/M, <Zn>.H, <Zm>.H

1 if !HaveSMEI16I64() then UNDEFINED;
2 constant integer esize = 64;
3 integer a = UInt(Pn);
4 integer b = UInt(Pm);
5 integer n = UInt(Zn);
6 integer m = UInt(Zm);
7 integer da = UInt(ZAda);
8 boolean sub_op = TRUE;
9 boolean op1_unsigned = TRUE;

10 boolean op2_unsigned = FALSE;

Assembler Symbols

<ZAda> For the 32-bit variant: is the name of the ZA tile ZA0-ZA3, encoded in the "ZAda" field.

For the 64-bit variant: is the name of the ZA tile ZA0-ZA7, encoded in the "ZAda" field.

<Pn> Is the name of the first governing scalable predicate register P0-P7, encoded in the "Pn" field.

<Pm> Is the name of the second governing scalable predicate register P0-P7, encoded in the "Pm"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer dim = VL DIV esize;
5 bits(PL) mask1 = P[a, PL];
6 bits(PL) mask2 = P[b, PL];
7 bits(VL) operand1 = Z[n, VL];
8 bits(VL) operand2 = Z[m, VL];
9 bits(dim*dim*esize) operand3 = ZAtile[da, esize, dim*dim*esize];

10 bits(dim*dim*esize) result;
11 integer prod;
12
13 for row = 0 to dim-1
14 for col = 0 to dim-1
15 bits(esize) sum = Elem[operand3, row*dim+col, esize];
16 for k = 0 to 3
17 if ActivePredicateElement(mask1, 4*row + k, esize DIV 4) &&
18 ActivePredicateElement(mask2, 4*col + k, esize DIV 4) then
19 prod = (Int(Elem[operand1, 4*row + k, esize DIV 4], op1_unsigned) *
20 Int(Elem[operand2, 4*col + k, esize DIV 4], op2_unsigned));
21 if sub_op then prod = -prod;
22 sum = sum + prod;
23
24 Elem[result, row*dim+col, esize] = sum;
25
26 ZAtile[da, esize, dim*dim*esize] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

667

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

– The values of the data supplied in any of its operand registers when its governing predicate registers
contain the same value for each execution.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

668

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.277 USVDOT

Multi-vector unsigned by signed integer vertical dot-product by indexed element

The instruction operates on four ZA single-vector groups.

The unsigned by signed integer vertical dot product instruction computes the vertical dot product of corresponding
unsigned 8-bit elements from the four first source vectors and four signed 8-bit integer values in the corresponding
indexed 32-bit element of the second source vector. The widened dot product result is destructively added to the
corresponding 32-bit element of four ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits.

The vector numbers forming the single-vector group within each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the ZA operand consists of four ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i2

11 10

Zn

9 7

0

6

1

5

0

4

1

3

off3

2 0

U

USVDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV 4;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

669

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

9 bits(VL) operand2 = Z[m, VL];
10 bits(VL) result;
11
12 for r = 0 to 3
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 integer segmentbase = e - (e MOD eltspersegment);
16 integer s = segmentbase + index;
17 bits(esize) sum = Elem[operand3, e, esize];
18 for i = 0 to 3
19 bits(VL) operand1 = Z[n+i, VL];
20 integer element1 = UInt(Elem[operand1, 4 * e + r, esize DIV 4]);
21 integer element2 = SInt(Elem[operand2, 4 * s + i, esize DIV 4]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

670

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.278 UUNPK

Unpack and zero-extend multi-vector elements

Unpack elements from one or two source vectors and then zero-extend them to place in elements of twice their
size within the two or four destination vectors.

This instruction is unpredicated.

It has encodings from 2 classes: Two registers and Four registers

Two registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 0 0 1 0 1 1 1 1 0 0 0

21 10

Zn

9 5

Zd

4 1

1

0

U

UUNPK { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<Tb>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer n = UInt(Zn);
5 integer d = UInt(Zd:'0');
6 constant integer nreg = 2;
7 boolean unsigned = TRUE;

Four registers
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 1 0 1 0 1 1 1 1 0 0 0

21 10

Zn

9 6

0

5

Zd

4 2

0

1

1

0

U

UUNPK { <Zd1>.<T>-<Zd4>.<T> }, { <Zn1>.<Tb>-<Zn2>.<Tb> }

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer n = UInt(Zn:'0');
5 integer d = UInt(Zd:'00');
6 constant integer nreg = 4;
7 boolean unsigned = TRUE;

Assembler Symbols

<Zd1> For the two registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 2.

For the four registers variant: is the name of the first destination scalable vector register of a
multi-vector sequence, encoded as "Zd" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 RESERVED
01 H
10 S
11 D

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

671

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

<Tb> Is the size specifier, encoded in "size":
size <Tb>
00 RESERVED
01 B
10 H
11 S

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 constant integer hsize = esize DIV 2;
5 constant integer sreg = nreg DIV 2;
6 array [0..3] of bits(VL) results;
7
8 for r = 0 to sreg-1
9 bits(VL) operand = Z[n+r, VL];

10 for i = 0 to 1
11 for e = 0 to elements-1
12 bits(hsize) element = Elem[operand, i*elements + e, hsize];
13 Elem[results[2*r+i], e, esize] = Extend(element, esize, unsigned);
14
15 for r = 0 to nreg-1
16 Z[d+r, VL] = results[r];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

672

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.279 UVDOT (2-way)

Multi-vector unsigned integer vertical dot-product by indexed element

The instruction operates on two ZA single-vector groups.

The unsigned integer vertical dot product instruction computes the vertical dot product of the corresponding
two unsigned 16-bit integer values held in the two first source vectors and two unsigned 16-bit integer values
in the corresponding indexed 32-bit element of the second source vector. The widened dot product results are
destructively added to the corresponding 32-bit element of two ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the same
group position within each 128-bit vector segment. The index range is from 0 to 3, encoded in 2 bits.

The vector numbers forming the single-vector group within each half of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo half the number of ZA array vectors.

The VECTOR GROUP symbol VGx2 indicates that the ZA operand consists of two ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

SME2
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

0

15

Rv

14 13

0

12

i2

11 10

Zn

9 6

1

5

1

4

0

3

off3

2 0

U

UVDOT ZA.S[<Wv>, <offs>{, VGx2}], { <Zn1>.H-<Zn2>.H }, <Zm>.H[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'0');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> Is the element index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV 2;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

673

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

9 bits(VL) operand2 = Z[m, VL];
10 bits(VL) result;
11
12 for r = 0 to 1
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 integer segmentbase = e - (e MOD eltspersegment);
16 integer s = segmentbase + index;
17 bits(esize) sum = Elem[operand3, e, esize];
18 for i = 0 to 1
19 bits(VL) operand1 = Z[n+i, VL];
20 integer element1 = UInt(Elem[operand1, 2 * e + r, esize DIV 2]);
21 integer element2 = UInt(Elem[operand2, 2 * s + i, esize DIV 2]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

674

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.280 UVDOT (4-way)

Multi-vector unsigned integer vertical dot-product by indexed element

The instruction operates on four ZA single-vector groups.

The unsigned integer vertical dot product instruction computes the vertical dot product of the corresponding four
unsigned 8-bit or 16-bit integer values held in the four first source vectors and four unsigned 8-bit or 16-bit integer
values in the corresponding indexed 32-bit or 64-bit element of the second source vector. The widened dot product
results are destructively added to the corresponding 32-bit or 64-bit element of the four ZA single-vector groups.

The groups within the second source vector are specified using an immediate element index which selects the
same group position within each 128-bit vector segment. The index range is from 0 to one less than the number of
groups per 128-bit segment, encoded in 1 to 2 bits depending on the size of the group.

The vector numbers forming the single-vector group within each quarter of the ZA array are selected by the sum of
the vector select register and immediate offset, modulo quarter the number of ZA array vectors.

The VECTOR GROUP symbol VGx4 indicates that the ZA operand consists of four ZA single-vector groups. The
VECTOR GROUP symbol is preferred for disassembly, but optional in assembler source code.

This instruction is unpredicated.

ID_AA64SMFR0_EL1.I16I64 indicates whether the 16-bit integer variant is implemented.

It has encodings from 2 classes: 32-bit and 64-bit

32-bit
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

i2

11 10

Zn

9 7

0

6

1

5

1

4

0

3

off3

2 0

U

UVDOT ZA.S[<Wv>, <offs>{, VGx4}], { <Zn1>.B-<Zn4>.B }, <Zm>.B[<index>]

1 if !HaveSME2() then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 32;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i2);

64-bit
(FEAT_SME_I16I64)

1 1 0 0 0 0 0 1 1 1 0 1

31 20

Zm

19 16

1

15

Rv

14 13

0

12

1

11

i1

10

Zn

9 7

0 0

6 5

1

4

1

3

off3

2 0

U

UVDOT ZA.D[<Wv>, <offs>{, VGx4}], { <Zn1>.H-<Zn4>.H }, <Zm>.H[<index>]

1 if !(HaveSME2() && HaveSMEI16I64()) then UNDEFINED;
2 integer v = UInt('010':Rv);
3 constant integer esize = 64;
4 integer n = UInt(Zn:'00');
5 integer m = UInt('0':Zm);
6 integer offset = UInt(off3);
7 integer index = UInt(i1);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

675

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<Wv> Is the 32-bit name of the vector select register W8-W11, encoded in the "Rv" field.

<offs> Is the vector select offset, in the range 0 to 7, encoded in the "off3" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

<Zm> Is the name of the second source scalable vector register Z0-Z15, encoded in the "Zm" field.

<index> For the 32-bit variant: is the element index, in the range 0 to 3, encoded in the "i2" field.

For the 64-bit variant: is the element index, in the range 0 to 1, encoded in the "i1" field.

Operation
1 CheckStreamingSVEAndZAEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 integer vectors = VL DIV 8;
5 integer vstride = vectors DIV 4;
6 integer eltspersegment = 128 DIV esize;
7 bits(32) vbase = X[v, 32];
8 integer vec = (UInt(vbase) + offset) MOD vstride;
9 bits(VL) operand2 = Z[m, VL];

10 bits(VL) result;
11
12 for r = 0 to 3
13 bits(VL) operand3 = ZAvector[vec, VL];
14 for e = 0 to elements-1
15 integer segmentbase = e - (e MOD eltspersegment);
16 integer s = segmentbase + index;
17 bits(esize) sum = Elem[operand3, e, esize];
18 for i = 0 to 3
19 bits(VL) operand1 = Z[n+i, VL];
20 integer element1 = UInt(Elem[operand1, 4 * e + r, esize DIV 4]);
21 integer element2 = UInt(Elem[operand2, 4 * s + i, esize DIV 4]);
22 sum = sum + element1 * element2;
23 Elem[result, e, esize] = sum;
24 ZAvector[vec, VL] = result;
25 vec = vec + vstride;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

676

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.281 UZP (four registers)

Concatenate elements from four vectors

Concatenate every fourth element from each of the four source vectors and place them in the corresponding
elements of the four destination vectors.

This instruction is unpredicated.

It has encodings from 2 classes: 8-bit to 64-bit elements and 128-bit element

8-bit to 64-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 1 0 1 1 0 1 1 1 0 0 0

21 10

Zn

9 7

0 0

6 5

Zd

4 2

1

1

0

0

UZP { <Zd1>.<T>-<Zd4>.<T> }, { <Zn1>.<T>-<Zn4>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn:'00');
4 integer d = UInt(Zd:'00');

128-bit element
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0

31 10

Zn

9 7

0 0

6 5

Zd

4 2

1

1

0

0

UZP { <Zd1>.Q-<Zd4>.Q }, { <Zn1>.Q-<Zn4>.Q }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 128;
3 integer n = UInt(Zn:'00');
4 integer d = UInt(Zd:'00');

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

677

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 if VL < esize * 4 then UNDEFINED;
4 constant integer quads = VL DIV (esize * 4);
5 bits(VL) result0;
6 bits(VL) result1;
7 bits(VL) result2;
8 bits(VL) result3;
9

10 for r = 0 to 3
11 bits(VL) operand = Z[n+r, VL];
12 integer base = r * quads;
13 for q = 0 to quads-1
14 Elem[result0, base+q, esize] = Elem[operand, 4*q+0, esize];
15 Elem[result1, base+q, esize] = Elem[operand, 4*q+1, esize];
16 Elem[result2, base+q, esize] = Elem[operand, 4*q+2, esize];
17 Elem[result3, base+q, esize] = Elem[operand, 4*q+3, esize];
18
19 Z[d+0, VL] = result0;
20 Z[d+1, VL] = result1;
21 Z[d+2, VL] = result2;
22 Z[d+3, VL] = result3;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

678

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.282 UZP (two registers)

Concatenate elements from two vectors

Concatenate every second element from each of the first and second source vectors and place them in the
corresponding elements of the two destination vectors.

This instruction is unpredicated.

It has encodings from 2 classes: 8-bit to 64-bit elements and 128-bit element

8-bit to 64-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 16

1 1 0 1 0 0

15 10

Zn

9 5

Zd

4 1

1

0

UZP { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd:'0');

128-bit element
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1

31 21

Zm

20 16

1 1 0 1 0 1

15 10

Zn

9 5

Zd

4 1

1

0

UZP { <Zd1>.Q-<Zd2>.Q }, <Zn>.Q, <Zm>.Q

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 128;
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd:'0');

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

679

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 if VL < esize * 2 then UNDEFINED;
4 constant integer pairs = VL DIV (esize * 2);
5 bits(VL) result0;
6 bits(VL) result1;
7
8 for r = 0 to 1
9 integer base = r * pairs;

10 bits(VL) operand = if r == 0 then Z[n, VL] else Z[m, VL];
11 for p = 0 to pairs-1
12 Elem[result0, base+p, esize] = Elem[operand, 2*p+0, esize];
13 Elem[result1, base+p, esize] = Elem[operand, 2*p+1, esize];
14
15 Z[d+0, VL] = result0;
16 Z[d+1, VL] = result1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

680

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.283 WHILEGE

While decrementing signed scalar greater than or equal to scalar (predicate-as-counter)

Generate a predicate for a group of two or four vectors that starting from the highest numbered element of the
group is true while the decrementing value of the first, signed scalar operand is greater than or equal to the second
scalar operand and false thereafter down to the lowest numbered element of the group.

If the second scalar operand is equal to the minimum signed integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SME2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1

15 14

vl

13

0

12

0

11

0

10

Rn

9 5

1

4

0

3

PNd

2 0

U lt eq

WHILEGE <PNd>.<T>, <Xn>, <Xm>, <vl>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d = UInt('1':PNd);
7 boolean unsigned = FALSE;
8 boolean invert = TRUE;
9 SVECmp op = Cmp_GE;

10 integer width = 2 << UInt(vl);

Assembler Symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in "vl":
vl <vl>
0 VLx2
1 VLx4

Operation

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

681

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = width * (VL DIV esize);
5 bits(rsize) operand1 = X[n, rsize];
6 bits(rsize) operand2 = X[m, rsize];
7 bits(PL) result;
8 boolean last = TRUE;
9 integer count = 0;

10
11 for e = elements-1 downto 0
12 boolean cond;
13 case op of
14 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
15 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));
16
17 last = last && cond;
18 if last then count = count + 1;
19 operand1 = operand1 - 1;
20
21 result = EncodePredCount(esize, elements, count, invert, PL);
22 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
23 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

682

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.284 WHILEGT

While decrementing signed scalar greater than scalar (predicate-as-counter)

Generate a predicate for a group of two or four vectors that starting from the highest numbered element of the
group is true while the decrementing value of the first, signed scalar operand is greater than the second scalar
operand and false thereafter down to the lowest numbered element of the group.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SME2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1

15 14

vl

13

0

12

0

11

0

10

Rn

9 5

1

4

1

3

PNd

2 0

U lt eq

WHILEGT <PNd>.<T>, <Xn>, <Xm>, <vl>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d = UInt('1':PNd);
7 boolean unsigned = FALSE;
8 boolean invert = TRUE;
9 SVECmp op = Cmp_GT;

10 integer width = 2 << UInt(vl);

Assembler Symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in "vl":
vl <vl>
0 VLx2
1 VLx4

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

683

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 constant integer elements = width * (VL DIV esize);
5 bits(rsize) operand1 = X[n, rsize];
6 bits(rsize) operand2 = X[m, rsize];
7 bits(PL) result;
8 boolean last = TRUE;
9 integer count = 0;

10
11 for e = elements-1 downto 0
12 boolean cond;
13 case op of
14 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
15 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));
16
17 last = last && cond;
18 if last then count = count + 1;
19 operand1 = operand1 - 1;
20
21 result = EncodePredCount(esize, elements, count, invert, PL);
22 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
23 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

684

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.285 WHILEHI

While decrementing unsigned scalar higher than scalar (predicate-as-counter)

Generate a predicate for a group of two or four vectors that starting from the highest numbered element of the
group is true while the decrementing value of the first, unsigned scalar operand is higher than the second scalar
operand and false thereafter down to the lowest numbered element of the group.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SME2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1

15 14

vl

13

0

12

1

11

0

10

Rn

9 5

1

4

1

3

PNd

2 0

U lt eq

WHILEHI <PNd>.<T>, <Xn>, <Xm>, <vl>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d = UInt('1':PNd);
7 boolean unsigned = TRUE;
8 boolean invert = TRUE;
9 SVECmp op = Cmp_GT;

10 integer width = 2 << UInt(vl);

Assembler Symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in "vl":
vl <vl>
0 VLx2
1 VLx4

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

685

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 constant integer elements = width * (VL DIV esize);
5 bits(rsize) operand1 = X[n, rsize];
6 bits(rsize) operand2 = X[m, rsize];
7 bits(PL) result;
8 boolean last = TRUE;
9 integer count = 0;

10
11 for e = elements-1 downto 0
12 boolean cond;
13 case op of
14 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
15 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));
16
17 last = last && cond;
18 if last then count = count + 1;
19 operand1 = operand1 - 1;
20
21 result = EncodePredCount(esize, elements, count, invert, PL);
22 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
23 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

686

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.286 WHILEHS

While decrementing unsigned scalar higher or same as scalar (predicate-as-counter)

Generate a predicate for a group of two or four vectors that starting from the highest numbered element of the
group is true while the decrementing value of the first, unsigned scalar operand is higher or same as the second
scalar operand and false thereafter down to the lowest numbered element of the group.

If the second scalar operand is equal to the minimum unsigned integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SME2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1

15 14

vl

13

0

12

1

11

0

10

Rn

9 5

1

4

0

3

PNd

2 0

U lt eq

WHILEHS <PNd>.<T>, <Xn>, <Xm>, <vl>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d = UInt('1':PNd);
7 boolean unsigned = TRUE;
8 boolean invert = TRUE;
9 SVECmp op = Cmp_GE;

10 integer width = 2 << UInt(vl);

Assembler Symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in "vl":
vl <vl>
0 VLx2
1 VLx4

Operation

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

687

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = width * (VL DIV esize);
5 bits(rsize) operand1 = X[n, rsize];
6 bits(rsize) operand2 = X[m, rsize];
7 bits(PL) result;
8 boolean last = TRUE;
9 integer count = 0;

10
11 for e = elements-1 downto 0
12 boolean cond;
13 case op of
14 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
15 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));
16
17 last = last && cond;
18 if last then count = count + 1;
19 operand1 = operand1 - 1;
20
21 result = EncodePredCount(esize, elements, count, invert, PL);
22 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
23 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

688

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.287 WHILELE

While incrementing signed scalar less than or equal to scalar (predicate-as-counter)

Generate a predicate for a group of two or four vectors that starting from the lowest numbered element of the
group is true while the incrementing value of the first, signed scalar operand is less than or equal to the second
scalar operand and false thereafter up to the highest numbered element of the group.

If the second scalar operand is equal to the maximum signed integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SME2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1

15 14

vl

13

0

12

0

11

1

10

Rn

9 5

1

4

1

3

PNd

2 0

U lt eq

WHILELE <PNd>.<T>, <Xn>, <Xm>, <vl>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d = UInt('1':PNd);
7 boolean unsigned = FALSE;
8 boolean invert = FALSE;
9 SVECmp op = Cmp_LE;

10 integer width = 2 << UInt(vl);

Assembler Symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in "vl":
vl <vl>
0 VLx2
1 VLx4

Operation

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

689

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = width * (VL DIV esize);
5 bits(rsize) operand1 = X[n, rsize];
6 bits(rsize) operand2 = X[m, rsize];
7 bits(PL) result;
8 boolean last = TRUE;
9 integer count = 0;

10
11 for e = 0 to elements-1
12 boolean cond;
13 case op of
14 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
15 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));
16
17 last = last && cond;
18 if last then count = count + 1;
19 operand1 = operand1 + 1;
20
21 result = EncodePredCount(esize, elements, count, invert, PL);
22 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
23 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

690

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.288 WHILELO

While incrementing unsigned scalar lower than scalar (predicate-as-counter)

Generate a predicate for a group of two or four vectors that starting from the lowest numbered element of the
group is true while the incrementing value of the first, unsigned scalar operand is lower than the second scalar
operand and false thereafter up to the highest numbered element of the group.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SME2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1

15 14

vl

13

0

12

1

11

1

10

Rn

9 5

1

4

0

3

PNd

2 0

U lt eq

WHILELO <PNd>.<T>, <Xn>, <Xm>, <vl>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d = UInt('1':PNd);
7 boolean unsigned = TRUE;
8 boolean invert = FALSE;
9 SVECmp op = Cmp_LT;

10 integer width = 2 << UInt(vl);

Assembler Symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in "vl":
vl <vl>
0 VLx2
1 VLx4

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

691

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 constant integer elements = width * (VL DIV esize);
5 bits(rsize) operand1 = X[n, rsize];
6 bits(rsize) operand2 = X[m, rsize];
7 bits(PL) result;
8 boolean last = TRUE;
9 integer count = 0;

10
11 for e = 0 to elements-1
12 boolean cond;
13 case op of
14 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
15 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));
16
17 last = last && cond;
18 if last then count = count + 1;
19 operand1 = operand1 + 1;
20
21 result = EncodePredCount(esize, elements, count, invert, PL);
22 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
23 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

692

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.289 WHILELS

While incrementing unsigned scalar lower or same as scalar (predicate-as-counter)

Generate a predicate for a group of two or four vectors that starting from the lowest numbered element of the
group is true while the incrementing value of the first, unsigned scalar operand is lower or same as the second
scalar operand and false thereafter up to the highest numbered element of the group.

If the second scalar operand is equal to the maximum unsigned integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SME2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1

15 14

vl

13

0

12

1

11

1

10

Rn

9 5

1

4

1

3

PNd

2 0

U lt eq

WHILELS <PNd>.<T>, <Xn>, <Xm>, <vl>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d = UInt('1':PNd);
7 boolean unsigned = TRUE;
8 boolean invert = FALSE;
9 SVECmp op = Cmp_LE;

10 integer width = 2 << UInt(vl);

Assembler Symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in "vl":
vl <vl>
0 VLx2
1 VLx4

Operation

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

693

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = width * (VL DIV esize);
5 bits(rsize) operand1 = X[n, rsize];
6 bits(rsize) operand2 = X[m, rsize];
7 bits(PL) result;
8 boolean last = TRUE;
9 integer count = 0;

10
11 for e = 0 to elements-1
12 boolean cond;
13 case op of
14 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
15 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));
16
17 last = last && cond;
18 if last then count = count + 1;
19 operand1 = operand1 + 1;
20
21 result = EncodePredCount(esize, elements, count, invert, PL);
22 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
23 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

694

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.290 WHILELT

While incrementing signed scalar less than scalar (predicate-as-counter)

Generate a predicate for a group of two or four vectors that starting from the lowest numbered element of the
group is true while the incrementing value of the first, signed scalar operand is less than the second scalar operand
and false thereafter up to the highest numbered element of the group.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size.

The predicate result is placed in the predicate destination register using the predicate-as-counter encoding. Sets the
FIRST (N), NONE (Z), !LAST (C) condition flags based on the predicate result, and the V flag to zero.

SME2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1

15 14

vl

13

0

12

0

11

1

10

Rn

9 5

1

4

0

3

PNd

2 0

U lt eq

WHILELT <PNd>.<T>, <Xn>, <Xm>, <vl>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d = UInt('1':PNd);
7 boolean unsigned = FALSE;
8 boolean invert = FALSE;
9 SVECmp op = Cmp_LT;

10 integer width = 2 << UInt(vl);

Assembler Symbols

<PNd> Is the name of the destination scalable predicate register PN8-PN15, with predicate-as-counter
encoding, encoded in the "PNd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

<vl> Is the vl specifier, encoded in "vl":
vl <vl>
0 VLx2
1 VLx4

Operation
1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

695

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

4 constant integer elements = width * (VL DIV esize);
5 bits(rsize) operand1 = X[n, rsize];
6 bits(rsize) operand2 = X[m, rsize];
7 bits(PL) result;
8 boolean last = TRUE;
9 integer count = 0;

10
11 for e = 0 to elements-1
12 boolean cond;
13 case op of
14 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
15 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));
16
17 last = last && cond;
18 if last then count = count + 1;
19 operand1 = operand1 + 1;
20
21 result = EncodePredCount(esize, elements, count, invert, PL);
22 PSTATE.<N,Z,C,V> = PredCountTest(elements, count, invert);
23 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

696

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.291 ZERO (tile)

Zero a list of 64-bit element ZA tiles

Zeroes all bytes within each of the up to eight listed 64-bit element tiles named ZA0.D to ZA7.D, leaving the other
64-bit element tiles unmodified.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

For programmer convenience an assembler must also accept the names of 32-bit, 16-bit, and 8-bit element tiles
which are converted into the corresponding set of 64-bit element tiles.

In accordance with the architecturally defined mapping between different element size tiles:

• Zeroing the 8-bit element tile name ZA0.B, or the entire array name ZA, is equivalent to zeroing all eight
64-bit element tiles named ZA0.D to ZA7.D.

• Zeroing the 16-bit element tile name ZA0.H is equivalent to zeroing 64-bit element tiles named ZA0.D,
ZA2.D, ZA4.D, and ZA6.D.

• Zeroing the 16-bit element tile name ZA1.H is equivalent to zeroing 64-bit element tiles named ZA1.D,
ZA3.D, ZA5.D, and ZA7.D.

• Zeroing the 32-bit element tile name ZA0.S is equivalent to zeroing 64-bit element tiles named ZA0.D and
ZA4.D.

• Zeroing the 32-bit element tile name ZA1.S is equivalent to zeroing 64-bit element tiles named ZA1.D and
ZA5.D.

• Zeroing the 32-bit element tile name ZA2.S is equivalent to zeroing 64-bit element tiles named ZA2.D and
ZA6.D.

• Zeroing the 32-bit element tile name ZA3.S is equivalent to zeroing 64-bit element tiles named ZA3.D and
ZA7.D.

The preferred disassembly of this instruction uses the shortest list of tile names that represent the encoded
immediate mask.

For example:

• An immediate which encodes 64-bit element tiles ZA0.D, ZA1.D, ZA4.D, and ZA5.D is disassembled as
{ZA0.S, ZA1.S}.

• An immediate which encodes 64-bit element tiles ZA0.D, ZA2.D, ZA4.D, and ZA6.D is disassembled as
{ZA0.H}.

• An all-ones immediate is disassembled as {ZA}.

• An all-zeros immediate is disassembled as an empty list { }.

SME
(FEAT_SME)

1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

31 10

0 0

9 8

imm8

7 0

ZERO { <mask> }

1 if !HaveSME() then UNDEFINED;
2 bits(8) mask = imm8;
3 constant integer esize = 64;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

697

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

Assembler Symbols

<mask> Is a list of up to eight 64-bit element tile names separated by commas, encoded in the "imm8"
field.

Operation
1 CheckSMEAndZAEnabled();
2 constant integer SVL = CurrentSVL;
3 constant integer dim = SVL DIV esize;
4 bits(dim*dim*esize) result = Zeros(dim*dim*esize);
5
6 if HaveTME() && TSTATE.depth > 0 then
7 FailTransaction(TMFailure_ERR, FALSE);
8
9 for i = 0 to 7

10 if mask<i> == '1' then ZAtile[i, esize, dim*dim*esize] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

698

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.292 ZERO (ZT0)

Zero ZT0

Zero all bytes of the ZT0 register.

This instruction does not require the PE to be in Streaming SVE mode, and it is expected that this instruction will
not experience a significant slowdown due to contention with other PEs that are executing in Streaming SVE mode.

SME2
(FEAT_SME2)

1 1

31 30

0 0 0 0 0 0 0 1 0 0

29 20

1 0 0 0 0 0 0 0 0 0

19 10

0 0 0 0 0 0

9 4

0

3

0

2

0

1

1

0

ZERO { ZT0 }

1 if !HaveSME2() then UNDEFINED;

Operation
1 CheckSMEEnabled();
2 CheckSMEZT0Enabled();
3
4 if HaveTME() && TSTATE.depth > 0 then
5 FailTransaction(TMFailure_ERR, FALSE);
6
7 ZT0[512] = Zeros(512);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

699

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.293 ZIP (four registers)

Interleave elements from four vectors

Place the four-way interleaved elements from the four source vectors in the corresponding elements of the four
destination vectors.

This instruction is unpredicated.

It has encodings from 2 classes: 8-bit to 64-bit elements and 128-bit element

8-bit to 64-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1 1 0 1 1 0 1 1 1 0 0 0

21 10

Zn

9 7

0 0

6 5

Zd

4 2

0

1

0

0

ZIP { <Zd1>.<T>-<Zd4>.<T> }, { <Zn1>.<T>-<Zn4>.<T> }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn:'00');
4 integer d = UInt(Zd:'00');

128-bit element
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0

31 10

Zn

9 7

0 0

6 5

Zd

4 2

0

1

0

0

ZIP { <Zd1>.Q-<Zd4>.Q }, { <Zn1>.Q-<Zn4>.Q }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 128;
3 integer n = UInt(Zn:'00');
4 integer d = UInt(Zd:'00');

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 4.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zd4> Is the name of the fourth destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 4 plus 3.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4.

<Zn4> Is the name of the fourth scalable vector register of a multi-vector sequence, encoded as "Zn"
times 4 plus 3.

Operation

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

700

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 if VL < esize * 4 then UNDEFINED;
4 constant integer quads = VL DIV (esize * 4);
5 bits(VL) operand0 = Z[n, VL];
6 bits(VL) operand1 = Z[n+1, VL];
7 bits(VL) operand2 = Z[n+2, VL];
8 bits(VL) operand3 = Z[n+3, VL];
9 bits(VL) result;

10
11 for r = 0 to 3
12 integer base = r * quads;
13 for q = 0 to quads-1
14 Elem[result, 4*q+0, esize] = Elem[operand0, base+q, esize];
15 Elem[result, 4*q+1, esize] = Elem[operand1, base+q, esize];
16 Elem[result, 4*q+2, esize] = Elem[operand2, base+q, esize];
17 Elem[result, 4*q+3, esize] = Elem[operand3, base+q, esize];
18 Z[d+r, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

701

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

D1.1.294 ZIP (two registers)

Interleave elements from two vectors

Place the two-way interleaved elements from the first and second source vectors in the corresponding elements of
the two destination vectors.

This instruction is unpredicated.

It has encodings from 2 classes: 8-bit to 64-bit elements and 128-bit element

8-bit to 64-bit elements
(FEAT_SME2)

1 1 0 0 0 0 0 1

31 24

size

23 22

1

21

Zm

20 16

1 1 0 1 0 0

15 10

Zn

9 5

Zd

4 1

0

0

ZIP { <Zd1>.<T>-<Zd2>.<T> }, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd:'0');

128-bit element
(FEAT_SME2)

1 1 0 0 0 0 0 1 0 0 1

31 21

Zm

20 16

1 1 0 1 0 1

15 10

Zn

9 5

Zd

4 1

0

0

ZIP { <Zd1>.Q-<Zd2>.Q }, <Zn>.Q, <Zm>.Q

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 128;
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd:'0');

Assembler Symbols

<Zd1> Is the name of the first destination scalable vector register of a multi-vector sequence, encoded
as "Zd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zd2> Is the name of the second destination scalable vector register of a multi-vector sequence,
encoded as "Zd" times 2 plus 1.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

702

Chapter D1. SME instructions
D1.1. SME and SME2 data-processing instructions

1 CheckStreamingSVEEnabled();
2 constant integer VL = CurrentVL;
3 if VL < esize * 2 then UNDEFINED;
4 constant integer pairs = VL DIV (esize * 2);
5 bits(VL) operand0 = Z[n, VL];
6 bits(VL) operand1 = Z[m, VL];
7 bits(VL) result;
8
9 for r = 0 to 1

10 integer base = r * pairs;
11 for p = 0 to pairs-1
12 Elem[result, 2*p+0, esize] = Elem[operand0, base+p, esize];
13 Elem[result, 2*p+1, esize] = Elem[operand1, base+p, esize];
14 Z[d+r, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

703

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2 SVE2 data-processing instructions

The following SVE2 instructions are added by the SME or SME2 architecture, and are available when the PE is in
Streaming SVE mode.

D1.2.1 BFMLSLB (vectors)

BFloat16 floating-point multiply-subtract long from single-precision (bottom)

This BFloat16 floating-point multiply-subtract long instruction widens the even-numbered BFloat16 elements in
the first source vector and the corresponding elements in the second source vector to single-precision format and
then destructively multiplies and subtracts these values without intermediate rounding from the single-precision
elements of the destination vector that overlap with the corresponding BFloat16 elements in the source vectors.
This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 1 0 0 1 0 0 1

31 23

1

22

1

21

Zm

20 16

1 0

15 14

1

13

0 0

12 11

0

10

Zn

9 5

Zda

4 0

o2 op T

BFMLSLB <Zda>.S, <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn);
3 integer m = UInt(Zm);
4 integer da = UInt(Zda);
5 boolean op1_neg = TRUE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV 32;
5 bits(VL) operand1 = Z[n, VL];
6 bits(VL) operand2 = Z[m, VL];
7 bits(VL) operand3 = Z[da, VL];
8 bits(VL) result;
9

10 for e = 0 to elements-1
11 bits(16) element1 = Elem[operand1, 2 * e + 0, 16];
12 bits(16) element2 = Elem[operand2, 2 * e + 0, 16];
13 bits(32) element3 = Elem[operand3, e, 32];
14 if op1_neg then element1 = BFNeg(element1);
15 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR[]);
16
17 Z[da, VL] = result;

Operational information

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

704

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

705

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.2 BFMLSLB (indexed)

BFloat16 floating-point multiply-subtract long from single-precision (bottom, indexed)

This BFloat16 floating-point multiply-subtract long instruction widens the even-numbered BFloat16 elements
in the first source vector and the indexed element from the corresponding 128-bit segment in the second source
vector to single-precision format and then destructively multiplies and subtracts these values without intermediate
rounding from the single-precision elements of the destination vector that overlap with the corresponding BFloat16
elements in the first source vector. This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 1 0 0 1 0 0 1

31 23

1

22

1

21

i3h

20 19

Zm

18 16

0 1

15 14

1

13

0

12

i3l

11

0

10

Zn

9 5

Zda

4 0

o2 op T

BFMLSLB <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn);
3 integer m = UInt(Zm);
4 integer da = UInt(Zda);
5 integer index = UInt(i3h:i3l);
6 boolean op1_neg = TRUE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV 32;
5 constant integer eltspersegment = 128 DIV 32;
6 bits(VL) operand1 = Z[n, VL];
7 bits(VL) operand2 = Z[m, VL];
8 bits(VL) operand3 = Z[da, VL];
9 bits(VL) result;

10
11 for e = 0 to elements-1
12 integer segmentbase = e - (e MOD eltspersegment);
13 integer s = 2 * segmentbase + index;
14 bits(16) element1 = Elem[operand1, 2 * e + 0, 16];
15 bits(16) element2 = Elem[operand2, s, 16];
16 bits(32) element3 = Elem[operand3, e, 32];
17 if op1_neg then element1 = BFNeg(element1);
18 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR[]);
19
20 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

706

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

707

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.3 BFMLSLT (vectors)

BFloat16 floating-point multiply-subtract long from single-precision (top)

This BFloat16 floating-point multiply-subtract long instruction widens the odd-numbered BFloat16 elements in
the first source vector and the corresponding elements in the second source vector to single-precision format and
then destructively multiplies and subtracts these values without intermediate rounding from the single-precision
elements of the destination vector that overlap with the corresponding BFloat16 elements in the source vectors.
This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 1 0 0 1 0 0 1

31 23

1

22

1

21

Zm

20 16

1 0

15 14

1

13

0 0

12 11

1

10

Zn

9 5

Zda

4 0

o2 op T

BFMLSLT <Zda>.S, <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn);
3 integer m = UInt(Zm);
4 integer da = UInt(Zda);
5 boolean op1_neg = TRUE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV 32;
5 bits(VL) operand1 = Z[n, VL];
6 bits(VL) operand2 = Z[m, VL];
7 bits(VL) operand3 = Z[da, VL];
8 bits(VL) result;
9

10 for e = 0 to elements-1
11 bits(16) element1 = Elem[operand1, 2 * e + 1, 16];
12 bits(16) element2 = Elem[operand2, 2 * e + 1, 16];
13 bits(32) element3 = Elem[operand3, e, 32];
14 if op1_neg then element1 = BFNeg(element1);
15 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR[]);
16
17 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

708

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

709

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.4 BFMLSLT (indexed)

BFloat16 floating-point multiply-subtract long from single-precision (top, indexed)

This BFloat16 floating-point multiply-subtract long instruction widens the odd-numbered BFloat16 elements in the
first source vector and the indexed element from the corresponding 128-bit segment in the second source vector to
single-precision format and then destructively multiplies and subtracts these values without intermediate rounding
from the single-precision elements of the destination vector that overlap with the corresponding BFloat16 elements
in the first source vector. This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 1 0 0 1 0 0 1

31 23

1

22

1

21

i3h

20 19

Zm

18 16

0 1

15 14

1

13

0

12

i3l

11

1

10

Zn

9 5

Zda

4 0

o2 op T

BFMLSLT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn);
3 integer m = UInt(Zm);
4 integer da = UInt(Zda);
5 integer index = UInt(i3h:i3l);
6 boolean op1_neg = TRUE;

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 7, encoded in the "i3h:i3l" fields.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV 32;
5 constant integer eltspersegment = 128 DIV 32;
6 bits(VL) operand1 = Z[n, VL];
7 bits(VL) operand2 = Z[m, VL];
8 bits(VL) operand3 = Z[da, VL];
9 bits(VL) result;

10
11 for e = 0 to elements-1
12 integer segmentbase = e - (e MOD eltspersegment);
13 integer s = 2 * segmentbase + index;
14 bits(16) element1 = Elem[operand1, 2 * e + 1, 16];
15 bits(16) element2 = Elem[operand2, s, 16];
16 bits(32) element3 = Elem[operand3, e, 32];
17 if op1_neg then element1 = BFNeg(element1);
18 Elem[result, e, 32] = BFMulAddH(element3, element1, element2, FPCR[]);
19
20 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

710

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

711

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.5 FCLAMP

Floating-point clamp to minimum/maximum number

Clamp each floating-point element in the destination vector to between the floating-point minimum value in the
corresponding element of the first source vector and the floating-point maximum value in the corresponding
element of the second source vector and destructively place the clamped results in the corresponding elements of
the destination vector. If at least one element value contributing to a result is numeric and the others are either
numeric or a quiet NaN, then the result is the numeric value. This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 1 0 0 1 0 0

31 24

size

23 22

1

21

Zm

20 16

0 0 1 0 0 1

15 10

Zn

9 5

Zd

4 0

FCLAMP <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME2() then UNDEFINED;
2 if size == '00' then UNDEFINED;
3 constant integer esize = 8 << UInt(size);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 RESERVED
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(VL) result;
6 bits(VL) operand1 = Z[n, VL];
7 bits(VL) operand2 = Z[m, VL];
8 bits(VL) operand3 = Z[d, VL];
9

10 for e = 0 to elements-1
11 bits(esize) element1 = Elem[operand1, e, esize];
12 bits(esize) element2 = Elem[operand2, e, esize];
13 bits(esize) element3 = Elem[operand3, e, esize];
14 Elem[result, e, esize] = FPMinNum(FPMaxNum(element1, element3, FPCR[]), element2,

↪→FPCR[]);
15 Z[d, VL] = result;

Operational information

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

712

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

713

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.6 FDOT (vectors)

Half-precision floating-point dot product

This instruction computes the fused sum-of-products of a pair of half-precision floating-point values held in each
32-bit element of the first source and second source vectors, without intermediate rounding, and then destructively
adds the single-precision sum-of-products to the corresponding single-precision element of the destination vector.

This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 1 0 0 1 0 0 0

31 23

0

22

1

21

Zm

20 16

1 0

15 14

0

13

0 0

12 11

0

10

Zn

9 5

Zda

4 0

FDOT <Zda>.S, <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn);
3 integer m = UInt(Zm);
4 integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV 32;
5 bits(VL) operand1 = Z[n, VL];
6 bits(VL) operand2 = Z[m, VL];
7 bits(VL) operand3 = Z[da, VL];
8 bits(VL) result;
9

10 for e = 0 to elements-1
11 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
12 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
13 bits(16) elt2_a = Elem[operand2, 2 * e + 0, 16];
14 bits(16) elt2_b = Elem[operand2, 2 * e + 1, 16];
15 bits(32) sum = Elem[operand3, e, 32];
16
17 sum = FPDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
18 Elem[result, e, 32] = sum;
19
20 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

714

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

715

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.7 FDOT (indexed)

Half-precision floating-point indexed dot product

This instruction computes the fused sum-of-products of a pair of half-precision floating-point values held in each
32-bit element of the first source vector and a pair of half-precision floating-point values in an indexed 32-bit
element of the second source vector, without intermediate rounding, and then destructively adds the single-precision
sum-of-products to the corresponding single-precision element of the destination vector.

The half-precision floating-point pairs within the second source vector are specified using an immediate index
which selects the same pair position within each 128-bit vector segment. The index range is from 0 to 3.

This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 1 0 0 1 0 0 0

31 23

0

22

1

21

i2

20 19

Zm

18 16

0 1 0 0

15 12

0

11

0

10

Zn

9 5

Zda

4 0

FDOT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

1 if !HaveSME2() then UNDEFINED;
2 integer n = UInt(Zn);
3 integer m = UInt(Zm);
4 integer da = UInt(Zda);
5 integer index = UInt(i2);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index, in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV 32;
5 constant integer eltspersegment = 128 DIV 32;
6 bits(VL) operand1 = Z[n, VL];
7 bits(VL) operand2 = Z[m, VL];
8 bits(VL) operand3 = Z[da, VL];
9 bits(VL) result;

10
11 for e = 0 to elements-1
12 integer segmentbase = e - (e MOD eltspersegment);
13 integer s = segmentbase + index;
14 bits(16) elt1_a = Elem[operand1, 2 * e + 0, 16];
15 bits(16) elt1_b = Elem[operand1, 2 * e + 1, 16];
16 bits(16) elt2_a = Elem[operand2, 2 * s + 0, 16];
17 bits(16) elt2_b = Elem[operand2, 2 * s + 1, 16];
18 bits(32) sum = Elem[operand3, e, 32];
19
20 sum = FPDotAdd(sum, elt1_a, elt1_b, elt2_a, elt2_b, FPCR[]);
21 Elem[result, e, 32] = sum;
22
23 Z[da, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

716

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

717

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.8 PFALSE

Set all predicate elements to false

Set all elements in the destination predicate to false.

For programmer convenience, an assembler must also accept predicate-as-counter register name for the destination
predicate register.

0 0 1 0 0 1 0 1

31 24

0

23

0

22

0 1 1 0 0 0 1 1 1 0 0 1

21 10

0 0 0 0 0 0

9 4

Pd

3 0

S

PFALSE <Pd>.B

1 if !HaveSVE() && !HaveSME() then UNDEFINED;
2 integer d = UInt(Pd);

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 P[d, PL] = Zeros(PL);

Operational information

If FEAT_SVE2 is implemented or FEAT_SME is implemented, then if PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

718

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.9 PSEL

Predicate select between predicate register or all-false

If the indexed element of the second source predicate is true, place the contents of the first source predicate register
into the destination predicate register, otherwise set the destination predicate to all-false. The indexed element is
determined by the sum of a general-purpose index register and an immediate, modulo the number of elements.
Does not set the condition flags.

For programmer convenience, an assembler must also accept predicate-as-counter register names for the destination
predicate register and the first source predicate register.

SVE2
(FEAT_SME)

0 0 1 0 0 1 0 1

31 24

i1

23 22

1

21

tszl

20 18

Rv

17 16

0 1

15 14

Pn

13 10

0

9

Pm

8 5

0

4

Pd

3 0

tszh S

PSEL <Pd>, <Pn>, <Pm>.<T>[<Wv>, <imm>]

1 if !HaveSME() then UNDEFINED;
2 bits(5) imm5 = i1:tszh:tszl;
3 integer esize;
4 integer imm;
5 case tszh:tszl of
6 when '0000' UNDEFINED;
7 when '1000' esize = 64; imm = UInt(imm5<4>);
8 when 'x100' esize = 32; imm = UInt(imm5<4:3>);
9 when 'xx10' esize = 16; imm = UInt(imm5<4:2>);

10 when 'xxx1' esize = 8; imm = UInt(imm5<4:1>);
11 integer n = UInt(Pn);
12 integer m = UInt(Pm);
13 integer d = UInt(Pd);
14 integer v = UInt('011':Rv);

Assembler Symbols

<Pd> Is the name of the destination scalable predicate register, encoded in the "Pd" field.

<Pn> Is the name of the first source scalable predicate register, encoded in the "Pn" field.

<Pm> Is the name of the second source scalable predicate register, encoded in the "Pm" field.

<T> Is the size specifier, encoded in "tszh:tszl":
tszh tszl <T>
0 000 RESERVED
x xx1 B
x x10 H
x 100 S
1 000 D

<Wv> Is the 32-bit name of the vector select register W12-W15, encoded in the "Rv" field.

<imm> Is the element index, in the range 0 to one less than the number of vector elements in a
128-bit vector register, encoded in "i1:tszh:tszl".

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

719

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

4 constant integer elements = VL DIV esize;
5 bits(PL) operand1 = P[n, PL];
6 bits(PL) operand2 = P[m, PL];
7 bits(32) idx = X[v, 32];
8 integer element = (UInt(idx) + imm) MOD elements;
9 bits(PL) result;

10
11 if ActivePredicateElement(operand2, element, esize) then
12 result = operand1;
13 else
14 result = Zeros(PL);
15
16 P[d, PL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

720

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.10 REVD

Reverse 64-bit doublewords in elements (predicated)

Reverse the order of 64-bit doublewords within each active element of the source vector, and place the results in
the corresponding elements of the destination vector. Inactive elements in the destination vector register remain
unmodified.

SVE2
(FEAT_SME)

0 0 0 0 0 1 0 1

31 24

0

23

0

22

1 0 1 1 1 0 1 0 0

21 13

Pg

12 10

Zn

9 5

Zd

4 0

size<1> size<0>

REVD <Zd>.Q, <Pg>/M, <Zn>.Q

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 128;
3 integer g = UInt(Pg);
4 integer n = UInt(Zn);
5 integer d = UInt(Zd);
6 constant integer swsize = 64;

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Pg> Is the name of the governing scalable predicate register P0-P7, encoded in the "Pg" field.

<Zn> Is the name of the source scalable vector register, encoded in the "Zn" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(PL) mask = P[g, PL];
6 bits(VL) operand = if AnyActiveElement(mask, esize) then Z[n, VL] else Zeros(VL);
7 bits(VL) result = Z[d, VL];
8
9 for e = 0 to elements-1

10 if ActivePredicateElement(mask, e, esize) then
11 bits(esize) element = Elem[operand, e, esize];
12 Elem[result, e, esize] = Reverse(element, swsize);
13
14 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its operand registers when its governing predicate register
contains the same value for each execution.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

721

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

– The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

722

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.11 SCLAMP

Signed clamp to minimum/maximum vector

Clamp each signed element in the destination vector to between the signed minimum value in the corresponding
element of the first source vector and the signed maximum value in the corresponding element of the second source
vector and destructively write the results in the corresponding elements of the destination vector. This instruction
is unpredicated.

SVE2
(FEAT_SME)

0 1 0 0 0 1 0 0

31 24

size

23 22

0

21

Zm

20 16

1 1 0 0 0

15 11

0

10

Zn

9 5

Zd

4 0

U

SCLAMP <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 bits(VL) operand1 = Z[n, VL];
5 bits(VL) operand2 = Z[m, VL];
6 bits(VL) operand3 = Z[d, VL];
7 bits(VL) result;
8
9 for e = 0 to elements-1

10 integer element1 = SInt(Elem[operand1, e, esize]);
11 integer element2 = SInt(Elem[operand2, e, esize]);
12 integer element3 = SInt(Elem[operand3, e, esize]);
13 integer res = Min(Max(element1 , element3), element2);
14 Elem[result, e, esize] = res<esize-1:0>;
15
16 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

723

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

724

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.12 SDOT (2-way, vectors)

Signed integer dot product

The signed integer dot product instruction computes the dot product of a group of two signed 16-bit integer values
held in each 32-bit element of the first source vector multiplied by a group of two signed 16-bit integer values in
the corresponding 32-bit element of the second source vector, and then destructively adds the widened dot product
to the corresponding 32-bit element of the destination vector.

This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 0 0 0 1 0 0 0 0 0

31 21

Zm

20 16

1 1 0 0 1

15 11

0

10

Zn

9 5

Zda

4 0

U

SDOT <Zda>.S, <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(VL) operand1 = Z[n, VL];
6 bits(VL) operand2 = Z[m, VL];
7 bits(VL) operand3 = Z[da, VL];
8 bits(VL) result;
9

10 for e = 0 to elements-1
11 bits(esize) res = Elem[operand3, e, esize];
12 for i = 0 to 1
13 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
14 integer element2 = SInt(Elem[operand2, 2 * e + i, esize DIV 2]);
15 res = res + element1 * element2;
16 Elem[result, e, esize] = res;
17
18 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

725

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

726

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.13 SDOT (2-way, indexed)

Signed integer indexed dot product

The signed integer indexed dot product instruction computes the dot product of a group of two signed 16-bit
integer values held in each 32-bit element of the first source vector multiplied by a group of two signed 16-bit
integer values in an indexed 32-bit element of the second source vector, and then destructively adds the widened
dot product to the corresponding 32-bit element of the destination vector.

The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to 3. This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 0 0 0 1 0 0 1 0 0

31 21

i2

20 19

Zm

18 16

1 1 0 0 1

15 11

0

10

Zn

9 5

Zda

4 0

U

SDOT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer index = UInt(i2);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index of a pair of two 16-bit elements within each 128-bit vector segment,
in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer eltspersegment = 128 DIV esize;
6 bits(VL) operand1 = Z[n, VL];
7 bits(VL) operand2 = Z[m, VL];
8 bits(VL) operand3 = Z[da, VL];
9 bits(VL) result;

10
11 for e = 0 to elements-1
12 integer segmentbase = e - (e MOD eltspersegment);
13 integer s = segmentbase + index;
14 bits(esize) res = Elem[operand3, e, esize];
15 for i = 0 to 1
16 integer element1 = SInt(Elem[operand1, 2 * e + i, esize DIV 2]);
17 integer element2 = SInt(Elem[operand2, 2 * s + i, esize DIV 2]);
18 res = res + element1 * element2;
19 Elem[result, e, esize] = res;
20
21 Z[da, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

727

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

728

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.14 SQCVTN

Signed saturating extract narrow and interleave

Saturate the signed integer value in each element of the group of two source vectors to half the orginal source
element width, and place the two-way interleaved results in the half-width destination elements.

This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 0 0 0 1 0 1 0

31 23

0

22

1

21

1

20

0

19

0 0 1 0 1 0

18 13

0

12

0

11

0

10

Zn

9 6

0

5

Zd

4 0

tszh tszl<0>
tszl<1>

U

SQCVTN <Zd>.H, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV (2 * esize);
5 bits(VL) result;
6
7 for e = 0 to elements-1
8 for i = 0 to 1
9 bits(VL) operand = Z[n+i, VL];

10 integer element = SInt(Elem[operand, e, 2 * esize]);
11 Elem[result, 2*e + i, esize] = SignedSat(element, esize);
12
13 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

729

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.15 SQCVTUN

Signed saturating unsigned extract narrow and interleave

Saturate the signed integer value in each element of the group of two source vectors to unsigned integer value that
is half the orginal source element width, and place the two-way interleaved results in the half-width destination
elements.

This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 0 0 0 1 0 1 0

31 23

0

22

1

21

1

20

0

19

0 0 1 0 1 0

18 13

1

12

0

11

0

10

Zn

9 6

0

5

Zd

4 0

tszh tszl<0>
tszl<1>

SQCVTUN <Zd>.H, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV (2 * esize);
5 bits(VL) result;
6
7 for e = 0 to elements-1
8 for i = 0 to 1
9 bits(VL) operand = Z[n+i, VL];

10 integer element = SInt(Elem[operand, e, 2 * esize]);
11 Elem[result, 2*e + i, esize] = UnsignedSat(element, esize);
12
13 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

730

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.16 SQRSHRN

Signed saturating rounding shift right narrow by immediate and interleave

Shift right by an immediate value, the signed integer value in each element of the group of two source vectors
and place the two-way interleaved rounded results in the half-width destination elements. Each result element is
saturated to the half-width N-bit element’s signed integer range -2(N-1) to (2(N-1))-1. The immediate shift amount
is an unsigned value in the range 1 to 16.

This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 0 0 0 1 0 1 1

31 23

0

22

1

21

1

20

imm4

19 16

0 0

15 14

1

13

0

12

1

11

0

10

Zn

9 6

0

5

Zd

4 0

tszh tszl U R

SQRSHRN <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);
5 integer shift = esize - UInt(imm4);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV (2 * esize);
5 bits(VL) result;
6 integer round_const = 1 << (shift-1);
7
8 for e = 0 to elements-1
9 for i = 0 to 1

10 bits(VL) operand = Z[n+i, VL];
11 bits(2 * esize) element = Elem[operand, e, 2 * esize];
12 integer res = (SInt(element) + round_const) >> shift;
13 Elem[result, 2*e + i, esize] = SignedSat(res, esize);
14
15 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

731

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

732

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.17 SQRSHRUN

Signed saturating rounding shift right unsigned narrow by immediate and interleave

Shift right by an immediate value, the signed integer value in each element of the group of two source vectors
and place the two-way interleaved rounded results in the half-width destination elements. Each result element is
saturated to the half-width N-bit element’s unsigned integer range 0 to (2N)-1. The immediate shift amount is an
unsigned value in the range 1 to 16.

This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 0 0 0 1 0 1 1

31 23

0

22

1

21

1

20

imm4

19 16

0 0

15 14

0

13

0

12

1

11

0

10

Zn

9 6

0

5

Zd

4 0

tszh tszl U R

SQRSHRUN <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);
5 integer shift = esize - UInt(imm4);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV (2 * esize);
5 bits(VL) result;
6 integer round_const = 1 << (shift-1);
7
8 for e = 0 to elements-1
9 for i = 0 to 1

10 bits(VL) operand = Z[n+i, VL];
11 bits(2 * esize) element = Elem[operand, e, 2 * esize];
12 integer res = (SInt(element) + round_const) >> shift;
13 Elem[result, 2*e + i, esize] = UnsignedSat(res, esize);
14
15 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

733

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

734

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.18 UCLAMP

Unsigned clamp to minimum/maximum vector

Clamp each unsigned element in the destination vector to between the unsigned minimum value in the
corresponding element of the first source vector and the unsigned maximum value in the corresponding element of
the second source vector and destructively write the results in the corresponding elements of the destination vector.
This instruction is unpredicated.

SVE2
(FEAT_SME)

0 1 0 0 0 1 0 0

31 24

size

23 22

0

21

Zm

20 16

1 1 0 0 0

15 11

1

10

Zn

9 5

Zd

4 0

U

UCLAMP <Zd>.<T>, <Zn>.<T>, <Zm>.<T>

1 if !HaveSME() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer elements = VL DIV esize;
4 bits(VL) operand1 = Z[n, VL];
5 bits(VL) operand2 = Z[m, VL];
6 bits(VL) operand3 = Z[d, VL];
7 bits(VL) result;
8
9 for e = 0 to elements-1

10 integer element1 = UInt(Elem[operand1, e, esize]);
11 integer element2 = UInt(Elem[operand2, e, esize]);
12 integer element3 = UInt(Elem[operand3, e, esize]);
13 integer res = Min(Max(element1 , element3), element2);
14 Elem[result, e, esize] = res<esize-1:0>;
15
16 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

735

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

736

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.19 UDOT (2-way, vectors)

Unsigned integer dot product

The unsigned integer dot product instruction computes the dot product of a group of two unsigned 16-bit integer
values held in each 32-bit element of the first source vector multiplied by a group of two unsigned 16-bit integer
values in the corresponding 32-bit element of the second source vector, and then destructively adds the widened
dot product to the corresponding 32-bit element of the destination vector.

This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 0 0 0 1 0 0 0 0 0

31 21

Zm

20 16

1 1 0 0 1

15 11

1

10

Zn

9 5

Zda

4 0

U

UDOT <Zda>.S, <Zn>.H, <Zm>.H

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer n = UInt(Zn);
4 integer m = UInt(Zm);
5 integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register, encoded in the "Zm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(VL) operand1 = Z[n, VL];
6 bits(VL) operand2 = Z[m, VL];
7 bits(VL) operand3 = Z[da, VL];
8 bits(VL) result;
9

10 for e = 0 to elements-1
11 bits(esize) res = Elem[operand3, e, esize];
12 for i = 0 to 1
13 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
14 integer element2 = UInt(Elem[operand2, 2 * e + i, esize DIV 2]);
15 res = res + element1 * element2;
16 Elem[result, e, esize] = res;
17
18 Z[da, VL] = result;

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

737

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

738

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.20 UDOT (2-way, indexed)

Unsigned integer indexed dot product

The unsigned integer indexed dot product instruction computes the dot product of a group of two unsigned 16-bit
integer values held in each 32-bit element of the first source vector multiplied by a group of two unsigned 16-bit
integer values in an indexed 32-bit element of the second source vector, and then destructively adds the widened
dot product to the corresponding 32-bit element of the destination vector.

The groups within the second source vector are specified using an immediate index which selects the same group
position within each 128-bit vector segment. The index range is from 0 to 3. This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 0 0 0 1 0 0 1 0 0

31 21

i2

20 19

Zm

18 16

1 1 0 0 1

15 11

1

10

Zn

9 5

Zda

4 0

U

UDOT <Zda>.S, <Zn>.H, <Zm>.H[<imm>]

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 32;
3 integer index = UInt(i2);
4 integer n = UInt(Zn);
5 integer m = UInt(Zm);
6 integer da = UInt(Zda);

Assembler Symbols

<Zda> Is the name of the third source and destination scalable vector register, encoded in the "Zda"
field.

<Zn> Is the name of the first source scalable vector register, encoded in the "Zn" field.

<Zm> Is the name of the second source scalable vector register Z0-Z7, encoded in the "Zm" field.

<imm> Is the immediate index of a pair of two 16-bit elements within each 128-bit vector segment,
in the range 0 to 3, encoded in the "i2" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 constant integer eltspersegment = 128 DIV esize;
6 bits(VL) operand1 = Z[n, VL];
7 bits(VL) operand2 = Z[m, VL];
8 bits(VL) operand3 = Z[da, VL];
9 bits(VL) result;

10
11 for e = 0 to elements-1
12 integer segmentbase = e - (e MOD eltspersegment);
13 integer s = segmentbase + index;
14 bits(esize) res = Elem[operand3, e, esize];
15 for i = 0 to 1
16 integer element1 = UInt(Elem[operand1, 2 * e + i, esize DIV 2]);
17 integer element2 = UInt(Elem[operand2, 2 * s + i, esize DIV 2]);
18 res = res + element1 * element2;
19 Elem[result, e, esize] = res;
20
21 Z[da, VL] = result;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

739

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

Operational information

This instruction might be immediately preceded in program order by a MOVPRFX instruction. The MOVPRFX instruction
must conform to all of the following requirements, otherwise the behavior of the MOVPRFX and this instruction is
UNPREDICTABLE:

• The MOVPRFX instruction must be unpredicated.

• The MOVPRFX instruction must specify the same destination register as this instruction.

• The destination register must not refer to architectural register state referenced by any other source operand
register of this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

740

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.21 UQCVTN

Unsigned saturating extract narrow and interleave

Saturate the unsigned integer value in each element of the group of two source vectors to half the orginal source
element width, and place the two-way interleaved results in the half-width destination elements.

This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 0 0 0 1 0 1 0

31 23

0

22

1

21

1

20

0

19

0 0 1 0 1 0

18 13

0

12

1

11

0

10

Zn

9 6

0

5

Zd

4 0

tszh tszl<0>
tszl<1>

U

UQCVTN <Zd>.H, { <Zn1>.S-<Zn2>.S }

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV (2 * esize);
5 bits(VL) result;
6
7 for e = 0 to elements-1
8 for i = 0 to 1
9 bits(VL) operand = Z[n+i, VL];

10 integer element = UInt(Elem[operand, e, 2 * esize]);
11 Elem[result, 2*e + i, esize] = UnsignedSat(element, esize);
12
13 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

741

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.22 UQRSHRN

Unsigned saturating rounding shift right narrow by immediate and interleave

Shift right by an immediate value, the unsigned integer value in each element of the group of two source vectors
and place the two-way interleaved rounded results in the half-width destination elements. Each result element is
saturated to the half-width N-bit element’s unsigned integer range 0 to (2N)-1. The immediate shift amount is an
unsigned value in the range 1 to 16.

This instruction is unpredicated.

SVE2
(FEAT_SME2)

0 1 0 0 0 1 0 1 1

31 23

0

22

1

21

1

20

imm4

19 16

0 0

15 14

1

13

1

12

1

11

0

10

Zn

9 6

0

5

Zd

4 0

tszh tszl U R

UQRSHRN <Zd>.H, { <Zn1>.S-<Zn2>.S }, #<const>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 16;
3 integer n = UInt(Zn:'0');
4 integer d = UInt(Zd);
5 integer shift = esize - UInt(imm4);

Assembler Symbols

<Zd> Is the name of the destination scalable vector register, encoded in the "Zd" field.

<Zn1> Is the name of the first scalable vector register of a multi-vector sequence, encoded as "Zn"
times 2.

<Zn2> Is the name of the second scalable vector register of a multi-vector sequence, encoded as
"Zn" times 2 plus 1.

<const> Is the immediate shift amount, in the range 1 to 16, encoded in the "imm4" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV (2 * esize);
5 bits(VL) result;
6 integer round_const = 1 << (shift-1);
7
8 for e = 0 to elements-1
9 for i = 0 to 1

10 bits(VL) operand = Z[n+i, VL];
11 bits(2 * esize) element = Elem[operand, e, 2 * esize];
12 integer res = (UInt(element) + round_const) >> shift;
13 Elem[result, 2*e + i, esize] = UnsignedSat(res, esize);
14
15 Z[d, VL] = result;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

742

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

743

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.23 WHILEGE (predicate pair)

While decrementing signed scalar greater than or equal to scalar (pair of predicates)

Generate a pair of predicates that starting from the highest numbered element of the pair is true while the
decrementing value of the first, signed scalar operand is greater than or equal to the second scalar operand and
false thereafter down to the lowest numbered element of the pair.

If the second scalar operand is equal to the minimum signed integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags
based on the predicate result, and the V flag to zero.

SVE2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1 0 1

15 12

0

11

0

10

Rn

9 5

1

4

Pd

3 1

0

0

U lt eq

WHILEGE { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d0 = UInt(Pd:'0');
7 integer d1 = UInt(Pd:'1');
8 boolean unsigned = FALSE;
9 SVECmp op = Cmp_GE;

Assembler Symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2
plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

744

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

5 bits(PL*2) mask = Ones(PL*2);
6 bits(rsize) operand1 = X[n, rsize];
7 bits(rsize) operand2 = X[m, rsize];
8 bits(PL*2) result;
9 boolean last = TRUE;

10 constant integer psize = esize DIV 8;
11
12 for e = (elements*2)-1 downto 0
13 boolean cond;
14 case op of
15 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
16 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));
17
18 last = last && cond;
19 bit pbit = if last then '1' else '0';
20 Elem[result, e, psize] = ZeroExtend(pbit, psize);
21 operand1 = operand1 - 1;
22
23 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
24 P[d0, PL] = result<PL-1:0>;
25 P[d1, PL] = result<PL*2-1:PL>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

745

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.24 WHILEGT (predicate pair)

While decrementing signed scalar greater than scalar (pair of predicates)

Generate a pair of predicates that starting from the highest numbered element of the pair is true while the
decrementing value of the first, signed scalar operand is greater than the second scalar operand and false thereafter
down to the lowest numbered element of the pair.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags
based on the predicate result, and the V flag to zero.

SVE2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1 0 1

15 12

0

11

0

10

Rn

9 5

1

4

Pd

3 1

1

0

U lt eq

WHILEGT { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d0 = UInt(Pd:'0');
7 integer d1 = UInt(Pd:'1');
8 boolean unsigned = FALSE;
9 SVECmp op = Cmp_GT;

Assembler Symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2
plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(PL*2) mask = Ones(PL*2);
6 bits(rsize) operand1 = X[n, rsize];
7 bits(rsize) operand2 = X[m, rsize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

746

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

8 bits(PL*2) result;
9 boolean last = TRUE;

10 constant integer psize = esize DIV 8;
11
12 for e = (elements*2)-1 downto 0
13 boolean cond;
14 case op of
15 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
16 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));
17
18 last = last && cond;
19 bit pbit = if last then '1' else '0';
20 Elem[result, e, psize] = ZeroExtend(pbit, psize);
21 operand1 = operand1 - 1;
22
23 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
24 P[d0, PL] = result<PL-1:0>;
25 P[d1, PL] = result<PL*2-1:PL>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

747

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.25 WHILEHI (predicate pair)

While decrementing unsigned scalar higher than scalar (pair of predicates)

Generate a pair of predicates that starting from the highest numbered element of the pair is true while the
decrementing value of the first, unsigned scalar operand is higher than the second scalar operand and false
thereafter down to the lowest numbered element of the pair.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags
based on the predicate result, and the V flag to zero.

SVE2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1 0 1

15 12

1

11

0

10

Rn

9 5

1

4

Pd

3 1

1

0

U lt eq

WHILEHI { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d0 = UInt(Pd:'0');
7 integer d1 = UInt(Pd:'1');
8 boolean unsigned = TRUE;
9 SVECmp op = Cmp_GT;

Assembler Symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2
plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(PL*2) mask = Ones(PL*2);
6 bits(rsize) operand1 = X[n, rsize];
7 bits(rsize) operand2 = X[m, rsize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

748

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

8 bits(PL*2) result;
9 boolean last = TRUE;

10 constant integer psize = esize DIV 8;
11
12 for e = (elements*2)-1 downto 0
13 boolean cond;
14 case op of
15 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
16 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));
17
18 last = last && cond;
19 bit pbit = if last then '1' else '0';
20 Elem[result, e, psize] = ZeroExtend(pbit, psize);
21 operand1 = operand1 - 1;
22
23 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
24 P[d0, PL] = result<PL-1:0>;
25 P[d1, PL] = result<PL*2-1:PL>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

749

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.26 WHILEHS (predicate pair)

While decrementing unsigned scalar higher or same as scalar (pair of predicates)

Generate a pair of predicates that starting from the highest numbered element of the pair is true while the
decrementing value of the first, unsigned scalar operand is higher or same as the second scalar operand and false
thereafter down to the lowest numbered element of the pair.

If the second scalar operand is equal to the minimum unsigned integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is decremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags
based on the predicate result, and the V flag to zero.

SVE2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1 0 1

15 12

1

11

0

10

Rn

9 5

1

4

Pd

3 1

0

0

U lt eq

WHILEHS { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d0 = UInt(Pd:'0');
7 integer d1 = UInt(Pd:'1');
8 boolean unsigned = TRUE;
9 SVECmp op = Cmp_GE;

Assembler Symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2
plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

750

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

5 bits(PL*2) mask = Ones(PL*2);
6 bits(rsize) operand1 = X[n, rsize];
7 bits(rsize) operand2 = X[m, rsize];
8 bits(PL*2) result;
9 boolean last = TRUE;

10 constant integer psize = esize DIV 8;
11
12 for e = (elements*2)-1 downto 0
13 boolean cond;
14 case op of
15 when Cmp_GT cond = (Int(operand1, unsigned) > Int(operand2, unsigned));
16 when Cmp_GE cond = (Int(operand1, unsigned) >= Int(operand2, unsigned));
17
18 last = last && cond;
19 bit pbit = if last then '1' else '0';
20 Elem[result, e, psize] = ZeroExtend(pbit, psize);
21 operand1 = operand1 - 1;
22
23 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
24 P[d0, PL] = result<PL-1:0>;
25 P[d1, PL] = result<PL*2-1:PL>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

751

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.27 WHILELE (predicate pair)

While incrementing signed scalar less than or equal to scalar (pair of predicates)

Generate a pair of predicates that starting from the lowest numbered element of the pair is true while the
incrementing value of the first, signed scalar operand is less than or equal to the second scalar operand and false
thereafter up to the highest numbered element of the pair.

If the second scalar operand is equal to the maximum signed integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags
based on the predicate result, and the V flag to zero.

SVE2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1 0 1

15 12

0

11

1

10

Rn

9 5

1

4

Pd

3 1

1

0

U lt eq

WHILELE { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d0 = UInt(Pd:'0');
7 integer d1 = UInt(Pd:'1');
8 boolean unsigned = FALSE;
9 SVECmp op = Cmp_LE;

Assembler Symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2
plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

752

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

5 bits(PL*2) mask = Ones(PL*2);
6 bits(rsize) operand1 = X[n, rsize];
7 bits(rsize) operand2 = X[m, rsize];
8 bits(PL*2) result;
9 boolean last = TRUE;

10 constant integer psize = esize DIV 8;
11
12 for e = 0 to (elements*2)-1
13 boolean cond;
14 case op of
15 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
16 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));
17
18 last = last && cond;
19 bit pbit = if last then '1' else '0';
20 Elem[result, e, psize] = ZeroExtend(pbit, psize);
21 operand1 = operand1 + 1;
22
23 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
24 P[d0, PL] = result<PL-1:0>;
25 P[d1, PL] = result<PL*2-1:PL>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

753

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.28 WHILELO (predicate pair)

While incrementing unsigned scalar lower than scalar (pair of predicates)

Generate a pair of predicates that starting from the lowest numbered element of the pair is true while the
incrementing value of the first, unsigned scalar operand is lower than the second scalar operand and false thereafter
up to the highest numbered element of the pair.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags
based on the predicate result, and the V flag to zero.

SVE2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1 0 1

15 12

1

11

1

10

Rn

9 5

1

4

Pd

3 1

0

0

U lt eq

WHILELO { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d0 = UInt(Pd:'0');
7 integer d1 = UInt(Pd:'1');
8 boolean unsigned = TRUE;
9 SVECmp op = Cmp_LT;

Assembler Symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2
plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(PL*2) mask = Ones(PL*2);
6 bits(rsize) operand1 = X[n, rsize];
7 bits(rsize) operand2 = X[m, rsize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

754

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

8 bits(PL*2) result;
9 boolean last = TRUE;

10 constant integer psize = esize DIV 8;
11
12 for e = 0 to (elements*2)-1
13 boolean cond;
14 case op of
15 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
16 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));
17
18 last = last && cond;
19 bit pbit = if last then '1' else '0';
20 Elem[result, e, psize] = ZeroExtend(pbit, psize);
21 operand1 = operand1 + 1;
22
23 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
24 P[d0, PL] = result<PL-1:0>;
25 P[d1, PL] = result<PL*2-1:PL>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

755

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.29 WHILELS (predicate pair)

While incrementing unsigned scalar lower or same as scalar (pair of predicates)

Generate a pair of predicates that starting from the lowest numbered element of the pair is true while the
incrementing value of the first, unsigned scalar operand is lower or same as the second scalar operand and false
thereafter up to the highest numbered element of the pair.

If the second scalar operand is equal to the maximum unsigned integer value then a condition which includes an
equality test can never fail and the result will be an all-true predicate.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags
based on the predicate result, and the V flag to zero.

SVE2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1 0 1

15 12

1

11

1

10

Rn

9 5

1

4

Pd

3 1

1

0

U lt eq

WHILELS { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d0 = UInt(Pd:'0');
7 integer d1 = UInt(Pd:'1');
8 boolean unsigned = TRUE;
9 SVECmp op = Cmp_LE;

Assembler Symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2
plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

756

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

5 bits(PL*2) mask = Ones(PL*2);
6 bits(rsize) operand1 = X[n, rsize];
7 bits(rsize) operand2 = X[m, rsize];
8 bits(PL*2) result;
9 boolean last = TRUE;

10 constant integer psize = esize DIV 8;
11
12 for e = 0 to (elements*2)-1
13 boolean cond;
14 case op of
15 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
16 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));
17
18 last = last && cond;
19 bit pbit = if last then '1' else '0';
20 Elem[result, e, psize] = ZeroExtend(pbit, psize);
21 operand1 = operand1 + 1;
22
23 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
24 P[d0, PL] = result<PL-1:0>;
25 P[d1, PL] = result<PL*2-1:PL>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

757

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

D1.2.30 WHILELT (predicate pair)

While incrementing signed scalar less than scalar (pair of predicates)

Generate a pair of predicates that starting from the lowest numbered element of the pair is true while the
incrementing value of the first, signed scalar operand is less than the second scalar operand and false thereafter up
to the highest numbered element of the pair.

The full width of the scalar operands is significant for the purposes of comparison, and the full width first operand
is incremented by one for each destination predicate element, irrespective of the predicate result element size. The
first general-purpose source register is not itself updated.

The lower-numbered elements are placed in the first predicate destination register, and the higher-numbered
elements in the second predicate destination register. Sets the FIRST (N), NONE (Z), !LAST (C) condition flags
based on the predicate result, and the V flag to zero.

SVE2
(FEAT_SME2)

0 0 1 0 0 1 0 1

31 24

size

23 22

1

21

Rm

20 16

0 1 0 1

15 12

0

11

1

10

Rn

9 5

1

4

Pd

3 1

0

0

U lt eq

WHILELT { <Pd1>.<T>, <Pd2>.<T> }, <Xn>, <Xm>

1 if !HaveSME2() then UNDEFINED;
2 constant integer esize = 8 << UInt(size);
3 constant integer rsize = 64;
4 integer n = UInt(Rn);
5 integer m = UInt(Rm);
6 integer d0 = UInt(Pd:'0');
7 integer d1 = UInt(Pd:'1');
8 boolean unsigned = FALSE;
9 SVECmp op = Cmp_LT;

Assembler Symbols

<Pd1> Is the name of the first destination scalable predicate register, encoded as "Pd" times 2.

<T> Is the size specifier, encoded in "size":
size <T>
00 B
01 H
10 S
11 D

<Pd2> Is the name of the second destination scalable predicate register, encoded as "Pd" times 2
plus 1.

<Xn> Is the 64-bit name of the first source general-purpose register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second source general-purpose register, encoded in the "Rm" field.

Operation
1 CheckSVEEnabled();
2 constant integer VL = CurrentVL;
3 constant integer PL = VL DIV 8;
4 constant integer elements = VL DIV esize;
5 bits(PL*2) mask = Ones(PL*2);
6 bits(rsize) operand1 = X[n, rsize];
7 bits(rsize) operand2 = X[m, rsize];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

758

Chapter D1. SME instructions
D1.2. SVE2 data-processing instructions

8 bits(PL*2) result;
9 boolean last = TRUE;

10 constant integer psize = esize DIV 8;
11
12 for e = 0 to (elements*2)-1
13 boolean cond;
14 case op of
15 when Cmp_LT cond = (Int(operand1, unsigned) < Int(operand2, unsigned));
16 when Cmp_LE cond = (Int(operand1, unsigned) <= Int(operand2, unsigned));
17
18 last = last && cond;
19 bit pbit = if last then '1' else '0';
20 Elem[result, e, psize] = ZeroExtend(pbit, psize);
21 operand1 = operand1 + 1;
22
23 PSTATE.<N,Z,C,V> = PredTest(mask, result, esize);
24 P[d0, PL] = result<PL-1:0>;
25 P[d1, PL] = result<PL*2-1:PL>;

Operational information

If PSTATE.DIT is 1:

• The execution time of this instruction is independent of:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

• The response of this instruction to asynchronous exceptions does not vary based on:

– The values of the data supplied in any of its registers.

– The values of the NZCV flags.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

759

Chapter D1. SME instructions
D1.3. Base A64 instructions

D1.3 Base A64 instructions

The following Base A64 instructions are added or modified by the SME or SME2 architecture.

D1.3.1 MSR (immediate)

Move immediate value to Special Register moves an immediate value to selected bits of the PSTATE. For more
information, see Process state, PSTATE.

The bits that can be written by this instruction are:

• PSTATE.D, PSTATE.A, PSTATE.I, PSTATE.F, and PSTATE.SP.

• If FEAT_SSBS is implemented, PSTATE.SSBS.

• If FEAT_PAN is implemented, PSTATE.PAN.

• If FEAT_UAO is implemented, PSTATE.UAO.

• If FEAT_DIT is implemented, PSTATE.DIT.

• If FEAT_MTE is implemented, PSTATE.TCO.

• If FEAT_NMI is implemented, PSTATE.ALLINT.

• If FEAT_SME is implemented, PSTATE.SM and PSTATE.ZA.

This instruction is used by the aliases SMSTART, and SMSTOP.

1 1 0 1 0 1 0 1 0 0

31 22

0

21

0 0

20 19

op1

18 16

0 1 0 0

15 12

CRm

11 8

op2

7 5

1 1 1 1 1

4 0

MSR <pstatefield>, #<imm>

1 if op1 == '000' && op2 == '000' then SEE "CFINV";
2 if op1 == '000' && op2 == '001' then SEE "XAFLAG";
3 if op1 == '000' && op2 == '010' then SEE "AXFLAG";
4
5 AArch64.CheckSystemAccess('00', op1, '0100', CRm, op2, '11111', '0');
6 bits(2) min_EL;
7 boolean need_secure = FALSE;
8
9 case op1 of

10 when '00x'
11 min_EL = EL1;
12 when '010'
13 min_EL = EL1;
14 when '011'
15 min_EL = EL0;
16 when '100'
17 min_EL = EL2;
18 when '101'
19 if !HaveVirtHostExt() then
20 UNDEFINED;
21 min_EL = EL2;
22 when '110'
23 min_EL = EL3;
24 when '111'
25 min_EL = EL1;
26 need_secure = TRUE;
27
28 if (UInt(PSTATE.EL) < UInt(min_EL) || (need_secure && CurrentSecurityState() != SS_Secure))

↪→then
29 UNDEFINED;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

760

Chapter D1. SME instructions
D1.3. Base A64 instructions

30
31 PSTATEField field;
32 case op1:op2 of
33 when '000 011'
34 if !HaveUAOExt() then UNDEFINED;
35 field = PSTATEField_UAO;
36 when '000 100'
37 if !HavePANExt() then UNDEFINED;
38 field = PSTATEField_PAN;
39 when '000 101' field = PSTATEField_SP;
40 when '001 000'
41 if CRm == '000x' then
42 if !HaveFeatNMI() then UNDEFINED;
43 field = PSTATEField_ALLINT;
44 else
45 UNDEFINED;
46 when '011 010'
47 if !HaveDITExt() then UNDEFINED;
48 field = PSTATEField_DIT;
49 when '011 011'
50 case CRm of
51 when '001x'
52 if !HaveSME() then UNDEFINED;
53 field = PSTATEField_SVCRSM;
54 when '010x'
55 if !HaveSME() then UNDEFINED;
56 field = PSTATEField_SVCRZA;
57 when '011x'
58 if !HaveSME() then UNDEFINED;
59 field = PSTATEField_SVCRSMZA;
60 otherwise
61 UNDEFINED;
62 when '011 100'
63 if !HaveMTEExt() then UNDEFINED;
64 field = PSTATEField_TCO;
65 when '011 110' field = PSTATEField_DAIFSet;
66 when '011 111' field = PSTATEField_DAIFClr;
67 when '011 001'
68 if !HaveSSBSExt() then UNDEFINED;
69 field = PSTATEField_SSBS;
70 otherwise UNDEFINED;
71
72 // Check that an AArch64 MSR/MRS access to the DAIF flags is permitted
73 if PSTATE.EL == EL0 && field IN {PSTATEField_DAIFSet, PSTATEField_DAIFClr} then
74 if (!ELUsingAArch32(EL1) && ((EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') ||

↪→SCTLR_EL1.UMA == '0')) then
75 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
76 AArch64.SystemAccessTrap(EL2, 0x18);
77 else
78 AArch64.SystemAccessTrap(EL1, 0x18);

Assembler Symbols

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in "op1:op2:CRm":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

761

Chapter D1. SME instructions
D1.3. Base A64 instructions

op1 op2 CRm <pstatefield> Architectural Feature
000 00x xxxx SEE PSTATE -
000 010 xxxx SEE PSTATE -
000 011 xxxx UAO FEAT_UAO
000 100 xxxx PAN FEAT_PAN
000 101 xxxx SPSel -
000 11x xxxx RESERVED -
001 000 000x ALLINT FEAT_NMI
001 000 001x RESERVED -
001 000 01xx RESERVED -
001 000 1xxx RESERVED -
001 001 xxxx RESERVED -
001 01x xxxx RESERVED -
001 1xx xxxx RESERVED -
010 xxx xxxx RESERVED -
011 000 xxxx RESERVED -
011 001 xxxx SSBS FEAT_SSBS
011 010 xxxx DIT FEAT_DIT
011 011 000x RESERVED -
011 011 001x SVCRSM FEAT_SME
011 011 010x SVCRZA FEAT_SME
011 011 011x SVCRSMZA FEAT_SME
011 011 1xxx RESERVED -
011 100 xxxx TCO FEAT_MTE
011 101 xxxx RESERVED -
011 110 xxxx DAIFSet -
011 111 xxxx DAIFClr -
1xx xxx xxxx RESERVED -

For the SMSTART and SMSTOP aliases, this is encoded in "CRm<2:1>", where 0b01
specifies SVCRSM, 0b10 specifies SVCRZA, and 0b11 specifies SVCRSMZA.

<imm> Is a 4-bit unsigned immediate, in the range 0 to 15, encoded in the "CRm" field. Restricted
to the range 0 to 1, encoded in "CRm<0>", when <pstatefield> is ALLINT, SVCRSM,
SVCRSMZA, or SVCRZA.

Alias Conditions

Alias Is preferred when

SMSTART op1 == ’011’ && CRm == ’0xx1’ && op2 == ’011’

SMSTOP op1 == ’011’ && CRm == ’0xx0’ && op2 == ’011’

Operation
1 case field of
2 when PSTATEField_SSBS
3 PSTATE.SSBS = CRm<0>;
4 when PSTATEField_SP
5 PSTATE.SP = CRm<0>;
6 when PSTATEField_DAIFSet
7 PSTATE.D = PSTATE.D OR CRm<3>;
8 PSTATE.A = PSTATE.A OR CRm<2>;
9 PSTATE.I = PSTATE.I OR CRm<1>;

10 PSTATE.F = PSTATE.F OR CRm<0>;
11 when PSTATEField_DAIFClr
12 PSTATE.D = PSTATE.D AND NOT(CRm<3>);
13 PSTATE.A = PSTATE.A AND NOT(CRm<2>);
14 PSTATE.I = PSTATE.I AND NOT(CRm<1>);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

762

Chapter D1. SME instructions
D1.3. Base A64 instructions

15 PSTATE.F = PSTATE.F AND NOT(CRm<0>);
16 when PSTATEField_PAN
17 PSTATE.PAN = CRm<0>;
18 when PSTATEField_UAO
19 PSTATE.UAO = CRm<0>;
20 when PSTATEField_DIT
21 PSTATE.DIT = CRm<0>;
22 when PSTATEField_TCO
23 PSTATE.TCO = CRm<0>;
24 when PSTATEField_ALLINT
25 if (PSTATE.EL == EL1 && IsHCRXEL2Enabled() && HCRX_EL2.TALLINT == '1' && CRm<0> ==

↪→'1') then
26 AArch64.SystemAccessTrap(EL2, 0x18);
27 PSTATE.ALLINT = CRm<0>;
28 when PSTATEField_SVCRSM
29 CheckSMEAccess();
30 SetPSTATE_SM(CRm<0>);
31 when PSTATEField_SVCRZA
32 CheckSMEAccess();
33 SetPSTATE_ZA(CRm<0>);
34 when PSTATEField_SVCRSMZA
35 CheckSMEAccess();
36 SetPSTATE_SM(CRm<0>);
37 SetPSTATE_ZA(CRm<0>);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

763

Chapter D1. SME instructions
D1.3. Base A64 instructions

D1.3.2 RPRFM

Range Prefetch Memory signals the memory system that data memory accesses from a specified range of addresses
are likely to occur in the near future. The instruction may also signal the memory system about the likelihood of
data reuse of the specified range of addresses. The memory system can respond by taking actions that are expected
to speed up the memory accesses when they do occur, such as prefetching locations within the specified address
ranges into one or more caches. The memory system may also exploit the data reuse hints to decide whether to
retain the data in other caches upon eviction from the innermost caches or to discard it.

The effect of an RPRFM instruction is IMPLEMENTATION DEFINED, but because these signals are only hints, the
instruction cannot cause a synchronous Data Abort exception and is guaranteed not to access Device memory. It is
valid for the PE to treat this instruction as a NOP.

An RPRFM instruction specifies the type of accesses and range of addresses using the following parameters:

• ’Type’, in the <rprfop> operand opcode bits, specifies whether the prefetched data will be accessed by load
or store instructions.

• ’Policy’, in the <rprfop> operand opcode bits, specifies whether the data is likely to be reused or if it is a
streaming, non-temporal prefetch. If a streaming prefetch is specified, then the ’ReuseDistance’ parameter is
ignored.

• ’BaseAddress’, in the 64-bit base register, holds the initial block address for the accesses.

• ’ReuseDistance’, in the metadata register bits[63:60], indicates the maximum number of bytes to be accessed
by this PE before executing the next RPRFM instruction that specifies the same range. This includes the total
number of bytes inside and outside of the range that will be accessed by the same PE. This parameter can be
used to influence cache eviction and replacement policies, in order to retain the data in the most optimal levels
of the memory hierarchy after each access. If software cannot easily determine the amount of other memory
that will be accessed, these bits can be set to zero to indicate that ’ReuseDistance’ is not known. Otherwise,
these four bits encode decreasing powers of two in the range 512MiB (0b0001) to 32KiB (0b1111).

• ’Stride’, in the metadata register bits[59:38], is a signed, two’s complement integer encoding of the number of
bytes to advance the block address after ’Length’ bytes have been accessed, in the range -2MiB to +2MiB-1B.
A negative value indicates that the block address is advanced in a descending direction.

• ’Count’, in the metadata register bits[37:22], is an unsigned integer encoding of the number of blocks of data
to be accessed minus 1, representing the range 1 to 65536 blocks. If ’Count’ is 0, then the ’Stride’ parameter
is ignored and only a single block of contiguous bytes from ’BaseAddress’ to (’BaseAddress’ + ’Length’ - 1)
is described.

• ’Length’, in the metadata register bits[21:0], is a signed, two’s complement integer encoding of the number of
contiguous bytes to be accessed starting from the current block address, without changing the block address,
in the range -2MiB to +2MiB-1B. A negative value indicates that the bytes are accessed in a descending
direction.

Note

Software is expected to honor the parameters it provides to the RPRFM instruction, and the same PE should access
all locations in the range, in the direction specified by the sign of the ’Length’ and ’Stride’ parameters. A range
prefetch is considered active on a PE until all locations in the range have been accessed by the PE. A range prefetch
might also be inactivated by the PE prior to completion, for example due to a software context switch or lack of
hardware resources.

Software should not specify overlapping addresses in multiple active ranges. If a range is expected to be accessed
by both load and store instructions (read-modify-write), then a single range with a ’Type’ parameter of PST
(prefetch for store) should be specified.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

764

Chapter D1. SME instructions
D1.3. Base A64 instructions

Integer
(FEAT_RPRFM)

1 1

31 30

1 1 1

29 27

0

26

0 0

25 24

1 0

23 22

1

21

Rm

20 16

x 1 x

15 13

S

12

1 0

11 10

Rn

9 5

1 1 x x x

4 0

size opc option Rt

RPRFM (<rprfop>|#<imm6>), <Xm>, [<Xn|SP>]

1 bits(6) operation = option<2>:option<0>:S:Rt<2:0>;
2 integer n = UInt(Rn);
3 integer m = UInt(Rm);

Assembler Symbols

<rprfop> Is the range prefetch operation, defined as <type><policy>. <type> is one of:

PLD

Prefetch for load, encoded in the "Rt<0>" field as 0.

PST

Prefetch for store, encoded in the "Rt<0>" field as 1.
<policy> is one of:

KEEP

Retained or temporal prefetch, for data that is expected to
be kept in caches to be accessed more than once, encoded
in the "option<2>:option<0>:S:Rt<2:1>" fields as
0b00000.

STRM

Streaming or non-temporal prefetch, for data that is
expected to be accessed once and not reused, encoded
in the "option<2>:option<0>:S:Rt<2:1>" fields as
0b00010.

For other encodings of the "option<2>:option<0>:S:Rt<2:0>" fields, use <imm6>.

<imm6> Is the range prefetch operation encoding as an immediate, in the range 0 to 63, encoded
in "option<2>:option<0>:S:Rt<2:0>". This syntax is only for encodings that are not
representable using <rprfop>.

<Xm> Is the 64-bit name of the general-purpose register that holds an encoding of the metadata,
encoded in the "Rm" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn"
field.

Operation
1 bits(64) address = if n == 31 then SP[] else X[n, 64];
2 bits(64) metadata = X[m, 64];
3 integer stride = SInt(metadata<59:38>);
4 integer count = UInt(metadata<37:22>) + 1;
5 integer length = SInt(metadata<21:0>);
6 integer reuse;
7
8 if metadata<63:60> == '0000' then
9 reuse = -1; // Not known

10 else
11 reuse = 32768 << (15 - UInt(metadata<63:60>));

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

765

Chapter D1. SME instructions
D1.3. Base A64 instructions

12
13 Hint_RangePrefetch(address, length, stride, count, reuse, operation);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

766

Chapter D1. SME instructions
D1.3. Base A64 instructions

D1.3.3 SMSTART

Enables access to Streaming SVE mode and SME architectural state.

SMSTART enters Streaming SVE mode, and enables the SME ZA storage.

SMSTART SM enters Streaming SVE mode, but does not enable the SME ZA storage.

SMSTART ZA enables the SME ZA storage, but does not cause an entry to Streaming SVE mode.

This is an alias of MSR (immediate). This means:

• The encodings in this description are named to match the encodings of MSR (immediate).

• The description of MSR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

System
(FEAT_SME)

1 1 0 1 0 1 0 1 0 0

31 22

0

21

0 0

20 19

0 1 1

18 16

0 1 0 0

15 12

0 x x 1

11 8

0 1 1

7 5

1 1 1 1 1

4 0

op1 CRm op2

SMSTART {<option>}

is equivalent to

MSR <pstatefield>, #1

and is always the preferred disassembly.

Assembler Symbols

<option> Is an optional mode, encoded in "CRm<2:1>":
CRm<2:1> <option>

00 RESERVED
01 SM
10 ZA
11 [no specifier]

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in "op1:op2:CRm":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

767

Chapter D1. SME instructions
D1.3. Base A64 instructions

op1 op2 CRm <pstatefield> Architectural Feature
000 00x xxxx SEE PSTATE -
000 010 xxxx SEE PSTATE -
000 011 xxxx UAO FEAT_UAO
000 100 xxxx PAN FEAT_PAN
000 101 xxxx SPSel -
000 11x xxxx RESERVED -
001 000 000x ALLINT FEAT_NMI
001 000 001x RESERVED -
001 000 01xx RESERVED -
001 000 1xxx RESERVED -
001 001 xxxx RESERVED -
001 01x xxxx RESERVED -
001 1xx xxxx RESERVED -
010 xxx xxxx RESERVED -
011 000 xxxx RESERVED -
011 001 xxxx SSBS FEAT_SSBS
011 010 xxxx DIT FEAT_DIT
011 011 000x RESERVED -
011 011 001x SVCRSM FEAT_SME
011 011 010x SVCRZA FEAT_SME
011 011 011x SVCRSMZA FEAT_SME
011 011 1xxx RESERVED -
011 100 xxxx TCO FEAT_MTE
011 101 xxxx RESERVED -
011 110 xxxx DAIFSet -
011 111 xxxx DAIFClr -
1xx xxx xxxx RESERVED -

For the SMSTART and SMSTOP aliases, this is encoded in "CRm<2:1>", where 0b01
specifies SVCRSM, 0b10 specifies SVCRZA, and 0b11 specifies SVCRSMZA.

Operation

The description of MSR (immediate) gives the operational pseudocode for this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

768

Chapter D1. SME instructions
D1.3. Base A64 instructions

D1.3.4 SMSTOP

Disables access to Streaming SVE mode and SME architectural state.

SMSTOP exits Streaming SVE mode, and disables the SME ZA storage.

SMSTOP SM exits Streaming SVE mode, but does not disable the SME ZA storage.

SMSTOP ZA disables the SME ZA storage, but does not cause an exit from Streaming SVE mode.

This is an alias of MSR (immediate). This means:

• The encodings in this description are named to match the encodings of MSR (immediate).

• The description of MSR (immediate) gives the operational pseudocode, any CONSTRAINED UNPREDICTABLE
behavior, and any operational information for this instruction.

System
(FEAT_SME)

1 1 0 1 0 1 0 1 0 0

31 22

0

21

0 0

20 19

0 1 1

18 16

0 1 0 0

15 12

0 x x 0

11 8

0 1 1

7 5

1 1 1 1 1

4 0

op1 CRm op2

SMSTOP {<option>}

is equivalent to

MSR <pstatefield>, #0

and is always the preferred disassembly.

Assembler Symbols

<option> Is an optional mode, encoded in "CRm<2:1>":
CRm<2:1> <option>

00 RESERVED
01 SM
10 ZA
11 [no specifier]

<pstatefield> Is a PSTATE field name. For the MSR instruction, this is encoded in "op1:op2:CRm":

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

769

Chapter D1. SME instructions
D1.3. Base A64 instructions

op1 op2 CRm <pstatefield> Architectural Feature
000 00x xxxx SEE PSTATE -
000 010 xxxx SEE PSTATE -
000 011 xxxx UAO FEAT_UAO
000 100 xxxx PAN FEAT_PAN
000 101 xxxx SPSel -
000 11x xxxx RESERVED -
001 000 000x ALLINT FEAT_NMI
001 000 001x RESERVED -
001 000 01xx RESERVED -
001 000 1xxx RESERVED -
001 001 xxxx RESERVED -
001 01x xxxx RESERVED -
001 1xx xxxx RESERVED -
010 xxx xxxx RESERVED -
011 000 xxxx RESERVED -
011 001 xxxx SSBS FEAT_SSBS
011 010 xxxx DIT FEAT_DIT
011 011 000x RESERVED -
011 011 001x SVCRSM FEAT_SME
011 011 010x SVCRZA FEAT_SME
011 011 011x SVCRSMZA FEAT_SME
011 011 1xxx RESERVED -
011 100 xxxx TCO FEAT_MTE
011 101 xxxx RESERVED -
011 110 xxxx DAIFSet -
011 111 xxxx DAIFClr -
1xx xxx xxxx RESERVED -

For the SMSTART and SMSTOP aliases, this is encoded in "CRm<2:1>", where 0b01
specifies SVCRSM, 0b10 specifies SVCRZA, and 0b11 specifies SVCRSMZA.

Operation

The description of MSR (immediate) gives the operational pseudocode for this instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

770

Part E
Appendices

Chapter E1
Instructions affected by SME

The behavior of some non-SME instructions is affected when SME is implemented and the PE is in Streaming
SVE mode.

This section lists affected instructions by the type of effect, with a description of the changes. It is a reference
summary of information that can be viewed in more detail in Arm® A64 Instruction Set Architecture, for A-profile
architecture [3].

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

772

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

E1.1 Illegal instructions in Streaming SVE mode

E1.1.1 Illegal Advanced SIMD instructions

The instruction encoding tables in this section are provided as an aid to understanding, and are consistent with the
A64 ISA in Armv8.8-A and Armv9.3-A, but will require correction if subsequent versions of the A64 ISA add
new instructions which overlap with these encodings.

AArch64 Advanced SIMD instructions with encodings that match the following patterns are illegal when the PE is
in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current Exception level:

A64 Encoding Pattern Encoding Block

0x00 110x xxxx xxxx xxxx xxxx xxxx xxxx Advanced SIMD structure load/store

0xx0 111x xxxx xxxx xxxx xxxx xxxx xxxx Advanced SIMD vector operations

01x1 111x xxxx xxxx xxxx xxxx xxxx xxxx Advanced SIMD single-element operations

1100 1110 xxxx xxxx xxxx xxxx xxxx xxxx Advanced SIMD cryptography extensions

With the exception of certain vector to GPR integer move instructions, and some single-element floating-point
instructions that match the following patterns and which execute normally when the PE is in Streaming SVE mode:

A64 Encoding Pattern Instructions or Instruction Class

0x00 1110 0000 0001 0010 11xx xxxx xxxx SMOV W|Xd,Vn.B[0]

0x00 1110 0000 0010 0010 11xx xxxx xxxx SMOV W|Xd,Vn.H[0]

0100 1110 0000 0100 0010 11xx xxxx xxxx SMOV Xd,Vn.S[0]

0000 1110 0000 0001 0011 11xx xxxx xxxx UMOV Wd,Vn.B[0]

0000 1110 0000 0010 0011 11xx xxxx xxxx UMOV Wd,Vn.H[0]

0000 1110 0000 0100 0011 11xx xxxx xxxx UMOV Wd,Vn.S[0]

0100 1110 0000 1000 0011 11xx xxxx xxxx UMOV Xd,Vn.D[0]

0101 1110 xx1x xxxx 11x1 11xx xxxx xxxx FMULX/FRECPS/FRSQRTS (scalar)

0101 1110 x10x xxxx 00x1 11xx xxxx xxxx FMULX/FRECPS/FRSQRTS (scalar, FP16)

01x1 1110 1x10 0001 11x1 10xx xxxx xxxx FRECPE/FRSQRTE/FRECPX (scalar)

01x1 1110 1111 1001 11x1 10xx xxxx xxxx FRECPE/FRSQRTE/FRECPX (scalar, FP16)

For the avoidance of doubt, A64 scalar floating-point instructions which match following encoding patterns remain
legal when the PE is in Streaming SVE mode:

A64 Encoding Pattern Instructions or Instruction Class

x001 111x xxxx xxxx xxxx xxxx xxxx xxxx Scalar floating-point operations

xx10 110x xxxx xxxx xxxx xxxx xxxx xxxx Load/store pair of FP registers

xx01 1100 xxxx xxxx xxxx xxxx xxxx xxxx Load FP register (PC-relative literal)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

773

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

A64 Encoding Pattern Instructions or Instruction Class

xx11 1100 xx0x xxxx xxxx xxxx xxxx xxxx Load/store FP register (unscaled imm)

xx11 1100 xx1x xxxx xxxx xxxx xxxx xx10 Load/store FP register (register offset)

xx11 1101 xxxx xxxx xxxx xxxx xxxx xxxx Load/store FP register (scaled imm)

With the exception of the following floating-point operation which is illegal when the PE is in Streaming SVE
mode:

A64 Encoding Pattern Instructions or Instruction Class

0001 1110 0111 1110 0000 00xx xxxx xxxx FJCVTZS

E1.1.1.1 Vector instructions

This section lists by name those A64 Advanced SIMD instruction pages in which all encoding variants are illegal
when the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level.

The Advanced SIMD instructions described in the following pages, and their aliases, are affected in this way:

• ABS: Absolute value (vector).
• ADD (vector): Add (vector).
• ADDHN, ADDHN2: Add returning High Narrow.
• ADDP (scalar): Add Pair of elements (scalar).
• ADDP (vector): Add Pairwise (vector).
• ADDV: Add across Vector.
• AESD: AES single round decryption.
• AESE: AES single round encryption.
• AESIMC: AES inverse mix columns.
• AESMC: AES mix columns.
• AND (vector): Bitwise AND (vector).
• BCAX: Bit Clear and XOR.
• BFCVTN, BFCVTN2: Floating-point convert from single-precision to BFloat16 format (vector).
• BFDOT (by element): BFloat16 floating-point dot product (vector, by element).
• BFDOT (vector): BFloat16 floating-point dot product (vector).
• BFMLALB, BFMLALT (by element): BFloat16 floating-point widening multiply-add long (by element).
• BFMLALB, BFMLALT (vector): BFloat16 floating-point widening multiply-add long (vector).
• BFMMLA: BFloat16 floating-point matrix multiply-accumulate into 2x2 matrix.
• BIC (vector, immediate): Bitwise bit Clear (vector, immediate).
• BIC (vector, register): Bitwise bit Clear (vector, register).
• BIF: Bitwise Insert if False.
• BIT: Bitwise Insert if True.
• BSL: Bitwise Select.
• CLS (vector): Count Leading Sign bits (vector).
• CLZ (vector): Count Leading Zero bits (vector).
• CMEQ (register): Compare bitwise Equal (vector).
• CMEQ (zero): Compare bitwise Equal to zero (vector).
• CMGE (register): Compare signed Greater than or Equal (vector).
• CMGE (zero): Compare signed Greater than or Equal to zero (vector).
• CMGT (register): Compare signed Greater than (vector).
• CMGT (zero): Compare signed Greater than zero (vector).

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

774

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• CMHI (register): Compare unsigned Higher (vector).
• CMHS (register): Compare unsigned Higher or Same (vector).
• CMLE (zero): Compare signed Less than or Equal to zero (vector).
• CMLT (zero): Compare signed Less than zero (vector).
• CMTST: Compare bitwise Test bits nonzero (vector).
• CNT: Population Count per byte.
• DUP (element): Duplicate vector element to vector or scalar.
• DUP (general): Duplicate general-purpose register to vector.
• EOR (vector): Bitwise Exclusive OR (vector).
• EOR3: Three-way Exclusive OR.
• EXT: Extract vector from pair of vectors.
• FABD: Floating-point Absolute Difference.
• FABS (vector): Floating-point Absolute value (vector).
• FACGE: Floating-point Absolute Compare Greater than or Equal (vector).
• FACGT: Floating-point Absolute Compare Greater than (vector).
• FADD (vector): Floating-point Add (vector).
• FADDP (scalar): Floating-point Add Pair of elements (scalar).
• FADDP (vector): Floating-point Add Pairwise (vector).
• FCADD: Floating-point Complex Add.
• FCMEQ (register): Floating-point Compare Equal (vector).
• FCMEQ (zero): Floating-point Compare Equal to zero (vector).
• FCMGE (register): Floating-point Compare Greater than or Equal (vector).
• FCMGE (zero): Floating-point Compare Greater than or Equal to zero (vector).
• FCMGT (register): Floating-point Compare Greater than (vector).
• FCMGT (zero): Floating-point Compare Greater than zero (vector).
• FCMLA: Floating-point Complex Multiply Accumulate.
• FCMLA (by element): Floating-point Complex Multiply Accumulate (by element).
• FCMLE (zero): Floating-point Compare Less than or Equal to zero (vector).
• FCMLT (zero): Floating-point Compare Less than zero (vector).
• FCVTAS (vector): Floating-point Convert to Signed integer, rounding to nearest with ties to Away (vector).
• FCVTAU (vector): Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (vector).
• FCVTL, FCVTL2: Floating-point Convert to higher precision Long (vector).
• FCVTMS (vector): Floating-point Convert to Signed integer, rounding toward Minus infinity (vector).
• FCVTMU (vector): Floating-point Convert to Unsigned integer, rounding toward Minus infinity (vector).
• FCVTN, FCVTN2: Floating-point Convert to lower precision Narrow (vector).
• FCVTNS (vector): Floating-point Convert to Signed integer, rounding to nearest with ties to even (vector).
• FCVTNU (vector): Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (vector).
• FCVTPS (vector): Floating-point Convert to Signed integer, rounding toward Plus infinity (vector).
• FCVTPU (vector): Floating-point Convert to Unsigned integer, rounding toward Plus infinity (vector).
• FCVTXN, FCVTXN2: Floating-point Convert to lower precision Narrow, rounding to odd (vector).
• FCVTZS (vector, fixed-point): Floating-point Convert to Signed fixed-point, rounding toward Zero (vector).
• FCVTZS (vector, integer): Floating-point Convert to Signed integer, rounding toward Zero (vector).
• FCVTZU (vector, fixed-point): Floating-point Convert to Unsigned fixed-point, rounding toward Zero

(vector).
• FCVTZU (vector, integer): Floating-point Convert to Unsigned integer, rounding toward Zero (vector).
• FDIV (vector): Floating-point Divide (vector).
• FJCVTZS: Floating-point Javascript Convert to Signed fixed-point, rounding toward Zero.
• FMAX (vector): Floating-point Maximum (vector).
• FMAXNM (vector): Floating-point Maximum Number (vector).
• FMAXNMP (scalar): Floating-point Maximum Number of Pair of elements (scalar).
• FMAXNMP (vector): Floating-point Maximum Number Pairwise (vector).
• FMAXNMV: Floating-point Maximum Number across Vector.
• FMAXP (scalar): Floating-point Maximum of Pair of elements (scalar).
• FMAXP (vector): Floating-point Maximum Pairwise (vector).
• FMAXV: Floating-point Maximum across Vector.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

775

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• FMIN (vector): Floating-point minimum (vector).
• FMINNM (vector): Floating-point Minimum Number (vector).
• FMINNMP (scalar): Floating-point Minimum Number of Pair of elements (scalar).
• FMINNMP (vector): Floating-point Minimum Number Pairwise (vector).
• FMINNMV: Floating-point Minimum Number across Vector.
• FMINP (scalar): Floating-point Minimum of Pair of elements (scalar).
• FMINP (vector): Floating-point Minimum Pairwise (vector).
• FMINV: Floating-point Minimum across Vector.
• FMLA (by element): Floating-point fused Multiply-Add to accumulator (by element).
• FMLA (vector): Floating-point fused Multiply-Add to accumulator (vector).
• FMLAL, FMLAL2 (by element): Floating-point fused Multiply-Add Long to accumulator (by element).
• FMLAL, FMLAL2 (vector): Floating-point fused Multiply-Add Long to accumulator (vector).
• FMLS (by element): Floating-point fused Multiply-Subtract from accumulator (by element).
• FMLS (vector): Floating-point fused Multiply-Subtract from accumulator (vector).
• FMLSL, FMLSL2 (by element): Floating-point fused Multiply-Subtract Long from accumulator (by element).
• FMLSL, FMLSL2 (vector): Floating-point fused Multiply-Subtract Long from accumulator (vector).
• FMOV (vector, immediate): Floating-point move immediate (vector).
• FMUL (by element): Floating-point Multiply (by element).
• FMUL (vector): Floating-point Multiply (vector).
• FMULX (by element): Floating-point Multiply extended (by element).
• FNEG (vector): Floating-point Negate (vector).
• FRINT32X (vector): Floating-point Round to 32-bit Integer, using current rounding mode (vector).
• FRINT32Z (vector): Floating-point Round to 32-bit Integer toward Zero (vector).
• FRINT64X (vector): Floating-point Round to 64-bit Integer, using current rounding mode (vector).
• FRINT64Z (vector): Floating-point Round to 64-bit Integer toward Zero (vector).
• FRINTA (vector): Floating-point Round to Integral, to nearest with ties to Away (vector).
• FRINTI (vector): Floating-point Round to Integral, using current rounding mode (vector).
• FRINTM (vector): Floating-point Round to Integral, toward Minus infinity (vector).
• FRINTN (vector): Floating-point Round to Integral, to nearest with ties to even (vector).
• FRINTP (vector): Floating-point Round to Integral, toward Plus infinity (vector).
• FRINTX (vector): Floating-point Round to Integral exact, using current rounding mode (vector).
• FRINTZ (vector): Floating-point Round to Integral, toward Zero (vector).
• FSQRT (vector): Floating-point Square Root (vector).
• FSUB (vector): Floating-point Subtract (vector).
• INS (element): Insert vector element from another vector element.
• INS (general): Insert vector element from general-purpose register.
• LD1 (multiple structures): Load multiple single-element structures to one, two, three, or four registers.
• LD1 (single structure): Load one single-element structure to one lane of one register.
• LD1R: Load one single-element structure and Replicate to all lanes (of one register).
• LD2 (multiple structures): Load multiple 2-element structures to two registers.
• LD2 (single structure): Load single 2-element structure to one lane of two registers.
• LD2R: Load single 2-element structure and Replicate to all lanes of two registers.
• LD3 (multiple structures): Load multiple 3-element structures to three registers.
• LD3 (single structure): Load single 3-element structure to one lane of three registers).
• LD3R: Load single 3-element structure and Replicate to all lanes of three registers.
• LD4 (multiple structures): Load multiple 4-element structures to four registers.
• LD4 (single structure): Load single 4-element structure to one lane of four registers.
• LD4R: Load single 4-element structure and Replicate to all lanes of four registers.
• MLA (by element): Multiply-Add to accumulator (vector, by element).
• MLA (vector): Multiply-Add to accumulator (vector).
• MLS (by element): Multiply-Subtract from accumulator (vector, by element).
• MLS (vector): Multiply-Subtract from accumulator (vector).
• MOVI: Move Immediate (vector).
• MUL (by element): Multiply (vector, by element).
• MUL (vector): Multiply (vector).

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

776

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• MVNI: Move inverted Immediate (vector).
• NEG (vector): Negate (vector).
• NOT: Bitwise NOT (vector).
• ORN (vector): Bitwise inclusive OR NOT (vector).
• ORR (vector, immediate): Bitwise inclusive OR (vector, immediate).
• ORR (vector, register): Bitwise inclusive OR (vector, register).
• PMUL: Polynomial Multiply.
• PMULL, PMULL2: Polynomial Multiply Long.
• RADDHN, RADDHN2: Rounding Add returning High Narrow.
• RAX1: Rotate and Exclusive OR.
• RBIT (vector): Reverse Bit order (vector).
• REV16 (vector): Reverse elements in 16-bit halfwords (vector).
• REV32 (vector): Reverse elements in 32-bit words (vector).
• REV64: Reverse elements in 64-bit doublewords (vector).
• RSHRN, RSHRN2: Rounding Shift Right Narrow (immediate).
• RSUBHN, RSUBHN2: Rounding Subtract returning High Narrow.
• SABA: Signed Absolute difference and Accumulate.
• SABAL, SABAL2: Signed Absolute difference and Accumulate Long.
• SABD: Signed Absolute Difference.
• SABDL, SABDL2: Signed Absolute Difference Long.
• SADALP: Signed Add and Accumulate Long Pairwise.
• SADDL, SADDL2: Signed Add Long (vector).
• SADDLP: Signed Add Long Pairwise.
• SADDLV: Signed Add Long across Vector.
• SADDW, SADDW2: Signed Add Wide.
• SCVTF (vector, fixed-point): Signed fixed-point Convert to Floating-point (vector).
• SCVTF (vector, integer): Signed integer Convert to Floating-point (vector).
• SDOT (by element): Dot Product signed arithmetic (vector, by element).
• SDOT (vector): Dot Product signed arithmetic (vector).
• SHA1C: SHA1 hash update (choose).
• SHA1H: SHA1 fixed rotate.
• SHA1M: SHA1 hash update (majority).
• SHA1P: SHA1 hash update (parity).
• SHA1SU0: SHA1 schedule update 0.
• SHA1SU1: SHA1 schedule update 1.
• SHA256H: SHA256 hash update (part 1).
• SHA256H2: SHA256 hash update (part 2).
• SHA256SU0: SHA256 schedule update 0.
• SHA256SU1: SHA256 schedule update 1.
• SHA512H: SHA512 Hash update part 1.
• SHA512H2: SHA512 Hash update part 2.
• SHA512SU0: SHA512 Schedule Update 0.
• SHA512SU1: SHA512 Schedule Update 1.
• SHADD: Signed Halving Add.
• SHL: Shift Left (immediate).
• SHLL, SHLL2: Shift Left Long (by element size).
• SHRN, SHRN2: Shift Right Narrow (immediate).
• SHSUB: Signed Halving Subtract.
• SLI: Shift Left and Insert (immediate).
• SM3PARTW1: SM3PARTW1.
• SM3PARTW2: SM3PARTW2.
• SM3SS1: SM3SS1.
• SM3TT1A: SM3TT1A.
• SM3TT1B: SM3TT1B.
• SM3TT2A: SM3TT2A.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

777

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• SM3TT2B: SM3TT2B.
• SM4E: SM4 Encode.
• SM4EKEY: SM4 Key.
• SMAX: Signed Maximum (vector).
• SMAXP: Signed Maximum Pairwise.
• SMAXV: Signed Maximum across Vector.
• SMIN: Signed Minimum (vector).
• SMINP: Signed Minimum Pairwise.
• SMINV: Signed Minimum across Vector.
• SMLAL, SMLAL2 (by element): Signed Multiply-Add Long (vector, by element).
• SMLAL, SMLAL2 (vector): Signed Multiply-Add Long (vector).
• SMLSL, SMLSL2 (by element): Signed Multiply-Subtract Long (vector, by element).
• SMLSL, SMLSL2 (vector): Signed Multiply-Subtract Long (vector).
• SMMLA (vector): Signed 8-bit integer matrix multiply-accumulate (vector).
• SMULL, SMULL2 (by element): Signed Multiply Long (vector, by element).
• SMULL, SMULL2 (vector): Signed Multiply Long (vector).
• SQABS: Signed saturating Absolute value.
• SQADD: Signed saturating Add.
• SQDMLAL, SQDMLAL2 (by element): Signed saturating Doubling Multiply-Add Long (by element).
• SQDMLAL, SQDMLAL2 (vector): Signed saturating Doubling Multiply-Add Long.
• SQDMLSL, SQDMLSL2 (by element): Signed saturating Doubling Multiply-Subtract Long (by element).
• SQDMLSL, SQDMLSL2 (vector): Signed saturating Doubling Multiply-Subtract Long.
• SQDMULH (by element): Signed saturating Doubling Multiply returning High half (by element).
• SQDMULH (vector): Signed saturating Doubling Multiply returning High half.
• SQDMULL, SQDMULL2 (by element): Signed saturating Doubling Multiply Long (by element).
• SQDMULL, SQDMULL2 (vector): Signed saturating Doubling Multiply Long.
• SQNEG: Signed saturating Negate.
• SQRDMLAH (by element): Signed Saturating Rounding Doubling Multiply Accumulate returning High

Half (by
• element).
• SQRDMLAH (vector): Signed Saturating Rounding Doubling Multiply Accumulate returning High Half

(vector).
• SQRDMLSH (by element): Signed Saturating Rounding Doubling Multiply Subtract returning High Half

(by element).
• SQRDMLSH (vector): Signed Saturating Rounding Doubling Multiply Subtract returning High Half (vector).
• SQRDMULH (by element): Signed saturating Rounding Doubling Multiply returning High half (by element).
• SQRDMULH (vector): Signed saturating Rounding Doubling Multiply returning High half.
• SQRSHL: Signed saturating Rounding Shift Left (register).
• SQRSHRN, SQRSHRN2: Signed saturating Rounded Shift Right Narrow (immediate).
• SQRSHRUN, SQRSHRUN2: Signed saturating Rounded Shift Right Unsigned Narrow (immediate).
• SQSHL (immediate): Signed saturating Shift Left (immediate).
• SQSHL (register): Signed saturating Shift Left (register).
• SQSHLU: Signed saturating Shift Left Unsigned (immediate).
• SQSHRN, SQSHRN2: Signed saturating Shift Right Narrow (immediate).
• SQSHRUN, SQSHRUN2: Signed saturating Shift Right Unsigned Narrow (immediate).
• SQSUB: Signed saturating Subtract.
• SQXTN, SQXTN2: Signed saturating extract Narrow.
• SQXTUN, SQXTUN2: Signed saturating extract Unsigned Narrow.
• SRHADD: Signed Rounding Halving Add.
• SRI: Shift Right and Insert (immediate).
• SRSHL: Signed Rounding Shift Left (register).
• SRSHR: Signed Rounding Shift Right (immediate).
• SRSRA: Signed Rounding Shift Right and Accumulate (immediate).
• SSHL: Signed Shift Left (register).
• SSHLL, SSHLL2: Signed Shift Left Long (immediate).

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

778

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• SSHR: Signed Shift Right (immediate).
• SSRA: Signed Shift Right and Accumulate (immediate).
• SSUBL, SSUBL2: Signed Subtract Long.
• SSUBW, SSUBW2: Signed Subtract Wide.
• ST1 (multiple structures): Store multiple single-element structures from one, two, three, or four registers.
• ST1 (single structure): Store a single-element structure from one lane of one register.
• ST2 (multiple structures): Store multiple 2-element structures from two registers.
• ST2 (single structure): Store single 2-element structure from one lane of two registers.
• ST3 (multiple structures): Store multiple 3-element structures from three registers.
• ST3 (single structure): Store single 3-element structure from one lane of three registers.
• ST4 (multiple structures): Store multiple 4-element structures from four registers.
• ST4 (single structure): Store single 4-element structure from one lane of four registers.
• SUB (vector): Subtract (vector).
• SUBHN, SUBHN2: Subtract returning High Narrow.
• SUDOT (by element): Dot product with signed and unsigned integers (vector, by element).
• SUQADD: Signed saturating Accumulate of Unsigned value.
• TBL: Table vector Lookup.
• TBX: Table vector lookup extension.
• TRN1: Transpose vectors (primary).
• TRN2: Transpose vectors (secondary).
• UABA: Unsigned Absolute difference and Accumulate.
• UABAL, UABAL2: Unsigned Absolute difference and Accumulate Long.
• UABD: Unsigned Absolute Difference (vector).
• UABDL, UABDL2: Unsigned Absolute Difference Long.
• UADALP: Unsigned Add and Accumulate Long Pairwise.
• UADDL, UADDL2: Unsigned Add Long (vector).
• UADDLP: Unsigned Add Long Pairwise.
• UADDLV: Unsigned sum Long across Vector.
• UADDW, UADDW2: Unsigned Add Wide.
• UCVTF (vector, fixed-point): Unsigned fixed-point Convert to Floating-point (vector).
• UCVTF (vector, integer): Unsigned integer Convert to Floating-point (vector).
• UDOT (by element): Dot Product unsigned arithmetic (vector, by element).
• UDOT (vector): Dot Product unsigned arithmetic (vector).
• UHADD: Unsigned Halving Add.
• UHSUB: Unsigned Halving Subtract.
• UMAX: Unsigned Maximum (vector).
• UMAXP: Unsigned Maximum Pairwise.
• UMAXV: Unsigned Maximum across Vector.
• UMIN: Unsigned Minimum (vector).
• UMINP: Unsigned Minimum Pairwise.
• UMINV: Unsigned Minimum across Vector.
• UMLAL, UMLAL2 (by element): Unsigned Multiply-Add Long (vector, by element).
• UMLAL, UMLAL2 (vector): Unsigned Multiply-Add Long (vector).
• UMLSL, UMLSL2 (by element): Unsigned Multiply-Subtract Long (vector, by element).
• UMLSL, UMLSL2 (vector): Unsigned Multiply-Subtract Long (vector).
• UMMLA (vector): Unsigned 8-bit integer matrix multiply-accumulate (vector).
• UMULL, UMULL2 (by element): Unsigned Multiply Long (vector, by element).
• UMULL, UMULL2 (vector): Unsigned Multiply long (vector).
• UQADD: Unsigned saturating Add.
• UQRSHL: Unsigned saturating Rounding Shift Left (register).
• UQRSHRN, UQRSHRN2: Unsigned saturating Rounded Shift Right Narrow (immediate).
• UQSHL (immediate): Unsigned saturating Shift Left (immediate).
• UQSHL (register): Unsigned saturating Shift Left (register).
• UQSHRN, UQSHRN2: Unsigned saturating Shift Right Narrow (immediate).
• UQSUB: Unsigned saturating Subtract.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

779

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• UQXTN, UQXTN2: Unsigned saturating extract Narrow.
• URECPE: Unsigned Reciprocal Estimate.
• URHADD: Unsigned Rounding Halving Add.
• URSHL: Unsigned Rounding Shift Left (register).
• URSHR: Unsigned Rounding Shift Right (immediate).
• URSQRTE: Unsigned Reciprocal Square Root Estimate.
• URSRA: Unsigned Rounding Shift Right and Accumulate (immediate).
• USDOT (by element): Dot Product with unsigned and signed integers (vector, by element).
• USDOT (vector): Dot Product with unsigned and signed integers (vector).
• USHL: Unsigned Shift Left (register).
• USHLL, USHLL2: Unsigned Shift Left Long (immediate).
• USHR: Unsigned Shift Right (immediate).
• USMMLA (vector): Unsigned and signed 8-bit integer matrix multiply-accumulate (vector).
• USQADD: Unsigned saturating Accumulate of Signed value.
• USRA: Unsigned Shift Right and Accumulate (immediate).
• USUBL, USUBL2: Unsigned Subtract Long.
• USUBW, USUBW2: Unsigned Subtract Wide.
• UZP1: Unzip vectors (primary).
• UZP2: Unzip vectors (secondary).
• XAR: Exclusive OR and Rotate.
• XTN, XTN2: Extract Narrow.
• ZIP1: Zip vectors (primary).
• ZIP2: Zip vectors (secondary).

If execution of an illegal Advanced SIMD instruction is attempted when the PE is in Streaming SVE mode, and the
instructions are not configured to trap, this will cause an SME exception to be taken, as defined by rule RDTCLZ in
C1.2.1 Exception priorities.

E1.1.1.2 Single-element instructions

This section lists by name those A64 Advanced SIMD instruction pages in which only the SIMD “Vector” encoding
variants can be illegal when the PE is in Streaming SVE mode, but in which the single-element “Scalar” encoding
variants are always legal in Streaming SVE mode.

The Vector encodings of Advanced SIMD instructions described in the following pages are affected in this way:

• FMULX: Floating-point Multiply extended.
• FRECPE: Floating-point Reciprocal Estimate.
• FRECPS: Floating-point Reciprocal Step.
• FRECPX: Floating-point Reciprocal Exponent.1

• FRSQRTE: Floating-point Reciprocal Square Root Estimate.
• FRSQRTS: Floating-point Reciprocal Square Root Step.

E1.1.1.3 Element move to general register

The following Advanced SIMD instructions and their aliases can only be illegal when the PE is in Streaming SVE
mode if their immediate vector element index is greater than zero. They are always legal in Streaming SVE mode
when their element index is zero:

• SMOV: Signed Move vector element to general-purpose register.
• UMOV: Unsigned Move vector element to general-purpose register.

The 64-bit to top half of 128-bit and Top half of 128-bit to 64-bit variants from the following instruction page are
part of the scalar floating-point instruction set and therefore execute normally when the PE is in Streaming SVE
mode:

1FRECPX is an exception in that it only has a single-element form.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

780

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• FMOV (general): Floating-point Move to or from general-purpose register without conversion.

E1.1.2 Illegal SVE instructions

Allocated SVE and SVE2 instructions with encodings that match the following patterns are illegal when the PE is
in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current Exception level:

A64 Encoding Pattern SVE Instructions or Instruction Class

0000 0100 xx1x xxxx 1010 xxxx xxxx xxxx SVE address generation

0000 0100 xx1x xxxx 1011 0xxx xxxx xxxx SVE floating-point trig select coefficient

0000 0100 xx1x xxxx 1011 10xx xxxx xxxx SVE floating-point exponential accelerator

0000 0101 xx10 0001 100x xxxx xxxx xxxx SVE compress active elements

0000 0101 101x xxxx 000x xxxx xxxx xxxx SVE permute vector segments

0010 0101 xx01 1000 1111 000x xxx0 xxxx SVE predicate read from FFR (predicated)

0010 0101 xx01 1001 1111 0000 0000 xxxx SVE predicate read from FFR (unpredicated)

0010 0101 xx10 1000 1001 000x xxx0 0000 SVE FFR write from predicate

0010 0101 xx10 1100 1001 0000 0000 0000 SVE FFR initialise

0100 0101 000x xxxx 0110 1xxx xxxx xxxx PMULLB, PMULLT (128-bit result)

0100 0101 xx0x xxxx 1001 10xx xxxx xxxx SVE integer matrix multiply accumulate

0100 0101 xx0x xxxx 1011 xxxx xxxx xxxx SVE2 bitwise permute

0100 0101 xx1x xxxx 100x xxxx xxxx xxxx SVE2 string processing

0100 0101 xx1x xxxx 1010 00xx xxxx xxxx SVE2 histogram generation (segment)

0100 0101 xx1x xxxx 110x xxxx xxxx xxxx SVE2 histogram computation (vector)

0100 0101 xx10 0000 1110 0x00 000x xxxx SVE2 crypto unary operations

0100 0101 xx1x xxxx 1111 0xxx xxxx xxxx SVE2 crypto constructive binary operations

0100 0101 xx10 001x 1110 0xxx xxxx xxxx SVE2 crypto destructive binary operations

0110 0100 xx1x xxxx 1110 01xx xxxx xxxx SVE floating point matrix multiply accumulate

0110 0101 xx0x xxxx 0000 11xx xxxx xxxx FTSMUL

0110 0101 xx01 0xxx 1000 00xx xxxx xxxx SVE floating-point trig multiply accumulate coefficient

0110 0101 xx01 10xx 001x xxxx xxxx xxxx SVE floating-point serial reduction (predicated)

1000 010x xx0x xxxx 0xxx xxxx xxxx xxxx SVE 32-bit gather load byte (scalar plus 32-bit unscaled offsets)

1000 010x x00x xxxx 10xx xxxx xxxx xxxx SVE2 32-bit gather non-temporal load (scalar plus 32-bit unscaled
offsets)

1000 010x x00x xxxx 111x xxxx xxx0 xxxx SVE 32-bit gather prefetch (vector plus immediate)

1000 0100 0x1x xxxx 0xxx xxxx xxx0 xxxx SVE 32-bit gather prefetch (scalar plus 32-bit scaled offsets)

1000 010x x01x xxxx 1xxx xxxx xxxx xxxx SVE 32-bit gather load (vector plus immediate)

1000 0100 1x1x xxxx 0xxx xxxx xxxx xxxx SVE 32-bit gather load halfwords (scalar plus 32-bit scaled offsets)

1000 0101 0x1x xxxx 0xxx xxxx xxxx xxxx SVE 32-bit gather load words (scalar plus 32-bit scaled offsets)

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

781

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

A64 Encoding Pattern SVE Instructions or Instruction Class

1010 0100 001x xxxx 000x xxxx xxxx xxxx LD1ROB (scalar plus scalar)

1010 0100 101x xxxx 000x xxxx xxxx xxxx LD1ROH (scalar plus scalar)

1010 0101 001x xxxx 000x xxxx xxxx xxxx LD1ROW (scalar plus scalar)

1010 0101 101x xxxx 000x xxxx xxxx xxxx LD1ROD (scalar plus scalar)

1010 0100 0010 xxxx 001x xxxx xxxx xxxx LD1ROB (scalar plus immediate)

1010 0100 1010 xxxx 001x xxxx xxxx xxxx LD1ROH (scalar plus immediate)

1010 0101 0010 xxxx 001x xxxx xxxx xxxx LD1ROW (scalar plus immediate)

1010 0101 1010 xxxx 001x xxxx xxxx xxxx LD1ROD (scalar plus immediate)

1010 010x xxxx xxxx 011x xxxx xxxx xxxx SVE contiguous first-fault load (scalar plus scalar)

1010 010x xxx1 xxxx 101x xxxx xxxx xxxx SVE contiguous non-fault load (scalar plus immediate)

1100 010x xx0x xxxx 0xxx xxxx xxxx xxxx SVE 64-bit gather load (scalar plus unpacked 32-bit unscaled offsets)

1100 010x x00x xxxx 1x0x xxxx xxxx xxxx SVE2 64-bit gather non-temporal load (scalar plus unpacked 32-bit
unscaled offsets)

1100 010x x00x xxxx 111x xxxx xxx0 xxxx SVE 64-bit gather prefetch (vector plus immediate)

1100 010x xx1x xxxx 0xxx xxxx xxxx xxxx SVE 64-bit gather load (scalar plus 32-bit unpacked scaled offsets)

1100 0100 0x1x xxxx 0xxx xxxx xxx0 xxxx SVE 64-bit gather prefetch (scalar plus unpacked 32-bit scaled
offsets)

1100 010x x01x xxxx 1xxx xxxx xxxx xxxx SVE 64-bit gather load (vector plus immediate)

1100 010x x10x xxxx 1xxx xxxx xxxx xxxx SVE 64-bit gather load (scalar plus 64-bit unscaled offsets)

1100 010x x11x xxxx 1xxx xxxx xxxx xxxx SVE 64-bit gather load (scalar plus 64-bit scaled offsets)

1100 0100 011x xxxx 1xxx xxxx xxx0 xxxx SVE 64-bit gather prefetch (scalar plus 64-bit scaled offsets)

1110 010x x00x xxxx 001x xxxx xxxx xxxx SVE2 64-bit scatter non-temporal store (vector plus scalar)

1110 010x x10x xxxx 001x xxxx xxxx xxxx SVE2 32-bit scatter non-temporal store (vector plus scalar)

1110 010x xxxx xxxx 1x0x xxxx xxxx xxxx SVE scatter store with 32-bit offset

1110 010x xxxx xxxx 101x xxxx xxxx xxxx SVE scatter store with 64-bit offset

1110 010x xxxx xxxx 101x xxxx xxxx xxxx SVE scatter store with immediate offset

The following SVE and SVE2 instructions and their aliases are affected:

• ADR: Compute vector address.
• AESD: AES single round decryption.
• AESE: AES single round encryption.
• AESIMC: AES inverse mix columns.
• AESMC: AES mix columns.
• BDEP: Scatter lower bits into positions selected by bitmask
• BEXT: Gather lower bits from positions selected by bitmask.
• BFMMLA: BFloat16 floating-point matrix multiply-accumulate.
• BGRP: Group bits to right or left as selected by bitmask.
• COMPACT: Shuffle active elements of vector to the right and fill with zero.
• FADDA: Floating-point add strictly-ordered reduction, accumulating in scalar.
• FEXPA: Floating-point exponential accelerator.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

782

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• FMMLA: Floating-point matrix multiply-accumulate.
• FTMAD: Floating-point trigonometric multiply-add coefficient.
• FTSMUL: Floating-point trigonometric starting value.
• FTSSEL: Floating-point trigonometric select coefficient.
• HISTCNT: Count matching elements in vector.
• HISTSEG: Count matchine elements in vector segments.
• LD1B (scalar plus vector): Gather load unsigned bytes to vector (vector index).
• LD1B (vector plus immediate): Gather load unsigned bytes to vector (immediate index).
• LD1D (scalar plus vector): Gather load doublewords to vector (vector index).
• LD1D (vector plus immediate): Gather load doublewords to vector (immediate index).
• LD1H (scalar plus vector): Gather load unsigned halfwords to vector (vector index).
• LD1H (vector plus immediate): Gather load unsigned halfwords to vector (immediate index).
• LD1ROB (scalar plus immediate): Contiguous load and replicate thirty-two bytes (immediate index).
• LD1ROB (scalar plus scalar): Contiguous load and replicate thirty-two bytes (scalar index).
• LD1ROD (scalar plus immediate): Contiguous load and replicate four doublewords (immediate index).
• LD1ROD (scalar plus scalar): Contiguous load and replicate four doublewords (scalar index).
• LD1ROH (scalar plus immediate): Contiguous load and replicate sixteen halfwords (immediate index).
• LD1ROH (scalar plus scalar): Contiguous load and replicate sixteen halfwords (scalar index).
• LD1ROW (scalar plus immediate): Contiguous load and replicate eight words (immediate index).
• LD1ROW (scalar plus scalar): Contiguous load and replicate eight words (scalar index).
• LD1SB (scalar plus vector): Gather load signed bytes to vector (vector index).
• LD1SB (vector plus immediate): Gather load signed bytes to vector (immediate index).
• LD1SH (scalar plus vector): Gather load signed halfwords to vector (vector index).
• LD1SH (vector plus immediate): Gather load signed halfwords to vector (immediate index).
• LD1SW (scalar plus vector): Gather load signed words to vector (vector index).
• LD1SW (vector plus immediate): Gather load signed words to vector (immediate index).
• LD1W (scalar plus vector): Gather load unsigned words to vector (vector index).
• LD1W (vector plus immediate): Gather load unsigned words to vector (immediate index).
• LDFF1B (scalar plus scalar): Contiguous load first-fault unsigned bytes to vector (scalar index).
• LDFF1B (scalar plus vector): Gather load first-fault unsigned bytes to vector (vector index).
• LDFF1B (vector plus immediate): Gather load first-fault unsigned bytes to vector (immediate index).
• LDFF1D (scalar plus scalar): Contiguous load first-fault doublewords to vector (scalar index).
• LDFF1D (scalar plus vector): Gather load first-fault doublewords to vector (vector index).
• LDFF1D (vector plus immediate): Gather load first-fault doublewords to vector (immediate index).
• LDFF1H (scalar plus scalar): Contiguous load first-fault unsigned halfwords to vector (scalar index).
• LDFF1H (scalar plus vector): Gather load first-fault unsigned halfwords to vector (vector index).
• LDFF1H (vector plus immediate): Gather load first-fault unsigned halfwords to vector (immediate index).
• LDFF1SB (scalar plus scalar): Contiguous load first-fault signed bytes to vector (scalar index).
• LDFF1SB (scalar plus vector): Gather load first-fault signed bytes to vector (vector index).
• LDFF1SB (vector plus immediate): Gather load first-fault signed bytes to vector (immediate index).
• LDFF1SH (scalar plus scalar): Contiguous load first-fault signed halfwords to vector (scalar index).
• LDFF1SH (scalar plus vector): Gather load first-fault signed halfwords to vector (vector index).
• LDFF1SH (vector plus immediate): Gather load first-fault signed halfwords to vector (immediate index).
• LDFF1SW (scalar plus scalar): Contiguous load first-fault signed words to vector (scalar index).
• LDFF1SW (scalar plus vector): Gather load first-fault signed words to vector (vector index).
• LDFF1SW (vector plus immediate): Gather load first-fault signed words to vector (immediate index).
• LDFF1W (scalar plus scalar): Contiguous load first-fault unsigned words to vector (scalar index).
• LDFF1W (scalar plus vector): Gather load first-fault unsigned words to vector (vector index).
• LDFF1W (vector plus immediate): Gather load first-fault unsigned words to vector (immediate index).
• LDNF1B: Contiguous load non-fault unsigned bytes to vector (immediate index).
• LDNF1D: Contiguous load non-fault doublewords to vector (immediate index).
• LDNF1H: Contiguous load non-fault unsigned halfwords to vector (immediate index).
• LDNF1SB: Contiguous load non-fault signed bytes to vector (immediate index).
• LDNF1SH: Contiguous load non-fault signed halfwords to vector (immediate index).
• LDNF1SW: Contiguous load non-fault signed words to vector (immediate index).

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

783

Chapter E1. Instructions affected by SME
E1.1. Illegal instructions in Streaming SVE mode

• LDNF1W: Contiguous load non-fault unsigned words to vector (immediate index).
• LDNT1B (vector plus scalar): Gather load non-temporal unsigned bytes.
• LDNT1D (vector plus scalar): Gather load non-temporal unsigned doublewords.
• LDNT1H (vector plus scalar): Gather load non-temporal unsigned halfwords.
• LDNT1SB: Gather load non-temporal signed bytes.
• LDNT1SH: Gather load non-temporal signed halfwords.
• LDNT1SW: Gather load non-temporal signed words.
• LDNT1W (vector plus scalar): Gather load non-temporal unsigned words.
• MATCH: Detect any matching elements, setting the condition flags.
• NMATCH: Detect no matching elements, setting the condition flags.
• PMULLB: Polynomial multiply long (bottom) [128b result only].
• PMULLT: Polynomial multiply long (top) [128b result only].
• PRFB (scalar plus vector): Gather prefetch bytes (scalar plus vector).
• PRFB (vector plus immediate): Gather prefetch bytes (vector plus immediate).
• PRFD (scalar plus vector): Gather prefetch doublewords (scalar plus vector).
• PRFD (vector plus immediate): Gather prefetch doublewords (vector plus immediate).
• PRFH (scalar plus vector): Gather prefetch halfwords (scalar plus vector).
• PRFH (vector plus immediate): Gather prefetch halfwords (vector plus immediate).
• PRFW (scalar plus vector): Gather prefetch words (scalar plus vector).
• PRFW (vector plus immediate): Gather prefetch words (vector plus immediate).
• RAX1: Bitwise rotate left by 1 and exclusive OR.
• RDFFR (unpredicated): Read the first-fault register.
• RDFFR, RDFFRS (predicated): Return predicate of succesfully loaded elements.
• SETFFR: Initialise the first-fault register to all true.
• SM4E: SM4 encryption and decryption.
• SM4EKEY: SM4 key updates.
• SMMLA: Signed integer matrix multiply-accumulate.
• ST1B (scalar plus vector): Scatter store bytes from a vector (vector index).
• ST1B (vector plus immediate): Scatter store bytes from a vector (immediate index).
• ST1D (scalar plus vector): Scatter store doublewords from a vector (vector index).
• ST1D (vector plus immediate): Scatter store doublewords from a vector (immediate index).
• ST1H (scalar plus vector): Scatter store halfwords from a vector (vector index).
• ST1H (vector plus immediate): Scatter store halfwords from a vector (immediate index).
• ST1W (scalar plus vector): Scatter store words from a vector (vector index).
• ST1W (vector plus immediate): Scatter store words from a vector (immediate index).
• STNT1B (vector plus scalar): Scatter store non-temporal bytes.
• STNT1D (vector plus scalar): Scatter store non-temporal doublewords.
• STNT1H (vector plus scalar): Scatter store non-temporal halfwords.
• STNT1W (vector plus scalar): Scatter store non-temporal words.
• TRN1, TRN2 (vectors, quadwords): Interleave even or odd quadwords from two vectors.
• UMMLA: Unsigned integer matrix multiply-accumulate.
• USMMLA: Unsigned by signed integer matrix multiply-accumulate.
• UZP1, UZP2 (vectors, quadwords): Concatenate even or odd quadwords from two vectors.
• WRFFR: Write the first-fault register.
• ZIP1, ZIP2 (vectors, quadwords): Interleave quadwords from two half vectors.

If execution of an illegal SVE or SVE2 instruction is attempted when the PE is in Streaming SVE mode, and SVE
instructions are not configured to trap, this will cause an SME exception to be taken, as defined by rule RPLYVH in
C1.2.1 Exception priorities.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

784

Chapter E1. Instructions affected by SME
E1.2. Unimplemented SVE instructions

E1.2 Unimplemented SVE instructions

If execution of any SVE or SVE2 instruction is attempted when the PE is not in Streaming SVE mode and
FEAT_SVE or FEAT_SVE2 is not implemented by the PE, and the instructions are not configured to trap, this will
cause an SME exception to be taken, as defined by rule RPLYVH in C1.2.1 Exception priorities.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

785

Chapter E1. Instructions affected by SME
E1.3. Reduced performance in Streaming SVE mode

E1.3 Reduced performance in Streaming SVE mode

Instructions which are dependent on results generated from vector or SIMD&FP register sources written to a
general-purpose destination register, a predicate destination register, or the NZCV condition flags, might be
significantly delayed if the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled
at the current Exception level.

The following subsections list the instructions that are affected by this change.

E1.3.1 Scalar floating-point instructions

The following scalar floating-point instructions are affected.

• FCCMP: Floating-point Conditional quiet Compare (scalar).
• FCCMPE: Floating-point Conditional signaling Compare (scalar).
• FCMP: Floating-point quiet Compare (scalar).
• FCMPE: Floating-point signaling Compare (scalar).
• FCVTAS (scalar): Floating-point Convert to Signed integer, rounding to nearest with ties to Away (scalar).
• FCVTAU (scalar): Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away (scalar).
• FCVTMS (scalar): Floating-point Convert to Signed integer, rounding toward Minus infinity (scalar).
• FCVTMU (scalar): Floating-point Convert to Unsigned integer, rounding toward Minus infinity (scalar).
• FCVTNS (scalar): Floating-point Convert to Signed integer, rounding to nearest with ties to even (scalar).
• FCVTNU (scalar): Floating-point Convert to Unsigned integer, rounding to nearest with ties to even (scalar).
• FCVTPS (scalar): Floating-point Convert to Signed integer, rounding toward Plus infinity (scalar).
• FCVTPU (scalar): Floating-point Convert to Unsigned integer, rounding toward Plus infinity (scalar).
• FCVTZS (scalar, fixed-point): Floating-point Convert to Signed fixed-point, rounding toward Zero (scalar).
• FCVTZS (scalar, integer): Floating-point Convert to Signed integer, rounding toward Zero (scalar).
• FCVTZU (scalar, fixed-point): Floating-point Convert to Unsigned fixed-point, rounding toward Zero

(scalar).
• FCVTZU (scalar, integer): Floating-point Convert to Unsigned integer, rounding toward Zero (scalar).

This only applies to the variants of the following scalar floating-point instructions that write to a general-purpose
register:

• FMOV (general): Floating-point Move to or from general-purpose register without conversion.

E1.3.2 SVE instructions

The following SVE instructions are affected.

• ANDS (predicates): Bitwise AND predicates.
• BICS (predicates): Bitwise clear predicates.
• BRKAS: Break after first true condition.
• BRKBS: Break before first true condition.
• BRKNS: Propagate break to next partition.
• BRKPAS: Break after first true condition, propagating from previous partition.
• BRKPBS: Break before first true condition, propagating from previous partition.
• CLASTA (scalar): Conditionally extract element after last to general-purpose register.
• CLASTB (scalar): Conditionally extract last element to general-purpose register.
• CMP<cc> (immediate): Compare vector to immediate.
• CMP<cc> (vectors): Compare vectors.
• CMP<cc> (wide elements): Compare vector to 64-bit wide elements.
• CNTP: Set scalar to count of true predicate elements.
• DECP (scalar): Decrement scalar by count of true predicate elements.
• EORS (predicates): Bitwise exclusive OR predicates.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

786

Chapter E1. Instructions affected by SME
E1.3. Reduced performance in Streaming SVE mode

• FAC<cc>: Floating-point absolute compare vectors.
• FCM<cc> (vectors): Floating-point compare vectors.
• FCM<cc> (zero): Floating-point compare vector with zero.
• INCP (scalar): Increment scalar by count of true predicate elements.
• LASTA (scalar): Extract element after last to general-purpose register.
• LASTB (scalar): Extract last element to general-purpose register.
• NANDS: Bitwise NAND predicates.
• NORS: Bitwise NOR predicates.
• ORNS (predicates): Bitwise inclusive OR inverted predicate.
• ORRS (predicates): Bitwise inclusive OR predicate.
• PFIRST: Set the first active predicate element to true.
• PNEXT: Find next active predicate.
• PTEST: Set condition flags for predicate.
• PTRUES: Initialise predicate from named constraint.
• SQDECP (scalar): Signed saturating decrement scalar by count of true predicate elements.
• SQINCP (scalar): Signed saturating increment scalar by count of true predicate elements.
• UQDECP (scalar): Unsigned saturating decrement scalar by count of true predicate elements.
• UQINCP (scalar): Unsigned saturating increment scalar by count of true predicate elements.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

787

Chapter E2
SME Shared pseudocode

This section provides the full information for shared pseudocode functions added or modified by SME or SME2.

This content is from the 2022-12 version of Arm® A64 Instruction Set Architecture, for A-profile architecture [3],
which contains the definitive details of the pseudocode.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

788

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

E2.1 Pseudocode functions

E2.1.1 AArch64.CheckFPAdvSIMDEnabled

1 // AArch64.CheckFPAdvSIMDEnabled()
2 // ===============================
3
4 AArch64.CheckFPAdvSIMDEnabled()
5 AArch64.CheckFPEnabled();
6 // Check for illegal use of Advanced
7 // SIMD in Streaming SVE Mode
8 if HaveSME() && PSTATE.SM == '1' && !IsFullA64Enabled() then
9 SMEAccessTrap(SMEExceptionType_Streaming, PSTATE.EL);

E2.1.2 BFDotAdd

1 // BFDotAdd()
2 // ==========
3 // BFloat16 2-way dot-product and add to single-precision
4 // result = addend + op1_a*op2_a + op1_b*op2_b
5
6 bits(32) BFDotAdd(bits(32) addend, bits(16) op1_a, bits(16) op1_b,
7 bits(16) op2_a, bits(16) op2_b, FPCRType fpcr_in)
8 FPCRType fpcr = fpcr_in;
9

10 bits(32) prod;
11
12 bits(32) result;
13 if !HaveEBF16() || fpcr.EBF == '0' then // Standard BFloat16 behaviors
14 prod = FPAdd_BF16(BFMulH(op1_a, op2_a), BFMulH(op1_b, op2_b));
15 result = FPAdd_BF16(addend, prod);
16 else // Extended BFloat16 behaviors
17 boolean isbfloat16 = TRUE;
18 boolean fpexc = FALSE; // Do not generate floating-point exceptions
19 fpcr.DN = '1'; // Generate default NaN values
20 prod = FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc);
21 result = FPAdd(addend, prod, fpcr, fpexc);
22
23 return result;

E2.1.3 BFNeg

1 // BFNeg()
2 // =======
3
4 bits(16) BFNeg(bits(16) op)
5 boolean honor_altfp = TRUE; // Honor alternate handling
6 return BFNeg(op, honor_altfp);
7
8 // BFNeg()
9 // =======

10
11 bits(16) BFNeg(bits(16) op, boolean honor_altfp)
12
13 if honor_altfp && !UsingAArch32() && HaveAltFP() then
14 FPCRType fpcr = FPCR[];
15 if fpcr.AH == '1' then
16 boolean fpexc = FALSE;
17 boolean isbfloat16 = TRUE;
18 (fptype, -, -) = FPUnpackBase(op, fpcr, fpexc, isbfloat16);
19 if fptype IN {FPType_SNaN, FPType_QNaN} then
20
21 return op; // When fpcr.AH=1, sign of NaN has no consequence
22
23 return NOT(op<15>) : op<14:0>;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

789

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

E2.1.4 CheckFPAdvSIMDEnabled64

1 // CheckFPAdvSIMDEnabled64()
2 // =========================
3 // AArch64 instruction wrapper
4
5 CheckFPAdvSIMDEnabled64()
6 AArch64.CheckFPAdvSIMDEnabled();

E2.1.5 CheckNonStreamingSVEEnabled

1 // CheckNonStreamingSVEEnabled()
2 // =============================
3 // Checks for traps on SVE instructions that are not legal in streaming mode.
4
5 CheckNonStreamingSVEEnabled()
6 CheckSVEEnabled();
7
8 if HaveSME() && PSTATE.SM == '1' && !IsFullA64Enabled() then
9 SMEAccessTrap(SMEExceptionType_Streaming, PSTATE.EL);

E2.1.6 CheckSMEAccess

1 // CheckSMEAccess()
2 // ================
3 // Check that access to SME System registers is enabled.
4
5 CheckSMEAccess()
6 boolean disabled;
7 // Check if access disabled in CPACR_EL1
8 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
9 // Check SME at EL0/EL1

10 case CPACR_EL1.SMEN of
11 when 'x0' disabled = TRUE;
12 when '01' disabled = PSTATE.EL == EL0;
13 when '11' disabled = FALSE;
14 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL1);
15
16 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
17 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
18 // Check SME at EL2
19 case CPTR_EL2.SMEN of
20 when 'x0' disabled = TRUE;
21 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
22 when '11' disabled = FALSE;
23 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
24 else
25 if CPTR_EL2.TSM == '1' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
26
27 // Check if access disabled in CPTR_EL3
28 if HaveEL(EL3) then
29 if CPTR_EL3.ESM == '0' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL3);

E2.1.7 CheckSMEAndZAEnabled

1 // CheckSMEAndZAEnabled()
2 // ======================
3
4 CheckSMEAndZAEnabled()
5 CheckSMEEnabled();
6
7 if PSTATE.ZA == '0' then
8 SMEAccessTrap(SMEExceptionType_InactiveZA, PSTATE.EL);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

790

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

E2.1.8 CheckSMEEnabled

1 // CheckSMEEnabled()
2 // =================
3
4 CheckSMEEnabled()
5 boolean disabled;
6 // Check if access disabled in CPACR_EL1
7 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
8 // Check SME at EL0/EL1
9 case CPACR_EL1.SMEN of

10 when 'x0' disabled = TRUE;
11 when '01' disabled = PSTATE.EL == EL0;
12 when '11' disabled = FALSE;
13 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL1);
14
15 // Check SIMD&FP at EL0/EL1
16 case CPACR_EL1.FPEN of
17 when 'x0' disabled = TRUE;
18 when '01' disabled = PSTATE.EL == EL0;
19 when '11' disabled = FALSE;
20 if disabled then AArch64.AdvSIMDFPAccessTrap(EL1);
21
22 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
23 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
24 // Check SME at EL2
25 case CPTR_EL2.SMEN of
26 when 'x0' disabled = TRUE;
27 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
28 when '11' disabled = FALSE;
29 if disabled then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
30
31 // Check SIMD&FP at EL2
32 case CPTR_EL2.FPEN of
33 when 'x0' disabled = TRUE;
34 when '01' disabled = PSTATE.EL == EL0 && HCR_EL2.TGE == '1';
35 when '11' disabled = FALSE;
36 if disabled then AArch64.AdvSIMDFPAccessTrap(EL2);
37 else
38 if CPTR_EL2.TSM == '1' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL2);
39 if CPTR_EL2.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL2);
40
41 // Check if access disabled in CPTR_EL3
42 if HaveEL(EL3) then
43 if CPTR_EL3.ESM == '0' then SMEAccessTrap(SMEExceptionType_AccessTrap, EL3);
44 if CPTR_EL3.TFP == '1' then AArch64.AdvSIMDFPAccessTrap(EL3);

E2.1.9 CheckSMEZT0Enabled

1 // CheckSMEZT0Enabled()
2 // ====================
3 // Checks for ZT0 enabled.
4
5 CheckSMEZT0Enabled()
6 // Check if ZA and ZT0 are inactive in PSTATE
7 if PSTATE.ZA == '0' then
8 SMEAccessTrap(SMEExceptionType_InactiveZA, PSTATE.EL);
9

10 // Check if EL0/EL1 accesses to ZT0 are disabled in SMCR_EL1
11 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then
12 if SMCR_EL1.EZT0 == '0' then
13 SMEAccessTrap(SMEExceptionType_InaccessibleZT0, EL1);
14
15 // Check if EL0/EL1/EL2 accesses to ZT0 are disabled in SMCR_EL2
16 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
17 if SMCR_EL2.EZT0 == '0' then
18 SMEAccessTrap(SMEExceptionType_InaccessibleZT0, EL2);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

791

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

19
20 // Check if all accesses to ZT0 are disabled in SMCR_EL3
21 if HaveEL(EL3) then
22 if SMCR_EL3.EZT0 == '0' then
23 SMEAccessTrap(SMEExceptionType_InaccessibleZT0, EL3);

E2.1.10 CheckStreamingSVEAndZAEnabled

1 // CheckStreamingSVEAndZAEnabled()
2 // ===============================
3
4 CheckStreamingSVEAndZAEnabled()
5 CheckStreamingSVEEnabled();
6
7 if PSTATE.ZA == '0' then
8 SMEAccessTrap(SMEExceptionType_InactiveZA, PSTATE.EL);

E2.1.11 CheckStreamingSVEEnabled

1 // CheckStreamingSVEEnabled()
2 // ==========================
3
4 CheckStreamingSVEEnabled()
5 CheckSMEEnabled();
6
7 if PSTATE.SM == '0' then
8 SMEAccessTrap(SMEExceptionType_NotStreaming, PSTATE.EL);

E2.1.12 CounterToPredicate

1 // CounterToPredicate()
2 // ====================
3
4 bits(width) CounterToPredicate(bits(16) pred, integer width)
5 integer count;
6 integer esize;
7 integer elements;
8 constant integer VL = CurrentVL;
9 constant integer PL = VL DIV 8;

10 integer maxbit = HighestSetBit(CeilPow2(PL * 4)<15:0>);
11 assert maxbit <= 14;
12 bits(PL*4) result;
13 boolean invert = pred<15> == '1';
14
15 assert width == PL || width == PL*2 || width == PL*3 || width == PL*4;
16
17 if IsZero(pred<3:0>) then
18 return Zeros(width);
19
20 case pred<3:0> of
21 when 'xxx1'
22 count = UInt(pred<maxbit:1>);
23 esize = 8;
24 when 'xx10'
25 count = UInt(pred<maxbit:2>);
26 esize = 16;
27 when 'x100'
28 count = UInt(pred<maxbit:3>);
29 esize = 32;
30 when '1000'
31 count = UInt(pred<maxbit:4>);
32 esize = 64;
33
34 elements = (VL * 4) DIV esize;
35 result = Zeros(PL*4);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

792

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

36 constant integer psize = esize DIV 8;
37 for e = 0 to elements-1
38 bit pbit = if e < count then '1' else '0';
39 if invert then
40 pbit = NOT(pbit);
41 Elem[result, e, psize] = ZeroExtend(pbit, psize);
42
43 return result<width-1:0>;

E2.1.13 CurrentNSVL

1 // CurrentNSVL - non-assignment form
2 // =================================
3 // Non-Streaming VL
4
5 integer CurrentNSVL
6 integer vl;
7
8 if PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost()) then
9 vl = UInt(ZCR_EL1.LEN);

10
11 if PSTATE.EL == EL2 || (PSTATE.EL == EL0 && IsInHost()) then
12 vl = UInt(ZCR_EL2.LEN);
13 elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
14 vl = Min(vl, UInt(ZCR_EL2.LEN));
15
16 if PSTATE.EL == EL3 then
17 vl = UInt(ZCR_EL3.LEN);
18 elsif HaveEL(EL3) then
19 vl = Min(vl, UInt(ZCR_EL3.LEN));
20
21 vl = (vl + 1) * 128;
22 vl = ImplementedSVEVectorLength(vl);
23
24 return vl;

E2.1.14 CurrentSVL

1 // CurrentSVL - non-assignment form
2 // ================================
3 // Streaming SVL
4
5 integer CurrentSVL
6 integer vl;
7
8 if PSTATE.EL == EL1 || (PSTATE.EL == EL0 && !IsInHost()) then
9 vl = UInt(SMCR_EL1.LEN);

10
11 if PSTATE.EL == EL2 || (PSTATE.EL == EL0 && IsInHost()) then
12 vl = UInt(SMCR_EL2.LEN);
13 elsif PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
14 vl = Min(vl, UInt(SMCR_EL2.LEN));
15
16 if PSTATE.EL == EL3 then
17 vl = UInt(SMCR_EL3.LEN);
18 elsif HaveEL(EL3) then
19 vl = Min(vl, UInt(SMCR_EL3.LEN));
20
21 vl = (vl + 1) * 128;
22 vl = ImplementedSMEVectorLength(vl);
23
24 return vl;

E2.1.15 CurrentVL

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

793

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

1 // CurrentVL - non-assignment form
2 // ===============================
3
4 integer CurrentVL
5 return if HaveSME() && PSTATE.SM == '1' then CurrentSVL else CurrentNSVL;

E2.1.16 EncodePredCount

1 // EncodePredCount()
2 // =================
3
4 bits(width) EncodePredCount(integer esize, integer elements,
5 integer count_in, boolean invert_in, integer width)
6 integer count = count_in;
7 boolean invert = invert_in;
8 constant integer PL = CurrentVL DIV 8;
9 assert width == PL;

10 assert esize IN {8, 16, 32, 64};
11 assert count >=0 && count <= elements;
12 bits(16) pred;
13
14 if count == 0 then
15 return Zeros(width);
16
17 if invert then
18 count = elements - count;
19 elsif count == elements then
20 count = 0;
21 invert = TRUE;
22
23 bit inv = (if invert then '1' else '0');
24 case esize of
25 when 8 pred = inv : count<13:0> : '1';
26 when 16 pred = inv : count<12:0> : '10';
27 when 32 pred = inv : count<11:0> : '100';
28 when 64 pred = inv : count<10:0> : '1000';
29
30 return ZeroExtend(pred, width);

E2.1.17 FPAdd_ZA

1 // FPAdd_ZA()
2 // ==========
3 // Calculates op1+op2 for SME2 ZA-targeting instructions.
4
5 bits(N) FPAdd_ZA(bits(N) op1, bits(N) op2, FPCRType fpcr_in)
6 FPCRType fpcr = fpcr_in;
7 boolean fpexc = FALSE; // Do not generate floating-point exceptions
8 fpcr.DN = '1'; // Generate default NaN values
9 return FPAdd(op1, op2, fpcr, fpexc);

E2.1.18 FPDot

1 // FPDot()
2 // =======
3 // Calculates single-precision result of 2-way 16-bit floating-point dot-product
4 // with a single rounding.
5 // The 'fpcr' argument supplies the FPCR control bits and 'isbfloat16'
6 // determines whether input operands are BFloat16 or half-precision type.
7 // and 'fpexc' controls the generation of floating-point exceptions.
8
9 bits(N) FPDot(bits(N DIV 2) op1_a, bits(N DIV 2) op1_b, bits(N DIV 2) op2_a,

10 bits(N DIV 2) op2_b, FPCRType fpcr, boolean isbfloat16)
11 boolean fpexc = TRUE; // Generate floating-point exceptions
12 return FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

794

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

13
14 bits(N) FPDot(bits(N DIV 2) op1_a, bits(N DIV 2) op1_b, bits(N DIV 2) op2_a,
15 bits(N DIV 2) op2_b, FPCRType fpcr_in, boolean isbfloat16, boolean fpexc)
16 FPCRType fpcr = fpcr_in;
17
18 assert N == 32;
19 bits(N) result;
20 boolean done;
21 fpcr.AHP = '0'; // Ignore alternative half-precision option
22 rounding = FPRoundingMode(fpcr);
23
24 (type1_a,sign1_a,value1_a) = FPUnpackBase(op1_a, fpcr, fpexc, isbfloat16);
25 (type1_b,sign1_b,value1_b) = FPUnpackBase(op1_b, fpcr, fpexc, isbfloat16);
26 (type2_a,sign2_a,value2_a) = FPUnpackBase(op2_a, fpcr, fpexc, isbfloat16);
27 (type2_b,sign2_b,value2_b) = FPUnpackBase(op2_b, fpcr, fpexc, isbfloat16);
28
29 inf1_a = (type1_a == FPType_Infinity); zero1_a = (type1_a == FPType_Zero);
30 inf1_b = (type1_b == FPType_Infinity); zero1_b = (type1_b == FPType_Zero);
31 inf2_a = (type2_a == FPType_Infinity); zero2_a = (type2_a == FPType_Zero);
32 inf2_b = (type2_b == FPType_Infinity); zero2_b = (type2_b == FPType_Zero);
33
34 (done,result) = FPProcessNaNs4(type1_a, type1_b, type2_a, type2_b,
35 op1_a, op1_b, op2_a, op2_b, fpcr, fpexc);
36
37 if (((inf1_a && zero2_a) || (zero1_a && inf2_a)) &&
38 ((inf1_b && zero2_b) || (zero1_b && inf2_b))) then
39 result = FPDefaultNaN(fpcr, N);
40 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
41
42 if !done then
43 // Determine sign and type products will have if it does not cause an Invalid
44 // Operation.
45 signPa = sign1_a EOR sign2_a;
46 signPb = sign1_b EOR sign2_b;
47 infPa = inf1_a || inf2_a;
48 infPb = inf1_b || inf2_b;
49 zeroPa = zero1_a || zero2_a;
50 zeroPb = zero1_b || zero2_b;
51
52 // Non SNaN-generated Invalid Operation cases are multiplies of zero
53 // by infinity and additions of opposite-signed infinities.
54 invalidop = ((inf1_a && zero2_a) || (zero1_a && inf2_a) ||
55 (inf1_b && zero2_b) || (zero1_b && inf2_b) || (infPa && infPb && signPa !=

↪→signPb));
56
57 if invalidop then
58 result = FPDefaultNaN(fpcr, N);
59 if fpexc then FPProcessException(FPExc_InvalidOp, fpcr);
60
61 // Other cases involving infinities produce an infinity of the same sign.
62 elsif (infPa && signPa == '0') || (infPb && signPb == '0') then
63 result = FPInfinity('0', N);
64 elsif (infPa && signPa == '1') || (infPb && signPb == '1') then
65 result = FPInfinity('1', N);
66
67 // Cases where the result is exactly zero and its sign is not determined by the
68 // rounding mode are additions of same-signed zeros.
69 elsif zeroPa && zeroPb && signPa == signPb then
70 result = FPZero(signPa, N);
71
72 // Otherwise calculate fused sum of products and round it.
73 else
74 result_value = (value1_a * value2_a) + (value1_b * value2_b);
75 if result_value == 0.0 then // Sign of exact zero result depends on rounding

↪→mode
76 result_sign = if rounding == FPRounding_NEGINF then '1' else '0';
77 result = FPZero(result_sign, N);
78 else
79 result = FPRound(result_value, fpcr, rounding, fpexc, N);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

795

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

80
81 return result;

E2.1.19 FPDotAdd

1 // FPDotAdd()
2 // ==========
3 // Half-precision 2-way dot-product and add to single-precision.
4
5 bits(N) FPDotAdd(bits(N) addend, bits(N DIV 2) op1_a, bits(N DIV 2) op1_b,
6 bits(N DIV 2) op2_a, bits(N DIV 2) op2_b, FPCRType fpcr)
7 assert N == 32;
8
9 bits(N) prod;

10 boolean isbfloat16 = FALSE;
11 boolean fpexc = TRUE; // Generate floating-point exceptions
12 prod = FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc);
13 result = FPAdd(addend, prod, fpcr, fpexc);
14
15 return result;

E2.1.20 FPDotAdd_ZA

1 // FPDotAdd_ZA()
2 // =============
3 // Half-precision 2-way dot-product and add to single-precision
4 // for SME ZA-targeting instructions.
5
6 bits(N) FPDotAdd_ZA(bits(N) addend, bits(N DIV 2) op1_a, bits(N DIV 2) op1_b,
7 bits(N DIV 2) op2_a, bits(N DIV 2) op2_b, FPCRType fpcr_in)
8 FPCRType fpcr = fpcr_in;
9 assert N == 32;

10
11 bits(N) prod;
12 boolean isbfloat16 = FALSE;
13 boolean fpexc = FALSE; // Do not generate floating-point exceptions
14 fpcr.DN = '1'; // Generate default NaN values
15 prod = FPDot(op1_a, op1_b, op2_a, op2_b, fpcr, isbfloat16, fpexc);
16 result = FPAdd(addend, prod, fpcr, fpexc);
17
18 return result;

E2.1.21 FPMulAdd_ZA

1 // FPMulAdd_ZA()
2 // =============
3 // Calculates addend + op1*op2 with a single rounding for SME ZA-targeting
4 // instructions.
5
6 bits(N) FPMulAdd_ZA(bits(N) addend, bits(N) op1, bits(N) op2, FPCRType fpcr_in)
7 FPCRType fpcr = fpcr_in;
8 boolean fpexc = FALSE; // Do not generate floating-point exceptions
9 fpcr.DN = '1'; // Generate default NaN values

10 return FPMulAdd(addend, op1, op2, fpcr, fpexc);

E2.1.22 FPMulAddH_ZA

1 // FPMulAddH_ZA()
2 // ==============
3 // Calculates addend + op1*op2 for SME2 ZA-targeting instructions.
4
5 bits(N) FPMulAddH_ZA(bits(N) addend, bits(N DIV 2) op1, bits(N DIV 2) op2, FPCRType fpcr_in)
6 FPCRType fpcr = fpcr_in;
7 boolean fpexc = FALSE; // Do not generate floating-point exceptions

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

796

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

8 fpcr.DN = '1'; // Generate default NaN values
9 return FPMulAddH(addend, op1, op2, fpcr, fpexc);

E2.1.23 FPProcessDenorms4

1 // FPProcessDenorms4()
2 // ===================
3 // Handles denormal input in case of single-precision or double-precision
4 // when using alternative floating-point mode.
5
6 FPProcessDenorms4(FPType type1, FPType type2, FPType type3, FPType type4, integer N,

↪→FPCRType fpcr)
7 boolean altfp = HaveAltFP() && !UsingAArch32() && fpcr.AH == '1';
8 if altfp && N != 16 && (type1 == FPType_Denormal || type2 == FPType_Denormal ||
9 type3 == FPType_Denormal || type4 == FPType_Denormal) then

10 FPProcessException(FPExc_InputDenorm, fpcr);

E2.1.24 FPProcessNaNs4

1 // FPProcessNaNs4()
2 // ================
3 // The boolean part of the return value says whether a NaN has been found and
4 // processed. The bits(N) part is only relevant if it has and supplies the
5 // result of the operation.
6 //
7 // The 'fpcr' argument supplies FPCR control bits.
8 // Status information is updated directly in the FPSR where appropriate.
9 // The 'fpexc' controls the generation of floating-point exceptions.

10
11 (boolean, bits(N)) FPProcessNaNs4(FPType type1, FPType type2, FPType type3, FPType type4,
12 bits(N DIV 2) op1, bits(N DIV 2) op2, bits(N DIV 2) op3,
13 bits(N DIV 2) op4, FPCRType fpcr, boolean fpexc)
14
15 assert N == 32;
16
17 bits(N) result;
18 boolean done;
19 // The FPCR.AH control does not affect these checks
20 if type1 == FPType_SNaN then
21 done = TRUE; result = FPConvertNaN(FPProcessNaN(type1, op1, fpcr, fpexc), N);
22 elsif type2 == FPType_SNaN then
23 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc), N);
24 elsif type3 == FPType_SNaN then
25 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc), N);
26 elsif type4 == FPType_SNaN then
27 done = TRUE; result = FPConvertNaN(FPProcessNaN(type4, op4, fpcr, fpexc), N);
28 elsif type1 == FPType_QNaN then
29 done = TRUE; result = FPConvertNaN(FPProcessNaN(type1, op1, fpcr, fpexc), N);
30 elsif type2 == FPType_QNaN then
31 done = TRUE; result = FPConvertNaN(FPProcessNaN(type2, op2, fpcr, fpexc), N);
32 elsif type3 == FPType_QNaN then
33 done = TRUE; result = FPConvertNaN(FPProcessNaN(type3, op3, fpcr, fpexc), N);
34 elsif type4 == FPType_QNaN then
35 done = TRUE; result = FPConvertNaN(FPProcessNaN(type4, op4, fpcr, fpexc), N);
36 else
37 done = FALSE; result = Zeros(N); // 'Don't care' result
38
39 return (done, result);

E2.1.25 FPSub_ZA

1 // FPSub_ZA()
2 // ==========
3 // Calculates op1-op2 for SME2 ZA-targeting instructions.
4

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

797

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

5 bits(N) FPSub_ZA(bits(N) op1, bits(N) op2, FPCRType fpcr_in)
6 FPCRType fpcr = fpcr_in;
7 boolean fpexc = FALSE; // Do not generate floating-point exceptions
8 fpcr.DN = '1'; // Generate default NaN values
9 return FPSub(op1, op2, fpcr, fpexc);

E2.1.26 HaveEBF16

1 // HaveEBF16()
2 // ===========
3 // Returns TRUE if the EBF16 extension is implemented, FALSE otherwise.
4
5 boolean HaveEBF16()
6 return IsFeatureImplemented(FEAT_EBF16);

E2.1.27 HaveSME

1 // HaveSME()
2 // =========
3 // Returns TRUE if the SME extension is implemented, FALSE otherwise.
4
5 boolean HaveSME()
6 return IsFeatureImplemented(FEAT_SME);

E2.1.28 HaveSME2

1 // HaveSME2()
2 // ==========
3 // Returns TRUE if the SME2 extension is implemented, FALSE otherwise.
4
5 boolean HaveSME2()
6 return IsFeatureImplemented(FEAT_SME2);

E2.1.29 HaveSMEF64F64

1 // HaveSMEF64F64()
2 // ===============
3 // Returns TRUE if the SMEF64F64 extension is implemented, FALSE otherwise.
4
5 boolean HaveSMEF64F64()
6 return IsFeatureImplemented(FEAT_SME_F64F64);

E2.1.30 HaveSMEI16I64

1 // HaveSMEI16I64()
2 // ===============
3 // Returns TRUE if the SMEI16I64 extension is implemented, FALSE otherwise.
4
5 boolean HaveSMEI16I64()
6 return IsFeatureImplemented(FEAT_SME_I16I64);

E2.1.31 ImplementedSMEVectorLength

1 // ImplementedSMEVectorLength()
2 // ============================
3 // Reduce SVE/SME vector length to a supported value (power of two)
4
5 integer ImplementedSMEVectorLength(integer nbits_in)
6 integer maxbits = MaxImplementedSVL();
7 assert 128 <= maxbits && maxbits <= 2048 && IsPow2(maxbits);
8 integer nbits = Min(nbits_in, maxbits);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

798

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

9 assert 128 <= nbits && nbits <= 2048 && Align(nbits, 128) == nbits;
10
11 // Search for a supported power-of-two VL less than or equal to nbits
12 while nbits > 128 do
13 if IsPow2(nbits) && SupportedPowerTwoSVL(nbits) then return nbits;
14 nbits = nbits - 128;
15
16 // Return the smallest supported power-of-two VL
17 nbits = 128;
18 while nbits < maxbits do
19 if SupportedPowerTwoSVL(nbits) then return nbits;
20 nbits = nbits * 2;
21
22 // The only option is maxbits
23 return maxbits;

E2.1.32 InStreamingMode

1 // InStreamingMode()
2 // =================
3
4 boolean InStreamingMode()
5 return HaveSME() && PSTATE.SM == '1';

E2.1.33 IsFullA64Enabled

1 // IsFullA64Enabled()
2 // ==================
3 // Returns TRUE is full A64 is enabled in Streaming mode and FALSE othersise.
4
5 boolean IsFullA64Enabled()
6 if !HaveSMEFullA64() then return FALSE;
7
8 // Check if full SVE disabled in SMCR_EL1
9 if PSTATE.EL IN {EL0, EL1} && !IsInHost() then

10 // Check full SVE at EL0/EL1
11 if SMCR_EL1.FA64 == '0' then return FALSE;
12
13 // Check if full SVE disabled in SMCR_EL2
14 if PSTATE.EL IN {EL0, EL1, EL2} && EL2Enabled() then
15 if SMCR_EL2.FA64 == '0' then return FALSE;
16
17 // Check if full SVE disabled in SMCR_EL3
18 if HaveEL(EL3) then
19 if SMCR_EL3.FA64 == '0' then return FALSE;
20
21 return TRUE;

E2.1.34 IsMerging

1 // IsMerging()
2 // ===========
3 // Returns TRUE if the output elements other than the lowest are taken from
4 // the destination register.
5
6 boolean IsMerging(FPCRType fpcr)
7 bit nep = if HaveSME() && PSTATE.SM == '1' && !IsFullA64Enabled() then '0' else fpcr.NEP;
8 return HaveAltFP() && !UsingAArch32() && nep == '1';

E2.1.35 IsOriginalSVEEnabled

1 // IsOriginalSVEEnabled()
2 // ======================
3 // Returns TRUE if access to SVE functionality is enabled at the target

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

799

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

4 // exception level and FALSE otherwise.
5
6 boolean IsOriginalSVEEnabled(bits(2) el)
7 boolean disabled;
8 if ELUsingAArch32(el) then
9 return FALSE;

10
11 // Check if access disabled in CPACR_EL1
12 if el IN {EL0, EL1} && !IsInHost() then
13 // Check SVE at EL0/EL1
14 case CPACR_EL1.ZEN of
15 when 'x0' disabled = TRUE;
16 when '01' disabled = el == EL0;
17 when '11' disabled = FALSE;
18 if disabled then return FALSE;
19
20 // Check if access disabled in CPTR_EL2
21 if el IN {EL0, EL1, EL2} && EL2Enabled() then
22 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
23 case CPTR_EL2.ZEN of
24 when 'x0' disabled = TRUE;
25 when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
26 when '11' disabled = FALSE;
27 if disabled then return FALSE;
28 else
29 if CPTR_EL2.TZ == '1' then return FALSE;
30
31 // Check if access disabled in CPTR_EL3
32 if HaveEL(EL3) then
33 if CPTR_EL3.EZ == '0' then return FALSE;
34
35 return TRUE;

E2.1.36 IsSMEEnabled

1 // IsSMEEnabled()
2 // ==============
3 // Returns TRUE if access to SME functionality is enabled at the target
4 // exception level and FALSE otherwise.
5
6 boolean IsSMEEnabled(bits(2) el)
7 boolean disabled;
8 if ELUsingAArch32(el) then
9 return FALSE;

10
11 // Check if access disabled in CPACR_EL1
12 if el IN {EL0, EL1} && !IsInHost() then
13 // Check SME at EL0/EL1
14 case CPACR_EL1.SMEN of
15 when 'x0' disabled = TRUE;
16 when '01' disabled = el == EL0;
17 when '11' disabled = FALSE;
18 if disabled then return FALSE;
19
20 // Check if access disabled in CPTR_EL2
21 if el IN {EL0, EL1, EL2} && EL2Enabled() then
22 if HaveVirtHostExt() && HCR_EL2.E2H == '1' then
23 case CPTR_EL2.SMEN of
24 when 'x0' disabled = TRUE;
25 when '01' disabled = el == EL0 && HCR_EL2.TGE == '1';
26 when '11' disabled = FALSE;
27 if disabled then return FALSE;
28 else
29 if CPTR_EL2.TSM == '1' then return FALSE;
30
31 // Check if access disabled in CPTR_EL3
32 if HaveEL(EL3) then
33 if CPTR_EL3.ESM == '0' then return FALSE;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

800

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

34
35 return TRUE;

E2.1.37 IsSVEEnabled

1 // IsSVEEnabled()
2 // ==============
3 // Returns TRUE if access to SVE registers is enabled at the target exception
4 // level and FALSE otherwise.
5
6 boolean IsSVEEnabled(bits(2) el)
7 if HaveSME() && PSTATE.SM == '1' then
8 return IsSMEEnabled(el);
9 elsif HaveSVE() then

10 return IsOriginalSVEEnabled(el);
11 else
12 return FALSE;

E2.1.38 Lookup

1 bits(512) _ZT0;

E2.1.39 MaybeZeroSVEUppers

1 // MaybeZeroSVEUppers()
2 // ====================
3
4 MaybeZeroSVEUppers(bits(2) target_el)
5 boolean lower_enabled;
6
7 if UInt(target_el) <= UInt(PSTATE.EL) || !IsSVEEnabled(target_el) then
8 return;
9

10 if target_el == EL3 then
11 if EL2Enabled() then
12 lower_enabled = IsFPEnabled(EL2);
13 else
14 lower_enabled = IsFPEnabled(EL1);
15 elsif target_el == EL2 then
16 assert !ELUsingAArch32(EL2);
17 if HCR_EL2.TGE == '0' then
18 lower_enabled = IsFPEnabled(EL1);
19 else
20 lower_enabled = IsFPEnabled(EL0);
21 else
22 assert target_el == EL1 && !ELUsingAArch32(EL1);
23 lower_enabled = IsFPEnabled(EL0);
24
25 if lower_enabled then
26 constant integer VL = if IsSVEEnabled(PSTATE.EL) then CurrentVL else 128;
27 constant integer PL = VL DIV 8;
28 for n = 0 to 31
29 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
30 _Z[n] = ZeroExtend(_Z[n]<VL-1:0>, MAX_VL);
31 for n = 0 to 15
32 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
33 _P[n] = ZeroExtend(_P[n]<PL-1:0>, MAX_PL);
34 if ConstrainUnpredictableBool(Unpredictable_SVEZEROUPPER) then
35 _FFR = ZeroExtend(_FFR<PL-1:0>, MAX_PL);
36 if HaveSME() && PSTATE.ZA == '1' then
37 constant integer SVL = CurrentSVL;
38 constant integer accessiblevecs = SVL DIV 8;
39 constant integer allvecs = MaxImplementedSVL() DIV 8;
40
41 for n = 0 to accessiblevecs - 1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

801

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

42 if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then
43 _ZA[n] = ZeroExtend(_ZA[n]<SVL-1:0>, MAX_VL);
44 for n = accessiblevecs to allvecs - 1
45 if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then
46 _ZA[n] = Zeros(MAX_VL);

E2.1.40 PredCountTest

1 // PredCountTest()
2 // ===============
3
4 bits(4) PredCountTest(integer elements, integer count, boolean invert)
5 bit n, z, c, v;
6 z = (if count == 0 then '1' else '0'); // none active
7 if !invert then
8 n = (if count != 0 then '1' else '0'); // first active
9 c = (if count == elements then '0' else '1'); // NOT last active

10 else
11 n = (if count == elements then '1' else '0'); // first active
12 c = (if count != 0 then '0' else '1'); // NOT last active
13 v = '0';
14
15 return n:z:c:v;

E2.1.41 ResetSMEState

1 // ResetSMEState()
2 // ===============
3
4 ResetSMEState()
5 integer vectors = MAX_VL DIV 8;
6 for n = 0 to vectors - 1
7 _ZA[n] = Zeros(MAX_VL);
8 _ZT0 = Zeros(ZT0_LEN);

E2.1.42 ResetSVEState

1 // ResetSVEState()
2 // ===============
3
4 ResetSVEState()
5 for n = 0 to 31
6 _Z[n] = Zeros(MAX_VL);
7 for n = 0 to 15
8 _P[n] = Zeros(MAX_PL);
9 _FFR = Zeros(MAX_PL);

10 FPSR = ZeroExtend(0x0800009f<31:0>, 64);

E2.1.43 SetPSTATE_SM

1 // SetPSTATE_SM()
2 // ==============
3
4 SetPSTATE_SM(bit value)
5 if PSTATE.SM != value then
6 ResetSVEState();
7 PSTATE.SM = value;

E2.1.44 SetPSTATE_SVCR

1 // SetPSTATE_SVCR
2 // ==============
3

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

802

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

4 SetPSTATE_SVCR(bits(32) svcr)
5 SetPSTATE_SM(svcr<0>);
6 SetPSTATE_ZA(svcr<1>);

E2.1.45 SetPSTATE_ZA

1 // SetPSTATE_ZA()
2 // ==============
3
4 SetPSTATE_ZA(bit value)
5 if PSTATE.ZA != value then
6 ResetSMEState();
7 PSTATE.ZA = value;

E2.1.46 SMEAccessTrap

1 // SMEAccessTrap()
2 // ===============
3 // Trapped access to SME registers due to CPACR_EL1, CPTR_EL2, or CPTR_EL3.
4
5 SMEAccessTrap(SMEExceptionType etype, bits(2) target_el_in)
6 bits(2) target_el = target_el_in;
7 assert UInt(target_el) >= UInt(PSTATE.EL);
8 if target_el == EL0 then
9 target_el = EL1;

10 boolean route_to_el2;
11 route_to_el2 = PSTATE.EL == EL0 && target_el == EL1 && EL2Enabled() && HCR_EL2.TGE ==

↪→'1';
12
13 exception = ExceptionSyndrome(Exception_SMEAccessTrap);
14 bits(64) preferred_exception_return = ThisInstrAddr(64);
15 vect_offset = 0x0;
16
17 case etype of
18 when SMEExceptionType_AccessTrap
19 exception.syndrome<2:0> = '000';
20 when SMEExceptionType_Streaming
21 exception.syndrome<2:0> = '001';
22 when SMEExceptionType_NotStreaming
23 exception.syndrome<2:0> = '010';
24 when SMEExceptionType_InactiveZA
25 exception.syndrome<2:0> = '011';
26 when SMEExceptionType_InaccessibleZT0
27 exception.syndrome<2:0> = '100';
28
29 if route_to_el2 then
30 AArch64.TakeException(EL2, exception, preferred_exception_return, vect_offset);
31 else
32 AArch64.TakeException(target_el, exception, preferred_exception_return, vect_offset);

E2.1.47 System

1 // System Registers
2 // ================
3
4 array bits(MAX_VL) _ZA[0..255];

E2.1.48 ZAhslice

1 // ZAhslice[] - non-assignment form
2 // ================================
3
4 bits(width) ZAhslice[integer tile, integer esize, integer slice, integer width]
5 assert esize IN {8, 16, 32, 64, 128};

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

803

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

6 integer tiles = esize DIV 8;
7 assert tile >= 0 && tile < tiles;
8 integer slices = CurrentSVL DIV esize;
9 assert slice >= 0 && slice < slices;

10
11 return ZAvector[tile + slice * tiles, width];
12
13 // ZAhslice[] - assignment form
14 // ============================
15
16 ZAhslice[integer tile, integer esize, integer slice, integer width] = bits(width) value
17 assert esize IN {8, 16, 32, 64, 128};
18 integer tiles = esize DIV 8;
19 assert tile >= 0 && tile < tiles;
20 integer slices = CurrentSVL DIV esize;
21 assert slice >= 0 && slice < slices;
22
23 ZAvector[tile + slice * tiles, width] = value;

E2.1.49 ZAslice

1 // ZAslice[] - non-assignment form
2 // ===============================
3
4 bits(width) ZAslice[integer tile, integer esize, boolean vertical, integer slice, integer

↪→width]
5 bits(width) result;
6
7 if vertical then
8 result = ZAvslice[tile, esize, slice, width];
9 else

10 result = ZAhslice[tile, esize, slice, width];
11
12 return result;
13
14 // ZAslice[] - assignment form
15 // ===========================
16
17 ZAslice[integer tile, integer esize, boolean vertical,
18 integer slice, integer width] = bits(width) value
19 if vertical then
20 ZAvslice[tile, esize, slice, width] = value;
21 else
22 ZAhslice[tile, esize, slice, width] = value;

E2.1.50 ZAtile

1 // ZAtile[] - non-assignment form
2 // ==============================
3
4 bits(width) ZAtile[integer tile, integer esize, integer width]
5 constant integer SVL = CurrentSVL;
6 integer slices = SVL DIV esize;
7 assert width == SVL * slices;
8 bits(width) result;
9

10 for slice = 0 to slices-1
11 Elem[result, slice, SVL] = ZAhslice[tile, esize, slice, SVL];
12
13 return result;
14
15 // ZAtile[] - assignment form
16 // ==========================
17
18 ZAtile[integer tile, integer esize, integer width] = bits(width) value
19 constant integer SVL = CurrentSVL;
20 integer slices = SVL DIV esize;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

804

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

21 assert width == SVL * slices;
22
23 for slice = 0 to slices-1
24 ZAhslice[tile, esize, slice, SVL] = Elem[value, slice, SVL];

E2.1.51 ZAvector

1 // ZAvector[] - non-assignment form
2 // ================================
3
4 bits(width) ZAvector[integer index, integer width]
5 assert width == CurrentSVL;
6 assert index >= 0 && index < (width DIV 8);
7
8 return _ZA[index]<width-1:0>;
9

10 // ZAvector[] - assignment form
11 // ============================
12
13 ZAvector[integer index, integer width] = bits(width) value
14 assert width == CurrentSVL;
15 assert index >= 0 && index < (width DIV 8);
16
17 if ConstrainUnpredictableBool(Unpredictable_SMEZEROUPPER) then
18 _ZA[index] = ZeroExtend(value, MAX_VL);
19 else
20 _ZA[index]<width-1:0> = value;

E2.1.52 ZAvslice

1 // ZAvslice[] - non-assignment form
2 // ================================
3
4 bits(width) ZAvslice[integer tile, integer esize, integer slice, integer width]
5 integer slices = CurrentSVL DIV esize;
6 bits(width) result;
7
8 for s = 0 to slices-1
9 bits(width) hslice = ZAhslice[tile, esize, s, width];

10 Elem[result, s, esize] = Elem[hslice, slice, esize];
11
12 return result;
13
14 // ZAvslice[] - assignment form
15 // ============================
16
17 ZAvslice[integer tile, integer esize, integer slice, integer width] = bits(width) value
18 integer slices = CurrentSVL DIV esize;
19
20 for s = 0 to slices-1
21 bits(width) hslice = ZAhslice[tile, esize, s, width];
22 Elem[hslice, slice, esize] = Elem[value, s, esize];
23 ZAhslice[tile, esize, s, width] = hslice;

E2.1.53 ZT0

1 // ZT0[] - non-assignment form
2 // ===========================
3
4 bits(width) ZT0[integer width]
5 assert width == 512;
6 return _ZT0<width-1:0>;
7
8 // ZT0[] - assignment form
9 // =======================

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

805

Chapter E2. SME Shared pseudocode
E2.1. Pseudocode functions

10
11 ZT0[integer width] = bits(width) value
12 assert width == 512;
13 _ZT0<width-1:0> = value;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

806

Chapter E3
System registers affected by SME

This section provides the full information for System registers added or modified by SME or SME2.

This content is from the 2022-12 version of Arm® Architecture Registers, for A-profile architecture [2], which
contains the definitive version of the register information.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

807

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1 SME-Specific System registers

System registers that are added to support SME architecture.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

808

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.1 ID_AA64SMFR0_EL1, SME Feature ID register 0

The ID_AA64SMFR0_EL1 characteristics are:

Purpose

Provides information about the implemented features of the AArch64 Scalable Matrix Extension.

The fields in this register do not follow the standard ID scheme. See Alternative ID scheme used for
ID_AA64SMFR0_EL1 .

Configuration

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

Attributes

ID_AA64SMFR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64SMFR0_EL1 bit assignments are:

63

RES0

62 60

SMEver

59 56

I16I64

55 52

RES0

51 49 48

I16I32

47 44

RES0

43 40

I8I32

39 36 35 34 33 32

FA64 F64F64 F16F32
B16F32

F32F32
BI32I32

RES0

31 0

FA64, bit [63]

Indicates support for execution of the full A64 instruction set when the PE is in Streaming SVE mode. Defined
values are:

FA64 Meaning

0b0 Only those A64 instructions defined as being
legal can be executed in Streaming SVE mode.

0b1 All implemented A64 instructions are legal for
execution in Streaming SVE mode, when
enabled by SMCR_EL1.FA64,
SMCR_EL2.FA64, and SMCR_EL3.FA64.

FEAT_SME_FA64 implements the functionality identified by the value 0b1.

Bits [62:60]

Reserved, RES0.

SMEver, bits [59:56]

When ID_AA64PFR1_EL1.SME != 0b0000:

Indicates support for SME instructions when FEAT_SME is implemented. Defined values are:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

809

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

SMEver Meaning

0b0000 The mandatory SME instructions are
implemented.

0b0001 As 0b0000, and adds the mandatory SME2
instructions.

All other values are reserved.

If FEAT_SME is implemented and FEAT_SME2 is not implemented, the only permitted value is 0b0000.

If FEAT_SME2 is implemented the only permitted value is 0b0001.

Otherwise:

RES0

I16I64, bits [55:52]

Indicates SME support for instructions that accumulate into 64-bit integer elements in the ZA array. Defined values
are:

I16I64 Meaning

0b0000 Instructions that accumulate into 64-bit integer
elements in the ZA array are not implemented.

0b1111 The variants of the ADDHA, ADDVA, SMOPA,
SMOPS, SUMOPA, SUMOPS, UMOPA,
UMOPS, USMOPA, and USMOPS instructions
that accumulate into 64-bit integer tiles are
implemented.
When FEAT_SME2 is implemented, the variants
of the ADD, ADDA, SDOT, SMLALL,
SMLSLL, SUB, SUBA, SVDOT, UDOT,
UMLALL, UMLSLL, and UVDOT instructions
that accumulate into 64-bit integer elements in
ZA array vectors are implemented.

All other values are reserved.

FEAT_SME_I16I64 implements the functionality identified by the value 0b1111.

The only permitted values are 0b0000 and 0b1111.

Bits [51:49]

Reserved, RES0.

F64F64, bit [48]

Indicates SME support for instructions that accumulate into FP64 double-precision floating-point elements in the
ZA array. Defined values are:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

810

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

F64F64 Meaning

0b0 Instructions that accumulate into
double-precision floating-point elements in the
ZA array are not implemented.

0b1 The variants of the FMOPA and FMOPS
instructions that accumulate into
double-precision tiles are implemented.
When FEAT_SME2 is implemented, the variants
of the FADD, FMLA, FMLS, and FSUB
instructions that accumulate into
double-precision elements in ZA array vectors
are implemented.

FEAT_SME_F64F64 implements the functionality identified by the value 0b1.

I16I32, bits [47:44]

Indicates SME2 support for instructions that accumulate 16-bit outer products into 32-bit integer tiles. Defined
values are:

I16I32 Meaning

0b0000 Instructions that accumulate 16-bit outer
products into 32-bit integer tiles are not
implemented.

0b0101 The SMOPA (2-way), SMOPS (2-way), UMOPA
(2-way), and UMOPS (2-way) instructions that
accumulate 16-bit outer products into 32-bit
integer tiles are implemented.

All other values are reserved.

If FEAT_SME2 is implemented, the only permitted value is 0b0101. Otherwise, the only permitted value is
0b0000.

Bits [43:40]

Reserved, RES0.

I8I32, bits [39:36]

Indicates SME support for instructions that accumulate 8-bit integer outer products into 32-bit integer tiles. Defined
values are:

I8I32 Meaning

0b0000 Instructions that accumulate 8-bit outer products
into 32-bit tiles are not implemented.

0b1111 The SMOPA, SMOPS, SUMOPA, SUMOPS,
UMOPA, UMOPS, USMOPA, and USMOPS
instructions that accumulate 8-bit outer products
into 32-bit tiles are implemented.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

811

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

All other values are reserved.

If FEAT_SME is implemented, the only permitted value is 0b1111.

F16F32, bit [35]

Indicates SME support for instructions that accumulate FP16 half-precision floating-point outer products into FP32
single-precision floating-point tiles. Defined values are:

F16F32 Meaning

0b0 Instructions that accumulate half-precision outer
products into single-precision tiles are not
implemented.

0b1 The FMOPA and FMOPS instructions that
accumulate half-precision outer products into
single-precision tiles are implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

B16F32, bit [34]

Indicates SME support for instructions that accumulate BFloat16 outer products into FP32 single-precision
floating-point tiles. Defined values are:

B16F32 Meaning

0b0 Instructions that accumulate BFloat16 outer
products into single-precision tiles are not
implemented.

0b1 The BFMOPA and BFMOPS instructions that
accumulate BFloat16 outer products into
single-precision tiles are implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

BI32I32, bit [33]

Indicates SME support for instructions that accumulate thirty-two 1-bit binary outer products into 32-bit integer
tiles. Defined values are:

BI32I32 Meaning

0b0 Instructions that accumulate 1-bit binary outer
products into 32-bit integer tiles are not
implemented.

0b1 The BMOPA and BMOPS instructions that
accumulate 1-bit binary outer products into
32-bit integer tiles are implemented.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

812

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

If FEAT_SME2 is implemented, the only permitted value is 0b1. Otherwise, the only permitted value is 0b0.

F32F32, bit [32]

Indicates SME support for instructions that accumulate FP32 single-precision floating-point outer products into
single-precision floating-point tiles. Defined values are:

F32F32 Meaning

0b0 Instructions that accumulate single-precision
outer products into single-precision tiles are not
implemented.

0b1 The FMOPA and FMOPS instructions that
accumulate single-precision outer products into
single-precision tiles are implemented.

If FEAT_SME is implemented, the only permitted value is 0b1.

Bits [31:0]

Reserved, RES0.

Accessing ID_AA64SMFR0_EL1

This register is read-only and can be accessed from EL1 and higher.

This register is only accessible from the AArch64 state.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64SMFR0_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b101

1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented(FEAT_IDST) then
3 if EL2Enabled() && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x18);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 else
8 UNDEFINED;
9 elsif PSTATE.EL == EL1 then

10 if EL2Enabled() && HCR_EL2.TID3 == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 X[t, 64] = ID_AA64SMFR0_EL1;
14 elsif PSTATE.EL == EL2 then
15 X[t, 64] = ID_AA64SMFR0_EL1;
16 elsif PSTATE.EL == EL3 then
17 X[t, 64] = ID_AA64SMFR0_EL1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

813

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.2 MPAMSM_EL1, MPAM Streaming Mode Register

The MPAMSM_EL1 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests that are:

• Issued due to the execution of SME load and store instructions.
• Issued when the PE is in Streaming SVE mode due to the execution of SVE and SIMD&FP load

and store instructions and SVE prefetch instructions.

If an implementation uses a shared SMCU, then the MPAM labels in this register have precedence over
the labels in MPAM0_EL1, MPAM1_EL1, MPAM2_EL2, and MPAM3_EL3.

If an implementation includes an SMCU that is not shared with other PEs, then it is IMPLEMENTATION
DEFINED whether the MPAM labels in this register have precedence over the labels in MPAM0_EL1,
MPAM1_EL1, MPAM2_EL2, and MPAM3_EL3.

The MPAM labels in this register are only used if MPAM1_EL1.MPAMEN is 1.

For memory requests issued from EL0, the MPAM PARTID in this register is virtual and mapped into a
physical PARTID when all of the following are true:

• EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H, TGE} is not
{1, 1}.

• The MPAM virtualization option is implemented and MPAMHCR_EL2.EL0_VPMEN is 1.

For memory requests issued from EL1, the MPAM PARTID in this register is virtual and mapped into a
physical PARTID when all of the following are true:

• EL2 is implemented and enabled in the current Security state.
• The MPAM virtualization option is implemented and MPAMHCR_EL2.EL1_VPMEN is 1.

Configuration

This register is present only when FEAT_MPAM is implemented and FEAT_SME is implemented.
Otherwise, direct accesses to MPAMSM_EL1 are UNDEFINED.

Attributes

MPAMSM_EL1 is a 64-bit register.

Field descriptions

The MPAMSM_EL1 bit assignments are:

RES0

63 48

PMG_D

47 40

RES0

39 32

PARTID_D

31 16

RES0

15 0

Bits [63:48]

Reserved, RES0.

PMG_D, bits [47:40]

Performance monitoring group property for PARTID_D.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

814

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

Bits [39:32]

Reserved, RES0.

PARTID_D, bits [31:16]

Partition ID for requests issued due to the execution at any Exception level of SME load and store instructions
and, when the PE is in Streaming SVE mode, SVE and SIMD&FP load and store instructions and SVE prefetch
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:0]

Reserved, RES0.

Accessing MPAMSM_EL1

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMSM_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b011

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
5 if Halted() && EDSCR.SDD == '1' then
6 UNDEFINED;
7 else
8 AArch64.SystemAccessTrap(EL3, 0x18);
9 elsif EL2Enabled() && MPAM2_EL2.EnMPAMSM == '0' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 else
12 X[t, 64] = MPAMSM_EL1;
13 elsif PSTATE.EL == EL2 then
14 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
15 if Halted() && EDSCR.SDD == '1' then
16 UNDEFINED;
17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 else
20 X[t, 64] = MPAMSM_EL1;
21 elsif PSTATE.EL == EL3 then
22 X[t, 64] = MPAMSM_EL1;

MSR MPAMSM_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b011

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

815

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
5 if Halted() && EDSCR.SDD == '1' then
6 UNDEFINED;
7 else
8 AArch64.SystemAccessTrap(EL3, 0x18);
9 elsif EL2Enabled() && MPAM2_EL2.EnMPAMSM == '0' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 else
12 MPAMSM_EL1 = X[t, 64];
13 elsif PSTATE.EL == EL2 then
14 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
15 if Halted() && EDSCR.SDD == '1' then
16 UNDEFINED;
17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 else
20 MPAMSM_EL1 = X[t, 64];
21 elsif PSTATE.EL == EL3 then
22 MPAMSM_EL1 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

816

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.3 SMCR_EL1, SME Control Register (EL1)

The SMCR_EL1 characteristics are:

Purpose

This register controls aspects of Streaming SVE that are visible at Exception levels EL1 and EL0.

Configuration

This register has no effect if the PE is not in Streaming SVE mode.

When HCR_EL2.{E2H, TGE} == {1, 1} and EL2 is enabled in the current Security state, this register
has no effect on execution at EL0 and EL1.

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMCR_EL1 are UNDEFINED.

Attributes

SMCR_EL1 is a 64-bit register.

Field descriptions

The SMCR_EL1 bit assignments are:

RES0

63 32

31 30

RES0

29 9

RAZ/WI

8 4

LEN

3 0

FA64 EZT0

Bits [63:32]

Reserved, RES0.

FA64, bit [31]

When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming SVE mode.

FA64 Meaning

0b0 This control does not cause any instruction to be
treated as legal in Streaming SVE mode.

0b1 This control causes all implemented A64
instructions to be treated as legal in Streaming
SVE mode at EL1 and EL0, if they are treated as
legal at more privileged Exception levels in the
current Security state.

Arm recommends that portable SME software should not rely on this optional feature, and that operating systems
should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

817

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

Otherwise:

RES0

EZT0, bit [30]

When FEAT_SME2 is implemented:

Traps execution at EL1 and EL0 of the LDR, LUTI2, LUTI4, MOVT, STR, and ZERO instructions that access
the ZT0 register to EL1, or to EL2 when EL2 is implemented and enabled in the current Security state and
HCR_EL2.TGE is 1.

The exception is reported using ESR_EL1.EC or ESR_EL2.EC value 0x1D, with an ISS code of 0x0000004, at a
lower priority than a trap due to PSTATE.SM or PSTATE.ZA.

EZT0 Meaning

0b0 This control causes execution of these
instructions at EL1 and EL0 to be trapped.

0b1 This control does not cause execution of any
instruction to be trapped.

Changes to this field only affect whether instructions that access ZT0 are trapped. They do not affect the contents
of ZT0, which remain valid so long as PSTATE.ZA is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [29:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Requests an Effective Streaming SVE vector length (SVL) at EL1 of (LEN+1)*128 bits. This field also defines the
Effective Streaming SVE vector length at EL0 when EL2 is not implemented, or EL2 is not enabled in the current
Security state, or HCR_EL2.{E2H,TGE} is not {1,1}.

The Streaming SVE vector length can be any power of two from 128 bits to 2048 bits inclusive. An implementation
can support any subset of the architecturally permitted lengths.

When the PE is in Streaming SVE mode, the Effective SVE vector length (VL) is equal to SVL.

When FEAT_SVE is implemented, and the PE is not in Streaming SVE mode, VL is equal to the Effective
Non-streaming SVE vector length. See ZCR_EL1.

For all purposes other than returning the result of a direct read of SMCR_EL1, the PE selects the Effective
Streaming SVE vector length by performing checks in the following order:

1. If the requested length is less than the minimum implemented Streaming SVE vector length, then the Effective
length is the minimum implemented Streaming SVE vector length.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

818

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

2. If EL2 is implemented and enabled in the current Security state, and the requested length is greater than the
Effective length at EL2, then the Effective length at EL2 is used.

3. If EL3 is implemented and the requested length is greater than the Effective length at EL3, then the Effective
length at EL3 is used.

4. Otherwise, the Effective length is the highest supported Streaming SVE vector length that is less than or
equal to the requested length.

An indirect read of SMCR_EL1.LEN appears to occur in program order relative to a direct write of the same
register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMCR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SMCR_EL1
or SMCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMCR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;
6 elsif CPACR_EL1.SMEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x1D);
8 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x1D);

10 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x1D);
12 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
13 if Halted() && EDSCR.SDD == '1' then
14 UNDEFINED;
15 else
16 AArch64.SystemAccessTrap(EL3, 0x1D);
17 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
18 X[t, 64] = NVMem[0x1F0];
19 else
20 X[t, 64] = SMCR_EL1;
21 elsif PSTATE.EL == EL2 then
22 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
23 UNDEFINED;
24 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x1D);
26 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x1D);
28 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
29 if Halted() && EDSCR.SDD == '1' then
30 UNDEFINED;
31 else
32 AArch64.SystemAccessTrap(EL3, 0x1D);
33 elsif HCR_EL2.E2H == '1' then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

819

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

34 X[t, 64] = SMCR_EL2;
35 else
36 X[t, 64] = SMCR_EL1;
37 elsif PSTATE.EL == EL3 then
38 if CPTR_EL3.ESM == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x1D);
40 else
41 X[t, 64] = SMCR_EL1;

MSR SMCR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;
6 elsif CPACR_EL1.SMEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x1D);
8 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x1D);

10 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x1D);
12 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
13 if Halted() && EDSCR.SDD == '1' then
14 UNDEFINED;
15 else
16 AArch64.SystemAccessTrap(EL3, 0x1D);
17 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
18 NVMem[0x1F0] = X[t, 64];
19 else
20 SMCR_EL1 = X[t, 64];
21 elsif PSTATE.EL == EL2 then
22 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
23 UNDEFINED;
24 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x1D);
26 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x1D);
28 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
29 if Halted() && EDSCR.SDD == '1' then
30 UNDEFINED;
31 else
32 AArch64.SystemAccessTrap(EL3, 0x1D);
33 elsif HCR_EL2.E2H == '1' then
34 SMCR_EL2 = X[t, 64];
35 else
36 SMCR_EL1 = X[t, 64];
37 elsif PSTATE.EL == EL3 then
38 if CPTR_EL3.ESM == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x1D);
40 else
41 SMCR_EL1 = X[t, 64];

MRS <Xt>, SMCR_EL12

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

820

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 X[t, 64] = NVMem[0x1F0];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED

↪→"EL3 trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
13 UNDEFINED;
14 elsif CPTR_EL2.SMEN == 'x0' then
15 AArch64.SystemAccessTrap(EL2, 0x1D);
16 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
17 if Halted() && EDSCR.SDD == '1' then
18 UNDEFINED;
19 else
20 AArch64.SystemAccessTrap(EL3, 0x1D);
21 else
22 X[t, 64] = SMCR_EL1;
23 else
24 UNDEFINED;
25 elsif PSTATE.EL == EL3 then
26 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
27 if CPTR_EL3.ESM == '0' then
28 AArch64.SystemAccessTrap(EL3, 0x1D);
29 else
30 X[t, 64] = SMCR_EL1;
31 else
32 UNDEFINED;

MSR SMCR_EL12, <Xt>

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 NVMem[0x1F0] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED

↪→"EL3 trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
13 UNDEFINED;
14 elsif CPTR_EL2.SMEN == 'x0' then
15 AArch64.SystemAccessTrap(EL2, 0x1D);
16 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
17 if Halted() && EDSCR.SDD == '1' then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

821

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

18 UNDEFINED;
19 else
20 AArch64.SystemAccessTrap(EL3, 0x1D);
21 else
22 SMCR_EL1 = X[t, 64];
23 else
24 UNDEFINED;
25 elsif PSTATE.EL == EL3 then
26 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
27 if CPTR_EL3.ESM == '0' then
28 AArch64.SystemAccessTrap(EL3, 0x1D);
29 else
30 SMCR_EL1 = X[t, 64];
31 else
32 UNDEFINED;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

822

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.4 SMCR_EL2, SME Control Register (EL2)

The SMCR_EL2 characteristics are:

Purpose

This register controls aspects of Streaming SVE that are visible at Exception levels EL2, EL1, and EL0.

Configuration

This register has no effect if the PE is not in Streaming SVE mode, or if EL2 is not enabled in the
current Security state.

If EL2 is not implemented, this register is RES0 from EL3.

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMCR_EL2 are UNDEFINED.

Attributes

SMCR_EL2 is a 64-bit register.

Field descriptions

The SMCR_EL2 bit assignments are:

RES0

63 32

31 30

RES0

29 9

RAZ/WI

8 4

LEN

3 0

FA64 EZT0

Bits [63:32]

Reserved, RES0.

FA64, bit [31]

When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming SVE mode.

FA64 Meaning

0b0 This control does not cause any instruction to be
treated as legal in Streaming SVE mode.

0b1 This control causes all implemented A64
instructions to be treated as legal in Streaming
SVE mode at EL2, if they are treated as legal at
EL3.

Arm recommends that portable SME software should not rely on this optional feature, and that operating systems
should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

823

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

RES0

EZT0, bit [30]

When FEAT_SME2 is implemented:

Traps execution at EL2, EL1, and EL0 of the LDR, LUTI2, LUTI4, MOVT, STR, and ZERO instructions that
access the ZT0 register to EL2, when EL2 is enabled in the current Security state.

The exception is reported using ESR_EL2.EC value 0x1D, with an ISS code of 0x0000004, at a lower priority
than a trap due to PSTATE.SM or PSTATE.ZA.

EZT0 Meaning

0b0 This control causes execution of these
instructions at EL2, EL1, and EL0 to be trapped.

0b1 This control does not cause execution of any
instruction to be trapped.

Changes to this field only affect whether instructions that access ZT0 are trapped. They do not affect the contents
of ZT0, which remain valid so long as PSTATE.ZA is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [29:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Requests an Effective Streaming SVE vector length (SVL) at EL2 of (LEN+1)*128 bits. This field also defines the
Effective Streaming SVE vector length at EL0 when EL2 is implemented and enabled in the current Security state,
and HCR_EL2.{E2H,TGE} is {1,1}.

The Streaming SVE vector length can be any power of two from 128 bits to 2048 bits inclusive. An implementation
can support any subset of the architecturally permitted lengths.

When the PE is in Streaming SVE mode, the Effective SVE vector length (VL) is equal to SVL.

When FEAT_SVE is implemented, and the PE is not in Streaming SVE mode, VL is equal to the Effective
Non-streaming SVE vector length. See ZCR_EL2.

For all purposes other than returning the result of a direct read of SMCR_EL2, the PE selects the Effective
Streaming SVE vector length by performing checks in the following order:

1. If the requested length is less than the minimum implemented Streaming SVE vector length, then the Effective
length is the minimum implemented Streaming SVE vector length.

2. If EL3 is implemented and the requested length is greater than the Effective length at EL3, then the Effective
length at EL3 is used.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

824

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

3. Otherwise, the Effective length is the highest supported Streaming SVE vector length that is less than or
equal to the requested length.

An indirect read of SMCR_EL2.LEN appears to occur in program order relative to a direct write of the same
register, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMCR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SMCR_EL2
or SMCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMCR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
10 UNDEFINED;
11 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x1D);
13 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
14 AArch64.SystemAccessTrap(EL2, 0x1D);
15 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x1D);
20 else
21 X[t, 64] = SMCR_EL2;
22 elsif PSTATE.EL == EL3 then
23 if CPTR_EL3.ESM == '0' then
24 AArch64.SystemAccessTrap(EL3, 0x1D);
25 else
26 X[t, 64] = SMCR_EL2;

MSR SMCR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

825

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
10 UNDEFINED;
11 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
12 AArch64.SystemAccessTrap(EL2, 0x1D);
13 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
14 AArch64.SystemAccessTrap(EL2, 0x1D);
15 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x1D);
20 else
21 SMCR_EL2 = X[t, 64];
22 elsif PSTATE.EL == EL3 then
23 if CPTR_EL3.ESM == '0' then
24 AArch64.SystemAccessTrap(EL3, 0x1D);
25 else
26 SMCR_EL2 = X[t, 64];

MRS <Xt>, SMCR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;
6 elsif CPACR_EL1.SMEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x1D);
8 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x1D);

10 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x1D);
12 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
13 if Halted() && EDSCR.SDD == '1' then
14 UNDEFINED;
15 else
16 AArch64.SystemAccessTrap(EL3, 0x1D);
17 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
18 X[t, 64] = NVMem[0x1F0];
19 else
20 X[t, 64] = SMCR_EL1;
21 elsif PSTATE.EL == EL2 then
22 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
23 UNDEFINED;
24 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x1D);
26 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x1D);
28 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
29 if Halted() && EDSCR.SDD == '1' then
30 UNDEFINED;
31 else

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

826

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

32 AArch64.SystemAccessTrap(EL3, 0x1D);
33 elsif HCR_EL2.E2H == '1' then
34 X[t, 64] = SMCR_EL2;
35 else
36 X[t, 64] = SMCR_EL1;
37 elsif PSTATE.EL == EL3 then
38 if CPTR_EL3.ESM == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x1D);
40 else
41 X[t, 64] = SMCR_EL1;

MSR SMCR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;
6 elsif CPACR_EL1.SMEN == 'x0' then
7 AArch64.SystemAccessTrap(EL1, 0x1D);
8 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x1D);

10 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
11 AArch64.SystemAccessTrap(EL2, 0x1D);
12 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
13 if Halted() && EDSCR.SDD == '1' then
14 UNDEFINED;
15 else
16 AArch64.SystemAccessTrap(EL3, 0x1D);
17 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
18 NVMem[0x1F0] = X[t, 64];
19 else
20 SMCR_EL1 = X[t, 64];
21 elsif PSTATE.EL == EL2 then
22 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
23 UNDEFINED;
24 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
25 AArch64.SystemAccessTrap(EL2, 0x1D);
26 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
27 AArch64.SystemAccessTrap(EL2, 0x1D);
28 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
29 if Halted() && EDSCR.SDD == '1' then
30 UNDEFINED;
31 else
32 AArch64.SystemAccessTrap(EL3, 0x1D);
33 elsif HCR_EL2.E2H == '1' then
34 SMCR_EL2 = X[t, 64];
35 else
36 SMCR_EL1 = X[t, 64];
37 elsif PSTATE.EL == EL3 then
38 if CPTR_EL3.ESM == '0' then
39 AArch64.SystemAccessTrap(EL3, 0x1D);
40 else
41 SMCR_EL1 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

827

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.5 SMCR_EL3, SME Control Register (EL3)

The SMCR_EL3 characteristics are:

Purpose

This register controls aspects of Streaming SVE that are visible at all Exception levels.

Configuration

This register has no effect if the PE is not in Streaming SVE mode.

This register is present only when FEAT_SME is implemented and EL3 is implemented. Otherwise,
direct accesses to SMCR_EL3 are UNDEFINED.

Attributes

SMCR_EL3 is a 64-bit register.

Field descriptions

The SMCR_EL3 bit assignments are:

RES0

63 32

31 30

RES0

29 9

RAZ/WI

8 4

LEN

3 0

FA64 EZT0

Bits [63:32]

Reserved, RES0.

FA64, bit [31]

When FEAT_SME_FA64 is implemented:

Controls whether execution of an A64 instruction is considered legal when the PE is in Streaming SVE mode.

FA64 Meaning

0b0 This control does not cause any instruction to be
treated as legal in Streaming SVE mode.

0b1 This control causes all implemented A64
instructions to be treated as legal in Streaming
SVE mode at EL3.

Arm recommends that portable SME software should not rely on this optional feature, and that operating systems
should provide a means to test for compliance with this recommendation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

828

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

EZT0, bit [30]

When FEAT_SME2 is implemented:

Traps execution at all Exception levels of the LDR, LUTI2, LUTI4, MOVT, STR, and ZERO instructions that
access the ZT0 register to EL3.

The exception is reported using ESR_EL3.EC value 0x1D, with an ISS code of 0x0000004, at a lower priority
than a trap due to PSTATE.SM or PSTATE.ZA.

EZT0 Meaning

0b0 This control causes execution of these
instructions at all Exception levels to be trapped.

0b1 This control does not cause execution of any
instruction to be trapped.

Changes to this field only affect whether instructions that access ZT0 are trapped. They do not affect the contents
of ZT0, which remain valid so long as PSTATE.ZA is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [29:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Requests an Effective Streaming SVE vector length (SVL) at EL3 of (LEN+1)*128 bits.

The Streaming SVE vector length can be any power of two from 128 bits to 2048 bits inclusive. An implementation
can support any subset of the architecturally permitted lengths.

When the PE is in Streaming SVE mode, the Effective SVE vector length (VL) is equal to SVL.

When FEAT_SVE is implemented, and the PE is not in Streaming SVE mode, VL is equal to the Effective
Non-streaming SVE vector length. See ZCR_EL3.

For all purposes other than returning the result of a direct read of SMCR_EL3, the PE selects the Effective
Streaming SVE vector length by performing checks in the following order:

1. If the requested length is less than the minimum implemented Streaming SVE vector length, then the Effective
length is the minimum implemented Streaming SVE vector length.

2. Otherwise, the Effective length is the highest supported Streaming SVE vector length that is less than or
equal to the requested length.

An indirect read of SMCR_EL3.LEN appears to occur in program order relative to a direct write of the same
register, without the need for explicit synchronization.

The reset behavior of this field is:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

829

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMCR_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if CPTR_EL3.ESM == '0' then
9 AArch64.SystemAccessTrap(EL3, 0x1D);

10 else
11 X[t, 64] = SMCR_EL3;

MSR SMCR_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0010 0b110

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 if CPTR_EL3.ESM == '0' then
9 AArch64.SystemAccessTrap(EL3, 0x1D);

10 else
11 SMCR_EL3 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

830

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.6 SMIDR_EL1, Streaming Mode Identification Register

The SMIDR_EL1 characteristics are:

Purpose

Provides additional identification mechanisms for scheduling purposes, for a PE that supports Streaming
SVE mode.

Configuration

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMIDR_EL1 are UNDEFINED.

Attributes

SMIDR_EL1 is a 64-bit register.

Field descriptions

The SMIDR_EL1 bit assignments are:

RES0

63 32

Implementer

31 24

Revision

23 16 15

RES0

14 12

Affinity

11 0

SMPS

Bits [63:32]

Reserved, RES0.

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes
include the following:

Implementer Meaning

0x00 Reserved for software use.

0x41 Arm Limited.

0x42 Broadcom Corporation.

0x43 Cavium Inc.

0x44 Digital Equipment Corporation.

0x46 Fujitsu Ltd.

0x49 Infineon Technologies AG.

0x4D Motorola or Freescale Semiconductor Inc.

0x4E NVIDIA Corporation.

0x50 Applied Micro Circuits Corporation.

0x51 Qualcomm Inc.

0x56 Marvell International Ltd.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

831

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

Implementer Meaning

0x69 Intel Corporation.

0xC0 Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must
not be used.

It is not required that this value is the same as the value of MIDR_EL1.Implementer.

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Revision, bits [23:16]

Revision number for the Streaming Mode Compute Unit (SMCU).

This field has an IMPLEMENTATION DEFINED value.

Access to this field is RO.

SMPS, bit [15]

Indicates support for Streaming SVE mode execution priority.

SMPS Meaning

0b0 Priority control not supported.

0b1 Priority control supported.

Bits [14:12]

Reserved, RES0.

Affinity, bits [11:0]

The SMCU affinity of the accessing PE.

• A value of zero indicates that the PE’s implementation of Streaming SVE mode is not shared with other PEs.

• Otherwise, the value identifies which SMCU is associated with this PE. The Affinity value associated with
each SMCU is unique within the system as a whole.

Accessing SMIDR_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMIDR_EL1

op0 op1 CRn CRm op2

0b11 0b001 0b0000 0b0000 0b110

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

832

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented(FEAT_IDST) then
3 if EL2Enabled() && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x18);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 else
8 UNDEFINED;
9 elsif PSTATE.EL == EL1 then

10 if EL2Enabled() && HCR_EL2.TID1 == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 X[t, 64] = SMIDR_EL1;
14 elsif PSTATE.EL == EL2 then
15 X[t, 64] = SMIDR_EL1;
16 elsif PSTATE.EL == EL3 then
17 X[t, 64] = SMIDR_EL1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

833

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.7 SMPRI_EL1, Streaming Mode Priority Register

The SMPRI_EL1 characteristics are:

Purpose

Configures the streaming execution priority for instructions executed on a shared Streaming Mode
Compute Unit (SMCU) when the PE is in Streaming SVE mode at any Exception Level.

Configuration

When SMIDR_EL1.SMPS is ‘0’, this register is RES0.

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMPRI_EL1 are UNDEFINED.

Attributes

SMPRI_EL1 is a 64-bit register.

Field descriptions

The SMPRI_EL1 bit assignments are:

RES0

63 32

RES0

31 4

Priority

3 0

Bits [63:4]

Reserved, RES0.

Priority, bits [3:0]

Streaming execution priority value.

Either this value is used directly, or it is mapped into an effective priority value using SMPRIMAP_EL2.

This value is used directly when any of the following are true:

• The current Exception level is EL3 or EL2.
• The current Exception level is EL1 or EL0, if EL2 is implemented and enabled in the current Security state

and HCRX_EL2.SMPME is ‘0’.
• The current Exception level is EL1 or EL0, if EL2 is either not implemented or not enabled in the current

Security state.

The precise meaning and behavior of each streaming execution priority value is IMPLEMENTATION DEFINED.

In an implementation that shares execution resources between PEs, higher priority values are allocated more
processing resource than other PEs configured with lower priority values in the same Priority domain.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMPRI_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMPRI_EL1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

834

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b100

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;
6 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGRTR_EL2.nSMPRI_EL1 == '0' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
9 if Halted() && EDSCR.SDD == '1' then

10 UNDEFINED;
11 else
12 AArch64.SystemAccessTrap(EL3, 0x18);
13 else
14 X[t, 64] = SMPRI_EL1;
15 elsif PSTATE.EL == EL2 then
16 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
17 UNDEFINED;
18 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
19 if Halted() && EDSCR.SDD == '1' then
20 UNDEFINED;
21 else
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 else
24 X[t, 64] = SMPRI_EL1;
25 elsif PSTATE.EL == EL3 then
26 if CPTR_EL3.ESM == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else
29 X[t, 64] = SMPRI_EL1;

MSR SMPRI_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0010 0b100

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
5 UNDEFINED;
6 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGWTR_EL2.nSMPRI_EL1 == '0' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
9 if Halted() && EDSCR.SDD == '1' then

10 UNDEFINED;
11 else
12 AArch64.SystemAccessTrap(EL3, 0x18);
13 else
14 SMPRI_EL1 = X[t, 64];
15 elsif PSTATE.EL == EL2 then
16 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

835

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

17 UNDEFINED;
18 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
19 if Halted() && EDSCR.SDD == '1' then
20 UNDEFINED;
21 else
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 else
24 SMPRI_EL1 = X[t, 64];
25 elsif PSTATE.EL == EL3 then
26 if CPTR_EL3.ESM == '0' then
27 AArch64.SystemAccessTrap(EL3, 0x18);
28 else
29 SMPRI_EL1 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

836

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.8 SMPRIMAP_EL2, Streaming Mode Priority Mapping Register

The SMPRIMAP_EL2 characteristics are:

Purpose

Maps the value in SMPRI_EL1 to a streaming execution priority value for instructions executed at EL1
and EL0 in the same Security states as EL2.

Configuration

When SMIDR_EL1.SMPS is ‘0’, this register is RES0.

If EL2 is not implemented, this register is RES0 from EL3.

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
SMPRIMAP_EL2 are UNDEFINED.

Attributes

SMPRIMAP_EL2 is a 64-bit register.

Field descriptions

The SMPRIMAP_EL2 bit assignments are:

P15

63 60

P14

59 56

P13

55 52

P12

51 48

P11

47 44

P10

43 40

P9

39 36

P8

35 32

P7

31 28

P6

27 24

P5

23 20

P4

19 16

P3

15 12

P2

11 8

P1

7 4

P0

3 0

When all of the following are true, the value in SMPRI_EL1 is mapped to a streaming execution priority using this
register:

• The current Exception level is EL1 or EL0.
• EL2 is implemented and enabled in the current Security state.
• HCRX_EL2.SMPME is ‘1’.

Otherwise, SMPRI_EL1 holds the streaming execution priority value.

P15, bits [63:60]

Priority Mapping Entry 15. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘15’.

This value is the highest streaming execution priority.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P14, bits [59:56]

Priority Mapping Entry 14. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘14’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

837

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

P13, bits [55:52]

Priority Mapping Entry 13. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘13’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P12, bits [51:48]

Priority Mapping Entry 12. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘12’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P11, bits [47:44]

Priority Mapping Entry 11. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘11’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P10, bits [43:40]

Priority Mapping Entry 10. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘10’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P9, bits [39:36]

Priority Mapping Entry 9. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘9’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P8, bits [35:32]

Priority Mapping Entry 8. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘8’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P7, bits [31:28]

Priority Mapping Entry 7. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘7’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

838

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

P6, bits [27:24]

Priority Mapping Entry 6. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘6’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P5, bits [23:20]

Priority Mapping Entry 5. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘5’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P4, bits [19:16]

Priority Mapping Entry 4. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘4’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P3, bits [15:12]

Priority Mapping Entry 3. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘3’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P2, bits [11:8]

Priority Mapping Entry 2. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘2’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

P1, bits [7:4]

Priority Mapping Entry 1. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘1’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

839

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

P0, bits [3:0]

Priority Mapping Entry 0. This entry is used when priority mapping is supported and enabled, and the
SMPRI_EL1.Priority value is ‘0’.

This value is the lowest streaming execution priority.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SMPRIMAP_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SMPRIMAP_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b101

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = NVMem[0x1F8];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 X[t, 64] = SMPRIMAP_EL2;
20 elsif PSTATE.EL == EL3 then
21 if CPTR_EL3.ESM == '0' then
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 else
24 X[t, 64] = SMPRIMAP_EL2;

MSR SMPRIMAP_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b101

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 NVMem[0x1F8] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

840

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 SMPRIMAP_EL2 = X[t, 64];
20 elsif PSTATE.EL == EL3 then
21 if CPTR_EL3.ESM == '0' then
22 AArch64.SystemAccessTrap(EL3, 0x18);
23 else
24 SMPRIMAP_EL2 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

841

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.9 SVCR, Streaming Vector Control Register

The SVCR characteristics are:

Purpose

Controls Streaming SVE mode and SME behavior.

Configuration

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to SVCR
are UNDEFINED.

Attributes

SVCR is a 64-bit register.

Field descriptions

The SVCR bit assignments are:

RES0

63 32

RES0

31 2

ZA

1

SM

0

Bits [63:2]

Reserved, RES0.

ZA, bit [1]

Enables SME ZA storage. If FEAT_SME2 is implemented, also enables SME2 ZT0 storage.

When this storage is disabled, execution of an instruction which can access it is trapped. The exception is reported
using an ESR_ELx.{EC, SMTC} value of {0x1D, 0x3}.

The possible values of this bit are:

ZA Meaning

0b0 SME ZA storage and, if implemented, ZT0
storage are invalid and not accessible.
This control causes execution at any Exception
level of instructions that can access this storage
to be trapped.

0b1 SME ZA storage and, if implemented, ZT0
storage are valid and accessible.
This control does not cause execution of any
instructions to be trapped.

When a write to SVCR.ZA changes the value of PSTATE.ZA from 0 to 1, all implemented bits of the storage are
set to zero.

Changes to this field do not have an effect on the SVE vector and predicate registers and FPSR.

A direct or indirect read of ZA appears to occur in program order relative to a direct write of SVCR, and to
MSR SVCRZA and MSR SVCRSMZA instructions, without the need for explicit synchronization.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

842

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

SM, bit [0]

Enables Streaming SVE mode.

When the PE is in Streaming SVE mode, the Streaming SVE vector length (SVL) applies to SVE instructions,
and execution at any Exception level of an instruction which is illegal in that mode is trapped. The exception is
reported using an ESR_ELx.{EC, SMTC} value of {0x1D, 0x1}.

When the PE is not in Streaming SVE mode, the SVE vector length (VL) applies to SVE instructions, and execution
at any Exception level of an instruction which is only legal in that mode is trapped. The exception is reported using
an ESR_ELx.{EC, SMTC} value of {0x1D, 0x2}.

The possible values of this bit are:

SM Meaning

0b0 The PE is not in Streaming SVE mode.

0b1 The PE is in Streaming SVE mode.

When a write to SVCR.SM changes the value of PSTATE.SM, the following applies:

• When changed from 0 to 1, an entry to Streaming SVE mode is performed.
• When changed from 1 to 0, an exit from Streaming SVE mode is performed.
• All implemented bits of the SVE registers Z0-Z31, P0-P15, and FFR in the new mode are set to zero.
• FPSR in the new mode is set to 0x0000_0000_0800_009f, in which all cumulative status bits are set to 1.

Changes to this field do not have an affect on SME ZA storage or, if implemented, ZT0 storage.

A direct or indirect read of SM appears to occur in program order relative to a direct write of SVCR, and to
MSR SVCRSM and MSR SVCRSMZA instructions, without the need for explicit synchronization.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Accessing SVCR

SVCR is read/write and can be accessed from any Exception level.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SVCR

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b010

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.SMEN != '11' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x1D);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

843

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

7 else
8 AArch64.SystemAccessTrap(EL1, 0x1D);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.SMEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x1D);
11 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x1D);
13 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x1D);
15 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x1D);
20 else
21 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;
22 elsif PSTATE.EL == EL1 then
23 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
24 UNDEFINED;
25 elsif CPACR_EL1.SMEN == 'x0' then
26 AArch64.SystemAccessTrap(EL1, 0x1D);
27 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x1D);
29 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x1D);
31 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
32 if Halted() && EDSCR.SDD == '1' then
33 UNDEFINED;
34 else
35 AArch64.SystemAccessTrap(EL3, 0x1D);
36 else
37 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;
38 elsif PSTATE.EL == EL2 then
39 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
40 UNDEFINED;
41 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
42 AArch64.SystemAccessTrap(EL2, 0x1D);
43 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
44 AArch64.SystemAccessTrap(EL2, 0x1D);
45 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
46 if Halted() && EDSCR.SDD == '1' then
47 UNDEFINED;
48 else
49 AArch64.SystemAccessTrap(EL3, 0x1D);
50 else
51 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;
52 elsif PSTATE.EL == EL3 then
53 if CPTR_EL3.ESM == '0' then
54 AArch64.SystemAccessTrap(EL3, 0x1D);
55 else
56 X[t, 64] = Zeros(62):PSTATE.<ZA,SM>;

MSR SVCR, <Xt>

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0010 0b010

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.SMEN != '11' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

844

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

6 AArch64.SystemAccessTrap(EL2, 0x1D);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x1D);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.SMEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x1D);
11 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x1D);
13 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x1D);
15 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x1D);
20 else
21 SetPSTATE_SVCR(X[t, 32]);
22 elsif PSTATE.EL == EL1 then
23 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
24 UNDEFINED;
25 elsif CPACR_EL1.SMEN == 'x0' then
26 AArch64.SystemAccessTrap(EL1, 0x1D);
27 elsif EL2Enabled() && HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x1D);
29 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x1D);
31 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
32 if Halted() && EDSCR.SDD == '1' then
33 UNDEFINED;
34 else
35 AArch64.SystemAccessTrap(EL3, 0x1D);
36 else
37 SetPSTATE_SVCR(X[t, 32]);
38 elsif PSTATE.EL == EL2 then
39 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.ESM == '0' then
40 UNDEFINED;
41 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TSM == '1' then
42 AArch64.SystemAccessTrap(EL2, 0x1D);
43 elsif HCR_EL2.E2H == '1' && CPTR_EL2.SMEN == 'x0' then
44 AArch64.SystemAccessTrap(EL2, 0x1D);
45 elsif HaveEL(EL3) && CPTR_EL3.ESM == '0' then
46 if Halted() && EDSCR.SDD == '1' then
47 UNDEFINED;
48 else
49 AArch64.SystemAccessTrap(EL3, 0x1D);
50 else
51 SetPSTATE_SVCR(X[t, 32]);
52 elsif PSTATE.EL == EL3 then
53 if CPTR_EL3.ESM == '0' then
54 AArch64.SystemAccessTrap(EL3, 0x1D);
55 else
56 SetPSTATE_SVCR(X[t, 32]);

MSR SVCRSM, #<imm>

op0 op1 CRn CRm op2

0b00 0b011 0b0100 0b001x 0b011

MSR SVCRZA, #<imm>

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

845

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

op0 op1 CRn CRm op2

0b00 0b011 0b0100 0b010x 0b011

MSR SVCRSMZA, #<imm>

op0 op1 CRn CRm op2

0b00 0b011 0b0100 0b011x 0b011

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

846

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.10 TPIDR2_EL0, EL0 Read/Write Software Thread ID Register 2

The TPIDR2_EL0 characteristics are:

Purpose

Provides a location where SME-aware software executing at EL0 can store thread identifying
information, for context management purposes.

The PE makes no use of this register.

Configuration

This register is present only when FEAT_SME is implemented. Otherwise, direct accesses to
TPIDR2_EL0 are UNDEFINED.

Attributes

TPIDR2_EL0 is a 64-bit register.

Field descriptions

The TPIDR2_EL0 bit assignments are:

Thread ID

63 32

Thread ID

31 0

Bits [63:0]

Thread identifying information stored by software running at this Exception level.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing TPIDR2_EL0

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, TPIDR2_EL0

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b101

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && SCR_EL3.EnTP2 == '0' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnTP2 == '0' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x18);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x18);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnTP2 == '0' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && IsFeatureImplemented(FEAT_FGT) &&

↪→(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.nTPIDR2_EL0 == '0' then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

847

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

12 AArch64.SystemAccessTrap(EL2, 0x18);
13 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 X[t, 64] = TPIDR2_EL0;
20 elsif PSTATE.EL == EL1 then
21 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && SCR_EL3.EnTP2 == '0' then
22 UNDEFINED;
23 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGRTR_EL2.nTPIDR2_EL0 == '0' then
24 AArch64.SystemAccessTrap(EL2, 0x18);
25 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
26 if Halted() && EDSCR.SDD == '1' then
27 UNDEFINED;
28 else
29 AArch64.SystemAccessTrap(EL3, 0x18);
30 else
31 X[t, 64] = TPIDR2_EL0;
32 elsif PSTATE.EL == EL2 then
33 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && SCR_EL3.EnTP2 == '0' then
34 UNDEFINED;
35 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
36 if Halted() && EDSCR.SDD == '1' then
37 UNDEFINED;
38 else
39 AArch64.SystemAccessTrap(EL3, 0x18);
40 else
41 X[t, 64] = TPIDR2_EL0;
42 elsif PSTATE.EL == EL3 then
43 X[t, 64] = TPIDR2_EL0;

MSR TPIDR2_EL0, <Xt>

op0 op1 CRn CRm op2

0b11 0b011 0b1101 0b0000 0b101

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && SCR_EL3.EnTP2 == '0' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.EnTP2 == '0' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x18);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x18);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.EnTP2 == '0' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && IsFeatureImplemented(FEAT_FGT) &&

↪→(!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.nTPIDR2_EL0 == '0' then
12 AArch64.SystemAccessTrap(EL2, 0x18);
13 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 TPIDR2_EL0 = X[t, 64];
20 elsif PSTATE.EL == EL1 then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

848

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

21 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3
↪→trap priority when SDD == '1'" && SCR_EL3.EnTP2 == '0' then

22 UNDEFINED;
23 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGWTR_EL2.nTPIDR2_EL0 == '0' then
24 AArch64.SystemAccessTrap(EL2, 0x18);
25 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
26 if Halted() && EDSCR.SDD == '1' then
27 UNDEFINED;
28 else
29 AArch64.SystemAccessTrap(EL3, 0x18);
30 else
31 TPIDR2_EL0 = X[t, 64];
32 elsif PSTATE.EL == EL2 then
33 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && SCR_EL3.EnTP2 == '0' then
34 UNDEFINED;
35 elsif HaveEL(EL3) && SCR_EL3.EnTP2 == '0' then
36 if Halted() && EDSCR.SDD == '1' then
37 UNDEFINED;
38 else
39 AArch64.SystemAccessTrap(EL3, 0x18);
40 else
41 TPIDR2_EL0 = X[t, 64];
42 elsif PSTATE.EL == EL3 then
43 TPIDR2_EL0 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

849

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

E3.1.11 EDHSR, External Debug Halting Syndrome Register

The EDHSR characteristics are:

Purpose

Holds syndrome information for a debug event.

Configuration

EDHSR is in the Core power domain

EDHSR is in the Core power domain.

This register is present only when FEAT_Debugv8p2 is implemented and an implementation implements
EDHSR. Otherwise, direct accesses to EDHSR are RES0.

Attributes

EDHSR is a 64-bit register.

Field descriptions

The EDHSR bit assignments are:

RES0

63 32

RES0

31 24

WPT

23 18 17 16 15

RES0

14 11 10

RES0

9 0

WPTV FnP
WPF

FnV

Bits [63:24]

Reserved, RES0.

WPT, bits [23:18]

Watchpoint number. When EDHSR.WPTV is 1, holds the index of a watchpoint that triggered the Watchpoint
debug event.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WPTV, bit [17]

Watchpoint number valid.

WPTV Meaning

0b0 EDHSR.WPT field is not valid, and holds an
UNKNOWN value.

0b1 EDHSR.WPT field is valid, and holds the
number of a watchpoint that triggered the
Watchpoint debug event.

The reset behavior of this field is:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

850

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

WPF, bit [16]

Watchpoint match might be False.

WPF Meaning Applies

0b0 The watchpoint matched the original access or
set of contiguous accesses.

0b1 The watchpoint matched an access or set of
contiguous accesses where the lowest accessed
address was rounded down to the nearest
multiple of 16 bytes and the highest accessed
address was rounded up to the nearest multiple
of 16 bytes minus 1, but the watchpoint might
not have matched the original address of the
access or set of contiguous accesses.

When FEAT_SME is
implemented or
FEAT_SVE is
implemented

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FnP, bit [15]

EDWAR not Precise.

FnP Meaning Applies

0b0 If the EDWAR is valid, it holds the virtual
address of an access or sequence of contiguous
accesses that triggered the Watchpoint debug
event.

0b1 If the EDWAR is valid, it holds any virtual
address within the smallest implemented
translation granule that contains the virtual
address of an access or set of contiguous
accesses that triggered the Watchpoint debug
event.

When FEAT_SME is
implemented or
FEAT_SVE is
implemented

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [14:11]

Reserved, RES0.

FnV, bit [10]

EDWAR not Valid.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

851

Chapter E3. System registers affected by SME
E3.1. SME-Specific System registers

FnV Meaning Applies

0b0 EDWAR is valid.

0b1 EDWAR is not valid, and holds an UNKNOWN
value.

When FEAT_SME is
implemented or
FEAT_SVE is
implemented

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [9:0]

Reserved, RES0.

Accessing EDHSR

Accesses to this register use the following encodings in the external debug interface:

EDHSR can be accessed through the external debug interface:

Component Offset Instance

Debug 0x038 EDHSR

This interface is accessible as follows:

• When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus() access to this register returns an ERROR.
• Otherwise access to this register is RO.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

852

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2 Changes to existing System registers

System registers that are updated with additional fields, values, or description changes, to support SME
functionality.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

853

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.1 CPACR_EL1, Architectural Feature Access Control Register

The CPACR_EL1 characteristics are:

Purpose

Controls access to trace, SME, Streaming SVE, SVE, and Advanced SIMD and floating-point
functionality.

Configuration

When EL2 is implemented and enabled in the current Security state and HCR_EL2.{E2H, TGE} ==
{1, 1}, the fields in this register have no effect on execution at EL0 and EL1. In this case, the controls
provided by CPTR_EL2 are used.

AArch64 system register CPACR_EL1 bits [31:0] are architecturally mapped to AArch32 system
register CPACR[31:0].

Attributes

CPACR_EL1 is a 64-bit register.

Field descriptions

The CPACR_EL1 bit assignments are:

RES0

63 32

RES0

31 29 28

RES0

27 26

SMEN

25 24

RES0

23 22

FPEN

21 20

RES0

19 18

ZEN

17 16

RES0

15 0

TTA

Bits [63:29]

Reserved, RES0.

TTA, bit [28]

Traps EL0 and EL1 System register accesses to all implemented trace registers from both Execution states to EL1,
or to EL2 when it is implemented and enabled in the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to trace registers are trapped, reported using ESR_ELx.EC value 0x18.

• In AArch32 state, MRC and MCR accesses to trace registers are trapped, reported using ESR_ELx.EC value
0x05.

• In AArch32 state, MRRC and MCRR accesses to trace registers are trapped, reported using ESR_ELx.EC
value 0x0C.

TTA Meaning

0b0 This control does not cause any instructions to
be trapped.

0b1 This control causes EL0 and EL1 System
register accesses to all implemented trace
registers to be trapped.

• The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the trace unit implements
FEAT_ETMv4 or FEAT_ETE, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

854

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

is higher priority than an exception that would be generated because the value of CPACR_EL1.TTA is 1.
• The Arm architecture does not provide traps on trace register accesses through the optional memory-mapped

interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

SMEN, bits [25:24]

When FEAT_SME is implemented:

Traps execution at EL1 and EL0 of SME instructions, SVE instructions when FEAT_SVE is not implemented or
the PE is in Streaming SVE mode, and instructions that directly access the SVCR or SMCR_EL1 System registers
to EL1, or to EL2 when EL2 is implemented and enabled in the current Security state and HCR_EL2.TGE is 1.

When instructions that directly access the SVCR System register are trapped with reference to this control, the
MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

The exception is reported using ESR_ELx.EC value of 0x1D, with an ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPACR_EL1.SMEN has precedence over a trap taken as a result of CPACR_EL1.FPEN.

SMEN Meaning

0b00 This control causes execution of these
instructions at EL1 and EL0 to be trapped.

0b01 This control causes execution of these
instructions at EL0 to be trapped, but does not
cause execution of any instructions at EL1 to be
trapped.

0b10 This control causes execution of these
instructions at EL1 and EL0 to be trapped.

0b11 This control does not cause execution of any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

855

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Bits [23:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps execution at EL1 and EL0 of instructions that access the Advanced SIMD and floating-point registers from
both Execution states to EL1, reported using ESR_ELx.EC value 0x07, or to EL2 reported using ESR_ELx.EC
value 0x00 when EL2 is implemented and enabled in the current Security state and HCR_EL2.TGE is 1, as follows:

• In AArch64 state, accesses to FPCR, FPSR, any of the SIMD and floating-point registers V0-V31, including
their views as D0-D31 registers or S0-31 registers.

• In AArch32 state, FPSCR, and any of the SIMD and floating-point registers Q0-15, including their views as
D0-D31 registers or S0-31 registers.

Traps execution at EL1 and EL0 of SME and SVE instructions to EL1, or to EL2 when EL2 is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1. The exception is reported using ESR_ELx.EC
value 0x07.

A trap taken as a result of CPACR_EL1.SMEN has precedence over a trap taken as a result of CPACR_EL1.FPEN.

A trap taken as a result of CPACR_EL1.ZEN has precedence over a trap taken as a result of CPACR_EL1.FPEN.

FPEN Meaning

0b00 This control causes execution of these
instructions at EL1 and EL0 to be trapped.

0b01 This control causes execution of these
instructions at EL0 to be trapped, but does not
cause execution of any instructions at EL1 to be
trapped.

0b10 This control causes execution of these
instructions at EL1 and EL0 to be trapped.

0b11 This control does not cause execution of any
instructions to be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether
these accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and any

resulting exception is higher priority than an exception that would be generated because the value of
CPACR_EL1.FPEN is not 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]

When FEAT_SVE is implemented:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

856

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Traps execution at EL1 and EL0 of SVE instructions when the PE is not in Streaming SVE mode, and instructions
that directly access the ZCR_EL1 System register to EL1, or to EL2 when EL2 is implemented and enabled in the
current Security state and HCR_EL2.TGE is 1.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPACR_EL1.ZEN has precedence over a trap taken as a result of CPACR_EL1.FPEN.

ZEN Meaning

0b00 This control causes execution of these
instructions at EL1 and EL0 to be trapped.

0b01 This control causes execution of these
instructions at EL0 to be trapped, but does not
cause execution of any instructions at EL1 to be
trapped.

0b10 This control causes execution of these
instructions at EL1 and EL0 to be trapped.

0b11 This control does not cause execution of any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [15:0]

Reserved, RES0.

Accessing CPACR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1
or CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CPACR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
5 UNDEFINED;
6 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGRTR_EL2.CPACR_EL1 == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x18);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

857

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

10 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
11 if Halted() && EDSCR.SDD == '1' then
12 UNDEFINED;
13 else
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
16 X[t, 64] = NVMem[0x100];
17 else
18 X[t, 64] = CPACR_EL1;
19 elsif PSTATE.EL == EL2 then
20 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
21 UNDEFINED;
22 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
23 if Halted() && EDSCR.SDD == '1' then
24 UNDEFINED;
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '1' then
28 X[t, 64] = CPTR_EL2;
29 else
30 X[t, 64] = CPACR_EL1;
31 elsif PSTATE.EL == EL3 then
32 X[t, 64] = CPACR_EL1;

MSR CPACR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
5 UNDEFINED;
6 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGWTR_EL2.CPACR_EL1 == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
11 if Halted() && EDSCR.SDD == '1' then
12 UNDEFINED;
13 else
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
16 NVMem[0x100] = X[t, 64];
17 else
18 CPACR_EL1 = X[t, 64];
19 elsif PSTATE.EL == EL2 then
20 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
21 UNDEFINED;
22 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
23 if Halted() && EDSCR.SDD == '1' then
24 UNDEFINED;
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '1' then
28 CPTR_EL2 = X[t, 64];
29 else
30 CPACR_EL1 = X[t, 64];
31 elsif PSTATE.EL == EL3 then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

858

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

32 CPACR_EL1 = X[t, 64];

MRS <Xt>, CPACR_EL12

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 X[t, 64] = NVMem[0x100];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED

↪→"EL3 trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
13 UNDEFINED;
14 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
15 if Halted() && EDSCR.SDD == '1' then
16 UNDEFINED;
17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 else
20 X[t, 64] = CPACR_EL1;
21 else
22 UNDEFINED;
23 elsif PSTATE.EL == EL3 then
24 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
25 X[t, 64] = CPACR_EL1;
26 else
27 UNDEFINED;

MSR CPACR_EL12, <Xt>

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 NVMem[0x100] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED

↪→"EL3 trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
13 UNDEFINED;
14 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
15 if Halted() && EDSCR.SDD == '1' then
16 UNDEFINED;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

859

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

17 else
18 AArch64.SystemAccessTrap(EL3, 0x18);
19 else
20 CPACR_EL1 = X[t, 64];
21 else
22 UNDEFINED;
23 elsif PSTATE.EL == EL3 then
24 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
25 CPACR_EL1 = X[t, 64];
26 else
27 UNDEFINED;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

860

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.2 CPTR_EL2, Architectural Feature Trap Register (EL2)

The CPTR_EL2 characteristics are:

Purpose

Controls trapping to EL2 of accesses to CPACR, CPACR_EL1, trace, Activity Monitor, SME, Streaming
SVE, SVE, and Advanced SIMD and floating-point functionality.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 system register CPTR_EL2 bits [31:0] are architecturally mapped to AArch32 system register
HCPTR[31:0].

Attributes

CPTR_EL2 is a 64-bit register.

Field descriptions

The CPTR_EL2 bit assignments are:

When FEAT_VHE is implemented and HCR_EL2.E2H == 1:

RES0

63 32

31 30 29 28

RES0

27 26

SMEN

25 24

RES0

23 22

FPEN

21 20

RES0

19 18

ZEN

17 16

RES0

15 0

TCPAC
TAM

TTA
RES0

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

In AArch64 state, traps accesses to CPACR_EL1 from EL1 to EL2, when EL2 is enabled in the current Security
state. The exception is reported using ESR_ELx.EC value 0x18.

In AArch32 state, traps accesses to CPACR from EL1 to EL2, when EL2 is enabled in the current Security state.
The exception is reported using ESR_ELx.EC value 0x03.

TCPAC Meaning

0b0 This control does not cause any instructions to
be trapped.

0b1 EL1 accesses to CPACR_EL1 and CPACR are
trapped to EL2, when EL2 is enabled in the
current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

CPACR_EL1 and CPACR are not accessible at EL0.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

861

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x18:

– AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0,
AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and
AMEVTYPER1<n>_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and reported using
ESR_ELx.EC value 0x03:

– AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, MRRC or MCRR accesses to AMEVCNTR0<n> and AMEVCNTR1<n>, are trapped to
EL2, reported using ESR_ELx.EC value 0x04.

TAM Meaning

0b0 Accesses from EL1 and EL0 to Activity Monitor
registers are not trapped.

0b1 Accesses from EL1 and EL0 to Activity Monitor
registers are trapped to EL2, when EL2 is
enabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [29]

Reserved, RES0.

TTA, bit [28]

Traps System register accesses to all implemented trace registers from both Execution states to EL2, when EL2 is
enabled in the current Security state, as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1, and CRn<0b1000 are trapped to EL2,
reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, and CRn<0b1000 are
trapped to EL2, reported using EC syndrome value 0x05.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

862

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TTA Meaning

0b0 This control does not cause any instructions to
be trapped.

0b1 Any attempt at EL0, EL1 or EL2, to execute a
System register access to an implemented trace
register is trapped to EL2, when EL2 is enabled
in the current Security state, unless
HCR_EL2.TGE is 0 and it is trapped by
CPACR.NSTRCDIS or CPACR_EL1.TTA.
When HCR_EL2.TGE is 1, any attempt at EL0
or EL2 to execute a System register access to an
implemented trace register is trapped to EL2,
when EL2 is enabled in the current Security
state.

The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the trace unit implements
FEAT_ETMv4 or ETE, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is higher
priority than an exception that would be generated because the value of CPTR_EL2.TTA is 1.

EL2 does not provide traps on trace register accesses through the optional Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

SMEN, bits [25:24]

When FEAT_SME is implemented:

Traps execution at EL2, EL1, and EL0 of SME instructions, SVE instructions when FEAT_SVE is not implemented
or the PE is in Streaming SVE mode, and instructions that directly access the SVCR, SMCR_EL1, or SMCR_EL2
System registers to EL2, when EL2 is enabled in the current Security state.

When instructions that directly access the SVCR System register are trapped with reference to this control, the
MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

The exception is reported using ESR_EL2.EC value of 0x1D, with an ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPTR_EL2.SMEN has precedence over a trap taken as a result of CPTR_EL2.FPEN.

SMEN Meaning

0b00 This control causes execution of these
instructions at EL2, EL1, and EL0 to be trapped.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

863

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SMEN Meaning

0b01 When HCR_EL2.TGE is 0, this control does not
cause execution of any instructions to be trapped.
When HCR_EL2.TGE is 1, this control causes
execution of these instructions at EL0 to be
trapped, but does not cause execution of any
instructions at EL2 to be trapped.

0b10 This control causes execution of these
instructions at EL2, EL1, and EL0 to be trapped.

0b11 This control does not cause execution of any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [23:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps execution at EL2, EL1, and EL0 of instructions that access the Advanced SIMD and floating-point registers
from both Execution states to EL2, when EL2 is enabled in the current Security state. The exception is reported
using ESR_ELx.EC value 0x07.

Traps execution at EL2, EL1, and EL0 of SME and SVE instructions to EL2, when EL2 is enabled in the current
Security state. The exception is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL2.SMEN has precedence over a trap taken as a result of CPTR_EL2.FPEN.

A trap taken as a result of CPTR_EL2.ZEN has precedence over a trap taken as a result of CPTR_EL2.FPEN.

FPEN Meaning

0b00 This control causes execution of these
instructions at EL2, EL1, and EL0 to be trapped.

0b01 When HCR_EL2.TGE is 0, this control does not
cause execution of any instructions to be trapped.
When HCR_EL2.TGE is 1, this control causes
execution of these instructions at EL0 to be
trapped, but does not cause execution of any
instructions at EL2 to be trapped.

0b10 This control causes execution of these
instructions at EL2, EL1, and EL0 to be trapped.

0b11 This control does not cause execution of any
instructions to be trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

864

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

these accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

• Attempts to write to the FPSID count as use of the registers for accesses from EL1 or higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are UNDEFINED, and any resulting

exception is higher priority than an exception that would be generated because the value of CPTR_EL2.FPEN
is not 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]

When FEAT_SVE is implemented:

Traps execution at EL2, EL1, and EL0 of SVE instructions when the PE is not in Streaming SVE mode, and
instructions that directly access the ZCR_EL1 or ZCR_EL2 System registers to EL2, when EL2 is enabled in the
current Security state.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL2.ZEN has precedence over a trap taken as a result of CPTR_EL2.FPEN.

ZEN Meaning

0b00 This control causes execution of these
instructions at EL2, EL1, and EL0 to be trapped.

0b01 When HCR_EL2.TGE is 0, this control does not
cause execution of any instructions to be trapped.
When HCR_EL2.TGE is 1, this control causes
execution of these instructions at EL0 to be
trapped, but does not cause execution of any
instructions at EL2 to be trapped.

0b10 This control causes execution of these
instructions at EL2, EL1, and EL0 to be trapped.

0b11 This control does not cause execution of any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

865

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Bits [15:0]

Reserved, RES0.

Otherwise:

RES0

63 32

31 30

RES0

29 21 20

RES0

19 14 13 12 11 10 9

TZ

8

RES1

7 0

TCPAC TAM TTA RES1
TSM

RES1
TFP

RES0

This format applies in all Armv8.0 implementations.

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

In AArch64 state, traps accesses to CPACR_EL1 from EL1 to EL2, when EL2 is enabled in the current Security
state. The exception is reported using ESR_ELx.EC value 0x18.

In AArch32 state, traps accesses to CPACR from EL1 to EL2, when EL2 is enabled in the current Security state.
The exception is reported using ESR_ELx.EC value 0x03.

TCPAC Meaning

0b0 This control does not cause any instructions to
be trapped.

0b1 EL1 accesses to the following registers are
trapped to EL2, when EL2 is enabled in the
current Security state:

• CPACR_EL1.
• CPACR.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

CPACR_EL1 and CPACR are not accessible at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x18:

– AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0,

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

866

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and
AMEVTYPER1<n>_EL0.

• In AArch32 state, MCR or MRC accesses to the following registers are trapped to EL2 and reported using
ESR_ELx.EC value 0x03:

– AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, MCRR or MRRC accesses to AMEVCNTR0<n> and AMEVCNTR1<n>, are trapped to
EL2, reported using ESR_ELx.EC value 0x04.

TAM Meaning

0b0 Accesses from EL1 and EL0 to Activity Monitor
registers are not trapped.

0b1 Accesses from EL1 and EL0 to Activity Monitor
registers are trapped to EL2, when EL2 is
enabled in the current Security state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses to all implemented trace registers from both Execution states to EL2, when EL2 is
enabled in the current Security state, as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1, and CRn<0b1000 are trapped to EL2,
reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, and CRn<0b1000 are
trapped to EL2, reported using EC syndrome value 0x05.

TTA Meaning

0b0 This control does not cause any instructions to
be trapped.

0b1 Any attempt at EL0, EL1, or EL2, to execute a
System register access to an implemented trace
register is trapped to EL2, when EL2 is enabled
in the current Security state, unless it is trapped
by one of the following controls:

• CPACR_EL1.TTA.
• CPACR.TRCDIS.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

867

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• The ETMv4 architecture does not permit EL0 to access the trace registers. If the trace unit implements
FEAT_ETMv4, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is higher
priority than an exception that would be generated because the value of CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:14]

Reserved, RES0.

Bit [13]

Reserved, RES1.

TSM, bit [12]

When FEAT_SME is implemented:

Traps execution at EL2, EL1, and EL0 of SME instructions, SVE instructions when FEAT_SVE is not implemented
or the PE is in Streaming SVE mode, and instructions that directly access the SVCR, SMCR_EL1, or SMCR_EL2
System registers to EL2, when EL2 is enabled in the current Security state.

When instructions that directly access the SVCR System register are trapped with reference to this control, the
MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

The exception is reported using ESR_EL2.EC value of 0x1D, with an ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPTR_EL2.TSM has precedence over a trap taken as a result of CPTR_EL2.TFP.

TSM Meaning

0b0 This control does not cause execution of any
instructions to be trapped.

0b1 This control causes execution of these
instructions at EL2, EL1, and EL0 to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps execution of instructions which access the Advanced SIMD and floating-point functionality, from both

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

868

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Execution states to EL2, when EL2 is enabled in the current Security state, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x07:

– FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31, including their
views as D0-D31 registers or S0-31 registers.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x07:

– MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-15,
including their views as D0-D31 registers or S0-31 registers. For the purposes of this trap, the architecture
defines a VMSR access to FPSID from EL1 or higher as an access to a SIMD and floating-point register.
Otherwise, permitted VMSR accesses to FPSID are ignored.

Traps execution at the same Exception levels of SME and SVE instructions to EL2, when EL2 is enabled in the
current Security state. The exception is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL2.TSM has precedence over a trap taken as a result of CPTR_EL2.TFP.

A trap taken as a result of CPTR_EL2.TZ has precedence over a trap taken as a result of CPTR_EL2.TFP.

TFP Meaning

0b0 This control does not cause execution of any
instructions to be trapped.

0b1 This control causes execution of these
instructions at EL2, EL1, and EL0 to be trapped.

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES1.

TZ, bit [8]

When FEAT_SVE is implemented:

Traps execution at EL2, EL1, and EL0 of SVE instructions when the PE is not in Streaming SVE mode, and
instructions that directly access the ZCR_EL2 or ZCR_EL1 System registers to EL2, when EL2 is enabled in the
current Security state.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL2.TZ has precedence over a trap taken as a result of CPTR_EL2.TFP.

TZ Meaning

0b0 This control does not cause execution of any
instructions to be trapped.

0b1 This control causes execution of these
instructions at EL2, EL1, and EL0 to be trapped.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

869

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

Bits [7:0]

Reserved, RES1.

Accessing CPTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CPTR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
10 UNDEFINED;
11 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
12 if Halted() && EDSCR.SDD == '1' then
13 UNDEFINED;
14 else
15 AArch64.SystemAccessTrap(EL3, 0x18);
16 else
17 X[t, 64] = CPTR_EL2;
18 elsif PSTATE.EL == EL3 then
19 X[t, 64] = CPTR_EL2;

MSR CPTR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

870

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

10 UNDEFINED;
11 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
12 if Halted() && EDSCR.SDD == '1' then
13 UNDEFINED;
14 else
15 AArch64.SystemAccessTrap(EL3, 0x18);
16 else
17 CPTR_EL2 = X[t, 64];
18 elsif PSTATE.EL == EL3 then
19 CPTR_EL2 = X[t, 64];

MRS <Xt>, CPACR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
5 UNDEFINED;
6 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGRTR_EL2.CPACR_EL1 == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
11 if Halted() && EDSCR.SDD == '1' then
12 UNDEFINED;
13 else
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
16 X[t, 64] = NVMem[0x100];
17 else
18 X[t, 64] = CPACR_EL1;
19 elsif PSTATE.EL == EL2 then
20 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
21 UNDEFINED;
22 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
23 if Halted() && EDSCR.SDD == '1' then
24 UNDEFINED;
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '1' then
28 X[t, 64] = CPTR_EL2;
29 else
30 X[t, 64] = CPACR_EL1;
31 elsif PSTATE.EL == EL3 then
32 X[t, 64] = CPACR_EL1;

MSR CPACR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b010

1 if PSTATE.EL == EL0 then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

871

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
5 UNDEFINED;
6 elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGWTR_EL2.CPACR_EL1 == '1' then
9 AArch64.SystemAccessTrap(EL2, 0x18);

10 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
11 if Halted() && EDSCR.SDD == '1' then
12 UNDEFINED;
13 else
14 AArch64.SystemAccessTrap(EL3, 0x18);
15 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
16 NVMem[0x100] = X[t, 64];
17 else
18 CPACR_EL1 = X[t, 64];
19 elsif PSTATE.EL == EL2 then
20 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
21 UNDEFINED;
22 elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
23 if Halted() && EDSCR.SDD == '1' then
24 UNDEFINED;
25 else
26 AArch64.SystemAccessTrap(EL3, 0x18);
27 elsif HCR_EL2.E2H == '1' then
28 CPTR_EL2 = X[t, 64];
29 else
30 CPACR_EL1 = X[t, 64];
31 elsif PSTATE.EL == EL3 then
32 CPACR_EL1 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

872

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.3 CPTR_EL3, Architectural Feature Trap Register (EL3)

The CPTR_EL3 characteristics are:

Purpose

Controls trapping to EL3 of accesses to CPACR, CPACR_EL1, HCPTR, CPTR_EL2, trace, Activity
Monitor, SME, Streaming SVE, SVE, and Advanced SIMD and floating-point functionality.

Configuration

This register is present only when EL3 is implemented. Otherwise, direct accesses to CPTR_EL3 are
UNDEFINED.

Attributes

CPTR_EL3 is a 64-bit register.

Field descriptions

The CPTR_EL3 bit assignments are:

RES0

63 32

31 30

RES0

29 21 20

RES0

19 13 12 11 10 9

EZ

8

RES0

7 0

TCPAC TAM TTA ESM
RES0

RES0
TFP

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

Traps all of the following to EL3, from both Execution states and any Security state.

• EL2 accesses to CPTR_EL2, reported using ESR_ELx.EC value 0x18, or HCPTR, reported using
ESR_ELx.EC value 0x03.

• EL2 and EL1 accesses to CPACR_EL1 reported using ESR_ELx.EC value 0x18, or CPACR reported using
ESR_ELx.EC value 0x03.

When CPTR_EL3.TCPAC is:

TCPAC Meaning

0b0 This control does not cause any instructions to
be trapped.

0b1 EL2 accesses to the CPTR_EL2 or HCPTR, and
EL2 and EL1 accesses to the CPACR_EL1 or
CPACR, are trapped to EL3, unless they are
trapped by CPTR_EL2.TCPAC.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

873

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL2, EL1, and EL0 accesses to all Activity Monitor registers to EL3.

Accesses to the Activity Monitors registers are trapped as follows:

• In AArch64 state, the following registers are trapped to EL3 and reported with ESR_ELx.EC value 0x18:

– AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0,
AMCNTENCLR1_EL0, AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0,
AMEVCNTR0<n>_EL0, AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and
AMEVTYPER1<n>_EL0.

• In AArch32 state, accesses with MRC or MCR to the following registers reported with ESR_ELx.EC value
0x03:

– AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, accesses with MRRC or MCRR to the following registers, reported with ESR_ELx.EC
value 0x04:

– AMEVCNTR0<n>, AMEVCNTR1<n>.

TAM Meaning

0b0 Accesses from EL2, EL1, and EL0 to Activity
Monitor registers are not trapped.

0b1 Accesses from EL2, EL1, and EL0 to Activity
Monitor registers are trapped to EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses. Accesses to the trace registers, from all Exception levels, any Security state, and
both Execution states are trapped to EL3 as follows:

• In AArch64 state, Trace registers with op0=2, op1=1, and CRn<0b1000 are trapped to EL3 and reported
using EC syndrome value 0x18.

• In AArch32 state, accesses using MCR or MRC to the Trace registers with cpnum=14, opc1=1, and
CRn<0b1000 are reported using EC syndrome value 0x05.

TTA Meaning

0b0 This control does not cause any instructions to
be trapped.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

874

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TTA Meaning

0b1 Any System register access to the trace registers
is trapped to EL3, unless it is trapped by
CPACR.TRCDIS, CPACR_EL1.TTA, or
CPTR_EL2.TTA.

If System register access to trace functionality is not supported, this bit is RES0.

The ETMv4 architecture and ETE do not permit EL0 to access the trace registers. If the trace unit implements
FEAT_ETMv4 or FEAT_ETE, EL0 accesses to the trace registers are UNDEFINED, and any resulting exception is
higher priority than this trap exception.

EL3 does not provide traps on trace register accesses through the Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no
side-effects occur before the exception is taken, see ‘Configurable instruction controls’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

ESM, bit [12]

When FEAT_SME is implemented:

Traps execution of SME instructions, SVE instructions when FEAT_SVE is not implemented or the PE is
in Streaming SVE mode, and instructions that directly access the SMCR_EL1, SMCR_EL2, SMCR_EL3,
SMPRI_EL1, SMPRIMAP_EL2, or SVCR System registers, from all Exception levels and any Security state, to
EL3.

When instructions that directly access the SVCR System register are trapped with reference to this control, the
MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are also trapped.

When direct accesses to SMPRI_EL1 and SMPRIMAP_EL2 are trapped, the exception is reported using an
ESR_EL3.EC value of 0x18. Otherwise, the exception is reported using an ESR_EL3.EC value of 0x1D, with an
ISS code of 0x0000000.

This field does not affect whether Streaming SVE or SME register values are valid.

A trap taken as a result of CPTR_EL3.ESM has precedence over a trap taken as a result of CPTR_EL3.TFP.

ESM Meaning

0b0 This control causes execution of these
instructions at all Exception levels to be trapped.

0b1 This control does not cause execution of any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

875

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps execution of instructions which access the Advanced SIMD and floating-point functionality, from all
Exception levels, any Security state, and both Execution states, to EL3.

This includes the following registers, all reported using ESR_ELx.EC value 0x07:

• FPCR, FPSR, FPEXC32_EL2, and any of the SIMD and floating-point registers V0-V31, including their
views as D0-D31 registers or S0-S31 registers.

• MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-Q15,
including their views as D0-D31 registers or S0-S31 registers.

• VMSR accesses to FPSID.

Permitted VMSR accesses to FPSID are ignored, but for the purposes of this trap the architecture defines a VMSR
access to the FPSID from EL1 or higher as an access to a SIMD and floating-point register.

Traps execution at all Exception levels of SME and SVE instructions to EL3 from any Security state. The exception
is reported using ESR_ELx.EC value 0x07.

A trap taken as a result of CPTR_EL3.ESM has precedence over a trap taken as a result of CPTR_EL3.TFP.

A trap taken as a result of CPTR_EL3.EZ has precedence over a trap taken as a result of CPTR_EL3.TFP.

Defined values are:

TFP Meaning

0b0 This control does not cause execution of any
instructions to be trapped.

0b1 This control causes execution of these
instructions at all Exception levels to be trapped.

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using AArch32.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

EZ, bit [8]

When FEAT_SVE is implemented:

Traps execution of SVE instructions when the PE is not in Streaming SVE mode, and instructions that directly
access the ZCR_EL3, ZCR_EL2, or ZCR_EL1 System registers, from all Exception levels and any Security state,
to EL3.

The exception is reported using ESR_ELx.EC value 0x19.

A trap taken as a result of CPTR_EL3.EZ has precedence over a trap taken as a result of CPTR_EL3.TFP.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

876

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EZ Meaning

0b0 This control causes execution of these
instructions at all Exception levels to be trapped.

0b1 This control does not cause execution of any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [7:0]

Reserved, RES0.

Accessing CPTR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, CPTR_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 X[t, 64] = CPTR_EL3;

MSR CPTR_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 CPTR_EL3 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

877

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.4 FAR_EL1, Fault Address Register (EL1)

The FAR_EL1 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction Abort exceptions, Data Abort
exceptions, PC alignment fault exceptions and Watchpoint exceptions that are taken to EL1.

Configuration

AArch64 system register FAR_EL1 bits [31:0] are architecturally mapped to AArch32 system register
DFAR31:0.

AArch64 system register FAR_EL1 bits [63:32] are architecturally mapped to AArch32 system register
IFAR31:0.

Attributes

FAR_EL1 is a 64-bit register.

Field descriptions

The FAR_EL1 bit assignments are:

Faulting Virtual Address for synchronous exceptions taken to EL1

63 32

Faulting Virtual Address for synchronous exceptions taken to EL1

31 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the FAR_EL1 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC
0x34 or 0x35). ESR_EL1.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits
of FAR_EL1 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL1.FnV is 0, and FAR_EL1 is UNKNOWN if ESR_EL1.FnV is 1.

If a memory fault that sets FAR_EL1, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address
held in FAR_EL1 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by

DC ZVA.

If the exception that updates FAR_EL1 is taken from an Exception level using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

878

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When the PE sets ESR_EL1.{ISV,FnP} to {0,1} on taking a Data Abort exception, or sets ESR_EL1.{FnV,FnP}
to {0,1} on taking a Watchpoint exception, the PE sets FAR_EL1 to any address within the naturally-aligned
fault granule that contains the virtual address of the memory access that generated the Data Abort exception or
Watchpoint exception.

The naturally-aligned fault granule is one of:

• When ESR_EL1.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte tag granule.
• When ESR_EL1.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an IMPLEMENTA-

TION DEFINED granule.
• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL1 on a synchronous exception from any of the Memory
Copy and Memory Set instructions represents the first element that has not been copied or set, and is determined as
follows:

• For a Data Abort generated by the MMU, the value is within the address range of the relevant translation
granule, aligned to the size of the relevant translation granule of the address that generated the Data Abort.
Bits[(n-1):0] of the value are UNKNOWN, where 2n is the relevant translation granule size in bytes. For the
purpose of calculating the relevant translation granule, if the MMU is disabled for a stage of translation, then
the current translation granule size is equal to 264 for stage 1, and the PARange for stage 2. The relevant
translation granule is:

– For MMU faults generated at stage 1, the current stage 1 translation granule.
– For MMU faults generated at stage 2, the smaller of the current stage 1 translation granule and the

current stage 2 translation granule.
– If FEAT_RME is implemented, for a synchronous data abort generated as the result of a GPF, the smallest

of the current stage 1 translation granule, the current stage 2 translation granule and the configured
granule size in GPCCR_EL3.PGS.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed the Tag Check
within the block size of the load or store.

• For a Watchpoint exception, the value is an address range of the size defined by the DCZID_EL0.BS field.
This address does not need to be the element with a watchpoint, but can be some earlier element.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort exception or Watchpoint exception, if address tagging is enabled for the address accessed by the
data access that caused the exception, then this field includes the tag. For more information about address tagging,
see ‘Address tagging’.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL0 makes FAR_EL1 become UNKNOWN.

The address held in this field is an address accessed by the instruction fetch or data access that caused the exception
that actually gave rise to the instruction or data abort. It is the lower address that gave rise to the fault that is
reported. Where different faults from different addresses arise from the same instruction, such as for an instruction
that loads or stores an unaligned address that crosses a page boundary, the architecture does not prioritize which
fault is reported.

For all other exceptions taken to EL1, FAR_EL1 is UNKNOWN.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

879

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Accessing FAR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or
FAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TRVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGRTR_EL2.FAR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 X[t, 64] = NVMem[0x220];

10 else
11 X[t, 64] = FAR_EL1;
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 X[t, 64] = FAR_EL2;
15 else
16 X[t, 64] = FAR_EL1;
17 elsif PSTATE.EL == EL3 then
18 X[t, 64] = FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGWTR_EL2.FAR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 NVMem[0x220] = X[t, 64];

10 else
11 FAR_EL1 = X[t, 64];
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 FAR_EL2 = X[t, 64];
15 else
16 FAR_EL1 = X[t, 64];
17 elsif PSTATE.EL == EL3 then
18 FAR_EL1 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

880

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

MRS <Xt>, FAR_EL12

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 X[t, 64] = NVMem[0x220];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 X[t, 64] = FAR_EL1;
13 else
14 UNDEFINED;
15 elsif PSTATE.EL == EL3 then
16 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
17 X[t, 64] = FAR_EL1;
18 else
19 UNDEFINED;

MSR FAR_EL12, <Xt>

op0 op1 CRn CRm op2

0b11 0b101 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 NVMem[0x220] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 FAR_EL1 = X[t, 64];
13 else
14 UNDEFINED;
15 elsif PSTATE.EL == EL3 then
16 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
17 FAR_EL1 = X[t, 64];
18 else
19 UNDEFINED;

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

881

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = FAR_EL1;
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 X[t, 64] = FAR_EL2;
12 elsif PSTATE.EL == EL3 then
13 X[t, 64] = FAR_EL2;

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 FAR_EL1 = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 FAR_EL2 = X[t, 64];
12 elsif PSTATE.EL == EL3 then
13 FAR_EL2 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

882

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.5 FAR_EL2, Fault Address Register (EL2)

The FAR_EL2 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction Abort exceptions, Data Abort
exceptions, PC alignment fault exceptions and Watchpoint exceptions that are taken to EL2.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 system register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 system register
HDFAR[31:0].

AArch64 system register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 system register
HIFAR[31:0].

When EL2 is implemented, AArch64 system register FAR_EL2 bits [31:0] are architecturally mapped
to AArch32 system register DFAR31:0.

When EL2 is implemented, AArch64 system register FAR_EL2 bits [63:32] are architecturally mapped
to AArch32 system register IFAR31:0.

Attributes

FAR_EL2 is a 64-bit register.

Field descriptions

The FAR_EL2 bit assignments are:

Faulting Virtual Address for synchronous exceptions taken to EL2

63 32

Faulting Virtual Address for synchronous exceptions taken to EL2

31 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the FAR_EL2 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC
0x34 or 0x35). ESR_EL2.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits
of FAR_EL2 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL2.FnV is 0, and FAR_EL2 is UNKNOWN if ESR_EL2.FnV is 1.

If a memory fault that sets FAR_EL2, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address
held in FAR_EL2 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by

DC ZVA.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

883

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

If the exception that updates FAR_EL2 is taken from an Exception level using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

When the PE sets ESR_EL2.{ISV,FnP} to {0,1} on taking a Data Abort exception, or sets ESR_EL2.{FnV,FnP}
to {0,1} on taking a Watchpoint exception, the PE sets FAR_EL2 to any address within the naturally-aligned
fault granule that contains the virtual address of the memory access that generated the Data Abort exception or
Watchpoint exception.

The naturally-aligned fault granule is one of:

• When ESR_EL2.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte tag granule.
• When ESR_EL2.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an IMPLEMENTA-

TION DEFINED granule.
• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL2 on a synchronous exception from any of the Memory
Copy and Memory Set instructions represents the first element that has not been copied or set, and is determined as
follows:

• For a Data Abort generated by the MMU, the value is within the address range of the relevant translation
granule, aligned to the size of the relevant translation granule of the address that generated the Data Abort.
Bits[(n-1):0] of the value are UNKNOWN, where 2n is the relevant translation granule size in bytes. For the
purpose of calculating the relevant translation granule, if the MMU is disabled for a stage of translation, then
the current translation granule size is equal to 264 for stage 1, and the PARange for stage 2. The relevant
translation granule is:

– For MMU faults generated at stage 1, the current stage 1 translation granule.
– For MMU faults generated at stage 2, the smaller of the current stage 1 translation granule and the

current stage 2 translation granule.
– If FEAT_RME is implemented, for a synchronous data abort generated as the result of a GPF, the smallest

of the current stage 1 translation granule, the current stage 2 translation granule and the configured
granule size in GPCCR_EL3.PGS.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed the Tag Check
within the block size of the load or store.

• For a Watchpoint exception, the value is an address range of the size defined by the DCZID_EL0.BS field.
This address does not need to be the element with a watchpoint, but can be some earlier element.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort exception or Watchpoint exception, if address tagging is enabled for the address accessed by the
data access that caused the exception, then this field includes the tag. For more information about address tagging,
see ‘Address tagging’.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL1 or EL0 makes FAR_EL2 become UNKNOWN.

The address held in this field is an address accessed by the instruction fetch or data access that caused the exception
that actually gave rise to the instruction or data abort. It is the lower address that gave rise to the fault that is
reported. Where different faults from different addresses arise from the same instruction, such as for an instruction
that loads or stores an unaligned address that crosses a page boundary, the architecture does not prioritize which
fault is reported.

For all other exceptions taken to EL2, FAR_EL2 is UNKNOWN.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

884

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or
FAR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = FAR_EL1;
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 X[t, 64] = FAR_EL2;
12 elsif PSTATE.EL == EL3 then
13 X[t, 64] = FAR_EL2;

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 FAR_EL1 = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 FAR_EL2 = X[t, 64];
12 elsif PSTATE.EL == EL3 then
13 FAR_EL2 = X[t, 64];

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

885

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TRVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGRTR_EL2.FAR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 X[t, 64] = NVMem[0x220];

10 else
11 X[t, 64] = FAR_EL1;
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 X[t, 64] = FAR_EL2;
15 else
16 X[t, 64] = FAR_EL1;
17 elsif PSTATE.EL == EL3 then
18 X[t, 64] = FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGWTR_EL2.FAR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 NVMem[0x220] = X[t, 64];

10 else
11 FAR_EL1 = X[t, 64];
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 FAR_EL2 = X[t, 64];
15 else
16 FAR_EL1 = X[t, 64];
17 elsif PSTATE.EL == EL3 then
18 FAR_EL1 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

886

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.6 FAR_EL3, Fault Address Register (EL3)

The FAR_EL3 characteristics are:

Purpose

Holds the faulting Virtual Address for all synchronous Instruction Abort exceptions, Data Abort
exceptions and PC alignment fault exceptions that are taken to EL3.

Configuration

This register is present only when EL3 is implemented. Otherwise, direct accesses to FAR_EL3 are
UNDEFINED.

Attributes

FAR_EL3 is a 64-bit register.

Field descriptions

The FAR_EL3 bit assignments are:

Faulting Virtual Address for synchronous exceptions taken to EL3

63 32

Faulting Virtual Address for synchronous exceptions taken to EL3

31 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the FAR_EL3 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), and PC alignment faults (EC 0x22). ESR_EL3.EC
holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits
of FAR_EL3 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL3.FnV is 0, and FAR_EL3 is UNKNOWN if ESR_EL3.FnV is 1.

If a memory fault that sets FAR_EL3, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address
held in FAR_EL3 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by

DC ZVA.

If the exception that updates FAR_EL3 is taken from an Exception level using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

When the PE sets ESR_EL3.{ISV,FnP} to {0,1} on taking a Data Abort exception, the PE sets FAR_EL3 to any
address within the naturally-aligned fault granule that contains the virtual address of the memory access that
generated the Data Abort exception.

The naturally-aligned fault granule is one of:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

887

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• When ESR_EL3.DFSC is 0b010001, indicating a Synchronous Tag Check fault, it is a 16-byte tag granule.
• When ESR_EL3.DFSC is 0b11010x, indicating an IMPLEMENTATION DEFINED fault, it is an IMPLEMENTA-

TION DEFINED granule.
• Otherwise, it is the smallest implemented translation granule.

When FEAT_MOPS is implemented, the value in FAR_EL3 on a synchronous exception from any of the Memory
Copy and Memory Set instructions represents the first element that has not been copied or set, and is determined as
follows:

• For a Data Abort generated by the MMU, the value is within the address range of the relevant translation
granule, aligned to the size of the relevant translation granule of the address that generated the Data Abort.
Bits[(n-1):0] of the value are UNKNOWN, where 2n is the relevant translation granule size in bytes. For the
purpose of calculating the relevant translation granule, if the MMU is disabled for a stage of translation, then
the current translation granule size is equal to 264 for stage 1, and the PARange for stage 2. The relevant
translation granule is:

– For MMU faults generated at stage 1, the current stage 1 translation granule.
– For MMU faults generated at stage 2, the smaller of the current stage 1 translation granule and the

current stage 2 translation granule.
– If FEAT_RME is implemented, for a synchronous data abort generated as the result of a GPF, the smallest

of the current stage 1 translation granule, the current stage 2 translation granule and the configured
granule size in GPCCR_EL3.PGS.

• For a Data Abort generated by a Tag Check failure, the value is the lowest address that failed the Tag Check
within the block size of the load or store.

• Otherwise, the value is the lowest address in the block size of the load or store.

For a Data Abort exception, if address tagging is enabled for the address accessed by the data access that caused
the exception, then this field includes the tag. For more information about address tagging, see ‘Address tagging’.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL2, EL1, or EL0 makes FAR_EL3 become UNKNOWN.

The address held in this register is an address accessed by the instruction fetch or data access that caused the
exception that actually gave rise to the instruction or data abort. It is the lowest address that gave rise to the
fault that is reported. Where different faults from different addresses arise from the same instruction, such as for
an instruction that loads or stores an unaligned address that crosses a page boundary, the architecture does not
prioritize which fault is reported.

For all other exceptions taken to EL3, FAR_EL3 is UNKNOWN.

FAR_EL3 is made UNKNOWN on an exception return from EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing FAR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FAR_EL3

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

888

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 X[t, 64] = FAR_EL3;

MSR FAR_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b0110 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 FAR_EL3 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

889

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.7 FPCR, Floating-point Control Register

The FPCR characteristics are:

Purpose

Controls floating-point behavior.

Configuration

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to nonzero
values, which will cause some AArch32 floating-point instruction encodings to be UNDEFINED, or
whether these fields are RAZ.

AArch64 system register FPCR bits [26:15] are architecturally mapped to AArch32 system register
FPSCR[26:15].

AArch64 system register FPCR bits [12:8] are architecturally mapped to AArch32 system register
FPSCR[12:8].

Attributes

FPCR is a 64-bit register.

Field descriptions

The FPCR bit assignments are:

RES0

63 32

RES0

31 27 26

DN

25

FZ

24 23 22 21 20 19

Len

18 16 15 14 13 12 11 10 9 8

RES0

7 3 2

AH

1 0

AHP
RMode

Stride
FZ16

IDE
RES0

IOE
DZE

OFE
UFE

IXE
EBF

NEP FIZ

Bits [63:27]

Reserved, RES0.

AHP, bit [26]

Alternative half-precision control bit.

AHP Meaning

0b0 IEEE half-precision format selected.

0b1 Alternative half-precision format selected.

This bit is used only for conversions between half-precision floating-point and other floating-point formats.

The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE half-precision
format, and ignore the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

890

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

DN, bit [25]

Default NaN use for NaN propagation.

DN Meaning

0b0 NaN operands propagate through to the output of
a floating-point operation.

0b1 Any operation involving one or more NaNs
returns the Default NaN.
This bit has no effect on the output of FABS,
FMAX*, FMIN*, and FNEG instructions, and a
default NaN is never returned as a result of these
instructions.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ, bit [24]

Flushing denormalized numbers to zero control bit.

FZ Meaning

0b0 If FPCR.AH is 0, the flushing to zero of
single-precision and double-precision
denormalized inputs to, and outputs of,
floating-point instructions not enabled by this
control, but other factors might cause the input
denormalized numbers to be flushed to zero.
If FPCR.AH is 1, the flushing to zero of
single-precision and double-precision
denormalized outputs of floating-point
instructions not enabled by this control, but other
factors might cause the input denormalized
numbers to be flushed to zero.

0b1 If FPCR.AH is 0, denormalized single-precision
and double-precision inputs to, and outputs from,
floating-point instructions are flushed to zero.
If FPCR.AH is 1, denormalized single-precision
and double-precision outputs from floating-point
instructions are flushed to zero.

For more information, see ‘Flushing denormalized numbers to zero’ and the pseudocode of the floating-point
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

891

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RMode, bits [23:22]

Rounding Mode control field.

RMode Meaning

0b00 Round to Nearest (RN) mode.

0b01 Round towards Plus Infinity (RP) mode.

0b10 Round towards Minus Infinity (RM) mode.

0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by both scalar and Advanced SIMD floating-point instructions.

If FPCR.AH is 1, then the following instructions use Round to Nearest mode regardless of the value of this bit:

• The FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS instructions.

• The BFCVT, BFCVTN, BFCVTN2, BFCVTNT, BFMLALB, and BFMLALT instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Stride, bits [21:20]

This field has no function in AArch64 state, and nonzero values are ignored during execution in AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Stride field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ16, bit [19]

When FEAT_FP16 is implemented:

Flushing denormalized numbers to zero control bit on half-precision data-processing instructions.

FZ16 Meaning

0b0 For some instructions, this bit disables flushing
to zero of inputs and outputs that are
half-precision denormalized numbers.

0b1 Flushing denormalized numbers to zero enabled.
For some instructions that do not convert a
half-precision input to a higher precision output,
this bit enables flushing to zero of inputs and
outputs that are half-precision denormalized
numbers.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations.

For more information, see ‘Flushing denormalized numbers to zero’ and the pseudocode of the floating-point
instructions.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

892

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Len, bits [18:16]

This field has no function in AArch64 state, and nonzero values are ignored during execution in AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Len field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDE, bit [15]

Input Denormal floating-point exception trap enable.

IDE Meaning

0b0 Untrapped exception handling selected. If the
floating-point exception occurs, the FPSR.IDC
bit is set to 1.

0b1 Trapped exception handling selected. If the
floating-point exception occurs, the PE does not
update the FPSR.IDC bit.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled, the value of
FPCR.IDE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [14]

Reserved, RES0.

EBF, bit [13]

When FEAT_EBF16 is implemented:

The value of this bit controls the numeric behaviors of BFloat16 dot product calculations performed by the BFDOT,
BFMMLA, BFMOPA, and BFMOPS instructions. If FEAT_SME2 is implemented, this also controls BFVDOT
instruction.

When ID_AA64ISAR1_EL1.BF16 and ID_AA64ZFR0_EL1.BF16 are 0b0010, the PE supports the FPCR.EBF
field. Otherwise, FPCR.EBF is RES0.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

893

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EBF Meaning

0b0 These instructions use the standard BFloat16
behaviors:

• Ignoring the FPCR.RMode control and
using the rounding mode defined for
BFloat16. For more information, see
‘Round to Odd mode’.

• Flushing denormalized inputs and outputs
to zero, as if the FPCR.FZ and FPCR.FIZ
controls had the value ‘1’.

• Performing unfused multiplies and
additions with intermediate rounding of all
products and sums.

0b1 These instructions use the extended BFloat16
behaviors:

• Supporting all four IEEE 754 rounding
modes selected by the FPCR.RMode
control.

• Optionally, flushing denormalized inputs
and outputs to zero, as governed by the
FPCR.FZ and FPCR.FIZ controls.

• Performing a fused two-way
sum-of-products for each pair of adjacent
BFloat16 elements, without intermediate
rounding of the products, but rounding the
single-precision sum before addition to the
accumulator.

• Generating the default NaN as
intermediate sum-of-products when any
multiplier input is a NaN, or any product
is infinity × 0.0, or there are infinite
products with differing signs.

• Generating an intermediate
sum-of-products of the same infinity when
there are infinite products all with the
same sign.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

IXE, bit [12]

Inexact floating-point exception trap enable.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

894

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

IXE Meaning

0b0 Untrapped exception handling selected. If the
floating-point exception occurs, the FPSR.IXC
bit is set to 1.

0b1 Trapped exception handling selected. If the
floating-point exception occurs, the PE does not
update the FPSR.IXC bit.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled, the value of
FPCR.IXE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFE, bit [11]

Underflow floating-point exception trap enable.

UFE Meaning

0b0 Untrapped exception handling selected. If the
floating-point exception occurs, the FPSR.UFC
bit is set to 1.

0b1 Trapped exception handling selected. If the
floating-point exception occurs and
Flush-to-zero is not enabled, the PE does not
update the FPSR.UFC bit.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled, the value of
FPCR.UFE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFE, bit [10]

Overflow floating-point exception trap enable.

OFE Meaning

0b0 Untrapped exception handling selected. If the
floating-point exception occurs, the FPSR.OFC
bit is set to 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

895

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

OFE Meaning

0b1 Trapped exception handling selected. If the
floating-point exception occurs, the PE does not
update the FPSR.OFC bit.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled, the value of
FPCR.OFE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZE, bit [9]

Divide by Zero floating-point exception trap enable.

DZE Meaning

0b0 Untrapped exception handling selected. If the
floating-point exception occurs, the FPSR.DZC
bit is set to 1.

0b1 Trapped exception handling selected. If the
floating-point exception occurs, the PE does not
update the FPSR.DZC bit.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled, the value of
FPCR.DZE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOE, bit [8]

Invalid Operation floating-point exception trap enable.

IOE Meaning

0b0 Untrapped exception handling selected. If the
floating-point exception occurs, the FPSR.IOC
bit is set to 1.

0b1 Trapped exception handling selected. If the
floating-point exception occurs, the PE does not
update the FPSR.IOC bit.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

896

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled, the value of
FPCR.IOE is treated as 0 for all purposes other than a direct read or write of the FPCR.

The Effective value of this bit controls both scalar and vector floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.

NEP, bit [2]

When FEAT_AFP is implemented:

Controls how the output elements other than the lowest element of the vector are determined for Advanced SIMD
scalar instructions.

NEP Meaning

0b0 Does not affect how the output elements other
than the lowest are determined for Advanced
SIMD scalar instructions.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

897

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

NEP Meaning

0b1 The output elements other than the lowest are
taken from the following registers:

• For 3-input scalar versions of the FMLA
(by element) and FMLS (by element)
instructions, the <Hd>, <Sd>, or <Dd>
register.

• For 3-input versions of the FMADD,
FMSUB, FNMADD, and FNMSUB
instructions, the <Ha>, <Sa>, or <Da>
register.

• For 2-input scalar versions of the FACGE,
FACGT, FCMEQ (register), FCMGE
(register), and FCMGT (register)
instructions, the <Hm>, <Sm>, or <Dm>
register.

• For 2-input scalar versions of the FABD,
FADD (scalar), FDIV (scalar), FMAX
(scalar), FMAXNM (scalar), FMIN
(scalar), FMINNM (scalar), FMUL (by
element), FMUL (scalar), FMULX (by
element), FMULX, FNMUL (scalar),
FRECPS, FRSQRTS, and FSUB (scalar)
instructions, the <Hn>, <Sn>, or <Dn>
register.

• For 1-input scalar versions of the
following instructions, the <Hd>, <Sd>, or
<Dd> register:

– The (vector) versions of the
FCVTAS, FCVTAU, FCVTMS,
FCVTMU, FCVTNS, FCVTNU,
FCVTPS, and FCVTPU instructions.

– The (vector, fixed-point) and (vector,
integer) versions of the FCVTZS,
FCVTZU, SCVTF, and UCVTF
instructions.

– The (scalar) versions of the FABS,
FNEG, FRINT32X, FRINT32Z,
FRINT64X, FRINT64Z, FRINTA,
FRINTI, FRINTM, FRINTN,
FRINTP, FRINTX, FRINTZ, and
FSQRT instructions.

– The (scalar, fixed-point) and (scalar,
integer) versions of the SCVTF and
UCVTF instructions.

– The BFCVT, FCVT, FCVTXN,
FRECPE, FRECPX, and FRSQRTE
instructions.

When the PE is in Streaming SVE mode, and FEAT_SME_FA64 is not implemented or not enabled, the value of
FPCR.NEP is treated as 0 for all purposes other than a direct read or write of the FPCR.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

898

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

AH, bit [1]

When FEAT_AFP is implemented:

Alternate Handling. Controls alternate handling of floating-point numbers.

The Arm architecture supports two models for handling some of the corner cases of the floating-point behaviors,
such as the nature of flushing of denormalized numbers, the detection of tininess and other exceptions and a range
of other behaviors. The value of the FPCR.AH bit selects between these models.

For more information on the FPCR.AH bit, see ‘Flushing denormalized numbers to zero’, Floating- point
exceptions and exception traps and the pseudocode of the floating-point instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

FIZ, bit [0]

When FEAT_AFP is implemented:

Flush Inputs to Zero. Controls whether single-precision, double-precision and BFloat16 input operands that are
denormalized numbers are flushed to zero.

FIZ Meaning

0b0 The flushing to zero of single-precision and
double-precision denormalized inputs to
floating-point instructions not enabled by this
control, but other factors might cause the input
denormalized numbers to be flushed to zero.

0b1 Denormalized single-precision and
double-precision inputs to most floating-point
instructions flushed to zero.

For more information, see ‘Flushing denormalized numbers to zero’ and the pseudocode of the floating-point
instructions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

899

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Accessing FPCR

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, FPCR

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b000

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x00);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x07);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x07);
11 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x07);
13 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x07);
15 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x07);
20 else
21 X[t, 64] = FPCR;
22 elsif PSTATE.EL == EL1 then
23 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
24 UNDEFINED;
25 elsif CPACR_EL1.FPEN == 'x0' then
26 AArch64.SystemAccessTrap(EL1, 0x07);
27 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x07);
29 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x07);
31 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
32 if Halted() && EDSCR.SDD == '1' then
33 UNDEFINED;
34 else
35 AArch64.SystemAccessTrap(EL3, 0x07);
36 else
37 X[t, 64] = FPCR;
38 elsif PSTATE.EL == EL2 then
39 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
40 UNDEFINED;
41 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
42 AArch64.SystemAccessTrap(EL2, 0x07);
43 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
44 AArch64.SystemAccessTrap(EL2, 0x07);
45 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
46 if Halted() && EDSCR.SDD == '1' then
47 UNDEFINED;
48 else
49 AArch64.SystemAccessTrap(EL3, 0x07);
50 else
51 X[t, 64] = FPCR;
52 elsif PSTATE.EL == EL3 then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

900

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

53 if CPTR_EL3.TFP == '1' then
54 AArch64.SystemAccessTrap(EL3, 0x07);
55 else
56 X[t, 64] = FPCR;

MSR FPCR, <Xt>

op0 op1 CRn CRm op2

0b11 0b011 0b0100 0b0100 0b000

1 if PSTATE.EL == EL0 then
2 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
3 UNDEFINED;
4 elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
5 if EL2Enabled() && HCR_EL2.TGE == '1' then
6 AArch64.SystemAccessTrap(EL2, 0x00);
7 else
8 AArch64.SystemAccessTrap(EL1, 0x07);
9 elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then

10 AArch64.SystemAccessTrap(EL2, 0x07);
11 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
12 AArch64.SystemAccessTrap(EL2, 0x07);
13 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
14 AArch64.SystemAccessTrap(EL2, 0x07);
15 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x07);
20 else
21 FPCR = X[t, 64];
22 elsif PSTATE.EL == EL1 then
23 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
24 UNDEFINED;
25 elsif CPACR_EL1.FPEN == 'x0' then
26 AArch64.SystemAccessTrap(EL1, 0x07);
27 elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
28 AArch64.SystemAccessTrap(EL2, 0x07);
29 elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
30 AArch64.SystemAccessTrap(EL2, 0x07);
31 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
32 if Halted() && EDSCR.SDD == '1' then
33 UNDEFINED;
34 else
35 AArch64.SystemAccessTrap(EL3, 0x07);
36 else
37 FPCR = X[t, 64];
38 elsif PSTATE.EL == EL2 then
39 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
40 UNDEFINED;
41 elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then
42 AArch64.SystemAccessTrap(EL2, 0x07);
43 elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
44 AArch64.SystemAccessTrap(EL2, 0x07);
45 elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
46 if Halted() && EDSCR.SDD == '1' then
47 UNDEFINED;
48 else
49 AArch64.SystemAccessTrap(EL3, 0x07);
50 else
51 FPCR = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

901

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

52 elsif PSTATE.EL == EL3 then
53 if CPTR_EL3.TFP == '1' then
54 AArch64.SystemAccessTrap(EL3, 0x07);
55 else
56 FPCR = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

902

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.8 HCRX_EL2, Extended Hypervisor Configuration Register

The HCRX_EL2 characteristics are:

Purpose

Provides configuration controls for virtualization, including defining whether various operations are
trapped to EL2.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if:

• EL2 is not enabled in the current Security state.
• SCR_EL3.HXEn is 0.

This register is present only when FEAT_HCX is implemented. Otherwise, direct accesses to
HCRX_EL2 are UNDEFINED.

Attributes

HCRX_EL2 is a 64-bit register.

Field descriptions

The HCRX_EL2 bit assignments are:

RES0

63 32

RES0

31 16 15 14

RES0

13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCTLR2En
TCR2En

MSCEn
MCE2

CMOW
VFNMI

VINMI

EnAS0
EnALS

EnASR
FnXS

FGTnXS
SMPME

TALLINT

Bits [63:16]

Reserved, RES0.

SCTLR2En, bit [15]

When FEAT_SCTLR2 is implemented:

SCTLR2_EL1 Enable. In AArch64 state, accesses to SCTLR2_EL1 are trapped to EL2 and reported using EC
syndrome value 0x18.

SCTLR2En Meaning

0b0 Accesses to SCTLR2_EL1 at EL1 are trapped to
EL2, unless the access generates a higher
priority exception. The value in SCTLR2_EL1
is treated as 0.

0b1 This control does not cause any instructions to
be trapped.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

903

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TCR2En, bit [14]

When FEAT_TCR2 is implemented:

TCR2_EL1 Enable. In AArch64 state, accesses to TCR2_EL1 are trapped to EL2 and reported using EC syndrome
value 0x18.

TCR2En Meaning

0b0 Accesses to TCR2_EL1 at EL1 are trapped to
EL2, unless the access generates a higher
priority exception. The value in TCR2_EL1 is
treated as 0.

0b1 This control does not cause any instructions to
be trapped.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [13:12]

Reserved, RES0.

MSCEn, bit [11]

When FEAT_MOPS is implemented:

Memory Set and Memory Copy instructions Enable. Enables execution of the CPY*, SETG*, SETP*, SETM*,
and SETE* instructions at EL1 or EL0.

MSCEn Meaning

0b0 Execution of the Memory Copy and Memory Set
instructions is UNDEFINED at EL1 or EL0.

0b1 This control does not cause any instructions to
be UNDEFINED.

This bit behaves as if it is 1 if any of the following are true:

• EL2 is not implemented or enabled.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

904

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• The value of HCR_EL2.{E2H, TGE} is {1, 1}.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

MCE2, bit [10]

When FEAT_MOPS is implemented:

Controls Memory Copy and Memory Set exceptions generated as part of attempting to execute the Memory Copy
and Memory Set instructions from EL1.

MCE2 Meaning

0b0 Memory Copy and Memory Set exceptions
generated from EL1 are taken to EL1.

0b1 Memory Copy and Memory Set exceptions
generated from EL1 are taken to EL2.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, this control does not affect any exceptions due to the higher
priority SCTLR_EL2.MSCEn control.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

CMOW, bit [9]

When FEAT_CMOW is implemented:

Controls cache maintenance instruction permission for the following instructions executed at EL1 or EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

• ICIMVAU, DCCIMVAC.

CMOW Meaning

0b0 These instructions executed at EL1 or EL0 with
stage 2 read permission, but without stage 2
write permission do not generate a stage 2
permission fault.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

905

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CMOW Meaning

0b1 These instructions executed at EL1 or EL0, if
enabled as a result of SCTLR_EL1.UCI==1,
with stage 2 read permission, but without stage 2
write permission generate a stage 2 permission
fault.

For this control, stage 2 has write permission if S2AP[1] is 1 or DBM is 1 in the stage 2 descriptor. The instructions
do not cause an update to the dirty state.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

VFNMI, bit [8]

When FEAT_NMI is implemented:

Virtual FIQ Interrupt with Superpriority. Enables signaling of virtual FIQ interrupts with Superpriority.

VFNMI Meaning

0b0 When HCR_EL2.VF is 1, a signaled pending
virtual FIQ interrupt does not have Superpriority.

0b1 When HCR_EL2.VF is 1, a signaled pending
virtual FIQ interrupt has Superpriority.

When HCR_EL2.VF is 0, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

VINMI, bit [7]

When FEAT_NMI is implemented:

Virtual IRQ Interrupt with Superpriority. Enables signaling of virtual IRQ interrupts with Superpriority.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

906

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

VINMI Meaning

0b0 When HCR_EL2.VI is 1, a signaled pending
virtual IRQ interrupt does not have Superpriority.

0b1 When HCR_EL2.VI is 1, a signaled pending
virtual IRQ interrupt has Superpriority.

When HCR_EL2.VI is 0, this bit has no effect.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TALLINT, bit [6]

When FEAT_NMI is implemented:

Traps the following writes at EL1 using AArch64 to EL2, when EL2 is implemented and enabled:

• MSR (register) writes of ALLINT.
• MSR (immediate) writes of ALLINT with a value of 1.

TALLINT Meaning

0b0 This control does not cause any instructions to
be trapped.

0b1 The specified MSR accesses at EL1 using
AArch64 are trapped to EL2.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

SMPME, bit [5]

When FEAT_SME is implemented:

Streaming Mode Priority Mapping Enable.

Controls mapping of the value of SMPRI_EL1.Priority for streaming execution priority at EL0 or EL1.

SMPME Meaning

0b0 The effective priority value is taken from
SMPRI_EL1.Priority.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

907

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SMPME Meaning

0b1 The effective priority value is:
• When the current Exception level is EL2

or EL3, the value of SMPRI_EL1.Priority.
• When the current Exception level is EL0

or EL1, the value of the
SMPRIMAP_EL2 field corresponding to
the value of SMPRI_EL1.Priority.

When SMIDR_EL1.SMPS is ‘0’, this field is RES0.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

FGTnXS, bit [4]

When FEAT_XS is implemented:

Determines if the fine-grained traps in HFGITR_EL2 that apply to each of the TLBI maintenance instructions that
are accessible at EL1 also apply to the corresponding TLBI maintenance instructions with the nXS qualifier.

FGTnXS Meaning

0b0 The fine-grained trap in the HFGITR_EL2 that
applies to a TLBI maintenance instruction at
EL1 also applies to the corresponding TLBI
instruction with the nXS qualifier at EL1.

0b1 The fine-grained trap in the HFGITR_EL2 that
applies to a TLBI maintenance instruction at
EL1 does not apply to the corresponding TLBI
instruction with the nXS qualifier at EL1.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

FnXS, bit [3]

When FEAT_XS is implemented:

Determines the behavior of TLBI instructions affected by the XS attribute.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

908

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

This control bit also determines whether an AArch64 DSB instruction behaves as a DSB instruction with an nXS
qualifier when executed at EL0 and EL1.

FnXS Meaning

0b0 This control does not have any effect on the
behavior of the TLBI maintenance instructions.

0b1 A TLBI maintenance instruction without the
nXS qualifier executed at EL1 behaves in the
same way as the corresponding TLBI
maintenance instruction with the nXS qualifier.
An AArch64 DSB instruction executed at EL1 or
EL0 behaves in the same way as the
corresponding DSB instruction with the nXS
qualifier executed at EL1 or EL0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnASR, bit [2]

When FEAT_LS64_V is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 or EL1 to EL2.

EnASR Meaning

0b0 Execution of an ST64BV instruction at EL0 is
trapped to EL2 if the execution is not trapped by
SCTLR_EL1.EnASR.
Execution of an ST64BV instruction at EL1 is
trapped to EL2.

0b1 This control does not cause any instructions to
be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

909

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnALS, bit [1]

When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0 or EL1 to
EL2.

EnALS Meaning

0b0 Execution of an LD64B or ST64B instruction at
EL0 is trapped to EL2 if the execution is not
trapped by SCTLR_EL1.EnALS.
Execution of an LD64B or ST64B instruction at
EL1 is trapped to EL2.

0b1 This control does not cause any instructions to
be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnAS0, bit [0]

When FEAT_LS64_ACCDATA is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 or EL1 to EL2.

EnAS0 Meaning

0b0 Execution of an ST64BV0 instruction at EL0 is
trapped to EL2 if the execution is not trapped by
SCTLR_EL1.EnAS0.
Execution of an ST64BV0 instruction at EL1 is
trapped to EL2.

0b1 This control does not cause any instructions to
be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

910

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Accessing HCRX_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HCRX_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = NVMem[0xA0];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && SCR_EL3.HXEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 X[t, 64] = HCRX_EL2;
20 elsif PSTATE.EL == EL3 then
21 X[t, 64] = HCRX_EL2;

MSR HCRX_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0010 0b010

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 NVMem[0xA0] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && SCR_EL3.HXEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 HCRX_EL2 = X[t, 64];
20 elsif PSTATE.EL == EL3 then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

911

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

21 HCRX_EL2 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

912

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.9 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

The HFGRTR_EL2 characteristics are:

Purpose

Provides controls for traps of MRS and MRC reads of System registers.

Configuration

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HFGRTR_EL2 are UNDEFINED.

Attributes

HFGRTR_EL2 is a 64-bit register.

Field descriptions

The HFGRTR_EL2 bit assignments are:

RES0

63 56 55 54

RES0

53 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

nTPIDR2_EL0
nSMPRI_EL1

nACCDATA_EL1
ERXADDR_EL1
ERXPFGCDN_EL1

ERXPFGCTL_EL1
ERXPFGF_EL1
ERXMISCn_EL1
ERXSTATUS_EL1

ERXCTLR_EL1

TCR_EL1
TPIDR_EL1

TPIDRRO_EL0
TPIDR_EL0

TTBR0_EL1
TTBR1_EL1

VBAR_EL1
ICC_IGRPENn_EL1

ERRIDR_EL1
ERRSELR_EL1

ERXFR_EL1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCXTNUM_E
L0

SCXTNUM_EL1
SCTLR_EL1
REVIDR_EL1

PAR_EL1
MPIDR_EL1

MIDR_EL1
MAIR_EL1
LORSA_EL1

LORN_EL1
LORID_EL1

LOREA_EL1
LORC_EL1

ISR_EL1
FAR_EL1

ESR_EL1

AFSR0_EL1
AFSR1_EL1

AIDR_EL1
AMAIR_EL1

APDAKey
APDBKey

APGAKey
APIAKey

APIBKey
CCSIDR_EL1

CLIDR_EL1
CONTEXTIDR_EL1

CPACR_EL1
CSSELR_EL1

CTR_EL0
DCZID_EL0

Bits [63:56]

Reserved, RES0.

nTPIDR2_EL0, bit [55]

When FEAT_SME is implemented:

Trap MRS reads of TPIDR2_EL0 at EL1 and EL0 using AArch64 to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

913

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nTPIDR2_EL0 Meaning

0b0 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1,
1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of
TPIDR2_EL0 at EL1 and EL0 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

0b1 MRS reads of TPIDR2_EL0 are not trapped by
this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

nSMPRI_EL1, bit [54]

When FEAT_SME is implemented:

Trap MRS reads of SMPRI_EL1 at EL1 using AArch64 to EL2.

nSMPRI_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of SMPRI_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

0b1 MRS reads of SMPRI_EL1 are not trapped by this
mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bits [53:51]

Reserved, RES0.

nACCDATA_EL1, bit [50]

When FEAT_LS64_ACCDATA is implemented:

Trap MRS reads of ACCDATA_EL1 at EL1 using AArch64 to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

914

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nACCDATA_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ACCDATA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

0b1 MRS reads of ACCDATA_EL1 are not trapped by
this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXADDR_EL1, bit [49]

When FEAT_RAS is implemented:

Trap MRS reads of ERXADDR_EL1 at EL1 using AArch64 to EL2.

ERXADDR_EL1 Meaning

0b0 MRS reads of ERXADDR_EL1 are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ERXADDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

915

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERXPFGCDN_EL1, bit [48]

When FEAT_RASv1p1 is implemented:

Trap MRS reads of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

ERXPFGCDN_EL1 Meaning

0b0 MRS reads of ERXPFGCDN_EL1 are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ERXPFGCDN_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ERXPFGCTL_EL1, bit [47]

When FEAT_RASv1p1 is implemented:

Trap MRS reads of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

ERXPFGCTL_EL1 Meaning

0b0 MRS reads of ERXPFGCTL_EL1 are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ERXPFGCTL_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

916

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ERXPFGF_EL1, bit [46]

When FEAT_RAS is implemented:

Trap MRS reads of ERXPFGF_EL1 at EL1 using AArch64 to EL2.

ERXPFGF_EL1 Meaning

0b0 MRS reads of ERXPFGF_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ERXPFGF_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ERXMISCn_EL1, bit [45]

When FEAT_RAS is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• ERXMISC0_EL1.
• ERXMISC1_EL1.
• ERXMISC2_EL1.
• ERXMISC3_EL1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

917

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERXMISCn_EL1 Meaning

0b0 MRS reads of the specified System registers are
not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MRS reads at
EL1 using AArch64 of any of the specified
System registers are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ERXSTATUS_EL1, bit [44]

When FEAT_RAS is implemented:

Trap MRS reads of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

ERXSTATUS_EL1 Meaning

0b0 MRS reads of ERXSTATUS_EL1 are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ERXSTATUS_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

918

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

Trap MRS reads of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

ERXCTLR_EL1 Meaning

0b0 MRS reads of ERXCTLR_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ERXCTLR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ERXFR_EL1, bit [42]

When FEAT_RAS is implemented:

Trap MRS reads of ERXFR_EL1 at EL1 using AArch64 to EL2.

ERXFR_EL1 Meaning

0b0 MRS reads of ERXFR_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ERXFR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

919

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ERRSELR_EL1, bit [41]

When FEAT_RAS is implemented:

Trap MRS reads of ERRSELR_EL1 at EL1 using AArch64 to EL2.

ERRSELR_EL1 Meaning

0b0 MRS reads of ERRSELR_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ERRSELR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ERRIDR_EL1, bit [40]

When FEAT_RAS is implemented:

Trap MRS reads of ERRIDR_EL1 at EL1 using AArch64 to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

920

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERRIDR_EL1 Meaning

0b0 MRS reads of ERRIDR_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ERRIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:

Trap MRS reads of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

ICC_IGRPENn_EL1 Meaning

0b0 MRS reads of ICC_IGRPEN<n>_EL1 are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ICC_IGRPEN<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

921

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

VBAR_EL1, bit [38]

Trap MRS reads of VBAR_EL1 at EL1 using AArch64 to EL2.

VBAR_EL1 Meaning

0b0 MRS reads of VBAR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of VBAR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TTBR1_EL1, bit [37]

Trap MRS reads of TTBR1_EL1 at EL1 using AArch64 to EL2.

TTBR1_EL1 Meaning

0b0 MRS reads of TTBR1_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of TTBR1_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TTBR0_EL1, bit [36]

Trap MRS reads of TTBR0_EL1 at EL1 using AArch64 to EL2.

TTBR0_EL1 Meaning

0b0 MRS reads of TTBR0_EL1 are not trapped by
this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

922

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TTBR0_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of TTBR0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TPIDR_EL0, bit [35]

Trap MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURW at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

TPIDR_EL0 Meaning

0b0 MRS reads of TPIDR_EL0 at EL1 and EL0 using
AArch64 and MRC reads of TPIDRURW at EL0
using AArch32 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1,
1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of TPIDR_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of TPIDRURW at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TPIDRRO_EL0, bit [34]

Trap MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURO at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

923

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TPIDRRO_EL0 Meaning

0b0 MRS reads of TPIDRRO_EL0 at EL1 and EL0
using AArch64 and MRC reads of TPIDRURO at
EL0 using AArch32 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1,
1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the read generates a higher priority
exception:

• MRS reads of TPIDRRO_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value
0x18.

• MRC reads of TPIDRURO at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TPIDR_EL1, bit [33]

Trap MRS reads of TPIDR_EL1 at EL1 using AArch64 to EL2.

TPIDR_EL1 Meaning

0b0 MRS reads of TPIDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of TPIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TCR_EL1, bit [32]

Trap MRS reads of any of the following registers at EL1 using AArch64 to EL2.

• TCR_EL1.
• TCR2_EL1, if FEAT_TCR2 is implemented.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

924

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TCR_EL1 Meaning

0b0 MRS reads of the specified registers are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

SCXTNUM_EL0, bit [31]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MRS reads of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

SCXTNUM_EL0 Meaning

0b0 MRS reads of SCXTNUM_EL0 are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1,
1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of
SCXTNUM_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

SCXTNUM_EL1, bit [30]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MRS reads of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

SCXTNUM_EL1 Meaning

0b0 MRS reads of SCXTNUM_EL1 are not trapped
by this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

925

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SCXTNUM_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of SCXTNUM_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

SCTLR_EL1, bit [29]

Trap MRS reads of any of the following registers at EL1 using AArch64 to EL2.

• SCTLR_EL1.
• SCTLR2_EL1, if FEAT_SCTLR2 is implemented.

SCTLR_EL1 Meaning

0b0 MRS reads of the specified registers are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

REVIDR_EL1, bit [28]

Trap MRS reads of REVIDR_EL1 at EL1 using AArch64 to EL2.

REVIDR_EL1 Meaning

0b0 MRS reads of REVIDR_EL1 are not trapped by
this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

926

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

REVIDR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of REVIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

PAR_EL1, bit [27]

Trap MRS reads of PAR_EL1 at EL1 using AArch64 to EL2.

PAR_EL1 Meaning

0b0 MRS reads of PAR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of PAR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

MPIDR_EL1, bit [26]

Trap MRS reads of MPIDR_EL1 at EL1 using AArch64 to EL2.

MPIDR_EL1 Meaning

0b0 MRS reads of MPIDR_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of MPIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

927

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to 0b0.

MIDR_EL1, bit [25]

Trap MRS reads of MIDR_EL1 at EL1 using AArch64 to EL2.

MIDR_EL1 Meaning

0b0 MRS reads of MIDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of MIDR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

MAIR_EL1, bit [24]

Trap MRS reads of MAIR_EL1 at EL1 using AArch64 to EL2.

MAIR_EL1 Meaning

0b0 MRS reads of MAIR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of MAIR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

LORSA_EL1, bit [23]

When FEAT_LOR is implemented:

Trap MRS reads of LORSA_EL1 at EL1 using AArch64 to EL2.

LORSA_EL1 Meaning

0b0 MRS reads of LORSA_EL1 are not trapped by
this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

928

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

LORSA_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of LORSA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LORN_EL1, bit [22]

When FEAT_LOR is implemented:

Trap MRS reads of LORN_EL1 at EL1 using AArch64 to EL2.

LORN_EL1 Meaning

0b0 MRS reads of LORN_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of LORN_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LORID_EL1, bit [21]

When FEAT_LOR is implemented:

Trap MRS reads of LORID_EL1 at EL1 using AArch64 to EL2.

LORID_EL1 Meaning

0b0 MRS reads of LORID_EL1 are not trapped by
this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

929

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

LORID_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of LORID_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LOREA_EL1, bit [20]

When FEAT_LOR is implemented:

Trap MRS reads of LOREA_EL1 at EL1 using AArch64 to EL2.

LOREA_EL1 Meaning

0b0 MRS reads of LOREA_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of LOREA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LORC_EL1, bit [19]

When FEAT_LOR is implemented:

Trap MRS reads of LORC_EL1 at EL1 using AArch64 to EL2.

LORC_EL1 Meaning

0b0 MRS reads of LORC_EL1 are not trapped by this
mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

930

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

LORC_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of LORC_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ISR_EL1, bit [18]

Trap MRS reads of ISR_EL1 at EL1 using AArch64 to EL2.

ISR_EL1 Meaning

0b0 MRS reads of ISR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ISR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

FAR_EL1, bit [17]

Trap MRS reads of FAR_EL1 at EL1 using AArch64 to EL2.

FAR_EL1 Meaning

0b0 MRS reads of FAR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of FAR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

931

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

ESR_EL1, bit [16]

Trap MRS reads of ESR_EL1 at EL1 using AArch64 to EL2.

ESR_EL1 Meaning

0b0 MRS reads of ESR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of ESR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DCZID_EL0, bit [15]

Trap MRS reads of DCZID_EL0 at EL1 and EL0 using AArch64 to EL2.

DCZID_EL0 Meaning

0b0 MRS reads of DCZID_EL0 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1,
1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of
DCZID_EL0 at EL1 and EL0 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CTR_EL0, bit [14]

Trap MRS reads of CTR_EL0 at EL1 and EL0 using AArch64 to EL2.

CTR_EL0 Meaning

0b0 MRS reads of CTR_EL0 are not trapped by this
mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

932

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CTR_EL0 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1,
1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MRS reads of
CTR_EL0 at EL1 and EL0 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CSSELR_EL1, bit [13]

Trap MRS reads of CSSELR_EL1 at EL1 using AArch64 to EL2.

CSSELR_EL1 Meaning

0b0 MRS reads of CSSELR_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of CSSELR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CPACR_EL1, bit [12]

Trap MRS reads of CPACR_EL1 at EL1 using AArch64 to EL2.

CPACR_EL1 Meaning

0b0 MRS reads of CPACR_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of CPACR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

933

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CONTEXTIDR_EL1, bit [11]

Trap MRS reads of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

CONTEXTIDR_EL1 Meaning

0b0 MRS reads of CONTEXTIDR_EL1 are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of CONTEXTIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CLIDR_EL1, bit [10]

Trap MRS reads of CLIDR_EL1 at EL1 using AArch64 to EL2.

CLIDR_EL1 Meaning

0b0 MRS reads of CLIDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of CLIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CCSIDR_EL1, bit [9]

Trap MRS reads of CCSIDR_EL1 at EL1 using AArch64 to EL2.

CCSIDR_EL1 Meaning

0b0 MRS reads of CCSIDR_EL1 are not trapped by
this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

934

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CCSIDR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of CCSIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

APIBKey, bit [8]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APIBKeyHi_EL1.
• APIBKeyLo_EL1.

APIBKey Meaning

0b0 MRS reads of the System registers listed above are
not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MRS reads at
EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APIAKey, bit [7]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APIAKeyHi_EL1.
• APIAKeyLo_EL1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

935

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

APIAKey Meaning

0b0 MRS reads of the System registers listed above are
not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MRS reads at
EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APGAKey, bit [6]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APGAKeyHi_EL1.
• APGAKeyLo_EL1.

APGAKey Meaning

0b0 MRS reads of the System registers listed above are
not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MRS reads at
EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APDBKey, bit [5]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

936

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• APDBKeyHi_EL1.
• APDBKeyLo_EL1.

APDBKey Meaning

0b0 MRS reads of the System registers listed above are
not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MRS reads at
EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APDAKey, bit [4]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APDAKeyHi_EL1.
• APDAKeyLo_EL1.

APDAKey Meaning

0b0 MRS reads of the System registers listed above are
not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MRS reads at
EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

AMAIR_EL1, bit [3]

Trap MRS reads of AMAIR_EL1 at EL1 using AArch64 to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

937

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

AMAIR_EL1 Meaning

0b0 MRS reads of AMAIR_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of AMAIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

AIDR_EL1, bit [2]

Trap MRS reads of AIDR_EL1 at EL1 using AArch64 to EL2.

AIDR_EL1 Meaning

0b0 MRS reads of AIDR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of AIDR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

AFSR1_EL1, bit [1]

Trap MRS reads of AFSR1_EL1 at EL1 using AArch64 to EL2.

AFSR1_EL1 Meaning

0b0 MRS reads of AFSR1_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of AFSR1_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

938

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

AFSR0_EL1, bit [0]

Trap MRS reads of AFSR0_EL1 at EL1 using AArch64 to EL2.

AFSR0_EL1 Meaning

0b0 MRS reads of AFSR0_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MRS reads of AFSR0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Accessing HFGRTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGRTR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b100

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = NVMem[0x1B8];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 X[t, 64] = HFGRTR_EL2;
20 elsif PSTATE.EL == EL3 then
21 X[t, 64] = HFGRTR_EL2;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

939

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

MSR HFGRTR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b100

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 NVMem[0x1B8] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 HFGRTR_EL2 = X[t, 64];
20 elsif PSTATE.EL == EL3 then
21 HFGRTR_EL2 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

940

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.10 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

The HFGWTR_EL2 characteristics are:

Purpose

Provides controls for traps of MSR and MCR writes of System registers.

Configuration

This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to
HFGWTR_EL2 are UNDEFINED.

Attributes

HFGWTR_EL2 is a 64-bit register.

Field descriptions

The HFGWTR_EL2 bit assignments are:

RES0

63 56 55 54

RES0

53 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

nTPIDR2_EL0
nSMPRI_EL1

nACCDATA_EL1
ERXADDR_EL1
ERXPFGCDN_EL1

ERXPFGCTL_EL1
RES0

ERXMISCn_EL1
ERXSTATUS_EL1

ERXCTLR_EL1

TCR_EL1
TPIDR_EL1

TPIDRRO_EL0
TPIDR_EL0

TTBR0_EL1
TTBR1_EL1

VBAR_EL1
ICC_IGRPENn_EL1

RES0
ERRSELR_EL1

RES0
31 30 29 28 27

RES0

26 25 24 23 22 21 20 19 18 17 16

RES0

15 14 13 12 11

RES0

10 9 8 7 6 5 4 3 2 1 0

SCXTNUM_E
L0

SCXTNUM_EL1
SCTLR_EL1

RES0
PAR_EL1

MAIR_EL1
LORSA_EL1

LORN_EL1
RES0

LOREA_EL1
LORC_EL1

RES0
FAR_EL1

AFSR0_EL1
AFSR1_EL1

RES0
AMAIR_EL1

APDAKey
APDBKey

APGAKey
APIAKey

APIBKey
CONTEXTIDR_EL1

CPACR_EL1
CSSELR_EL1

ESR_EL1

Bits [63:56]

Reserved, RES0.

nTPIDR2_EL0, bit [55]

When FEAT_SME is implemented:

Trap MSR writes of TPIDR2_EL0 at EL1 and EL0 using AArch64 to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

941

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nTPIDR2_EL0 Meaning

0b0 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1,
1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of
TPIDR2_EL0 at EL1 and EL0 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates
a higher priority exception.

0b1 MSR writes of TPIDR2_EL0 are not trapped by
this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

nSMPRI_EL1, bit [54]

When FEAT_SME is implemented:

Trap MSR writes of SMPRI_EL1 at EL1 using AArch64 to EL2.

nSMPRI_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of SMPRI_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

0b1 MSR writes of SMPRI_EL1 are not trapped by
this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bits [53:51]

Reserved, RES0.

nACCDATA_EL1, bit [50]

When FEAT_LS64_ACCDATA is implemented:

Trap MSR writes of ACCDATA_EL1 at EL1 using AArch64 to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

942

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nACCDATA_EL1 Meaning

0b0 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of ACCDATA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

0b1 MSR writes of ACCDATA_EL1 are not trapped
by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

ERXADDR_EL1, bit [49]

When FEAT_RAS is implemented:

Trap MSR writes of ERXADDR_EL1 at EL1 using AArch64 to EL2.

ERXADDR_EL1 Meaning

0b0 MSR writes of ERXADDR_EL1 are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of ERXADDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

943

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ERXPFGCDN_EL1, bit [48]

When FEAT_RASv1p1 is implemented:

Trap MSR writes of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

ERXPFGCDN_EL1 Meaning

0b0 MSR writes of ERXPFGCDN_EL1 are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of ERXPFGCDN_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ERXPFGCTL_EL1, bit [47]

When FEAT_RASv1p1 is implemented:

Trap MSR writes of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

ERXPFGCTL_EL1 Meaning

0b0 MSR writes of ERXPFGCTL_EL1 are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of ERXPFGCTL_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

944

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [46]

Reserved, RES0.

ERXMISCn_EL1, bit [45]

When FEAT_RAS is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• ERXMISC0_EL1.
• ERXMISC1_EL1.
• ERXMISC2_EL1.
• ERXMISC3_EL1.

ERXMISCn_EL1 Meaning

0b0 MSR writes of the specified System registers are
not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MSR writes at
EL1 using AArch64 of any of the specified
System registers are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ERXSTATUS_EL1, bit [44]

When FEAT_RAS is implemented:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

945

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Trap MSR writes of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

ERXSTATUS_EL1 Meaning

0b0 MSR writes of ERXSTATUS_EL1 are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of ERXSTATUS_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

Trap MSR writes of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

ERXCTLR_EL1 Meaning

0b0 MSR writes of ERXCTLR_EL1 are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of ERXCTLR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

946

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [42]

Reserved, RES0.

ERRSELR_EL1, bit [41]

When FEAT_RAS is implemented:

Trap MSR writes of ERRSELR_EL1 at EL1 using AArch64 to EL2.

ERRSELR_EL1 Meaning

0b0 MSR writes of ERRSELR_EL1 are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of ERRSELR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [40]

Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:

Trap MSR writes of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

947

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ICC_IGRPENn_EL1 Meaning

0b0 MSR writes of ICC_IGRPEN<n>_EL1 are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of ICC_IGRPEN<n>_EL1 at EL1
using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

VBAR_EL1, bit [38]

Trap MSR writes of VBAR_EL1 at EL1 using AArch64 to EL2.

VBAR_EL1 Meaning

0b0 MSR writes of VBAR_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of VBAR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TTBR1_EL1, bit [37]

Trap MSR writes of TTBR1_EL1 at EL1 using AArch64 to EL2.

TTBR1_EL1 Meaning

0b0 MSR writes of TTBR1_EL1 are not trapped by
this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

948

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TTBR1_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of TTBR1_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TTBR0_EL1, bit [36]

Trap MSR writes of TTBR0_EL1 at EL1 using AArch64 to EL2.

TTBR0_EL1 Meaning

0b0 MSR writes of TTBR0_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of TTBR0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TPIDR_EL0, bit [35]

Trap MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 and MCR writes of TPIDRURW at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

TPIDR_EL0 Meaning

0b0 MSR writes of TPIDR_EL0 at EL1 and EL0
using AArch64 and MCR writes of TPIDRURW
at EL0 using AArch32 are not trapped by this
mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

949

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TPIDR_EL0 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1,
1}, EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then,
unless the write generates a higher priority
exception:

• MSR writes of TPIDR_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value
0x18.

• MCR writes of TPIDRURW at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TPIDRRO_EL0, bit [34]

Trap MSR writes of TPIDRRO_EL0 at EL1 using AArch64 to EL2.

TPIDRRO_EL0 Meaning

0b0 MSR writes of TPIDRRO_EL0 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of TPIDRRO_EL0 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TPIDR_EL1, bit [33]

Trap MSR writes of TPIDR_EL1 at EL1 using AArch64 to EL2.

TPIDR_EL1 Meaning

0b0 MSR writes of TPIDR_EL1 are not trapped by
this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

950

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TPIDR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of TPIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

TCR_EL1, bit [32]

Trap MSR writes of any of the following registers at EL1 using AArch64 to EL2.

• TCR_EL1.
• TCR2_EL1, if FEAT_TCR2 is implemented.

TCR_EL1 Meaning

0b0 MSR writes of the specified registers are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

SCXTNUM_EL0, bit [31]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MSR writes of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

SCXTNUM_EL0 Meaning

0b0 MSR writes of SCXTNUM_EL0 are not trapped
by this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

951

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SCXTNUM_EL0 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1,
1}, and either EL3 is not implemented or
SCR_EL3.FGTEn == 1, then MSR writes of
SCXTNUM_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

SCXTNUM_EL1, bit [30]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap MSR writes of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

SCXTNUM_EL1 Meaning

0b0 MSR writes of SCXTNUM_EL1 are not trapped
by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of SCXTNUM_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

SCTLR_EL1, bit [29]

Trap MSR writes of any of the following registers at EL1 using AArch64 to EL2.

• SCTLR_EL1.
• SCTLR2_EL1, if FEAT_SCTLR2 is implemented.

SCTLR_EL1 Meaning

0b0 MSR writes of the specified registers are not
trapped by this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

952

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SCTLR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of the specified registers at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Bit [28]

Reserved, RES0.

PAR_EL1, bit [27]

Trap MSR writes of PAR_EL1 at EL1 using AArch64 to EL2.

PAR_EL1 Meaning

0b0 MSR writes of PAR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of PAR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Bits [26:25]

Reserved, RES0.

MAIR_EL1, bit [24]

Trap MSR writes of MAIR_EL1 at EL1 using AArch64 to EL2.

MAIR_EL1 Meaning

0b0 MSR writes of MAIR_EL1 are not trapped by this
mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

953

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

MAIR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of MAIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

LORSA_EL1, bit [23]

When FEAT_LOR is implemented:

Trap MSR writes of LORSA_EL1 at EL1 using AArch64 to EL2.

LORSA_EL1 Meaning

0b0 MSR writes of LORSA_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of LORSA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LORN_EL1, bit [22]

When FEAT_LOR is implemented:

Trap MSR writes of LORN_EL1 at EL1 using AArch64 to EL2.

LORN_EL1 Meaning

0b0 MSR writes of LORN_EL1 are not trapped by
this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

954

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

LORN_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of LORN_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bit [21]

Reserved, RES0.

LOREA_EL1, bit [20]

When FEAT_LOR is implemented:

Trap MSR writes of LOREA_EL1 at EL1 using AArch64 to EL2.

LOREA_EL1 Meaning

0b0 MSR writes of LOREA_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of LOREA_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

LORC_EL1, bit [19]

When FEAT_LOR is implemented:

Trap MSR writes of LORC_EL1 at EL1 using AArch64 to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

955

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

LORC_EL1 Meaning

0b0 MSR writes of LORC_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of LORC_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bit [18]

Reserved, RES0.

FAR_EL1, bit [17]

Trap MSR writes of FAR_EL1 at EL1 using AArch64 to EL2.

FAR_EL1 Meaning

0b0 MSR writes of FAR_EL1 are not trapped by this
mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of FAR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

ESR_EL1, bit [16]

Trap MSR writes of ESR_EL1 at EL1 using AArch64 to EL2.

ESR_EL1 Meaning

0b0 MSR writes of ESR_EL1 are not trapped by this
mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

956

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ESR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of ESR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates
a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Bits [15:14]

Reserved, RES0.

CSSELR_EL1, bit [13]

Trap MSR writes of CSSELR_EL1 at EL1 using AArch64 to EL2.

CSSELR_EL1 Meaning

0b0 MSR writes of CSSELR_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of CSSELR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CPACR_EL1, bit [12]

Trap MSR writes of CPACR_EL1 at EL1 using AArch64 to EL2.

CPACR_EL1 Meaning

0b0 MSR writes of CPACR_EL1 are not trapped by
this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

957

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CPACR_EL1 Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of CPACR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

CONTEXTIDR_EL1, bit [11]

Trap MSR writes of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

CONTEXTIDR_EL1 Meaning

0b0 MSR writes of CONTEXTIDR_EL1 are not
trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of CONTEXTIDR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Bits [10:9]

Reserved, RES0.

APIBKey, bit [8]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APIBKeyHi_EL1.
• APIBKeyLo_EL1.

APIBKey Meaning

0b0 MSR writes of the System registers listed above
are not trapped by this mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

958

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

APIBKey Meaning

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MSR writes at
EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APIAKey, bit [7]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APIAKeyHi_EL1.
• APIAKeyLo_EL1.

APIAKey Meaning

0b0 MSR writes of the System registers listed above
are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MSR writes at
EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APGAKey, bit [6]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APGAKeyHi_EL1.
• APGAKeyLo_EL1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

959

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

APGAKey Meaning

0b0 MSR writes of the System registers listed above
are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MSR writes at
EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APDBKey, bit [5]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APDBKeyHi_EL1.
• APDBKeyLo_EL1.

APDBKey Meaning

0b0 MSR writes of the System registers listed above
are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MSR writes at
EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

APDAKey, bit [4]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

960

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• APDAKeyHi_EL1.
• APDAKeyLo_EL1.

APDAKey Meaning

0b0 MSR writes of the System registers listed above
are not trapped by this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 1, then MSR writes at
EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

AMAIR_EL1, bit [3]

Trap MSR writes of AMAIR_EL1 at EL1 using AArch64 to EL2.

AMAIR_EL1 Meaning

0b0 MSR writes of AMAIR_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of AMAIR_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Bit [2]

Reserved, RES0.

AFSR1_EL1, bit [1]

Trap MSR writes of AFSR1_EL1 at EL1 using AArch64 to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

961

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

AFSR1_EL1 Meaning

0b0 MSR writes of AFSR1_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of AFSR1_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

AFSR0_EL1, bit [0]

Trap MSR writes of AFSR0_EL1 at EL1 using AArch64 to EL2.

AFSR0_EL1 Meaning

0b0 MSR writes of AFSR0_EL1 are not trapped by
this mechanism.

0b1 If EL2 is implemented and enabled in the current
Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 1, then
MSR writes of AFSR0_EL1 at EL1 using
AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write
generates a higher priority exception.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Accessing HFGWTR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, HFGWTR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b101

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 X[t, 64] = NVMem[0x1C0];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

962

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 X[t, 64] = HFGWTR_EL2;
20 elsif PSTATE.EL == EL3 then
21 X[t, 64] = HFGWTR_EL2;

MSR HFGWTR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0001 0b101

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
5 NVMem[0x1C0] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3

↪→trap priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then
12 UNDEFINED;
13 elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then
14 if Halted() && EDSCR.SDD == '1' then
15 UNDEFINED;
16 else
17 AArch64.SystemAccessTrap(EL3, 0x18);
18 else
19 HFGWTR_EL2 = X[t, 64];
20 elsif PSTATE.EL == EL3 then
21 HFGWTR_EL2 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

963

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.11 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

The ID_AA64ISAR1_EL1 characteristics are:

Purpose

Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for
fields in ID registers .

Attributes

ID_AA64ISAR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64ISAR1_EL1 bit assignments are:

LS64

63 60

XS

59 56

I8MM

55 52

DGH

51 48

BF16

47 44

SPECRES

43 40

SB

39 36

FRINTTS

35 32

GPI

31 28

GPA

27 24

LRCPC

23 20

FCMA

19 16

JSCVT

15 12

API

11 8

APA

7 4

DPB

3 0

LS64, bits [63:60]

Indicates support for LD64B and ST64B* instructions, and the ACCDATA_EL1 register. Defined values of this
field are:

LS64 Meaning

0b0000 The LD64B, ST64B, ST64BV, and ST64BV0
instructions, the ACCDATA_EL1 register, and
associated traps are not supported.

0b0001 The LD64B and ST64B instructions are
supported.

0b0010 The LD64B, ST64B, and ST64BV instructions,
and their associated traps are supported.

0b0011 The LD64B, ST64B, ST64BV, and ST64BV0
instructions, the ACCDATA_EL1 register, and
their associated traps are supported.

All other values are reserved.

FEAT_LS64 implements the functionality identified by 0b0001.

FEAT_LS64_V implements the functionality identified by 0b0010.

FEAT_LS64_ACCDATA implements the functionality identified by 0b0011.

From Armv8.7, the permitted values are 0b0000, 0b0001, 0b0010, and 0b0011.

XS, bits [59:56]

Indicates support for the XS attribute, the TLBI and DSB instructions with the nXS qualifier, and the
HCRX_EL2.{FGTnXS, FnXS} fields in AArch64 state. Defined values are:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

964

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

XS Meaning

0b0000 The XS attribute, the TLBI and DSB instructions
with the nXS qualifier, and the
HCRX_EL2.{FGTnXS, FnXS} fields are not
supported.

0b0001 The XS attribute, the TLBI and DSB instructions
with the nXS qualifier, and the
HCRX_EL2.{FGTnXS, FnXS} fields are
supported.

All other values are reserved.

FEAT_XS implements the functionality identified by 0b0001.

From Armv8.7, the only permitted value is 0b0001.

I8MM, bits [55:52]

Indicates support for Advanced SIMD and Floating-point Int8 matrix multiplication instructions in AArch64 state.
Defined values are:

I8MM Meaning

0b0000 Int8 matrix multiplication instructions are not
implemented.

0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and
USDOT instructions are implemented.

All other values are reserved.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ZFR0_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

DGH, bits [51:48]

Indicates support for the Data Gathering Hint instruction. Defined values are:

DGH Meaning

0b0000 Data Gathering Hint is not implemented.

0b0001 Data Gathering Hint is implemented.

All other values are reserved.

FEAT_DGH implements the functionality identified by 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

965

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

If the DGH instruction has no effect in preventing the merging of memory accesses, the value of this field is 0b0000.

BF16, bits [47:44]

Indicates support for Advanced SIMD and Floating-point BFloat16 instructions in AArch64 state. Defined values
are:

BF16 Meaning

0b0000 BFloat16 instructions are not implemented.

0b0001 BFCVT, BFCVTN, BFCVTN2, BFDOT,
BFMLALB, BFMLALT, and BFMMLA
instructions are implemented.

0b0010 As 0b0001, but the FPCR.EBF field is also
supported.

All other values are reserved.

FEAT_BF16 adds the functionality identified by 0b0001.

FEAT_EBF16 adds the functionality identified by 0b0010.

When FEAT_SVE or FEAT_SME is implemented, this field must return the same value as
ID_AA64ZFR0_EL1.BF16.

From Armv8.6 and Armv9.1, the value 0b0000 is not permitted.

SPECRES, bits [43:40]

Indicates support for prediction invalidation instructions in AArch64 state. Defined values are:

SPECRES Meaning

0b0000 Prediction invalidation instructions are not
implemented.

0b0001 CFP RCTX, DVP RCTX and CPP RCTX
instructions are implemented.

All other values are reserved.

FEAT_SPECRES implements the functionality identified by 0b0001.

From Armv8.5, the value 0b0000 is not permitted.

SB, bits [39:36]

Indicates support for SB instruction in AArch64 state. Defined values are:

SB Meaning

0b0000 SB instruction is not implemented.

0b0001 SB instruction is implemented.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

966

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

All other values are reserved.

FEAT_SB implements the functionality identified by 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

FRINTTS, bits [35:32]

Indicates support for the FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented.
Defined values are:

FRINTTS Meaning

0b0000 FRINT32Z, FRINT32X, FRINT64Z, and
FRINT64X instructions are not implemented.

0b0001 FRINT32Z, FRINT32X, FRINT64Z, and
FRINT64X instructions are implemented.

All other values are reserved.

FEAT_FRINTTS implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

GPI, bits [31:28]

Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic code
authentication in AArch64 state. Defined values are:

GPI Meaning

0b0000 Generic Authentication using an
IMPLEMENTATION DEFINED algorithm is not
implemented.

0b0001 Generic Authentication using an
IMPLEMENTATION DEFINED algorithm is
implemented. This includes the PACGA

instruction.

All other values are reserved.

FEAT_PACIMP implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPA is nonzero, or the value of ID_AA64ISAR2_EL1.GPA3 is nonzero,
this field must have the value 0b0000.

GPA, bits [27:24]

Indicates whether the QARMA5 algorithm is implemented in the PE for generic code authentication in AArch64
state. Defined values are:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

967

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

GPA Meaning

0b0000 Generic Authentication using the QARMA5
algorithm is not implemented.

0b0001 Generic Authentication using the QARMA5
algorithm is implemented. This includes the
PACGA instruction.

All other values are reserved.

FEAT_PACQARMA5 implements the functionality identified by 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPI is nonzero, or the value of ID_AA64ISAR2_EL1.GPA3 is nonzero, this
field must have the value 0b0000.

LRCPC, bits [23:20]

Indicates support for weaker release consistency, RCpc, based model. Defined values are:

LRCPC Meaning

0b0000 RCpc instructions are not implemented.

0b0001 The no offset LDAPR, LDAPRB, and LDAPRH
instructions are implemented.

0b0010 As 0b0001, and the LDAPR (unscaled
immediate) and STLR (unscaled immediate)
instructions are implemented.

All other values are reserved.

FEAT_LRCPC implements the functionality identified by the value 0b0001.

FEAT_LRCPC2 implements the functionality identified by the value 0b0010.

From Armv8.3, the value 0b0000 is not permitted.

From Armv8.4, the value 0b0001 is not permitted.

FCMA, bits [19:16]

Indicates support for complex number addition and multiplication, where numbers are stored in vectors. Defined
values are:

FCMA Meaning

0b0000 The FCMLA and FCADD instructions are not
implemented.

0b0001 The FCMLA and FCADD instructions are
implemented.

All other values are reserved.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

968

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

FEAT_FCMA implements the functionality identified by the value 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

JSCVT, bits [15:12]

Indicates support for JavaScript conversion from double precision floating point values to integers in AArch64
state. Defined values are:

JSCVT Meaning

0b0000 The FJCVTZS instruction is not implemented.

0b0001 The FJCVTZS instruction is implemented.

All other values are reserved.

FEAT_JSCVT implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

API, bits [11:8]

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address authentication,
in AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined
values are:

API Meaning

0b0000 Address Authentication using an
IMPLEMENTATION DEFINED algorithm is not
implemented.

0b0001 Address Authentication using an
IMPLEMENTATION DEFINED algorithm is
implemented, with the HaveEnhancedPAC() and
HaveEnhancedPAC2() functions returning
FALSE.

0b0010 Address Authentication using an
IMPLEMENTATION DEFINED algorithm is
implemented, with the HaveEnhancedPAC()
function returning TRUE, and the
HaveEnhancedPAC2() function returning
FALSE.

0b0011 Address Authentication using an
IMPLEMENTATION DEFINED algorithm is
implemented, with the HaveEnhancedPAC2()
function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

969

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

API Meaning

0b0100 Address Authentication using an
IMPLEMENTATION DEFINED algorithm is
implemented, with the HaveEnhancedPAC2()
function returning TRUE, the HaveFPAC()
function returning TRUE, the
HaveFPACCombined() function returning
FALSE, and the HaveEnhancedPAC() function
returning FALSE.

0b0101 Address Authentication using an
IMPLEMENTATION DEFINED algorithm is
implemented, with the HaveEnhancedPAC2()
function returning TRUE, the HaveFPAC()
function returning TRUE, the
HaveFPACCombined() function returning
TRUE, and the HaveEnhancedPAC() function
returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality identified by 0b0001.

FEAT_EPAC implements the functionality identified by 0b0010.

FEAT_PAuth2 implements the functionality identified by 0b0011.

FEAT_FPAC implements the functionality identified by 0b0100.

FEAT_FPACCOMBINE implements the functionality identified by 0b0101.

When this field is nonzero, FEAT_PACIMP is implemented.

In Armv8.3, the permitted values are 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.APA is nonzero, or the value of ID_AA64ISAR2_EL1.APA3 is nonzero,
this field must have the value 0b0000.

APA, bits [7:4]

Indicates whether the QARMA5 algorithm is implemented in the PE for address authentication, in AArch64 state.
This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:

APA Meaning

0b0000 Address Authentication using the QARMA5
algorithm is not implemented.

0b0001 Address Authentication using the QARMA5
algorithm is implemented, with the
HaveEnhancedPAC() and HaveEnhancedPAC2()
functions returning FALSE.

0b0010 Address Authentication using the QARMA5
algorithm is implemented, with the
HaveEnhancedPAC() function returning TRUE
and the HaveEnhancedPAC2() function returning
FALSE.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

970

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

APA Meaning

0b0011 Address Authentication using the QARMA5
algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE,
the HaveFPAC() function returning FALSE, the
HaveFPACCombined() function returning
FALSE, and the HaveEnhancedPAC() function
returning FALSE.

0b0100 Address Authentication using the QARMA5
algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE,
the HaveFPAC() function returning TRUE, the
HaveFPACCombined() function returning
FALSE, and the HaveEnhancedPAC() function
returning FALSE.

0b0101 Address Authentication using the QARMA5
algorithm is implemented, with the
HaveEnhancedPAC2() function returning TRUE,
the HaveFPAC() function returning TRUE, the
HaveFPACCombined() function returning
TRUE, and the HaveEnhancedPAC() function
returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality identified by 0b0001.

FEAT_EPAC implements the functionality identified by 0b0010.

FEAT_PAuth2 implements the functionality identified by 0b0011.

FEAT_FPAC implements the functionality identified by 0b0100.

FEAT_FPACCOMBINE implements the functionality identified by 0b0101.

When this field is nonzero, FEAT_PACQARMA5 is implemented.

In Armv8.3, the permitted values are 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.API is nonzero, or the value of ID_AA64ISAR2_EL1.APA3 is nonzero, this
field must have the value 0b0000.

DPB, bits [3:0]

Data Persistence writeback. Indicates support for the DC CVAP and DC CVADP instructions in AArch64 state.
Defined values are:

DPB Meaning

0b0000 DC CVAP not supported.

0b0001 DC CVAP supported.

0b0010 DC CVAP and DC CVADP supported.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

971

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

All other values are reserved.

FEAT_DPB implements the functionality identified by the value 0b0001.

FEAT_DPB2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0001 and 0b0010.

From Armv8.5, the only permitted value is 0b0010.

Accessing ID_AA64ISAR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ISAR1_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0110 0b001

1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented(FEAT_IDST) then
3 if EL2Enabled() && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x18);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 else
8 UNDEFINED;
9 elsif PSTATE.EL == EL1 then

10 if EL2Enabled() && HCR_EL2.TID3 == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 X[t, 64] = ID_AA64ISAR1_EL1;
14 elsif PSTATE.EL == EL2 then
15 X[t, 64] = ID_AA64ISAR1_EL1;
16 elsif PSTATE.EL == EL3 then
17 X[t, 64] = ID_AA64ISAR1_EL1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

972

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.12 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose

Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for
fields in ID registers .

Attributes

ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions

The ID_AA64PFR1_EL1 bit assignments are:

RES0

63 40

NMI

39 36 35 32

CSV2_frac
31 28

SME

27 24

RES0

23 20 19 16

RAS_frac

15 12

MTE

11 8

SSBS

7 4

BT

3 0

RNDR_trap MPAM_frac

Bits [63:40]

Reserved, RES0.

NMI, bits [39:36]

Non-maskable Interrupt. Indicates support for Non-maskable interrupts. Defined values are:

NMI Meaning

0b0000 SCTLR_ELx.{SPINTMASK, NMI} and
PSTATE.ALLINT with its associated
instructions are not supported.

0b0001 SCTLR_ELx.{SPINTMASK, NMI} and
PSTATE.ALLINT with its associated
instructions are supported.

All other values are reserved.

FEAT_NMI implements the functionality identified by the value 0b0001.

From Armv8.8, the only permitted value is 0b0001.

CSV2_frac, bits [35:32]

CSV2 fractional field. Defined values are:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

973

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CSV2_frac Meaning

0b0000 Either ID_AA64PFR0_EL1.CSV2 is not
0b0001, or the implementation does not disclose
whether FEAT_CSV2_1p1 is implemented.
FEAT_CSV2_1p2 is not implemented.

0b0001 FEAT_CSV2_1p1 is implemented, but
FEAT_CSV2_1p2 is not implemented.

0b0010 FEAT_CSV2_1p2 is implemented.

All other values are reserved.

FEAT_CSV2_1p1 implements the functionality identified by the value 0b0001.

FEAT_CSV2_1p2 implements the functionality identified by the value 0b0010.

From Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

The values 0b0001 and 0b0010 are permitted only when ID_AA64PFR0_EL1.CSV2 is 0b0001.

RNDR_trap, bits [31:28]

Random Number trap to EL3 field. Defined values are:

RNDR_trap Meaning

0b0000 Trapping of RNDR and RNDRRS to EL3 is not
supported.

0b0001 Trapping of RNDR and RNDRRS to EL3 is
supported.
SCR_EL3.TRNDR is present.

All other values are reserved.

FEAT_RNG_TRAP implements the functionality identified by the value 0b0001.

SME, bits [27:24]

Scalable Matrix Extension. Defined values are:

SME Meaning

0b0000 SME architectural state and programmers’
model are not implemented.

0b0001 SME architectural state and programmers’
model are implemented.

0b0010 As 0b0001, plus the SME2 ZT0 register.

All other values are reserved.

FEAT_SME implements the functionality identified by the value 0b0001.

FEAT_SME2 implements the functionality identified by the value 0b0010.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

974

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

From Armv9.2, the permitted values are 0b0000, 0b0001, and 0b0010.

If implemented, refer to ID_AA64SMFR0_EL1 and ID_AA64ZFR0_EL1 for information about which SME and
SVE instructions are available.

Bits [23:20]

Reserved, RES0.

MPAM_frac, bits [19:16]

Indicates the minor version number of support for the MPAM Extension.

Defined values are:

MPAM_frac Meaning

0b0000 The minor version number of the MPAM
extension is 0.

0b0001 The minor version number of the MPAM
extension is 1.

All other values are reserved.

When combined with the major version number from ID_AA64PFR0_EL1.MPAM, The combined “major.minor”
version is:

MPAM Extension version MPAM MPAM_frac

Not implemented. 0b0000 0b0000

v0.1 is implemented. 0b0000 0b0001

v1.0 is implemented. 0b0001 0b0000

v1.1 is implemented. 0b0001 0b0001

For more information, see The Memory Partitioning and Monitoring (MPAM) Extension .

RAS_frac, bits [15:12]

RAS Extension fractional field. Defined values are:

RAS_frac Meaning

0b0000 If ID_AA64PFR0_EL1.RAS == 0b0001, RAS
Extension implemented.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

975

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RAS_frac Meaning

0b0001 If ID_AA64PFR0_EL1.RAS == 0b0001, as
0b0000 and adds support for:

• Additional ERXMISC<m>_EL1 System
registers.

• Additional System registers
ERXPFGCDN_EL1, ERXPFGCTL_EL1,
and ERXPFGF_EL1, and the
SCR_EL3.FIEN and HCR_EL2.FIEN
trap controls, to support the optional RAS
Common Fault Injection Model Extension.

Error records accessed through System registers
conform to RAS System Architecture v1.1,
which includes simplifications to
ERR<n>STATUS, and support for the optional
RAS Timestamp and RAS Common Fault
Injection Model Extensions.

All other values are reserved.

FEAT_RASv1p1 implements the functionality identified by the value 0b0001.

This field is valid only if ID_AA64PFR0_EL1.RAS == 0b0001.

MTE, bits [11:8]

Support for the Memory Tagging Extension. Defined values are:

MTE Meaning

0b0000 Memory Tagging Extension is not implemented.

0b0001 Instruction-only Memory Tagging Extension is
implemented.

0b0010 Full Memory Tagging Extension is implemented.

0b0011 Memory Tagging Extension is implemented with
support for asymmetric Tag Check Fault
handling.

All other values are reserved.

FEAT_MTE implements the functionality identified by the value 0b0001.

FEAT_MTE2 implements the functionality identified by the value 0b0010.

FEAT_MTE3 implements the functionality identified by the value 0b0011.

In Armv8.5, the permitted values are 0b0000, 0b0001, 0b0010, and 0b0011.

From Armv8.7, the value 0b0010 is not permitted.

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

976

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SSBS Meaning

0b0000 AArch64 provides no mechanism to control the
use of Speculative Store Bypassing.

0b0001 AArch64 provides the PSTATE.SSBS
mechanism to mark regions that are Speculative
Store Bypass Safe.

0b0010 As 0b0001, and adds the MSR and MRS
instructions to directly read and write the
PSTATE.SSBS field.

All other values are reserved.

FEAT_SSBS implements the functionality identified by the value 0b0001.

FEAT_SSBS2 implements the functionality identified by the value 0b0010.

BT, bits [3:0]

Branch Target Identification mechanism support in AArch64 state. Defined values are:

BT Meaning

0b0000 The Branch Target Identification mechanism is
not implemented.

0b0001 The Branch Target Identification mechanism is
implemented.

All other values are reserved.

FEAT_BTI implements the functionality identified by the value 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Accessing ID_AA64PFR1_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64PFR1_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b001

1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented(FEAT_IDST) then
3 if EL2Enabled() && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x18);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 else
8 UNDEFINED;
9 elsif PSTATE.EL == EL1 then

10 if EL2Enabled() && HCR_EL2.TID3 == '1' then
11 AArch64.SystemAccessTrap(EL2, 0x18);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

977

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

12 else
13 X[t, 64] = ID_AA64PFR1_EL1;
14 elsif PSTATE.EL == EL2 then
15 X[t, 64] = ID_AA64PFR1_EL1;
16 elsif PSTATE.EL == EL3 then
17 X[t, 64] = ID_AA64PFR1_EL1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

978

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.13 ID_AA64ZFR0_EL1, SVE Feature ID register 0

The ID_AA64ZFR0_EL1 characteristics are:

Purpose

Provides additional information about the implemented features of the AArch64 Scalable Vector
Extension instruction set, when one or more of FEAT_SVE and FEAT_SME is implemented.

For general information about the interpretation of the ID registers, see Principles of the ID scheme for
fields in ID registers .

Configuration

Prior to the introduction of the features described by this register, this register was unnamed and
reserved, RES0 from EL1, EL2, and EL3.

If FEAT_SME is implemented and FEAT_SVE is not implemented, then SVE instructions can only be
executed when the PE is in Streaming SVE mode and the instructions are legal to execute in Streaming
SVE mode.

Attributes

ID_AA64ZFR0_EL1 is a 64-bit register.

Field descriptions

The ID_AA64ZFR0_EL1 bit assignments are:

RES0

63 60

F64MM

59 56

F32MM

55 52

RES0

51 48

I8MM

47 44

SM4

43 40

RES0

39 36

SHA3

35 32

RES0

31 24

BF16

23 20

BitPerm

19 16

RES0

15 8

AES

7 4

SVEver

3 0

Bits [63:60]

Reserved, RES0.

F64MM, bits [59:56]

Indicates support for SVE FP64 double-precision floating-point matrix multiplication instructions. Defined values
are:

F64MM Meaning

0b0000 Double-precision matrix multiplication and
related SVE instructions are not implemented.

0b0001 Double-precision variant of the FMMLA
instruction, and the LD1RO* instructions are
implemented. The 128-bit element variants of
the SVE TRN1, TRN2, UZP1, UZP2, ZIP1, and
ZIP2 instructions are also implemented.

All other values are reserved.

FEAT_F64MM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

979

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is implemented and
enabled, software should not attempt to execute the instructions described by nonzero values of this field,
irrespective of the value of this field.

F32MM, bits [55:52]

Indicates support for the SVE FP32 single-precision floating-point matrix multiplication instruction. Defined
values are:

F32MM Meaning

0b0000 Single-precision matrix multiplication
instruction is not implemented.

0b0001 Single-precision variant of the FMMLA
instruction is implemented.

All other values are reserved.

FEAT_F32MM implements the functionality identified by 0b0001.

From Arm v8.2, the permitted values are 0b0000 and 0b0001.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is implemented and
enabled, software should not attempt to execute the instructions described by nonzero values of this field,
irrespective of the value of this field.

Bits [51:48]

Reserved, RES0.

I8MM, bits [47:44]

Indicates support for SVE Int8 matrix multiplication instructions. Defined values are:

I8MM Meaning

0b0000 SVE Int8 matrix multiplication instructions are
not implemented.

0b0001 SVE SMMLA, SUDOT, UMMLA, USMMLA,
and USDOT instructions are implemented.

All other values are reserved.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ISAR1_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is implemented and
enabled, software should not attempt to execute the SVE instructions SMMLA, UMMLA, and USMMLA,
irrespective of the value of this field.

SM4, bits [43:40]

Indicates support for SVE SM4 instructions. Defined values are:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

980

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SM4 Meaning

0b0000 SVE SM4 instructions are not implemented.

0b0001 SVE SM4E and SM4EKEY instructions are
implemented.

All other values are reserved.

FEAT_SVE_SM4 implements the functionality identified by 0b0001.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is implemented and
enabled, software should not attempt to execute the instructions described by nonzero values of this field,
irrespective of the value of this field.

Bits [39:36]

Reserved, RES0.

SHA3, bits [35:32]

Indicates support for the SVE SHA3 instructions. Defined values are:

SHA3 Meaning

0b0000 SVE SHA3 instructions are not implemented.

0b0001 SVE RAX1 instruction is implemented.

All other values are reserved.

FEAT_SVE_SHA3 implements the functionality identified by 0b0001.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is implemented and
enabled, software should not attempt to execute the instructions described by nonzero values of this field,
irrespective of the value of this field.

Bits [31:24]

Reserved, RES0.

BF16, bits [23:20]

Indicates support for SVE BFloat16 instructions. Defined values are:

BF16 Meaning

0b0000 SVE BFloat16 instructions are not implemented.

0b0001 SVE BFCVT, BFCVTNT, BFDOT, BFMLALB,
BFMLALT, and BFMMLA instructions are
implemented.

0b0010 As 0b0001, but the FPCR.EBF field is also
supported.

All other values are reserved.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

981

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

FEAT_BF16 adds the functionality identified by 0b0001.

FEAT_EBF16 adds the functionality identified by 0b0010.

This field must return the same value as ID_AA64ISAR1_EL1.BF16.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is implemented and
enabled, software should not attempt to execute the SVE instruction BFMMLA, irrespective of the value of this
field.

From Armv8.6 and Armv9.1, the value 0b0000 is not permitted.

BitPerm, bits [19:16]

Indicates support for SVE bit permute instructions. Defined values are:

BitPerm Meaning

0b0000 SVE bit permute instructions are not
implemented.

0b0001 SVE BDEP, BEXT, and BGRP instructions are
implemented.

All other values are reserved.

FEAT_SVE_BitPerm implements the functionality identified by 0b0001.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is implemented and
enabled, software should not attempt to execute the instructions described by nonzero values of this field,
irrespective of the value of this field.

Bits [15:8]

Reserved, RES0.

AES, bits [7:4]

Indicates support for SVE AES instructions. Defined values are:

AES Meaning

0b0000 SVE AES* instructions are not implemented.

0b0001 SVE AESE, AESD, AESMC, and AESIMC
instructions are implemented.

0b0010 As 0b0001, plus 64-bit source element variants
of SVE PMULLB and PMULLT instructions are
implemented.

All other values are reserved.

FEAT_SVE_AES implements the functionality identified by the value 0b0001.

FEAT_SVE_PMULL128 implements the functionality identified by the value 0b0010.

The permitted values are 0b0000 and 0b0010.

When the PE is in Streaming SVE mode and it is not known whether FEAT_SME_FA64 is implemented and

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

982

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

enabled, software should not attempt to execute the instructions described by nonzero values of this field,
irrespective of the value of this field.

SVEver, bits [3:0]

Indicates support for SVE instructions when one or more of FEAT_SME and FEAT_SVE is implemented. Defined
values are:

SVEver Meaning

0b0000 The SVE instructions are implemented.

0b0001 As 0b0000, and adds the mandatory SVE2
instructions.

All other values are reserved.

From Armv9, if this register is present, the value 0b0000 is not permitted.

FEAT_SVE2 implements the functionality identified by 0b0001 when the PE is not in Streaming SVE mode.

FEAT_SME implements the functionality identified by 0b0001 when the PE is in Streaming SVE mode.

Accessing ID_AA64ZFR0_EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, ID_AA64ZFR0_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0000 0b0100 0b100

1 if PSTATE.EL == EL0 then
2 if IsFeatureImplemented(FEAT_IDST) then
3 if EL2Enabled() && HCR_EL2.TGE == '1' then
4 AArch64.SystemAccessTrap(EL2, 0x18);
5 else
6 AArch64.SystemAccessTrap(EL1, 0x18);
7 else
8 UNDEFINED;
9 elsif PSTATE.EL == EL1 then

10 if EL2Enabled() && (IsFeatureImplemented(FEAT_FGT) || !IsZero(ID_AA64ZFR0_EL1) ||
↪→boolean IMPLEMENTATION_DEFINED "ID_AA64ZFR0_EL1 trapped by HCR_EL2.TID3") &&
↪→HCR_EL2.TID3 == '1' then

11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 X[t, 64] = ID_AA64ZFR0_EL1;
14 elsif PSTATE.EL == EL2 then
15 X[t, 64] = ID_AA64ZFR0_EL1;
16 elsif PSTATE.EL == EL3 then
17 X[t, 64] = ID_AA64ZFR0_EL1;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

983

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.14 MPAM2_EL2, MPAM2 Register (EL2)

The MPAM2_EL2 characteristics are:

Purpose

Holds information to generate MPAM labels for memory requests when executing at EL2.

Configuration

This register has no effect if EL2 is not enabled in the current Security state.

When EL3 is implemented, AArch64 system register MPAM2_EL2 bit [63] is architecturally mapped
to AArch64 system register MPAM3_EL3[63].

AArch64 system register MPAM2_EL2 bit [63] is architecturally mapped to AArch64 system register
MPAM1_EL1[63].

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to
MPAM2_EL2 are UNDEFINED.

Attributes

MPAM2_EL2 is a 64-bit register.

Field descriptions

The MPAM2_EL2 bit assignments are:

63

RES0

62 59 58 57 56 55 54

RES0

53 51 50 49 48

PMG_D

47 40

PMG_I

39 32

MPAMEN
TIDR

RES0
ALTSP_HFC

TRAPMPAM1EL1
TRAPMPAM0EL1

EnMPAMSM
ALTSP_FRCD

ALTSP_EL2

PARTID_D

31 16

PARTID_I

15 0

MPAMEN, bit [63]

MPAM Enable. MPAM is enabled when MPAMEN == 1. When disabled, all PARTIDs and PMGs are output as
their default value in the corresponding ID space.

MPAMEN Meaning

0b0 The default PARTID and default PMG are output
in MPAM information from all Exception levels.

0b1 MPAM information is output based on the
MPAMn_ELx register for ELn according to the
MPAM configuration.

If EL3 is not implemented, this field is read/write.

If EL3 is implemented, this field is read-only and reads the current value of the read/write MPAM3_EL3.MPAMEN
bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

984

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Accessing this field has the following behavior:

• RW if !HaveEL(EL3)
• Otherwise, access to this field is RO

Bits [62:59]

Reserved, RES0.

TIDR, bit [58]

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and
MPAMIDR_EL1.HAS_TIDR == 1:

TIDR traps accesses to MPAMIDR_EL1 from EL1 to EL2.

TIDR Meaning

0b0 This control does not cause any instructions to
be trapped.

0b1 Trap accesses to MPAMIDR_EL1 from EL1 to
EL2.

MPAMHCR_EL2.TRAP_MPAMIDR_EL1 == 1 also traps MPAMIDR_EL1 accesses from EL1 to EL2. If either
TIDR or TRAP_MPAMIDR_EL1 are 1, accesses are trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [57]

Reserved, RES0.

ALTSP_HFC, bit [56]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Hierarchical force of alternative PARTID space controls. When MPAM3_EL3.ALTSP_HEN is 0, ALTSP controls
in MPAM2_EL2 have no effect. When MPAM3_EL3.ALTSP_HEN is 1, this bit selects whether the PARTIDs in
MPAM1_EL1 and MPAM0_EL1 are in the primary (0) or alternative (1) PARTID space for the security state.

ALTSP_HFC Meaning

0b0 When MPAM3_EL3.ALTSP_HEN is 1, the
PARTID space of MPAM1_EL1.PARTID_I,
MPAM1_EL1.PARTID_D,
MPAM0_EL1.PARTID_I, and
MPAM0_EL1.PARTID_D are in the primary
PARTID space for the Security state.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

985

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ALTSP_HFC Meaning

0b1 When MPAM3_EL3.ALTSP_HEN is 1, the
PARTID space of MPAM1_EL1.PARTID_I,
MPAM1_EL1.PARTID_D,
MPAM0_EL1.PARTID_I, and
MPAM0_EL1.PARTID_D are in the alternative
PARTID space for the Security state.

This control has no effect when MPAM3_EL3.ALTSP_HEN is 0.

For more information, see ‘Alternative PARTID spaces and selection’ in Arm® Architecture Reference Manual
Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ALTSP_EL2, bit [55]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Select alternative PARTID space for PARTIDs in MPAM2_EL2 when MPAM3_EL3.ALTSP_HEN is 1.

ALTSP_EL2 Meaning

0b0 When MPAM3_EL3.ALTSP_HEN is 1, selects
the primary PARTID space for
MPAM2_EL2.PARTID_I and
MPAM2_EL2.PARTID_D.

0b1 When MPAM3_EL3.ALTSP_HEN is 1, selects
the alternative PARTID space for
MPAM2_EL2.PARTID_I and
MPAM2_EL2.PARTID_D.

For more information, see ‘Alternative PARTID spaces and selection’ in Arm® Architecture Reference Manual
Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ALTSP_FRCD, bit [54]

When FEAT_RME is implemented and MPAMIDR_EL1.HAS_ALTSP == 1:

Alternative PARTID forced for PARTIDs in this register.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

986

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ALTSP_FRCD Meaning

0b0 The PARTIDs in this register are using the
primary PARTID space.

0b1 The PARTIDs in this register are using the
alternative PARTID space.

This bit indicates that a higher Exception level has forced the PARTIDs in this register to use the alternative
PARTID space defined for the current Security state. In EL2, it is also 1 when MPAM2_EL2.ALTSP_EL2 is 1.

For more information, see ‘Alternative PARTID spaces and selection’ in Arm® Architecture Reference Manual
Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598).

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO.

Otherwise:

RES0

Bits [53:51]

Reserved, RES0.

EnMPAMSM, bit [50]

When FEAT_SME is implemented:

Traps execution at EL1 of instructions that directly access the MPAMSM_EL1 register to EL2. The exception is
reported using ESR_ELx.EC value 0x18.

EnMPAMSM Meaning

0b0 This control causes execution of these
instructions at EL1 to be trapped.

0b1 This control does not cause execution of any
instructions to be trapped.

This field has no effect on accesses to MPAMSM_EL1 from EL2 or EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TRAPMPAM0EL1, bit [49]

Trap accesses from EL1 to the MPAM0_EL1 register trap to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

987

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TRAPMPAM0EL1 Meaning

0b0 Accesses to MPAM0_EL1 from EL1 are not
trapped.

0b1 Accesses to MPAM0_EL1 from EL1 are trapped
to EL2.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b1.
– When EL3 is implemented, this field resets to an architecturally UNKNOWN value.

TRAPMPAM1EL1, bit [48]

Trap accesses from EL1 to the MPAM1_EL1 register trap to EL2.

TRAPMPAM1EL1 Meaning

0b0 Accesses to MPAM1_EL1 from EL1 are not
trapped.

0b1 Accesses to MPAM1_EL1 from EL1 are trapped
to EL2.

The reset behavior of this field is:

• On a Warm reset:
– When EL3 is not implemented, this field resets to 0b1.
– When EL3 is implemented, this field resets to an architecturally UNKNOWN value.

PMG_D, bits [47:40]

Performance monitoring group for data accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMG_I, bits [39:32]

Performance monitoring group for instruction accesses.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID_D, bits [31:16]

Partition ID for data accesses, including load and store accesses, made from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

988

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

PARTID_I, bits [15:0]

Partition ID for instruction accesses made from EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing MPAM2_EL2

None of the fields in this register are permitted to be cached in a TLB.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAM2_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0101 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
6 if Halted() && EDSCR.SDD == '1' then
7 UNDEFINED;
8 else
9 AArch64.SystemAccessTrap(EL3, 0x18);

10 else
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 UNDEFINED;
14 elsif PSTATE.EL == EL2 then
15 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x18);
20 else
21 X[t, 64] = MPAM2_EL2;
22 elsif PSTATE.EL == EL3 then
23 X[t, 64] = MPAM2_EL2;

MSR MPAM2_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b1010 0b0101 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
6 if Halted() && EDSCR.SDD == '1' then
7 UNDEFINED;
8 else
9 AArch64.SystemAccessTrap(EL3, 0x18);

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

989

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

10 else
11 AArch64.SystemAccessTrap(EL2, 0x18);
12 else
13 UNDEFINED;
14 elsif PSTATE.EL == EL2 then
15 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
16 if Halted() && EDSCR.SDD == '1' then
17 UNDEFINED;
18 else
19 AArch64.SystemAccessTrap(EL3, 0x18);
20 else
21 MPAM2_EL2 = X[t, 64];
22 elsif PSTATE.EL == EL3 then
23 MPAM2_EL2 = X[t, 64];

MRS <Xt>, MPAM1_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
5 if Halted() && EDSCR.SDD == '1' then
6 UNDEFINED;
7 else
8 AArch64.SystemAccessTrap(EL3, 0x18);
9 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
12 X[t, 64] = NVMem[0x900];
13 else
14 X[t, 64] = MPAM1_EL1;
15 elsif PSTATE.EL == EL2 then
16 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
17 if Halted() && EDSCR.SDD == '1' then
18 UNDEFINED;
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 X[t, 64] = MPAM2_EL2;
23 else
24 X[t, 64] = MPAM1_EL1;
25 elsif PSTATE.EL == EL3 then
26 X[t, 64] = MPAM1_EL1;

MSR MPAM1_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b1010 0b0101 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
5 if Halted() && EDSCR.SDD == '1' then
6 UNDEFINED;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

990

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

7 else
8 AArch64.SystemAccessTrap(EL3, 0x18);
9 elsif EL2Enabled() && MPAM2_EL2.TRAPMPAM1EL1 == '1' then

10 AArch64.SystemAccessTrap(EL2, 0x18);
11 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
12 NVMem[0x900] = X[t, 64];
13 else
14 MPAM1_EL1 = X[t, 64];
15 elsif PSTATE.EL == EL2 then
16 if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
17 if Halted() && EDSCR.SDD == '1' then
18 UNDEFINED;
19 else
20 AArch64.SystemAccessTrap(EL3, 0x18);
21 elsif HCR_EL2.E2H == '1' then
22 MPAM2_EL2 = X[t, 64];
23 else
24 MPAM1_EL1 = X[t, 64];
25 elsif PSTATE.EL == EL3 then
26 MPAM1_EL1 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

991

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.15 SCR_EL3, Secure Configuration Register

The SCR_EL3 characteristics are:

Purpose

Defines the configuration of the current Security state. It specifies:

• The Security state of EL0, EL1, and EL2. The Security state is Secure, Non-secure, or Realm.
• The Execution state at lower Exception levels.
• Whether IRQ, FIQ, SError interrupts, and External abort exceptions are taken to EL3.
• Whether various operations are trapped to EL3.

Configuration

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCR_EL3 are
UNDEFINED.

Attributes

SCR_EL3 is a 64-bit register.

Field descriptions

The SCR_EL3 bit assignments are:

63 62

RES0

61 50 49 48

RES0

47 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0 NSE MECEn
GPF

SCTLR2En
TCR2En

RES0
EnTP2

TRNDR

TWEDEL
TME

AMVOFFEN
EnAS0

ADEn
HXEn

RES0
31 30 29 28 27 26 25

RES0

24 22 21 20 19 18 17 16 15 14 13 12

ST

11

RW

10 9 8 7 6

RES1

5 4

EA

3 2 1

NS

0

TWEDEL
TWEDEn

ECVEn
FGTEn

ATA
EnSCXT

FIEN
NMEA

EASE
EEL2

API

IRQ
FIQ

RES0
SMD

HCE
SIF

TWI
TWE

TLOR
TERR

APK

Bit [63]

Reserved, RES0.

NSE, bit [62]

When FEAT_RME is implemented

NSE, bit [62]

This field, evaluated with SCR_EL3.NS, selects the Security state of EL2 and lower Exception levels.

For a description of the values derived by evaluating NS and NSE together, see SCR_EL3.NS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

992

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Otherwise

NSE, bit [62]

Reserved, RES0, and the Effective value of this bit is 0b0.

Bits [61:50]

Reserved, RES0.

MECEn, bit [49]

When FEAT_MEC is implemented:

Enables access to the following EL2 MECID registers, from EL2:

• MECID_P0_EL2.

• MECID_A0_EL2

• MECID_P1_EL2

• MECID_A1_EL2

• VMECID_P_EL2

• VMECID_A_EL2

Accesses to these registers are trapped and reported using an ESR_EL3.EC value of 0x18.

MECEn Meaning

0b0 Accesses from EL2 to a listed MECID register
are trapped to EL3. The value of a listed EL2
MECID register is treated as 0 for all purposes
other than direct reads or writes to the register
from EL3.

0b1 This control does not cause any instructions to
be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

GPF, bit [48]

When FEAT_RME is implemented:

Controls the reporting of Granule protection faults at EL0, EL1 and EL2.

GPF Meaning

0b0 This control does not cause exceptions to be
routed from EL0, EL1 or EL2 to EL3.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

993

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

GPF Meaning

0b1 GPFs at EL0, EL1 and EL2 are routed to EL3
and reported as Granule Protection Check
exceptions.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [47:45]

Reserved, RES0.

SCTLR2En, bit [44]

When FEAT_SCTLR2 is implemented:

SCTLR2_ELx register trap control. Enables access to SCTLR2_EL1 and SCTLR2_EL2 registers.

SCTLR2En Meaning

0b0 EL1 and EL2 accesses to SCTLR2_EL1 and
SCTLR2_EL2 registers are disabled, and
trapped to EL3. The values in these registers are
treated as 0.

0b1 This control does not cause any instructions to
be trapped.

Traps are reported using an ESR_EL3.EC value of 0x18.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TCR2En, bit [43]

When FEAT_TCR2 is implemented:

TCR2_ELx register trap control. Enables access to TCR2_EL1 and TCR2_EL2 registers.

TCR2En Meaning

0b0 EL1 and EL2 accesses to TCR2_EL1 and
TCR2_EL2 registers are disabled, and trapped to
EL3. The values in these registers are treated as
0.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

994

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TCR2En Meaning

0b1 This control does not cause any instructions to
be trapped.

Traps are reported using an ESR_EL3.EC value of 0x18.

Traps are not taken if there is a higher priority exception generated by the access.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [42]

Reserved, RES0.

EnTP2, bit [41]

When FEAT_SME is implemented:

Traps instructions executed at EL2, EL1, and EL0 that access TPIDR2_EL0 to EL3. The exception is reported
using ESR_ELx.EC value 0x18.

EnTP2 Meaning

0b0 This control causes execution of these
instructions at EL2, EL1, and EL0 to be trapped.

0b1 This control does not cause execution of any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TRNDR, bit [40]

When FEAT_RNG_TRAP is implemented:

Controls trapping of reads of RNDR and RNDRRS. The exception is reported using ESR_ELx.EC value 0x18.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

995

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TRNDR Meaning

0b0 This control does not cause RNDR and
RNDRRS to be trapped.
When FEAT_RNG is implemented:

• ID_AA64ISAR0_EL1.RNDR returns the
value 0b0001.

When FEAT_RNG is not implemented:
• ID_AA64ISAR0_EL1.RNDR returns the

value 0b0000.
• MRS reads of RNDR and RNDRRS are

UNDEFINED.

0b1 ID_AA64ISAR0_EL1.RNDR returns the value
0b0001.
Any attempt to read RNDR or RNDRRS is
trapped to EL3.

When FEAT_RNG is not implemented, Arm recommends that SCR_EL3.TRNDR is initialized before entering
Exception levels below EL3 and not subsequently changed.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

Bit [39]

Reserved, RES0.

HXEn, bit [38]

When FEAT_HCX is implemented:

Enables access to the HCRX_EL2 register at EL2 from EL3.

HXEn Meaning

0b0 Accesses at EL2 to HCRX_EL2 are trapped to
EL3. Indirect reads of HCRX_EL2 return 0.

0b1 This control does not cause any instructions to
be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

996

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ADEn, bit [37]

When FEAT_LS64_ACCDATA is implemented:

Enables access to the ACCDATA_EL1 register at EL1 and EL2.

ADEn Meaning

0b0 Accesses to ACCDATA_EL1 at EL1 and EL2
are trapped to EL3, unless the accesses are
trapped to EL2 by the EL2 fine-grained trap.

0b1 This control does not cause accesses to
ACCDATA_EL1 to be trapped.

If the HFGWTR_EL2.nACCDATA_EL1 or HFGRTR_EL2.nACCDATA_EL1 traps are enabled, they take priority
over this trap.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnAS0, bit [36]

When FEAT_LS64_ACCDATA is implemented:

Traps execution of an ST64BV0 instruction at EL0, EL1, or EL2 to EL3.

EnAS0 Meaning

0b0 EL0 execution of an ST64BV0 instruction is
trapped to EL3, unless it is trapped to EL1 by
SCTLR_EL1.EnAS0, or to EL2 by either
HCRX_EL2.EnAS0 or SCTLR_EL2.EnAS0.
EL1 execution of an ST64BV0 instruction is
trapped to EL3, unless it is trapped to EL2 by
HCRX_EL2.EnAS0.
EL2 execution of an ST64BV0 instruction is
trapped to EL3.

0b1 This control does not cause any instructions to
be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

997

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

AMVOFFEN, bit [35]

When FEAT_AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN Meaning

0b0 Accesses to AMEVCNTVOFF0<n>_EL2 and
AMEVCNTVOFF1<n>_EL2 at EL2 are trapped
to EL3. Indirect reads of the virtual offset
registers are zero.

0b1 Accesses to AMEVCNTVOFF0<n>_EL2 and
AMEVCNTVOFF1<n>_EL2 are not affected by
this field.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TME, bit [34]

When FEAT_TME is implemented:

Enables access to the TSTART, TCOMMIT, TTEST and TCANCEL instructions at EL0, EL1 and EL2.

TME Meaning

0b0 EL0, EL1 and EL2 accesses to TSTART,
TCOMMIT, TTEST and TCANCEL instructions
are UNDEFINED.

0b1 This control does not cause any instruction to be
UNDEFINED.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TWEDEL, bits [33:30]

When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCR_EL3.TWEDEn is 1, encodes the minimum delay in taking
a trap of WFE* caused by SCR_EL3.TWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

998

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Otherwise:

RES0

TWEDEn, bit [29]

When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCR_EL3.TWE.

Traps are reported using an ESR_ELx.EC value of 0x01.

TWEDEn Meaning

0b0 The delay for taking the trap is
IMPLEMENTATION DEFINED.

0b1 The delay for taking the trap is at least the
number of cycles defined in
SCR_EL3.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ECVEn, bit [28]

When FEAT_ECV is implemented:

ECV Enable. Enables access to the CNTPOFF_EL2 register.

ECVEn Meaning

0b0 EL2 accesses to CNTPOFF_EL2 are trapped to
EL3, and the value of CNTPOFF_EL2 is treated
as 0 for all purposes other than direct reads or
writes to the register from EL3.

0b1 EL2 accesses to CNTPOFF_EL2 are not trapped
to EL3 by this mechanism.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

FGTEn, bit [27]

When FEAT_FGT is implemented:

Fine-Grained Traps Enable. When EL2 is implemented, enables the traps to EL2 controlled by HAFGRTR_EL2,
HDFGRTR_EL2, HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2, and HFGWTR_EL2, and controls access to

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

999

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

those registers.

If EL2 is not implemented but EL3 is implemented, FEAT_FGT implements the MDCR_EL3.TDCC traps.

FGTEn Meaning

0b0 EL2 accesses to HAFGRTR_EL2,
HDFGRTR_EL2, HDFGWTR_EL2,
HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are trapped to EL3,
and the traps to EL2 controlled by those registers
are disabled.

0b1 EL2 accesses to HAFGRTR_EL2,
HDFGRTR_EL2, HDFGWTR_EL2,
HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are not trapped to EL3
by this mechanism.

Traps caused by accesses to the fine-grained trap registers are reported using an ESR_ELx.EC value of 0x18 and
its associated ISS.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ATA, bit [26]

When FEAT_MTE2 is implemented:

Allocation Tag Access. Controls access to Allocation Tags, System registers for Memory tagging, and prevention
of Tag checking, at EL2, EL1 and EL0.

ATA Meaning

0b0 Access to Allocation Tags is prevented at EL2,
EL1, and EL0.
Accesses at EL1 and EL2 to GCR_EL1,
RGSR_EL1, TFSR_EL1, TFSR_EL2 or
TFSRE0_EL1 that are not UNDEFINED or
trapped to a lower Exception level are trapped to
EL3.
Accesses at EL2 using MRS or MSR with the
register name TFSR_EL12 that are not
UNDEFINED are trapped to EL3.
Memory accesses at EL2, EL1, and EL0 are not
subject to a Tag Check operation.

0b1 This control does not prevent access to
Allocation Tags at EL2, EL1, and EL0.
This control does not prevent Tag checking at
EL2, EL1, and EL0.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1000

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnSCXT, bit [25]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Enables access to the SCXTNUM_EL2, SCXTNUM_EL1, and SCXTNUM_EL0 registers.

EnSCXT Meaning

0b0 Accesses at EL0, EL1 and EL2 to
SCXTNUM_EL0, SCXTNUM_EL1, or
SCXTNUM_EL2 registers are trapped to EL3 if
they are not trapped by a higher priority
exception, and the values of these registers are
treated as 0.

0b1 This control does not cause any accesses to be
trapped, or register values to be treated as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [24:22]

Reserved, RES0.

FIEN, bit [21]

When FEAT_RASv1p1 is implemented:

Fault Injection enable. Trap accesses to the registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1 from EL1 and EL2 to EL3, reported using an ESR_ELx.EC value of 0x18.

FIEN Meaning

0b0 Accesses to the specified registers from EL1 and
EL2 generate a Trap exception to EL3.

0b1 This control does not cause any instructions to
be trapped.

If EL3 is not implemented, the Effective value of SCR_EL3.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record accessible using
System registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this
bit might be RES0.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1001

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

NMEA, bit [20]

When FEAT_DoubleFault is implemented:

Non-maskable External Aborts. Controls whether PSTATE.A masks SError exceptions at EL3.

NMEA Meaning

0b0 SError exceptions are not taken at EL3 if
PSTATE.A == 1.

0b1 SError exceptions are taken at EL3 regardless of
the value of PSTATE.A.

This field is ignored by the PE and treated as zero when SCR_EL3.EA == 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

EASE, bit [19]

When FEAT_DoubleFault is implemented:

External aborts to SError interrupt vector.

EASE Meaning

0b0 Synchronous External abort exceptions taken to
EL3 are taken to the appropriate synchronous
exception vector offset from VBAR_EL3.

0b1 Synchronous External abort exceptions taken to
EL3 are taken to the appropriate SError interrupt
vector offset from VBAR_EL3.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

EEL2, bit [18]

When FEAT_SEL2 is implemented:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1002

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Secure EL2 Enable.

EEL2 Meaning

0b0 All behaviors associated with Secure EL2 are
disabled. All registers, including timer registers,
defined by FEAT_SEL2 are UNDEFINED, and
those timers are disabled.

0b1 All behaviors associated with Secure EL2 are
enabled.

When the value of this bit is 1, then:

• When SCR_EL3.NS == 0, the SCR_EL3.RW bit is treated as 1 for all purposes other than reading or writing
the register.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to
Secure EL2, using the EC value of ESR_EL2.EC== 0x3 :

– A read or write of the SCR.
– A read or write of the NSACR.
– A read or write of the MVBAR.
– A read or write of the SDCR.
– Execution of an ATS12NSO** instruction.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to
Secure EL2 using the EC value of ESR_EL2.EC== 0x0 :

– Execution of an SRS instruction that uses R13_mon.
– Execution of an MRS (Banked register) or MSR (Banked register) instruction that would access

SPSR_mon, R13_mon, or R14_mon.

If the Effective value of SCR_EL3.EEL2 is 0, then these operations executed in Secure EL1 using AArch32 are
trapped to EL3.

A Secure only implementation that does not implement EL3 but implements EL2, behaves as if SCR_EL3.EEL2
== 1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

API, bit [17]

When FEAT_SEL2 is implemented and FEAT_PAuth is implemented

API, bit [17]

Controls the use of the following instructions related to Pointer Authentication. Traps are reported using an
ESR_ELx.EC value of 0x09:

• PACGA, which is always enabled.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1003

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716,
AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716,
PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB, RETAA, RETAB, BRAA,
BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and
LDRAB when:

– In EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated
SCTLR_EL1.En<N><M> == 1.

– In EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated
SCTLR_EL2.En<N><M> == 1.

– In EL1, when the associated SCTLR_EL1.En<N><M> == 1.
– In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

API Meaning

0b0 The use of any instruction related to pointer
authentication in any Exception level except EL3
when the instructions are enabled are trapped to
EL3 unless they are trapped to EL2 as a result of
the HCR_EL2.API bit.

0b1 This control does not cause any instructions to
be trapped.

An instruction is trapped only if Pointer Authentication is enabled for that instruction, for more information, see
‘PAC generation and verification keys’.

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SEL2 is not implemented and FEAT_PAuth is implemented

API, bit [17]

Controls the use of instructions related to Pointer Authentication:

• PACGA.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716,

AUTIBSP, AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716,
PACIASP, PACIAZ, PACIB, PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA,
BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and
LDRAB when:

– In Non-secure EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated
SCTLR_EL1.En<N><M>== 1.

– In Non-secure EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated
SCTLR_EL2.En<N><M> == 1.

– In Secure EL0, when the associated SCTLR_EL1.En<N><M> == 1.
– In Secure or Non-secure EL1, when the associated SCTLR_EL1.En<N><M> == 1.
– In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1004

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

API Meaning

0b0 The use of any instruction related to pointer
authentication in any Exception level except EL3
when the instructions are enabled are trapped to
EL3 unless they are trapped to EL2 as a result of
the HCR_EL2.API bit.

0b1 This control does not cause any instructions to
be trapped.

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

APK, bit [16]

When FEAT_PAuth is implemented:

Trap registers holding “key” values for Pointer Authentication. Traps accesses to the following registers, using
an ESR_ELx.EC value of 0x18, from EL1 or EL2 to EL3 unless they are trapped to EL2 as a result of the
HCR_EL2.APK bit or other traps:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1.

• APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1.

• APGAKeyLo_EL1, and APGAKeyHi_EL1.

APK Meaning

0b0 Access to the registers holding “key” values for
pointer authentication from EL1 or EL2 are
trapped to EL3 unless they are trapped to EL2 as
a result of the HCR_EL2.APK bit or other traps.

0b1 This control does not cause any instructions to
be trapped.

For more information, see ‘PAC generation and verification keys’.

If FEAT_PAuth is implemented but EL3 is not implemented, the system behaves as if this bit is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TERR, bit [15]

When FEAT_RAS is implemented:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1005

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Trap accesses of error record registers. Enables a trap to EL3 on accesses of error record registers.

TERR Meaning

0b0 Accesses of the specified error record registers
are not trapped by this mechanism.

0b1 Accesses of the specified error record registers at
EL2 and EL1 are trapped to EL3, unless the
instruction generates a higher priority exception.

In AArch64 state, the instructions affected by this control are:

• MRS and MSR accesses to ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXMISC0_EL1,
ERXMISC1_EL1, and ERXSTATUS_EL1.

• MRS accesses to ERRIDR_EL1 and ERXFR_EL1.
• If FEAT_RASv1p1 is implemented, MRS and MSR accesses to ERXMISC2_EL1 and ERXMISC3_EL1.

In AArch32 state, the instructions affected by this control are:

• MRC and MCR accesses to ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXMISC0,
ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

• MRC accesses to ERRIDR, ERXFR, and ERXFR2.

• If FEAT_RASv1p1 is implemented, MRC and MCR accesses to ERXMISC4, ERXMISC5, ERXMISC6, and
ERXMISC7.

Unless the instruction generates a higher priority exception, trapped instructions generate an exception to EL3.

Trapped AArch64 instructions are reported using EC syndrome value 0x18.

Trapped AArch32 instructions are reported using EC syndrome value 0x03.

Accessing this field has the following behavior:

• This field is permitted to be RES0 if all of the following are true:
– ERRSELR_EL1 and all ERX* registers are implemented as UNDEFINED or RAZ/WI.
– ERRIDR_EL1.NUM is zero.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TLOR, bit [14]

When FEAT_LOR is implemented:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and
LORID_EL1 registers from EL1 and EL2 to EL3, unless the access has been trapped to EL2.

TLOR Meaning

0b0 This control does not cause any instructions to
be trapped.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1006

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TLOR Meaning

0b1 EL1 and EL2 accesses to the LOR registers that
are not UNDEFINED are trapped to EL3, unless it
is trapped HCR_EL2.TLOR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from any Security state and both Execution
states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

TWE Meaning

0b0 This control does not cause any instructions to
be trapped.

0b1 Any attempt to execute a WFE instruction at any
Exception level lower than EL3 is trapped to
EL3, if the instruction would otherwise have
caused the PE to enter a low-power state and it is
not trapped by SCTLR.nTWE, HCR.TWE,
SCTLR_EL1.nTWE, SCTLR_EL2.nTWE, or
HCR_EL2.TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about when WFE instructions can cause the PE to enter a low-power state, see
‘Wait for Event mechanism and Send event’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from any Security state and both Execution states,
reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1007

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TWI Meaning

0b0 This control does not cause any instructions to
be trapped.

0b1 Any attempt to execute a WFI instruction at any
Exception level lower than EL3 is trapped to
EL3, if the instruction would otherwise have
caused the PE to enter a low-power state and it is
not trapped by SCTLR.nTWI, HCR.TWI,
SCTLR_EL1.nTWI, SCTLR_EL2.nTWI, or
HCR_EL2.TWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

For more information about when WFI instructions can cause the PE to enter a low-power state, see
‘Wait for Interrupt’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from AArch64 state only,
reported using an ESR_ELx.EC value of 0x18.

ST Meaning

0b0 Secure EL1 using AArch64 accesses to the
CNTPS_TVAL_EL1, CNTPS_CTL_EL1, and
CNTPS_CVAL_EL1 are trapped to EL3 when
Secure EL2 is disabled. If Secure EL2 is
enabled, the behavior is as if the value of this
field was 0b1.

0b1 This control does not cause any instructions to
be trapped.

Accesses to the Counter-timer Physical Secure timer registers are always enabled at EL3. These registers are not
accessible at EL0.

When FEAT_RME is implemented and Secure state is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

RW, bit [10]

When EL1 is capable of using AArch32 or EL2 is capable of using AArch32:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1008

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Execution state control for lower Exception levels.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1009

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RW Meaning

0b0 Lower levels are all AArch32.

0b1 The next lower level is AArch64.
If EL2 is present:

• EL2 is AArch64.
• EL2 controls EL1 and EL0 behaviors.

If EL2 is not present:
• EL1 is AArch64.
• EL0 is determined by the Execution state

described in the current process state
when executing at EL0.

If AArch32 state is supported by the implementation at EL1, SCR_EL3.NS == 1 and AArch32 state is not
supported by the implementation at EL2, the Effective value of this bit is 1.

If AArch32 state is supported by the implementation at EL1, FEAT_SEL2 is implemented and SCR_EL3.{EEL2,
NS} == {1, 0}, the Effective value of this bit is 1.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RAO/WI

SIF, bit [9]

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction execution from memory
marked in the first stage of translation as being Non-secure.

SIF Meaning

0b0 Secure state instruction execution from memory
marked in the first stage of translation as being
Non-secure is permitted.

0b1 Secure state instruction execution from memory
marked in the first stage of translation as being
Non-secure is not permitted.

When FEAT_RME is implemented and Secure state is not implemented, this bit is RES0.

When FEAT_PAN3 is implemented, it is IMPLEMENTATION DEFINED whether SCR_EL3.SIF is also used to
determine instruction access permission for the purpose of PAN.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1010

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3 and, if EL2 is enabled in the current Security
state, at EL2 and EL1, in both Execution states, reported using an ESR_ELx.EC value of 0x00.

HCE Meaning

0b0 HVC instructions are UNDEFINED.

0b1 HVC instructions are enabled at EL3, EL2, and
EL1.

HVC instructions are always UNDEFINED at EL0 and, if Secure EL2 is disabled, at Secure EL1. Any resulting
exception is taken from the current Exception level to the current Exception level.

If EL2 is not implemented, this bit is RES0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from any Security state and both
Execution states, reported using an ESR_ELx.EC value of 0x00.

SMD Meaning

0b0 SMC instructions are enabled at EL3, EL2 and
EL1.

0b1 SMC instructions are UNDEFINED.

SMC instructions are always UNDEFINED at EL0. Any resulting exception is taken from the current Exception level
to the current Exception level.

If HCR_EL2.TSC or HCR.TSC traps attempted EL1 execution of SMC instructions to EL2, that trap has priority
over this disable.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

EA, bit [3]

External Abort and SError interrupt routing.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1011

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EA Meaning

0b0 When executing at Exception levels below EL3,
External aborts and SError interrupts are not
taken to EL3.
In addition, when executing at EL3:

• SError interrupts are not taken.
• External aborts are taken to EL3.

0b1 When executing at any Exception level, External
aborts and SError interrupts are taken to EL3.

For more information, see ‘Asynchronous exception routing’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

FIQ, bit [2]

Physical FIQ Routing.

FIQ Meaning

0b0 When executing at Exception levels below EL3,
physical FIQ interrupts are not taken to EL3.
When executing at EL3, physical FIQ interrupts
are not taken.

0b1 When executing at any Exception level, physical
FIQ interrupts are taken to EL3.

For more information, see ‘Asynchronous exception routing’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRQ, bit [1]

Physical IRQ Routing.

IRQ Meaning

0b0 When executing at Exception levels below EL3,
physical IRQ interrupts are not taken to EL3.
When executing at EL3, physical IRQ interrupts
are not taken.

0b1 When executing at any Exception level, physical
IRQ interrupts are taken to EL3.

For more information, see ‘Asynchronous exception routing’.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1012

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [0]

When FEAT_RME is implemented

NS, bit [0]

Non-secure bit. This field is used in combination with SCR_EL3.NSE to select the Security state of EL2 and lower
Exception levels.

NSE NS Meaning

0b0 0b0 Secure.

0b0 0b1 Non-secure.

0b1 0b0 Reserved.

0b1 0b1 Realm.

When Secure state is not implemented, SCR_EL3.NS is RES1 and its effective value is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise

NS, bit [0]

Non-secure bit.

NS Meaning

0b0 Indicates that EL0 and EL1 are in Secure state.
When FEAT_SEL2 is implemented and
SCR_EL3.EEL2 == 1, then EL2 is using
AArch64 and in Secure state.

0b1 Indicates that Exception levels lower than EL3
are in Non-secure state, so memory accesses
from those Exception levels cannot access
Secure memory.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing SCR_EL3

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCR_EL3

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1013

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 X[t, 64] = SCR_EL3;

MSR SCR_EL3, <Xt>

op0 op1 CRn CRm op2

0b11 0b110 0b0001 0b0001 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 UNDEFINED;
5 elsif PSTATE.EL == EL2 then
6 UNDEFINED;
7 elsif PSTATE.EL == EL3 then
8 SCR_EL3 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1014

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.16 SCTLR_EL1, System Control Register (EL1)

The SCTLR_EL1 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL1 and EL0.

Configuration

AArch64 system register SCTLR_EL1 bits [31:0] are architecturally mapped to AArch32 system
register SCTLR[31:0].

Attributes

SCTLR_EL1 is a 64-bit register.

Field descriptions

The SCTLR_EL1 bit assignments are:

63 62 61 60

RES0

59 58 57 56 55 54 53 52 51 50

TWEDEL

49 46 45 44 43 42

TCF

41 40

TCF0

39 38 37 36 35 34 33 32

TIDCP
SPINTMASK

NMI
EnTP2

EPAN
EnALS

EnAS0
EnASR

TME
TME0

TMT

CMOW
MSCEn

RES0
BT0

BT1
ITFSB

ATA0
ATA

DSSBS
TWEDEn

TMT0
31 30 29 28 27 26

EE

25 24 23 22 21 20 19 18 17 16 15 14 13

I

12 11 10 9 8 7 6 5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB
LSMAOE

nTLSMD
EnDA

UCI
E0E
SPAN

EIS
IESB
TSCXT

WXN
nTWE

SA0
CP15BEN

nAA
ITD

SED
UMA

EnRCTX
EOS

EnDB
DZE

UCT
nTWI

RES0

TIDCP, bit [63]

When FEAT_TIDCP1 is implemented:

Trap IMPLEMENTATION DEFINED functionality. When HCR_EL2.{E2H, TGE} != {1, 1}, traps EL0 accesses to
the encodings reserved for IMPLEMENTATION DEFINED functionality to EL1.

TIDCP Meaning

0b0 No instructions accessing the System register or
System instruction spaces are trapped by this
mechanism.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1015

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TIDCP Meaning

0b1 Instructions accessing the following System
register or System instruction spaces are trapped
to EL1 by this mechanism:

• In AArch64 state, EL0 access to the
encodings in the following reserved
encoding spaces are trapped and reported
using EC syndrome 0x18:

– IMPLEMENTATION DEFINED System
instructions, which are accessed
using SYS and SYSL, with CRn ==
{11, 15}.

– IMPLEMENTATION DEFINED System
registers, which are accessed using
MRS and MSR with the
S3_<op1>_<Cn>_<Cm>_<op2>
register name.

• In AArch32 state, EL0 MCR and MRC
access to the following encodings are
trapped and reported using EC syndrome
0x03:

– All coproc==p15, CRn==c9, opc1
== {0-7}, CRm == {c0-c2, c5-c8},
opc2 == {0-7}.

– All coproc==p15, CRn==c10, opc1
=={0-7}, CRm == {c0, c1, c4, c8},
opc2 == {0-7}.

– All coproc==p15, CRn==c11,
opc1=={0-7}, CRm == {c0-c8, c15},
opc2 == {0-7}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

SPINTMASK, bit [62]

When FEAT_NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL1.NMI is 1, controls whether PSTATE.SP acts as an interrupt mask,
and controls the value of PSTATE.ALLINT on taking an exception to EL1.

SPINTMASK Meaning

0b0 Does not cause PSTATE.SP to mask interrupts.
PSTATE.ALLINT is set to 1 on taking an
exception to EL1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1016

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SPINTMASK Meaning

0b1 When PSTATE.SP is 1 and execution is at EL1,
an IRQ or FIQ interrupt that is targeted to EL1 is
masked regardless of any denotion of
Superpriority.
PSTATE.ALLINT is set to 0 on taking an
exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

NMI, bit [61]

When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

NMI Meaning

0b0 This control does not affect interrupt masking
behavior.

0b1 This control enables all of the following:
• The use of the PSTATE.ALLINT interrupt

mask.
• IRQ and FIQ interrupts to have

Superpriority as an additional attribute.
• PSTATE.SP to be used as an interrupt

mask.

The reset behavior of this field is:

• On a Warm reset:
– When EL2 is not implemented and EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnTP2, bit [60]

When FEAT_SME is implemented:

Traps instructions executed at EL0 that access TPIDR2_EL0 to EL1, or to EL2 when EL2 is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1. The exception is reported using ESR_ELx.EC
value 0x18.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1017

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnTP2 Meaning

0b0 This control causes execution of these
instructions at EL0 to be trapped.

0b1 This control does not cause execution of any
instructions to be trapped.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bits [59:58]

Reserved, RES0.

EPAN, bit [57]

When FEAT_PAN3 is implemented:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL1 data access to a page
with stage 1 EL0 instruction access permission generates a Permission fault as a result of the Privileged Access
Never mechanism.

EPAN Meaning

0b0 No additional Permission faults are generated by
this mechanism.

0b1 An EL1 data access to a page with stage 1 EL0
data access permission or stage 1 EL0 instruction
access permission generates a Permission fault.
Any speculative data accesses that would
generate a Permission fault as a result of
PSTATE.PAN = 1 if the accesses were not
speculative, will not cause an allocation into a
cache.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnALS, bit [56]

When FEAT_LS64 is implemented:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1018

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0 to EL1.

EnALS Meaning

0b0 Execution of an LD64B or ST64B instruction at
EL0 is trapped to EL1.

0b1 This control does not cause any instructions to
be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnAS0, bit [55]

When FEAT_LS64_ACCDATA is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 to EL1.

EnAS0 Meaning

0b0 Execution of an ST64BV0 instruction at EL0 is
trapped to EL1.

0b1 This control does not cause any instructions to
be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnASR, bit [54]

When FEAT_LS64_V is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 to EL1.

EnASR Meaning

0b0 Execution of an ST64BV instruction at EL0 is
trapped to EL1.

0b1 This control does not cause any instructions to
be trapped.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1019

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TME, bit [53]

When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL1.

TME Meaning

0b0 Any attempt to execute a TSTART instruction at
EL1 is trapped to EL1, unless HCR_EL2.TME
or SCR_EL3.TME causes TSTART instructions
to be UNDEFINED at EL1.

0b1 This control does not cause any TSTART
instruction to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TME0, bit [52]

When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL0.

TME0 Meaning

0b0 Any attempt to execute a TSTART instruction at
EL0 is trapped to EL1, unless HCR_EL2.TME
or SCR_EL3.TME causes TSTART instructions
to be UNDEFINED at EL0.

0b1 This control does not cause any TSTART
instruction to be trapped.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1020

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TMT, bit [51]

When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL1.

TMT Meaning

0b0 This control does not cause any TSTART
instruction to fail.

0b1 When the TSTART instruction is executed at
EL1, the transaction fails with a TRIVIAL
failure cause.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TMT0, bit [50]

When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL0.

TMT0 Meaning

0b0 This control does not cause any TSTART
instruction to fail.

0b1 When the TSTART instruction is executed at
EL0, the transaction fails with a TRIVIAL
failure cause.

If FEAT_VHE is implemented, EL2 is implemented and enabled in the current Security state, and HCR_EL2.{E2H,
TGE} == {1, 1}, this field has no effect on execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TWEDEL, bits [49:46]

When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL1.TWEDEn is 1, encodes the minimum delay in
taking a trap of WFE* caused by SCTLR_EL1.nTWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1021

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Otherwise:

RES0

TWEDEn, bit [45]

When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCTLR_EL1.nTWE.

TWEDEn Meaning

0b0 The delay for taking the trap is
IMPLEMENTATION DEFINED.

0b1 The delay for taking the trap is at least the
number of cycles defined in
SCTLR_EL1.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning

0b0 PSTATE.SSBS is set to 0 on an exception to
EL1.

0b1 PSTATE.SSBS is set to 1 on an exception to
EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

RES0

ATA, bit [43]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL1.

When SCR_EL3.ATA == 1 and HCR_EL2.ATA == 1, controls access to Allocation Tags and Tag Check operations
in EL1.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1022

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ATA Meaning

0b0 Access to Allocation Tags is prevented at EL1.
Memory accesses at EL1 are not subject to a Tag
Check operation.

0b1 This control does not prevent access to
Allocation Tags at EL1.
Tag Checked memory accesses at EL1 are
subject to a Tag Check operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ATA0, bit [42]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL0.

When SCR_EL3.ATA == 1, HCR_EL2.ATA == 1, and HCR_EL2.{E2H, TGE} != {1, 1}, controls access to
Allocation Tags and Tag Check operations in EL0.

ATA0 Meaning

0b0 Access to Allocation Tags is prevented at EL0.
Memory accesses at EL0 are not subject to a Tag
Check operation.

0b1 This control does not prevent access to
Allocation Tags at EL0.
Tag Checked memory accesses at EL0 are
subject to a Tag Check operation.

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL1. Controls the effect of Tag Check Faults due to Loads and Stores in EL1.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1023

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TCF Meaning Applies

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous
exception.

0b10 Tag Check Faults are asynchronously
accumulated.

0b11 Tag Check Faults cause a synchronous
exception on reads, and are asynchronously
accumulated on writes.

When FEAT_MTE3 is
implemented

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TCF0, bits [39:38]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL0. When HCR_EL2.{E2H,TGE} != {1,1}, controls the effect of Tag Check Faults due to
Loads and Stores in EL0.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Software may change this control bit on a context switch.

TCF0 Meaning Applies

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous
exception.

0b10 Tag Check Faults are asynchronously
accumulated.

0b11 Tag Check Faults cause a synchronous
exception on reads, and are asynchronously
accumulated on writes.

When FEAT_MTE3 is
implemented

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on
exception entry into EL1, all Tag Check Faults due to instructions executed before exception entry, that are reported

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1024

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

asynchronously, are synchronized into TFSRE0_EL1 and TFSR_EL1 registers.

ITFSB Meaning

0b0 Tag Check Faults are not synchronized on entry
to EL1.

0b1 Tag Check Faults are synchronized on entry to
EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

BT1, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL1.

BT1 Meaning

0b0 When the PE is executing at EL1, PACIASP and
PACIBSP are compatible with PSTATE.BTYPE
== 0b11.

0b1 When the PE is executing at EL1, PACIASP and
PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

BT0, bit [35]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL0.

BT0 Meaning

0b0 When the PE is executing at EL0, PACIASP and
PACIBSP are compatible with PSTATE.BTYPE
== 0b11.

0b1 When the PE is executing at EL0, PACIASP and
PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1025

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, the value of SCTLR_EL1.BT0 has no effect on execution at
EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

Bit [34]

Reserved, RES0.

MSCEn, bit [33]

When FEAT_MOPS is implemented and (HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0):

Memory Copy and Memory Set instructions Enable. Enables execution of the Memory Copy and Memory Set
instructions at EL0.

MSCEn Meaning

0b0 Execution of the Memory Copy and Memory Set
instructions is UNDEFINED at EL0.

0b1 This control does not cause any instructions to
be UNDEFINED.

When FEAT_MOPS is implemented and HCR_EL2.{E2H, TGE} is {1, 1}, the Effective value of this bit is 0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

CMOW, bit [32]

When FEAT_CMOW is implemented:

Controls cache maintenance instruction permission for the following instructions executed at EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

CMOW Meaning

0b0 These instructions executed at EL0 with stage 1
read permission, but without stage 1 write
permission, do not generate a stage 1 permission
fault.

0b1 If enabled as a result of SCTLR_EL1.UCI==1,
these instructions executed at EL0 with stage 1
read permission, but without stage 1 write
permission, generate a stage 1 permission fault.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1026

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When AArch64.HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution at EL0.

For this control, stage 1 has write permission if all of the following apply:

• AP[2] is 0 or DBM is 1 in the stage 1 descriptor.
• Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see System register control of pointer authentication .

EnIA Meaning

0b0 Pointer authentication (using the APIAKey_EL1
key) of instruction addresses is not enabled.

0b1 Pointer authentication (using the APIAKey_EL1
key) of instruction addresses is enabled.

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically, when the field
is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see System register control of pointer authentication .

EnIB Meaning

0b0 Pointer authentication (using the APIBKey_EL1
key) of instruction addresses is not enabled.

0b1 Pointer authentication (using the APIBKey_EL1
key) of instruction addresses is enabled.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1027

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically, when the field
is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

LSMAOE, bit [29]

When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning

0b0 For all memory accesses at EL0, A32 and T32
Load Multiple and Store Multiple can have an
interrupt taken during the sequence memory
accesses, and the memory accesses are not
required to be ordered.

0b1 The ordering and interrupt behavior of A32 and
T32 Load Multiple and Store Multiple at EL0 is
as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

nTLSMD, bit [28]

When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning

0b0 All memory accesses by A32 and T32 Load
Multiple and Store Multiple at EL0 that are
marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are trapped and generate a stage 1
Alignment fault.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1028

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nTLSMD Meaning

0b1 All memory accesses by A32 and T32 Load
Multiple and Store Multiple at EL0 that are
marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are not trapped.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see System register control of pointer authentication .

EnDA Meaning

0b0 Pointer authentication (using the APDAKey_EL1
key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDAKey_EL1
key) of data addresses is enabled.

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically, when the field
is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented and enabled
for the current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC
value of 0x18.

This applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1029

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC,
DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

UCI Meaning

0b0 Execution of the specified instructions at EL0
using AArch64 is trapped.

0b1 This control does not cause any instructions to
be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution
of any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency
can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution
of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of
this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the
value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime.

EE Meaning

0b0 Explicit data accesses at EL1, and stage 1
translation table walks in the EL1&0 translation
regime are little-endian.

0b1 Explicit data accesses at EL1, and stage 1
translation table walks in the EL1&0 translation
regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1030

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E0E, bit [24]

Endianness of data accesses at EL0.

E0E Meaning

0b0 Explicit data accesses at EL0 are little-endian.

0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is not permitted
when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at
EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPAN, bit [23]

When FEAT_PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1.

SPAN Meaning

0b0 PSTATE.PAN is set to 1 on taking an exception
to EL1.

0b1 The value of PSTATE.PAN is left unchanged on
taking an exception to EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

EIS, bit [22]

When FEAT_ExS is implemented:

Exception Entry is Context Synchronizing.

EIS Meaning

0b0 The taking of an exception to EL1 is not a
context synchronizing event.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1031

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EIS Meaning

0b1 The taking of an exception to EL1 is a context
synchronizing event.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

If SCTLR_EL1.EIS is set to 0b0:

• Indirect writes to ESR_EL1, FAR_EL1, SPSR_EL1, ELR_EL1 are synchronized on exception entry to EL1,
so that a direct read of the register after exception entry sees the indirectly written value caused by the
exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EIS:

• Changes to the PSTATE information on entry to EL1.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and

data processing instructions.
• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

IESB, bit [21]

When FEAT_IESB is implemented:

Implicit Error Synchronization event enable. Possible values are:

IESB Meaning

0b0 Disabled.

0b1 An implicit error synchronization event is added:
• At each exception taken to EL1.
• Before the operational pseudocode of each
ERET instruction executed at EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value
might be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error
synchronization event is added after each DCPSX instruction taken to EL1 and before each DRPS instruction executed
at EL1, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1032

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

TSCXT, bit [20]

When FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

TSCXT Meaning

0b0 EL0 access to SCXTNUM_EL0 is not disabled
by this mechanism.

0b1 EL0 access to SCXTNUM_EL0 is disabled,
causing an exception to EL1, or to EL2 when it
is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1.
The value of SCXTNUM_EL0 is treated as 0.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force all memory
regions that are writable to be treated as XN.

WXN Meaning

0b0 This control has no effect on memory access
permissions.

0b1 Any region that is writable in the EL1&0
translation regime is forced to XN for accesses
from software executing at EL1 or EL0.

This bit applies only when SCTLR_EL1.M bit is set.

The WXN bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for the current

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1033

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

nTWE Meaning

0b0 Any attempt to execute a WFE instruction at EL0
is trapped, if the instruction would otherwise
have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to
be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

nTWI Meaning

0b0 Any attempt to execute a WFI instruction at EL0
is trapped, if the instruction would otherwise
have caused the PE to enter a low-power state.

0b1 This control does not cause any instructions to
be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1034

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, or to EL2 when it is implemented and enabled for the current Security
state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

UCT Meaning

0b0 Accesses to the CTR_EL0 from EL0 using
AArch64 are trapped.

0b1 This control does not cause any instructions to
be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

DZE Meaning

0b0 Any attempt to execute an instruction that this
trap applies to at EL0 using AArch64 is trapped.
Reading DCZID_EL0.DZP from EL0 returns 1,
indicating that the instructions this trap applies
to are not supported.

0b1 This control does not cause any instructions to
be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see System register control of pointer authentication .

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1035

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnDB Meaning

0b0 Pointer authentication (using the APDBKey_EL1
key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDBKey_EL1
key) of data addresses is enabled.

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically, when the field
is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

I, bit [12]

Stage 1 instruction access Cacheability control, for accesses at EL0 and EL1:

I Meaning

0b0 All instruction access to Stage 1 Normal memory
from EL0 and EL1 are Stage 1 Non-cacheable.
If the value of SCTLR_EL1.M is 0, instruction
accesses from stage 1 of the EL1&0 translation
regime are to Normal, Outer Shareable, Inner
Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Stage 1
Cacheability of instruction access to Stage 1
Normal memory from EL0 and EL1.
If the value of SCTLR_EL1.M is 0, instruction
accesses from stage 1 of the EL1&0 translation
regime are to Normal, Outer Shareable, Inner
Write-Through, Outer Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0 and EL1 are
Cacheable regardless of the value of the SCTLR_EL1.I bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset:
– When EL2 is not implemented and EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

EOS, bit [11]

When FEAT_ExS is implemented:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1036

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Exception Exit is Context Synchronizing.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1037

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EOS Meaning

0b0 An exception return from EL1 is not a context
synchronizing event

0b1 An exception return from EL1 is a context
synchronizing event

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

If SCTLR_EL1.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL1 and ELR_EL1 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and
data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

EnRCTX, bit [10]

When FEAT_SPECRES is implemented:

Enable EL0 access to the following System instructions:

• CFPRCTX, DVPRCTX and CPPRCTX instructions.

• CFP RCTX, DVP RCTX and CPP RCTX instructions.

EnRCTX Meaning

0b0 EL0 access to these instructions is disabled, and
these instructions are trapped to EL1, or to EL2
when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1.

0b1 EL0 access to these instructions is enabled.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1038

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Otherwise:

RES0

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F}
masks to EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is
1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

UMA Meaning

0b0 Any attempt at EL0 using AArch64 to execute
an MRS, MSR(REGISTER), or MSR(IMMEDIATE)
instruction that accesses the DAIF is trapped.

0b1 This control does not cause any instructions to
be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SED, bit [8]

When EL0 is capable of using AArch32:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning

0b0 SETEND instruction execution is enabled at EL0
using AArch32.

0b1 SETEND instructions are UNDEFINED at EL0
using AArch32 and any attempt at EL0 to access
a SETEND instruction generates an exception to
EL1, or to EL2 when it is implemented and
enabled for the current Security state and
HCR_EL2.TGE is 1, reported using an
ESR_ELx.EC value of 0x00.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1039

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ITD, bit [7]

When EL0 is capable of using AArch32:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

ITD Meaning

0b0 All IT instruction functionality is enabled at EL0
using AArch32.

0b1 Any attempt at EL0 using AArch32 to execute
any of the following is UNDEFINED and
generates an exception, reported using an
ESR_ELx.EC value of 0x00, to EL1 or to EL2
when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1:

• All encodings of the IT instruction with
hw1[3:0]!=1000.

• All encodings of the subsequent
instruction with the following values for
hw1:

– 0b11xxxxxxxxxxxxxx: All 32-bit
instructions, and the 16-bit
instructions B, UDF, SVC, LDM,
and STM.

– 0b1011xxxxxxxxxxxx: All
instructions in
‘Miscellaneous 16-bit instructions’.

– 0b10100xxxxxxxxxxx: ADD Rd,
PC, #imm

– 0b01001xxxxxxxxxxx: LDR Rd,
[PC, #imm]

– 0b0100x1xxx1111xxx: ADD Rdn,
PC; CMP Rn, PC; MOV Rd, PC; BX
PC; BLX PC.

– 0b010001xx1xxxx111: ADD PC,
Rm; CMP PC, Rm; MOV PC, Rm.
This pattern also covers
unpredictable cases with BLX Rn.

These instructions are always UNDEFINED,
regardless of whether they would pass or fail the
condition code check that applies to them as a
result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT
instruction is treated as:

• A 16-bit instruction, that can only be
followed by another 16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are
UNDEFINED, either the second 16-bit instruction
or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to
whether IT is treated as a 16-bit instruction or
the first half of a 32-bit instruction.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1040

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information, see Changes to an ITD control by an instruction in an IT
block .

ITD is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the SCTLR_EL2,
HSCTLR, and SCTLR.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

Otherwise:

RES1

nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL1 and EL0 under certain conditions.

The following instructions generate an Alignment fault if all bytes being accessed are not within a single 16-byte
quantity, aligned to 16 bytes for access:

• LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH.

• STLLR, STLLRH, STLR, STLRH, STLUR, and STLURH.

nAA Meaning

0b0 Unaligned accesses by the specified instructions
generate an Alignment fault.

0b1 This control does not generate Alignment faults.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

CP15BEN, bit [5]

When EL0 is capable of using AArch32:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in
the (coproc==0b1111) encoding space from EL0:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1041

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CP15BEN Meaning

0b0 EL0 using AArch32: EL0 execution of the
CP15DMB, CP15DSB, and CP15ISB
instructions is UNDEFINED and generates an
exception to EL1, or to EL2 when it is
implemented and enabled for the current
Security state and HCR_EL2.TGE is 1. The
exception is reported using an ESR_ELx.EC
value of 0x00.

0b1 EL0 using AArch32: EL0 execution of the
CP15DMB, CP15DSB, and CP15ISB
instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL1 then it must also be implemented in the
SCTLR_EL2, HSCTLR, and SCTLR.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement CP15BEN, access to this field is RAO/WI.

Otherwise:

RES0

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as
the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated.
For more information, see ‘SP alignment checking’.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For
more information, see ‘SP alignment checking’.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the
PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Stage 1 Cacheability control, for data accesses.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1042

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

C Meaning

0b0 All data access to Stage 1 Normal memory from
EL0 and EL1, and all Normal memory accesses
from unified cache to the EL1&0 Stage 1
translation tables, are treated as Stage 1
Non-cacheable.

0b1 This control has no effect on the Stage 1
Cacheability of:

• Data access to Normal memory from EL0
and EL1.

• Normal memory accesses to the EL1&0
Stage 1 translation tables.

When the Effective value of the HCR_EL2.DC bit in the current Security state is 1, the PE ignores SCTLR_EL1.C.
This means that EL0 and EL1 data accesses to Normal memory are Cacheable.

When FEAT_VHE is implemented, and the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no
effect on the PE.

The reset behavior of this field is:

• On a Warm reset:
– When EL2 is not implemented and EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0.

A Meaning

0b0 Alignment fault checking disabled when
executing at EL1 or EL0.
Instructions that load or store one or more
registers, other than load/store exclusive and
load-acquire/store-release, do not check that the
address being accessed is aligned to the size of
the data element(s) being accessed.

0b1 Alignment fault checking enabled when
executing at EL1 or EL0.
All instructions that load or store one or more
registers have an alignment check that the
address being accessed is aligned to the size of
the data element(s) being accessed. If this check
fails it causes an Alignment fault, which is taken
as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

If FEAT_MOPS is implemented, SETG* instructions have an alignment check regardless of the value of the A bit.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1043

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on
execution at EL0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL1&0 stage 1 address translation.

M Meaning

0b0 EL1&0 stage 1 address translation disabled.
See the SCTLR_EL1.I field for the behavior of
instruction accesses to Normal memory.

0b1 EL1&0 stage 1 address translation enabled.

If the Effective value of HCR_EL2.{DC, TGE} in the current Security state is not {0, 0} then the PE behaves as if
the value of the SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read of the field.

When FEAT_VHE is implemented, and the Effective value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no
effect on the PE.

The reset behavior of this field is:

• On a Warm reset:
– When EL2 is not implemented and EL3 is not implemented, this field resets to 0b0.
– Otherwise, this field resets to an architecturally UNKNOWN value.

Accessing SCTLR_EL1

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1
or SCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TRVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGRTR_EL2.SCTLR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 X[t, 64] = NVMem[0x110];

10 else
11 X[t, 64] = SCTLR_EL1;
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1044

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

14 X[t, 64] = SCTLR_EL2;
15 else
16 X[t, 64] = SCTLR_EL1;
17 elsif PSTATE.EL == EL3 then
18 X[t, 64] = SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 NVMem[0x110] = X[t, 64];

10 else
11 SCTLR_EL1 = X[t, 64];
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 SCTLR_EL2 = X[t, 64];
15 else
16 SCTLR_EL1 = X[t, 64];
17 elsif PSTATE.EL == EL3 then
18 SCTLR_EL1 = X[t, 64];

MRS <Xt>, SCTLR_EL12

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 X[t, 64] = NVMem[0x110];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 X[t, 64] = SCTLR_EL1;
13 else
14 UNDEFINED;
15 elsif PSTATE.EL == EL3 then
16 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
17 X[t, 64] = SCTLR_EL1;
18 else
19 UNDEFINED;

MSR SCTLR_EL12, <Xt>

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1045

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

op0 op1 CRn CRm op2

0b11 0b101 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then
5 NVMem[0x110] = X[t, 64];
6 elsif EL2Enabled() && HCR_EL2.NV == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 else
9 UNDEFINED;

10 elsif PSTATE.EL == EL2 then
11 if HCR_EL2.E2H == '1' then
12 SCTLR_EL1 = X[t, 64];
13 else
14 UNDEFINED;
15 elsif PSTATE.EL == EL3 then
16 if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
17 SCTLR_EL1 = X[t, 64];
18 else
19 UNDEFINED;

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1046

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.17 SCTLR_EL2, System Control Register (EL2)

The SCTLR_EL2 characteristics are:

Purpose

Provides top level control of the system, including its memory system, at EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls
apply also to execution at EL0.

Configuration

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

AArch64 system register SCTLR_EL2 bits [31:0] are architecturally mapped to AArch32 system
register HSCTLR[31:0].

Attributes

SCTLR_EL2 is a 64-bit register.

Field descriptions

The SCTLR_EL2 bit assignments are:

63 62 61 60

RES0

59 58 57 56 55 54 53 52 51 50

TWEDEL

49 46 45 44 43 42

TCF

41 40

TCF0

39 38 37

BT

36 35 34 33 32

TIDCP
SPINTMASK

NMI
EnTP2

EPAN
EnALS

EnAS0
EnASR

TME
TME0

CMOW
MSCEn

RES0
BT0

ITFSB
ATA0

ATA
DSSBS

TWEDEn
TMT0

TMT
31 30 29 28 27 26

EE

25 24 23 22 21 20 19 18 17 16 15 14 13

I

12 11 10 9 8 7 6 5 4

SA

3

C

2

A

1

M

0

EnIA
EnIB
LSMAOE

nTLSMD
EnDA

UCI
E0E
SPAN

EIS
IESB
TSCXT

WXN
nTWE

SA0
CP15BEN

nAA
ITD

SED
RES0

EnRCTX
EOS

EnDB
DZE

UCT
nTWI

RES0

TIDCP, bit [63]

When FEAT_TIDCP1 is implemented and HCR_EL2.E2H == 1:

Trap IMPLEMENTATION DEFINED functionality. Traps EL0 accesses to the encodings reserved for IMPLEMENTA-
TION DEFINED functionality to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1047

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

TIDCP Meaning

0b0 No instructions accessing the System register or
System instruction spaces are trapped by this
mechanism.

0b1 If HCR_EL2.TGE==0, no instructions accessing
the System register or System instruction spaces
are trapped by this mechanism.
If HCR_EL2.TGE==1, instructions accessing
the following System register or System
instruction spaces are trapped to EL2 by this
mechanism:

• In AArch64 state, EL0 access to the
encodings in the following reserved
encoding spaces are trapped and reported
using EC syndrome 0x18:

– IMPLEMENTATION DEFINED System
instructions, which are accessed
using SYS and SYSL, with CRn ==
{11, 15}.

– IMPLEMENTATION DEFINED System
registers, which are accessed using
MRS and MSR with the
S3_<op1>_<Cn>_<Cm>_<op2>
register name.

• In AArch32 state, EL0 MCR and MRC
access to the following encodings are
trapped and reported using EC syndrome
0x03:

– All coproc==p15, CRn==c9, opc1
== {0-7}, CRm == {c0-c2, c5-c8},
opc2 == {0-7}.

– All coproc==p15, CRn==c10, opc1
=={0-7}, CRm == {c0, c1, c4, c8},
opc2 == {0-7}.

– All coproc==p15, CRn==c11,
opc1=={0-7}, CRm == {c0-c8, c15},
opc2 == {0-7}.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

SPINTMASK, bit [62]

When FEAT_NMI is implemented:

SP Interrupt Mask enable. When SCTLR_EL2.NMI is 1, controls whether PSTATE.SP acts as an interrupt mask,
and controls the value of PSTATE.ALLINT on taking an exception to EL2.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1048

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

SPINTMASK Meaning

0b0 Does not cause PSTATE.SP to mask interrupts.
PSTATE.ALLINT is set to 1 on taking an
exception to EL2.

0b1 When PSTATE.SP is 1 and execution is at EL2,
an IRQ or FIQ interrupt that is targeted to EL2 is
masked regardless of any denotion of
Superpriority.
PSTATE.ALLINT is set to 0 on taking an
exception to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

NMI, bit [61]

When FEAT_NMI is implemented:

Non-maskable Interrupt enable.

NMI Meaning

0b0 This control does not affect interrupt masking
behavior.

0b1 This control enables all of the following:
• The use of the PSTATE.ALLINT interrupt

mask.
• IRQ and FIQ interrupts to have

Superpriority as an additional attribute.
• PSTATE.SP to be used as an interrupt

mask.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

Otherwise:

RES0

EnTP2, bit [60]

When FEAT_SME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EnTP2, bit [60]

Traps instructions executed at EL0 that access TPIDR2_EL0 to EL2 when EL2 is implemented and enabled for
the current Security state. The exception is reported using ESR_ELx.EC value 0x18.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1049

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnTP2 Meaning

0b0 This control causes execution of these
instructions at EL0 to be trapped.

0b1 This control does not cause execution of any
instructions to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

EnTP2, bit [60]

IGNORED.

Otherwise:

RES0

Bits [59:58]

Reserved, RES0.

EPAN, bit [57]

When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EPAN, bit [57]

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL2 data access to a page
with EL0 instruction access permission generates a Permission fault as a result of the Privileged Access Never
mechanism.

EPAN Meaning

0b0 No additional Permission faults are generated by
this mechanism.

0b1 An EL2 data access to a page with stage 1 EL0
data access permission or stage 1 EL0 instruction
access permission generates a Permission fault.
Any speculative data accesses that would
generate a Permission fault as a result of
PSTATE.PAN = 1 if the accesses were not
speculative, will not cause an allocation into a
cache.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1050

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EPAN, bit [57]

IGNORED.

Otherwise:

RES0

EnALS, bit [56]

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EnALS, bit [56]

Traps execution of an LD64B or ST64B instruction at EL0 to EL2.

EnALS Meaning

0b0 Execution of an LD64B or ST64B instruction at
EL0 is trapped to EL2.

0b1 This control does not cause any instructions to
be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

EnALS, bit [56]

IGNORED.

Otherwise:

RES0

EnAS0, bit [55]

When FEAT_LS64_ACCDATA is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EnAS0, bit [55]

Traps execution of an ST64BV0 instruction at EL0 to EL2.

EnAS0 Meaning

0b0 Execution of an ST64BV0 instruction at EL0 is
trapped to EL2.

0b1 This control does not cause any instructions to
be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

The reset behavior of this field is:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1051

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64_ACCDATA is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

EnAS0, bit [55]

IGNORED.

Otherwise:

RES0

EnASR, bit [54]

When FEAT_LS64_V is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EnASR, bit [54]

Traps execution of an ST64BV instruction at EL0 to EL2.

EnASR Meaning

0b0 Execution of an ST64BV instruction at EL0 is
trapped to EL2.

0b1 This control does not cause any instructions to
be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64_V is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

EnASR, bit [54]

IGNORED.

Otherwise:

RES0

TME, bit [53]

When FEAT_TME is implemented:

Enables the Transactional Memory Extension at EL2.

TME Meaning

0b0 Any attempt to execute a TSTART instruction at
EL2 is trapped, unless HCR_EL2.TME or
SCR_EL3.TME causes TSTART instructions to
be UNDEFINED at EL2.

0b1 This control does not cause any TSTART
instruction to be trapped.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1052

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TME0, bit [52]

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

TME0, bit [52]

Enables the Transactional Memory Extension at EL0.

TME0 Meaning

0b0 Any attempt to execute a TSTART instruction at
EL0 is trapped to EL2, unless HCR_EL2.TME
or SCR_EL3.TME causes TSTART instructions
to be UNDEFINED at EL0.

0b1 This control does not cause any TSTART
instruction to be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

TME0, bit [52]

IGNORED.

Otherwise:

RES0

TMT, bit [51]

When FEAT_TME is implemented:

Forces a trivial implementation of the Transactional Memory Extension at EL2.

TMT Meaning

0b0 This control does not cause any TSTART
instruction to fail.

0b1 When the TSTART instruction is executed at
EL2, the transaction fails with a TRIVIAL
failure cause.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1053

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

TMT0, bit [50]

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

TMT0, bit [50]

Forces a trivial implementation of the Transactional Memory Extension at EL0.

TMT0 Meaning

0b0 This control does not cause any TSTART
instruction to fail.

0b1 When the TSTART instruction is executed at
EL0, the transaction fails with a TRIVIAL
failure cause.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TME is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

TMT0, bit [50]

IGNORED.

Otherwise:

RES0

TWEDEL, bits [49:46]

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

TWEDEL, bits [3:0] of bits [49:46]

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL2.TWEDEn is 1, encodes the minimum delay in
taking a trap of WFE caused by SCTLR_EL2.nTWE as 2(TWEDEL + 8) cycles.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

TWEDEL, bits [3:0] of bits [49:46]

IGNORED.

Otherwise:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1054

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

TWEDEn, bit [45]

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

TWEDEn, bit [45]

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCTLR_EL2.nTWE.

TWEDEn Meaning

0b0 The delay for taking a WFE trap is
IMPLEMENTATION DEFINED.

0b1 The delay for taking a WFE trap is at least the
number of cycles defined in
SCTLR_EL2.TWEDEL.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

TWEDEn, bit [45]

IGNORED.

Otherwise:

RES0

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning

0b0 PSTATE.SSBS is set to 0 on an exception to
EL2.

0b1 PSTATE.SSBS is set to 1 on an exception to
EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

RES0

ATA, bit [43]

When FEAT_MTE2 is implemented:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1055

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

Allocation Tag Access in EL2.

When SCR_EL3.ATA is 1, controls access to Allocation Tags and Tag Check operations in EL2.

ATA Meaning

0b0 Access to Allocation Tags is prevented at EL2.
Memory accesses at EL2 are not subject to a Tag
Check operation.

0b1 This control does not prevent access to
Allocation Tags at EL2.
Tag Checked memory accesses at EL2 are
subject to a Tag Check operation.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

ATA0, bit [42]

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

ATA0, bit [42]

Allocation Tag Access in EL0.

When SCR_EL3.ATA is 1, controls access to Allocation Tags and Tag Check operations in EL0.

ATA0 Meaning

0b0 Access to Allocation Tags is prevented at EL0.
Memory accesses at EL0 are not subject to a Tag
Check operation.

0b1 This control does not prevent access to
Allocation Tags at EL0.
Tag Checked memory accesses at EL0 are
subject to a Tag Check operation.

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

ATA0, bit [42]

IGNORED.

Otherwise:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1056

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES0

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL2. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

TCF Meaning Applies

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous
exception.

0b10 Tag Check Faults are asynchronously
accumulated.

0b11 Tag Check Faults cause a synchronous
exception on reads, and are asynchronously
accumulated on writes.

When FEAT_MTE3 is
implemented

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TCF0, bits [39:38]

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

TCF0, bits [1:0] of bits [39:38]

Tag Check Fault in EL0. Controls the effect of Tag Check Faults due to Loads and Stores in EL0.

TCF0 Meaning Applies

0b00 Tag Check Faults have no effect on the PE.

0b01 Tag Check Faults cause a synchronous
exception.

0b10 Tag Check Faults are asynchronously
accumulated.

0b11 Tag Check Faults cause a synchronous
exception on reads, and are asynchronously
accumulated on writes.

When FEAT_MTE3 is
implemented

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Software may change this control bit on a context switch.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1057

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

TCF0, bits [1:0] of bits [39:38]

IGNORED.

Otherwise:

RES0

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on
exception entry into EL2, all Tag Check Faults due to instructions executed before exception entry, that are reported
asynchronously, are synchronized into TFSRE0_EL1, TFSR_EL1 and TFSR_EL2 registers.

ITFSB Meaning

0b0 Tag Check Faults are not synchronized on entry
to EL2.

0b1 Tag Check Faults are synchronized on entry to
EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

BT, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL2.

When HCR_EL2.{E2H, TGE} == {1, 1}, this bit is named BT1.

BT Meaning

0b0 When the PE is executing at EL2, PACIASP and
PACIBSP are compatible with PSTATE.BTYPE
== 0b11.

0b1 When the PE is executing at EL2, PACIASP and
PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1058

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

BT0, bit [35]

When FEAT_BTI is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

BT0, bit [35]

PAC Branch Type compatibility at EL0.

BT0 Meaning

0b0 When the PE is executing at EL0, PACIASP and
PACIBSP are compatible with PSTATE.BTYPE
== 0b11.

0b1 When the PE is executing at EL0, PACIASP and
PACIBSP are not compatible with
PSTATE.BTYPE == 0b11.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_BTI is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

BT0, bit [35]

IGNORED.

Otherwise:

RES0

Bit [34]

Reserved, RES0.

MSCEn, bit [33]

When FEAT_MOPS is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

MSCEn, bit [33]

Memory Copy and Memory Set instructions Enable. Enables execution of the Memory Copy and Memory Set
instructions at EL0.

MSCEn Meaning

0b0 Execution of the Memory Copy and Memory Set
instructions is UNDEFINED at EL0.

0b1 This control does not cause any instructions to
be UNDEFINED.

When FEAT_MOPS is implemented and HCR_EL2.{E2H, TGE} is not {1, 1}, the Effective value of this bit is
0b1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1059

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

When FEAT_MOPS is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

MSCEn, bit [33]

IGNORED.

Otherwise:

RES0

CMOW, bit [32]

When FEAT_CMOW is implemented and HCR_EL2.E2H == 1:

Controls cache maintenance instruction permission for the following instructions executed at EL0.

• IC IVAU, DC CIVAC, DC CIGDVAC and DC CIGVAC.

CMOW Meaning

0b0 These instructions executed at EL0 with stage 1
read permission, but without stage 1 write
permission, do not generate a stage 1 permission
fault.

0b1 If enabled as a result of SCTLR_EL2.UCI==1,
these instructions executed at EL0 with stage 1
read permission, but without stage 1 write
permission, generate a stage 1 permission fault.

When HCR_EL2.TGE is 0, this bit has no effect on execution at EL0.

For this control, stage 1 has write permission if all of the following apply:

• AP[2] is 0 or DBM is 1 in the stage 1 descriptor.
• Where APTable is in use, APTable[1] is 0 for all levels of the translation table.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see System register control of pointer authentication .

EnIA Meaning

0b0 Pointer authentication (using the APIAKey_EL1
key) of instruction addresses is not enabled.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1060

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnIA Meaning

0b1 Pointer authentication (using the APIAKey_EL1
key) of instruction addresses is enabled.

This field controls the behavior of the AddPACIA and AuthIA pseudocode functions. Specifically, when the field
is 1, AddPACIA returns a copy of a pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see System register control of pointer authentication .

EnIB Meaning

0b0 Pointer authentication (using the APIBKey_EL1
key) of instruction addresses is not enabled.

0b1 Pointer authentication (using the APIBKey_EL1
key) of instruction addresses is enabled.

This field controls the behavior of the AddPACIB and AuthIB pseudocode functions. Specifically, when the field
is 1, AddPACIB returns a copy of a pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

LSMAOE, bit [29]

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

LSMAOE, bit [29]

Load Multiple and Store Multiple Atomicity and Ordering Enable.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1061

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

LSMAOE Meaning

0b0 For all memory accesses at EL0, A32 and T32
Load Multiple and Store Multiple can have an
interrupt taken during the sequence memory
accesses, and the memory accesses are not
required to be ordered.

0b1 The ordering and interrupt behavior of A32 and
T32 Load Multiple and Store Multiple at EL0 is
as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

LSMAOE, bit [29]

IGNORED.

Otherwise:

RES1

nTLSMD, bit [28]

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

nTLSMD, bit [28]

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning

0b0 All memory accesses by A32 and T32 Load
Multiple and Store Multiple at EL0 that are
marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are trapped and generate a stage 1
Alignment fault.

0b1 All memory accesses by A32 and T32 Load
Multiple and Store Multiple at EL0 that are
marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE
memory are not trapped.

This bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1062

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

nTLSMD, bit [28]

IGNORED.

Otherwise:

RES1

EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see System register control of pointer authentication .

EnDA Meaning

0b0 Pointer authentication (using the APDAKey_EL1
key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDAKey_EL1
key) of data addresses is enabled.

This field controls the behavior of the AddPACDA and AuthDA pseudocode functions. Specifically, when the field
is 1, AddPACDA returns a copy of a pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

UCI, bit [26]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

UCI, bit [26]

Traps execution of cache maintenance instructions at EL0 to EL2, from AArch64 state only. This applies to
DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTE is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC CGDVAC,
DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTE are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

UCI Meaning

0b0 Any attempt to execute an instruction that this
trap applies to at EL0 using AArch64 is trapped
to EL2.

0b1 This control does not cause any instructions to
be trapped.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1063

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution
of any data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency
can be trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution
of any data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of
this control is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the
execution of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the
value of this control is 1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

UCI, bit [26]

IGNORED.

Otherwise:

RES0

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and
stage 2 translation table walks in the EL1&0 translation regime.

EE Meaning

0b0 Explicit data accesses at EL2, stage 1 translation
table walks in the EL2 or EL2&0 translation
regime, and stage 2 translation table walks in the
EL1&0 translation regime are little-endian.

0b1 Explicit data accesses at EL2, stage 1 translation
table walks in the EL2 or EL2&0 translation
regime, and stage 2 translation table walks in the
EL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

E0E, bit [24]

Endianness of data accesses at EL0.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1064

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E0E Meaning

0b0 Explicit data accesses at EL0 are little-endian.

0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0, then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0, then this bit is RES1. This option is not permitted
when SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at
EL1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

E0E, bit [24]

IGNORED.

Otherwise:

RES0

SPAN, bit [23]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

SPAN, bit [23]

Set Privileged Access Never, on taking an exception to EL2.

SPAN Meaning

0b0 PSTATE.PAN is set to 1 on taking an exception
to EL2.

0b1 The value of PSTATE.PAN is left unchanged on
taking an exception to EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

SPAN, bit [23]

IGNORED.

Otherwise:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1065

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES1

EIS, bit [22]

When FEAT_ExS is implemented:

Exception entry is a context synchronization event.

EIS Meaning

0b0 The taking of an exception to EL2 is not a
context synchronization event.

0b1 The taking of an exception to EL2 is a context
synchronization event.

If SCTLR_EL2.EIS is set to 0b0:

• Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, and HPFAR_EL2 are synchronized on
exception entry to EL2, so that a direct read of the register after exception entry sees the indirectly written
value caused by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:

• Changes to the PSTATE information on entry to EL2.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and

data processing instructions.
• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

IESB, bit [21]

When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

IESB Meaning

0b0 Disabled.

0b1 An implicit error synchronization event is added:
• At each exception taken to EL2.
• Before the operational pseudocode of each
ERET instruction executed at EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1066

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

might be 0 or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error
synchronization event is added after each DCPSX instruction taken to EL2 and before each DRPS instruction executed
at EL2, in addition to the other cases where it is added.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

TSCXT, bit [20]

When (FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented), HCR_EL2.E2H == 1 and
HCR_EL2.TGE == 1

TSCXT, bit [20]

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

TSCXT Meaning

0b0 EL0 access to SCXTNUM_EL0 is not disabled
by this mechanism.

0b1 EL0 access to SCXTNUM_EL0 is disabled,
causing an exception to EL2, and the
SCXTNUM_EL0 value is treated as 0.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_CSV2_2 is not implemented, FEAT_CSV2_1p2 is not implemented, HCR_EL2.E2H == 1 and
HCR_EL2.TGE == 1

Bit [0]

Reserved, RES1.

When (FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2 is implemented), HCR_EL2.E2H == 1 and
HCR_EL2.TGE == 0

TSCXT, bit [20]

IGNORED.

Otherwise:

RES0

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all
memory regions that are writable to be treated as XN.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1067

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

WXN Meaning

0b0 This control has no effect on memory access
permissions.

0b1 Any region that is writable in the EL2 or EL2&0
translation regime is forced to XN for accesses
from software executing at EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

nTWE, bit [18]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

nTWE, bit [18]

Traps execution of WFE instructions at EL0 to EL2, from both Execution states.

nTWE Meaning

0b0 Any attempt to execute a WFE instruction at
EL0 is trapped to EL2, if the instruction would
otherwise have caused the PE to enter a
low-power state.

0b1 This control does not cause any instructions to
be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

nTWE, bit [18]

IGNORED.

Otherwise:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1068

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

RES1

Bit [17]

Reserved, RES0.

nTWI, bit [16]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

nTWI, bit [16]

Traps execution of WFI instructions at EL0 to EL2, from both Execution states.

nTWI Meaning

0b0 Any attempt to execute a WFI instruction at EL0
is trapped EL2, if the instruction would
otherwise have caused the PE to enter a
low-power state.

0b1 This control does not cause any instructions to
be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes
its condition code check.

Since a WFE or WFI can complete at any time, even without a Wakeup event, the traps on WFE of WFI are not
guaranteed to be taken, even if the WFE or WFI is executed when there is no Wakeup event. The only guarantee is
that if the instruction does not complete in finite time in the absence of a Wakeup event, the trap will be taken.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

nTWI, bit [16]

IGNORED.

Otherwise:

RES1

UCT, bit [15]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

UCT Meaning

0b0 Accesses to the CTR_EL0 from EL0 using
AArch64 are trapped to EL2.

0b1 This control does not cause any instructions to
be trapped.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1069

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

UCT, bit [15]

IGNORED.

Otherwise:

RES0

DZE, bit [14]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

DZE, bit [14]

Traps execution of DC ZVA instructions at EL0 to EL2, from AArch64 state only.

If FEAT_MTE is implemented, this trap also applies to DC GVA and DC GZVA.

DZE Meaning

0b0 Any attempt to execute an instruction that this
trap applies to at EL0 using AArch64 is trapped
to EL2. Reading DCZID_EL0.DZP from EL0
returns 1, indicating that the instructions that this
trap applies to are not supported.

0b1 This control does not cause any instructions to
be trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

DZE, bit [14]

IGNORED.

Otherwise:

RES0

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see System register control of pointer authentication .

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1070

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

EnDB Meaning

0b0 Pointer authentication (using the APDBKey_EL1
key) of data addresses is not enabled.

0b1 Pointer authentication (using the APDBKey_EL1
key) of data addresses is enabled.

This field controls the behavior of the AddPACDB and AuthDB pseudocode functions. Specifically, when the field
is 1, AddPACDB returns a copy of a pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these functions are NOP.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current Security state
and HCR_EL2.{E2H,TGE} == {1,1}, EL0.

I Meaning

0b0 All instruction accesses to Normal memory from
EL2 are Non-cacheable for all levels of
instruction and unified cache.
When EL2 is enabled in the current Security
state and HCR_EL2.{E2H, TGE} == {1, 1}, all
instruction accesses to Normal memory from
EL0 are Non-cacheable for all levels of
instruction and unified cache.
If SCTLR_EL2.M is 0, instruction accesses from
stage 1 of the EL2 or EL2&0 translation regime
are to Normal, Outer Shareable, Inner
Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of
instruction access to Normal memory from EL2
and, when EL2 is enabled in the current Security
state and HCR_EL2.{E2H, TGE} == {1, 1},
instruction access to Normal memory from EL0.
If the value of SCTLR_EL2.M is 0, instruction
accesses from stage 1 of the EL2 or EL2&0
translation regime are to Normal, Outer
Shareable, Inner Write-Through, Outer
Write-Through memory.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H,TGE} != {1,1}, this bit has no effect on the
EL1&0 translation regime.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1071

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

EOS, bit [11]

When FEAT_ExS is implemented:

Exception exit is a context synchronization event.

EOS Meaning

0b0 An exception return from EL2 is not a context
synchronization event.

0b1 An exception return from EL2 is a context
synchronization event.

If SCTLR_EL2.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and
data processing instructions.

• Exit from Debug state.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

EnRCTX, bit [10]

When FEAT_SPECRES is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

EnRCTX, bit [10]

Enable EL0 access to the following System instructions:

• CFPRCTX, DVPRCTX and CPPRCTX instructions.

• CFP RCTX, DVP RCTX and CPP RCTX instructions.

EnRCTX Meaning

0b0 EL0 access to these instructions is disabled, and
these instructions are trapped to EL1.

0b1 EL0 access to these instructions is enabled.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1072

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SPECRES is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

EnRCTX, bit [10]

IGNORED.

Otherwise:

RES0

Bit [9]

Reserved, RES0.

SED, bit [8]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning

0b0 SETEND instruction execution is enabled at EL0
using AArch32.

0b1 SETEND instructions are UNDEFINED at EL0
using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

Bit [0]

Reserved, RES1.

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

SED, bit [8]

IGNORED.

Otherwise:

RES0

ITD, bit [7]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1073

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

ITD Meaning

0b0 All IT instruction functionality is enabled at EL0
using AArch32.

0b1 Any attempt at EL0 using AArch32 to execute
any of the following is UNDEFINED:

• All encodings of the IT instruction with
hw1[3:0]!=1000.

• All encodings of the subsequent
instruction with the following values for
hw1:

– 0b11xxxxxxxxxxxxxx: All 32-bit
instructions, and the 16-bit
instructions B, UDF, SVC, LDM,
and STM.

– 0b1011xxxxxxxxxxxx: All
instructions in
‘Miscellaneous 16-bit instructions’.

– 0b10100xxxxxxxxxxx: ADD Rd,
PC, #imm

– 0b01001xxxxxxxxxxx: LDR Rd,
[PC, #imm]

– 0b0100x1xxx1111xxx: ADD Rdn,
PC; CMP Rn, PC; MOV Rd, PC; BX
PC; BLX PC.

– 0b010001xx1xxxx111: ADD PC,
Rm; CMP PC, Rm; MOV PC, Rm.
This pattern also covers
UNPREDICTABLE cases with BLX
Rn.

These instructions are always UNDEFINED,
regardless of whether they would pass or fail the
condition code check that applies to them as a
result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT
instruction is treated as:

• A 16-bit instruction, that can only be
followed by another 16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are
UNDEFINED, either the second 16-bit instruction
or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to
whether IT is treated as a 16-bit instruction or
the first half of a 32-bit instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see Changes to an ITD control by an instruction in an IT
block .

ITD is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the SCTLR_EL1,
HSCTLR, and SCTLR.

The reset behavior of this field is:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1074

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When an implementation does not implement ITD, access to this field is RAZ/WI.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

Bit [0]

Reserved, RES1.

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

ITD, bit [7]

IGNORED.

Otherwise:

RES0

nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults under certain conditions at EL2, and, when
EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE} == {1, 1}, EL0.

The following instructions generate an Alignment fault if all bytes being accessed are not within a single 16-byte
quantity, aligned to 16 bytes for access:

• LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH.

• STLLR, STLLRH, STLR, STLRH, STLUR, and STLURH

nAA Meaning

0b0 Unaligned accesses by the specified instructions
generate an Alignment fault.

0b1 Unaligned accesses by the specified instructions
do not generate an Alignment fault.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES0

CP15BEN, bit [5]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in
the (coproc==0b1111) encoding space from EL0:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1075

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

CP15BEN Meaning

0b0 EL0 using AArch32: EL0 execution of the
CP15DMB, CP15DSB, and CP15ISB
instructions is UNDEFINED.

0b1 EL0 using AArch32: EL0 execution of the
CP15DMB, CP15DSB, and CP15ISB
instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR_EL2 then it must also be implemented in the
SCTLR_EL1, HSCTLR, and SCTLR.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

When EL0 can only use AArch64, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1

Bit [0]

Reserved, RES0.

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 0

CP15BEN, bit [5]

IGNORED.

Otherwise:

RES1

SA0, bit [4]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as
the base address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated.
For more information, see ‘SP alignment checking’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

RES1

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then an SP alignment fault exception is generated. For
more information, see ‘SP alignment checking’.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1076

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

C, bit [2]

Data access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, EL0

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1077

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

C Meaning

0b0 The following are Non-cacheable for all levels of
data and unified cache:

• Data accesses to Normal memory from
EL2.

• When HCR_EL2.{E2H, TGE} != {1, 1},
Normal memory accesses to the EL2
translation tables.

• When EL2 is enabled in the current
Security state and HCR_EL2.{E2H, TGE}
== {1, 1}:

– Data accesses to Normal memory
from EL0.

– Normal memory accesses to the
EL2&0 translation tables.

0b1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL2.
• When HCR_EL2.{E2H, TGE} != {1, 1},

Normal memory accesses to the EL2
translation tables.

• When EL2 is enabled in the current
Security state and HCR_EL2.{E2H, TGE}
== {1, 1}:

– Data accesses to Normal memory
from EL0.

– Normal memory accesses to the
EL2&0 translation tables.

This bit has no effect on the EL3 translation regime.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H, TGE} != {1, 1}, this bit has no effect on
the EL1&0 translation regime.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0b0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and, when EL2 is enabled in
the current Security state and HCR_EL2.{E2H, TGE} == {1, 1}, EL0.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1078

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

A Meaning

0b0 Alignment fault checking disabled when
executing at EL2.
When EL2 is enabled in the current Security
state and HCR_EL2.{E2H, TGE} == {1, 1},
alignment fault checking disabled when
executing at EL0.
Instructions that load or store one or more
registers, other than load/store exclusive and
load-acquire/store-release, do not check that the
address being accessed is aligned to the size of
the data element(s) being accessed.

0b1 Alignment fault checking enabled when
executing at EL2.
When EL2 is enabled in the current Security
state and HCR_EL2.{E2H, TGE} == {1, 1},
alignment fault checking enabled when
executing at EL0.
All instructions that load or store one or more
registers have an alignment check that the
address being accessed is aligned to the size of
the data element(s) being accessed. If this check
fails it causes an Alignment fault, which is taken
as a Data Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

If FEAT_MOPS is implemented, SETG* instructions have an alignment check regardless of the value of the A bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2 or EL2&0 stage 1 address translation.

M Meaning

0b0 When HCR_EL2.{E2H, TGE} != {1, 1}, EL2
stage 1 address translation disabled.
When HCR_EL2.{E2H, TGE} == {1, 1},
EL2&0 stage 1 address translation disabled.
See the SCTLR_EL2.I field for the behavior of
instruction accesses to Normal memory.

0b1 When HCR_EL2.{E2H, TGE} != {1, 1}, EL2
stage 1 address translation enabled.
When HCR_EL2.{E2H, TGE} == {1, 1},
EL2&0 stage 1 address translation enabled.

The reset behavior of this field is:

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1079

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

• On a Warm reset, this field resets to 0b0.

Accessing SCTLR_EL2

When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2
or SCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, SCTLR_EL2

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 X[t, 64] = SCTLR_EL2;

10 elsif PSTATE.EL == EL3 then
11 X[t, 64] = SCTLR_EL2;

MSR SCTLR_EL2, <Xt>

op0 op1 CRn CRm op2

0b11 0b100 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.NV == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 else
7 UNDEFINED;
8 elsif PSTATE.EL == EL2 then
9 SCTLR_EL2 = X[t, 64];

10 elsif PSTATE.EL == EL3 then
11 SCTLR_EL2 = X[t, 64];

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TRVM == '1' then

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1080

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGRTR_EL2.SCTLR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 X[t, 64] = NVMem[0x110];

10 else
11 X[t, 64] = SCTLR_EL1;
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 X[t, 64] = SCTLR_EL2;
15 else
16 X[t, 64] = SCTLR_EL1;
17 elsif PSTATE.EL == EL3 then
18 X[t, 64] = SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2

0b11 0b000 0b0001 0b0000 0b000

1 if PSTATE.EL == EL0 then
2 UNDEFINED;
3 elsif PSTATE.EL == EL1 then
4 if EL2Enabled() && HCR_EL2.TVM == '1' then
5 AArch64.SystemAccessTrap(EL2, 0x18);
6 elsif EL2Enabled() && IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) || SCR_EL3.FGTEn

↪→== '1') && HFGWTR_EL2.SCTLR_EL1 == '1' then
7 AArch64.SystemAccessTrap(EL2, 0x18);
8 elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
9 NVMem[0x110] = X[t, 64];

10 else
11 SCTLR_EL1 = X[t, 64];
12 elsif PSTATE.EL == EL2 then
13 if HCR_EL2.E2H == '1' then
14 SCTLR_EL2 = X[t, 64];
15 else
16 SCTLR_EL1 = X[t, 64];
17 elsif PSTATE.EL == EL3 then
18 SCTLR_EL1 = X[t, 64];

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1081

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

E3.2.18 EDDEVID1, External Debug Device ID register 1

The EDDEVID1 characteristics are:

Purpose

Provides extra information for external debuggers about features of the debug implementation.

Attributes

EDDEVID1 is a 32-bit register.

Field descriptions

The EDDEVID1 bit assignments are:

RES0

31 8

HSR

7 4 3 0

PCSROffset

Bits [31:8]

Reserved, RES0.

HSR, bits [7:4]

Indicates support for the External Debug Halt Status Register, EDHSR. Defined values are:

HSR Meaning

0b0000 EDHSR not implemented, and the PE follows
behaviors consistent with all of the EDHSR
fields having a zero value.

0b0001 EDHSR implemented.

All other values are reserved.

When FEAT_Debugv8p2 is not implemented, the only permitted value is 0b0000.

PCSROffset, bits [3:0]

Indicates the offset applied to PC samples returned by reads of EDPCSR. Permitted values of this field in Armv8
are:

PCSROffset Meaning

0b0000 EDPCSR not implemented.

0b0010 EDPCSR implemented, and samples have no
offset applied and do not sample the instruction
set state in AArch32 state.

When FEAT_PCSRv8p2 is implemented, the only permitted value is 0b0000.

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the Performance Monitors register

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1082

Chapter E3. System registers affected by SME
E3.2. Changes to existing System registers

space, as indicated by the value of PMU.PMDEVID.PCSample.

Accessing EDDEVID1

Accesses to this register use the following encodings in the external debug interface:

EDDEVID1 can be accessed through the external debug interface:

Component Offset Instance

Debug 0xFC4 EDDEVID1

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() access to this register is RO.
• Otherwise access to this register returns an ERROR.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1083

Chapter E4
Glossary terms

Effective Non-streaming SVE vector length

The Non-streaming SVE vector length in bits at the current Exception level, is an implementation-supported power
of two up to the Maximum implemented Non-streaming SVE vector length, further constrained by ZCR_ELx at
the current and higher Exception levels.

Effective Streaming SVE vector length

The Streaming SVE vector length in bits at the current Exception level is an implementation-supported power of
two from 128 up to the Maximum implemented Streaming SVE vector length, further constrained by SMCR_ELx
at the current and higher Exception levels.

Effective SVE vector length

The vector length in bits that applies to the execution of SVE instructions at the current Exception level is the
Effective Streaming SVE vector length when the PE is in Streaming SVE mode, otherwise it is the Effective
Non-streaming SVE vector length.

Illegal

Describes an implemented instruction whose attempted execution by a PE when PSTATE.SM and PSTATE.ZA are
not in the required state causes an SME illegal instruction exception to be taken, unless its execution at the current
Exception level is prevented by a higher priority configurable trap or enable.

Legal

Describes an implemented instruction that can be executed by a PE when PSTATE.SM and PSTATE.ZA are in the
required state, unless its execution at the current Exception level is prevented by a configurable trap or enable.

Maximum implemented Non-streaming SVE vector length

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1084

Chapter E4. Glossary terms

The maximum Non-streaming SVE vector length in bits supported by the implementation.

Maximum implemented Streaming SVE vector length

The maximum Streaming SVE vector length in bits supported by the implementation.

NSVL

Effective Non-streaming SVE vector length.

Scalable Matrix Extension

Defines architectural state capable of holding two-dimensional matrix tiles, and a Streaming SVE mode which
supports execution of SVE2 instructions with a vector length that matches the tile width, along with instructions
that accumulate the outer product of two vectors into a tile, as well as load, store, and move instructions that
transfer a vector to or from from a tile row or column.

Scalable Matrix Extension version 2

Extends the Scalable Matrix Extension by adding data-processing instructions with multi-vector operands and a
multi-vector predication mechanism, a lookup table feature, a binary outer product instruction, and a range prefetch
hint.

SMCU

Streaming Mode Compute Unit.

SME

Scalable Matrix Extension.

SME2

Scalable Matrix Extension version 2.

Streaming execution

Execution of instructions by a PE when that PE is in Streaming SVE mode.

Streaming Mode Compute Unit

Where more than one PE shares resources for Streaming execution of SVE and SME instructions, those shared
resources are called a Streaming Mode Compute Unit (SMCU).

Streaming SVE mode

An execution mode that supports a substantial subset of the SVE2 instruction set and architectural state with a
vector length that matches the width of SME tiles, which may be different from the vector length when the PE is
not in Streaming SVE.

Streaming SVE register state

The registers Z0-Z31, P0-P15, and FFR that are accessed by SVE and SME instructions when the PE is in
Streaming SVE mode.

SVL

Effective Streaming SVE vector length.

VL

Effective SVE vector length.

ZA array

A two-dimensional array of [SVLB × SVLB] bytes contained within the ZA storage.

ZA array vector

A vector that is SVL bits in size within the ZA array.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1085

Chapter E4. Glossary terms

ZA storage

The architectural register state added by SME that is capable of holding two-dimensional matrix tiles.

ZA tile

A square, two-dimensional sub-array of the ZA array.

ZA tile slice

A one-dimensional set of horizontally or vertically contiguous elements within a ZA tile.

ZT0 register

The 512-bit architectural register added by SME2 that consists of up to sixteen 32-bit table entries, each containing
an 8-bit, 16-bit, or 32-bit element.

DDI0616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

1086

	Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME), for Armv9-A
	Release information
	Non-Confidential Proprietary Notice
	Product Status

	Contents
	Preface
	About this supplement
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Asterisks in instruction mnemonics
	Assembler syntax descriptions

	Rules-based writing
	Content item identifiers
	Content item rendering
	Content item classes
	Declaration
	Rule
	Goal
	Information

	Additional reading
	Feedback
	Feedback on this book

	Progressive terminology commitment

	A Introduction
	A1 SME Introduction
	A1.1 About the Scalable Matrix Extension

	A2 Architecture Features and Extensions
	A2.1 Extensions and features defined by SME
	A2.2 Changes to existing features and extension requirements

	B SME Application Level Programmers' Model
	B1 Application processing modes
	B1.1 Overview
	B1.2 Process state
	B1.2.1 PSTATE.SM
	B1.2.2 PSTATE.ZA
	B1.2.3 Changing PSTATE.SM and PSTATE.ZA
	B1.2.4 TPIDR2_EL0

	B2 Architectural state
	B2.1 Architectural state summary
	B2.2 SME ZA storage
	B2.2.1 ZA array vector access
	B2.2.2 ZA tile access
	B2.2.3 Accessing an 8-bit element ZA tile
	B2.2.4 Accessing a 16-bit element ZA tile
	B2.2.5 Accessing a 32-bit element ZA tile
	B2.2.6 Accessing a 64-bit element ZA tile
	B2.2.7 Accessing a 128-bit element ZA tile

	B2.3 ZA storage layout
	B2.3.1 ZA array vector and tile slice mappings
	B2.3.2 Tile mappings
	B2.3.3 Horizontal tile slice mappings
	B2.3.4 Vertical tile slice mappings
	B2.3.5 Mixed horizontal and vertical tile slice mappings

	B2.4 SME2 Multi-vector operands
	B2.4.1 Z multi-vector operands
	B2.4.2 ZA multi-slice operands
	B2.4.3 ZA multi-vector operands
	B2.4.3.1 ZA multi-vector operands of single-vector groups
	B2.4.3.2 ZA multi-vector operands of double-vector groups
	B2.4.3.3 ZA multi-vector operands of quad-vector groups

	B2.5 SME2 Multi-vector predication
	B2.6 SME2 Lookup table

	B3 Floating-point behaviors
	B3.1 Overview
	B3.2 Supported floating-point data types
	B3.3 BFloat16 behaviors
	B3.3.1 Common BFloat16 behaviors
	B3.3.2 Standard BFloat16 behaviors
	B3.3.3 Extended BFloat16 behaviors

	B3.4 Floating-point behaviors in Streaming SVE mode
	B3.5 Floating-point behaviors targeting the ZA array

	C SME System Level Programmers' Model
	C1 System management
	C1.1 Overview
	C1.1.1 Identification
	C1.1.2 Traps and exceptions
	C1.1.3 Vector lengths
	C1.1.4 Streaming execution priority

	C1.2 Processor behavior
	C1.2.1 Exception priorities
	C1.2.2 Synchronous Data Abort
	C1.2.3 Validity of SME and SVE state
	C1.2.4 Streaming execution priority for shared implementations
	C1.2.4.1 Streaming execution context management
	C1.2.4.2 Streaming execution priority control
	C1.2.4.3 Streaming execution priority virtualization

	C1.2.5 Security considerations

	C1.3 Changes to existing System registers
	C1.3.1 CPACR_EL1
	C1.3.2 CPTR_EL2
	C1.3.3 CPTR_EL3
	C1.3.4 ESR_EL1, ESR_EL2, and ESR_EL3
	C1.3.5 HCR_EL2
	C1.3.6 HCRX_EL2
	C1.3.7 HFGRTR_EL2
	C1.3.8 HFGWTR_EL2
	C1.3.9 ID_AA64PFR1_EL1
	C1.3.10 ID_AA64ZFR0_EL1
	C1.3.11 SCR_EL3
	C1.3.12 SCTLR_EL1
	C1.3.13 SCTLR_EL2
	C1.3.14 ZCR_EL1, ZCR_EL2, and ZCR_EL3

	C1.4 SME-specific System registers
	C1.4.1 ID_AA64SMFR0_EL1
	C1.4.2 SMCR_EL1
	C1.4.3 SMCR_EL2
	C1.4.4 SMCR_EL3
	C1.4.5 SMIDR_EL1
	C1.4.6 SMPRI_EL1
	C1.4.7 SMPRIMAP_EL2
	C1.4.8 SVCR

	C2 Interaction with other A-profile architectural features
	C2.1 Watchpoints
	C2.1.1 Reporting watchpoints

	C2.2 Self-hosted debug
	C2.3 External debug
	C2.4 Memory Tagging Extension (MTE)
	C2.5 Reliability, Availability, and Serviceability (RAS)
	C2.6 Memory Partitioning and Monitoring (MPAM)
	C2.6.1 MPAMSM_EL1
	C2.6.2 MPAM2_EL2

	C2.7 Transactional Memory Extension (TME)
	C2.8 Memory consistency model

	D SME Instruction Set
	D1 SME instructions
	D1.1 SME and SME2 data-processing instructions
	D1.1.1 ADD (to vector)
	D1.1.2 ADD (array accumulators)
	D1.1.3 ADD (array results, multiple and single vector)
	D1.1.4 ADD (array results, multiple vectors)
	D1.1.5 ADDHA
	D1.1.6 ADDSPL
	D1.1.7 ADDSVL
	D1.1.8 ADDVA
	D1.1.9 BFCVT
	D1.1.10 BFCVTN
	D1.1.11 BFDOT (multiple and indexed vector)
	D1.1.12 BFDOT (multiple and single vector)
	D1.1.13 BFDOT (multiple vectors)
	D1.1.14 BFMLAL (multiple and indexed vector)
	D1.1.15 BFMLAL (multiple and single vector)
	D1.1.16 BFMLAL (multiple vectors)
	D1.1.17 BFMLSL (multiple and indexed vector)
	D1.1.18 BFMLSL (multiple and single vector)
	D1.1.19 BFMLSL (multiple vectors)
	D1.1.20 BFMOPA
	D1.1.21 BFMOPS
	D1.1.22 BFVDOT
	D1.1.23 BMOPA
	D1.1.24 BMOPS
	D1.1.25 CNTP
	D1.1.26 FADD
	D1.1.27 FCLAMP
	D1.1.28 FCVT
	D1.1.29 FCVTN
	D1.1.30 FCVTZS
	D1.1.31 FCVTZU
	D1.1.32 FDOT (multiple and indexed vector)
	D1.1.33 FDOT (multiple and single vector)
	D1.1.34 FDOT (multiple vectors)
	D1.1.35 FMAX (multiple and single vector)
	D1.1.36 FMAX (multiple vectors)
	D1.1.37 FMAXNM (multiple and single vector)
	D1.1.38 FMAXNM (multiple vectors)
	D1.1.39 FMIN (multiple and single vector)
	D1.1.40 FMIN (multiple vectors)
	D1.1.41 FMINNM (multiple and single vector)
	D1.1.42 FMINNM (multiple vectors)
	D1.1.43 FMLA (multiple and indexed vector)
	D1.1.44 FMLA (multiple and single vector)
	D1.1.45 FMLA (multiple vectors)
	D1.1.46 FMLAL (multiple and indexed vector)
	D1.1.47 FMLAL (multiple and single vector)
	D1.1.48 FMLAL (multiple vectors)
	D1.1.49 FMLS (multiple and indexed vector)
	D1.1.50 FMLS (multiple and single vector)
	D1.1.51 FMLS (multiple vectors)
	D1.1.52 FMLSL (multiple and indexed vector)
	D1.1.53 FMLSL (multiple and single vector)
	D1.1.54 FMLSL (multiple vectors)
	D1.1.55 FMOPA (widening)
	D1.1.56 FMOPA (non-widening)
	D1.1.57 FMOPS (widening)
	D1.1.58 FMOPS (non-widening)
	D1.1.59 FRINTA
	D1.1.60 FRINTM
	D1.1.61 FRINTN
	D1.1.62 FRINTP
	D1.1.63 FSUB
	D1.1.64 FVDOT
	D1.1.65 LD1B (scalar plus immediate, consecutive registers)
	D1.1.66 LD1B (scalar plus scalar, consecutive registers)
	D1.1.67 LD1B (scalar plus immediate, strided registers)
	D1.1.68 LD1B (scalar plus scalar, strided registers)
	D1.1.69 LD1B (scalar plus scalar, tile slice)
	D1.1.70 LD1D (scalar plus immediate, consecutive registers)
	D1.1.71 LD1D (scalar plus scalar, consecutive registers)
	D1.1.72 LD1D (scalar plus immediate, strided registers)
	D1.1.73 LD1D (scalar plus scalar, strided registers)
	D1.1.74 LD1D (scalar plus scalar, tile slice)
	D1.1.75 LD1H (scalar plus immediate, consecutive registers)
	D1.1.76 LD1H (scalar plus scalar, consecutive registers)
	D1.1.77 LD1H (scalar plus immediate, strided registers)
	D1.1.78 LD1H (scalar plus scalar, strided registers)
	D1.1.79 LD1H (scalar plus scalar, tile slice)
	D1.1.80 LD1Q
	D1.1.81 LD1W (scalar plus immediate, consecutive registers)
	D1.1.82 LD1W (scalar plus scalar, consecutive registers)
	D1.1.83 LD1W (scalar plus immediate, strided registers)
	D1.1.84 LD1W (scalar plus scalar, strided registers)
	D1.1.85 LD1W (scalar plus scalar, tile slice)
	D1.1.86 LDNT1B (scalar plus immediate, consecutive registers)
	D1.1.87 LDNT1B (scalar plus scalar, consecutive registers)
	D1.1.88 LDNT1B (scalar plus immediate, strided registers)
	D1.1.89 LDNT1B (scalar plus scalar, strided registers)
	D1.1.90 LDNT1D (scalar plus immediate, consecutive registers)
	D1.1.91 LDNT1D (scalar plus scalar, consecutive registers)
	D1.1.92 LDNT1D (scalar plus immediate, strided registers)
	D1.1.93 LDNT1D (scalar plus scalar, strided registers)
	D1.1.94 LDNT1H (scalar plus immediate, consecutive registers)
	D1.1.95 LDNT1H (scalar plus scalar, consecutive registers)
	D1.1.96 LDNT1H (scalar plus immediate, strided registers)
	D1.1.97 LDNT1H (scalar plus scalar, strided registers)
	D1.1.98 LDNT1W (scalar plus immediate, consecutive registers)
	D1.1.99 LDNT1W (scalar plus scalar, consecutive registers)
	D1.1.100 LDNT1W (scalar plus immediate, strided registers)
	D1.1.101 LDNT1W (scalar plus scalar, strided registers)
	D1.1.102 LDR (vector)
	D1.1.103 LDR (ZT0)
	D1.1.104 LUTI2 (two registers)
	D1.1.105 LUTI2 (four registers)
	D1.1.106 LUTI2 (single)
	D1.1.107 LUTI4 (two registers)
	D1.1.108 LUTI4 (four registers)
	D1.1.109 LUTI4 (single)
	D1.1.110 MOV (tile to vector, two registers)
	D1.1.111 MOV (tile to vector, four registers)
	D1.1.112 MOV (array to vector, two registers)
	D1.1.113 MOV (array to vector, four registers)
	D1.1.114 MOV (tile to vector, single)
	D1.1.115 MOV (vector to tile, two registers)
	D1.1.116 MOV (vector to tile, four registers)
	D1.1.117 MOV (vector to array, two registers)
	D1.1.118 MOV (vector to array, four registers)
	D1.1.119 MOV (vector to tile, single)
	D1.1.120 MOVA (tile to vector, two registers)
	D1.1.121 MOVA (tile to vector, four registers)
	D1.1.122 MOVA (array to vector, two registers)
	D1.1.123 MOVA (array to vector, four registers)
	D1.1.124 MOVA (tile to vector, single)
	D1.1.125 MOVA (vector to tile, two registers)
	D1.1.126 MOVA (vector to tile, four registers)
	D1.1.127 MOVA (vector to array, two registers)
	D1.1.128 MOVA (vector to array, four registers)
	D1.1.129 MOVA (vector to tile, single)
	D1.1.130 MOVT (ZT0 to scalar)
	D1.1.131 MOVT (scalar to ZT0)
	D1.1.132 PEXT (predicate)
	D1.1.133 PEXT (predicate pair)
	D1.1.134 PTRUE
	D1.1.135 RDSVL
	D1.1.136 SCLAMP
	D1.1.137 SCVTF
	D1.1.138 SDOT (2-way, multiple and indexed vector)
	D1.1.139 SDOT (2-way, multiple and single vector)
	D1.1.140 SDOT (2-way, multiple vectors)
	D1.1.141 SDOT (4-way, multiple and indexed vector)
	D1.1.142 SDOT (4-way, multiple and single vector)
	D1.1.143 SDOT (4-way, multiple vectors)
	D1.1.144 SEL
	D1.1.145 SMAX (multiple and single vector)
	D1.1.146 SMAX (multiple vectors)
	D1.1.147 SMIN (multiple and single vector)
	D1.1.148 SMIN (multiple vectors)
	D1.1.149 SMLAL (multiple and indexed vector)
	D1.1.150 SMLAL (multiple and single vector)
	D1.1.151 SMLAL (multiple vectors)
	D1.1.152 SMLALL (multiple and indexed vector)
	D1.1.153 SMLALL (multiple and single vector)
	D1.1.154 SMLALL (multiple vectors)
	D1.1.155 SMLSL (multiple and indexed vector)
	D1.1.156 SMLSL (multiple and single vector)
	D1.1.157 SMLSL (multiple vectors)
	D1.1.158 SMLSLL (multiple and indexed vector)
	D1.1.159 SMLSLL (multiple and single vector)
	D1.1.160 SMLSLL (multiple vectors)
	D1.1.161 SMOPA (2-way)
	D1.1.162 SMOPA (4-way)
	D1.1.163 SMOPS (2-way)
	D1.1.164 SMOPS (4-way)
	D1.1.165 SQCVT (two registers)
	D1.1.166 SQCVT (four registers)
	D1.1.167 SQCVTN
	D1.1.168 SQCVTU (two registers)
	D1.1.169 SQCVTU (four registers)
	D1.1.170 SQCVTUN
	D1.1.171 SQDMULH (multiple and single vector)
	D1.1.172 SQDMULH (multiple vectors)
	D1.1.173 SQRSHR (two registers)
	D1.1.174 SQRSHR (four registers)
	D1.1.175 SQRSHRN
	D1.1.176 SQRSHRU (two registers)
	D1.1.177 SQRSHRU (four registers)
	D1.1.178 SQRSHRUN
	D1.1.179 SRSHL (multiple and single vector)
	D1.1.180 SRSHL (multiple vectors)
	D1.1.181 ST1B (scalar plus immediate, consecutive registers)
	D1.1.182 ST1B (scalar plus scalar, consecutive registers)
	D1.1.183 ST1B (scalar plus immediate, strided registers)
	D1.1.184 ST1B (scalar plus scalar, strided registers)
	D1.1.185 ST1B (scalar plus scalar, tile slice)
	D1.1.186 ST1D (scalar plus immediate, consecutive registers)
	D1.1.187 ST1D (scalar plus scalar, consecutive registers)
	D1.1.188 ST1D (scalar plus immediate, strided registers)
	D1.1.189 ST1D (scalar plus scalar, strided registers)
	D1.1.190 ST1D (scalar plus scalar, tile slice)
	D1.1.191 ST1H (scalar plus immediate, consecutive registers)
	D1.1.192 ST1H (scalar plus scalar, consecutive registers)
	D1.1.193 ST1H (scalar plus immediate, strided registers)
	D1.1.194 ST1H (scalar plus scalar, strided registers)
	D1.1.195 ST1H (scalar plus scalar, tile slice)
	D1.1.196 ST1Q
	D1.1.197 ST1W (scalar plus immediate, consecutive registers)
	D1.1.198 ST1W (scalar plus scalar, consecutive registers)
	D1.1.199 ST1W (scalar plus immediate, strided registers)
	D1.1.200 ST1W (scalar plus scalar, strided registers)
	D1.1.201 ST1W (scalar plus scalar, tile slice)
	D1.1.202 STNT1B (scalar plus immediate, consecutive registers)
	D1.1.203 STNT1B (scalar plus scalar, consecutive registers)
	D1.1.204 STNT1B (scalar plus immediate, strided registers)
	D1.1.205 STNT1B (scalar plus scalar, strided registers)
	D1.1.206 STNT1D (scalar plus immediate, consecutive registers)
	D1.1.207 STNT1D (scalar plus scalar, consecutive registers)
	D1.1.208 STNT1D (scalar plus immediate, strided registers)
	D1.1.209 STNT1D (scalar plus scalar, strided registers)
	D1.1.210 STNT1H (scalar plus immediate, consecutive registers)
	D1.1.211 STNT1H (scalar plus scalar, consecutive registers)
	D1.1.212 STNT1H (scalar plus immediate, strided registers)
	D1.1.213 STNT1H (scalar plus scalar, strided registers)
	D1.1.214 STNT1W (scalar plus immediate, consecutive registers)
	D1.1.215 STNT1W (scalar plus scalar, consecutive registers)
	D1.1.216 STNT1W (scalar plus immediate, strided registers)
	D1.1.217 STNT1W (scalar plus scalar, strided registers)
	D1.1.218 STR (vector)
	D1.1.219 STR (ZT0)
	D1.1.220 SUB (array accumulators)
	D1.1.221 SUB (array results, multiple and single vector)
	D1.1.222 SUB (array results, multiple vectors)
	D1.1.223 SUDOT (multiple and indexed vector)
	D1.1.224 SUDOT (multiple and single vector)
	D1.1.225 SUMLALL (multiple and indexed vector)
	D1.1.226 SUMLALL (multiple and single vector)
	D1.1.227 SUMOPA
	D1.1.228 SUMOPS
	D1.1.229 SUNPK
	D1.1.230 SUVDOT
	D1.1.231 SVDOT (2-way)
	D1.1.232 SVDOT (4-way)
	D1.1.233 UCLAMP
	D1.1.234 UCVTF
	D1.1.235 UDOT (2-way, multiple and indexed vector)
	D1.1.236 UDOT (2-way, multiple and single vector)
	D1.1.237 UDOT (2-way, multiple vectors)
	D1.1.238 UDOT (4-way, multiple and indexed vector)
	D1.1.239 UDOT (4-way, multiple and single vector)
	D1.1.240 UDOT (4-way, multiple vectors)
	D1.1.241 UMAX (multiple and single vector)
	D1.1.242 UMAX (multiple vectors)
	D1.1.243 UMIN (multiple and single vector)
	D1.1.244 UMIN (multiple vectors)
	D1.1.245 UMLAL (multiple and indexed vector)
	D1.1.246 UMLAL (multiple and single vector)
	D1.1.247 UMLAL (multiple vectors)
	D1.1.248 UMLALL (multiple and indexed vector)
	D1.1.249 UMLALL (multiple and single vector)
	D1.1.250 UMLALL (multiple vectors)
	D1.1.251 UMLSL (multiple and indexed vector)
	D1.1.252 UMLSL (multiple and single vector)
	D1.1.253 UMLSL (multiple vectors)
	D1.1.254 UMLSLL (multiple and indexed vector)
	D1.1.255 UMLSLL (multiple and single vector)
	D1.1.256 UMLSLL (multiple vectors)
	D1.1.257 UMOPA (2-way)
	D1.1.258 UMOPA (4-way)
	D1.1.259 UMOPS (2-way)
	D1.1.260 UMOPS (4-way)
	D1.1.261 UQCVT (two registers)
	D1.1.262 UQCVT (four registers)
	D1.1.263 UQCVTN
	D1.1.264 UQRSHR (two registers)
	D1.1.265 UQRSHR (four registers)
	D1.1.266 UQRSHRN
	D1.1.267 URSHL (multiple and single vector)
	D1.1.268 URSHL (multiple vectors)
	D1.1.269 USDOT (multiple and indexed vector)
	D1.1.270 USDOT (multiple and single vector)
	D1.1.271 USDOT (multiple vectors)
	D1.1.272 USMLALL (multiple and indexed vector)
	D1.1.273 USMLALL (multiple and single vector)
	D1.1.274 USMLALL (multiple vectors)
	D1.1.275 USMOPA
	D1.1.276 USMOPS
	D1.1.277 USVDOT
	D1.1.278 UUNPK
	D1.1.279 UVDOT (2-way)
	D1.1.280 UVDOT (4-way)
	D1.1.281 UZP (four registers)
	D1.1.282 UZP (two registers)
	D1.1.283 WHILEGE
	D1.1.284 WHILEGT
	D1.1.285 WHILEHI
	D1.1.286 WHILEHS
	D1.1.287 WHILELE
	D1.1.288 WHILELO
	D1.1.289 WHILELS
	D1.1.290 WHILELT
	D1.1.291 ZERO (tile)
	D1.1.292 ZERO (ZT0)
	D1.1.293 ZIP (four registers)
	D1.1.294 ZIP (two registers)

	D1.2 SVE2 data-processing instructions
	D1.2.1 BFMLSLB (vectors)
	D1.2.2 BFMLSLB (indexed)
	D1.2.3 BFMLSLT (vectors)
	D1.2.4 BFMLSLT (indexed)
	D1.2.5 FCLAMP
	D1.2.6 FDOT (vectors)
	D1.2.7 FDOT (indexed)
	D1.2.8 PFALSE
	D1.2.9 PSEL
	D1.2.10 REVD
	D1.2.11 SCLAMP
	D1.2.12 SDOT (2-way, vectors)
	D1.2.13 SDOT (2-way, indexed)
	D1.2.14 SQCVTN
	D1.2.15 SQCVTUN
	D1.2.16 SQRSHRN
	D1.2.17 SQRSHRUN
	D1.2.18 UCLAMP
	D1.2.19 UDOT (2-way, vectors)
	D1.2.20 UDOT (2-way, indexed)
	D1.2.21 UQCVTN
	D1.2.22 UQRSHRN
	D1.2.23 WHILEGE (predicate pair)
	D1.2.24 WHILEGT (predicate pair)
	D1.2.25 WHILEHI (predicate pair)
	D1.2.26 WHILEHS (predicate pair)
	D1.2.27 WHILELE (predicate pair)
	D1.2.28 WHILELO (predicate pair)
	D1.2.29 WHILELS (predicate pair)
	D1.2.30 WHILELT (predicate pair)

	D1.3 Base A64 instructions
	D1.3.1 MSR (immediate)
	D1.3.2 RPRFM
	D1.3.3 SMSTART
	D1.3.4 SMSTOP

	E Appendices
	E1 Instructions affected by SME
	E1.1 Illegal instructions in Streaming SVE mode
	E1.1.1 Illegal Advanced SIMD instructions
	E1.1.1.1 Vector instructions
	E1.1.1.2 Single-element instructions
	E1.1.1.3 Element move to general register

	E1.1.2 Illegal SVE instructions

	E1.2 Unimplemented SVE instructions
	E1.3 Reduced performance in Streaming SVE mode
	E1.3.1 Scalar floating-point instructions
	E1.3.2 SVE instructions

	E2 SME Shared pseudocode
	E2.1 Pseudocode functions
	E2.1.1 AArch64.CheckFPAdvSIMDEnabled
	E2.1.2 BFDotAdd
	E2.1.3 BFNeg
	E2.1.4 CheckFPAdvSIMDEnabled64
	E2.1.5 CheckNonStreamingSVEEnabled
	E2.1.6 CheckSMEAccess
	E2.1.7 CheckSMEAndZAEnabled
	E2.1.8 CheckSMEEnabled
	E2.1.9 CheckSMEZT0Enabled
	E2.1.10 CheckStreamingSVEAndZAEnabled
	E2.1.11 CheckStreamingSVEEnabled
	E2.1.12 CounterToPredicate
	E2.1.13 CurrentNSVL
	E2.1.14 CurrentSVL
	E2.1.15 CurrentVL
	E2.1.16 EncodePredCount
	E2.1.17 FPAdd_ZA
	E2.1.18 FPDot
	E2.1.19 FPDotAdd
	E2.1.20 FPDotAdd_ZA
	E2.1.21 FPMulAdd_ZA
	E2.1.22 FPMulAddH_ZA
	E2.1.23 FPProcessDenorms4
	E2.1.24 FPProcessNaNs4
	E2.1.25 FPSub_ZA
	E2.1.26 HaveEBF16
	E2.1.27 HaveSME
	E2.1.28 HaveSME2
	E2.1.29 HaveSMEF64F64
	E2.1.30 HaveSMEI16I64
	E2.1.31 ImplementedSMEVectorLength
	E2.1.32 InStreamingMode
	E2.1.33 IsFullA64Enabled
	E2.1.34 IsMerging
	E2.1.35 IsOriginalSVEEnabled
	E2.1.36 IsSMEEnabled
	E2.1.37 IsSVEEnabled
	E2.1.38 Lookup
	E2.1.39 MaybeZeroSVEUppers
	E2.1.40 PredCountTest
	E2.1.41 ResetSMEState
	E2.1.42 ResetSVEState
	E2.1.43 SetPSTATE_SM
	E2.1.44 SetPSTATE_SVCR
	E2.1.45 SetPSTATE_ZA
	E2.1.46 SMEAccessTrap
	E2.1.47 System
	E2.1.48 ZAhslice
	E2.1.49 ZAslice
	E2.1.50 ZAtile
	E2.1.51 ZAvector
	E2.1.52 ZAvslice
	E2.1.53 ZT0

	E3 System registers affected by SME
	E3.1 SME-Specific System registers
	E3.1.1 ID_AA64SMFR0_EL1, SME Feature ID register 0
	Field descriptions
	FA64, bit [63]
	Bits [62:60]
	SMEver, bits [59:56]
	I16I64, bits [55:52]
	Bits [51:49]
	F64F64, bit [48]
	I16I32, bits [47:44]
	Bits [43:40]
	I8I32, bits [39:36]
	F16F32, bit [35]
	B16F32, bit [34]
	BI32I32, bit [33]
	F32F32, bit [32]
	Bits [31:0]

	Accessing ID_AA64SMFR0_EL1
	MRS <Xt>, ID_AA64SMFR0_EL1

	E3.1.2 MPAMSM_EL1, MPAM Streaming Mode Register
	Field descriptions
	Bits [63:48]
	PMG_D, bits [47:40]
	Bits [39:32]
	PARTID_D, bits [31:16]
	Bits [15:0]

	Accessing MPAMSM_EL1
	MRS <Xt>, MPAMSM_EL1
	MSR MPAMSM_EL1, <Xt>

	E3.1.3 SMCR_EL1, SME Control Register (EL1)
	Field descriptions
	Bits [63:32]
	FA64, bit [31]
	EZT0, bit [30]
	Bits [29:9]
	Bits [8:4]
	LEN, bits [3:0]

	Accessing SMCR_EL1
	MRS <Xt>, SMCR_EL1
	MSR SMCR_EL1, <Xt>
	MRS <Xt>, SMCR_EL12
	MSR SMCR_EL12, <Xt>

	E3.1.4 SMCR_EL2, SME Control Register (EL2)
	Field descriptions
	Bits [63:32]
	FA64, bit [31]
	EZT0, bit [30]
	Bits [29:9]
	Bits [8:4]
	LEN, bits [3:0]

	Accessing SMCR_EL2
	MRS <Xt>, SMCR_EL2
	MSR SMCR_EL2, <Xt>
	MRS <Xt>, SMCR_EL1
	MSR SMCR_EL1, <Xt>

	E3.1.5 SMCR_EL3, SME Control Register (EL3)
	Field descriptions
	Bits [63:32]
	FA64, bit [31]
	EZT0, bit [30]
	Bits [29:9]
	Bits [8:4]
	LEN, bits [3:0]

	Accessing SMCR_EL3
	MRS <Xt>, SMCR_EL3
	MSR SMCR_EL3, <Xt>

	E3.1.6 SMIDR_EL1, Streaming Mode Identification Register
	Field descriptions
	Bits [63:32]
	Implementer, bits [31:24]
	Revision, bits [23:16]
	SMPS, bit [15]
	Bits [14:12]
	Affinity, bits [11:0]

	Accessing SMIDR_EL1
	MRS <Xt>, SMIDR_EL1

	E3.1.7 SMPRI_EL1, Streaming Mode Priority Register
	Field descriptions
	Bits [63:4]
	Priority, bits [3:0]

	Accessing SMPRI_EL1
	MRS <Xt>, SMPRI_EL1
	MSR SMPRI_EL1, <Xt>

	E3.1.8 SMPRIMAP_EL2, Streaming Mode Priority Mapping Register
	Field descriptions
	P15, bits [63:60]
	P14, bits [59:56]
	P13, bits [55:52]
	P12, bits [51:48]
	P11, bits [47:44]
	P10, bits [43:40]
	P9, bits [39:36]
	P8, bits [35:32]
	P7, bits [31:28]
	P6, bits [27:24]
	P5, bits [23:20]
	P4, bits [19:16]
	P3, bits [15:12]
	P2, bits [11:8]
	P1, bits [7:4]
	P0, bits [3:0]

	Accessing SMPRIMAP_EL2
	MRS <Xt>, SMPRIMAP_EL2
	MSR SMPRIMAP_EL2, <Xt>

	E3.1.9 SVCR, Streaming Vector Control Register
	Field descriptions
	Bits [63:2]
	ZA, bit [1]
	SM, bit [0]

	Accessing SVCR
	MRS <Xt>, SVCR
	MSR SVCR, <Xt>
	MSR SVCRSM, #<imm>
	MSR SVCRZA, #<imm>
	MSR SVCRSMZA, #<imm>

	E3.1.10 TPIDR2_EL0, EL0 Read/Write Software Thread ID Register 2
	Field descriptions
	Bits [63:0]

	Accessing TPIDR2_EL0
	MRS <Xt>, TPIDR2_EL0
	MSR TPIDR2_EL0, <Xt>

	E3.1.11 EDHSR, External Debug Halting Syndrome Register
	Field descriptions
	Bits [63:24]
	WPT, bits [23:18]
	WPTV, bit [17]
	WPF, bit [16]
	FnP, bit [15]
	Bits [14:11]
	FnV, bit [10]
	Bits [9:0]

	Accessing EDHSR

	E3.2 Changes to existing System registers
	E3.2.1 CPACR_EL1, Architectural Feature Access Control Register
	Field descriptions
	Bits [63:29]
	TTA, bit [28]
	Bits [27:26]
	SMEN, bits [25:24]
	Bits [23:22]
	FPEN, bits [21:20]
	Bits [19:18]
	ZEN, bits [17:16]
	Bits [15:0]

	Accessing CPACR_EL1
	MRS <Xt>, CPACR_EL1
	MSR CPACR_EL1, <Xt>
	MRS <Xt>, CPACR_EL12
	MSR CPACR_EL12, <Xt>

	E3.2.2 CPTR_EL2, Architectural Feature Trap Register (EL2)
	Field descriptions
	When FEAT_VHE is implemented and HCR_EL2.E2H == 1:
	Bits [63:32]
	TCPAC, bit [31]
	TAM, bit [30]
	Bit [29]
	TTA, bit [28]
	Bits [27:26]
	SMEN, bits [25:24]
	Bits [23:22]
	FPEN, bits [21:20]
	Bits [19:18]
	ZEN, bits [17:16]
	Bits [15:0]

	Otherwise:
	Bits [63:32]
	TCPAC, bit [31]
	TAM, bit [30]
	Bits [29:21]
	TTA, bit [20]
	Bits [19:14]
	Bit [13]
	TSM, bit [12]
	Bit [11]
	TFP, bit [10]
	Bit [9]
	TZ, bit [8]
	Bits [7:0]

	Accessing CPTR_EL2
	MRS <Xt>, CPTR_EL2
	MSR CPTR_EL2, <Xt>
	MRS <Xt>, CPACR_EL1
	MSR CPACR_EL1, <Xt>

	E3.2.3 CPTR_EL3, Architectural Feature Trap Register (EL3)
	Field descriptions
	Bits [63:32]
	TCPAC, bit [31]
	TAM, bit [30]
	Bits [29:21]
	TTA, bit [20]
	Bits [19:13]
	ESM, bit [12]
	Bit [11]
	TFP, bit [10]
	Bit [9]
	EZ, bit [8]
	Bits [7:0]

	Accessing CPTR_EL3
	MRS <Xt>, CPTR_EL3
	MSR CPTR_EL3, <Xt>

	E3.2.4 FAR_EL1, Fault Address Register (EL1)
	Field descriptions
	Bits [63:0]

	Accessing FAR_EL1
	MRS <Xt>, FAR_EL1
	MSR FAR_EL1, <Xt>
	MRS <Xt>, FAR_EL12
	MSR FAR_EL12, <Xt>
	MRS <Xt>, FAR_EL2
	MSR FAR_EL2, <Xt>

	E3.2.5 FAR_EL2, Fault Address Register (EL2)
	Field descriptions
	Bits [63:0]

	Accessing FAR_EL2
	MRS <Xt>, FAR_EL2
	MSR FAR_EL2, <Xt>
	MRS <Xt>, FAR_EL1
	MSR FAR_EL1, <Xt>

	E3.2.6 FAR_EL3, Fault Address Register (EL3)
	Field descriptions
	Bits [63:0]

	Accessing FAR_EL3
	MRS <Xt>, FAR_EL3
	MSR FAR_EL3, <Xt>

	E3.2.7 FPCR, Floating-point Control Register
	Field descriptions
	Bits [63:27]
	AHP, bit [26]
	DN, bit [25]
	FZ, bit [24]
	RMode, bits [23:22]
	Stride, bits [21:20]
	FZ16, bit [19]
	Len, bits [18:16]
	IDE, bit [15]
	Bit [14]
	EBF, bit [13]
	IXE, bit [12]
	UFE, bit [11]
	OFE, bit [10]
	DZE, bit [9]
	IOE, bit [8]
	Bits [7:3]
	NEP, bit [2]
	AH, bit [1]
	FIZ, bit [0]

	Accessing FPCR
	MRS <Xt>, FPCR
	MSR FPCR, <Xt>

	E3.2.8 HCRX_EL2, Extended Hypervisor Configuration Register
	Field descriptions
	Bits [63:16]
	SCTLR2En, bit [15]
	TCR2En, bit [14]
	Bits [13:12]
	MSCEn, bit [11]
	MCE2, bit [10]
	CMOW, bit [9]
	VFNMI, bit [8]
	VINMI, bit [7]
	TALLINT, bit [6]
	SMPME, bit [5]
	FGTnXS, bit [4]
	FnXS, bit [3]
	EnASR, bit [2]
	EnALS, bit [1]
	EnAS0, bit [0]

	Accessing HCRX_EL2
	MRS <Xt>, HCRX_EL2
	MSR HCRX_EL2, <Xt>

	E3.2.9 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register
	Field descriptions
	Bits [63:56]
	nTPIDR2_EL0, bit [55]
	nSMPRI_EL1, bit [54]
	Bits [53:51]
	nACCDATA_EL1, bit [50]
	ERXADDR_EL1, bit [49]
	ERXPFGCDN_EL1, bit [48]
	ERXPFGCTL_EL1, bit [47]
	ERXPFGF_EL1, bit [46]
	ERXMISCn_EL1, bit [45]
	ERXSTATUS_EL1, bit [44]
	ERXCTLR_EL1, bit [43]
	ERXFR_EL1, bit [42]
	ERRSELR_EL1, bit [41]
	ERRIDR_EL1, bit [40]
	ICC_IGRPENn_EL1, bit [39]
	VBAR_EL1, bit [38]
	TTBR1_EL1, bit [37]
	TTBR0_EL1, bit [36]
	TPIDR_EL0, bit [35]
	TPIDRRO_EL0, bit [34]
	TPIDR_EL1, bit [33]
	TCR_EL1, bit [32]
	SCXTNUM_EL0, bit [31]
	SCXTNUM_EL1, bit [30]
	SCTLR_EL1, bit [29]
	REVIDR_EL1, bit [28]
	PAR_EL1, bit [27]
	MPIDR_EL1, bit [26]
	MIDR_EL1, bit [25]
	MAIR_EL1, bit [24]
	LORSA_EL1, bit [23]
	LORN_EL1, bit [22]
	LORID_EL1, bit [21]
	LOREA_EL1, bit [20]
	LORC_EL1, bit [19]
	ISR_EL1, bit [18]
	FAR_EL1, bit [17]
	ESR_EL1, bit [16]
	DCZID_EL0, bit [15]
	CTR_EL0, bit [14]
	CSSELR_EL1, bit [13]
	CPACR_EL1, bit [12]
	CONTEXTIDR_EL1, bit [11]
	CLIDR_EL1, bit [10]
	CCSIDR_EL1, bit [9]
	APIBKey, bit [8]
	APIAKey, bit [7]
	APGAKey, bit [6]
	APDBKey, bit [5]
	APDAKey, bit [4]
	AMAIR_EL1, bit [3]
	AIDR_EL1, bit [2]
	AFSR1_EL1, bit [1]
	AFSR0_EL1, bit [0]

	Accessing HFGRTR_EL2
	MRS <Xt>, HFGRTR_EL2
	MSR HFGRTR_EL2, <Xt>

	E3.2.10 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register
	Field descriptions
	Bits [63:56]
	nTPIDR2_EL0, bit [55]
	nSMPRI_EL1, bit [54]
	Bits [53:51]
	nACCDATA_EL1, bit [50]
	ERXADDR_EL1, bit [49]
	ERXPFGCDN_EL1, bit [48]
	ERXPFGCTL_EL1, bit [47]
	Bit [46]
	ERXMISCn_EL1, bit [45]
	ERXSTATUS_EL1, bit [44]
	ERXCTLR_EL1, bit [43]
	Bit [42]
	ERRSELR_EL1, bit [41]
	Bit [40]
	ICC_IGRPENn_EL1, bit [39]
	VBAR_EL1, bit [38]
	TTBR1_EL1, bit [37]
	TTBR0_EL1, bit [36]
	TPIDR_EL0, bit [35]
	TPIDRRO_EL0, bit [34]
	TPIDR_EL1, bit [33]
	TCR_EL1, bit [32]
	SCXTNUM_EL0, bit [31]
	SCXTNUM_EL1, bit [30]
	SCTLR_EL1, bit [29]
	Bit [28]
	PAR_EL1, bit [27]
	Bits [26:25]
	MAIR_EL1, bit [24]
	LORSA_EL1, bit [23]
	LORN_EL1, bit [22]
	Bit [21]
	LOREA_EL1, bit [20]
	LORC_EL1, bit [19]
	Bit [18]
	FAR_EL1, bit [17]
	ESR_EL1, bit [16]
	Bits [15:14]
	CSSELR_EL1, bit [13]
	CPACR_EL1, bit [12]
	CONTEXTIDR_EL1, bit [11]
	Bits [10:9]
	APIBKey, bit [8]
	APIAKey, bit [7]
	APGAKey, bit [6]
	APDBKey, bit [5]
	APDAKey, bit [4]
	AMAIR_EL1, bit [3]
	Bit [2]
	AFSR1_EL1, bit [1]
	AFSR0_EL1, bit [0]

	Accessing HFGWTR_EL2
	MRS <Xt>, HFGWTR_EL2
	MSR HFGWTR_EL2, <Xt>

	E3.2.11 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	Field descriptions
	LS64, bits [63:60]
	XS, bits [59:56]
	I8MM, bits [55:52]
	DGH, bits [51:48]
	BF16, bits [47:44]
	SPECRES, bits [43:40]
	SB, bits [39:36]
	FRINTTS, bits [35:32]
	GPI, bits [31:28]
	GPA, bits [27:24]
	LRCPC, bits [23:20]
	FCMA, bits [19:16]
	JSCVT, bits [15:12]
	API, bits [11:8]
	APA, bits [7:4]
	DPB, bits [3:0]

	Accessing ID_AA64ISAR1_EL1
	MRS <Xt>, ID_AA64ISAR1_EL1

	E3.2.12 ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	Field descriptions
	Bits [63:40]
	NMI, bits [39:36]
	CSV2_frac, bits [35:32]
	RNDR_trap, bits [31:28]
	SME, bits [27:24]
	Bits [23:20]
	MPAM_frac, bits [19:16]
	RAS_frac, bits [15:12]
	MTE, bits [11:8]
	SSBS, bits [7:4]
	BT, bits [3:0]

	Accessing ID_AA64PFR1_EL1
	MRS <Xt>, ID_AA64PFR1_EL1

	E3.2.13 ID_AA64ZFR0_EL1, SVE Feature ID register 0
	Field descriptions
	Bits [63:60]
	F64MM, bits [59:56]
	F32MM, bits [55:52]
	Bits [51:48]
	I8MM, bits [47:44]
	SM4, bits [43:40]
	Bits [39:36]
	SHA3, bits [35:32]
	Bits [31:24]
	BF16, bits [23:20]
	BitPerm, bits [19:16]
	Bits [15:8]
	AES, bits [7:4]
	SVEver, bits [3:0]

	Accessing ID_AA64ZFR0_EL1
	MRS <Xt>, ID_AA64ZFR0_EL1

	E3.2.14 MPAM2_EL2, MPAM2 Register (EL2)
	Field descriptions
	MPAMEN, bit [63]
	Bits [62:59]
	TIDR, bit [58]
	Bit [57]
	ALTSP_HFC, bit [56]
	ALTSP_EL2, bit [55]
	ALTSP_FRCD, bit [54]
	Bits [53:51]
	EnMPAMSM, bit [50]
	TRAPMPAM0EL1, bit [49]
	TRAPMPAM1EL1, bit [48]
	PMG_D, bits [47:40]
	PMG_I, bits [39:32]
	PARTID_D, bits [31:16]
	PARTID_I, bits [15:0]

	Accessing MPAM2_EL2
	MRS <Xt>, MPAM2_EL2
	MSR MPAM2_EL2, <Xt>
	MRS <Xt>, MPAM1_EL1
	MSR MPAM1_EL1, <Xt>

	E3.2.15 SCR_EL3, Secure Configuration Register
	Field descriptions
	Bit [63]
	NSE, bit [62]
	NSE, bit [62]
	NSE, bit [62]

	Bits [61:50]
	MECEn, bit [49]
	GPF, bit [48]
	Bits [47:45]
	SCTLR2En, bit [44]
	TCR2En, bit [43]
	Bit [42]
	EnTP2, bit [41]
	TRNDR, bit [40]
	Bit [39]
	HXEn, bit [38]
	ADEn, bit [37]
	EnAS0, bit [36]
	AMVOFFEN, bit [35]
	TME, bit [34]
	TWEDEL, bits [33:30]
	TWEDEn, bit [29]
	ECVEn, bit [28]
	FGTEn, bit [27]
	ATA, bit [26]
	EnSCXT, bit [25]
	Bits [24:22]
	FIEN, bit [21]
	NMEA, bit [20]
	EASE, bit [19]
	EEL2, bit [18]
	API, bit [17]
	API, bit [17]
	API, bit [17]

	APK, bit [16]
	TERR, bit [15]
	TLOR, bit [14]
	TWE, bit [13]
	TWI, bit [12]
	ST, bit [11]
	RW, bit [10]
	SIF, bit [9]
	HCE, bit [8]
	SMD, bit [7]
	Bit [6]
	Bits [5:4]
	EA, bit [3]
	FIQ, bit [2]
	IRQ, bit [1]
	NS, bit [0]
	NS, bit [0]
	NS, bit [0]

	Accessing SCR_EL3
	MRS <Xt>, SCR_EL3
	MSR SCR_EL3, <Xt>

	E3.2.16 SCTLR_EL1, System Control Register (EL1)
	Field descriptions
	TIDCP, bit [63]
	SPINTMASK, bit [62]
	NMI, bit [61]
	EnTP2, bit [60]
	Bits [59:58]
	EPAN, bit [57]
	EnALS, bit [56]
	EnAS0, bit [55]
	EnASR, bit [54]
	TME, bit [53]
	TME0, bit [52]
	TMT, bit [51]
	TMT0, bit [50]
	TWEDEL, bits [49:46]
	TWEDEn, bit [45]
	DSSBS, bit [44]
	ATA, bit [43]
	ATA0, bit [42]
	TCF, bits [41:40]
	TCF0, bits [39:38]
	ITFSB, bit [37]
	BT1, bit [36]
	BT0, bit [35]
	Bit [34]
	MSCEn, bit [33]
	CMOW, bit [32]
	EnIA, bit [31]
	EnIB, bit [30]
	LSMAOE, bit [29]
	nTLSMD, bit [28]
	EnDA, bit [27]
	UCI, bit [26]
	EE, bit [25]
	E0E, bit [24]
	SPAN, bit [23]
	EIS, bit [22]
	IESB, bit [21]
	TSCXT, bit [20]
	WXN, bit [19]
	nTWE, bit [18]
	Bit [17]
	nTWI, bit [16]
	UCT, bit [15]
	DZE, bit [14]
	EnDB, bit [13]
	I, bit [12]
	EOS, bit [11]
	EnRCTX, bit [10]
	UMA, bit [9]
	SED, bit [8]
	ITD, bit [7]
	nAA, bit [6]
	CP15BEN, bit [5]
	SA0, bit [4]
	SA, bit [3]
	C, bit [2]
	A, bit [1]
	M, bit [0]

	Accessing SCTLR_EL1
	MRS <Xt>, SCTLR_EL1
	MSR SCTLR_EL1, <Xt>
	MRS <Xt>, SCTLR_EL12
	MSR SCTLR_EL12, <Xt>

	E3.2.17 SCTLR_EL2, System Control Register (EL2)
	Field descriptions
	TIDCP, bit [63]
	SPINTMASK, bit [62]
	NMI, bit [61]
	EnTP2, bit [60]
	EnTP2, bit [60]
	EnTP2, bit [60]

	Bits [59:58]
	EPAN, bit [57]
	EPAN, bit [57]
	EPAN, bit [57]

	EnALS, bit [56]
	EnALS, bit [56]
	EnALS, bit [56]

	EnAS0, bit [55]
	EnAS0, bit [55]
	EnAS0, bit [55]

	EnASR, bit [54]
	EnASR, bit [54]
	EnASR, bit [54]

	TME, bit [53]
	TME0, bit [52]
	TME0, bit [52]
	TME0, bit [52]

	TMT, bit [51]
	TMT0, bit [50]
	TMT0, bit [50]
	TMT0, bit [50]

	TWEDEL, bits [49:46]
	TWEDEL, bits [3:0] of bits [49:46]
	TWEDEL, bits [3:0] of bits [49:46]

	TWEDEn, bit [45]
	TWEDEn, bit [45]
	TWEDEn, bit [45]

	DSSBS, bit [44]
	ATA, bit [43]
	ATA0, bit [42]
	ATA0, bit [42]
	ATA0, bit [42]

	TCF, bits [41:40]
	TCF0, bits [39:38]
	TCF0, bits [1:0] of bits [39:38]
	TCF0, bits [1:0] of bits [39:38]

	ITFSB, bit [37]
	BT, bit [36]
	BT0, bit [35]
	BT0, bit [35]
	BT0, bit [35]

	Bit [34]
	MSCEn, bit [33]
	MSCEn, bit [33]
	MSCEn, bit [33]

	CMOW, bit [32]
	EnIA, bit [31]
	EnIB, bit [30]
	LSMAOE, bit [29]
	LSMAOE, bit [29]
	LSMAOE, bit [29]

	nTLSMD, bit [28]
	nTLSMD, bit [28]
	nTLSMD, bit [28]

	EnDA, bit [27]
	UCI, bit [26]
	UCI, bit [26]
	UCI, bit [26]

	EE, bit [25]
	E0E, bit [24]
	E0E, bit [24]
	E0E, bit [24]

	SPAN, bit [23]
	SPAN, bit [23]
	SPAN, bit [23]

	EIS, bit [22]
	IESB, bit [21]
	TSCXT, bit [20]
	TSCXT, bit [20]
	Bit [0]
	TSCXT, bit [20]

	WXN, bit [19]
	nTWE, bit [18]
	nTWE, bit [18]
	nTWE, bit [18]

	Bit [17]
	nTWI, bit [16]
	nTWI, bit [16]
	nTWI, bit [16]

	UCT, bit [15]
	UCT, bit [15]
	UCT, bit [15]

	DZE, bit [14]
	DZE, bit [14]
	DZE, bit [14]

	EnDB, bit [13]
	I, bit [12]
	EOS, bit [11]
	EnRCTX, bit [10]
	EnRCTX, bit [10]
	EnRCTX, bit [10]

	Bit [9]
	SED, bit [8]
	SED, bit [8]
	Bit [0]
	SED, bit [8]

	ITD, bit [7]
	ITD, bit [7]
	Bit [0]
	ITD, bit [7]

	nAA, bit [6]
	CP15BEN, bit [5]
	CP15BEN, bit [5]
	Bit [0]
	CP15BEN, bit [5]

	SA0, bit [4]
	SA, bit [3]
	C, bit [2]
	A, bit [1]
	M, bit [0]

	Accessing SCTLR_EL2
	MRS <Xt>, SCTLR_EL2
	MSR SCTLR_EL2, <Xt>
	MRS <Xt>, SCTLR_EL1
	MSR SCTLR_EL1, <Xt>

	E3.2.18 EDDEVID1, External Debug Device ID register 1
	Field descriptions
	Bits [31:8]
	HSR, bits [7:4]
	PCSROffset, bits [3:0]

	Accessing EDDEVID1

	E4 Glossary terms

