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About this supplement

This supplement is the Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME),
for Armv9-A.

This supplement describes the changes and additions introduced by SME to the Armv9-A architecture.

This supplement also describes the changes and additions introduced by The Scalable Matrix Extension version 2
(SME2) to the Armv9-A architecture.

In this supplement, unless stated otherwise, when SME is used, the behavior also applies to SME2.
For SME, this supplement is to be read with the following documents:

o Arm® Architecture Reference Manual for A-profile architecture [1]
o Arm® Architecture Registers, for A-profile architecture [2]
o Arm® A64 Instruction Set Architecture, for A-profile architecture [3]

Together, the supplement and these documents provide a full description of the Armv9-A Scalable Matrix Extension,
and the Armv9-A Scalable Matrix Extension version 2.

This supplement is organized into parts:
* SME Application Level Programmers’ Model
Describes how the PE at an application level is altered by the implementation of SME.
* SME System Level Programmers’ Model
Describes how the PE at a system level is altered by the implementation of SME.
* SME Instruction Set
Describes the extensions made for SME to the A64 instruction set.
* Appendices

Provides reference information relating to the SME. This includes summarized information about the
instruction set, imported shared pseudocode and System register data, and a glossary that defines terms used
in this document that have a specialized meaning.
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Conventions

Typographical conventions

Numbers

The typographical conventions are:
italic
Introduces special terminology, and denotes citations.
bold
Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace
Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.
Blue text

Indicates a link. This can be

¢ A cross-reference to another location within the document
* A URL, for example http://developer.arm.com

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xrrrF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for

example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Asterisks in instruction mnemonics

Some behavior descriptions in this manual apply to a group of similar instructions that start with the same

characters. In these situations, an * might be inserted at the end of a series of characters as a wildcard.
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Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.
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Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

¢ Declaration
e Rule
¢ Goal
¢ Information

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions
of the specification.

Content item rendering

Content item classes

Declaration

A Declaration is a statement that does one or more of the following:

¢ Introduces a concept

e Introduces a term

¢ Describes the structure of data
* Describes the encoding of data

A Declaration does not describe behavior.

A Declaration is rendered with the label D.
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Rule

A Rule is a statement that describes the behavior of a compliant implementation.
A Rule explains what happens in a particular situation.
A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Goal

A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.
A Goal is comparable to a “business requirement” or an “emergent property.”
A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information

An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label 1.
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Additional reading

This section lists publications by Arm and by third parties.
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Chapter A1
SME Introduction

A1.1 About the Scalable Matrix Extension

Tyvepk The Scalable Matrix Extension (SME) defines:

* Architectural state capable of holding two-dimensional matrix tiles.

* A Streaming SVE processing mode, which supports execution of SVE2 instructions with a vector length that
matches the tile width.

* Instructions that accumulate the outer product of two vectors into a tile.

¢ Load, store, and move instructions that transfer a vector to or from a tile row or column.

The extension also defines System registers and fields that identify the presence and capabilities of SME, and
enable and control its behavior at each Exception level.

Tpyome The Scalable Matrix Extension version 2 (SME2) extends the SME architecture to increase the number of
applications that can benefit from the computational efficiency of SME, beyond its initial focus on outer products
and matrix-matrix multiplication.

SME?2 adds data processing instructions with multi-vector operands and a multi-vector predication mechanism.
These include:

* Multi-vector multiply-accumulate instructions, that read SVE Z vectors and accumulate into ZA array vectors
to permit reuse of the SME outer product hardware for vector operations, including widening multiplies that
accumulate into more vectors than they read.

* Multi-vector load, store, move, permute, and convert instructions, that read and write multiple SVE Z vectors
to preprocess inputs and post-process outputs of the multi-vector multiply-accumulate instructions.

* An alternative predication mechanism to the SVE predication mechanism, to control operations performed
on multiple vector registers.
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Chapter A1. SME Introduction
A1.1. About the Scalable Matrix Extension

SME?2 also adds:

* A Range Prefetch hint instruction to prepare the memory system to prefetch and retain a set of strided address
ranges in the most appropriate cache levels.

* Compressed neural network capability using dedicated lookup table instructions and outer product instructions
that support binary neural networks.

* A 512-bit architectural register, ZT0, to support the lookup table feature.

Tsoces Unless otherwise specified by this document, the behaviors of instructions and architectural state when the PE is in
Streaming SVE mode are as described in Arm® Architecture Reference Manual for A-profile architecture [1].
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Chapter A2
Architecture Features and Extensions

A2.1 Extensions and features defined by SME

Rkoppr
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SME inherits the rules for architectural features and extensions from Arm® Architecture Reference Manual for
A-profile architecture [1]. This specification describes changes to those rules, and defines any features added by
SME.

SME is represented by the feature FEAT_SME.
FEAT_SME is an OPTIONAL extension from Armv9.2.
The following list summarizes the OPTIONAL SME features:

» FEAT SME_FA64, support the full A64 instruction set in Streaming SVE mode.
* FEAT_SME_F64F64, Double-precision floating-point outer product instructions.
* FEAT_SME_I16164, 16-bit to 64-bit integer widening outer product instructions.
* FEAT_EBF16, support for Extended BFloat16 mode.

FEAT_SME_FAG64 requires FEAT_SVE2.
SME2 represents a version of the SME architecture that implements FEAT_SME2.
FEAT_SME?2 is an OPTIONAL extension from Armv9.2.

FEAT_SME2 requires FEAT_SME.
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Chapter A2. Architecture Features and Extensions
A2.2. Changes to existing features and extension requirements

A2.2 Changes to existing features and extension requirements

Rpsuis If SME is implemented, the following features are also implemented:

* FEAT_HCX.
* FEAT_FGT.

* FEAT_FCMA.
» FEAT FP16.
 FEAT_FHM.
* FEAT_BF16.
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Chapter B1
Application processing modes

B1.1 Overview

SME extends the AArch64 application level programmers’ model with added processing modes and related
instructions, architectural state, and registers:

* The psTATE. sM control to enable an execution mode, known as Streaming SVE mode.

* The psTATE. za control to enable access to ZA storage, and to the ZT0 register when SME2 is implemented.

* The Special-purpose register, svcr, which provides read/write access to PSTATE. sM and PSTATE. zA from any
Exception level.

e The sMsTarT and sMsTop instructions, aliases of the Msr (immediate) instruction, that can set or clear
PSTATE.SM, PSTATE. ZA, Of both PSTATE. sM and PSTATE. zA from any Exception level.

* A software thread ID register to manage per-thread SME context, TPIDR2_ELO.
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B1.2. Process state

B1.2 Process state
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A PE that implements SME has a Streaming SVE mode.

Streaming SVE register state is the vector registers Z0-Z31 and predicate registers PO-P15 that can be accessed by
SME, SVE, Advanced SIMD, and floating-point instructions when the PE is in Streaming SVE mode.

Streaming SVE register state includes the SVE FFR predicate register if FEAT _SME_FA64 is implemented and
enabled at the current Exception level.

If SME is implemented, a PE has the following additional architectural state:

» Streaming SVE register state.
» ZA storage.
e When SME2 is implemented, the ZT0 register.

A PE enters Streaming SVE mode to access Streaming SVE vector and predicate register state.

If SME is implemented, this does not imply that FEAT_SVE and FEAT_SVE2 are implemented by the PE when it
is not in Streaming SVE mode.

When the PE is in Streaming SVE mode, a different set of vector lengths might be available for SVE instructions,
as specified in C1.1.3 Vector lengths.

When the PE is in Streaming SVE mode, the performance characteristics of some instructions might be significantly
reduced, as specified in E1.3 Reduced performance in Streaming SVE mode.

SME extends a PE’s Process state or psTATE with the s and za fields. The pstatrE fields can be modified by the
sMsTART and sMSTOP instructions, and can also be read and written using the svcr register.

The psTaTE. su field controls the use of Streaming SVE mode.
The pstaTE. za field controls all of the following:

* Access to ZA storage.
* Access to the ZT0 register, when SME2 is implemented.

The sMsTART instruction does either or both of the following:

* Enters Streaming SVE mode.
* Enables the ZA storage, and when SME2 is implemented enables the Z70 register.

The susTop instruction does either or both of the following:

 Exits Streaming SVE mode.
* Disables the ZA storage, and when SME2 is implemented disables the ZT0 register.

After entering Streaming SVE mode, subsequent sMSTART and sMsTOP instructions might be used to enable and
disable the ZA storage, and the Z70 register when SME2 is implemented, for different phases of execution within
Streaming SVE mode, before using a final sMsTop instruction to exit Streaming SVE mode.

SME and SME?2 instructions are the instructions defined by the SME architecture in Chapter D1 SME instructions.

A legal instruction is an implemented instruction that can be executed by a PE when psTATE. sM and PSTATE. za
are in the required state, unless its execution at the current Exception level is prevented by a configurable trap or
enable.

An illegal instruction is an implemented instruction whose attempted execution by a PE when psTATE. sm and
PSTATE. zA are not in the required state causes an SME illegal instruction exception to be taken, unless its execution
at the current Exception level is prevented by a higher-priority configurable trap or enable.

See also:

¢ MSR (immediate).
¢ SMSTART.
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B1.2. Process state

e SMSTOP.

e Cl1.1.3 Vector lengths.

e Cl1.2.3 Vulidity of SME and SVE state.

e C1.34ESR_ELI, ESR_EL2, and ESR_ELS3.
* C1.4.8 SVCR.

e Chapter E1 Instructions affected by SME.

B1.2.1 PSTATE.SM
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The value of psTaTE.sM can be changed by executing the mMsr instructions that access the svcr. For more
information, see B1.2.3 Changing PSTATE.SM and PSTATE.ZA.

The PE is in Streaming SVE mode when the Effective value of psTATE.sMis 1.
When the PE is in Streaming SVE mode:

» Streaming SVE register state is valid.

e SME and SME?2 instructions that access the Streaming SVE register state are legal.

e SME and SME?2 instructions that do not access the ZA storage or ZT0 register are legal.

* SME and SME?2 instructions that access the ZA storage or Z70 register are legal if ZA storage is enabled.
* Legal instructions that access SVE or SIMD&FP registers access the Streaming SVE register state.

The SVE FFR predicate register is not architecturally visible when the PE is in Streaming SVE mode if
FEAT_SME_FA64 is not implemented or not enabled at the current Exception level.

When the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level:

* Most Advanced SIMD instructions are illegal, as described in El.1.1 Illegal Advanced SIMD instructions.
* Some SVE and SVE2 instructions are illegal, as described in E1.1.2 Illegal SVE instructions.
* Most other instructions implemented by the PE, including scalar floating-point instructions, remain legal.

The PE is not in Streaming SVE mode when the Effective value of psTaTe. smis 0.
When the PE is not in Streaming SVE mode:

 Streaming SVE register state is not valid.

* SME and SME?2 instructions that access the Streaming SVE register state are illegal.

* SME 1pRr (vector), sTr (vector), and zeRro (tile) instructions that access the ZA storage are legal if ZA is
enabled, and all other instructions that access the ZA storage are illegal.

* SME2 1pr (ZT0), sTr (ZTO0), and zero (ZTO0) instructions that access the ZT0 register are legal if ZA is
enabled, and all other instructions that access the Z70 register are illegal.

* The mMsr and MRrs instructions that directly access the SME svcr register are legal.

* Instructions which access SVE or SIMD&FP registers access the Non-streaming SVE or SIMD&FP register
state.

 All other instructions implemented by the PE are legal.

When the Effective value of psTATE. sM is changed by any means from O to 1, an entry to Streaming SVE mode is
performed, and each implemented bit of SVE registers Z0-Z31, PO-P15, and FFR in the new mode is set to zero.

When the Effective value of psTATE. su is changed by any means from 1 to 0, an exit from Streaming SVE mode is
performed, and each implemented bit of SVE registers Z0-Z31, PO-P15, and FFR in the new mode is set to zero.

When the Effective value of psTATE. sM is changed by any means from O to 1, or from 1 to O, the FpsR is set to the
value 0x0000_0000_0800_009f, in which all of the cumulative status bits are set to 1.

Statements which refer to the value of the SVE vector registers, Z0-Z31, implicitly also refer to the lower bits
of those registers accessed by the SIMD&FP register names V0-V31, Q0-Q31, DO-D31, S0-S31, HO-H31, and
BO-B31.

See also:
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* Cl1.1.2 Traps and exceptions.
* C14.8 SVCR.

B1.2.2 PSTATE.ZA

R JHMY L

R YRZRM

The value of psTATE.zA can be changed by executing the Msr instructions that access the svcr. For more
information, see B1.2.3 Changing PSTATE.SM and PSTATE.ZA.

The following are enabled when pSTATE. z2 is 1:

* The ZA storage.
* When SME2 is implemented, the ZT0 register.

When ZA storage is enabled:

* The contents of ZA storage, and the ZT0 register when SME2 is implemented, are valid and are retained by
hardware irrespective of whether the PE is in Streaming SVE mode.

* SME and SME2 instructions that access the ZA storage or the Z70 register are legal and can be executed,
unless execution is prevented by some other trap or exception.

The following are disabled when psTATE. 72 is O:

* The ZA storage.
* When SME2 is implemented, the Z70 register.

When ZA storage is disabled:

* The contents of ZA storage, and the ZT0 register when SME2 is implemented, are not valid.
* SME and SME2 instructions that access the ZA storage or the ZT0 register are illegal.
* There is no effect on other instructions implemented by the PE.

When psTATE . 72 is changed by any means from 0 to 1, all implemented bits of the ZA storage, and the Z70 register
when SME?2 is implemented, are set to zero.

When psTATE. za is changed from 1 to O, there is no architecturally defined effect on the ZA storage, and the Z70
register when SME2 is implemented, because the contents of ZA storage and the Z70 register cannot be observed
when PSTATE. za is 0.

When pstaTE. za is changed from 0 to 1, or 1 to O, there is no effect on the SVE vector and predicate registers and
the FpsR if PSTATE. sM is not changed.

See also:

* B2.6 SME2 Lookup table.
* Cl1.1.2 Traps and exceptions.
* C14.8 SVCR.

B1.2.3 Changing PSTATE.SM and PSTATE.ZA

Dorsxv
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The following mMsr (immediate) instructions are provided to independently set or clear PSTATE . SM, PSTATE . ZA, OF
both psTATE. sM and PSTATE. zA respectively:

® MSR SVCRSM, #<imml>.
® MSR SVCRZA, #<imml>.
® MSR SVCRSMZA, #<imml>.

MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are permitted to be executed from any Exception level.
The sMsTART instruction is the preferred alias of the following instructions:

® MSR SVCRSM, #1.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 33
Non-confidential



Chapter B1. Application processing modes
B1.2. Process state

® MSR SVCRZA, #1.
® MSR SVCRSMZA, #1.

The smsTop instruction is the preferred alias of the following instructions:

® MSR SVCRSM, #0.
® MSR SVCRZA, #0.
® MSR SVCRSMZA, #0.

Access to svcr through the Mrs and MsR (register) instructions might be used where a calling convention or ABI
requires saving, restoring, or testing of PSTATE. sM and PSTATE. z2, and are permitted to be executed from any
Exception level. However, the Msr (immediate) instructions might be higher performance than the msr (register)
instruction, so the Msr (immediate) instructions are preferred for explicit changes to PSTATE. sM and PSTATE . zA.

The PE might consume less power when psTATE. sM is 0 and PSTATE. 72 is 0.
See also:

* MSR (immediate).
¢ SMSTART.

« SMSTOP.

e C1.4.8 SVCR.

B1.2.4 TPIDR2_ELO
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If SME is implemented, the register TpPIDR2_ELO is added.

The Software Thread ID Register #2 provides additional thread identifying information that can be read and written
from all Exception levels.

This register is reserved for use by the ABI to manage per-thread SME context.
See also:

* TPIDR2_ELO.
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Chapter B2
Architectural state

B2.1 Architectural state summary

DxJcac The Effective Streaming SVE vector length (SVL) is a power of two in the range 128 to 2048 bits inclusive.
TynBePEM When the PE is in Streaming SVE mode, the Effective SVE vector length (VL) is equal to SVL.
This might be different from the value of VL when the PE is not in Streaming SVE mode, as described in C1.1.3
Vector lengths.
D syvy In a vector of SVL bits:

e SVLg is the number of 8-bit elements.

¢ SVLy is the number of 16-bit elements.
¢ SVLg is the number of 32-bit elements.
¢ SVLp is the number of 64-bit elements.
* SVL is the number of 128-bit elements.

SVL [bits] SVLgp SVLy SVLg SVLp SVLq
128 16 8 4 2 1
256 32 16 8 4 2
512 64 32 16 8 4
1024 128 64 32 16 8
2048 256 128 64 32 16
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B2.1. Architectural state summary
See also:

» Chapter B1 Application processing modes.
e CI1.1.3 Vector lengths.
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B2.2 SME ZA storage
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The ZA storage is an architectural register state consisting of a two-dimensional ZA array of [SVLp x SVLg] bytes.

B2.2.1 ZA array vector access

Rrruns
Deppem
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Dyxurr
Dcra

Dpi" 7T

The ZA array can be accessed as vectors of SVL bits.
An untyped vector access to the ZA array is represented by ZA[N], where N is in the range 0 to SVLg-1 inclusive.

In SME 1R (vector) and sTR (vector) instructions, an untyped ZA array vector is selected by the sum of a 32-bit
general-purpose vector select register Wv and an immediate vector select offset offs, modulo SVLg.

The preferred disassembly for an untyped ZA array vector is ZA[Wv, offs], where offs is an immediate in the range
0-15 inclusive.

The ZA array can be accessed as vectors of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit elements.

An elementwise vector access to the ZA array is indicated by appending a vector index “[N]” to the ZA array name
and element size qualifier, where N is in the range 0 to SVLg-1 inclusive, as follows:

* An 8-bit element vector access to the ZA array is represented by ZA.B[N].
* A 16-bit element vector access to the ZA array is represented by ZA.H[N].
¢ A 32-bit element vector access to the ZA array is represented by ZA.S[N].
* A 64-bit element vector access to the ZA array is represented by ZA.D[N].
* A 128-bit element vector access to the ZA array is represented by ZA.Q[N].

B2.2.2 ZA tile access
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A ZA tile is a square, two-dimensional sub-array of elements within the ZA array.

Depending on the element size with which it is accessed, the ZA array is treated as containing one or more ZA
tiles, as described in the following sections.

A ZA tile is indicated by appending the tile number to the ZA name.

A ZA tile slice is a one-dimensional set of horizontally or vertically contiguous elements within a ZA tile.
A vector access to a tile reads or writes a ZA tile slice.

A ZA tile can be accessed as vectors of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit elements.

A ZA tile can be accessed as horizontal slices of SVL bits.

A ZA tile is accessed as horizontal slices if the V field in the accessing instruction opcode is 0.

An access to horizontal tile slices is indicated by an “H” suffix on the ZA tile name.

A ZA tile can be accessed as vertical slices of SVL bits.

A ZA tile is accessed as vertical slices if the V field in the accessing instruction opcode is 1.

An access to vertical tile slices is indicated by a “V” suffix on the ZA tile name.

In SME instructions, the tile slice is selected by the sum of a 32-bit general-purpose slice index register Ws and an
immediate slice index offset offs, modulo the number of slices in the named tile.
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B2.2.3 Accessing an 8-bit element ZA tile

Dimsn An 8-bit element ZA tile is indicated by a “.B” qualifier following the tile name.

DyLncnm There is a single tile named ZA0.B which consists of [SVLg x SVLg] 8-bit elements and occupies all of the ZA
storage.

Rupsmy An access to a horizontal or vertical 8-bit element ZA tile slice reads or writes SVLg 8-bit elements.

Dymary An access to a horizontal or vertical 8-bit element ZA tile slice is indicated by appending a slice index “[N]” to the

tile name, direction suffix, and qualifier. For example, where N is in the range 0 to SVLg-1 inclusive:

e ZAOH.B[N] indicates a horizontal 8-bit element ZA tile slice selection.
e ZAOV.B[N] indicates a vertical 8-bit element ZA tile slice selection.

T Jvrny Horizontal and vertical ZAOQ.B slice accesses are illustrated in the following diagram for SVL of 256 bits:

Rpesoy An access to the horizontal slice ZAOH.B[N] reads or writes the SVLg bytes in ZA array vector ZA.B[N].

Rrayso An access to the vertical slice ZAOV.B[N] reads or writes the 8-bit element [N] within each horizontal slice of
ZA0.B.

Dcp The preferred disassembly is:

o ZAOH.B[Ws3, offs], for a horizontal 8-bit element ZA tile slice selection.
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* ZAOV.B[Ws, offs], for a vertical 8-bit element ZA tile slice selection.

Where offs is an immediate in the range 0-15 inclusive.

B2.2.4 Accessing a 16-bit element ZA tile
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A 16-bit element ZA tile is indicated by a “.H” qualifier following the tile name.

There are two tiles named ZAO.H and ZA1.H. Each tile consists of [SVLy x SVLy] 16-bit elements, and occupies
half of the ZA storage.

An access to a horizontal or vertical 16-bit element ZA tile slice reads or writes SVLy 16-bit elements.

An access to a horizontal or vertical 16-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where ¢ is O or 1, and N is in the range 0 to SVLy-1
inclusive:

* ZArH.H[N] indicates a horizontal 16-bit element ZA tile slice selection.
e ZArV.H[N] indicates a vertical 16-bit element ZA tile slice selection.

Horizontal and vertical ZAt.H slice accesses, where ¢ is 0 or 1, are illustrated in the following diagram for SVL of
256 bits:
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RpTroc

An access to the horizontal slice ZAfH.H[N] reads or writes the SVLy 16-bit elements in ZA array vector ZA.H[f +
2 * NIJ.

An access to the vertical slice ZArV.H[N] reads or writes the 16-bit element [N] within each horizontal slice of
ZAt.H.

The preferred disassembly is as follows:

* ZAtH.H[Ws, offs], for a horizontal 16-bit element ZA tile slice selection.
* ZAtV.H[Ws, offs], for a vertical 16-bit element ZA tile slice selection.

Where ¢ is 0 or 1, and offs is an immediate in the range 0-7 inclusive.

B2.2.5 Accessing a 32-bit element ZA tile
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A 32-bit element ZA tile is indicated by a “.S” qualifier following the tile name.

There are four tiles named ZA0.S, ZA1.S, ZA2.S, and ZA3.S. Each tile consists of [SVLg x SVLg] 32-bit elements,
and occupies a quarter of the ZA storage.

An access to a horizontal or vertical 32-bit element ZA tile slice reads or writes SVLg 32-bit elements.

An access to a horizontal or vertical 32-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where ¢ is 0, 1, 2, or 3, and N is in the range 0 to SVLg-1
inclusive:

e ZArH.S[N] indicates a horizontal 32-bit element ZA tile slice selection.
e ZArV.S[N] indicates a vertical 32-bit element ZA tile slice selection.

Horizontal and vertical ZAzt.S slice accesses, where ¢ is 0, 1, 2, or 3, are illustrated in the following diagram for
SVL of 256 bits:

An access to the horizontal slice ZAfH.S[N] reads or writes the SVLg 32-bit elements in ZA array vector ZA.S[t +
4 * NJ.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 40
Non-confidential



Chapter B2. Architectural state
B2.2. SME ZA storage

An access to the vertical slice ZAtV.S[N] reads or writes the 32-bit element [N] within each horizontal slice of
ZAt.S.

The preferred disassembly is:

» ZAtH.S[Ws, offs], for a horizontal 32-bit element ZA tile slice selection.
o ZAtV.S[Ws, offs], for a vertical 32-bit element ZA tile slice selection.

Where tis 0, 1, 2, or 3, and offs is 0, 1, 2, or 3.

B2.2.6 Accessing a 64-bit element ZA tile
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A 64-bit element ZA tile is indicated by a “.D” qualifier following the tile name.

There are eight tiles named ZA0.D, ZA1.D, ZA2.D, ZA3.D, ZA4.D, ZA5.D, ZA6.D, and ZA7.D. Each tile consists
of [SVLp x SVLp] 64-bit elements, and occupies an eighth of the ZA storage.

An access to a horizontal or vertical 64-bit element ZA tile slice reads or writes SVLp 64-bit elements.

An access to a horizontal or vertical 64-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where ¢ is in the range 0-7 inclusive, and N is in the
range 0 to SVLp-1 inclusive:

e ZArH.D[N] indicates a horizontal 64-bit element ZA tile slice selection.
e ZArV.D[N] indicates a vertical 64-bit element ZA tile slice selection.

Horizontal and vertical ZAz.D slice accesses, where ¢ is in the range 0-7 inclusive, are illustrated in the following
diagram for SVL of 256 bits:

An access to the horizontal slice ZArH.D[N] reads or writes the SVLp 64-bit elements in ZA array vector ZA.D[z +
8 * NJ.

An access to the vertical slice ZAfrV.D[N] reads or writes the 64-bit element [N] within each horizontal slice of
ZAt.D.

The preferred disassembly is:

* ZAtH.D[Ws, offs], for a horizontal 64-bit element ZA tile slice selection.
* ZAtV.D[Ws, offs], for a vertical 64-bit element ZA tile slice selection.

Where ¢ is in the range 0-7 inclusive, and offs is 0 or 1.
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B2.2.7 Accessing a 128-bit element ZA tile

Dazos

—),\’L‘LJ L

DDIo616

B.a

A 128-bit element ZA tile is indicated by a “.Q” qualifier following the tile name.

There are 16 tiles named ZA0.Q, ZA1.Q, ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZA7.Q, ZA8.Q, ZA9.Q, ZA10.Q,
ZA11.Q,ZA12.Q, ZA13.Q, ZA14.Q, and ZA15.Q. Each tile consists of [SVLq X SVLq] 128-bit elements, and
occupies 1/16 of the ZA storage.

An access to a horizontal or vertical 128-bit element ZA tile slice reads or writes SVLq 128-bit elements.

An access to a horizontal or vertical 128-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where 7 is in the range 0-15 inclusive, and N is in the
range 0 to SVLq-1 inclusive:

e ZArH.Q[N] indicates a horizontal 128-bit element ZA tile slice selection.
e ZArV.Q[N] indicates a vertical 128-bit element ZA tile slice selection.

Horizontal and vertical ZAt.Q slice accesses, where ¢ is in the range 0-15 inclusive, are illustrated in the following
diagram for SVL of 256 bits:

=]
|

An access to the horizontal slice ZAfH.Q[N] reads or writes the SVL 128-bit elements in ZA array vector ZA.Q[?
+ 16 * NJ.

An access to the vertical slice ZAtrV.Q[N] reads or writes the 128-bit element [N] within each horizontal slice of
ZArQ.

The preferred disassembly is:

e ZArH.Q[Ws, 0], for a horizontal 128-bit element ZA tile slice selection.
e ZArV.Q[Ws, 0], for a vertical 128-bit element ZA tile slice selection.

Where ¢ is in the range 0-15 inclusive, and the slice index offset is always zero.
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B2.3 ZA storage layout

B2.3.1 ZA array vector and tile slice mappings

Toyriw Each horizontal tile slice corresponds to one ZA array vector.

The horizontal slice mappings for all tile sizes are illustrated by this table:

ZA Array 8-bit element Tile =~ 16-bit element Tile = 32-bit element Tile  64-bit element Tile 128-bit element Tile
Vector Horizontal Slice Horizontal Slice Horizontal Slice Horizontal Slice Horizontal Slice
ZA[0] ZAOH.B[0] ZAOH.H[0] ZAOH.S[0] ZAOH.D[0] ZAOH.QIO0]
ZA[1] ZAOH.B[1] ZA1HH[0] ZA1H.S[0] ZA1H.D[0] ZA1H.Q[0]
ZA[2] ZAOH.B[2] ZAOH.H[1] ZA2H.S[0] ZA2H.D[0] ZA2H.QI[0]
ZA[3] ZAOH.B[3] ZATH.H[1] ZA3H.S[0] ZA3H.D[0] ZA3H.QI0]
ZA[4] ZAOH.B[4] ZAOH.H[2] ZAOH.S[1] ZA4H.D[0] ZA4H.QI[0]
ZA[35] ZAOH.BJ[5] ZA1H.H[2] ZA1H.S[1] ZASH.D[0] ZASH.QI0]
ZA[6] ZAOH.B[6] ZAOH.H[3] ZA2H.S[1] ZA6H.D[0] ZA6H.QI0]
ZA[T] ZAOH.B[7] ZATH.H[3] ZA3H.S[1] ZATH.D[0] ZATH.Q[O]
ZA[8] ZAOH.B[8] ZAOH.H[4] ZAOH.S[2] ZAOH.D[1] ZA8H.QI[0]
ZA[9] ZAOH.B[9] ZA1H.H[4] ZA1H.S[2] ZA1H.D[1] ZA9H.QI0]
ZA[10] ZAOH.B[10] ZAOH.H[5] ZA2H.S[2] ZA2H.D[1] ZA10H.Q[0]
ZA[11] ZAOH.B[11] ZA1TH.H[5] ZA3H.S[2] ZA3H.D[1] ZA11H.Q[O0]
ZA[12] ZAOH.B[12] ZAOH.H[6] ZAOH.S[3] ZA4H.D[1] ZA12H.Q[0]
ZA[13] ZAOH.B[13] ZA1H.HI[6] ZA1H.S[3] ZASH.D[1] ZA13H.Q[0]
ZA[14] ZAOH.B[14] ZAOH.H[7] ZA2H.S[3] ZA6H.D[1] ZA14H.Q[O0]
ZA[15] ZAOH.B[15] ZA1THH[7] ZA3H.S[3] ZATH.D[1] ZA15H.Q[0]
if applicable

ZA[16] to

ZA[SVLg-1]

B2.3.2 Tile mappings

Tyvyop The smallest ZA tile granule is the 128-bit element tile. When the ZA storage is viewed as an array of tiles, the
larger 64-bit, 32-bit, 16-bit, and 8-bit element tiles overlap multiple 128-bit element tiles as follows:
Tile Overlaps
ZA0.B ZA0.Q,ZA1.Q,ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZAT.Q,
ZA8.Q,ZA9.Q, ZA10.Q, ZA11.Q, ZA12.Q, ZA13.Q, ZA14.Q, ZA15.Q
ZAO0.H ZA0.Q,ZA2.Q,7ZA4.Q,ZA6.Q, ZA8.Q, ZA10.Q, ZA12.Q, ZA14.Q
ZA1H ZA1.Q,ZA3.Q,ZA5.Q,ZA7.Q, ZA9.Q, ZA11.Q, ZA13.Q, ZA15.Q
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Tile Overlaps
ZA0.S ZA0.Q, ZA4.Q, ZA8.Q, ZA12.Q
ZA1.S ZA1.Q,ZA5.Q,7ZA9.Q, ZA13.Q
ZA2.S ZA2.Q,7A6.Q,7ZA10.Q, ZA14.Q
ZA3.S ZA3.Q,ZA7.Q,ZA11.Q, ZA15.Q
ZA0.D ZA0.Q, ZA8.Q
ZA1.D ZA1.Q,ZA9.Q
ZA2.D ZA2.Q,7ZA10.Q
ZA3D ZA3.Q,ZA11.Q
ZA4.D ZA4.Q,7ZA12.Q
ZAS5.D ZA5.Q,7ZA13.Q
ZA6.D ZA6.Q,ZA14.Q
ZA7.D ZA7.Q,7ZA15.Q

TuczeT The architecture permits concurrent use of different element size tiles.

B2.3.3 Horizontal tile slice mappings

Ingoxw The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for a 32-bit element and 64-bit
element horizontal tile slice.

Each small numbered square represents 8 bits.

H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofo]  o[o] [o0]
1o} o[ [a]
of1] o[2] [2]
11 o[3] [3]
o[2] o[4a] [4]
12} o[s] [s]
0[3) o[l [e] ZA2H.S[1]
i3] o7l 7
ofa]  o[e] [8]
1[4l o9l [91
o0[5] o0[10] [10]
1[5] o[11] [11]
o[6] 0[12] [12]
1[6] 0[13] [13]
o[7] o0[14] [14]
1[7] o[15] [15]
o8] 0[16] [16]
18] o0[17] [17]
0[9] 0[18] [18]
1[9] o[19] [19]
0[10] 0[20] [20] ZA4H.D[2]
1[10] 0[21] [21]
o0[11] o0[22] [22]
1[11] 0[23] [23]
0[12] 0[24] [24]
1[12] 0[25] [25]
0[13] 0[26] [26]
1[13]  0[27] [27]
0[14] o0[28] [28]
1[14] 0[29] [29]
0[15] 0[30] [30]
1[15]  0[31] [31]
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An SME vector load, store, or move instruction that accesses horizontal tile slices ZA2H.S[1] or ZA4H.DJ[2] treats
the slices as vectors with the following layout:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ZA2H.5[1]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B2.3.4 Vertical tile slice mappings

Incev

DDI0O616
B.a

ZA4H.D[2]

The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for a 32-bit element and 64-bit

element vertical tile slice.

Each small numbered square represents 8 bits.

Q
0[0]
1[0]
2[0]
3[0]
4[0]
5[0]
6[0]
7[0]
8[0]
9[0]

10[0]
11[0]
12[0]
13[0]
14[0]
15[0]
o[1]
1[1]
2[1]
3[1]
a1
5[1]
6[1]
711]
8[1]
9[1]
10[1]
11[1]
12[1]
13[1]
14[1]
15[1]

.D

0[0]
1[0]
2[0]
3[0]
4[0]
5[0]
6[0]
7[0]
0[1]
1[1]
2[1]
3[1]
4[1]
5[1]
6[1]
71]
0[2]
1[2]
2[2]
3[2]
42]
5[2]
6[2]
7[2]
0[3]
1[3]
2[3]
3[3]
4[3]
5[3]
6[3]
7[3]

S

o[0]
1[0]
2[0]
3[0]
o[1]
1[1]
2[1]
3[1]
0[2]
1[2]
2[2]
3[2]
0[3]
1[3]
23]
3[3]
o[4]
1[4]
2[4]
3[4]
0[5]
1[5]
2[5]
3[5]
o[6]
1[6]
2[6]
3[6]
0[7]
1[7]
2[7]
3[7]

.H
o[o]
1[0]
o[1]
1[1]
0[2]
12]
0[3]
131
0[4]
1[4]
0[5]
1[51
o[6]
1[6]
0[7]
171
o[8]
1[8]
0[9]
1[9]

0[10]
1[10]
0[11]
1[11]
0[12]
1[12]
0[13]
1[13]
0[14]
1[14]
0[15]
1[15]

.B
0[0]
o[1]
0[2]
0[3]
0[4]
0[5]
o[6]
0[7]
o[8]
0[9]

0[10]
0[11]
0[12]
0[13]
0[14]
0[15]
0[16]
0[17]
0[18]
0[19]
0[20]
0[21]
0[22]
0[23]
0[24]
0[25]
0[26]
0[27]
0[28]
0[29]
0[30]
0[31]

[0]
[1]
[2]
[3]
[4
[5]
[6]
[71
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

ZA4V.D[2]

ZA2V.5[1]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An SME vector load, store, or move instruction which accesses vertical tile slices ZA2V.S[1] or ZA4V.D[2] treats
the slices as vectors with the following layout:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7i6i{5{4:7/6i5{4{7i6/5:4]

3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
23122121120{19118/17116] zAav.D[2]
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B2.3.5 Mixed horizontal and vertical tile slice mappings

Teexps The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for various element size tiles,
horizontal tile slices, and vertical tile slices.

Each small square represents 8 bits.

ZA7V.D[3] ZAO0V.B[22] ZA3V.S[4] ZA8V.Q[0] ZA1V.H[1]
.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o] o] ofo] ofo] ofo] I[o] '
0] 1[0l 1f0] 1fo] o[1] [1]
2(0] 201 2(0] o[1] o[2] [2]
30] 3(0] 3[0] 1[1] o[3] [3]
af0] afo] o] o[2] o[4] [4]
sfo] slo] 1[1] 1[2] o[s] I[s]
6[0] 6[0] 2[1] 0[3] o[6] [6] ZA6H.D[0]
7100 7(0]  3[1] 13 o[71 (71
8[0] o[1] 0[2] o[4] o[8] I[8]
ol 101] 1[2] 4] 0o[9] [9]
10[0] 2[1] 2[2] O0[5] O0[10] [10]
11[0]  3[1] 3[2] 1[5] o[11] [11]
12[0] 4[1] ©0[3] o0[6] O[12] [12]
13[0] 5[1] 1[3] 1[6] O[13] [13]
14[0] 6[1] 2[3] oO[7] o0[14] [14] ZAOH.H[7]
15[0]  7[1]  3[3] 1[7] o0[15] [15]
o[1] o[2] o©[4] o0[8] O[16] [16]
1] 1[21 14] 1[8] 0[17] [17]
2[1] 2[2] 2[4] 0[9] O[18] [18]
3[1] 3[2] 3[4] 1[9] O[19] [19]
4[1] 4[2] o[5] 0[10] 0[20] [20] ZAOH.B[20]
s[1]  s[2] 1[5] 1[10] oO[21] [21]
6[1] 6[2] 2[5] o0[11] 0[22] [22] ZA2H.5[5]
7011 7[2]  3[5] 1[11] 0[23] [23]
8[1] 0[3] O0[6] 0[12] 0[24] [24]
9[1] 1[3] 1[6] 1[12] 0[25] [25]
10[1]  2[3] 2[6] O[13] O0[26] [26]
11(1]  3(3] 3[6] 1[13] 0[27] [27]
12[1]  4[3] 0[7] O[14] o0[28] [28] ZA12H.Q[1]
13(1]  5[3] 1[7] 1[14] O0[29] [29]
14[1]  6[3] 2[7] o0[15] O0[30] [30]
15[1] 7[3] 3[7]  1[15] o0[31] [31]
Tuveme It is possible to simultaneously use non-overlapping ZA array vectors within tiles of differing element sizes. For

example, tiles ZA1.H, ZA0.S, and ZA2.D have no ZA array vectors in common, as illustrated in the following
diagram for SVL of 256 bits:
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Twpmck

.Q
0[0]
1[0]
2[0]
3[0]
4[0]
5[0]
6[0]
710]
8[0]
9[0]

10[0]

11[0]
12[0]
13[0]
14[0]
15[0]
0[1]
1]
2[1]
3[1]
a1
5[1]
6[1]
711]
8[1]
9[1]
10[1]
11[1]
12[1]
13[1]
14[1]
15[1]

.D

o[o]
1[0]
2[0]
3[0]
4[0]
5[0]
6[0]
7[0]
0[1]
1]
2[1]
3[1]
4[1]
5[1]
6[1]
711]
0[2]
1[2]
2[2]
3[2]
4[2]
5[2]
6[2]
7[2]
0[3]
1[3]
2[3]
3[3]
4[3]
5[3]
6[3]
7[3]

.S

o[o]
1[0]
2[0]
3[0]
o[1]
1[1]
2[1]
3[1]
0[2]
1[2]
2[2]
3[2]
0[3]
1[3]
2[3]
3[3]
o[4]
1[4]
2[4]
3[4]
o[s]
1[s]
2[5]
3[5]
o[e]
1[6]
2[6]
3[6]
o[7]
1[7]
2(7]
3(7]

H
0[0]
1[0]
0[1]
1[1]
0[2]
1[2]
0[3]
1[3]
0[4]
1[4]
o[s]
1[5]
o[e]
1[6]
o[7]
1[7]
o[8]
18]
0[9]
1[9]

0[10]

1[10]

o0[11]

1[11]

0[12]

1[12]

0[13]

1[13]

0[14]

1[14]

0[15]

1[15]

B
o[o]
o[1]
0[2]
0[3]
o[4]
0[5]
o[e]
o[7]
o[g]
o[9]

0[10]

o0[11]

0[12]

0[13]

0[14]

0[15]

0[16]

0[17]

o[18]

0[19]

0[20]

0[21]

0[22]

0[23]

0[24]

0[25]

0[26]

0[27]

0[28]

0[29]

0[30]

0[31]

ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

ZAOH.S[0]
ZA1H.H[0]
ZA2H.D[0]
ZATH.H[1]
ZAOH.S[1]
ZATH.H[2]

ZATH.H[3]
ZAOH.S[2]
ZA1H.H[4]
ZA2H.D[1]
ZA1H.H[5]
ZAOH.S[3]
ZA1H.H[6]

ZA1H.H[7]
ZAOH.S[4]
ZA1H.H[8]
ZA2H.D[2]
ZATH.H[9]
ZAOH.S[5]
ZA1H.H[10]

ZATH.H[11]
ZAOH.S[6]
ZATH.H[12]
ZA2H.D[3]
ZA1H.H[13]
ZAOH.S[7]
ZA1H.H[14]

ZA1H.H[15]

It is possible to access overlapping ZA array vectors within tiles of differing element sizes. For example, tiles

ZAO0.H, ZA2.S, and ZA6.D have common ZA array vectors.

DDIo616
B.a
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B2.4 SME2 Multi-vector operands

Multi-vector operands allow certain SME2 instructions to access source and destination operands which each
consist of one of the following:

* A group of two or four SVE Z vector registers.
* A group of two or four ZA tile slices.
* A group of two, four, eight, or sixteen ZA array vectors.

B2.4.1 Z multi-vector operands

Dyynrz

Domrst,

B2.4.2

DDI0O616
B.a

A multi-vector operand consisting of two or four SVE Z vector registers is called a Z multi-vector operand.
A Z multi-vector operand can occupy:

* Consecutively numbered Z registers.
* Z registers with strided numbering.

A Z multi-vector operand occupying two consecutively numbered Z vectors consists of Zn+0 and Zn+1, where
n+x modulo 32 is a register number in the range 0-31 inclusive.

A Z multi-vector operand occupying four consecutively numbered Z vectors consists of Zn+0 to Zn+3, where n+x
modulo 32 is a register number in the range 0-31 inclusive.

The preferred disassembly for a Z multi-vector operand of consecutively numbered Z vectors is a dash-separated
register range, for example { Z0.S-Z1.S } or { Z30.B-Z1.B }. Toolchains must also support assembler source
code that uses the alternative comma-separated list notation, for example { Z0.S, Z1.S } or { Z30.B, Z31.B, Z0.B,
Z1.B }. Disassemblers can provide an option to select between the dash-separated range and comma-separated list
notations.

A Z multi-vector operand occupying two Z vectors with strided register numbering consists of a first register in the
range Z0-Z7 or Z16-7Z23, followed by a second register with a number that is 8 higher than the first register.

A Z multi-vector operand occupying four Z vectors with strided register numbering consists of a first register in the
range Z0-Z3 or Z16-Z19, followed by three registers each with a number that is 4 higher than the previous register.

The preferred disassembly for a Z multi-vector operand of Z vectors with strided register numbering is a
comma-separated register list, for example { Z0.D, Z8.D } or { Z0.H, Z4.H, Z8.H, Z12.H }.

ZA multi-slice operands

A multi-vector operand consisting of two or four ZA tile slices is called a ZA multi-slice operand.
A ZA multi-slice operand can occupy:

 Consecutively numbered horizontal ZA tile slices.
» Consecutively numbered vertical ZA tile slices.

In instructions operating on ZA multi-slice operands, the lowest-numbered slice is:

* A multiple of 2 for a two-slice ZA operand.
* A multiple of 4 for a four-slice ZA operand.

The lowest-numbered slice is selected by the sum of a 32-bit general-purpose slice index register Ws and an
immediate slice index offset offs.

Instructions operating on the following ZA multi-slice operands are treated as UNDEFINED:

* The four-slice operand in a 64-bit element tile when SVL is 128 bits.
* The two-slice operand in a 128-bit element tile when SVL is 128 bits.
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* The four-slice operand in a 128-bit element tile when SVL is 128 bits or 256 bits.
The preferred disassembly for a ZA multi-slice operand is as follows:

o ZAtH.T[Ws, offs1:offs2], for horizontal ZA two-slice operands, where offs2 = offsl + 1.
* ZAH.T[Ws, offs1:offs4], for horizontal ZA four-slice operands, where offs4 = offsI + 3.
o ZAfV.T[Ws, offsi:offs2], for vertical ZA two-slice operands, where offs2 = offsI + 1.
o ZAfV.T[Ws, offsi:offs4], for vertical ZA four-slice operands, where offs4 = offsI + 3.

B2.4.3 ZA multi-vector operands

I HPKZM

Dy

DDI0O616
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A multi-vector operand consisting of two, four, eight, or sixteen ZA array vectors is called a ZA multi-vector
operand.

One ZA array vector is called a ZA single-vector group.
Two consecutively numbered vectors in the ZA array are called a ZA double-vector group.
Four consecutively numbered vectors in the ZA array are called a ZA quad-vector group.

The ZA multi-vector operand consists of one, two, or four vector groups, where a vector group is one of the
following:

* ZA single-vector group.
* ZA double-vector group.
* ZA quad-vector group.

The SME2 architecture includes multi-vector instructions that access a ZA multi-vector operand consisting of the
same number of vector groups as there are vectors in each Z multi-vector operand.

The preferred disassembly for a ZA multi-vector operand consisting of two or four vector groups, defined in
declarations Dkqzyz, Dywrsn, and Drrngr, includes the symbol vGx2 or vGx4, respectively. The symbol vex2 or
vGx4 can optionally be omitted in assembler source code if it can be inferred from the other operands.

In instructions that access a ZA multi-vector operand, the lowest-numbered vector is selected by the sum of a 32-bit
general-purpose vector select register Wy and an immediate vector select offset offs, modulo one of the following
values:

* SVLg when the operand consists of one ZA vector group.
* SVLg/2 when the operand consists of two ZA vector groups.
e SVLg/4 when the operand consists of four ZA vector groups.

B2.4.3.1 ZA multi-vector operands of single-vector groups

In instructions where the ZA multi-vector operand consists of two single-vector groups, each vector group is held
in a separate half of the ZA array. The halves of the ZA array are as follows, where n is in the range 0 to (SVLp/2 -
1) inclusive:

e ZA[n+0].
* ZA[SVLg/2 + n+0].

In instructions where the ZA multi-vector operand consists of four single-vector groups, each vector group is held
in a separate quarter of the ZA array. The quarters of the ZA array are as follows, where 7 is in the range O to
(SVLg/4 - 1) inclusive:

e ZA[n+0].

e ZA[SVLg/4 + n+0].

e ZA[SVLg/2 + n+0].

e ZA[SVLg*3/4 + n+0].
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The preferred disassembly for a ZA multi-vector operand of single-vector groups is as follows, where offs is an
immediate in the range 0-7 inclusive, and T is one of B, H, S, or D:

o ZA.T[Wv, offs, VGx2], when the operand consists of two single-vector groups.
* ZA.T[Wv, offs, VGx4], when the operand consists of four single-vector groups.

The mapping between ZA multi-vector operands of single-vector groups and 32-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

Four single-vectors ZA[5]

ZA array vector view

£ ZA[2]
g
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B .=
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§ ZA[2]
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< ZA[5]
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< ZA[S]

Two single-vectors ZA[2]

32-bit ZA tile slices view

ZA[0]
ZA[1]
ZA2)
ZA[3]
zA[4]
ZA[5]
ZA[6]
ZA[7]

ZA0

ZA[8]
ZA[9]

ZA[10]
ZA[11]
ZA[12]
ZA[13]
ZA[14]
ZA[15]

ZA1

ZA[16]
ZA[17]
ZA[18]
ZA[19]
ZA[20]
ZA[21]
ZA[22]
ZA[23]

ZA2

ZA[24]
ZA[25]
ZA[26]
ZA[27]
ZA[28]
ZA[29]
ZA[30]
ZA[31]

ZA3

ZAOH.S[0]
ZAOH.S[1]
ZAOH.S[2]
ZAOH.S[3]
ZAOH.S[4]
ZAOH.S[5]
ZAOH.S[6]
ZAOH.S[7]
ZA1H.S[0]
ZA1H.S[1]
ZA1H.S[2]
ZAIH.S[3]
ZA1H.S[4]
ZAIH.S[5]
ZA1H.S[6]
ZA1H.S[7]
ZA2H.S[0]
ZAZH.S[1]
ZA2H.S[2]
ZA2H.5[3]
ZA2H.5[4]
ZAZH.S[5]
ZA2H.S[6]
ZA2H.5[7]
ZA3H.5[0]
ZA3H.S[1]
ZA3H.5[2)
ZA3H.S[3]
ZA3H.5[4]
ZA3H.5[5]
ZA3H.5[6]
ZA3H.S[7]

ZA[0]
ZA[4]
ZA[8]
ZA[12]
ZA[16]
ZA[20]
ZA[24]
ZA[28]
ZA1]
ZA[5]
ZA[9]
ZA[13]
ZA[17]
ZA[21]
ZA[25]
ZA[29]
ZA12]
zAl6]
ZA[10]
ZA[14]
ZA[18]
ZA[22]
ZA[26]
ZA[30]
ZA[3]
ZA[7]
ZA[11]
ZA[15]
ZA[19]
ZA[23]
ZA[27]
ZA[31]

The mapping between ZA multi-vector operands of single-vector groups and 64-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:
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Four single-vectors ZA[5] Two single-vectors ZA[2]

ZA array vector view 64-bit ZA tile slices view

ZA[0] ZAOH.D[0]  ZA[0]
ZA[1] ZAOH.D[1] ZA[8]
ZA[2] ZA[2]
ZA[3]
ZA[4]
ZA[5)
ZAl6]
ZA[7]
ZA[8]
ZA[9]
ZA[10]
ZA[11]
ZA[12]

ZAOH.D[2]  ZA[16]
ZAOH.D[3]  ZA[24]
ZAIH.D[0]  ZA[1]

ZAIH.D[1] ZA[9]

ZAIH.D[2] ZA[17]
ZAIH.D[3] ZA[25]
ZAZH.D[0]  ZA[2]

ZA2H.D[1]  ZA[10]
ZA2H.D[2] ZA[18]
ZA2H.D[3] ZA[26]
ZA3H.D[0] ZA[3]

ZA3H.D[1] ZA[11]
ZA3H.D[2] ZA[19]
ZA3H.D[3] ZA[27]

ZA 1st quarter

ZA 1st half

ZA 2nd quarter

ZA 3rd quarter

ZA[13]

ZA[16] ZAGH.D[0]  ZA[4]
ZA[19] ZA4H.D[3] ZA[28]
ZA[23] ZASH.D[3] ZA[29]

2
N
3
g
N
ZA[14] E
ZA[17] 3 ZA4H.D[1] ZA[12]
S
ZA[20] ZASH.D[0] ZA[5]
ZA[5] zA[21] P ZASH.D[1]  ZA[13]
N
ZA[24] ZA6H.D[0]  ZA[6]
3
3

ZA[15]
ZA[2] ZA[18] ZA4H.D[2] ZA[20]
ZA[22] ZASH.D[2] ZA[21]
ZA[25] ZA6H.D[1] ZA[14]

ZA 2nd half

ZA[26]
ZA[27]
ZA[28]

ZA6H.D[2] ZA[22]
ZAGH.D[3]  ZA[30]
ZA7H.D[0] ZA[7]

ZA[5] ZA[29] ZAH.D[1] ZA[15]
ZA[30] ZATH.D[2] ZA[23]
ZA[31] ZA7H.D[3] ZA[31]

ZA 4th quarter |

B2.4.3.2 ZA multi-vector operands of double-vector groups

In instructions where the ZA multi-vector operand consists of one double-vector group, the vector group is held in
ZA array vectors ZA[n+0] to ZA[n+1], where n is a multiple of 2 in the range O to (SVLg - 2) inclusive.

In instructions where the ZA multi-vector operand consists of two double-vector groups, each vector group is held
in a separate half of the ZA array. The halves of the ZA array are as follows, where n is a multiple of 2 in the range
0 to (SVLg/2 - 2) inclusive:

* ZA[n+0] to ZA[n+1].
e ZA[SVLg/2 + n+0] to ZA[SVLg/2 + n+1].

In instructions where the ZA multi-vector operand consists of four double-vector groups, each vector group is held
in a separate quarter of the ZA array. The quarters of the ZA array are as follows, where 7 is a multiple of 2 in the
range 0 to (SVLp/4 - 2) inclusive:

e ZA[n+0] to ZA[n+1].

e ZA[SVLg/4 + n+0] to ZA[SVLg/4 + n+1].

e ZA[SVLg/2 + n+0] to ZA[SVLp/2 + n+1].

e ZA[SVLg*3/4 + n+0] to ZA[SVLg*3/4 + n+1].

The preferred disassembly for a ZA multi-vector operand of double-vector groups is as follows, where offs2 = offs]
+ 1,and T is one of B, H, S, or D:

o ZA.T[Wv, offsI:offs2], where offsI is a multiple of 2 in the range 0-14 inclusive, when the operand consists
of one double-vector group.

*» ZA.T[Wv, offsl:offs2, VGx2], where offs! is a multiple of 2 in the range 0-6 inclusive, when the operand
consists of two double-vector groups.
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o ZA.T[Wv, offsl:offs2, VGx4], where offs] is a multiple of 2 in the range 0-6 inclusive, when the operand
consists of four double-vector groups.

The mapping between ZA multi-vector operands of double-vector groups and 32-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

Four double-vectors ZA[0:1]

ZA array vector view

INJ
T
p\
~l

ZA 2nd quarter | ZA 1st quarter
ZA 1st half

ZA 2nd half

ZA 4th quarter | ZA 3rd quarter

Two double-vectors ZA[6:7]

One double-vector ZA[28:29]

ZA[0]
ZA[1]
ZA[2]
ZA[3]
ZA4]
ZA[5]
ZA[6]
ZA[7]
ZA[8]
ZA[9]
ZA[10]
ZA[11]
ZA[12]
ZA[13]
ZA[14]
ZA[15]
ZA[16]
ZA[17]
ZA[18]
ZA[19]
ZA[20]
ZA[21]
ZA[22]
ZA[23]
ZA[24]
ZA[25]
ZA[26]
ZA[27]
ZA[28]
ZA[29]
ZA[30]
ZA[31]

32-bit ZA tile slices view

g
2
H
3

ZAOH.S[0]
ZAOH.S[1]
ZAOH.S[2]
ZAOH.S[3]
ZAOH.S[4]
ZAOH.S[5]
ZAOH.S[6]
ZAOH.S[7]
ZA1H.S[0]
ZATH.S[1]
ZA1H.S[2]
ZA1H.S[3]
ZA1H.S[4]
ZAIH.S[5]
ZA1H.S[6]
ZAIH.S[7]
ZA2H.5[0]
ZAZH.S[1]
ZA2H.5[2)
ZA2H.5[3]
ZA2H.5[4]
ZAZH.S[5]
ZA2H.5[6]
ZAZH.S[7]
ZA3H.5[0]
ZA3H.S[1]
ZA3H.S[2]
ZA3H.S[3]
ZA3H.5[4]
ZA3H.5[5)
ZA3H.S[6]
ZA3H.S[7]

ZA[0]
ZA[4]
ZA[8]
ZA[12]
ZA[16]
ZA[20]
ZA[24]
ZA[28]
ZA[1]
ZA[5]
ZA[9]
ZA[13]
ZA[17]
ZA[21]
ZA[25]
ZA[29]
ZA[2]
ZA[6]
ZA[10]
ZA[14]
ZA[18]
ZA[22]
ZA[26]
ZA[30]
ZA[3]
ZA[7]
ZA[11]
ZA[15]
ZA[19]
ZA[23]
ZA[27]
ZA[31]

The mapping between ZA multi-vector operands of double-vector groups and 64-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:
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Four double-vectors ZA[0:1] Two double-vectors ZA[6:7] One double-vector ZA[28:29]

ZA array vector view 64-bit ZA tile slices view

ZA[0]

ZA[1]
ZA[2]
ZA[3]
ZA[4]
ZA[5]
ZA[6]
ZA[7]
18]
zA[9]
ZA[10]
ZA[11]
ZA[12]
ZA[13]
7A[14]
ZA[15]
2A10-31 ZA[16]
ZATO:1] ZA[17]
ZA[18]
ZA[19]
ZA[20]
ZA[21]
1 ZA[22]
WA ZA[23]

1
|

ZAOH.D[0]  ZA[O]
ZAOH.D[1]  ZA[8]
ZAOH.D[2]  ZA[16]
ZAOH.D[3] ZA[24]
ZA1H.D[0] ZA[1]
ZAIH.D[1] ZA[9]
ZAIH.D[2] ZA[17]
ZA1H.D[3] ZA[25]
ZA2H.D[0] ZA[2]
ZA2H.D[1]  ZA[10]
ZA2H.D[2] ZA[18]
ZA2H.D[3] ZA[26]
ZA3H.D[0] ZA[3]
ZA3H.D[1] ZA[11]
ZA3H.D[2] ZA[19]
ZA3H.D[3] ZA[27]
ZAGH.D[0]  ZA[4]
ZA4H.D[1] ZA[12]
ZA4H.D[2] ZA[20]
ZA4H.D[3] ZA[28]
ZASH.D[0]  ZA[S]
ZASH.D[1] ZA[13]
ZASH.D[2] ZA[21]
ZASH.D[3] ZA[29]
ZA6H.D[0]  ZA[6]
ZAGH.D[1]  ZA[14]
ZAGH.D[2] ZA[22]
ZA6H.D[3] ZA[30]
2Af20.9a0] ZA7H.D[0] ZA[7]
LAIZ6.25] ZA[29] ZATH.D[1] ZA[15]
ZA[30] ZA7H.D[2] ZA[23]
ZA[31] ZA7H.D[3] ZA[31]

ZA 1st quarter

<4

ZA7 ZA6 ZA5 ZA4 ZA3 A2 ZA1 ZA0

N
>
D

ZA 1st half

ZA 2nd quarter

ZA[24]
ZA[25]
ZA[26]
ZA[27]
ZA[28]

ZA 4th quarter | ZA 3rd quarter
ZA 2nd half

B2.4.3.3 ZA multi-vector operands of quad-vector groups

In instructions where the ZA multi-vector operand consists of one quad-vector group, the vector group is held in
ZA array vectors ZA[n+0] to ZA[n+3], where n is a multiple of 4 in the range O to (SVLg - 4) inclusive.

In instructions where the ZA multi-vector operand consists of two quad-vector groups, each vector group is held in
a separate half of the ZA array. The halves of the ZA array are as follows, where n is a multiple of 4 in the range 0
to (SVLg/2 - 4) inclusive:

* ZA[n+0] to ZA[n+3].
e ZA[SVLg/2 + n+0] to ZA[SVLg/2 + n+3].

In instructions where the ZA multi-vector operand consists of four quad-vector groups, each vector group is held in
a separate quarter of the ZA array. The quarters of the ZA array are as follows, where 7 is a multiple of 4 in the
range 0 to (SVLp/4 - 4) inclusive:

e ZA[n+0] to ZA[n+3].

e ZA[SVLg/4 + n+0] to ZA[SVLg/4 + n+3].

e ZA[SVLg/2 + n+0] to ZA[SVLg/2 + n+3].

e ZA[SVLE*3/4 + n+0] to ZA[SVLE*3/4 + n+3].

The preferred disassembly for a ZA multi-vector operand of quad-vector groups is as follows, where offs4 = offsI +
3,and 7 is one of B, H, S, or D:

o ZA.T[Wv, offsl:offs4], where: offsl is a multiple of 4 in the range 0-12 inclusive, when the operand consists
of one quad-vector group.

*» ZA.T[Wv, offsl:offs4, VGx2], where offsI is 0 or 4, when the operand consists of two quad-vector groups.

o ZA.T[Wv, offsl:offs4, VGx4], where offs! is 0 or 4, when the operand consists of four quad-vector groups.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 53
Non-confidential



Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

T snscw The mapping between ZA multi-vector operands of quad-vector groups and 32-bit element ZA tile slices when

SVL is 256 bits is illustrated in the following diagram:

Four quad-vectors ZA[0:3] Two quad-vectors ZA[4:7] One quad-vector ZA[12:15]

ZA array vector view 32-bit ZA tile slices view

T ZAOH.S[0]  ZA[0]

£ _ Thonsil 2ale

£ ZAOH.S[2]  ZA[8)
H 2 ZAOHS[3]  ZA[12]
2 B ZAOH.S[4]  ZA[16]
= ZAOH.S[S]  ZA[20]
Bk ZAOH.S[6]  ZA[24]
& ZAOH.S[7]  ZA[28]

e ZA1H.S[0]  ZA[1]

5|8 ZAIHS[1]  ZA[S]

H ZA1H.S[2]  ZA[9]
B o ZAIH.S[3]  ZA[13]
£ ] ZAIHS[4]  ZA[17]
& - N ZA[13] ZAIH.S[5]  ZA[21]
3 ZALLZI1D] ZA[14] ZA1H.5[6]  ZA[25]
2A[15] ZAIHS[7]  ZA[29]

ZA[16] ZA2H.S[0]  ZA[2]

5 —ar a3 ZA[17] ZA2H.S[1]  ZA[6]
£ ZATUS] ZA[18] ZA2H.S[2]  ZA[10]
ES 2A[19] 9 ZA2H.5[3]  ZA[14]
s 2A[20] N ZA2H.S[4]  ZA[18]
o 3 ZA[21] ZA2H.S[5]  ZA[22]
% ZRA1&T7] ZA[22] ZA2H.5[6]  ZA[26]
= 2A[23] ZA2H.S[7]  ZA[30]

[]& ZA[24] ZA3H.S[0]  ZA[3]

5|3 v o ZA[25] ZA3HS[1]  ZA[7)
£ LA[U3] ZA[26] ZA3H.S[2]  ZA[11]
£ zA[27] 2 ZA3H.S[3]  ZA[15]
£ ZA[28] N ZA3H.S[4]  ZA[19]
& ZA[29] ZA3H.S[5] ZA[23]
s ZA[30] ZA3H.S[6]  ZA[27]
zA[31] ZA3HS[7] ZA[31]

TkeMIx The mapping between ZA multi-vector operands of quad-vector groups and 64-bit element ZA tile slices when

SVL is 256 bits is illustrated in the following diagram:
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Four quad-vectors ZA[0:3]

Two quad-vectors ZA[4:7]

One quad-vector ZA[12:15]

ZA array vector view
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64-bit ZA tile slices view
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ZA7

ZA0H.D[0]
ZA0H.D[1]
ZAO0H.D[2]
ZAOH.D[3]
ZA1H.D[0]
ZATH.D[1]
ZA1H.D[2]
2ZAIH.D[3]
ZA2H.D[0]
ZA2H.D[1]
2A2H.D[2]
ZA2H.D[3]
2A3H.D[0]
2A3H.D[1]
ZA3H.D[2]
ZA3H.D[3]
2ZA4H.D[0]
2A4H.D[1]
2A4H.D[2]
ZA4H.D[3]
ZA5H.D[0]
ZASH.D[1]
ZASH.D[2]
2ASH.D[3]
2A6H.D[0]
ZA6H.D[1]
ZA6H.D[2]
ZA6H.D[3]
ZA7H.D[0]
2A7H.D[1]
2A7H.D[2]
ZATH.D[3]

ZA[0]
ZA[8]

ZA[16]
ZA[24]
ZA[1]

zA[9)

ZA[17)
ZA[25]
ZA[2]

ZA[10]
ZA[18]
ZA[26]
ZA[3]

ZA[11]
ZA[19]
ZA[27]
ZA[4]

ZA[12]
ZA[20]
ZA[28]
ZA[5]

ZA[13]
zA[21]
ZA[29]
zAl6]

ZA[14]
ZA[122]
ZA[30]
A7)

ZA[15]
ZA[23]
ZA31]
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SME2 Multi-vector predication

SME?2 introduces the multi-vector predication concept in Streaming SVE mode, named predicate-as-counter.
The existing SVE predication concept is referred to as predicate-as-mask.

SME2 multi-vector instructions interpret the lowest-numbered 16 bits of SVE predicate registers PO-P15 as a
predicate-as-counter encoding.

A predicate-as-counter encoding includes:

¢ An invert bit, that encodes whether the element count field is referring to the number of TRUE or FALSE
predicate elements.
* A variable-width element count field. This field holds an unsigned integer value of up to 14 bits, that encodes:
— When the invert bit is 0, the number of consecutive elements starting from element O that are TRUE,
with the remaining elements being FALSE.
— When the invert bit is 1, the number of consecutive elements starting from element O that are FALSE,
with the remaining elements being TRUE.
* A variable-width element size field of up to 4 bits, where the number of trailing zeroes encodes 1.5z, log, of
the element size in bytes, or an all-FALSE predicate if all 4 bits are zero.

[15] [14:(LSZ+1)] [LSZ:0]

Invert  Element count Element size Meaning

X P0.0.0.0.0.0.0.0.0.0.00.04 1 Byte elements, count in [14:1]

X D'0:0:0:0:0:0:0'0:0:0:0.0¢ 10 Halfword elements, count in [14:2]

X XXXXXKXKXKXK 100 Word elements, count in [14:3]

X XXXKXKXKKKK 1000 Doubleword elements, count in [14:4]

X D10/010:0:0:0:0:0:0:0:4 0000 All-FALSE predicate (any element size)

The canonical all-TRUE predicate-as-counter encoding has an element count of zero, with the invert bit set to 1
and a nonzero element size field determined by the generating instruction.

The canonical all-FALSE predicate-as-counter encoding has an element count of zero, with the invert bit set to 0
and an element size field set to 0b0000.

A predicate-as-counter encoding can represent a consecutive element count in the range of 0 to the maximum
number of byte elements in four vectors, minus 1. The architectural maximum vector length of 2048 bits or 256
bytes therefore requires an element count of log,(1024) = 10 bits, plus one element size bit, plus the invert bit. The
additional 4 bits in the element count field are reserved.

In assembler syntax:

* The name Pg is used for predicate-as-mask.
* The name PNg is used for predicate-as-counter.

Both Pg and PNg refer to the same predicate register.

If VL is greater than 128 bits, then an instruction which writes a predicate-as-counter encoding to a predicate
register sets bits 16 and higher of that register to 0.

If VL is greater than 128 bits, then an instruction which reads a predicate register using the predicate-as-counter
encoding ignores bits 16 and higher of that register.

An instruction uses only the least significant bits in the element count field of the predicate-as-counter register
that are required to represent the number of bytes in the current vector length times four, minus 1. The instruction
ignores the more significant bits in the element count field.
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For example, when VL is 512 bits there are 256 byte elements in four vectors, so the predicate-as-counter encoding
requires at most an 8-bit element count field [8:1], a 1-bit size field [0], and the invert bit [15]. Therefore, when VL
is 512 bits, an instruction uses bits [15] and [8:0] from the predicate-as-counter register and ignores bits [14:9]
and [63:16].

The SME2 WHILE instructions generate a predicate-as-counter encoding. These instructions have an operand that
indicates the number of vectors (2 or 4) to be controlled by this predicate, which determines:

* The maximum value that can be stored in the count.
* The number of elements that are considered Active when computing the Any Active element and Last Active
element SVE condition flags.

A canonical all-TRUE encoding is generated when the number of TRUE elements is equal to or exceeds the limit
of the number of elements in a vector times the number of vectors.

The canonical all-FALSE encoding is generated when the number of TRUE elements is zero.
The SME2 PTRUE instruction generates a canonical all-TRUE predicate-as-counter encoding.
The SVE PFALSE instruction generates the canonical all-FALSE predicate-as-counter encoding.

The SME2 PEXT instruction converts a predicate-as-counter encoding into a predicate-as-mask encoding. Since a
predicate-as-counter encoding allows more predicate elements than can be represented in a predicate-as-mask
encoding, this instruction takes an operand to extract distinct portions of a wider mask corresponding to a
predicate-as-counter encoding.

The SME2 CNTP instruction converts a predicate-as-counter encoding into a total Active element count value that
is placed in a general-purpose register.

CNTP has an operand that indicates the limit of the number of elements to be counted. The limit corresponds to
the total number of elements in either 2 or 4 vectors.

Predicated SME2 multi-vector instructions interpret the value in their Governing predicate register using the
predicate-as-counter encoding to determine the number and size of consecutive Active elements. When the
element size of the instruction operation is different from the element size in the predicate-as-counter encoding, the
number of Active elements of the instruction operation is also different from the number of predicate-as-counter
Active elements.

See also:

* CNTP.

* PEXT (predicate).
* PEXT (predicate pair).
* PFALSE.

* PTRUE.

* WHILEGE.

* WHILEGT.

* WHILEHIL.

* WHILEHS.

* WHILELE.

* WHILELO.

* WHILELS.

* WHILELT.
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B2.6 SME2 Lookup table

Dxpuzmy When SME2 is implemented, a PE has a 512-bit architectural register Z70 to support the lookup table feature.

Dwpagc The ZT0 register holds 8-bit, 16-bit, or 32-bit lookup table elements that are stored in the least significant bits of
32-bit table entries. The lowest numbered 32 bits in the register hold table entry 0.

Rooxws The lookup table in the ZT0 register can be accessed using fully packed 2-bit or 4-bit indices from a numbered
portion of one source Z vector register.

Isrrac When the lookup table Z70 is addressed by 2-bit indices, four different table elements (0-3) of a given element size
can be accessed. When the lookup table Z70 is addressed by 4-bit indices, 16 different table elements (0-15) of a
given element size can be accessed.

Rokyra The indexed 8-bit, 16-bit, or 32-bit table elements are read from the Z70 register and packed into consecutive
elements of an SVE Z vector or Z multi-vector operand.

Tuorsr The validity and accessibility of the ZT0 register are enabled by psTATE.za. For more information, see B1.2
Process state and B1.2.2 PSTATE.ZA.

See also:

e Cl1.1.2 Traps and exceptions.
* C14.8SVCR.
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B3.1 Overview

SME modifies some of the A-profile floating-point behaviors when a PE is in Streaming SVE mode, and introduces
an rpcr control which extends BFloat16 dot product calculations to support a wider range of numeric behaviors.

See also:

¢ FPCR.
e B1.2 Process state.
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B3.2 Supported floating-point data types

Ryscuz The following BFloat16 instructions operate on the BFloat16 and the IEEE 754-2008 Single-precision floating-point
data types, as defined respectively in sections BFloat16 floating-point format and Single-precision floating-point
format of Arm® Architecture Reference Manual for A-profile architecture [1]:

* The SME rruropa and BrMops floating-point instructions defined in D1.1 SME and SME?2 data-processing
instructions.

e The SME2 multi-vector BFCVT, BFCVTN, BFDOT, BFMLAL, BFMLSL, and BrvDoT floating-point instructions
defined in D1.1 SME and SME?2 data-processing instructions.

* The SVE2 BrursiB and BFMLSLT floating-point instructions that are introduced by SME?2 and defined in
D1.2 SVE2 data-processing instructions.

Reypsu The floating-point instructions defined in Chapter D1 SME instructions operate on the IEEE 754-2008 floating-point
data types as defined in the following Arm® Architecture Reference Manual for A-profile architecture [1] sections:

* Half-precision floating-point formats (but not the Arm alternative half-precision format).
e Single-precision floating-point format.
* Double-precision floating-point format.
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B3.3 BFloat16 behaviors
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If FEAT_EBF16 is implemented, the Extended BFloat16 behaviors can be enabled for the BFloat16 instructions.
This section describes how the BFloat16 instruction behaviors are changed by FEAT_EBF16.

When 1p_an647zFRO_EL1.BF16 and ID_AA64ISAR1_EL1.BF16 have the value onoo10, the PE implements
FEAT_EBF16 and supports the Fpcr.EBF control.

If FEAT_EBF16 is implemented, then:

* FEAT EBF16 is enabled when Fpcr.EBF is 1.
* FEAT EBF16 is not enabled when rpcr.EBF is 0.

Unless stated otherwise, the rules in this section describe the behaviors of the following instructions:

e The SME srmopa and BFMOPS instructions.
e The SME2 BrpoT and BFVDOT instructions.
¢ The Advanced SIMD and SVE BrpoT and BFMMLA instructions.

Common BFloat16 behaviors

The Common BFloat16 behaviors are the behaviors currently defined in Arm® Architecture Reference Manual for
A-profile architecture [1] which are not changed by the optional Fpcr.EBF control.

The instructions specified in Dyypsg that detect exceptional floating-point conditions produce the expected
single-precision default result but do not modify the cumulative floating-point exception flag bits,
FPSR. {IDC, IXC,UFC, OFC, DZC, IOC}.

The instructions specified in Dyiypsg generate default NaN values, behaving as if Fpcr.pn has an Effective value
of 1.

See also:

* FpsR, Floating-point Status Register in Arm® Architecture Reference Manual for A-profile architecture [1].
* FPCR.

Standard BFloat16 behaviors

The Standard BFloat16 behaviors are the behaviors currently defined in Arm® Architecture Reference Manual for
A-profile architecture [1] which can be changed by the rpcr.EBF control provided by FEAT_EBF16.

If FEAT_EBF16 is either not implemented or not enabled, then the instructions specified in Dyypsg ignore the
FPCR.RMode control and use the rounding mode defined for BFloat16 in section Round to Odd mode of Arm®
Architecture Reference Manual for A-profile architecture [1].

If FEAT_EBF16 is either not implemented or not enabled, then the instructions specified in Dyypsg flush
denormalized inputs and outputs to zero, behaving as if rpcr.Fz has an Effective value of 1.

If FEAT_EBFI16 is either not implemented or not enabled, then the instructions specified in Dyypsg perform
unfused multiplies and additions with intermediate rounding of all products and sums.

Extended BFloat16 behaviors

The Extended BFloat16 behaviors are the behaviors that can be enabled by the rpcr.EBF control provided by
FEAT_EBF16.

If FEAT_EBF16 is implemented and enabled, then the instructions specified in Dyypsg support all four IEEE 754

rounding modes selected by the FPCR. RMode control.
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If FEAT_EBF16 is implemented and enabled, then the instructions specified in Dyjypsg honor the Fpcr.Fz control.

If FEAT _EBF16 is implemented and enabled, then the instructions specified in Dyjypsg perform a fused two-way
sum-of-products for each pair of adjacent BFloat16 elements in the source vectors, without intermediate rounding
of the products, but rounding the single-precision sum before addition to the single-precision accumulator element.

If FEAT_EBF16 is implemented and enabled, then the instructions specified in Dyjypsg generate the default NaN
as intermediate sum-of-products when any of the following are true:

* Any multiplier input is a NaN.
* Any product is infinity x 0.0.
* There are infinite products with differing signs.

If FEAT_EBF16 is implemented and enabled, then the instructions specified in Dyypsg generate an intermediate
sum-of-products of the same infinity when there are infinite products all with the same sign.

When FEAT_AFP is implemented and FEAT_EBF16 is implemented and enabled, the instructions specified in
Davpsg honor the Fpcr. a1 and FPCR.FIz controls.

When FEAT_AFP is implemented and FEAT _EBF16 is implemented and enabled, the following alternate
floating-point behaviors affect the instructions specified in Dyypsg:

* When rrcr.2H is 1, the sign bit of a generated default NaN result is set to 1 instead of 0.

e When rpcr.2nis 1 and Fpcr.Fz is 1, a denormal result, detected after rounding with an unbounded exponent
has been applied, is flushed to zero.

* When rrcr.2H is 1, the Frcr.Fz control does not cause denormalized inputs to be flushed to zero.

* When rrcr.F17 is 1, all denormalized inputs are flushed to zero.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 62
Non-confidential



Chapter B3. Floating-point behaviors
B3.4. Floating-point behaviors in Streaming SVE mode

B3.4 Floating-point behaviors in Streaming SVE mode

Dpuvpam Unless stated otherwise, the rules in this section describe the behaviors of the following instructions:

* The floating-point instructions that are legal in Streaming SVE mode, and operate on half-precision,
single-precision, and double-precision input data types, placing their results in SIMD&FP registers or
SVE Z vector registers.

e The SVE BrMLALBR and BFMLALT instructions.

* The floating-point instructions introduced by SME2 that place their results in one or more SVE Z vector
registers:

— The BFCVT, BFCVTN, FCLAMP, FCVT, FCVIN, FCVTZS, FCVTZU, FMAX, FMAXNM, FMIN, FMINNM, FRINTA, FRINTM,
FRINTN, FRINTP, SCVTF, and UCVTF instructions, as defined in D1.1 SME and SME?2 data-processing
instructions.

— The BFMLSLB, BFMLSLT, FDOT, and FcLaMP instructions, as defined in D1.2 SVE2 data-processing
instructions.

RpupzL When the PE is in Streaming SVE mode, the instructions specified in Dpypgw honor the Non-streaming scalar and
SVE floating-point behaviors, as governed by the FpCR. (DN, Fz, RMode, Fz16, AH, FIz} controls.

RaTysk When the PE is in Streaming SVE mode, the instructions specified in Dpypgw that detect exceptional floating-point
conditions produce the expected default result and can update the appropriate cumulative floating-point exception
flag bits in FPSR. {IDC, IXC, UFC, OFC, DZC, IOC}.

Rpysce The floating-point behaviors followed by the rcravp instruction are identical to the behaviors followed when
executing FMaxNM and FMINNM in order.

Rrern When the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level, the Effective value of the rpcRr is as if all of the 1pE, IXE, UFE, OFE, DZE, and 1oE floating-point
exception trap enable controls, and the NEP element preserve control, are O for all purposes other than a direct read
or write of the register.

See also:

* PSR, Floating-point Status Register in Arm® Architecture Reference Manual for A-profile architecture [1].
¢ FPCR.
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Floating-point behaviors targeting the ZA array

Unless stated otherwise, the rules in this section describe the behaviors of the SME and SME2 floating-point
instructions that place their results in the ZA array, except BFMOPA, BFMOPS, BFDOT, and BFVDOT.

For the behaviors of the BFloat16 instructions, see B3.3 BFloatl6 behaviors.

The instructions specified in Dyzyvk that detect exceptional floating-point conditions produce the expected
IEEE 754 default result but do not modify any of the cumulative floating-point exception flag bits,
FPSR. {IDC, IXC, UFC, OFC,DZC, IOC}.

The instructions specified in Dytzyk generate default NaN values, behaving as if Fpcr.pn has an Effective value
of 1.

The instructions specified in Dyrzyvk support all four IEEE 754 rounding modes selected by the Fprcr.RMode
control.

The instructions specified in Dyyzyk honor the Fpcr.Fz control.

The instructions specified in Dyzyk that accumulate dot products of pairs of adjacent half-precision elements in
the source vectors into single-precision elements in the ZA array honor the rpcr.Fz16 control.

The instructions specified in Dyyzyk that multiply single elements from each source vector and accumulate their
product into the ZA array perform a fused multiply-add to each accumulator tile or multi-vector operand element
without intermediate rounding.

The instructions specified in Dyrzyvk that accumulate dot products of pairs of adjacent half-precision elements
in the source vectors into single-precision elements in the ZA array perform a fused sum-of-products without
intermediate rounding of the products, but rounding the single-precision sum before addition to the accumulator
tile or multi-vector operand element.

The instructions specified in Dytzyvk that accumulate dot products of pairs of adjacent half-precision elements
in the source vectors into single-precision elements in the ZA array generate the default NaN as intermediate
sum-of-products when any of the following are true:

* Any multiplier input is a NaN.
* Any product is infinity x 0.0.
* There are infinite products with differing signs.

The instructions specified in Dyyzyk that accumulate dot products of pairs of adjacent half-precision elements in
the source vectors into single-precision elements in the ZA array generate an intermediate sum-of-products of the
same infinity when there are infinite products all with the same sign.

When FEAT_AFP is implemented, the instructions specified in Dyrzyk honor the Fpcr.an and FPCR.F1Zz controls.

When FEAT_AFP is implemented, the following alternate floating-point behaviors affect the instructions specified
in Dyrzvk:

* When rrcr.2H is 1, the sign bit of a generated default NaN result is set to 1 instead of 0.

e When rrcr.2nis 1 and FPcr.Fz is 1, a denormal result, detected after rounding with an unbounded exponent
has been applied, is flushed to zero.

* When rrpcr.2H is 1, the Frcr.Fz control does not cause denormalized inputs to be flushed to zero.

* When rpcr.F17 is 1, all denormalized single-precision and double-precision inputs are flushed to zero.
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The SME System Management architecture provides mechanisms for system software to:

Discover the presence of SME.
Discover the capabilities of SME.
Control SME usage.

Monitor SME usage.

The architecture consists of extensions to processor mode, the Exc