Arm® Architecture Reference

a r m Manual Supplement, The

Scalable Matrix Extension
(SME), for Armv9-A

Document number DDI0616
Document quality EAC

Document version B.a

Document confidentiality Non-confidential

Document build information 5084c744 Tuesday, 22 August 2023 at 19:40

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Arm® Architecture Reference Manual Supplement, The Scalable
Matrix Extension (SME), for Armv9-A

Release information

Date Version Changes

2023/Aug/18 B.a * Second release, including SME2 and EAC maintenance updates to SME.

2022/Feb/07 A.a ¢ First release.

ii

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates)
in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of
their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks

Copyright © 2022-2023 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349 version 21.0

Product Status

The information in this document is final; that is, it is for a developed product.
The information in this Manual is at EAC quality, which means that:

 All features of the specification are described in the manual.
* Information can be used for software and hardware development.

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. iii
B.a Non-confidential

http://www.arm.com/company/policies/trademarks

Contents

Arm® Architecture Reference Manual Supplement, The Scalable
Matrix Extension (SME), for Armv9-A

Preface

Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME),

for ArmvO-A . . . e e ii

Release information ii
Non-Confidential Proprietary Notice iii
Product Status iii

About this supplement Xvi
Conventions e e e e XVii
Typographical conventions XVii
Numbers XVii
Pseudocode descriptions Xvii
Asterisks in instruction mnemonics Lo oo Lo Xvii
Assembler syntax descriptions L e Xviii
Rules-based writing e XixX
Contentitemidentifiers. XixX
Contentitemrendering Xix
Contentitemclasses Xix
Additionalreading e e e e XXi
Feedback e XXii
Feedbackonthisbook XXii
Progressive terminology commitment. o L Xxiii

Part A Introduction

Chapter A1

Chapter A2

SME Introduction

Al About the Scalable Matrix Extension 25
Architecture Features and Extensions

A2.1 Extensions and features definedby SME 27
A2.2 Changes to existing features and extension requirements 28

Part B SME Application Level Programmers’ Model

Chapter B1

Chapter B2

DDI0O616
B.a

Application processing modes

B1.1 Overview L e 30
B1.2 Processstate 31
B1.2.1 PSTATE.SM e 32
B1.22 PSTATE.ZA 33
B1.2.3 Changing PSTATE.SM and PSTATE.ZA 33
B1.24 TPIDR2_ELO e 34
Architectural state
B2.1 Architectural state summary L o 35
B2.2 SME ZAstorage o o i 37
B2.2.1 ZAarrayvectoraccess 37
Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. iv

Non-confidential

Contents

Chapter B3

B2.22 ZAtileaccess 37
B2.2.3 Accessing an 8-bitelement ZAtile oL 38
B2.2.4 Accessing a 16-bitelement ZAtile L. 39
B2.25 Accessing a 32-bitelement ZAtile 40
B2.2.6 Accessing a 64-bitelement ZAtile 41
B2.2.7 Accessing a 128-bit element ZAtile oL 42
B2.3 ZAstorage layout 43
B2.3.1 ZA array vector and tile slice mappings 43
B2.3.2 Tilemappings 43
B2.3.3 Horizontal tile slice mappings 44
B2.3.4 \Verticaltile slice mappings L 45
B2.3.5 Mixed horizontal and vertical tile slice mappings 46
B2.4 SME2 Multi-vectoroperands 48
B2.41 Zmulti-vectoroperands 48
B2.42 ZAmultisliceoperands L 48
B2.4.3 ZA multi-vectoroperands L 49
B2.5 SME2 Multi-vector predication oL 56
B2.6 SME2 Lookuptable 58
Floating-point behaviors
B3.1 Overview e 59
B3.2 Supported floating-point datatypes, 60
B3.3 BFloati6 behaviors 61
B3.3.1 Common BFloat16 behaviors 61
B3.3.2 Standard BFloat16 behaviors 61
B3.3.3 Extended BFloat16 behaviors, 61
B3.4 Floating-point behaviors in Streaming SVEmode 63
B3.5 Floating-point behaviors targetingthe ZAarray 64

Part C SME System Level Programmers’ Model

Chapter C1

DDI0O616
B.a

System management

C141 Overview 66
C1.1.1 Identification 67
C1.1.2 Trapsandexceptions 67
C1.1.3 Vectorlengths 68
C1.1.4 Streaming execution priority L. 70

C1.2 Processorbehavior 71
C1.21 Exception priorities 71
C1.22 Synchronous Data Abort 73
C1.23 \Validityof SMEandSVEstate 73
C1.2.4 Streaming execution priority for shared implementations 74
C1.25 Security considerations 76

C1.3 Changes to existing Systemregisters 77
C1.3.1 CPACR_EL1 77
C1.32 CPTR_EL2 77
C1.3.3 CPTR_EL3 77
C1.34 ESR_EL1,ESR_EL2,andESR_EL3 77
C1.35 HCR_EL2 78
C1.3.6 HCRX_EL2 78
C1.3.7 HFGRTR_EL2. 79
C1.3.8 HFGWTR_EL2 79
C1.3.9 ID_AAB4PFR1_EL1 79
C1.3.10 ID_AAB4ZFRO_EL1 e 79

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. v
Non-confidential

Contents

Ci1.4

C1
C1
C1
C1

C1
C1
C1
C1
C1
C1
C1
C1

341 SCR.EL3 . oot
3.2 SCTLR.ELT .« . v oo e
3.3 SCTLR EL2 . . o o oo
3.14 ZCOR EL1,ZCR EL2,andZCR EL3o oo,

SME-specific System registers oL

41 ID_AABASMFRO_ELT . . o oo o
42 SMCR_ELT . o oo
43 SMCR EL2 . . oo
44 SMCOR EL3 . . o oo
A5 SMIDR ELT © v ot e e e
46 SMPRLELT . . o oo
47 SMPRIMAP EL2 . . . oo
A8 SVCR o o,

Chapter C2 Interaction with other A-profile architectural features

C2.1

c2.2
C2.3
C2.4
C25
C2.6

c2.7
C2.8

Watchpoints

C2.1.1 Reportingwatchpoints

Self-hosteddebug
Externaldebug
Memory Tagging Extension (MTE)
Reliability, Availability, and Serviceability (RAS)
Memory Partitioning and Monitoring (MPAM)

C2.6.1 MPAMSM_EL1
C2.6.2 MPAM2 EL2.

Transactional Memory Extension (TME)
Memory consistency model

Part D SME Instruction Set
Chapter D1 SME instructions

D1.1

D1
D1
D1
D1
D1
D1
D1
D1
D1
D1

D1

D1.
D1.
D1.
D1.

D1
D1
D1
D1
D1

1
1
1

1.
1
1
1
1

SME and SME2 data-processing instructions

1.1 ADD (fovector)
.1.2 ADD (array accumulators) oo
.1.3 ADD (array results, multiple and single vector)
.1.4 ADD (array results, multiplevectors)
A5 ADDHA L
1.6 ADDSPL e
A7 ADDSVL . . .
1.8 ADDVA . . L
1.9 BFCVT . . o
110 BFCVTN .« oo
D1.
D1.
D1.

.11 BFDOT (multiple and indexed vector)
.12 BFDOT (multiple and single vector)
.13 BFDOT (multiplevectors)
14 BFMLAL (multiple and indexed vector)
.15 BFMLAL (multiple and single vector)
.16 BFMLAL (multiple vectors)
.17 BFMLSL (multiple and indexed vector)
.18 BFMLSL (multiple and single vector)

(

.1.19 BFMLSL (multiplevectors)
120 BFEMOPA
121 BFEMOPS . . .
1.22 BFVDOT
123 BMOPA . . .

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

B.a

Non-confidential

vi

Contents

D1.1.24 BMOPS 141
D1.1.25 CNTP 143
D1.1.26 FADD 145
D1.1.27 FCLAMP 147
D1.1.28 FCVT 149
D1.1.29 FCVTN 150
D1.1.30 FCVTZS 151
D1.1.31 FCVTZU 153
D1.1.32 FDOT (multiple and indexed vector) 155
D1.1.33 FDOT (multiple and single vector) 157
D1.1.34 FDOT (multiplevectors) 159
D1.1.35 FMAX (multiple and singlevector) 161
D1.1.36 FMAX (multiplevectors) 163
D1.1.37 FMAXNM (multiple and singlevector) 165
D1.1.38 FMAXNM (multiple vectors) 167
D1.1.39 FMIN (multiple and single vector) 169
D1.1.40 FMIN (multiple vectors) 171
D1.1.41 FMINNM (multiple and single vector) 173
D1.1.42 FMINNM (multiplevectors) 175
D1.1.43 FMLA (multiple and indexed vector) 177
D1.1.44 FMLA (multiple and singlevector) 180
D1.1.45 FMLA (multiplevectors) 182
D1.1.46 FMLAL (multiple and indexed vector) 184
D1.1.47 FMLAL (multiple and singlevector) 187
D1.1.48 FMLAL (multiplevectors) 189
D1.1.49 FMLS (multiple and indexed vector) 191
D1.1.50 FMLS (multiple and singlevector) 194
D1.1.51 FMLS (multiple vectors) 196
D1.1.52 FMLSL (multiple and indexed vector) 198
D1.1.53 FMLSL (multiple and single vector) 201
D1.1.54 FMLSL (multiplevectors) 203
D1.1.55 FMOPA (widening) 205
D1.1.56 FMOPA (non-widening) 207
D1.1.57 FMOPS (widening) 209
D1.1.58 FMOPS (non-widening) 211
D1.1.59 FRINTA . . . 213
D1.1.60 FRINTM e 215
D1.1.61 FRINTN 217
D1.1.62 FRINTP 219
D1.1.63 FSUB 221
D1.1.64 FVDOT 223
D1.1.65 LD1B (scalar plus immediate, consecutive registers) 225
D1.1.66 LD1B (scalar plus scalar, consecutive registers) 227
D1.1.67 LD1B (scalar plus immediate, strided registers) 229
D1.1.68 LD1B (scalar plus scalar, strided registers) 231
D1.1.69 LD1B (scalar plus scalar, tileslice) 233
D1.1.70 LD1D (scalar plus immediate, consecutive registers) 235
D1.1.71 LD1D (scalar plus scalar, consecutive registers) 237
D1.1.72 LD1D (scalar plus immediate, strided registers) 239
D1.1.73 LD1D (scalar plus scalar, strided registers) 241
D1.1.74 LD1D (scalar plus scalar, tile slice) 243
D1.1.75 LD1H (scalar plus immediate, consecutive registers) 245
D1.1.76 LD1H (scalar plus scalar, consecutive registers) 247
D1.1.77 LD1H (scalar plus immediate, strided registers) 249
D1.1.78 LD1H (scalar plus scalar, strided registers) 251
DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. vii

B.a

Non-confidential

Contents

D1.1.79 LD1H (scalar plus scalar, tileslice) 253
D1.1.80 LD1Q. 255
D1.1.81 LD1W (scalar plus immediate, consecutive registers) 257
D1.1.82 LD1W (scalar plus scalar, consecutive registers) 259
D1.1.83 LD1W (scalar plus immediate, strided registers) 261
D1.1.84 LD1W (scalar plus scalar, strided registers) 263
D1.1.85 LD1W (scalar plus scalar, tileslice) 265
D1.1.86 LDNT1B (scalar plus immediate, consecutive registers) 267
D1.1.87 LDNT1B (scalar plus scalar, consecutive registers) 269
D1.1.88 LDNT1B (scalar plus immediate, strided registers) 271
D1.1.89 LDNT1B (scalar plus scalar, strided registers) 273
D1.1.90 LDNT1D (scalar plus immediate, consecutive registers) 275
D1.1.91 LDNT1D (scalar plus scalar, consecutive registers) 277
D1.1.92 LDNT1D (scalar plus immediate, strided registers) 279
D1.1.93 LDNT1D (scalar plus scalar, strided registers) 281
D1.1.94 LDNT1H (scalar plus immediate, consecutive registers) 283
D1.1.95 LDNT1H (scalar plus scalar, consecutive registers) 285
D1.1.96 LDNT1H (scalar plus immediate, strided registers) 287
D1.1.97 LDNT1H (scalar plus scalar, strided registers) 289
D1.1.98 LDNT1W (scalar plus immediate, consecutive registers) 291
D1.1.99 LDNT1W (scalar plus scalar, consecutive registers) 293
D1.1.100 LDNT1W (scalar plus immediate, strided registers) 295
D1.1.101 LDNT1W (scalar plus scalar, strided registers) 297
D1.1.102 LDR (vector) o o 299
D1.1.103 LDR (ZTO) o 301
D1.1.104 LUTI2 (tworegisters) 302
D1.1.105 LUTI2 (fourregisters) 304
D1.1.106 LUTI2 (single) o o o 306
D1.1.107 LUTI4 (two registers) e 307
D1.1.108 LUTI4 (fourregisters) 309
D1.1.109 LUTI4 (single) o 311
D1.1.110 MOV (tile to vector, two registers) 312
D1.1.111 MOV (tile to vector, four registers) 315
D1.1.112 MOV (array to vector, two registers) 318
D1.1.113 MOV (array to vector, four registers) 319
D1.1.114 MOV (tile to vector, single) 320
D1.1.115 MOV (vector to tile, two registers) 323
D1.1.116 MOV (vector to tile, four registers) 326
D1.1.117 MOV (vector to array, two registers) 329
D1.1.118 MOV (vector to array, four registers) 330
D1.1.119 MOV (vector totile,single) 331
D1.1.120 MOVA (tile to vector, two registers) 334
D1.1.121 MOVA (tile to vector, four registers) 337
D1.1.122 MOVA (array to vector, two registers) 340
D1.1.123 MOVA (array to vector, four registers) 342
D1.1.124 MOVA (tile to vector, single) 344
D1.1.125 MOVA (vector to tile, two registers) 347
D1.1.126 MOVA (vector to tile, four registers) 350
D1.1.127 MOVA (vector to array, two registers) 353
D1.1.128 MOVA (vector to array, four registers) 355
D1.1.129 MOVA (vector to tile, single) 357
D1.1.130 MOVT (ZTOtoscalar) i .. 360
D1.1.131 MOVT (scalarto ZTO) 361
D1.1.132 PEXT (predicate) 362
D1.1.133 PEXT (predicate pair) 364
DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. viii

B.a

Non-confidential

Contents

D1.1.134 PTRUE 366
D1.1.135 RDSVL 367
D1.1.136 SCLAMP 368
D1.1.137 SCVTF 370
D1.1.138 SDOT (2-way, multiple and indexed vector) 372
D1.1.139 SDOT (2-way, multiple and singlevector) 374
D1.1.140 SDOT (2-way, multiple vectors) 376
D1.1.141 SDOT (4-way, multiple and indexed vector) 378
D1.1.142 SDOT (4-way, multiple and single vector) 381
D1.1.143 SDOT (4-way, multiplevectors) 383
D1.1.144 SEL 385
D1.1.145 SMAX (multiple and single vector) 387
D1.1.146 SMAX (multiple vectors) 389
D1.1.147 SMIN (multiple and single vector) 391
D1.1.148 SMIN (multiplevectors) 393
D1.1.149 SMLAL (multiple and indexed vector) 395
D1.1.150 SMLAL (multiple and single vector) 398
D1.1.151 SMLAL (multiple vectors) L 400
D1.1.152 SMLALL (multiple and indexed vector) 402
D1.1.153 SMLALL (multiple and single vector) 406
D1.1.154 SMLALL (multiple vectors), 409
D1.1.155 SMLSL (multiple and indexed vector) 412
D1.1.156 SMLSL (multiple and single vector) 415
D1.1.157 SMLSL (multiplevectors) 417
D1.1.158 SMLSLL (multiple and indexed vector) 419
D1.1.159 SMLSLL (multiple and single vector) 423
D1.1.160 SMLSLL (multiple vectors) 426
D1.1.161 SMOPA (2-way) o oo i 429
D1.1.162 SMOPA (4-way) o o oo 431
D1.1.163 SMOPS (2-way) o oo 434
D1.1.164 SMOPS (4-way) o o o 436
D1.1.165 SQCVT (tworegisters) 439
D1.1.166 SQCVT (fourregisters) 440
D1.1.167 SQCVTN 441
D1.1.168 SQCVTU (tworegisters) 442
D1.1.169 SQCVTU (fourregisters) 443
D1.1.170 SQCVTUN e 444
D1.1.171 SQDMULH (multiple and single vector) 445
D1.1.172 SQDMULH (multiple vectors) 447
D1.1.173 SQRSHR (tworegisters) 449
D1.1.174 SQRSHR (fourregisters) 450
D1.1.175 SQRSHRN 452
D1.1.176 SQRSHRU (tworegisters), 454
D1.1.177 SQRSHRU (fourregisters) 455
D1.1.178 SQRSHRUN 457
D1.1.179 SRSHL (multiple and single vector) 459
D1.1.180 SRSHL (multiple vectors), 461
D1.1.181 ST1B (scalar plus immediate, consecutive registers) 463
D1.1.182 ST1B (scalar plus scalar, consecutive registers) 465
D1.1.183 ST1B (scalar plus immediate, strided registers) 467
D1.1.184 ST1B (scalar plus scalar, strided registers) 469
D1.1.185 ST1B (scalar plus scalar, tile slice) 471
D1.1.186 ST1D (scalar plus immediate, consecutive registers) 473
D1.1.187 ST1D (scalar plus scalar, consecutive registers) 475
D1.1.188 ST1D (scalar plus immediate, strided registers) 477
DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. ix

B.a

Non-confidential

Contents

D1.1.189 ST1D (scalar plus scalar, strided registers) 479
D1.1.190 ST1D (scalar plus scalar, tile slice) 481
D1.1.191 ST1H (scalar plus immediate, consecutive registers) 483
D1.1.192 ST1H (scalar plus scalar, consecutive registers) 485
D1.1.193 ST1H (scalar plus immediate, strided registers) 487
D1.1.194 ST1H (scalar plus scalar, strided registers) 489
D1.1.195 ST1H (scalar plus scalar, tile slice) 491
D1.1.196 ST1Q. 493
D1.1.197 ST1W (scalar plus immediate, consecutive registers) 495
D1.1.198 ST1W (scalar plus scalar, consecutive registers) 497
D1.1.199 ST1W (scalar plus immediate, strided registers) 499
D1.1.200 ST1W (scalar plus scalar, strided registers) 501
D1.1.201 ST1W (scalar plus scalar, tile slice) 503
D1.1.202 STNT1B (scalar plus immediate, consecutive registers) 505
D1.1.203 STNT1B (scalar plus scalar, consecutive registers) 507
D1.1.204 STNT1B (scalar plus immediate, strided registers) 509
D1.1.205 STNT1B (scalar plus scalar, strided registers) 511
D1.1.206 STNT1D (scalar plus immediate, consecutive registers) 513
D1.1.207 STNT1D (scalar plus scalar, consecutive registers) 515
D1.1.208 STNT1D (scalar plus immediate, strided registers) 517
D1.1.209 STNT1D (scalar plus scalar, strided registers) 519
D1.1.210 STNT1H (scalar plus immediate, consecutive registers) 521
D1.1.211 STNT1H (scalar plus scalar, consecutive registers) 523
D1.1.212 STNT1H (scalar plus immediate, strided registers) 525
D1.1.213 STNT1H (scalar plus scalar, strided registers) 527
D1.1.214 STNT1W (scalar plus immediate, consecutive registers) 529
D1.1.215 STNT1W (scalar plus scalar, consecutive registers) 531
D1.1.216 STNT1W (scalar plus immediate, strided registers) 533
D1.1.217 STNT1W (scalar plus scalar, strided registers) 535
D1.1.218 STR (vector) 537
D1.1.219 STR (ZTO) o o 539
D1.1.220 SUB (array accumulators), 540
D1.1.221 SUB (array results, multiple and single vector) 542
D1.1.222 SUB (array results, multiple vectors) 544
D1.1.223 SUDOT (multiple and indexed vector) 546
D1.1.224 SUDOT (multiple and singlevector) 548
D1.1.225 SUMLALL (multiple and indexed vector) 550
D1.1.226 SUMLALL (multiple and singlevector) 553
D1.1.227 SUMOPA 555
D1.1.228 SUMOPS 558
D1.1.229 SUNPK 561
D1.1.230 SUVDOT 563
D1.1.231 SVDOT (2-Way) v o o oo e e e e e e e 565
D1.1.232 SVDOT (4-Way) o o oo o et e e e 567
D1.1.233 UCLAMP 569
D1.1.234 UCVTF 571
D1.1.235 UDQOT (2-way, multiple and indexed vector) 573
D1.1.236 UDQOT (2-way, multiple and single vector) 575
D1.1.237 UDOT (2-way, multiple vectors) 577
D1.1.238 UDQT (4-way, multiple and indexed vector) 579
D1.1.239 UDOT (4-way, multiple and single vector) 582
D1.1.240 UDOT (4-way, multiple vectors) 584
D1.1.241 UMAX (multiple and singlevector) 586
D1.1.242 UMAX (multiplevectors) L 588
D1.1.243 UMIN (multiple and single vector) 590
DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. X

B.a

Non-confidential

Contents

DDI0O616
B.a

D1.1.244 UMIN (multiple vectors) 592
D1.1.245 UMLAL (multiple and indexed vector) 594
D1.1.246 UMLAL (multiple and single vector) 597
D1.1.247 UMLAL (multiplevectors) 599
D1.1.248 UMLALL (multiple and indexed vector) 601
D1.1.249 UMLALL (multiple and single vector) 605
D1.1.250 UMLALL (multiple vectors) 608
D1.1.251 UMLSL (multiple and indexed vector) 611
D1.1.252 UMLSL (multiple and single vector) 614
D1.1.253 UMLSL (multiplevectors) 616
D1.1.254 UMLSLL (multiple and indexed vector) 618
D1.1.255 UMLSLL (multiple and single vector) 622
D1.1.256 UMLSLL (multiple vectors) 625
D1.1.257 UMOPA (2-Way) o o oot e e e e e e 628
D1.1.258 UMOPA (4-way) o o o i i e et e e 630
D1.1.259 UMOPS (2-Way) v v v o o e e e e e e e e e 633
D1.1.260 UMOPS (4-Way) o oo oo e e e e e 635
D1.1.261 UQCVT (tworegisters) i 638
D1.1.262 UQCVT (fourregisters) 639
D1.1.263 UQCVTN 640
D1.1.264 UQRSHR (tworegisters) 641
D1.1.265 UQRSHR (fourregisters), 642
D1.1.266 UQRSHRN 644
D1.1.267 URSHL (multiple and singlevector) 646
D1.1.268 URSHL (multiplevectors) 648
D1.1.269 USDOT (multiple and indexed vector) 650
D1.1.270 USDOT (multiple and singlevector) 652
D1.1.271 USDOT (multiple vectors) 654
D1.1.272 USMLALL (multiple and indexed vector) 656
D1.1.273 USMLALL (multiple and singlevector) 659
D1.1.274 USMLALL (multiple vectors) 661
D1.1.275 USMOPA 663
D1.1.276 USMOPS 666
D1.1.277 USVDOT 669
D1.1.278 UUNPK 671
D1.1.279 UVDOT (2-Way) o o o oo e e e e e e e e s 673
D1.1.280 UVDOT (4-way) o e e e e 675
D1.1.281 UZP (fourregisters) 677
D1.1.282 UZP (tworegisters) 679
D1.1.283 WHILEGE 681
D1.1.284 WHILEGT 683
D1.1.285 WHILEHI 685
D1.1.286 WHILEHS 687
D1.1.287 WHILELE 689
D1.1.288 WHILELO 691
D1.1.289 WHILELS 693
D1.1.290 WHILELT 695
D1.1.291 ZERO (tile) o 697
D1.1.292 ZERO (ZT0) o o o o e e e e e e 699
D1.1.293 ZIP (fourregisters) 700
D1.1.294 ZIP (tworegisters) e 702
D1.2 SVE2 data-processing instructions 704
D1.21 BFMLSLB (vectors) 704
D1.22 BFMLSLB (indexed). 706
D1.2.3 BFMLSLT (vectors) 708
Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Xi

Non-confidential

Contents

D1.2.4

D1.2.5

D1.2.6

D1.2.7

D1.2.8

D1.2.9

D1.2.10
D1.2.11
D1.2.12
D1.2.13
D1.2.14
D1.2.15
D1.2.16
D1.2.17
D1.2.18
D1.2.19
D1.2.20
D1.2.21
D1.2.22
D1.2.23
D1.2.24
D1.2.25
D1.2.26
D1.2.27
D1.2.28
D1.2.29
D1.2.30

BFEMLSLT (indexed)
FCLAMP . . .
FDOT (vectors) i e e e e e e e
FDOT (indexed) et
PFALSE

SDOT (2-way, Vectors) e
SDOT (2-way, indexed)
SQCVTN
SQCVTUN
SQRSHRN.
SQRSHRUN
UCLAMP . .
UDOT (2-way, vectors) i ittt
UDOT (2-way, indexed)
UQCVTN . .
UQRSHRN
WHILEGE (predicate pair)
WHILEGT (predicate pair)
WHILEHI (predicate pair)
WHILEHS (predicate pair)
WHILELE (predicate pair),
WHILELO (predicate pair)
WHILELS (predicate pair)
WHILELT (predicate pair),

D1.3 Base A64 instructions

D1.3.1
D1.3.2
D1.3.3
D1.3.4

Part E Appendices

MSR (immediate)
RPRFM . .
SMSTART
SMSTOP

Chapter E1 Instructions affected by SME
E1.1 llegal instructions in Streaming SVEmode

E1.1.1
E1.1.2

lllegal Advanced SIMD instructions
lllegal SVE instructions

E1.2 Unimplemented SVE instructions
E1.3 Reduced performance in Streaming SVEmode

E1.3.1
E1.3.2

Scalar floating-point instructions
SVEinstructions

Chapter E2 SME Shared pseudocode

E2.1 Pseudocode functions

E2.1.1
E2.1.2
E2.1.3
E2.1.4
E2.1.5
E2.1.6
E2.1.7
E2.1.8

AArch64.CheckFPAdvSIMDEnabled
BFDotAdd e
BFNeg o
CheckFPAdvSIMDEnabled64
CheckNonStreamingSVEEnabled
CheckSMEACCESS o o e
CheckSMEANndZAEnabled
CheckSMEEnabled

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

B.a

Non-confidential

Xii

Contents

E2.1.9 CheckSMEZTOEnabled 791
E2.1.10 CheckStreamingSVEAnNdZAEnabled 792
E2.1.11 CheckStreamingSVEEnabled 792
E2.1.12 CounterToPredicate 792
E2.1.13 CurrentNSVL e 793
E2.1.14 CurrentSVL e 793
E2.1.15 CurrentVL 793
E2.1.16 EncodePredCount 794
E2.1.17 FPAdA_ZA 794
E2.1.18 FPDot 794
E2.1.19 FPDotAdd 796
E2.1.20 FPDotAdd ZA 796
E2.1.21 FPMulAdd_ZA 796
E2.1.22 FPMulAddH_ZA 796
E2.1.23 FPProcessDenorms4 797
E2.1.24 FPProcessNaNs4 e 797
E2.1.25 FPSub_ZA 797
E2.1.26 HaveEBF16 798
E2.1.27 HaveSME e 798
E2.1.28 HaveSME2 798
E2.1.29 HaveSMEFG64F64 798
E2.1.30 HaveSMEI6I64 798
E2.1.31 ImplementedSMEVectorLength 798
E2.1.32 InStreamingMode 799
E2.1.33 IsFullA64Enabled 799
E2.1.34 IsMerging 799
E2.1.35 IsOriginalSVEEnabled 799
E2.1.36 IsSMEEnabled 800
E2.1.37 IsSVEEnabled 801
E2.1.38 Lookup 801
E2.1.39 MaybeZeroSVEUppers 801
E2.1.40 PredCountTest 802
E2.1.41 ResetSMEState 802
E2.1.42 ResetSVEState 802
E2.1.43 SetPSTATE_SM 802
E2.1.44 SetPSTATE_SVCR 802
E2.1.45 SetPSTATE_ZA 803
E2.1.46 SMEAccessTrap o o i 803
E2.1.47 System 803
E2.1.48 ZAhslice 803
E2.1.49 ZAslice 804
E2.1.50 ZAtile. 804
E2.1.51 ZAvector e 805
E2.1.52 ZAvslice 805
E2.1.53 ZT0. 805
Chapter E3 System registers affected by SME
E3.1 SME-Specific Systemregisters 808
E3.1.1 ID_AAB64SMFRO_EL1, SME Feature ID register0 809
E3.1.2 MPAMSM_EL1, MPAM Streaming Mode Register 814
E3.1.3 SMCR_EL1, SME Control Register (EL1) 817
E3.1.4 SMCR_EL2, SME Control Register (EL2) 823
E3.1.5 SMCR_EL3, SME Control Register (EL3) 828
E3.1.6 SMIDR_EL1, Streaming Mode Identification Register 831
E3.1.7 SMPRI_EL1, Streaming Mode Priority Register 834
DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. xiii
B.a Non-confidential

Contents
Contents

Chapter E4

DDI0O616
B.a

E3.1.8 SMPRIMAP_EL2, Streaming Mode Priority Mapping Register. 837
E3.1.9 SVCR, Streaming Vector Control Register 842
E3.1.10 TPIDR2_ELO, ELO Read/Write Software Thread ID Register2 847
E3.1.11 EDHSR, External Debug Halting Syndrome Register 850
E3.2 Changes to existing Systemregisters 853
E3.2.1 CPACR_EL1, Architectural Feature Access Control Register 854
E3.2.2 CPTR_EL2, Architectural Feature Trap Register (EL2) 861
E3.2.3 CPTR_ELS, Architectural Feature Trap Register (EL3) 873
E3.2.4 FAR_ELI1, Fault Address Register (EL1) 878
E3.25 FAR_EL2, Fault Address Register (EL2) 883
E3.2.6 FAR_ELS, Fault Address Register (EL3) 887
E3.2.7 FPCR, Floating-point Control Register. 890
E3.2.8 HCRX_EL2, Extended Hypervisor Configuration Register 903
E3.2.9 HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register 913
E3.2.10 HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register 941
E3.2.11 ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1 . . . 964
E3.2.12 |ID_AA64PFR1_EL1, AArch64 Processor Feature Register1 973
E3.2.13 ID_AA64ZFR0O_EL1, SVE Feature ID register0 979
E3.2.14 MPAM2_EL2, MPAM2 Register (EL2) 984
E3.2.15 SCR_ELS, Secure Configuration Register 992
E3.2.16 SCTLR_EL1, System Control Register (EL1) 1015
E3.2.17 SCTLR_EL2, System Control Register (EL2) 1047
E3.2.18 EDDEVID1, External Debug Device ID register1 1082

Glossary terms

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

Xiv

Preface

XV

About this supplement

This supplement is the Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME),
for Armv9-A.

This supplement describes the changes and additions introduced by SME to the Armv9-A architecture.

This supplement also describes the changes and additions introduced by The Scalable Matrix Extension version 2
(SME2) to the Armv9-A architecture.

In this supplement, unless stated otherwise, when SME is used, the behavior also applies to SME2.
For SME, this supplement is to be read with the following documents:

o Arm® Architecture Reference Manual for A-profile architecture [1]
o Arm® Architecture Registers, for A-profile architecture [2]
o Arm® A64 Instruction Set Architecture, for A-profile architecture [3]

Together, the supplement and these documents provide a full description of the Armv9-A Scalable Matrix Extension,
and the Armv9-A Scalable Matrix Extension version 2.

This supplement is organized into parts:
* SME Application Level Programmers’ Model
Describes how the PE at an application level is altered by the implementation of SME.
* SME System Level Programmers’ Model
Describes how the PE at a system level is altered by the implementation of SME.
* SME Instruction Set
Describes the extensions made for SME to the A64 instruction set.
* Appendices

Provides reference information relating to the SME. This includes summarized information about the
instruction set, imported shared pseudocode and System register data, and a glossary that defines terms used
in this document that have a specialized meaning.

XVi

Conventions

Typographical conventions

Numbers

The typographical conventions are:
italic
Introduces special terminology, and denotes citations.
bold
Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace
Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.
Blue text

Indicates a link. This can be

¢ A cross-reference to another location within the document
* A URL, for example http://developer.arm.com

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xrrrF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for

example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Asterisks in instruction mnemonics

Some behavior descriptions in this manual apply to a group of similar instructions that start with the same

characters. In these situations, an * might be inserted at the end of a series of characters as a wildcard.

Xvii

http://developer.arm.com

Preface
Conventions

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font.

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. xviii
B.a Non-confidential

Rules-based writing

This specification consists of a set of individual content items. A content item is classified as one of the following:

¢ Declaration
e Rule
¢ Goal
¢ Information

Declarations and Rules are normative statements. An implementation that is compliant with this specification must
conform to all Declarations and Rules in this specification that apply to that implementation.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are generally grouped into sections and subsections that provide context. Where appropriate,
these sections begin with a short introduction.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided as an aid to
understanding this specification.

Content item identifiers

A content item may have an associated identifier which is unique among content items in this specification.

After this specification reaches beta status, a given content item has the same identifier across subsequent versions
of the specification.

Content item rendering

Content item classes

Declaration

A Declaration is a statement that does one or more of the following:

¢ Introduces a concept

e Introduces a term

¢ Describes the structure of data
* Describes the encoding of data

A Declaration does not describe behavior.

A Declaration is rendered with the label D.

XiX

Preface

Rules-based writing

DDI0O616
B.a

Rule

A Rule is a statement that describes the behavior of a compliant implementation.
A Rule explains what happens in a particular situation.
A Rule does not define concepts or terminology.

A Rule is rendered with the label R.

Goal

A Goal is a statement about the purpose of a set of rules.

A Goal explains why a particular feature has been included in the specification.
A Goal is comparable to a “business requirement” or an “emergent property.”
A Goal is intended to be upheld by the logical conjunction of a set of rules.

A Goal is rendered with the label G.

Information

An Information statement provides information and guidance as an aid to understanding the specification.

An Information statement is rendered with the label 1.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

XX

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer (https://developer.arm.com) for access to Arm documentation.

[1]1 Arm® Architecture Reference Manual for A-profile architecture. (ARM DDI 0487) Arm Ltd.
[2] Arm® Architecture Registers, for A-profile architecture. (ARM DDI 0601) Arm Ltd.

[3]1 Arm® A64 Instruction Set Architecture, for A-profile architecture. (ARM DDI 0602) Arm Ltd.

[4] Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring
(MPAM), for A-profile architecture. (ARM DDI 0598) Arm Ltd.

[5]1 Arm® Architecture Reference Manual Supplement, The Transactional Memory Extension (TME), for A-profile
architecture. (ARM DDI 0617) Arm Ltd.

XX1

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have any comments or queries about our documentation, create a ticket at https://support.developer.arm.com.
As part of the ticket, include:

 The title, (Arm® Architecture Reference Manual Supplement, The Scalable Matrix Extension (SME), for
Armv9-A).

¢ The number, (DDI0616 B.a).

* The section name to which your comments refer.

* The page number(s) to which your comments refer.

* The rule identifier(s) to which your comments refer, if applicable.

* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

XXii

https://support.developer.arm.com

Inclusive terminology commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.

We believe that this document contains no offensive terms. If you find offensive terms in this document, please
contact terms @arm.com.

Xxiii

Part A

Introduction

Chapter A1
SME Introduction

A1.1 About the Scalable Matrix Extension

Tyvepk The Scalable Matrix Extension (SME) defines:

* Architectural state capable of holding two-dimensional matrix tiles.

* A Streaming SVE processing mode, which supports execution of SVE2 instructions with a vector length that
matches the tile width.

* Instructions that accumulate the outer product of two vectors into a tile.

¢ Load, store, and move instructions that transfer a vector to or from a tile row or column.

The extension also defines System registers and fields that identify the presence and capabilities of SME, and
enable and control its behavior at each Exception level.

Tpyome The Scalable Matrix Extension version 2 (SME2) extends the SME architecture to increase the number of
applications that can benefit from the computational efficiency of SME, beyond its initial focus on outer products
and matrix-matrix multiplication.

SME?2 adds data processing instructions with multi-vector operands and a multi-vector predication mechanism.
These include:

* Multi-vector multiply-accumulate instructions, that read SVE Z vectors and accumulate into ZA array vectors
to permit reuse of the SME outer product hardware for vector operations, including widening multiplies that
accumulate into more vectors than they read.

* Multi-vector load, store, move, permute, and convert instructions, that read and write multiple SVE Z vectors
to preprocess inputs and post-process outputs of the multi-vector multiply-accumulate instructions.

* An alternative predication mechanism to the SVE predication mechanism, to control operations performed
on multiple vector registers.

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 25
B.a Non-confidential

Chapter A1. SME Introduction
A1.1. About the Scalable Matrix Extension

SME?2 also adds:

* A Range Prefetch hint instruction to prepare the memory system to prefetch and retain a set of strided address
ranges in the most appropriate cache levels.

* Compressed neural network capability using dedicated lookup table instructions and outer product instructions
that support binary neural networks.

* A 512-bit architectural register, ZT0, to support the lookup table feature.

Tsoces Unless otherwise specified by this document, the behaviors of instructions and architectural state when the PE is in
Streaming SVE mode are as described in Arm® Architecture Reference Manual for A-profile architecture [1].

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 26
B.a Non-confidential

Chapter A2
Architecture Features and Extensions

A2.1 Extensions and features defined by SME

Rkoppr

DDI0O616
B.a

SME inherits the rules for architectural features and extensions from Arm® Architecture Reference Manual for
A-profile architecture [1]. This specification describes changes to those rules, and defines any features added by
SME.

SME is represented by the feature FEAT_SME.
FEAT_SME is an OPTIONAL extension from Armv9.2.
The following list summarizes the OPTIONAL SME features:

» FEAT SME_FA64, support the full A64 instruction set in Streaming SVE mode.
* FEAT_SME_F64F64, Double-precision floating-point outer product instructions.
* FEAT_SME_I16164, 16-bit to 64-bit integer widening outer product instructions.
* FEAT_EBF16, support for Extended BFloat16 mode.

FEAT_SME_FAG64 requires FEAT_SVE2.
SME2 represents a version of the SME architecture that implements FEAT_SME2.
FEAT_SME?2 is an OPTIONAL extension from Armv9.2.

FEAT_SME2 requires FEAT_SME.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 27
Non-confidential

Chapter A2. Architecture Features and Extensions
A2.2. Changes to existing features and extension requirements

A2.2 Changes to existing features and extension requirements

Rpsuis If SME is implemented, the following features are also implemented:

* FEAT_HCX.
* FEAT_FGT.

* FEAT_FCMA.
» FEAT FP16.
 FEAT_FHM.
* FEAT_BF16.

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
B.a Non-confidential

Part B
SME Application Level Programmers’ Model

Chapter B1
Application processing modes

B1.1 Overview

SME extends the AArch64 application level programmers’ model with added processing modes and related
instructions, architectural state, and registers:

* The psTATE. sM control to enable an execution mode, known as Streaming SVE mode.

* The psTATE. za control to enable access to ZA storage, and to the ZT0 register when SME2 is implemented.

* The Special-purpose register, svcr, which provides read/write access to PSTATE. sM and PSTATE. zA from any
Exception level.

e The sMsTarT and sMsTop instructions, aliases of the Msr (immediate) instruction, that can set or clear
PSTATE.SM, PSTATE. ZA, Of both PSTATE. sM and PSTATE. zA from any Exception level.

* A software thread ID register to manage per-thread SME context, TPIDR2_ELO.

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 30
B.a Non-confidential

Chapter B1. Application processing modes
B1.2. Process state

B1.2 Process state

9

DDZZZTI{

I\ VPDL

TNILTZL

DX'JHM“H

DNH}]TF

DDI0O616
B.a

A PE that implements SME has a Streaming SVE mode.

Streaming SVE register state is the vector registers Z0-Z31 and predicate registers PO-P15 that can be accessed by
SME, SVE, Advanced SIMD, and floating-point instructions when the PE is in Streaming SVE mode.

Streaming SVE register state includes the SVE FFR predicate register if FEAT _SME_FA64 is implemented and
enabled at the current Exception level.

If SME is implemented, a PE has the following additional architectural state:

» Streaming SVE register state.
» ZA storage.
e When SME2 is implemented, the ZT0 register.

A PE enters Streaming SVE mode to access Streaming SVE vector and predicate register state.

If SME is implemented, this does not imply that FEAT_SVE and FEAT_SVE2 are implemented by the PE when it
is not in Streaming SVE mode.

When the PE is in Streaming SVE mode, a different set of vector lengths might be available for SVE instructions,
as specified in C1.1.3 Vector lengths.

When the PE is in Streaming SVE mode, the performance characteristics of some instructions might be significantly
reduced, as specified in E1.3 Reduced performance in Streaming SVE mode.

SME extends a PE’s Process state or psTATE with the s and za fields. The pstatrE fields can be modified by the
sMsTART and sMSTOP instructions, and can also be read and written using the svcr register.

The psTaTE. su field controls the use of Streaming SVE mode.
The pstaTE. za field controls all of the following:

* Access to ZA storage.
* Access to the ZT0 register, when SME2 is implemented.

The sMsTART instruction does either or both of the following:

* Enters Streaming SVE mode.
* Enables the ZA storage, and when SME2 is implemented enables the Z70 register.

The susTop instruction does either or both of the following:

 Exits Streaming SVE mode.
* Disables the ZA storage, and when SME2 is implemented disables the ZT0 register.

After entering Streaming SVE mode, subsequent sMSTART and sMsTOP instructions might be used to enable and
disable the ZA storage, and the Z70 register when SME2 is implemented, for different phases of execution within
Streaming SVE mode, before using a final sMsTop instruction to exit Streaming SVE mode.

SME and SME?2 instructions are the instructions defined by the SME architecture in Chapter D1 SME instructions.

A legal instruction is an implemented instruction that can be executed by a PE when psTATE. sM and PSTATE. za
are in the required state, unless its execution at the current Exception level is prevented by a configurable trap or
enable.

An illegal instruction is an implemented instruction whose attempted execution by a PE when psTATE. sm and
PSTATE. zA are not in the required state causes an SME illegal instruction exception to be taken, unless its execution
at the current Exception level is prevented by a higher-priority configurable trap or enable.

See also:

¢ MSR (immediate).
¢ SMSTART.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 31
Non-confidential

Chapter B1. Application processing modes
B1.2. Process state

e SMSTOP.

e Cl1.1.3 Vector lengths.

e Cl1.2.3 Vulidity of SME and SVE state.

e C1.34ESR_ELI, ESR_EL2, and ESR_ELS3.
* C1.4.8 SVCR.

e Chapter E1 Instructions affected by SME.

B1.2.1 PSTATE.SM

DDI0O616
B.a

The value of psTaTE.sM can be changed by executing the mMsr instructions that access the svcr. For more
information, see B1.2.3 Changing PSTATE.SM and PSTATE.ZA.

The PE is in Streaming SVE mode when the Effective value of psTATE.sMis 1.
When the PE is in Streaming SVE mode:

» Streaming SVE register state is valid.

e SME and SME?2 instructions that access the Streaming SVE register state are legal.

e SME and SME?2 instructions that do not access the ZA storage or ZT0 register are legal.

* SME and SME?2 instructions that access the ZA storage or Z70 register are legal if ZA storage is enabled.
* Legal instructions that access SVE or SIMD&FP registers access the Streaming SVE register state.

The SVE FFR predicate register is not architecturally visible when the PE is in Streaming SVE mode if
FEAT_SME_FA64 is not implemented or not enabled at the current Exception level.

When the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level:

* Most Advanced SIMD instructions are illegal, as described in El.1.1 Illegal Advanced SIMD instructions.
* Some SVE and SVE2 instructions are illegal, as described in E1.1.2 Illegal SVE instructions.
* Most other instructions implemented by the PE, including scalar floating-point instructions, remain legal.

The PE is not in Streaming SVE mode when the Effective value of psTaTe. smis 0.
When the PE is not in Streaming SVE mode:

 Streaming SVE register state is not valid.

* SME and SME?2 instructions that access the Streaming SVE register state are illegal.

* SME 1pRr (vector), sTr (vector), and zeRro (tile) instructions that access the ZA storage are legal if ZA is
enabled, and all other instructions that access the ZA storage are illegal.

* SME2 1pr (ZT0), sTr (ZTO0), and zero (ZTO0) instructions that access the ZT0 register are legal if ZA is
enabled, and all other instructions that access the Z70 register are illegal.

* The mMsr and MRrs instructions that directly access the SME svcr register are legal.

* Instructions which access SVE or SIMD&FP registers access the Non-streaming SVE or SIMD&FP register
state.

 All other instructions implemented by the PE are legal.

When the Effective value of psTATE. sM is changed by any means from O to 1, an entry to Streaming SVE mode is
performed, and each implemented bit of SVE registers Z0-Z31, PO-P15, and FFR in the new mode is set to zero.

When the Effective value of psTATE. su is changed by any means from 1 to 0, an exit from Streaming SVE mode is
performed, and each implemented bit of SVE registers Z0-Z31, PO-P15, and FFR in the new mode is set to zero.

When the Effective value of psTATE. sM is changed by any means from O to 1, or from 1 to O, the FpsR is set to the
value 0x0000_0000_0800_009f, in which all of the cumulative status bits are set to 1.

Statements which refer to the value of the SVE vector registers, Z0-Z31, implicitly also refer to the lower bits
of those registers accessed by the SIMD&FP register names V0-V31, Q0-Q31, DO-D31, S0-S31, HO-H31, and
BO-B31.

See also:

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 32
Non-confidential

Chapter B1. Application processing modes
B1.2. Process state

* Cl1.1.2 Traps and exceptions.
* C14.8 SVCR.

B1.2.2 PSTATE.ZA

R JHMY L

R YRZRM

The value of psTATE.zA can be changed by executing the Msr instructions that access the svcr. For more
information, see B1.2.3 Changing PSTATE.SM and PSTATE.ZA.

The following are enabled when pSTATE. z2 is 1:

* The ZA storage.
* When SME2 is implemented, the ZT0 register.

When ZA storage is enabled:

* The contents of ZA storage, and the ZT0 register when SME2 is implemented, are valid and are retained by
hardware irrespective of whether the PE is in Streaming SVE mode.

* SME and SME2 instructions that access the ZA storage or the Z70 register are legal and can be executed,
unless execution is prevented by some other trap or exception.

The following are disabled when psTATE. 72 is O:

* The ZA storage.
* When SME2 is implemented, the Z70 register.

When ZA storage is disabled:

* The contents of ZA storage, and the ZT0 register when SME2 is implemented, are not valid.
* SME and SME2 instructions that access the ZA storage or the ZT0 register are illegal.
* There is no effect on other instructions implemented by the PE.

When psTATE . 72 is changed by any means from 0 to 1, all implemented bits of the ZA storage, and the Z70 register
when SME?2 is implemented, are set to zero.

When psTATE. za is changed from 1 to O, there is no architecturally defined effect on the ZA storage, and the Z70
register when SME2 is implemented, because the contents of ZA storage and the Z70 register cannot be observed
when PSTATE. za is 0.

When pstaTE. za is changed from 0 to 1, or 1 to O, there is no effect on the SVE vector and predicate registers and
the FpsR if PSTATE. sM is not changed.

See also:

* B2.6 SME2 Lookup table.
* Cl1.1.2 Traps and exceptions.
* C14.8 SVCR.

B1.2.3 Changing PSTATE.SM and PSTATE.ZA

Dorsxv

Rupony

DDI0O616
B.a

The following mMsr (immediate) instructions are provided to independently set or clear PSTATE . SM, PSTATE . ZA, OF
both psTATE. sM and PSTATE. zA respectively:

® MSR SVCRSM, #<imml>.
® MSR SVCRZA, #<imml>.
® MSR SVCRSMZA, #<imml>.

MSR SVCRSM, MSR SVCRZA, and MSR SVCRSMZA instructions are permitted to be executed from any Exception level.
The sMsTART instruction is the preferred alias of the following instructions:

® MSR SVCRSM, #1.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 33
Non-confidential

Chapter B1. Application processing modes
B1.2. Process state

® MSR SVCRZA, #1.
® MSR SVCRSMZA, #1.

The smsTop instruction is the preferred alias of the following instructions:

® MSR SVCRSM, #0.
® MSR SVCRZA, #0.
® MSR SVCRSMZA, #0.

Access to svcr through the Mrs and MsR (register) instructions might be used where a calling convention or ABI
requires saving, restoring, or testing of PSTATE. sM and PSTATE. z2, and are permitted to be executed from any
Exception level. However, the Msr (immediate) instructions might be higher performance than the msr (register)
instruction, so the Msr (immediate) instructions are preferred for explicit changes to PSTATE. sM and PSTATE . zA.

The PE might consume less power when psTATE. sM is 0 and PSTATE. 72 is 0.
See also:

* MSR (immediate).
¢ SMSTART.

« SMSTOP.

e C1.4.8 SVCR.

B1.2.4 TPIDR2_ELO

DDI0O616
B.a

If SME is implemented, the register TpPIDR2_ELO is added.

The Software Thread ID Register #2 provides additional thread identifying information that can be read and written
from all Exception levels.

This register is reserved for use by the ABI to manage per-thread SME context.
See also:

* TPIDR2_ELO.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 34
Non-confidential

Chapter B2
Architectural state

B2.1 Architectural state summary

DxJcac The Effective Streaming SVE vector length (SVL) is a power of two in the range 128 to 2048 bits inclusive.
TynBePEM When the PE is in Streaming SVE mode, the Effective SVE vector length (VL) is equal to SVL.
This might be different from the value of VL when the PE is not in Streaming SVE mode, as described in C1.1.3
Vector lengths.
D syvy In a vector of SVL bits:

e SVLg is the number of 8-bit elements.

¢ SVLy is the number of 16-bit elements.
¢ SVLg is the number of 32-bit elements.
¢ SVLp is the number of 64-bit elements.
* SVL is the number of 128-bit elements.

SVL [bits] SVLgp SVLy SVLg SVLp SVLq
128 16 8 4 2 1
256 32 16 8 4 2
512 64 32 16 8 4
1024 128 64 32 16 8
2048 256 128 64 32 16
DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 35

B.a Non-confidential

Chapter B2. Architectural state
B2.1. Architectural state summary
See also:

» Chapter B1 Application processing modes.
e CI1.1.3 Vector lengths.

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.
B.a Non-confidential

36

Chapter B2. Architectural state
B2.2. SME ZA storage

B2.2 SME ZA storage

S

SSXPL

The ZA storage is an architectural register state consisting of a two-dimensional ZA array of [SVLp x SVLg] bytes.

B2.2.1 ZA array vector access

Rrruns
Deppem
Dprvan
Dyxurr
Dcra

Dpi" 7T

The ZA array can be accessed as vectors of SVL bits.
An untyped vector access to the ZA array is represented by ZA[N], where N is in the range 0 to SVLg-1 inclusive.

In SME 1R (vector) and sTR (vector) instructions, an untyped ZA array vector is selected by the sum of a 32-bit
general-purpose vector select register Wv and an immediate vector select offset offs, modulo SVLg.

The preferred disassembly for an untyped ZA array vector is ZA[Wv, offs], where offs is an immediate in the range
0-15 inclusive.

The ZA array can be accessed as vectors of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit elements.

An elementwise vector access to the ZA array is indicated by appending a vector index “[N]” to the ZA array name
and element size qualifier, where N is in the range 0 to SVLg-1 inclusive, as follows:

* An 8-bit element vector access to the ZA array is represented by ZA.B[N].
* A 16-bit element vector access to the ZA array is represented by ZA.H[N].
¢ A 32-bit element vector access to the ZA array is represented by ZA.S[N].
* A 64-bit element vector access to the ZA array is represented by ZA.D[N].
* A 128-bit element vector access to the ZA array is represented by ZA.Q[N].

B2.2.2 ZA tile access

DDI0O616
B.a

A ZA tile is a square, two-dimensional sub-array of elements within the ZA array.

Depending on the element size with which it is accessed, the ZA array is treated as containing one or more ZA
tiles, as described in the following sections.

A ZA tile is indicated by appending the tile number to the ZA name.

A ZA tile slice is a one-dimensional set of horizontally or vertically contiguous elements within a ZA tile.
A vector access to a tile reads or writes a ZA tile slice.

A ZA tile can be accessed as vectors of 8-bit, 16-bit, 32-bit, 64-bit, or 128-bit elements.

A ZA tile can be accessed as horizontal slices of SVL bits.

A ZA tile is accessed as horizontal slices if the V field in the accessing instruction opcode is 0.

An access to horizontal tile slices is indicated by an “H” suffix on the ZA tile name.

A ZA tile can be accessed as vertical slices of SVL bits.

A ZA tile is accessed as vertical slices if the V field in the accessing instruction opcode is 1.

An access to vertical tile slices is indicated by a “V” suffix on the ZA tile name.

In SME instructions, the tile slice is selected by the sum of a 32-bit general-purpose slice index register Ws and an
immediate slice index offset offs, modulo the number of slices in the named tile.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 37
Non-confidential

Chapter B2. Architectural state
B2.2. SME ZA storage

B2.2.3 Accessing an 8-bit element ZA tile

Dimsn An 8-bit element ZA tile is indicated by a “.B” qualifier following the tile name.

DyLncnm There is a single tile named ZA0.B which consists of [SVLg x SVLg] 8-bit elements and occupies all of the ZA
storage.

Rupsmy An access to a horizontal or vertical 8-bit element ZA tile slice reads or writes SVLg 8-bit elements.

Dymary An access to a horizontal or vertical 8-bit element ZA tile slice is indicated by appending a slice index “[N]” to the

tile name, direction suffix, and qualifier. For example, where N is in the range 0 to SVLg-1 inclusive:

e ZAOH.B[N] indicates a horizontal 8-bit element ZA tile slice selection.
e ZAOV.B[N] indicates a vertical 8-bit element ZA tile slice selection.

T Jvrny Horizontal and vertical ZAOQ.B slice accesses are illustrated in the following diagram for SVL of 256 bits:

Rpesoy An access to the horizontal slice ZAOH.B[N] reads or writes the SVLg bytes in ZA array vector ZA.B[N].

Rrayso An access to the vertical slice ZAOV.B[N] reads or writes the 8-bit element [N] within each horizontal slice of
ZA0.B.

Dcp The preferred disassembly is:

o ZAOH.B[Ws3, offs], for a horizontal 8-bit element ZA tile slice selection.

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 38
B.a Non-confidential

Chapter B2. Architectural state
B2.2. SME ZA storage

* ZAOV.B[Ws, offs], for a vertical 8-bit element ZA tile slice selection.

Where offs is an immediate in the range 0-15 inclusive.

B2.2.4 Accessing a 16-bit element ZA tile

DDI0O616
B.a

A 16-bit element ZA tile is indicated by a “.H” qualifier following the tile name.

There are two tiles named ZAO.H and ZA1.H. Each tile consists of [SVLy x SVLy] 16-bit elements, and occupies
half of the ZA storage.

An access to a horizontal or vertical 16-bit element ZA tile slice reads or writes SVLy 16-bit elements.

An access to a horizontal or vertical 16-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where ¢ is O or 1, and N is in the range 0 to SVLy-1
inclusive:

* ZArH.H[N] indicates a horizontal 16-bit element ZA tile slice selection.
e ZArV.H[N] indicates a vertical 16-bit element ZA tile slice selection.

Horizontal and vertical ZAt.H slice accesses, where ¢ is 0 or 1, are illustrated in the following diagram for SVL of
256 bits:

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 39
Non-confidential

Chapter B2. Architectural state
B2.2. SME ZA storage

RpTroc

An access to the horizontal slice ZAfH.H[N] reads or writes the SVLy 16-bit elements in ZA array vector ZA.H[f +
2 * NIJ.

An access to the vertical slice ZArV.H[N] reads or writes the 16-bit element [N] within each horizontal slice of
ZAt.H.

The preferred disassembly is as follows:

* ZAtH.H[Ws, offs], for a horizontal 16-bit element ZA tile slice selection.
* ZAtV.H[Ws, offs], for a vertical 16-bit element ZA tile slice selection.

Where ¢ is 0 or 1, and offs is an immediate in the range 0-7 inclusive.

B2.2.5 Accessing a 32-bit element ZA tile

DDI0O616
B.a

A 32-bit element ZA tile is indicated by a “.S” qualifier following the tile name.

There are four tiles named ZA0.S, ZA1.S, ZA2.S, and ZA3.S. Each tile consists of [SVLg x SVLg] 32-bit elements,
and occupies a quarter of the ZA storage.

An access to a horizontal or vertical 32-bit element ZA tile slice reads or writes SVLg 32-bit elements.

An access to a horizontal or vertical 32-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where ¢ is 0, 1, 2, or 3, and N is in the range 0 to SVLg-1
inclusive:

e ZArH.S[N] indicates a horizontal 32-bit element ZA tile slice selection.
e ZArV.S[N] indicates a vertical 32-bit element ZA tile slice selection.

Horizontal and vertical ZAzt.S slice accesses, where ¢ is 0, 1, 2, or 3, are illustrated in the following diagram for
SVL of 256 bits:

An access to the horizontal slice ZAfH.S[N] reads or writes the SVLg 32-bit elements in ZA array vector ZA.S[t +
4 * NJ.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 40
Non-confidential

Chapter B2. Architectural state
B2.2. SME ZA storage

An access to the vertical slice ZAtV.S[N] reads or writes the 32-bit element [N] within each horizontal slice of
ZAt.S.

The preferred disassembly is:

» ZAtH.S[Ws, offs], for a horizontal 32-bit element ZA tile slice selection.
o ZAtV.S[Ws, offs], for a vertical 32-bit element ZA tile slice selection.

Where tis 0, 1, 2, or 3, and offs is 0, 1, 2, or 3.

B2.2.6 Accessing a 64-bit element ZA tile

DDI0O616
B.a

A 64-bit element ZA tile is indicated by a “.D” qualifier following the tile name.

There are eight tiles named ZA0.D, ZA1.D, ZA2.D, ZA3.D, ZA4.D, ZA5.D, ZA6.D, and ZA7.D. Each tile consists
of [SVLp x SVLp] 64-bit elements, and occupies an eighth of the ZA storage.

An access to a horizontal or vertical 64-bit element ZA tile slice reads or writes SVLp 64-bit elements.

An access to a horizontal or vertical 64-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where ¢ is in the range 0-7 inclusive, and N is in the
range 0 to SVLp-1 inclusive:

e ZArH.D[N] indicates a horizontal 64-bit element ZA tile slice selection.
e ZArV.D[N] indicates a vertical 64-bit element ZA tile slice selection.

Horizontal and vertical ZAz.D slice accesses, where ¢ is in the range 0-7 inclusive, are illustrated in the following
diagram for SVL of 256 bits:

An access to the horizontal slice ZArH.D[N] reads or writes the SVLp 64-bit elements in ZA array vector ZA.D[z +
8 * NJ.

An access to the vertical slice ZAfrV.D[N] reads or writes the 64-bit element [N] within each horizontal slice of
ZAt.D.

The preferred disassembly is:

* ZAtH.D[Ws, offs], for a horizontal 64-bit element ZA tile slice selection.
* ZAtV.D[Ws, offs], for a vertical 64-bit element ZA tile slice selection.

Where ¢ is in the range 0-7 inclusive, and offs is 0 or 1.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 41
Non-confidential

Chapter B2. Architectural state
B2.2. SME ZA storage

B2.2.7 Accessing a 128-bit element ZA tile

Dazos

—),\’L‘LJ L

DDIo616

B.a

A 128-bit element ZA tile is indicated by a “.Q” qualifier following the tile name.

There are 16 tiles named ZA0.Q, ZA1.Q, ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZA7.Q, ZA8.Q, ZA9.Q, ZA10.Q,
ZA11.Q,ZA12.Q, ZA13.Q, ZA14.Q, and ZA15.Q. Each tile consists of [SVLq X SVLq] 128-bit elements, and
occupies 1/16 of the ZA storage.

An access to a horizontal or vertical 128-bit element ZA tile slice reads or writes SVLq 128-bit elements.

An access to a horizontal or vertical 128-bit element ZA tile slice is indicated by appending a slice index “[N]” to
the tile name, direction suffix, and qualifier. For example, where 7 is in the range 0-15 inclusive, and N is in the
range 0 to SVLq-1 inclusive:

e ZArH.Q[N] indicates a horizontal 128-bit element ZA tile slice selection.
e ZArV.Q[N] indicates a vertical 128-bit element ZA tile slice selection.

Horizontal and vertical ZAt.Q slice accesses, where ¢ is in the range 0-15 inclusive, are illustrated in the following
diagram for SVL of 256 bits:

=]
|

An access to the horizontal slice ZAfH.Q[N] reads or writes the SVL 128-bit elements in ZA array vector ZA.Q[?
+ 16 * NJ.

An access to the vertical slice ZAtrV.Q[N] reads or writes the 128-bit element [N] within each horizontal slice of
ZArQ.

The preferred disassembly is:

e ZArH.Q[Ws, 0], for a horizontal 128-bit element ZA tile slice selection.
e ZArV.Q[Ws, 0], for a vertical 128-bit element ZA tile slice selection.

Where ¢ is in the range 0-15 inclusive, and the slice index offset is always zero.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 42
Non-confidential

Chapter B2. Architectural state
B2.3. ZA storage layout

B2.3 ZA storage layout

B2.3.1 ZA array vector and tile slice mappings

Toyriw Each horizontal tile slice corresponds to one ZA array vector.

The horizontal slice mappings for all tile sizes are illustrated by this table:

ZA Array 8-bit element Tile =~ 16-bit element Tile = 32-bit element Tile 64-bit element Tile 128-bit element Tile
Vector Horizontal Slice Horizontal Slice Horizontal Slice Horizontal Slice Horizontal Slice
ZA[0] ZAOH.B[0] ZAOH.H[0] ZAOH.S[0] ZAOH.D[0] ZAOH.QIO0]
ZA[1] ZAOH.B[1] ZA1HH[0] ZA1H.S[0] ZA1H.D[0] ZA1H.Q[0]
ZA[2] ZAOH.B[2] ZAOH.H[1] ZA2H.S[0] ZA2H.D[0] ZA2H.QI[0]
ZA[3] ZAOH.B[3] ZATH.H[1] ZA3H.S[0] ZA3H.D[0] ZA3H.QI0]
ZA[4] ZAOH.B[4] ZAOH.H[2] ZAOH.S[1] ZA4H.D[0] ZA4H.QI[0]
ZA[35] ZAOH.BJ[5] ZA1H.H[2] ZA1H.S[1] ZASH.D[0] ZASH.QI0]
ZA[6] ZAOH.B[6] ZAOH.H[3] ZA2H.S[1] ZA6H.D[0] ZA6H.QI0]
ZA[T] ZAOH.B[7] ZATH.H[3] ZA3H.S[1] ZATH.D[0] ZATH.Q[O]
ZA[8] ZAOH.B[8] ZAOH.H[4] ZAOH.S[2] ZAOH.D[1] ZA8H.QI[0]
ZA[9] ZAOH.B[9] ZA1H.H[4] ZA1H.S[2] ZA1H.D[1] ZA9H.QI0]
ZA[10] ZAOH.B[10] ZAOH.H[5] ZA2H.S[2] ZA2H.D[1] ZA10H.Q[0]
ZA[11] ZAOH.B[11] ZA1TH.H[5] ZA3H.S[2] ZA3H.D[1] ZA11H.Q[O0]
ZA[12] ZAOH.B[12] ZAOH.H[6] ZAOH.S[3] ZA4H.D[1] ZA12H.Q[0]
ZA[13] ZAOH.B[13] ZA1H.HI[6] ZA1H.S[3] ZASH.D[1] ZA13H.Q[0]
ZA[14] ZAOH.B[14] ZAOH.H[7] ZA2H.S[3] ZA6H.D[1] ZA14H.Q[O0]
ZA[15] ZAOH.B[15] ZA1THH[7] ZA3H.S[3] ZATH.D[1] ZA15H.Q[0]
if applicable

ZA[16] to

ZA[SVLg-1]

B2.3.2 Tile mappings

Tyvyop The smallest ZA tile granule is the 128-bit element tile. When the ZA storage is viewed as an array of tiles, the
larger 64-bit, 32-bit, 16-bit, and 8-bit element tiles overlap multiple 128-bit element tiles as follows:
Tile Overlaps
ZA0.B ZA0.Q,ZA1.Q,ZA2.Q, ZA3.Q, ZA4.Q, ZA5.Q, ZA6.Q, ZAT.Q,
ZA8.Q,ZA9.Q, ZA10.Q, ZA11.Q, ZA12.Q, ZA13.Q, ZA14.Q, ZA15.Q
ZAO0.H ZA0.Q,ZA2.Q,7ZA4.Q,ZA6.Q, ZA8.Q, ZA10.Q, ZA12.Q, ZA14.Q
ZA1H ZA1.Q,ZA3.Q,ZA5.Q,ZA7.Q, ZA9.Q, ZA11.Q, ZA13.Q, ZA15.Q
DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 43

B.a

Non-confidential

Chapter B2. Architectural state
B2.3. ZA storage layout

Tile Overlaps
ZA0.S ZA0.Q, ZA4.Q, ZA8.Q, ZA12.Q
ZA1.S ZA1.Q,ZA5.Q,7ZA9.Q, ZA13.Q
ZA2.S ZA2.Q,7A6.Q,7ZA10.Q, ZA14.Q
ZA3.S ZA3.Q,ZA7.Q,ZA11.Q, ZA15.Q
ZA0.D ZA0.Q, ZA8.Q
ZA1.D ZA1.Q,ZA9.Q
ZA2.D ZA2.Q,7ZA10.Q
ZA3D ZA3.Q,ZA11.Q
ZA4.D ZA4.Q,7ZA12.Q
ZAS5.D ZA5.Q,7ZA13.Q
ZA6.D ZA6.Q,ZA14.Q
ZA7.D ZA7.Q,7ZA15.Q

TuczeT The architecture permits concurrent use of different element size tiles.

B2.3.3 Horizontal tile slice mappings

Ingoxw The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for a 32-bit element and 64-bit
element horizontal tile slice.

Each small numbered square represents 8 bits.

H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ofo] o[o] [o0]
1o} o[[a]
of1] o[2] [2]
11 o[3] [3]
o[2] o[4a] [4]
12} o[s] [s]
0[3) o[l [e] ZA2H.S[1]
i3] o7l 7
ofa] o[e] [8]
1[4l o9l [91
o0[5] o0[10] [10]
1[5] o[11] [11]
o[6] 0[12] [12]
1[6] 0[13] [13]
o[7] o0[14] [14]
1[7] o[15] [15]
o8] 0[16] [16]
18] o0[17] [17]
0[9] 0[18] [18]
1[9] o[19] [19]
0[10] 0[20] [20] ZA4H.D[2]
1[10] 0[21] [21]
o0[11] o0[22] [22]
1[11] 0[23] [23]
0[12] 0[24] [24]
1[12] 0[25] [25]
0[13] 0[26] [26]
1[13] 0[27] [27]
0[14] o0[28] [28]
1[14] 0[29] [29]
0[15] 0[30] [30]
1[15] 0[31] [31]

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 44
B.a Non-confidential

Chapter B2. Architectural state

B2.3. ZA storage layout

An SME vector load, store, or move instruction that accesses horizontal tile slices ZA2H.S[1] or ZA4H.DJ[2] treats
the slices as vectors with the following layout:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ZA2H.5[1]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

B2.3.4 Vertical tile slice mappings

Incev

DDI0O616
B.a

ZA4H.D[2]

The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for a 32-bit element and 64-bit

element vertical tile slice.

Each small numbered square represents 8 bits.

Q
0[0]
1[0]
2[0]
3[0]
4[0]
5[0]
6[0]
7[0]
8[0]
9[0]

10[0]
11[0]
12[0]
13[0]
14[0]
15[0]
o[1]
1[1]
2[1]
3[1]
a1
5[1]
6[1]
711]
8[1]
9[1]
10[1]
11[1]
12[1]
13[1]
14[1]
15[1]

.D

0[0]
1[0]
2[0]
3[0]
4[0]
5[0]
6[0]
7[0]
0[1]
1[1]
2[1]
3[1]
4[1]
5[1]
6[1]
71]
0[2]
1[2]
2[2]
3[2]
42]
5[2]
6[2]
7[2]
0[3]
1[3]
2[3]
3[3]
4[3]
5[3]
6[3]
7[3]

S

o[0]
1[0]
2[0]
3[0]
o[1]
1[1]
2[1]
3[1]
0[2]
1[2]
2[2]
3[2]
0[3]
1[3]
23]
3[3]
o[4]
1[4]
2[4]
3[4]
0[5]
1[5]
2[5]
3[5]
o[6]
1[6]
2[6]
3[6]
0[7]
1[7]
2[7]
3[7]

.H
o[o]
1[0]
o[1]
1[1]
0[2]
12]
0[3]
131
0[4]
1[4]
0[5]
1[51
o[6]
1[6]
0[7]
171
o[8]
1[8]
0[9]
1[9]

0[10]
1[10]
0[11]
1[11]
0[12]
1[12]
0[13]
1[13]
0[14]
1[14]
0[15]
1[15]

.B
0[0]
o[1]
0[2]
0[3]
0[4]
0[5]
o[6]
0[7]
o[8]
0[9]

0[10]
0[11]
0[12]
0[13]
0[14]
0[15]
0[16]
0[17]
0[18]
0[19]
0[20]
0[21]
0[22]
0[23]
0[24]
0[25]
0[26]
0[27]
0[28]
0[29]
0[30]
0[31]

[0]
[1]
[2]
[3]
[4
[5]
[6]
[71
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

ZA4V.D[2]

ZA2V.5[1]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An SME vector load, store, or move instruction which accesses vertical tile slices ZA2V.S[1] or ZA4V.D[2] treats
the slices as vectors with the following layout:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7i6i{5{4:7/6i5{4{7i6/5:4]

3130 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
23122121120{19118/17116] zAav.D[2]

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

ZA2V.5[1]

45

Chapter B2. Architectural state
B2.3. ZA storage layout

B2.3.5 Mixed horizontal and vertical tile slice mappings

Teexps The following diagram illustrates the ZA storage mapping for SVL of 256 bits, for various element size tiles,
horizontal tile slices, and vertical tile slices.

Each small square represents 8 bits.

ZA7V.D[3] ZAO0V.B[22] ZA3V.S[4] ZA8V.Q[0] ZA1V.H[1]
.Q .D .S .H .B ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o] o] ofo] ofo] ofo] I[o] '
0] 1[0l 1f0] 1fo] o[1] [1]
2(0] 201 2(0] o[1] o[2] [2]
30] 3(0] 3[0] 1[1] o[3] [3]
af0] afo] o] o[2] o[4] [4]
sfo] slo] 1[1] 1[2] o[s] I[s]
6[0] 6[0] 2[1] 0[3] o[6] [6] ZA6H.D[0]
7100 7(0] 3[1] 13 o[71 (71
8[0] o[1] 0[2] o[4] o[8] I[8]
ol 101] 1[2] 4] 0o[9] [9]
10[0] 2[1] 2[2] O0[5] O0[10] [10]
11[0] 3[1] 3[2] 1[5] o[11] [11]
12[0] 4[1] ©0[3] o0[6] O[12] [12]
13[0] 5[1] 1[3] 1[6] O[13] [13]
14[0] 6[1] 2[3] oO[7] o0[14] [14] ZAOH.H[7]
15[0] 7[1] 3[3] 1[7] o0[15] [15]
o[1] o[2] o©[4] o0[8] O[16] [16]
1] 1[21 14] 1[8] 0[17] [17]
2[1] 2[2] 2[4] 0[9] O[18] [18]
3[1] 3[2] 3[4] 1[9] O[19] [19]
4[1] 4[2] o[5] 0[10] 0[20] [20] ZAOH.B[20]
s[1] s[2] 1[5] 1[10] oO[21] [21]
6[1] 6[2] 2[5] o0[11] 0[22] [22] ZA2H.5[5]
7011 7[2] 3[5] 1[11] 0[23] [23]
8[1] 0[3] O0[6] 0[12] 0[24] [24]
9[1] 1[3] 1[6] 1[12] 0[25] [25]
10[1] 2[3] 2[6] O[13] O0[26] [26]
11(1] 3(3] 3[6] 1[13] 0[27] [27]
12[1] 4[3] 0[7] O[14] o0[28] [28] ZA12H.Q[1]
13(1] 5[3] 1[7] 1[14] O0[29] [29]
14[1] 6[3] 2[7] o0[15] O0[30] [30]
15[1] 7[3] 3[7] 1[15] o0[31] [31]
Tuveme It is possible to simultaneously use non-overlapping ZA array vectors within tiles of differing element sizes. For

example, tiles ZA1.H, ZA0.S, and ZA2.D have no ZA array vectors in common, as illustrated in the following
diagram for SVL of 256 bits:

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 46
B.a Non-confidential

Chapter B2. Architectural state

B2.3. ZA storage layout

Twpmck

.Q
0[0]
1[0]
2[0]
3[0]
4[0]
5[0]
6[0]
710]
8[0]
9[0]

10[0]

11[0]
12[0]
13[0]
14[0]
15[0]
0[1]
1]
2[1]
3[1]
a1
5[1]
6[1]
711]
8[1]
9[1]
10[1]
11[1]
12[1]
13[1]
14[1]
15[1]

.D

o[o]
1[0]
2[0]
3[0]
4[0]
5[0]
6[0]
7[0]
0[1]
1]
2[1]
3[1]
4[1]
5[1]
6[1]
711]
0[2]
1[2]
2[2]
3[2]
4[2]
5[2]
6[2]
7[2]
0[3]
1[3]
2[3]
3[3]
4[3]
5[3]
6[3]
7[3]

.S

o[o]
1[0]
2[0]
3[0]
o[1]
1[1]
2[1]
3[1]
0[2]
1[2]
2[2]
3[2]
0[3]
1[3]
2[3]
3[3]
o[4]
1[4]
2[4]
3[4]
o[s]
1[s]
2[5]
3[5]
o[e]
1[6]
2[6]
3[6]
o[7]
1[7]
2(7]
3(7]

H
0[0]
1[0]
0[1]
1[1]
0[2]
1[2]
0[3]
1[3]
0[4]
1[4]
o[s]
1[5]
o[e]
1[6]
o[7]
1[7]
o[8]
18]
0[9]
1[9]

0[10]

1[10]

o0[11]

1[11]

0[12]

1[12]

0[13]

1[13]

0[14]

1[14]

0[15]

1[15]

B
o[o]
o[1]
0[2]
0[3]
o[4]
0[5]
o[e]
o[7]
o[g]
o[9]

0[10]

o0[11]

0[12]

0[13]

0[14]

0[15]

0[16]

0[17]

o[18]

0[19]

0[20]

0[21]

0[22]

0[23]

0[24]

0[25]

0[26]

0[27]

0[28]

0[29]

0[30]

0[31]

ZA 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

ZAOH.S[0]
ZA1H.H[0]
ZA2H.D[0]
ZATH.H[1]
ZAOH.S[1]
ZATH.H[2]

ZATH.H[3]
ZAOH.S[2]
ZA1H.H[4]
ZA2H.D[1]
ZA1H.H[5]
ZAOH.S[3]
ZA1H.H[6]

ZA1H.H[7]
ZAOH.S[4]
ZA1H.H[8]
ZA2H.D[2]
ZATH.H[9]
ZAOH.S[5]
ZA1H.H[10]

ZATH.H[11]
ZAOH.S[6]
ZATH.H[12]
ZA2H.D[3]
ZA1H.H[13]
ZAOH.S[7]
ZA1H.H[14]

ZA1H.H[15]

It is possible to access overlapping ZA array vectors within tiles of differing element sizes. For example, tiles

ZAO0.H, ZA2.S, and ZA6.D have common ZA array vectors.

DDIo616
B.a

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

47

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

B2.4 SME2 Multi-vector operands

Multi-vector operands allow certain SME2 instructions to access source and destination operands which each
consist of one of the following:

* A group of two or four SVE Z vector registers.
* A group of two or four ZA tile slices.
* A group of two, four, eight, or sixteen ZA array vectors.

B2.4.1 Z multi-vector operands

Dyynrz

Domrst,

B2.4.2

DDI0O616
B.a

A multi-vector operand consisting of two or four SVE Z vector registers is called a Z multi-vector operand.
A Z multi-vector operand can occupy:

* Consecutively numbered Z registers.
* Z registers with strided numbering.

A Z multi-vector operand occupying two consecutively numbered Z vectors consists of Zn+0 and Zn+1, where
n+x modulo 32 is a register number in the range 0-31 inclusive.

A Z multi-vector operand occupying four consecutively numbered Z vectors consists of Zn+0 to Zn+3, where n+x
modulo 32 is a register number in the range 0-31 inclusive.

The preferred disassembly for a Z multi-vector operand of consecutively numbered Z vectors is a dash-separated
register range, for example { Z0.S-Z1.S } or { Z30.B-Z1.B }. Toolchains must also support assembler source
code that uses the alternative comma-separated list notation, for example { Z0.S, Z1.S } or { Z30.B, Z31.B, Z0.B,
Z1.B }. Disassemblers can provide an option to select between the dash-separated range and comma-separated list
notations.

A Z multi-vector operand occupying two Z vectors with strided register numbering consists of a first register in the
range Z0-Z7 or Z16-7Z23, followed by a second register with a number that is 8 higher than the first register.

A Z multi-vector operand occupying four Z vectors with strided register numbering consists of a first register in the
range Z0-Z3 or Z16-Z19, followed by three registers each with a number that is 4 higher than the previous register.

The preferred disassembly for a Z multi-vector operand of Z vectors with strided register numbering is a
comma-separated register list, for example { Z0.D, Z8.D } or { Z0.H, Z4.H, Z8.H, Z12.H }.

ZA multi-slice operands

A multi-vector operand consisting of two or four ZA tile slices is called a ZA multi-slice operand.
A ZA multi-slice operand can occupy:

 Consecutively numbered horizontal ZA tile slices.
» Consecutively numbered vertical ZA tile slices.

In instructions operating on ZA multi-slice operands, the lowest-numbered slice is:

* A multiple of 2 for a two-slice ZA operand.
* A multiple of 4 for a four-slice ZA operand.

The lowest-numbered slice is selected by the sum of a 32-bit general-purpose slice index register Ws and an
immediate slice index offset offs.

Instructions operating on the following ZA multi-slice operands are treated as UNDEFINED:

* The four-slice operand in a 64-bit element tile when SVL is 128 bits.
* The two-slice operand in a 128-bit element tile when SVL is 128 bits.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 48
Non-confidential

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

* The four-slice operand in a 128-bit element tile when SVL is 128 bits or 256 bits.
The preferred disassembly for a ZA multi-slice operand is as follows:

o ZAtH.T[Ws, offs1:offs2], for horizontal ZA two-slice operands, where offs2 = offsl + 1.
* ZAH.T[Ws, offs1:offs4], for horizontal ZA four-slice operands, where offs4 = offsI + 3.
o ZAfV.T[Ws, offsi:offs2], for vertical ZA two-slice operands, where offs2 = offsI + 1.
o ZAfV.T[Ws, offsi:offs4], for vertical ZA four-slice operands, where offs4 = offsI + 3.

B2.4.3 ZA multi-vector operands

I HPKZM

Dy

DDI0O616
B.a

A multi-vector operand consisting of two, four, eight, or sixteen ZA array vectors is called a ZA multi-vector
operand.

One ZA array vector is called a ZA single-vector group.
Two consecutively numbered vectors in the ZA array are called a ZA double-vector group.
Four consecutively numbered vectors in the ZA array are called a ZA quad-vector group.

The ZA multi-vector operand consists of one, two, or four vector groups, where a vector group is one of the
following:

* ZA single-vector group.
* ZA double-vector group.
* ZA quad-vector group.

The SME2 architecture includes multi-vector instructions that access a ZA multi-vector operand consisting of the
same number of vector groups as there are vectors in each Z multi-vector operand.

The preferred disassembly for a ZA multi-vector operand consisting of two or four vector groups, defined in
declarations Dkqzyz, Dywrsn, and Drrngr, includes the symbol vGx2 or vGx4, respectively. The symbol vex2 or
vGx4 can optionally be omitted in assembler source code if it can be inferred from the other operands.

In instructions that access a ZA multi-vector operand, the lowest-numbered vector is selected by the sum of a 32-bit
general-purpose vector select register Wy and an immediate vector select offset offs, modulo one of the following
values:

* SVLg when the operand consists of one ZA vector group.
* SVLg/2 when the operand consists of two ZA vector groups.
e SVLg/4 when the operand consists of four ZA vector groups.

B2.4.3.1 ZA multi-vector operands of single-vector groups

In instructions where the ZA multi-vector operand consists of two single-vector groups, each vector group is held
in a separate half of the ZA array. The halves of the ZA array are as follows, where n is in the range 0 to (SVLp/2 -
1) inclusive:

e ZA[n+0].
* ZA[SVLg/2 + n+0].

In instructions where the ZA multi-vector operand consists of four single-vector groups, each vector group is held
in a separate quarter of the ZA array. The quarters of the ZA array are as follows, where 7 is in the range O to
(SVLg/4 - 1) inclusive:

e ZA[n+0].

e ZA[SVLg/4 + n+0].

e ZA[SVLg/2 + n+0].

e ZA[SVLg*3/4 + n+0].

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 49
Non-confidential

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

I MLNNG

DDI0O616
B.a

The preferred disassembly for a ZA multi-vector operand of single-vector groups is as follows, where offs is an
immediate in the range 0-7 inclusive, and T is one of B, H, S, or D:

o ZA.T[Wv, offs, VGx2], when the operand consists of two single-vector groups.
* ZA.T[Wv, offs, VGx4], when the operand consists of four single-vector groups.

The mapping between ZA multi-vector operands of single-vector groups and 32-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

Four single-vectors ZA[5]

ZA array vector view

£ ZA[2]
g
&
1| (A
<
B .=
2
|8
g
t
s
3
<
R I — 7) E—
N
g
§ ZA[2]
3
B
< ZA[5]
Nis
2
[
&
<
o8
t
s
3
£
< ZA[S]

Two single-vectors ZA[2]

32-bit ZA tile slices view

ZA[0]
ZA[1]
ZA2)
ZA[3]
zA[4]
ZA[5]
ZA[6]
ZA[7]

ZA0

ZA[8]
ZA[9]

ZA[10]
ZA[11]
ZA[12]
ZA[13]
ZA[14]
ZA[15]

ZA1

ZA[16]
ZA[17]
ZA[18]
ZA[19]
ZA[20]
ZA[21]
ZA[22]
ZA[23]

ZA2

ZA[24]
ZA[25]
ZA[26]
ZA[27]
ZA[28]
ZA[29]
ZA[30]
ZA[31]

ZA3

ZAOH.S[0]
ZAOH.S[1]
ZAOH.S[2]
ZAOH.S[3]
ZAOH.S[4]
ZAOH.S[5]
ZAOH.S[6]
ZAOH.S[7]
ZA1H.S[0]
ZA1H.S[1]
ZA1H.S[2]
ZAIH.S[3]
ZA1H.S[4]
ZAIH.S[5]
ZA1H.S[6]
ZA1H.S[7]
ZA2H.S[0]
ZAZH.S[1]
ZA2H.S[2]
ZA2H.5[3]
ZA2H.5[4]
ZAZH.S[5]
ZA2H.S[6]
ZA2H.5[7]
ZA3H.5[0]
ZA3H.S[1]
ZA3H.5[2)
ZA3H.S[3]
ZA3H.5[4]
ZA3H.5[5]
ZA3H.5[6]
ZA3H.S[7]

ZA[0]
ZA[4]
ZA[8]
ZA[12]
ZA[16]
ZA[20]
ZA[24]
ZA[28]
ZA1]
ZA[5]
ZA[9]
ZA[13]
ZA[17]
ZA[21]
ZA[25]
ZA[29]
ZA12]
zAl6]
ZA[10]
ZA[14]
ZA[18]
ZA[22]
ZA[26]
ZA[30]
ZA[3]
ZA[7]
ZA[11]
ZA[15]
ZA[19]
ZA[23]
ZA[27]
ZA[31]

The mapping between ZA multi-vector operands of single-vector groups and 64-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

50

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

D?’E')QT

D JWRSN

DDI0O616
B.a

Four single-vectors ZA[5] Two single-vectors ZA[2]

ZA array vector view 64-bit ZA tile slices view

ZA[0] ZAOH.D[0] ZA[0]
ZA[1] ZAOH.D[1] ZA[8]
ZA[2] ZA[2]
ZA[3]
ZA[4]
ZA[5)
ZAl6]
ZA[7]
ZA[8]
ZA[9]
ZA[10]
ZA[11]
ZA[12]

ZAOH.D[2] ZA[16]
ZAOH.D[3] ZA[24]
ZAIH.D[0] ZA[1]

ZAIH.D[1] ZA[9]

ZAIH.D[2] ZA[17]
ZAIH.D[3] ZA[25]
ZAZH.D[0] ZA[2]

ZA2H.D[1] ZA[10]
ZA2H.D[2] ZA[18]
ZA2H.D[3] ZA[26]
ZA3H.D[0] ZA[3]

ZA3H.D[1] ZA[11]
ZA3H.D[2] ZA[19]
ZA3H.D[3] ZA[27]

ZA 1st quarter

ZA 1st half

ZA 2nd quarter

ZA 3rd quarter

ZA[13]

ZA[16] ZAGH.D[0] ZA[4]
ZA[19] ZA4H.D[3] ZA[28]
ZA[23] ZASH.D[3] ZA[29]

2
N
3
g
N
ZA[14] E
ZA[17] 3 ZA4H.D[1] ZA[12]
S
ZA[20] ZASH.D[0] ZA[5]
ZA[5] zA[21] P ZASH.D[1] ZA[13]
N
ZA[24] ZA6H.D[0] ZA[6]
3
3

ZA[15]
ZA[2] ZA[18] ZA4H.D[2] ZA[20]
ZA[22] ZASH.D[2] ZA[21]
ZA[25] ZA6H.D[1] ZA[14]

ZA 2nd half

ZA[26]
ZA[27]
ZA[28]

ZA6H.D[2] ZA[22]
ZAGH.D[3] ZA[30]
ZA7H.D[0] ZA[7]

ZA[5] ZA[29] ZAH.D[1] ZA[15]
ZA[30] ZATH.D[2] ZA[23]
ZA[31] ZA7H.D[3] ZA[31]

ZA 4th quarter |

B2.4.3.2 ZA multi-vector operands of double-vector groups

In instructions where the ZA multi-vector operand consists of one double-vector group, the vector group is held in
ZA array vectors ZA[n+0] to ZA[n+1], where n is a multiple of 2 in the range O to (SVLg - 2) inclusive.

In instructions where the ZA multi-vector operand consists of two double-vector groups, each vector group is held
in a separate half of the ZA array. The halves of the ZA array are as follows, where n is a multiple of 2 in the range
0 to (SVLg/2 - 2) inclusive:

* ZA[n+0] to ZA[n+1].
e ZA[SVLg/2 + n+0] to ZA[SVLg/2 + n+1].

In instructions where the ZA multi-vector operand consists of four double-vector groups, each vector group is held
in a separate quarter of the ZA array. The quarters of the ZA array are as follows, where 7 is a multiple of 2 in the
range 0 to (SVLp/4 - 2) inclusive:

e ZA[n+0] to ZA[n+1].

e ZA[SVLg/4 + n+0] to ZA[SVLg/4 + n+1].

e ZA[SVLg/2 + n+0] to ZA[SVLp/2 + n+1].

e ZA[SVLg*3/4 + n+0] to ZA[SVLg*3/4 + n+1].

The preferred disassembly for a ZA multi-vector operand of double-vector groups is as follows, where offs2 = offs]
+ 1,and T is one of B, H, S, or D:

o ZA.T[Wv, offsI:offs2], where offsI is a multiple of 2 in the range 0-14 inclusive, when the operand consists
of one double-vector group.

*» ZA.T[Wv, offsl:offs2, VGx2], where offs! is a multiple of 2 in the range 0-6 inclusive, when the operand
consists of two double-vector groups.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 51
Non-confidential

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

IT ZRTK

Tsvors

DDI0O616
B.a

o ZA.T[Wv, offsl:offs2, VGx4], where offs] is a multiple of 2 in the range 0-6 inclusive, when the operand
consists of four double-vector groups.

The mapping between ZA multi-vector operands of double-vector groups and 32-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

Four double-vectors ZA[0:1]

ZA array vector view

INJ
T
p\
~l

ZA 2nd quarter | ZA 1st quarter
ZA 1st half

ZA 2nd half

ZA 4th quarter | ZA 3rd quarter

Two double-vectors ZA[6:7]

One double-vector ZA[28:29]

ZA[0]
ZA[1]
ZA[2]
ZA[3]
ZA4]
ZA[5]
ZA[6]
ZA[7]
ZA[8]
ZA[9]
ZA[10]
ZA[11]
ZA[12]
ZA[13]
ZA[14]
ZA[15]
ZA[16]
ZA[17]
ZA[18]
ZA[19]
ZA[20]
ZA[21]
ZA[22]
ZA[23]
ZA[24]
ZA[25]
ZA[26]
ZA[27]
ZA[28]
ZA[29]
ZA[30]
ZA[31]

32-bit ZA tile slices view

g
2
H
3

ZAOH.S[0]
ZAOH.S[1]
ZAOH.S[2]
ZAOH.S[3]
ZAOH.S[4]
ZAOH.S[5]
ZAOH.S[6]
ZAOH.S[7]
ZA1H.S[0]
ZATH.S[1]
ZA1H.S[2]
ZA1H.S[3]
ZA1H.S[4]
ZAIH.S[5]
ZA1H.S[6]
ZAIH.S[7]
ZA2H.5[0]
ZAZH.S[1]
ZA2H.5[2)
ZA2H.5[3]
ZA2H.5[4]
ZAZH.S[5]
ZA2H.5[6]
ZAZH.S[7]
ZA3H.5[0]
ZA3H.S[1]
ZA3H.S[2]
ZA3H.S[3]
ZA3H.5[4]
ZA3H.5[5)
ZA3H.S[6]
ZA3H.S[7]

ZA[0]
ZA[4]
ZA[8]
ZA[12]
ZA[16]
ZA[20]
ZA[24]
ZA[28]
ZA[1]
ZA[5]
ZA[9]
ZA[13]
ZA[17]
ZA[21]
ZA[25]
ZA[29]
ZA[2]
ZA[6]
ZA[10]
ZA[14]
ZA[18]
ZA[22]
ZA[26]
ZA[30]
ZA[3]
ZA[7]
ZA[11]
ZA[15]
ZA[19]
ZA[23]
ZA[27]
ZA[31]

The mapping between ZA multi-vector operands of double-vector groups and 64-bit element ZA tile slices when
SVL is 256 bits is illustrated in the following diagram:

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

52

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

DTf}]GH

DDI0O616
B.a

Four double-vectors ZA[0:1] Two double-vectors ZA[6:7] One double-vector ZA[28:29]

ZA array vector view 64-bit ZA tile slices view

ZA[0]

ZA[1]
ZA[2]
ZA[3]
ZA[4]
ZA[5]
ZA[6]
ZA[7]
18]
zA[9]
ZA[10]
ZA[11]
ZA[12]
ZA[13]
7A[14]
ZA[15]
2A10-31 ZA[16]
ZATO:1] ZA[17]
ZA[18]
ZA[19]
ZA[20]
ZA[21]
1 ZA[22]
WA ZA[23]

1
|

ZAOH.D[0] ZA[O]
ZAOH.D[1] ZA[8]
ZAOH.D[2] ZA[16]
ZAOH.D[3] ZA[24]
ZA1H.D[0] ZA[1]
ZAIH.D[1] ZA[9]
ZAIH.D[2] ZA[17]
ZA1H.D[3] ZA[25]
ZA2H.D[0] ZA[2]
ZA2H.D[1] ZA[10]
ZA2H.D[2] ZA[18]
ZA2H.D[3] ZA[26]
ZA3H.D[0] ZA[3]
ZA3H.D[1] ZA[11]
ZA3H.D[2] ZA[19]
ZA3H.D[3] ZA[27]
ZAGH.D[0] ZA[4]
ZA4H.D[1] ZA[12]
ZA4H.D[2] ZA[20]
ZA4H.D[3] ZA[28]
ZASH.D[0] ZA[S]
ZASH.D[1] ZA[13]
ZASH.D[2] ZA[21]
ZASH.D[3] ZA[29]
ZA6H.D[0] ZA[6]
ZAGH.D[1] ZA[14]
ZAGH.D[2] ZA[22]
ZA6H.D[3] ZA[30]
2Af20.9a0] ZA7H.D[0] ZA[7]
LAIZ6.25] ZA[29] ZATH.D[1] ZA[15]
ZA[30] ZA7H.D[2] ZA[23]
ZA[31] ZA7H.D[3] ZA[31]

ZA 1st quarter

<4

ZA7 ZA6 ZA5 ZA4 ZA3 A2 ZA1 ZA0

N
>
D

ZA 1st half

ZA 2nd quarter

ZA[24]
ZA[25]
ZA[26]
ZA[27]
ZA[28]

ZA 4th quarter | ZA 3rd quarter
ZA 2nd half

B2.4.3.3 ZA multi-vector operands of quad-vector groups

In instructions where the ZA multi-vector operand consists of one quad-vector group, the vector group is held in
ZA array vectors ZA[n+0] to ZA[n+3], where n is a multiple of 4 in the range O to (SVLg - 4) inclusive.

In instructions where the ZA multi-vector operand consists of two quad-vector groups, each vector group is held in
a separate half of the ZA array. The halves of the ZA array are as follows, where n is a multiple of 4 in the range 0
to (SVLg/2 - 4) inclusive:

* ZA[n+0] to ZA[n+3].
e ZA[SVLg/2 + n+0] to ZA[SVLg/2 + n+3].

In instructions where the ZA multi-vector operand consists of four quad-vector groups, each vector group is held in
a separate quarter of the ZA array. The quarters of the ZA array are as follows, where 7 is a multiple of 4 in the
range 0 to (SVLp/4 - 4) inclusive:

e ZA[n+0] to ZA[n+3].

e ZA[SVLg/4 + n+0] to ZA[SVLg/4 + n+3].

e ZA[SVLg/2 + n+0] to ZA[SVLg/2 + n+3].

e ZA[SVLE*3/4 + n+0] to ZA[SVLE*3/4 + n+3].

The preferred disassembly for a ZA multi-vector operand of quad-vector groups is as follows, where offs4 = offsI +
3,and 7 is one of B, H, S, or D:

o ZA.T[Wv, offsl:offs4], where: offsl is a multiple of 4 in the range 0-12 inclusive, when the operand consists
of one quad-vector group.

*» ZA.T[Wv, offsl:offs4, VGx2], where offsI is 0 or 4, when the operand consists of two quad-vector groups.

o ZA.T[Wv, offsl:offs4, VGx4], where offs! is 0 or 4, when the operand consists of four quad-vector groups.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 53
Non-confidential

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

T snscw The mapping between ZA multi-vector operands of quad-vector groups and 32-bit element ZA tile slices when

SVL is 256 bits is illustrated in the following diagram:

Four quad-vectors ZA[0:3] Two quad-vectors ZA[4:7] One quad-vector ZA[12:15]

ZA array vector view 32-bit ZA tile slices view

T ZAOH.S[0] ZA[0]

£ _ Thonsil 2ale

£ ZAOH.S[2] ZA[8)
H 2 ZAOHS[3] ZA[12]
2 B ZAOH.S[4] ZA[16]
= ZAOH.S[S] ZA[20]
Bk ZAOH.S[6] ZA[24]
& ZAOH.S[7] ZA[28]

e ZA1H.S[0] ZA[1]

5|8 ZAIHS[1] ZA[S]

H ZA1H.S[2] ZA[9]
B o ZAIH.S[3] ZA[13]
£] ZAIHS[4] ZA[17]
& - N ZA[13] ZAIH.S[5] ZA[21]
3 ZALLZI1D] ZA[14] ZA1H.5[6] ZA[25]
2A[15] ZAIHS[7] ZA[29]

ZA[16] ZA2H.S[0] ZA[2]

5 —ar a3 ZA[17] ZA2H.S[1] ZA[6]
£ ZATUS] ZA[18] ZA2H.S[2] ZA[10]
ES 2A[19] 9 ZA2H.5[3] ZA[14]
s 2A[20] N ZA2H.S[4] ZA[18]
o 3 ZA[21] ZA2H.S[5] ZA[22]
% ZRA1&T7] ZA[22] ZA2H.5[6] ZA[26]
= 2A[23] ZA2H.S[7] ZA[30]

[]& ZA[24] ZA3H.S[0] ZA[3]

5|3 v o ZA[25] ZA3HS[1] ZA[7)
£ LA[U3] ZA[26] ZA3H.S[2] ZA[11]
£ zA[27] 2 ZA3H.S[3] ZA[15]
£ ZA[28] N ZA3H.S[4] ZA[19]
& ZA[29] ZA3H.S[5] ZA[23]
s ZA[30] ZA3H.S[6] ZA[27]
zA[31] ZA3HS[7] ZA[31]

TkeMIx The mapping between ZA multi-vector operands of quad-vector groups and 64-bit element ZA tile slices when

SVL is 256 bits is illustrated in the following diagram:

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 54
B.a Non-confidential

Chapter B2. Architectural state
B2.4. SME2 Multi-vector operands

DDI0O616
B.a

Four quad-vectors ZA[0:3]

Two quad-vectors ZA[4:7]

One quad-vector ZA[12:15]

ZA array vector view

H
H
E
Sy
s
3
5 3
H
£l
g
's £ 3
H ZAf12:15]
5 r
H ZAT0:3]
ES
T
N =2 AL AT}
J% 471
[
5
5|3 P
H ZAf0:3]
El
£
g
s

2A[27])
2A[28]
2A[29]
2A[30]
ZA[31]

64-bit ZA tile slices view

Il

|

|

|

ZA7

ZA0H.D[0]
ZA0H.D[1]
ZAO0H.D[2]
ZAOH.D[3]
ZA1H.D[0]
ZATH.D[1]
ZA1H.D[2]
2ZAIH.D[3]
ZA2H.D[0]
ZA2H.D[1]
2A2H.D[2]
ZA2H.D[3]
2A3H.D[0]
2A3H.D[1]
ZA3H.D[2]
ZA3H.D[3]
2ZA4H.D[0]
2A4H.D[1]
2A4H.D[2]
ZA4H.D[3]
ZA5H.D[0]
ZASH.D[1]
ZASH.D[2]
2ASH.D[3]
2A6H.D[0]
ZA6H.D[1]
ZA6H.D[2]
ZA6H.D[3]
ZA7H.D[0]
2A7H.D[1]
2A7H.D[2]
ZATH.D[3]

ZA[0]
ZA[8]

ZA[16]
ZA[24]
ZA[1]

zA[9)

ZA[17)
ZA[25]
ZA[2]

ZA[10]
ZA[18]
ZA[26]
ZA[3]

ZA[11]
ZA[19]
ZA[27]
ZA[4]

ZA[12]
ZA[20]
ZA[28]
ZA[5]

ZA[13]
zA[21]
ZA[29]
zAl6]

ZA[14]
ZA[122]
ZA[30]
A7)

ZA[15]
ZA[23]
ZA31]

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

55

Chapter B2. Architectural state
B2.5. SME2 Multi-vector predication

B2.5

DDI0O616
B.a

SME2 Multi-vector predication

SME?2 introduces the multi-vector predication concept in Streaming SVE mode, named predicate-as-counter.
The existing SVE predication concept is referred to as predicate-as-mask.

SME2 multi-vector instructions interpret the lowest-numbered 16 bits of SVE predicate registers PO-P15 as a
predicate-as-counter encoding.

A predicate-as-counter encoding includes:

¢ An invert bit, that encodes whether the element count field is referring to the number of TRUE or FALSE
predicate elements.
* A variable-width element count field. This field holds an unsigned integer value of up to 14 bits, that encodes:
— When the invert bit is 0, the number of consecutive elements starting from element O that are TRUE,
with the remaining elements being FALSE.
— When the invert bit is 1, the number of consecutive elements starting from element O that are FALSE,
with the remaining elements being TRUE.
* A variable-width element size field of up to 4 bits, where the number of trailing zeroes encodes 1.5z, log, of
the element size in bytes, or an all-FALSE predicate if all 4 bits are zero.

[15] [14:(LSZ+1)] [LSZ:0]

Invert Element count Element size Meaning

X P0.0.0.0.0.0.0.0.0.0.00.04 1 Byte elements, count in [14:1]

X D'0:0:0:0:0:0:0'0:0:0:0.0¢ 10 Halfword elements, count in [14:2]

X XXXXXKXKXKXK 100 Word elements, count in [14:3]

X XXXKXKXKKKK 1000 Doubleword elements, count in [14:4]

X D10/010:0:0:0:0:0:0:0:4 0000 All-FALSE predicate (any element size)

The canonical all-TRUE predicate-as-counter encoding has an element count of zero, with the invert bit set to 1
and a nonzero element size field determined by the generating instruction.

The canonical all-FALSE predicate-as-counter encoding has an element count of zero, with the invert bit set to 0
and an element size field set to 0b0000.

A predicate-as-counter encoding can represent a consecutive element count in the range of 0 to the maximum
number of byte elements in four vectors, minus 1. The architectural maximum vector length of 2048 bits or 256
bytes therefore requires an element count of log,(1024) = 10 bits, plus one element size bit, plus the invert bit. The
additional 4 bits in the element count field are reserved.

In assembler syntax:

* The name Pg is used for predicate-as-mask.
* The name PNg is used for predicate-as-counter.

Both Pg and PNg refer to the same predicate register.

If VL is greater than 128 bits, then an instruction which writes a predicate-as-counter encoding to a predicate
register sets bits 16 and higher of that register to 0.

If VL is greater than 128 bits, then an instruction which reads a predicate register using the predicate-as-counter
encoding ignores bits 16 and higher of that register.

An instruction uses only the least significant bits in the element count field of the predicate-as-counter register
that are required to represent the number of bytes in the current vector length times four, minus 1. The instruction
ignores the more significant bits in the element count field.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 56
Non-confidential

Chapter B2. Architectural state
B2.5. SME2 Multi-vector predication

T[TITI‘CQ

DDI0O616
B.a

For example, when VL is 512 bits there are 256 byte elements in four vectors, so the predicate-as-counter encoding
requires at most an 8-bit element count field [8:1], a 1-bit size field [0], and the invert bit [15]. Therefore, when VL
is 512 bits, an instruction uses bits [15] and [8:0] from the predicate-as-counter register and ignores bits [14:9]
and [63:16].

The SME2 WHILE instructions generate a predicate-as-counter encoding. These instructions have an operand that
indicates the number of vectors (2 or 4) to be controlled by this predicate, which determines:

* The maximum value that can be stored in the count.
* The number of elements that are considered Active when computing the Any Active element and Last Active
element SVE condition flags.

A canonical all-TRUE encoding is generated when the number of TRUE elements is equal to or exceeds the limit
of the number of elements in a vector times the number of vectors.

The canonical all-FALSE encoding is generated when the number of TRUE elements is zero.
The SME2 PTRUE instruction generates a canonical all-TRUE predicate-as-counter encoding.
The SVE PFALSE instruction generates the canonical all-FALSE predicate-as-counter encoding.

The SME2 PEXT instruction converts a predicate-as-counter encoding into a predicate-as-mask encoding. Since a
predicate-as-counter encoding allows more predicate elements than can be represented in a predicate-as-mask
encoding, this instruction takes an operand to extract distinct portions of a wider mask corresponding to a
predicate-as-counter encoding.

The SME2 CNTP instruction converts a predicate-as-counter encoding into a total Active element count value that
is placed in a general-purpose register.

CNTP has an operand that indicates the limit of the number of elements to be counted. The limit corresponds to
the total number of elements in either 2 or 4 vectors.

Predicated SME2 multi-vector instructions interpret the value in their Governing predicate register using the
predicate-as-counter encoding to determine the number and size of consecutive Active elements. When the
element size of the instruction operation is different from the element size in the predicate-as-counter encoding, the
number of Active elements of the instruction operation is also different from the number of predicate-as-counter
Active elements.

See also:

* CNTP.

* PEXT (predicate).
* PEXT (predicate pair).
* PFALSE.

* PTRUE.

* WHILEGE.

* WHILEGT.

* WHILEHIL.

* WHILEHS.

* WHILELE.

* WHILELO.

* WHILELS.

* WHILELT.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 57
Non-confidential

Chapter B2. Architectural state
B2.6. SME2 Lookup table

B2.6 SME2 Lookup table

Dxpuzmy When SME2 is implemented, a PE has a 512-bit architectural register Z70 to support the lookup table feature.

Dwpagc The ZT0 register holds 8-bit, 16-bit, or 32-bit lookup table elements that are stored in the least significant bits of
32-bit table entries. The lowest numbered 32 bits in the register hold table entry 0.

Rooxws The lookup table in the ZT0 register can be accessed using fully packed 2-bit or 4-bit indices from a numbered
portion of one source Z vector register.

Isrrac When the lookup table Z70 is addressed by 2-bit indices, four different table elements (0-3) of a given element size
can be accessed. When the lookup table Z70 is addressed by 4-bit indices, 16 different table elements (0-15) of a
given element size can be accessed.

Rokyra The indexed 8-bit, 16-bit, or 32-bit table elements are read from the Z70 register and packed into consecutive
elements of an SVE Z vector or Z multi-vector operand.

Tuorsr The validity and accessibility of the ZT0 register are enabled by psTATE.za. For more information, see B1.2
Process state and B1.2.2 PSTATE.ZA.

See also:

e Cl1.1.2 Traps and exceptions.
* C14.8SVCR.

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 58
B.a Non-confidential

Chapter B3
Floating-point behaviors

B3.1 Overview

SME modifies some of the A-profile floating-point behaviors when a PE is in Streaming SVE mode, and introduces
an rpcr control which extends BFloat16 dot product calculations to support a wider range of numeric behaviors.

See also:

¢ FPCR.
e B1.2 Process state.

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 59
B.a Non-confidential

Chapter B3. Floating-point behaviors
B3.2. Supported floating-point data types

B3.2 Supported floating-point data types

Ryscuz The following BFloat16 instructions operate on the BFloat16 and the IEEE 754-2008 Single-precision floating-point
data types, as defined respectively in sections BFloat16 floating-point format and Single-precision floating-point
format of Arm® Architecture Reference Manual for A-profile architecture [1]:

* The SME rruropa and BrMops floating-point instructions defined in D1.1 SME and SME?2 data-processing
instructions.

e The SME2 multi-vector BFCVT, BFCVTN, BFDOT, BFMLAL, BFMLSL, and BrvDoT floating-point instructions
defined in D1.1 SME and SME?2 data-processing instructions.

* The SVE2 BrursiB and BFMLSLT floating-point instructions that are introduced by SME?2 and defined in
D1.2 SVE2 data-processing instructions.

Reypsu The floating-point instructions defined in Chapter D1 SME instructions operate on the IEEE 754-2008 floating-point
data types as defined in the following Arm® Architecture Reference Manual for A-profile architecture [1] sections:

* Half-precision floating-point formats (but not the Arm alternative half-precision format).
e Single-precision floating-point format.
* Double-precision floating-point format.

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 60
B.a Non-confidential

Chapter B3. Floating-point behaviors
B3.3. BFloat16 behaviors

B3.3 BFloat16 behaviors

B3.3.1

B3.3.2

Rarup

Rusrop

R,H\J(}I‘J

B3.3.3

lw "JMJ

Rrokoz

DDI0O616
B.a

If FEAT_EBF16 is implemented, the Extended BFloat16 behaviors can be enabled for the BFloat16 instructions.
This section describes how the BFloat16 instruction behaviors are changed by FEAT_EBF16.

When 1p_an647zFRO_EL1.BF16 and ID_AA64ISAR1_EL1.BF16 have the value onoo10, the PE implements
FEAT_EBF16 and supports the Fpcr.EBF control.

If FEAT_EBF16 is implemented, then:

* FEAT EBF16 is enabled when Fpcr.EBF is 1.
* FEAT EBF16 is not enabled when rpcr.EBF is 0.

Unless stated otherwise, the rules in this section describe the behaviors of the following instructions:

e The SME srmopa and BFMOPS instructions.
e The SME2 BrpoT and BFVDOT instructions.
¢ The Advanced SIMD and SVE BrpoT and BFMMLA instructions.

Common BFloat16 behaviors

The Common BFloat16 behaviors are the behaviors currently defined in Arm® Architecture Reference Manual for
A-profile architecture [1] which are not changed by the optional Fpcr.EBF control.

The instructions specified in Dyypsg that detect exceptional floating-point conditions produce the expected
single-precision default result but do not modify the cumulative floating-point exception flag bits,
FPSR. {IDC, IXC,UFC, OFC, DZC, IOC}.

The instructions specified in Dyiypsg generate default NaN values, behaving as if Fpcr.pn has an Effective value
of 1.

See also:

* FpsR, Floating-point Status Register in Arm® Architecture Reference Manual for A-profile architecture [1].
* FPCR.

Standard BFloat16 behaviors

The Standard BFloat16 behaviors are the behaviors currently defined in Arm® Architecture Reference Manual for
A-profile architecture [1] which can be changed by the rpcr.EBF control provided by FEAT_EBF16.

If FEAT_EBF16 is either not implemented or not enabled, then the instructions specified in Dyypsg ignore the
FPCR.RMode control and use the rounding mode defined for BFloat16 in section Round to Odd mode of Arm®
Architecture Reference Manual for A-profile architecture [1].

If FEAT_EBF16 is either not implemented or not enabled, then the instructions specified in Dyypsg flush
denormalized inputs and outputs to zero, behaving as if rpcr.Fz has an Effective value of 1.

If FEAT_EBFI16 is either not implemented or not enabled, then the instructions specified in Dyypsg perform
unfused multiplies and additions with intermediate rounding of all products and sums.

Extended BFloat16 behaviors

The Extended BFloat16 behaviors are the behaviors that can be enabled by the rpcr.EBF control provided by
FEAT_EBF16.

If FEAT_EBF16 is implemented and enabled, then the instructions specified in Dyypsg support all four IEEE 754

rounding modes selected by the FPCR. RMode control.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 61
Non-confidential

Chapter B3. Floating-point behaviors
B3.3. BFloat16 behaviors

Ry2vpD

Rygerx

DDI0O616
B.a

If FEAT_EBF16 is implemented and enabled, then the instructions specified in Dyjypsg honor the Fpcr.Fz control.

If FEAT _EBF16 is implemented and enabled, then the instructions specified in Dyjypsg perform a fused two-way
sum-of-products for each pair of adjacent BFloat16 elements in the source vectors, without intermediate rounding
of the products, but rounding the single-precision sum before addition to the single-precision accumulator element.

If FEAT_EBF16 is implemented and enabled, then the instructions specified in Dyjypsg generate the default NaN
as intermediate sum-of-products when any of the following are true:

* Any multiplier input is a NaN.
* Any product is infinity x 0.0.
* There are infinite products with differing signs.

If FEAT_EBF16 is implemented and enabled, then the instructions specified in Dyypsg generate an intermediate
sum-of-products of the same infinity when there are infinite products all with the same sign.

When FEAT_AFP is implemented and FEAT_EBF16 is implemented and enabled, the instructions specified in
Davpsg honor the Fpcr. a1 and FPCR.FIz controls.

When FEAT_AFP is implemented and FEAT _EBF16 is implemented and enabled, the following alternate
floating-point behaviors affect the instructions specified in Dyypsg:

* When rrcr.2H is 1, the sign bit of a generated default NaN result is set to 1 instead of 0.

e When rpcr.2nis 1 and Fpcr.Fz is 1, a denormal result, detected after rounding with an unbounded exponent
has been applied, is flushed to zero.

* When rrcr.2H is 1, the Frcr.Fz control does not cause denormalized inputs to be flushed to zero.

* When rrcr.F17 is 1, all denormalized inputs are flushed to zero.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 62
Non-confidential

Chapter B3. Floating-point behaviors
B3.4. Floating-point behaviors in Streaming SVE mode

B3.4 Floating-point behaviors in Streaming SVE mode

Dpuvpam Unless stated otherwise, the rules in this section describe the behaviors of the following instructions:

* The floating-point instructions that are legal in Streaming SVE mode, and operate on half-precision,
single-precision, and double-precision input data types, placing their results in SIMD&FP registers or
SVE Z vector registers.

e The SVE BrMLALBR and BFMLALT instructions.

* The floating-point instructions introduced by SME2 that place their results in one or more SVE Z vector
registers:

— The BFCVT, BFCVTN, FCLAMP, FCVT, FCVIN, FCVTZS, FCVTZU, FMAX, FMAXNM, FMIN, FMINNM, FRINTA, FRINTM,
FRINTN, FRINTP, SCVTF, and UCVTF instructions, as defined in D1.1 SME and SME?2 data-processing
instructions.

— The BFMLSLB, BFMLSLT, FDOT, and FcLaMP instructions, as defined in D1.2 SVE2 data-processing
instructions.

RpupzL When the PE is in Streaming SVE mode, the instructions specified in Dpypgw honor the Non-streaming scalar and
SVE floating-point behaviors, as governed by the FpCR. (DN, Fz, RMode, Fz16, AH, FIz} controls.

RaTysk When the PE is in Streaming SVE mode, the instructions specified in Dpypgw that detect exceptional floating-point
conditions produce the expected default result and can update the appropriate cumulative floating-point exception
flag bits in FPSR. {IDC, IXC, UFC, OFC, DZC, IOC}.

Rpysce The floating-point behaviors followed by the rcravp instruction are identical to the behaviors followed when
executing FMaxNM and FMINNM in order.

Rrern When the PE is in Streaming SVE mode and FEAT_SME_FA64 is not implemented or not enabled at the current
Exception level, the Effective value of the rpcRr is as if all of the 1pE, IXE, UFE, OFE, DZE, and 1oE floating-point
exception trap enable controls, and the NEP element preserve control, are O for all purposes other than a direct read
or write of the register.

See also:

* PSR, Floating-point Status Register in Arm® Architecture Reference Manual for A-profile architecture [1].
¢ FPCR.

DDI0616 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 63
B.a Non-confidential

Chapter B3. Floating-point behaviors
B3.5. Floating-point behaviors targeting the ZA array

B3.5

RT"% SKG

RgbL[D

DDI0O616
B.a

Floating-point behaviors targeting the ZA array

Unless stated otherwise, the rules in this section describe the behaviors of the SME and SME2 floating-point
instructions that place their results in the ZA array, except BFMOPA, BFMOPS, BFDOT, and BFVDOT.

For the behaviors of the BFloat16 instructions, see B3.3 BFloatl6 behaviors.

The instructions specified in Dyzyvk that detect exceptional floating-point conditions produce the expected
IEEE 754 default result but do not modify any of the cumulative floating-point exception flag bits,
FPSR. {IDC, IXC, UFC, OFC,DZC, IOC}.

The instructions specified in Dytzyk generate default NaN values, behaving as if Fpcr.pn has an Effective value
of 1.

The instructions specified in Dyrzyvk support all four IEEE 754 rounding modes selected by the Fprcr.RMode
control.

The instructions specified in Dyyzyk honor the Fpcr.Fz control.

The instructions specified in Dyzyk that accumulate dot products of pairs of adjacent half-precision elements in
the source vectors into single-precision elements in the ZA array honor the rpcr.Fz16 control.

The instructions specified in Dyyzyk that multiply single elements from each source vector and accumulate their
product into the ZA array perform a fused multiply-add to each accumulator tile or multi-vector operand element
without intermediate rounding.

The instructions specified in Dyrzyvk that accumulate dot products of pairs of adjacent half-precision elements
in the source vectors into single-precision elements in the ZA array perform a fused sum-of-products without
intermediate rounding of the products, but rounding the single-precision sum before addition to the accumulator
tile or multi-vector operand element.

The instructions specified in Dytzyvk that accumulate dot products of pairs of adjacent half-precision elements
in the source vectors into single-precision elements in the ZA array generate the default NaN as intermediate
sum-of-products when any of the following are true:

* Any multiplier input is a NaN.
* Any product is infinity x 0.0.
* There are infinite products with differing signs.

The instructions specified in Dyyzyk that accumulate dot products of pairs of adjacent half-precision elements in
the source vectors into single-precision elements in the ZA array generate an intermediate sum-of-products of the
same infinity when there are infinite products all with the same sign.

When FEAT_AFP is implemented, the instructions specified in Dyrzyk honor the Fpcr.an and FPCR.F1Zz controls.

When FEAT_AFP is implemented, the following alternate floating-point behaviors affect the instructions specified
in Dyrzvk:

* When rrcr.2H is 1, the sign bit of a generated default NaN result is set to 1 instead of 0.

e When rrcr.2nis 1 and FPcr.Fz is 1, a denormal result, detected after rounding with an unbounded exponent
has been applied, is flushed to zero.

* When rrpcr.2H is 1, the Frcr.Fz control does not cause denormalized inputs to be flushed to zero.

* When rpcr.F17 is 1, all denormalized single-precision and double-precision inputs are flushed to zero.

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. 64
Non-confidential

Part C
SME System Level Programmers’ Model

Chapter C1
System management

C1.1 Overview

I,—f K7
Ipy
Tivnce
DDIo616

B.a

The SME System Management architecture provides mechanisms for system software to:

Discover the presence of SME.
Discover the capabilities of SME.
Control SME usage.

Monitor SME usage.

The architecture consists of extensions to processor mode, the Exc