
Learn the architecture - AArch64 memory
management examples
Version 1.0

Non-Confidential
Copyright © 2019 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
102416_0100_01_en



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Learn the architecture - AArch64 memory management examples

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 27 June 2019 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 30

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey


Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 30

mailto:terms@arm.com


Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Contents

Contents

1. Overview...........................................................................................................................................................7
1.1 Before you begin............................................................................................................................................ 7
1.2 Example platform............................................................................................................................................ 7
1.3 Building and running the examples............................................................................................................ 7

2. Single-level table at EL3................................................................................................................................8
2.1 Specify the location of the translation table............................................................................................8
2.2 Initialize the MAIR.......................................................................................................................................... 9
2.3 Configure the translation regime................................................................................................................ 9
2.4 Generate the translation tables................................................................................................................ 11
2.5 Understand how an entry is formed....................................................................................................... 11
2.6 Check your knowledge:.............................................................................................................................. 12
2.7 Overview of the configured virtual address space...............................................................................13
2.8 Enable the MMU..........................................................................................................................................13
2.9 The table walk...............................................................................................................................................14

3. EL3 Multiple levels of table.......................................................................................................................16
3.1 Generate the level 1 table.........................................................................................................................16
3.2 Generate the level 2 tables....................................................................................................................... 17
3.3 Overview of the configured virtual address space...............................................................................18
3.4 The table walk...............................................................................................................................................18
3.5 Check your knowledge............................................................................................................................... 19

4. EL1 Single-level table.................................................................................................................................. 20
4.1 Enter NS.EL1................................................................................................................................................. 20
4.2 Configure the MMU at EL1.......................................................................................................................22
4.3 Non-secure translation regimes................................................................................................................ 24
4.4 The table walk...............................................................................................................................................24

5. A more complicated virtual address space............................................................................................ 26
5.1 System physical address map.................................................................................................................... 26
5.2 Set the first level of translation................................................................................................................ 27
5.3 Level 1 table.................................................................................................................................................. 28

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Contents

5.4 Level 2 table.................................................................................................................................................. 29

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Overview

1. Overview
This set of examples shows how to set up the Memory Management Unit (MMU) in a bare metal
environment. The examples walk through sets of code, building on the overall explanation of the
MMU and translation process that the Memory management guide provides.

The examples are useful if you need to interact with the MMU at a low level, typically in a bare
metal environment like bring-up test code. The examples do not cover MMU usage in an operating
system.

The virtual address spaces that are constructed here are not intended to be realistic. Instead, the
examples demonstrate different ways to configure the MMU. The final example gives a more
realistic configuration for a simple bare metal system.

At the end of these examples, you will be able to write or modify a sequence to set up a simple
virtual address space.

1.1 Before you begin
This set of examples requires you to be familiar with the principles of memory translation and the
MMU controls in the processor. These subjects are covered in the Memory management guide.

The examples use A64 assembler. A basic understanding of A64 assembler helps you to follow the
descriptions of the code. For an introduction to A64 see our Armv8-A Instruction Set Architecture
guide.

1.2 Example platform
This set of examples are available as a separate download.

The examples were developed for the Base Platform model. Here are details of the physical address
maps for the Base Platform model.

To build and run the examples, you need Arm Development Studio. If you do not have a copy of
Arm Development Studio, download an evaluation copy.

1.3 Building and running the examples
The examples package includes a ReadMe.txt file. This file gives instructions for building and
running the examples. The command line arguments to launch the simulator is different for each
example. Refer to the ReadMe.txt file for more information.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 30

https://developer.arm.com/documentation/101811/latest
https://developer.arm.com/documentation/101811/latest
https://developer.arm.com/documentation/102374/latest/
https://developer.arm.com/documentation/102374/latest/
https://developer.arm.com/-/media/Files/downloads/Common-Task-Tutorials-Samples/MMU%20Examples.zip
https://developer.arm.com/docs/100964/latest/base-platform/base-memory/base-memory-map
https://developer.arm.com/docs/100964/latest/base-platform/base-memory/base-memory-map
https://developer.arm.com/tools-and-software/embedded/arm-development-studio


Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Single-level table at EL3

2. Single-level table at EL3
The first example covers the simplest scenario: A single level of translation in the EL3 translation
regime. We are going to flat map the virtual addresses. This means that the input virtual address
and output physical address are the same for all translations. The MMU is only being used to
control attributes and permissions.

In the examples package, the files are in: <example dir>\el3_stage1_l1only\

2.1 Specify the location of the translation table
The code for the example is in startup.S. Looking at this file, the MMU code starts at line 159. Here
you see the first interesting piece of code:

// Set the Base address
// ---------------------
LDR   x0, =tt_l1_base  // Get address of level 1 for TTBR0_EL3
MSR   TTBR0_EL3, x0    // Set TTBR0_EL3 (NOTE: There is no TTBR1 at EL3)

This code loads the address of the memory that is allocated for the translation table, and then
writes that address into the Translation Table Base Register (TTBR0_ELx). This register tells the
processor where the first level table is located when a table walk is required.

The symbol name indicates that the register points to a level 1 table. We see later in this section
Configure the translation regime how the starting level of translation is configured.

The memory for the table is allocated at the end of the file, as you see here:

.section TT,"ax"

.align 12

.global tt_l1_base
tt_l1_base:
.fill 4096 , 1 , 0

The code defines a sensible label (tt_l1_base) to let us refer to the allocated memory. The fill
directive then allocates a 4KB block that is pre-filled with zeros. This is useful because a value of 0
in a translation table entry means Fault. The value 0 in a descriptor.

Translation tables must be size aligned. In this example, we have a full level 1 table. With a 4KB
granule, a full level 1 table includes 512 entries. Each entry is 8 bytes. This means that the table is
4KB in size, and must start on a 4KB boundary. The align directive sets the alignment as a power
of 2. In this case, the alignment is 2^12=4096.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 30

https://developer.arm.com/-/media/Files/downloads/Common-Task-Tutorials-Samples/MMU%20Examples.zip


Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Single-level table at EL3

2.2 Initialize the MAIR
Going back to the code, let’s look at the next step, which you see here:

// Set up memory attributes
 // -------------------------
 // This equates to:
 // 0 = b01000100 = Normal, Inner/Outer Non-Cacheable
 // 1 = b11111111 = Normal, Inner/Outer WB/WA/RA
 // 2 = b00000000 = Device-nGnRnE
 MOV   x0, #0x000000000000FF44
 MSR   MAIR_EL3, x0

We learned in the AArch64 Memory model guide that the Type, either Normal or Device, is not
directly encoded with the translation table entries for stage 1 tables. Instead, the table entries
contain an index into the Memory Attribute Indirection Register (MAIR_ELx). Each 8-bit entry is set
by software to specify a different memory Type. The example populates only the first three entries
within the MAIR:

• [0] = Normal, Inner and Outer Non-cacheable

• [1] = Normal, Inner and Outer Cacheable, with write-back and read/write allocation

• [2] = Device_nGnRnE

For this simple example, these three types are enough. We do not use the other index values.

Which Type is specified in which MAIR index is important later when we create the translation
table entries.

2.3 Configure the translation regime
The next step is to configure the translation regime, as you see here:

 // Set up TCR_EL3
 // ---------------
 MOV   x0, #0x19            // T0SZ=0b011001 Limits VA space to 39 bits,
                            // translation starts @ l1
 ORR   x0, x0, #(0x1 << 8)  // IGRN0=0b01  Walks to TTBR0 are Inner WB/WA
 ORR   x0, x0, #(0x1 << 10) // OGRN0=0b01  Walks to TTBR0 are Outer WB/WA
 ORR   x0, x0, #(0x3 << 12) // SH0=0b11   Inner Shareable
                            // TBI0=0b0   Top byte not ignored
                            // TG0=0b00   4KB granule
                            // IPS=0     32-bit PA space
 MSR   TCR_EL3, x0

The Translation Control Register (TCR_ELx) configures many aspects of the translation regime,
including:

TnSZ

Controls the size of the virtual address space that is being described

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 30

https://developer.arm.com/documentation/102376/0100


Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Single-level table at EL3

TGn

Sets the granule, which is the smallest describable block, for the translation regime

IGRNn/ORGNn/SH

Specifies the cacheability and shareability that the MMU should use for table walks

TBIn

To byte ignore. Setting this bit causes the top 8 bits of the virtual address to be ignored by
the processor when performing virtual to physical translation. Allowing software to store
something else in those bits instead. In this exercise, we do not use this feature, so we leave
it disabled.

For an example that shows when the TBI feature is used, see the description of
Memory Tagging in the Providing protection for complex software guide.

The selected granule (TG0) for all the examples in this guide is 4KB. As described in the AArch64
Memory management guide, the granule determines the different page and block sizes that are
used. With a 4KB granule, the options are:

• L0 table: 512GB per entry

• L1 tables: Each table covers 512GB, 1GB per entry

• L2 tables: Each table covers 1GB, 2MB per entry

• L3 tables: Each table covers 2MB, 4KB per entry

The size of the virtual address space is configured as 64 – TnSZ. In this example, 64 – 0x19 gives
39 bits of virtual address space. This equates to 512GB (239), which means that the entire virtual
address space is covered by a single L1 table. Therefore, our starting level of translation is level 1.

The next part of the example is shown here:

 // Invalidate TLBs
 // ----------------
 TLBI  ALLE3
 DSB   SY
 ISB

The state of the Translation Lookaside Buffers (TLB) are not guaranteed at reset. Therefore, the
example invalidates the TLB before enabling the MMU. The command (TLBI ALLE3) invalidates all
cached translations for the EL3 translation regime, which is the translation regime that the example
is configuring.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 30

https://developer.arm.com/architectures/learn-the-architecture/providing-protection-for-complex-software
https://developer.arm.com/documentation/102376/0100
https://developer.arm.com/documentation/102376/0100


Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Single-level table at EL3

2.4 Generate the translation tables
The next step is to generate the tables in memory. This example creates a minimal set of entries, as
you see in the following code:

LDR   x1, =tt_l1_base              // Address of L1 table

 // [0]: 0x0000,0000 - 0x3FFF,FFFF
 LDR   x0, =TT_S1_DEVICE_nGnRnE     // Entry template
                                    // AP=0, RW
                                    // Don't need to OR in address, as it is 0
 STR   x0, [x1]
 
 // [1]: 0x4000,0000 - 0x7FFF,FFFF
 LDR   x0, =TT_S1_DEVICE_nGnRnE     // Entry template
                                    // AP=0, RW
 ORR   x0, x0, #0x40000000          // 'OR' template with base physical address
 STR   x0, [x1, #8]

 // [2]: 0x8000,0000 - 0xBFFF,FFFF (DRAM on the VE and Base Platform)
 LDR   x0, =TT_S1_NORMAL_WBWA       // Entry template
 ORR   x0, x0, #TT_S1_INNER_SHARED  // ‘OR' with inner-shareable attribute
                                    // AP=0, RW
 ORR   x0, x0, #0x80000000          // 'OR' template with base physical address

As described in the previous section Configure the translation regime, L1 is the first level of
translation in this example. With a 4K granule, this means that each entry in the table covers 1GB
of address space. The example only populates the first three entries, covering the first three 3GB of
the virtual address space.

In the previous section Specify the location of the translation table, we showed how to allocate the
memory for the translation table. A 4KB region that is prefilled with zeros was allocated with a fill
directive. A value of zero corresponds to a Fault in the translation table. Therefore, all the entries
that are not written are faulting entries.

In a real system, software would typically fill the table with zeros at run-time,
instead of relying on allocating them in the source. However, pre-allocating the
zeros can speed up some simulations or emulations.

2.5 Understand how an entry is formed
The code uses symbols that are defined as templates at the start of the file. For example,
TT_S1_NORMAL_WBWA is a template for a Normal, Write-back, Read/Write-allocate entry. The
definition of this template is shown in this code:

.equ TT_S1_NORMAL_WBWA,   0x00000000000000405`

The following diagram shows the format of a stage 1 level 1 table entry:

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Single-level table at EL3

Figure 2-1: Understand how an entry is formed diagram

Decoding the TT_S1_NORMAL_WBWA template gives:

• Indx= b01, take Type information from entry [1] in the MAIR

• NS= b0, output physical addresses are Secure

• AP= b00, address is readable and writeable

• SH= b00, Non-shareable

• AF= b1, Access Flag is pre-set. No Access Flag Fault is generated on access.

• nG= Not used at EL3

• Contig = b0, the entry is not part of a contiguous block

• PXN= b0, block is executable. This attribute is called XN at EL3.

• UXN= Not used at EL3

In the template, we see why knowing the configuration of the MAIR is important. The template
relies on MAIR having entry [1] pre-set to Normal/Cacheable.

We want the region to be Inner-shareable, not Non-shareable as defined within the template.
To fix this, the example combines the TT_S1_NORMAL_WBWA template with another template,
TT_S1_INNER_SHAREABLE. This second template sets the correct value in the SH field.

2.6 Check your knowledge:
Question: Look at the other templates defined within the example. How would you modify the
preceding example to map to a Non-secure physical address?

Answer: To map to a Non-secure Physical address requires setting the NS bit to 1. The example has
a template for this, TT_S1_NS, which could be ORed like we did with for the Shareability attribute.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Single-level table at EL3

2.7 Overview of the configured virtual address space
With this set of translation table entries, the virtual address looks like what you see in the following
diagram:

Figure 2-2: MMU virtual address space

2.8 Enable the MMU
At this point, the MMU is configured and the translation tables are created in memory. The next
step is to enable the MMU, as you see in the following code:

 // Enable MMU
 // -----------
 MOV   x0, #(1 << 0)      // M=1  Enable the stage 1 MMU
 ORR   x0, x0, #(1 << 2)  // C=1  Enable data and unified caches
 ORR   x0, x0, #(1 << 12) // I=1  Enable instruction fetches to allocate
                         //    into unified caches
                         // A=0  Strict alignment checking disabled
                         // SA=0 Stack alignment checking disabled
                         // WXN=0 Write permission does not imply XN
                         // EE=0 EL3 data accesses are little endian
 MSR   SCTLR_EL3, x0
 ISB

The example sets the M, C, and I bits in the System Control Register (SCTLR_ELx). Setting these
bits enables the MMU and caches. The ISB after the write to the SCTLR ensures that the effect of
enabling the MMU is visible to the next instruction.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Single-level table at EL3

2.9 The table walk
The examples in this exercise are developed to run on the Base Platform Fixed Virtual Platform
(FVP). The Base Platform FVP is a model that is provided by Arm. FVP models trace the simulation,
and provide detailed information on the execution of the simulated processor. The resulting trace is
in the TARMAC format. Here is more information on TARMAC.

Tracing the entire example produces hundreds of lines of trace data. Instead, let’s begin the trace at
the point where the MMU is enabled, as you see here:

75 clk IT (75) 8000012c d51e1000 O EL3h_s : MSR   SCTLR_EL3,x0
75 clk R SCTLR_EL3 00000000:00001005
75 clk CACHE FVP_Base_AEMv8A_AEMv8A.cluster0.cpu0.l1dcache LINE 0100
 ALLOC 0x000080002000
75 clk CACHE FVP_Base_AEMv8A_AEMv8A.cluster0.l2_cache LINE 0800
 ALLOC 0x000080002000
75 clk TTW ITLB LPAE 1:1 000080002010 0000000080000705 : BLOCK ATTRIDX=1 NS=0 AP=0
 SH=3 AF=1 nG=0 16E=0 PXN=0 XN=0 ADDR=0x0000000080000000
75 clk TLB FILL FVP_Base_AEMv8A_AEMv8A.cluster0.cpu0.UTLB 1G 0x80000000 EL3_s,
 nG asid=0:0x0080000000 Normal InnerShareable Inner=WriteBackWriteAllocate
 Outer=WriteBackWriteAllocate xn=0 pxn=0 ContiguousHint=0
75 clk CACHE FVP_Base_AEMv8A_AEMv8A.cluster0.cpu0.l1icache LINE 0008
 ALLOC 0x000080000100
75 clk CACHE FVP_Base_AEMv8A_AEMv8A.cluster0.l2_cache LINE 0040
 ALLOC 0x000080000100
76 clk IT (76) 80000130 d5033fdf O EL3h_s : ISB

The trace is dense, so let’s look at it one line at a time. This code shows the first section:

75 clk IT (75) 8000012c d51e1000 O EL3h_s : MSR   SCTLR_EL3,x0
75 clk R SCTLR_EL3 00000000:00001005

This code shows that the execution of the MSR, which enables the MMU. 0x8000_012C, is the
address of the instruction and 0xD51E_1000 is the opcode. The second line shows the value the
instruction wrote to the register.

By default, the trace shows the value that is written to the register, not the new
value of the register. In many cases, but not all cases, the new value is the written
value. For example, if the register includes read-only fields, the new value is not the
written value.

Because this instruction enabled the MMU, the processor needs to implement a table walk for the
page containing the next instruction. First, the trace shows this code:

75 clk CACHE FVP_Base_AEMv8A_AEMv8A.cluster0.cpu0.l1dcache LINE 0100
 ALLOC 0x000080002000
75 clk CACHE FVP_Base_AEMv8A_AEMv8A.cluster0.l2_cache LINE 0800
 ALLOC 0x000080002000

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 30

https://developer.arm.com/documentation/dui0845/latest


Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

Single-level table at EL3

When we configured TCR_EL3, we configured the MMU to use cacheable accesses for the
table walk. The preceding two lines show the cache line that contains the required table entry
being fetched into the cache. Once the line is returned from the memory, the descriptor can be
interpreted by the MMU. This interpretation is shown in the next line of code, as you can see here:

75 clk TTW ITLB LPAE 1:1 000080002010 0000000080000705 : BLOCK ATTRIDX=1 NS=0 AP=0
 SH=3 AF=1 nG=0 16E=0 PXN=0 XN=0 ADDR=0x0000000080000000

The preceding trace entry shows the MMU processing the table entry. This entry shows us the
following things:

• TTW= Table walk

• ITLB= Table walk for the instruction interface. The I is for instruction.

• 1:1= Stage 1, level 1 table entry

• 0x80002010= Address the entry was fetched from

• 0x0000000080000705= Entry returned from memory system

• BLOCK= The entry is a Block entry

• ATTRIDX=1= Uses MAIR entry 1.

• NS= Output physical address is Secure

• AP= Access permission bits

• SH= Shareability bits

Finally, the trace shows the TLB record that is being generated, as you see in this code:

75 clk TLB FILL FVP_Base_AEMv8A_AEMv8A.cluster0.cpu0.UTLB 1G 0x80000000 EL3_s,
 nG asid=0:0x0080000000 Normal InnerShareable Inner=WriteBackWriteAllocate
 Outer=WriteBackWriteAllocate xn=0 pxn=0 ContiguousHint=0

The trace shows that the TLB entry is created as follows:

• 1GB block

• PA:0x8000_0000

• VA:0x8000_0000, with ASID 0, although ASIDs are not used at EL3

• Translation regime: EL3

• Normal, Inner Shareable, Write-Back, Write-Allocate

• Execute-able

Check your knowledge: Look at the preceding code and find where all the settings that are shown
in the trace come from.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

EL3 Multiple levels of table

3. EL3 Multiple levels of table
This section of the guide walks through an example with two levels of translation. The single-
level table at EL3 example used a single level 1 table. This means that all mappings were using
1GB blocks. For a simple system, this kind of course grain mapping is appropriate. However, many
systems need more fine grain mappings, which is achieved by using multiple levels of tables.

In the examples package, the files are in:

<example dir>\el3_stage1_l1andl2\

3.1 Generate the level 1 table
The first steps of this example are the same as the single-level table at EL3 example. As in the
single-level table at EL3 example, the MAIR is populated with the three Types that the example
uses. The TCR is configured to select a 4KB granule and a starting level of translation is L1.

This example differs from the single-level table at EL3 example at the point of table generation. The
following code generates the L1 table:

//
 // Generate L1 table
 //
 
 LDR   x1, =tt_l1_base           // Address of L1 table

 // [0]: 0x0000,0000 - 0x3FFF,FFFF
 LDR   x0, =TT_S1_DEVICE_nGnRnE  // Entry template
                                 // AP=0, RW
                                 // Don't need to OR in address, as it is 0
 STR   x0, [x1]
 
 // [1]: 0x4000,0000 - 0x7FFF,FFFF
 LDR   x0, =TT_S1_DEVICE_nGnRnE  // Entry template
                                 // AP=0, RW
 ORR   x0, x0, #0x40000000       // 'OR' template with base physical address
 STR   x0, [x1, #8]

 // [2]: 0x8000,0000 - 0xBFFF,FFFF (DRAM on the VE and Base Platform)
 LDR   x2, =tt_l2_base           // Get address of L2 table
 LDR   x0, =TT_S1_TABLE          // Entry template for pointer to next level table
 ORR   x0, x0, x2                // Combine template with L2 table Base address
 STR   x0, [x1, #16]             // Write template into entry table[2]

As in the single-level table at EL3 example, this example uses templates that are defined at the
start of the file to create each entry. The first two entries are the same as the single-level table at
EL3 example. These entries create two 1GB block mappings with Device type.

The third entry is different. Instead of mapping a 1GB block, this entry points to a level 2 table. This
level 2 table divides the 1GB block in to 512 2MB blocks. To do this, the example uses another
template, TT_S1_TABLE.

Where does the address for the level 2 table (tt_l2_base) come from?

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 30

https://developer.arm.com/-/media/Files/downloads/Common-Task-Tutorials-Samples/MMU%20Examples.zip


Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

EL3 Multiple levels of table

Like the level 1 table, the example uses a fill directive to allocate a 4KB region of memory to hold
the table. Here is the code that allocates the level 1 and 2 tables:

 .align 12 

.global tt_l1_base
tt_l1_base:
 .fill 4096 , 1 , 0

 .global tt_l2_base
tt_l2_base:
 .fill 4096 , 1 , 0

The example uses the fill directive to pre-fill the memory allocated for the tables with zeros. A
value of zeros gives a fault. In a real system, code writes these zeros at run-time. However, pre-
filling the zeros is useful for test code, to reduce simulation or emulation time.

The level 2 table also needs to be size aligned, which is 4KB aligned in this example.
In this example, the table is aligned because it immediately follows another size-
aligned 4KB structure.

3.2 Generate the level 2 tables
The following code generates the level table 2:

 //
 // Generate L2 table
 //
 …
 LDR   x0, =tt_l2_base             // Address of first L2 table

 // The L2 table covers the address range:
 // 0x8000_0000 - 0xBFFF_FFFF
 //
 // This example only populates entry 0, which covers:
 // 0x8000_0000 - 0x801F_FFFF

 LDR   x1, =tt_l2_base             // Address of L1 table

 LDR   x0, =TT_S1_NORMAL_WBWA      // Entry template
 ORR   x0, x0, #TT_S1_INNER_SHARED // 'OR' with inner-shareable attribute
                                   // AP=0, RW
 ORR   x0, x0, #0x80000000         // 'OR' template with base physical address
 STR   x0, [x1]

 DSB   SY

The level 2 table in this example covers the virtual address range 0x8000_0000 to
0xBFFF_FFFF, which is the third gigabyte of the virtual address space. The table contains 512
entries, and each entry describes 2MB of virtual address space.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

EL3 Multiple levels of table

The example populates the first entry of the level 2 table with an entry for a Normal/Cacheable
block. This entry corresponds to the first 2MB of address space that is covered by the L2 table,
0x8000_0000 to 0x801F_FFFF.

3.3 Overview of the configured virtual address space
The result of the translation tables is shown in the following diagram:

Figure 3-1: Overview of the configured virtual address space

1GB

2MB

1GB

2MB

Blocks are not drawn to scale

Normal

Device

Device

Memory

Peripherals

Peripherals

Virtual Address Space Physical Address Space

Fault

Fault

Table

Block

Block

Fault

Fault

Block

Block

Block

Level 1 
Translation Table

Level 2 
Translation Table

3.4 The table walk
Like in the single-level table at EL3 example, let’s look at the TARMAC trace showing the first table
walk after the MMU is enabled:

81 clk TTW ITLB LPAE 1:1 000080002010 0000000080003003 : TABLE PXN=0 XN=0 AP=0 NS=0
 ADDR=0x0000000080003000
81 clk TTW ITLB LPAE 1:2 000080003000 0000000080000705 : BLOCK ATTRIDX=1 NS=0 AP=0
 SH=3 AF=1 nG=0 16E=0 PXN=0 XN=0 ADDR=0x0000000080000000
81 clk TLB FILL FVP_Base_AEMv8A_AEMv8A.cluster0.cpu0.UTLB 2M 0x80000000 EL3_s,
 nG asid=0:0x0080000000 Normal InnerShareable Inner=WriteBackWriteAllocate
 Outer=WriteBackWriteAllocate xn=0 pxn=0 ContiguousHint=0

In this example, unlike the single-level table at EL3 example, there are now two ITLB lines. The first
reports 1:1, which refers to a stage 1 table entry. The trace shows that level 1 table entry fetched
from memory points to a level 2 table.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

EL3 Multiple levels of table

The next line in the trace reports 1:2, which refers to a stage 1 level 2 table entry. This is entry is a
Block descriptor, like we saw in the single-level table at EL3 example.

The final line shows the TLB entry being recorded. Because the translation came from a level 2
block, this time the size of the entry is recorded as 2MB.

3.5 Check your knowledge
Question: This example shows a stage 1 translation, with two levels of table. What would you
expect to see the trace for a stage 2 level 3 entry?

Answer: 2:3

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

EL1 Single-level table

4. EL1 Single-level table
In this section of the guide, we recreate the single-level table at EL3 example, this time running at
EL1 in Non-secure state. The single-level table at EL3 and multiple-level table examples run at EL3.

In the examples package, the files are in \el1_stage1\

4.1 Enter NS.EL1
The Processing Element (PE) always comes out of reset in the highest implemented Exception level.
For our test system, the highest implemented Exception level is EL3. The example therefore needs
to include code to switch from EL3 to EL1. Before changing the Exception level, we need to carry
out some configuration at EL3.

The first register the example configures is the Secure Configuration Register (SCR_EL3), as you see
in the following code:

 // Configure SCR_EL3
 // ------------------
 MOV   x0, #1              // NS=1
 ORR   x0, x0, #(1 << 1)   // IRQ=1 IRQs routed to EL3
 ORR   x0, x0, #(1 << 2)   // FIQ=1 FIQs routed to EL3
 ORR   x0, x0, #(1 << 3)   // EA=1  SError routed to EL3
 ORR   x0, x0, #(1 << 8)   // HCE=1 HVC instructions are enabled
 ORR   x0, x0, #(1 << 10)  // RW=1  Next EL down uses AArch64
 ORR   x0, x0, #(1 << 11)  // ST=1  Secure EL1 can access timers
 MSR   SCR_EL3, x0 

There are many settings in SCR_EL3. Two settings are important for this example:

NS

Controls whether lower Exception levels are Secure or Non-secure

RW

Controls whether the next Exception level uses AArch64 or AArch32 The example sets both bits.
This means that lower Exception levels are Non-secure and that EL2 uses AArch64.

We also need to configure the Hypervisor Configuration Register (HCR_EL2). In a real software
stack, code running in EL2 would do this. However, to keep the example simple, these registers are
programmed from EL3 instead. The code to configure HCR_EL2 is shown here:

 // Configure HCR_EL2
 // ------------------
 ORR   w0, wzr, #(1 << 3)       // FMO=1
 ORR   x0, x0, #(1 << 4)        // IMO=1
 ORR   x0, x0, #(1 << 31)       // RW=1     NS.EL1 is AArch64
                                // TGE=0     Entry to NS.EL1 is possible
                                // VM=0     Stage 2 MMU disabled
 MSR   HCR_EL2, x0

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 30

https://developer.arm.com/-/media/Files/downloads/Common-Task-Tutorials-Samples/MMU%20Examples.zip


Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

EL1 Single-level table

Like with the SCR_EL3, HCR_EL2 contains many controls. For this example, like with the single-level
table at EL3 and multiple-level table examples, we are most interested in two settings:

RW

Controls whether EL1 uses AArch64 or AArch32

VM

Enables/disables stage 2 translation at EL1 and EL0

The example disables stage 2 and sets EL1 to use AArch64.

There are other settings in EL2 registers that we need to configure before switching to EL2. These
are shown in the following code:

 // Set up VMPIDR_EL2/VPIDR_EL1
 // ---------------------------
 MRS   x0, MIDR_EL1
 MSR   VPIDR_EL2, x0
 MRS   x0, MPIDR_EL1
 MSR   VMPIDR_EL2, x0
 
 
 // Set VMID
 // ---------
 // Although we are not using stage 2 translation, NS.EL1 still cares
 // about the VMID
 MSR   VTTBR_EL2, xzr

 // Set SCTLRs for EL1/2 to safe values
 // ------------------------------------
 MSR   SCTLR_EL2, xzr
 MSR   SCTLR_EL1, xzr

Reads of the MPIDR_EL1 and MIDR_EL2 registers at NS.EL1 return virtual values. The registers which
hold these virtual values, VMPIDR_EL2 and VPIDR_EL2, do not have defined reset values. Software
should initialize these registers before entering EL1 for the first time. For this example, we are not
using virtualization. This means that we can copy the physical values.

Even though stage 2 is disabled, EL1 still uses a Virtual Machine Identifier (VMID). It is good
practice to set this to a known value, before entering EL1. This is particularly important when
working in a multi-core environment. All the PEs that run within the same NS.EL0/1 translation
regime need to use the same VMID.

Finally, there are separate System Control Registers (SCTLR_ELx) for EL3, EL2, and EL1. Only the
SCTLR_ELx for the highest implemented Exception level has a known reset value. Software must set
the SCTLR_ELx registers for lower Exception levels to known or safe values before entering those
Exception levels. This example sets them to 0, which ensures that the MMU for that Exception
level is disabled.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

EL1 Single-level table

Now that the minimum configuration is performed, control pass to NS.EL1, as you see in the
following code:

 ADR   x0, el1_entry
 MSR   ELR_EL3, x0

 LDR   x0, =AArch64_EL1_SP1
 MSR   spsr_el3, x0
 
 ERET

// ------------------------------------------------------------
// Enter EL1
// ------------------------------------------------------------

el1_entry:

The only way to move to a lower Exception level is to perform an exception return. Normally, the
exception return information is generated as part of taking an exception.. Because this is the part
of boot the example instead creates the required information and populates the registers. The
example sets the Saved Processor State Register (SPSR_ELx) to indicate EL1 using AArch64, and the
Exception Link Register (ELR_ELx) to point to the start of the EL1 code. The ERET instruction then
performs the Exception return.

4.2 Configure the MMU at EL1
Now that execution has entered EL1, the next step is to configure the MMU. The steps are the
same as in the first example, but this time we use _EL1 registers instead of _EL3 registers. For
examples, let’s look at the following code:

 // Set the Base address
 // ---------------------
 LDR   x0, =tt_l1_base
 MSR   TTBR0_EL1, x0          

 // Set up memory attributes
 // -------------------------
 // This equates to:
 // 0 = b01000100 = Normal, Inner/Outer Non-Cacheable
 // 1 = b11111111 = Normal, Inner/Outer WB/WA/RA
 // 2 = b00000000 = Device-nGnRnE
 MOV   x0, #0x000000000000FF44
 MSR   MAIR_EL1, x0

Unlike EL3, in EL1/0 there are two virtual address regions: one at the bottom of the address space
and another at the top of the address space. This is illustrated in the following diagram:

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

EL1 Single-level table

Figure 4-1: EL1 configuration diagram

By convention, the lower address region is called User space and the upper region is called
Kernel space. However, this is only a convention and you will not see these names used in the
Architecture Reference Manual.

For this example, we only configure the lower region. We disable the upper region, using a control
in the Translation Control Register (TCR_ELx). The code for this is shown here:

 // Set up TCR_EL1
 // ---------------
 MOV   x0, #0x19             // T0SZ=0b011001 Limits VA space to 39 bits
 ORR   x0, x0, #(0x1 << 8)   // IGRN0=0b01  Walks to TTBR0 are Inner WB/WA
 ORR   x0, x0, #(0x1 << 10)  // OGRN0=0b01  Walks to TTBR0 are Outer WB/WA
 ORR   x0, x0, #(0x3 << 12)  // SH0=0b11   Inner Shareable
 ORR   x0, x0, #(0x1 << 23)  // EPD1=0b1   Disable table walks from TTBR1
                             // TBI0=0b0
                             // TG0=0b00   4KB granule for TTBR0
                             // A1=0     TTBR0 contains the ASID
                             // AS=0     8-bit ASID
                             // IPS=0     32-bit IPA space
 MSR   TCR_EL1, x0

The EPDn bits enable or disable walks from the lower region (EPD0) and the upper region (EPD1).
The example only configures the lower region (EPD1==0). Walks to the upper region are disabled
(EPD1==1). Because table walks to the upper region are disabled, the example does not need to
provide a table pointer in TTBR1_EL1.

The code to generate the translation tables is unchanged from the single-level table at EL3
example.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

EL1 Single-level table

4.3 Non-secure translation regimes
The example in this section of the guide runs in NS.EL1. The translation tables in this example are
identical to the translation tables at EL3 in the single-level table at EL3 example. Does this mean
that the resulting mappings are the same?

The answer is no. There is an important difference between Secure and Non-secure translation
regimes. A Secure translation regime maps virtual addresses to Secure or Non-secure physical
addresses that are controlled by the NS bit in the table entries. A Non-secure translation regime
only maps to Non-secure physical addresses. The NS bit in the table entries is ignored.

In the single-level table at EL3 example and this example, the NS bit in the table entries is b0
(Secure). At EL3, this causes the outputted address to be Secure. In NS.EL1 the NS bit is ignored,
and the outputted address is Non-secure.

On a real system, it is very unlikely that you could run both these two examples,
because the memory at physical address 0x8000_0000 would either be Secure
or Non-secure. The memory system of a real system would not allow both kinds
of access to the memory. However, the FVP model that is used for these examples
allows us to control which types of accesses are permitted to DRAM using model
parameters.

4.4 The table walk
Tracing this example gives a very similar result to the single-level table at EL3 example, as you see
in the following code:

93 clk IT (93) 80000174 d5181000 O EL1h_n : MSR   SCTLR_EL1,x0
93 clk R SCTLR_EL1 00000000:00001005
93 clk CACHE FVP_Base_AEMv8A_AEMv8A.cluster0.cpu0.l1dcache LINE 0100
 ALLOC 0x000080002000_NS
93 clk CACHE FVP_Base_AEMv8A_AEMv8A.cluster0.l2_cache LINE 0800
 ALLOC 0x000080002000_NS
93 clk TTW ITLB LPAE 1:1 000080002010 0000000080000705 : BLOCK ATTRIDX=1 NS=0 AP=0
 SH=3 AF=1 nG=0 16E=0 PXN=0 XN=0 ADDR=0x0000000080000000
93 clk TLB FILL FVP_Base_AEMv8A_AEMv8A.cluster0.cpu0.UTLB 1G 0x80000000_NS EL1_n
 vmid=0:0x0080000000_NS Normal InnerShareable Inner=WriteBackWriteAllocate
 Outer=WriteBackWriteAllocate xn=0 pxn=0 ContiguousHint=0
93 clk CACHE FVP_Base_AEMv8A_AEMv8A.cluster0.cpu0.l1icache LINE 000a
 ALLOC 0x000080000140_NS
93 clk CACHE FVP_Base_AEMv8A_AEMv8A.cluster0.l2_cache LINE 0050
 ALLOC 0x000080000140_NS

There are, however, some important differences between the single-level table at EL3 example and
this example, starting with the MSR, as this code shows:

93 clk IT (93) 80000174 d5181000 O EL1h_n : MSR   SCTLR_EL1,x0

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

EL1 Single-level table

TARMAC records the Exception level and Security state that instructions were executed in. In the
previous examples, this was EL3h_s, but this example reports EL1h_n. This means that EL1 is in
Non-secure state.

The created TLB entry is also different, as this code shows:

93 clk TLB FILL FVP_Base_AEMv8A_AEMv8A.cluster0.cpu0.UTLB 1G 0x80000000_NS EL1_n
 vmid=0:0x0080000000_NS Normal InnerShareable Inner=WriteBackWriteAllocate
 Outer=WriteBackWriteAllocate xn=0 pxn=0 ContiguousHint=0

The trace shows the TLB entry recording the translation regime (EL1_n). The trace also shows
the VMID being stored (vmid=0). As explained in Enter NS.EL1, even when stage 2 translation is
disabled, the VMID is still recorded for the Non-secure EL1 translation regime.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

A more complicated virtual address space

5. A more complicated virtual address space
The example in this section shows a more complex set of mappings. Like with the single-level table
at EL3 and multiple level table examples, this example runs at EL3.

So far, the examples that we have seen map a small number of blocks. For a simple test image,
this might be enough. However, in a larger system we want to map more of the resources of the
systems, and map these resources at a finer grain.

In the examples package, the files are in:

<example dir>\el3_stage1_full_mem_map\.

5.1 System physical address map
The example targets the Base Platform Model from Arm. The address map of the Base Platform
model it typical of a modern Arm-based SoC and is summarized in the following table:

Physical address Component Secure or Non-secure Attributes that the example assigns

0x0000_0000 to 0x03FF_FFFF Trusted ROM Secure Normal, Cacheable, Shareable, Read-only, Executable

0x0400_0000 to 0x05FF_FFFF – – Fault

0x0600_0000 to 0x07FF_FFFF Trusted DRAM Secure Normal, Cacheable, Shareable, Read/Write, Executable

0x0800_0000 to 0x0FFF_FFFF Flash Non-secure Normal, Cacheable, Shareable, Read-only, XN*

0x1000_0000 to 0x19FF_FFFF – – Fault

0x1A00_0000 to 0x7FFF_FFFF Peripherals Secure Device-nGnRnE, Read/Write, XN

0x8000_0000 to 0xFFFF_FFFF DRAM Non-secure** Normal, Cacheable, Shareable, Read/Write, XN*

These are Non-secure memories. This example runs in EL3, which is part of Secure
state. Typically, we want to prevent execution from Non-secure locations while in
Secure state. This can also be prevented using SCR_EL3.CIF.

The FVP model that we are using can be configured so that the DRAM is either
Non-secure, or both Secure and Non-secure. In the previous examples, we
configured the model to allow both. In this example, we configure the model to
allow only Non-secure accesses, which is a more realistic configuration.

The following diagram shows what the preceding memory map might look like as a set of MMU
mappings:

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 30

https://developer.arm.com/-/media/Files/downloads/Common-Task-Tutorials-Samples/MMU%20Examples.zip


Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

A more complicated virtual address space

Figure 5-1: Memory map diagram

5.2 Set the first level of translation
The address map that we just described is 4GB (0x0..0xFFFF_FFFF), or 32-bits, in total. As
described in Configure the translation regime, the size of the virtual address space is specified as
64-T0SZ. The example sets TCR_EL3.T0SZ to 32, to give a 32-bit virtual address space. This is shown
in the following code:

  // Set up TCR_EL3
  // ---------------
  MOV      x0, #32                // T0SZ=0b011001 Limits VA space to 32 bits
  ORR      x0, x0, #(0x1 << 8)    // IGRN0=0b01    Walks to TTBR0 are Inner WB/WA
  ORR      x0, x0, #(0x1 << 10)   // OGRN0=0b01    Walks to TTBR0 are Outer WB/WA
  ORR      x0, x0, #(0x3 << 12)   // SH0=0b11      Inner Shareable
                                  // TBI0=0b0      Top byte not ignored
                                  // TG0=0b00      4KB granule
                                  // IPS=0         32-bit PA space
  MSR      TCR_EL3, x0

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

A more complicated virtual address space

With a 4KB granule, 4GB is too big for a single level 2 table. Remember that each level 2 table
covers 1GB. Therefore, the starting level of translation is level 1. Each entry in the level 1 table
covers 1GB of virtual address space. Because we have configured a 4GB address space, the level 1
table in this example only requires four entries. We do not need to provide memory, or values, for
the other entries.

In the previous examples, we always had a full (512 entry) level 1 table. A translation table must
be size aligned. In the previous examples, this meant that the table had to 4KB aligned, with 512
entries * 8 bytes per entry. In this example, the alignment requirement is only 32-byte aligned, with
4 entries * 8 bytes per entry. However, for simplicity the example still allocates a 4KB aligned table.

The code below shows the reserving of memory for the level 1 and level 2 tables:

.align 12

  .global tt_l1_base
tt_l1_base:
  .fill 32 , 1 , 0

  .align 12
  .global tt_l2_base
tt_l2_base:
  .fill 4096 , 1 , 0

5.3 Level 1 table
Here is the level 1 table that is generated for the example:

  //
  // Generate L1 table
  //
  
  LDR      x1, =tt_l1_base             // Address of L1 table

  // [0]: 0x0000,0000 - 0x3FFF,FFFF
  LDR      x2, =tt_l2_base             // Get address of L2 table
  LDR      x0, =TT_S1_TABLE            // Entry template for pointer to next level
 table
  ORR      x0, x0, x2                  // Combine template with L2 table Base
 address
  STR      x0, [x1]
  
  // [1]: 0x4000,0000 - 0x7FFF,FFFF
  LDR      x0, =TT_S1_DEVICE_nGnRnE    // Entry template
                                       // AP=0, RW
  ORR      x0, x0, #0x40000000         // 'OR' template with base physical address
  STR      x0, [x1, #8]

  // [2]: 0x8000,0000 - 0xBFFF,FFFF (DRAM on the VE and Base Platform)
  LDR      x0, =TT_S1_NORMAL_WBWA      // Entry template
  ORR      x0, x0, #TT_S1_INNER_SHARED // 'OR' with inner-shareable attribute
  ORR      x0, x0, #TT_S1_NS           // 'OR' with NS==1
  ORR      x0, x0, #TT_S1_PXN          // 'OR' with XN==1
                                       // AP=0, RW
  ORR      x0, x0, #0x80000000         // 'OR' template with base physical address
  STR      x0, [x1, #16]
  

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

A more complicated virtual address space

  // [3]: 0xC000,0000 - 0xFFFF,FFFF (DRAM on the VE and Base Platform)
  LDR      x0, =TT_S1_NORMAL_WBWA      // Entry template
  ORR      x0, x0, #TT_S1_INNER_SHARED // 'OR' with inner-shareable attribute
  ORR      x0, x0, #TT_S1_NS           // 'OR' with NS==1
  ORR      x0, x0, #TT_S1_PXN          // 'OR' with XN==1
                                       // AP=0, RW
  ORR      x0, x0, #0xC0000000         // 'OR' template with base physical address
  STR      x0, [x1, #24]

The level 1 table has only has only four entries. This is because we have a 4GB virtual address
space and each entry in this table covers 1GB.

For the first 1GB of the virtual address space, 0x0000_0000 to 0x3FFF_FFFF, we need to
describe multiple regions. Therefore, the entry in the level 1 table must point to level 2 table, where
we make more granular mappings.

For the next three entries, we use 1GB blocks. Although we can use smaller blocks, larger blocks
are more efficient. This is because larger blocks require less memory for the translation tables, and
it means that the TLB entries covers more addresses.

5.4 Level 2 table
Here is the level 2 table that is created for the first 1GB of the virtual address space:

//
  // Generate L2 table
  //
  …
  LDR      x1, =tt_l2_base              // Address of L1 table

  // [0..31]: 0x0000,0000 - 0x03FF,FFFF (Trusted Boot ROM)
  LDR      x0, =TT_S1_NORMAL_WBWA       // Entry template
  ORR      x0, x0, #TT_S1_INNER_SHARED  // 'OR' with inner-shareable attribute
  ORR      x0, x0, #TT_S1_PRIV_RO       // 'OR' in Read-only
  ORR      x0, x0, xzr                  // 'OR' template with base physical address
  MOV      x2, #32
1:
  STR      x0, [x1], #8
  ADD      x0, x0, #0x200000            // Increment the physical address field
  SUB      x2, x2, #1
  CBNZ     x2, 1b
  
  // [32..47]: 0x0400,0000 - 0x05FF,FFFF (Fault)
  LDR      x0, =TT_S1_FAULT             // Entry template
  ORR      x0, x0, #0x04000000          // 'OR' template with base physical
 address
  MOV      x2, #16
1:
  STR      x0, [x1], #8
  ADD      x0, x0, #0x200000            // Increment the physical address field
  SUB      x2, x2, #1
  CBNZ     x2, 1b

  
  // [48..63]: 0x0600,0000 - 0x07FF,FFFF (Trusted DRAM)
  LDR      x0, =TT_S1_NORMAL_WBWA       // Entry template
  ORR      x0, x0, #TT_S1_INNER_SHARED  // 'OR' with inner-shareable attribute
                                        // RW

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 30



Learn the architecture - AArch64 memory management
examples

Document ID: 102416_0100_01_en
Version 1.0

A more complicated virtual address space

  ORR      x0, x0, #0x06000000          // 'OR' template with base physical
 address
  MOV      x2, #16
1:
  STR      x0, [x1], #8
  ADD      x0, x0, #0x200000            // Increment the physical address field
  SUB      x2, x2, #1
  CBNZ     x2, 1b
  
  // [64..127]: 0x0800,0000 - 0x0FFF,FFFF (Flash)
  LDR      x0, =TT_S1_NORMAL_WBWA       // Entry template
  ORR      x0, x0, #TT_S1_INNER_SHARED  // 'OR' with inner-shareable attribute
  ORR      x0, x0, #TT_S1_PRIV_RO       // 'OR' in Read-only
  ORR      x0, x0, #TT_S1_NS            // 'OR' with NS==1
  ORR      x0, x0, #TT_S1_PXN           // 'OR' with XN==1
  ORR      x0, x0, #0x08000000          // 'OR' template with base physical
 address
  MOV      x2, #64
1:
  STR      x0, [x1], #8
  ADD      x0, x0, #0x200000            // Increment the physical address field
  SUB      x2, x2, #1
  CBNZ     x2, 1b
 
 // [128..511]: 0x1000,0000 - 0x3FFF,FFFF (Fault)

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 30


	Learn the architecture - AArch64 memory management examples
	Contents
	1. Overview
	1.1 Before you begin
	1.2 Example platform
	1.3 Building and running the examples

	2. Single-level table at EL3
	2.1 Specify the location of the translation table
	2.2 Initialize the MAIR
	2.3 Configure the translation regime
	2.4 Generate the translation tables
	2.5 Understand how an entry is formed
	2.6 Check your knowledge:
	2.7 Overview of the configured virtual address space
	2.8 Enable the MMU
	2.9 The table walk

	3. EL3 Multiple levels of table
	3.1 Generate the level 1 table
	3.2 Generate the level 2 tables
	3.3 Overview of the configured virtual address space
	3.4 The table walk
	3.5 Check your knowledge

	4. EL1 Single-level table
	4.1 Enter NS.EL1
	4.2 Configure the MMU at EL1
	4.3 Non-secure translation regimes
	4.4 The table walk

	5. A more complicated virtual address space
	5.1 System physical address map
	5.2 Set the first level of translation
	5.3 Level 1 table
	5.4 Level 2 table


