
Arm® CoreLink™ GIC-700 Generic Interrupt
Controller
Revision: r3p0

Technical Reference Manual
Non-Confidential
Copyright © 2019–2023 Arm Limited (or its affiliates).
All rights reserved.

Issue 10
101516_0300_10_en

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue Date Confidentiality Change

0000-01 24 October 2019 Confidential First beta release for r0p0

0000-02 30 March 2020 Confidential First early access release for r0p0

0001-03 20 July 2020 Confidential First early access release for r0p1

0100-04 5 November 2020 Confidential First early access release for r1p0

0100-05 25 February 2021 Confidential Second early access release for r1p0

0200-06 25 May 2021 Non-Confidential First early access release for r2p0

0201-07 11 February 2022 Non-Confidential First limited access release for r2p1

0201-08 20 May 2022 Non-Confidential First early access release for r2p1

0202-09 22 February 2023 Non-Confidential First early access release for r2p2

0300-10 3 August 2023 Non-Confidential First early access release for r3p0

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 309

https://www.arm.com/company/policies/trademarks

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

Previous issues of this document included language that can be offensive. We have replaced this
language. See D. Revisions on page 301.

To report offensive language in this document, email terms@arm.com.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 309

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Contents

Contents

1. Introduction..12
1.1 Product revision status..12
1.2 Intended audience..12
1.3 Conventions... 12
1.4 Useful resources... 14

2. About the GIC-700.. 16
2.1 Component overview.. 16
2.2 Compliance...20
2.3 Features...21
2.4 Comparison of GIC-700 and GIC-600... 22
2.5 Test features.. 24
2.6 Product documentation...24
2.7 Product revisions.. 25

3. Components in GIC-700...27
3.1 Distributor (GICD).. 27
3.1.1 Distributor AXI5-Stream interfaces.. 29
3.1.2 Distributor ACE5-Lite subordinate interface..30
3.1.3 Distributor ACE5-Lite manager interface..33
3.1.4 Distributor Q-Channels... 35
3.1.5 Distributor P-Channel.. 36
3.1.6 Distributor configuration... 36
3.2 GIC Cluster Interface...37
3.2.1 GCI AXI5-Stream interface... 38
3.2.2 GCI GIC Stream Protocol interface.. 38
3.2.3 GCI Q-Channel..39
3.2.4 GCI PPI signals.. 40
3.2.5 GCI configuration..40
3.3 Interrupt Translation Service..41
3.3.1 ITS ACE5-Lite subordinate interface..42
3.3.2 ITS AXI5-Stream interface.. 45
3.3.3 MSI delivery interface..45

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Contents

3.3.4 ITS Q-Channel... 46
3.3.5 ITS configuration... 46
3.4 MSI-64 Encapsulator... 47
3.4.1 MSI-64 ACE5-Lite interfaces...47
3.4.2 MSI-64 Encapsulator configuration.. 48
3.5 SPI Collator.. 49
3.5.1 SPI Collator AXI5-Stream interface.. 50
3.5.2 SPI Collator wires..50
3.5.3 Using multiple SPI Collators... 51
3.5.4 SPI Collator power Q-Channel.. 52
3.5.5 SPI Collator clock Q-Channel.. 52
3.5.6 SPI Collator configuration... 53
3.6 Wake Request... 53
3.6.1 Wake Request AXI5-Stream interface..54
3.6.2 Wake Request configuration.. 55
3.7 Interconnect... 55
3.7.1 Interconnect configuration..55
3.8 Hierarchy...55

4. Operation..58
4.1 Interrupt types.. 58
4.2 Multichip operation..58
4.3 Interrupt groups and security..59
4.4 Affinity routing and assignment..61
4.5 RAMs and ECC... 62
4.5.1 RAM error simulation...63
4.5.2 Scrub.. 64
4.6 Direct injection..64
4.6.1 Doorbells... 65
4.6.2 Residency and VMOVP... 66
4.6.3 Errors and debug.. 67
4.7 SGIs.. 67
4.7.1 SGI programming.. 68
4.7.2 SGI direct injection... 68
4.7.3 SGI multichip..68
4.7.4 SGI error recovery procedure.. 68

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Contents

4.8 PPIs...69
4.8.1 PPI signals... 70
4.8.2 PPI programming...70
4.8.3 PPI direct injection..70
4.8.4 PPI multichip.. 70
4.8.5 PPI error recovery procedure...71
4.9 SPIs...71
4.9.1 SPI signals... 72
4.9.2 SPI programming... 73
4.9.3 SPI routing and 1 of N selection.. 73
4.9.4 SPI direct injection..74
4.9.5 SPI ownership for multichip operation.. 75
4.9.6 SPI operation for multichip operation..75
4.9.7 SPI error recovery procedure...76
4.10 ITS..77
4.10.1 ITS cache control, locking, and test... 78
4.10.2 MSI-64...79
4.10.3 ITS commands and errors.. 80
4.11 LPIs.. 81
4.11.1 LPI programming and generation..82
4.11.2 LPI direct injection... 82
4.11.3 LPI multichip operation... 82
4.11.4 LPI caching... 83
4.11.5 Choosing between LPIs and SPIs... 83
4.11.6 LPI error recovery procedure...84
4.12 Memory access and attributes... 85
4.12.1 MPAM information...86
4.13 Power management...86
4.13.1 Redistributor power management.. 87
4.13.2 Processor core power management...88
4.13.3 Power control and P-Channel... 89
4.13.4 SPI RAM retention... 89
4.14 Performance Monitoring Unit... 91
4.15 Reliability, Accessibility, and Serviceability... 92
4.15.1 Non-secure access... 92
4.15.2 Error record classification... 92

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Contents

4.15.3 Error recovery and fault handling interrupts..93
4.15.4 Error handling records...93
4.15.5 Bus errors...126

5. Programmers model for GIC-700.. 127
5.1 Register map pages... 127
5.1.1 Discovery.. 129
5.1.2 GIC-700 register access and banking..130
5.2 Distributor registers (GICD/GICDA) summary..130
5.2.1 GICD_CTLR, Distributor Control Register.. 135
5.2.2 GICD_TYPER, Interrupt Controller Type Register...136
5.2.3 GICD_IIDR, Distributor Implementer Identification Register..138
5.2.4 GICD_TYPER2, Interrupt Controller Type Register 2.. 139
5.2.5 GICD_FCTLR, Function Control Register..140
5.2.6 GICD_SAC, Secure Access Control register...141
5.2.7 GICD_CCCGR, Cross-Chip Control Group Register...142
5.2.8 GICD_CCCCR, Cross-Chip Control Credit Register... 143
5.2.9 GICD_FCTLR2, Function Control Register 2... 144
5.2.10 GICD_UTILR, Utilization Register...146
5.2.11 GICD_FCTLR3, Function Control Register 3...147
5.2.12 GICD_CCCTLR, Cross-Chip Control Register..149
5.2.13 GICD_CHIPSR, Chip Status Register...150
5.2.14 GICD_DCHIPR, Default Chip Register..151
5.2.15 GICD_CHIPR<n>, Chip Registers...152
5.2.16 GICD_RDOFFR<n>, Redistributor Off Registers..153
5.2.17 GICD_VCFGBASER, vICM Final vPE CFG Attribute Register... 154
5.2.18 GICD_VSLEEPR, vICM Sleep Register.. 155
5.2.19 GICD_ICLARn, Interrupt Class Registers..156
5.2.20 GICD_ICERRRn, Interrupt Clear Error Registers...157
5.2.21 GICD_ICGERRn, Interrupt Clear Group Error registers...158
5.2.22 GICD_ISERRRn, Interrupt Set Error Registers...159
5.2.23 GICD_ERRINSRn, Error Insertion Registers... 160
5.2.24 GICD_ICLARnE, Interrupt Class Registers Extended...161
5.2.25 GICD_ICERRRnE, Interrupt Clear Error Registers Extended..162
5.2.26 GICD_ICGERRnE, Interrupt Clear Group Error registers Extended..163
5.2.27 GICD_ISERRRnE, Interrupt Set Error Registers Extended..164

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Contents

5.2.28 GICD_CFGID, Configuration ID Register... 165
5.2.29 GICD_PIDR4, Peripheral ID4 register... 167
5.2.30 GICD_PIDR3, Peripheral ID3 register... 167
5.2.31 GICD_PIDR2, Peripheral ID2 register... 168
5.2.32 GICD_PIDR1, Peripheral ID1 register... 169
5.2.33 GICD_PIDR0, Peripheral ID0 register... 170
5.3 Distributor registers (GICM) for message-based SPIs summary... 171
5.3.1 GICM_TYPER, Message-based Type Register... 172
5.3.2 GICM_IIDR, Message-based Distributor Implementer Identification Register..........................173
5.4 Redistributor registers for control and physical LPIs summary... 174
5.4.1 GICR_CTLR, Redistributor Control Register...176
5.4.2 GICR_IIDR, Redistributor Implementation Identification Register... 177
5.4.3 GICR_TYPER, Redistributor Type Register... 178
5.4.4 GICR_WAKER, Power Management Control Register... 180
5.4.5 GICR_MPAMIDR, Report maximum PARTID and PMG Register...181
5.4.6 GICR_PARTIDR, Set PARTID and PMG Register.. 182
5.4.7 GICR_FCTLR, Function Control Register.. 183
5.4.8 GICR_PWRR, Power Register.. 184
5.4.9 GICR_CLASSR, Class Register... 185
5.4.10 GICR_MPIDR, MPIDR Register...186
5.4.11 GICR_PIDR2, Peripheral ID2 Register...187
5.5 Redistributor registers for SGIs and PPIs summary... 188
5.5.1 GICR_MISCSTATUSR, Miscellaneous Status Register..190
5.5.2 GICR_ICDERRR, Interrupt Clear Distribution Error Register..191
5.5.3 GICR_SGIDR, SGI Default Register..192
5.5.4 GICR_DPRIR, Default Priority Register... 193
5.5.5 GICR_ICERRR0, Interrupt Clear Error Register 0..194
5.5.6 GICR_ICERRR1E, Interrupt Clear Error Register Extended.. 195
5.5.7 GICR_ISERRR0, Interrupt Set Error Register 0..195
5.5.8 GICR_ISERRR1E, Interrupt Set Error Register Extended...196
5.5.9 GICR_CFGID0, Configuration ID0 Register... 197
5.5.10 GICR_CFGID1, Configuration ID1 Register...198
5.5.11 GICR_ERRINSR, Error Insertion Registers.. 199
5.6 vLPI register summary.. 200
5.6.1 GICR_VFCTLR, Virtual Function Control Register.. 201
5.6.2 GICR_VCFGBASER, vICM Final vPE CFG Attribute Register.. 202

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Contents

5.6.3 GICR_VINVCHIPR, vPE Invalidate Chip Register..203
5.6.4 GICR_VERRR, vICM vPE Error Register..204
5.7 ITS control register summary..208
5.7.1 GITS_IIDR, ITS Implementer Identification Register... 210
5.7.2 GITS_TYPER, ITS Type Register..211
5.7.3 GITS_MPAMIDR, MPAM ID Register.. 213
5.7.4 GITS_PARTIDR, PART ID Register..214
5.7.5 GITS_FCTLR, Function Control Register...215
5.7.6 GITS_OPR, Operations Register..218
5.7.7 GITS_OPSR, Operation Status Register...219
5.7.8 GITS_ERRINS_D, Error Insertion Device cache register..220
5.7.9 GITS_ERRINS_V, Error Insertion Event cache register...222
5.7.10 GITS_ERRINS_C, Error Insertion Collection cache register..224
5.7.11 GITS_CFGID, Configuration ID Register...225
5.7.12 GITS_PIDR2, Peripheral ID2 Register..226
5.8 ITS translation register summary..227
5.9 ITS vSGI register summary.. 228
5.10 GICT register summary.. 228
5.10.1 GICT_ERR<n>FR, Error Record Feature Register... 229
5.10.2 GICT_ERR<n>CTLR, Error Record Control Register.. 231
5.10.3 GICT_ERR<n>STATUS, Error Record Primary Status Register.. 233
5.10.4 GICT_ERR<n>ADDR, Error Record Address Register... 234
5.10.5 GICT_ERR<n>MISC0, Error Record Miscellaneous Register 0..235
5.10.6 GICT_ERR<n>MISC1, Error Record Miscellaneous Register 1..242
5.10.7 GICT_ERRGSR, Error Group Status Register... 243
5.10.8 GICT_IIDR, Trace Implementer Identification Register.. 244
5.10.9 GICT_ERRIRQCR<n>, Error Interrupt Configuration Registers... 245
5.10.10 GICT_DEVID, Device Configuration register.. 246
5.10.11 GICT_PIDR2, Peripheral ID2 Register...247
5.11 GICP register summary.. 248
5.11.1 GICP_EVCNTRn, Event Counter Registers.. 249
5.11.2 GICP_EVTYPERn, Event Type Configuration Registers...250
5.11.3 GICP_SVRn, Shadow Value Registers..254
5.11.4 GICP_FRn, Filter Registers...255
5.11.5 GICP_CNTENSET0, Counter Enable Set Register 0..257
5.11.6 GICP_CNTENCLR0, Counter Enable Clear Register 0..257

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Contents

5.11.7 GICP_INTENSET0, Interrupt Contribution Enable Set Register 0.. 258
5.11.8 GICP_INTENCLR0, Interrupt Contribution Enable Clear Register 0.. 259
5.11.9 GICP_OVSCLR0, Overflow Status Clear Register 0...260
5.11.10 GICP_OVSSET0, Overflow Status Set Register 0.. 261
5.11.11 GICP_CAPR, Counter Shadow Value Capture Register.. 262
5.11.12 GICP_CFGR, Configuration Information Register...263
5.11.13 GICP_CR, Control Register..263
5.11.14 GICP_IIDR, PMU Implementer Identification Register..264
5.11.15 GICP_IRQCR, Interrupt Configuration Register..265
5.11.16 GICP_PIDR2, Peripheral ID2 Register...266

A. Getting started with GIC-700.. 268
A.1 Removing cores from a preconfigured GIC... 268
A.2 Other power management.. 271
A.3 Setting error recovery and fault handling options...272
A.4 Setting a PMU counter.. 273
A.5 Changing the Routing table owner... 273
A.6 Connecting the chips..274
A.7 Isolating a chip from the system..276

B. Signal descriptions for GIC-700...278
B.1 Common control signals...278
B.2 Power control signals..279
B.3 Interrupt signals..281
B.4 CPU interface signals..282
B.5 ACE5-Lite interface signals... 283
B.6 Miscellaneous signals..289
B.7 RAM I/O signals...291
B.8 Interblock AXI5-Stream interface signals... 292
B.9 Interdomain signals..294
B.10 Cross-chip AXI5-Stream interface signals..294
B.11 Cross-chip ACE5-Lite subordinate interface signals...295
B.12 MSI delivery interface signals...298

C. Implementation-defined features of GIC-700..299

D. Revisions.. 301

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Introduction

1. Introduction

1.1 Product revision status

The rxpy identifier indicates the revision status of the product described in this manual, for
example, r1p2, where:

rx Identifies the major revision of the product, for example, r1.
py Identifies the minor revision or modification status of the product, for

example, p2.

1.2 Intended audience

This book is written for system designers and programmers who are designing or programming a
System on Chip (SoC) that uses the GIC-700.

1.3 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Convention Use

italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 309

https://developer.arm.com/glossary

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Introduction

Convention Use
SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system
failure or damage.

Requirements for the system. Not following these requirements might result in
system failure or damage.

Requirements for the system. Not following these requirements will result in system
failure or damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Timing diagrams
The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Introduction

Figure 1-1: Key to timing diagram conventions

Signals
The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n
At the start or end of a signal name, n denotes an active-LOW signal.

1.4 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm® CoreLink™ ADB-400 AMBA® Domain Bridge User Guide DUI 0615 Confidential

Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and Integration Manual 101517 Confidential

Arm® GIC MSI Delivery Interface AES 0019 Confidential

Arm architecture and specifications Document ID Confidentiality

AMBA® AXI Protocol Specification IHI 0022J Non‑Confidential

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 309

http://developer.arm.com/documentation
https://developer.arm.com/documentation/ihi0022/j

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Introduction

Arm architecture and specifications Document ID Confidentiality

AMBA® AXI-Stream Protocol Specification IHI 0051B Non‑Confidential

AMBA® Low Power Interface Specification IHI 0068D Non‑Confidential

Arm® Architecture Reference Manual for A-profile architecture DDI 0487J.a Non‑Confidential

Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4 IHI 0069H Non‑Confidential

GICv3 and GICv4 Software Overview DAI 0492 Non‑Confidential

Non-Arm resources Document ID Organization

Standard Manufacturer’s Identification Code JEP106 JEDEC

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 309

https://developer.arm.com/documentation/ihi0051/b
https://developer.arm.com/documentation/ihi0068/d
https://developer.arm.com/documentation/ddi0487/ja
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/dai0492/latest
http://www.adobe.com

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

About the GIC-700

2. About the GIC-700
The GIC-700 is a generic interrupt controller that handles interrupts from peripherals to the cores
and between cores. The GIC-700 supports a distributed microarchitecture containing several
individual blocks that are used to provide a flexible GIC implementation.

The GIC-700 supports the GICv3, GICv3.1, and GICv4.1 architecture, see the Arm® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4.

The microarchitecture scales from a single core to coherent multichip environments containing up
to 16 chips of up to 512 cores each.

This manual defines a chip as an SoC that is integrated with the GIC-700. A single-
chip system has one SoC. A multichip system can have several SoCs that are
connected externally, or an SoC comprising several SoCs connected inside a single
physical package. In all cases, each SoC is integrated with the GIC-700.

All the GIC-700 blocks communicate through fully credited AXI5-Stream interface channels. This
means that the interface only exerts transient backpressure on their ic<xy>tready signals, enabling
packets to be routed over any free-flowing interconnect. Channels can be routed over dedicated
AXI5-Stream buses, or over any available free-flowing transport layer in the system. A channel
is described as free-flowing, if all transactions on that channel complete without a non-transient
dependency on any other transaction.

The GIC-700 includes build scripts that can create appropriate levels of hierarchy for any particular
configuration.

2.1 Component overview
The GIC-700 comprises several significant blocks that work in combination to create a single
architecturally compliant GICv3, GICv3.1, and GICv4.1 implementation within the system.

The GIC-700 consists of the following blocks:

Distributor (GICD)
The Distributor is the hub of all the GIC communications and contains the functionality for
all Shared Peripheral Interrupts (SPIs) and also Locality-specific Peripheral Interrupts (LPIs). It
is responsible for the entire GIC programmers model, except for the GITS_TRANSLATER
register, which is hosted in the Interrupt Translation Service (ITS) block.
In configurations that support GICv4.1, the Distributor also manages vSGIs and the
management of vPEs.

The Distributor also maintains the coherency of the SPI register space in multichip
configurations.

The LPI functionality for all cores on a chip is combined into a single cache in the Distributor.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

About the GIC-700

GIC Cluster Interface (GCI)
The GCI maintains the Private Peripheral Interrupts (PPIs) and Software Generated Interrupts
(SGIs) for a particular set of cores. A GCI can scale from 1-64 cores and is best placed next to
the processors that it is servicing to reduce wiring to the cores.
A GCI is also referred to as a Redistributor.

The GICv3 and v4.1 architecture specifies a Redistributor address space containing two
pages for each core for GICv3 and four pages for each core for GICv4.1. The SGI page
functionality is contained in the GIC-700 Redistributor. However, the Distributor contains the
other pages for all cores on a chip.

The GIC-700 supports powering down the GCIs and the associated cores, separately from
the Distributor.

During configuration, the GCI can be set to provide a wake request signal for each of the
cores it supports.

Interrupt Translation Service (ITS)
The ITS translates message-based interrupts, Message-Signaled Interrupts (MSI/MSIx), from an
external PCI Express (PCIe) Root Complex (RC), or other sources. The ITS also manages LPIs
during core power management.
The GIC-700 supports up to 32 ITS blocks for each chip.

For more information about the ITS, see the GICv3 and GICv4 Software Overview.

MSI-64 Encapsulator
The MSI-64 Encapsulator is a small block that combines the DeviceID (DID), required by
writes to the GITS_TRANSLATER register, into a single memory access.

SPI Collator
The GIC-700 supports up to 1984 SPIs that are spread across the system. The SPI Collator
enables SPIs to be converted into messages remotely from the Distributor. This enables
hierarchical clock gating of the Distributor and the use of other more aggressive low-power
states.
Up to 32 SPI Collators can be supported in a single configuration. The 1984 SPIs can be
spread across 32 SPI Collators, with a maximum of 1024 SPIs in one SPI Collator.

Wake Request
The Wake Request contains all the architecturally defined wake_request signals for each core
on the chip. It is a separate block that can be positioned remotely from the Distributor, such
as next to a system control processor.

GIC interconnect
The GIC interconnect is a set of components that can be used for routing the AXI5-Stream
interfaces between the different blocks.

Top level
The top level has no specific interfaces but combines the interfaces of other blocks within
the clock or power domain to reduce the number of domain bridges. The GIC-700 build
scripts enable you to build the GIC from either:

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 309

https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

About the GIC-700

• A single combined block that uses a dedicated 16-bit AXI5-Stream interconnect.

• A set of individual blocks that interconnect using your own transport layer.

The following figure shows a GIC-700 with a free-flowing interconnect in an example system.

Figure 2-1: GIC-700 with free-flowing interconnect in an example system

SPIs

AXI-Stream interfaces

Chip to chip
communication

link
Memory

controller

Wake
Request

Interrupt
Translation Service

(ITS)

Distributor

SPI
Collator

System Memory
Management Unit

(SMMU)

PCIe Root
Complex

Core cluster Core cluster

GIC Cluster
Interface

(GCI)
GCI

Free-flowing interconnect

Memory
interface

Programming
interface

ACE5-Lite interfaces

PPIsPPIs

GIC
components

Key:

A free-flowing channel is clear to transmit a transaction that arrives at its destination without any
non-transient dependencies on other transactions.

The following figure shows a GIC-700 example system with the PCIe root complex connecting
directly to the interconnect.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

About the GIC-700

Figure 2-2: GIC-700 with interconnect in an example system

SPIs

AXI-Stream interfaces

Memory
controller

Wake
Request

Interrupt
Translation

Service (ITS)

Distributor

SPI
Collator

System
Memory

Management
Unit (SMMU)

PCIe Root Complex
Core cluster Core cluster

GIC Cluster
Interface

(GCI)
GCI

Free-flowing interconnect

Programming
interface

ACE5-Lite interfaces

PPIsPPIs
MSILTI

GIC
components

Key:

Chip to chip
communication

link

Memory
interface

Cross-chip interfaces enable communication between cores in a multichip configuration.

The following figure shows a monolithic GIC-700 with interconnect in an example system.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

About the GIC-700

Figure 2-3: Monolithic GIC-700 with interconnect in an example system

SPIs

Memory
controller

SPI
Collator

System Memory
Management Unit

(SMMU)

PCIe Root
Complex

Core cluster Core cluster

GIC Cluster
Interface

(GCI)
GCI

System interconnect

Programming
and ITS

interfaces

PPIsPPIs

Interrupt
Translation
Service (ITS)

Distributor

GIC AXI-Stream interfaces
ACE5-Lite interfaces

GIC
components

Key:

Cross-chip
interface

(AXI-Stream or
 ACE-Lite)

If the GIC supports LPIs, there must be free-flowing access to main memory. This requirement
is irrespective of the interconnect that is used for routing the AXI5-Stream interfaces. For more
information, see the Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and
Integration Manual and the interconnect documentation.

The GIC-700 implements version 3, 3.1, and 4.1 of the Arm® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3 and version 4. To use GIC-700 with a core,
the core must:

• Implement any of the Armv8.x-A architectures.

• Support the GIC Stream protocol interface.

• Support the extended range of GICv3.1 interrupts, when GIC-700 is configured and
programmed to use >960 SPIs or >16 PPIs for each core.

• Support GICv4.1, when GIC-700 is configured and programmed to use the GICv4.1 features.

2.2 Compliance
The GIC-700 interfaces are compliant with Arm specifications and protocols.

The GIC-700 is compliant with:

• The AMBA® AXI5-Stream protocol. See the AMBA® AXI-Stream Protocol Specification.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0051/b

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

About the GIC-700

• The AMBA ACE5-Lite protocol. See the AMBA® AXI Protocol Specification.

• Version 3.1 and 4.1 of the Arm GIC architecture specification. See the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

• The Arm® GIC MSI Delivery Interface.

• The GIC Stream protocol. See the GIC Stream Protocol interface appendix in the Arm® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4.

2.3 Features
The GIC-700 provides interrupt services and masking, registers and programming, interrupt
grouping, security, performance monitoring, and error correction.

Interrupt services and masking
The GIC-700 provides the following interrupt features:

• Support for the following interrupt types:

◦ Up to 56000 physical Locality-specific Peripheral Interrupts (LPIs). A peripheral generates
these interrupts by writing to a memory-mapped register in the GIC-700.

◦ Direct injection of up to 56000 virtual LPIs for each virtual processing element (vPE), when
the GIC is configured to support GICv4.1.

◦ Up to 1984 Shared Peripheral Interrupts (SPIs) in groups of 32.

◦ Up to 48 Private Peripheral Interrupts) (PPIs) that are independent for each core and can be
programmed to support either edge-triggered or level-sensitive interrupts.

◦ Up to 16 physical Software Generated Interrupts (SGIs) for each core, which the core
generates through its GIC CPU interface.

◦ Direct injection of up to 16 virtual SGIs for each vPE, when the GIC is configured to
support GICv4.1.

• Up to 32 Interrupt Translation Service (ITS) modules that provide device isolation and ID
translation for message-based interrupts and enable virtual machines to program devices
directly.

• Interrupt masking and prioritization with 32 priority levels, 5 bits for each interrupt.

Registers and programming
The GIC-700 provides the following programming features:

• Flexible affinity routing, using the Multiprocessor Identification Register (MPIDR) addresses,
including support for four affinity levels (0-3).

• Single ACE5-Lite subordinate interface on each chip for programming of all registers but
excluding the GITS_TRANSLATER register in non-monolithic configurations. Each ITS has an
optional ACE5-Lite subordinate interface for programming the GITS_TRANSLATER register.

• Coherent view of SPI register data across multiple chips.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 309

https://developer.arm.com/documentation/ihi0022/j
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

About the GIC-700

Security
The GIC-700 provides the following security features:

• A global Disable Security signal. The gicd_ctlr_ds signal enables support for systems without
security support.

• The following interrupt groups allow interrupts to target different Exception levels:

◦ Group 0

◦ Non-secure Group 1

◦ Secure Group 1

See 4.3 Interrupt groups and security on page 59 for more information about security and
groupings.

For more information about Exception levels, see the Arm® Architecture Reference Manual for A-
profile architecture.

Performance monitoring
The GIC-700 provides Performance Monitoring Unit (PMU) counters with snapshot functionality.

Error correction and containment
The GIC-700 provides the following error correction features:

• Armv8.2 Reliability Accessibility Serviceability (RAS) architecture-compliant error reporting for:

◦ Software access errors

◦ ITS command and translation errors

◦ Error Correcting Code (ECC) errors

• Containment of errored interrupts, to enable software recovery where possible.

• Software mechanism to trigger and test the error recovery functionality.

The PMU and RAS error records are in the GICP and GICT register spaces, respectively. If security
state changes, these registers retain their contents unless the debug reset signal (dbg_reset_n) goes
LOW.

2.4 Comparison of GIC-700 and GIC-600
The GIC-700 is the successor to GIC-600 and provides many improvements such as compliance
with the GICv4.1 architecture.

The following table lists the main functional differences between GIC-700 and GIC-600.

Table 2-1: GIC-700 and GIC-600 features

Feature GIC-700 GIC-600 Notes

GIC architecture version v3.1, v4.1 v3 -

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 309

https://developer.arm.com/documentation/ddi0487/ja
https://developer.arm.com/documentation/ddi0487/ja

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

About the GIC-700

Feature GIC-700 GIC-600 Notes
Number of SPI Collators 32 1 For GIC-700, an SPI Collator can

support up to 1024 SPIs.

Number of SPIs 1984 960 If a core does not support the GICv3.1
extensions, then the maximum is 960
SPIs.

Number of PPIs, for each processor 16, 32, 48 8, 12, 16 If a core does not support the GICv3.1
extensions, then the maximum is 16
PPIs.

Number of LPI cache banks 1, 2, 4 1 -

Support for direct injection of virtual LPIs and
SGIs

Yes No -

Memory Partitioning and Monitoring (MPAM)
support

Yes No -

Memory Tagging Extension (MTE) support Yes No -

Realm Management Extensions (RME) support Yes No -

Software can change the Security state of the
GIC

No Yes For GIC-600, software can modify the
GICD_CTLR.DS bit

ACE-Lite version ACE5-Lite ACE-Lite -

Barrier transactions support No Yes ACE5 does not support barrier
transactions

Programming register space, for each ITS 4 × 64KB, when the GIC supports
direct injection, otherwise 2 ×
64KB

2 × 64KB -

Number of ITSs 32 16 -

Number of credits for sending LPIs between
chips

1-8 1 -

Number of credits for sending SGIs between
chips

1-8 1 -

Number of credits for sending vSGIs between
chips

1-8 1 -

Include an optional AXI4-Stream interface,
on an ITS, for transferring “writes” to
GITS_TRANSLATER

Supported Not
supported

-

The number of credits for supporting transfer of
LPIs using locked translations to the GICD

0-4 1 -

Support for using fewer Redistributors than
configured

Yes Not
supported

-

GCI processor interface AXI-Stream data bus
width

16, 32 16 -

The GIC Cluster Interface (GCI) supports a wake
request signal for each core

Yes Not
supported

-

Number of remote chips supported 63 15 -

Support for local cross-chip addressing Yes Not
supported

-

Support for RAM I/O sideband signals Yes Not
supported

-

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

About the GIC-700

Feature GIC-700 GIC-600 Notes
Support for filtering Secure PMU events Yes Not

supported
-

Support for SPI RAM retention Yes Not
supported

-

Support for non-maskable interrupts (NMIs) Yes Not
supported

-

2.5 Test features
The GIC-700 provides Design for Test (DFT) signals for test mode.

Related information
Common control signals on page 278

2.6 Product documentation
Documentation that is provided with this product includes a Technical Reference Manual (TRM) and
a Configuration and Integration Manual (CIM).

For relevant protocol and architectural information that relates to this product, see 1.4 Useful
resources on page 14.

The GIC-700 documentation is as follows:

Technical Reference Manual
The TRM describes the functionality and the effects of functional options on the behavior of
the GIC-700. It is required at all stages of the design flow. The choices that are made in the
design flow can mean that some behaviors that the TRM describes are not relevant. If you
are programming the GIC-700, contact:

• The implementer to determine:

◦ The build configuration of the implementation

◦ What integration, if any, was performed before implementing the GIC-700

• The integrator to determine the signal configuration of the device that you use

The TRM complements architecture and protocol specifications and relevant external
standards. It does not duplicate information from these sources.

Configuration and Integration Manual
The CIM describes:

• The available build configuration options

• How to configure the Register Transfer Level (RTL) with the build configuration options

• How to integrate the GIC-700 into an SoC

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

About the GIC-700

• How to implement the GIC-700 into your design

• The processes to validate the configured design

The Arm product deliverables include reference scripts and information about using them to
implement your design.

The CIM is a confidential document that is only available to licensees.

2.7 Product revisions
This section describes the differences in functionality between product revisions.

r0p0 First release
r0p0‑r0p1 The functional changes are:

• Bug fixes
r0p1‑r1p0 The functional changes are:

• Added an extra 4 bits to the DeviceID and EventID widths.

• Enabled software configurable GICR_MPIDR programming. See 5.4.10
GICR_MPIDR, MPIDR Register on page 186.

• Support for reducing the number of cores in a GIC configuration. See A.1
Removing cores from a preconfigured GIC on page 268.

• Added the GICD_UTILR and GICD_FCTLR3 registers. See 5.2.10
GICD_UTILR, Utilization Register on page 146 and 5.2.11
GICD_FCTLR3, Function Control Register 3 on page 147.

• Added the DIS_* bits to the GICT_ERR0CTLR register. See 5.10.2
GICT_ERR<n>CTLR, Error Record Control Register on page 230.

r1p0‑r2p0 The functional changes are:

• Added support for 32 ITSs

• Added support for 32 SPI Collators

• Added the spi_base[10:0] signal. See B.6 Miscellaneous signals on page
289.

• Added a configurable data bus width for the GCI processor AXI4-Stream
interface. See 3.2.5 GCI configuration on page 40.

• Added support for local cross-chip addressing. See Local cross-chip
addressing on page 59.

• Added support for RAM I/O signals. See B.7 RAM I/O signals on page
290.

• The GIC Cluster Interface (GCI) supports a wake request signal for each
core. See Local PE wake on page 38 and B.2 Power control signals on
page 279.

r2p0‑r2p1 The functional changes are:

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

About the GIC-700

• Added support for filtering Secure PMU events. See the GICD_SAC.SPF
bit and Table 5-108: GICP_EVTYPERn.EVENT field encoding on page
251.

• Added the GICT_IIDR and GICP_IIDR registers
r2p1‑r2p2 The functional changes are:

• Added support for using the saved SPI programming state that was
previously retained in RAMs, before the GIC was powered down. See
4.13.4 SPI RAM retention on page 89.

r2p2‑r3p0 The functional changes are:

• Added the spi_1ofn_support configuration parameter, which can remove
support for 1 of N interrupts. See 3.1.6 Distributor configuration on page
36 for more information.

• Added support for the cross-chip interface to use the ACE5-Lite protocol.
See B.11 Cross-chip ACE5-Lite subordinate interface signals on page
295.

• Added support for AMBA ACE5-Lite Issue J. See 3.1.2.2 AMBA bus
properties, GICD and CC subordinate interfaces on page 32, 3.1.3.1
AMBA bus properties, GICD manager interface on page 34, and
3.3.1.1 AMBA bus properties, ITS on page 44.

• Added the nmi_support configuration parameter, which adds support for
non-maskable interrupts (NMIs). See GICD_TYPER.NMI.

• Maximum number of external chips increases from 15 to 63. See
GICD_CFGID.CHIPS_UPPER.

• Added CC RAM. See 4.15.4.16 CC RAM error records 62-63 on page
124.

• Added support for a GICD that is configured to have no local PEs. See I/O
hub support on page 28.

• Added support for a GICD that is configured with LPI support and no local
ITS. See I/O hub support on page 28.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

3. Components in GIC-700
The GIC-700 contains several major components that use an internal GIC interconnect to route the
AXI5-Stream interfaces between the different components. A configuration parameter controls the
hierarchy of the GIC components.

The components are:

• Distributor

• GIC Cluster Interface (GCI)

• Interrupt Translation Service (ITS)

• MSI-64 Encapsulator

• SPI Collator

• Wake Request

• GIC interconnect

Each component is configurable so that it can be modified for the system requirements.

The hierarchy of the GIC components can be a single combined block that uses a dedicated 16-bit
or 64-bit AXI5-Stream interconnect, or a set of individual blocks that are interconnected using your
own transport layer.

3.1 Distributor (GICD)
The Distributor is the main communication point between all GIC-700 blocks. It performs SPI
management and LPI caching, and all communications with other blocks and chips.

When the GIC is configured to support GICv4.1, then the Distributor also performs vPE
management.

The following figure shows the Distributor and its interfaces.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

Figure 3-1: GIC-700 Distributor

Wake
Request

Power
controller

 Cross-chip interfaces,
(AXI5-Stream icdr* and icrd*,

or ACE5-Lite subordinate)

GIC
Distributor

 ACE5-Lite subordinate
 ACE5-Lite manager

Q-Channel
 ITS power control

 SPIs

icdp*

 Q-Channel

icpd*

ITS
 icdi*
 icid*

 AXI5-Stream
interface

 icdw*

SPI
Collator

 iccd*

 icdc*

GIC Cluster Interface
(GCI)

If GICD_CFGID.ACE_CC == 1, the GIC replaces the icdr* and icrd* AXI5-Stream
interfaces with an ACE5-Lite subordinate interface.

The Distributor is the main hub of the GIC and it implements most of the GICv4.1 architecture
including:

• Programming, forwarding, and prioritization of SPIs, see 4.9 SPIs on page 71

• Caching and forwarding of LPIs, see 4.11 LPIs on page 81

• SGI routing and forwarding, see 4.7 SGIs on page 67

• vSGI forwarding and routing, when the GIC is configured to support GICv4.1

• Management and control of vPEs and residency, when the GIC is configured to support
GICv4.1

• Programming interface for all registers, apart from GITS_TRANSLATER

• Power control of cores and Redistributors

I/O hub support
The Distributor supports configurations with no GCIs. This option is for systems where a central
hub device has interrupt I/O and a Distributor that delivers interrupts to remote compute chiplets.
Distributors with LPI support but no ITSs are also supported for these systems, where LPIs are
only generated on the central hub device. Software can read GICD_CFGID.NITS to determine if
no local ITSs are present. If a Distributor has no GCI, then it includes the GICD_VCFGBASER and
GICD_VSLEEPR registers.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

If a system contains a chip with no GCIs, then 1 of N SPIs cannot be supported. Therefore, all GIC
configurations in the system must disable 1 of N support by setting spi_1ofn_support = 0 in each
configuration.

3.1.1 Distributor AXI5-Stream interfaces

The GIC-700 uses AXI5-Stream interfaces to communicate between blocks.

These interfaces are:

• Fully credited

• ic<xy>tready. Where xy can be cd, dc, pd, dp, id, di, rd, dr, or dw.

Irrespective of the interconnect that is used, packets must not be reordered between endpoints,
for example, between the Distributor and a single Redistributor block. Packets must never be
interleaved.

The number of credits, or the outstanding transaction capability, is fixed across all the AXI5-Stream
interfaces with the following exceptions:

• The number of outstanding LPIs from each ITS to the GICD can be set using the
number_int_credit (1-16) and number_ll_int_credit (0-4) configuration parameters, for
transactions that have been locked in the ITS caches using the GITS_OPR register.

• The total number of LPIs and vLPIs transfers that can be outstanding from one chip to another
chip, can be set from 1-8 with the lpi_cc_tokens configuration parameter.

• The total number of SGIs that can be in transit from one chip to another chip, can be set from
1-8 with the sgi_cc_tokens configuration parameter.

• The total number of vSGIs that can be in transit from one chip to another chip, can be set from
1-8 with the vsgi_cc_tokens configuration parameter.

• The GICD_FCTLR3 can set an overall limit on the number of transactions for the cross-
chip AXI5-Stream interfaces. If the cross-chip interface is configured to use ACE5-Lite, then
software can use GICD_CCCTLR to limit the number of transactions.

For information about AXI5-Stream signals, see the AMBA® AXI-Stream Protocol Specification.
The AXI5-Stream interfaces do not support the parity protection signals because the Check_Type
property is False.

The following table lists the AXI5-Stream input interfaces.

Table 3-1: AXI5-Stream input interface descriptions

Bus Destination Width ic<xy>tid

ICID ITS to Distributor 16-bit or 64-bit ITS number

ICPD Redistributor to Distributor 16-bit, 32-bit, or 64-bit Redistributor number

ICCD SPI Collator to Distributor 16-bit SPI Collator number

ICRD Remote chip to Distributor 64-bit 0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 309

https://developer.arm.com/documentation/ihi0051/b

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

The following table lists the AXI5-Stream output interfaces.

Table 3-2: AXI5-Stream output interface descriptions

Bus Destination Width ic<xy>tdest

ICDI Distributor to ITS 16-bit or 64-bit ITS number

ICDP Distributor to Redistributor 16-bit, 32-bit, or 64-bit Redistributor number

ICDC Distributor to SPI Collator 16-bit SPI Collator number

ICDR Distributor to remote chip 64-bit Programmed value

ICDW Distributor to Wake Request block 16-bit -

Each bus has an associated ic<xy>twakeup signal that requests wakeup through the qactive signals
when the Distributor, or destination block, is hierarchically clock gated through the Q-Channel.
The ic<xy>twakeup input signal must be driven from a cleanly registered version of ic<xy>tvalid, to
prevent spurious wake ups from any signal glitches.

For information about the Distributor Q-Channels, see 3.1.4 Distributor Q-Channels on page
35.

3.1.2 Distributor ACE5-Lite subordinate interface

The AMBA® ACE5-Lite subordinate port on the GIC-700 Distributor provides access to the entire
register map except for the GITS_TRANSLATER register. The interface supports 64-bit, 128-bit,
256-bit, or 512-bit data widths.

The GIC-700 only accepts single beat accesses of the sizes for each register that are shown in the
programmers model, see 5. Programmers model for GIC-700 on page 127.

When the GIC-700 is a monolithic configuration without MSI-64 support, the Distributor and ITS
both share an ACE5-Lite subordinate port, and the DeviceID for the ITS translation is taken from
the awuser_s[did_width−1:0] signal. The value of the did_width parameter is set during silicon
integration. For more information about the ITS, see 3.3 Interrupt Translation Service on page
41.

The following table shows the acceptance capabilities of the Distributor ACE5-Lite subordinate
interface.

Table 3-3: Distributor ACE5-Lite subordinate interface acceptance capabilities

Attribute Capability

Combined acceptance capability 3

Read acceptance capability 2

Read data reorder depth 1

Write acceptance capability 2

The GIC-700 uses awatop_s, a<x>cache_s, a<x>domain_s, and a<x>snoop_s signals to detect
cache maintenance operations that are responded to in a protocol-compliant manner but are

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

otherwise ignored. The GIC-700 also ignores other Cacheability, Shareability, and protection
settings, except for the a<x>prot_s[1] security signal.

If you are connecting to an AXI3 or AXI4 port, then awatop_s, a<x>domain>_s, a<x>snoop_s, and,
for AXI3, a<x>len[7:4] signals must all be tied LOW.

The GIC-700 uses the wstrb signal to determine the size of a transaction. The GIC rejects
transactions where the strobes do not form a continuous block that is address aligned with the
resultant size of the transaction.

The GIC-700 has a separate awakeup_s signal to force the GIC to wakeup when it is hierarchically
clock gated through the Q-Channel. The awakeup_s signal must be connected to a cleanly
registered version of (awvalid_s | arvalid_s signal) to ensure that the GIC does not request to be
woken up due to incoming signal glitches.

The GIC-700 address map has multiple pages. The number of pages and the address aliasing
depends on your configuration. See 5.1 Register map pages on page 127.

You must set up the system address map so that each core accesses the GICD page on its local
chip at the same address. All other pages must be globally accessible, although access of pages on
a remote chip by a core is expected to be rare.

Related information
Register map pages on page 127

3.1.2.1 SLVERR error cases

The GIC ignores any transactions that are not standard single-beat memory accesses to a defined
register, and it responds in a protocol-compliant manner.

If the GIC receives an errant transaction, then it records the error in software error record (Record
0). If GICT_ERR0CTLR.UE =1, the GIC returns an SLVERR response to an errant transaction.
These error responses are disabled by default from reset. Software can disable some error
reporting such as out-of-range register or accesses to unimplemented SPI registers, by using the
GICT_ERR0CTLR.DIS_* bits.

The subordinate interface does not support dataless cache stash transactions so
they must not target the GIC.

It is also possible when accessing SPI, PPI, or SGI registers that data corruption might occur in
the memory. If the internal ECC protection detects corrupt data, then it records the error in error
record 0. The values in GICT_ERR0CTLR.UE and GICD_FCTLR2.ARP control how the GIC reports
the error to the system, as the following table shows.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

Table 3-4: Subordinate response signaling for ECC detection errors

GICT_ERR0CTLR.UE GICD_FCTLR2.ARP ACE signal

0 0 None

1 0 rresp signal returns SLVERR

X 1 rpoison signal is HIGH

GICD_FCTLR2.AWP controls whether the GIC uses the wpoison signal (causing the GIC to reject
the transaction and report it) or whether the GIC ignores wpoison.

The GIC never returns a DECERR response.

3.1.2.2 AMBA bus properties, GICD and CC subordinate interfaces

The AMBA® protocols define multiple property types that indicate the capabilities of a device.

The cross-chip (CC) subordinate interface only accepts INCR or aligned WRAP transactions. Also,
64-bit atomicity is required between the CC manager interface and the destination CC subordinate
interface. Therefore, for any split transactions, the address must update to correctly align the data.

The following table lists the ACE5-Lite properties for the GICD subordinate interface and the
cross-chip subordinate interface.

Table 3-5: GICD and cross-chip ACE5-Lite subordinate interface properties

AMBA property Subordinate interface ACE5-Lite
issue

Atomic_Transactions Ignore and respond legally F

Barrier_Transactions False F

Cache_Stash_Transactions Basic when axi_cache_stashing_support == 0.
Full cache stash support, including dataless, when
axi_cache_stashing_support == 1.

Ignore and respond legally.

F

Check_Type False F

CMO_On_Read Ignore and respond legally G

CMO_On_Write False G

Coherency_Connection_Signals False F

DeAllocation_Transactions Ignore and respond legally F

DVM_v8 False F

DVM_v8.1 False F

DVM_v8.4 False H

DVM_v9.2 False J

Exclusive_Accesses False F

InvalidateHint_Transaction Ignore and respond legally J

Loopback_Signals True F

Max_Transaction_Bytes 4096 F

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

AMBA property Subordinate interface ACE5-Lite
issue

MPAM_Support False G

MTE_Support Ignore and respond legally H

NSAccess_Identifiers False F

Persist_CMO Ignore and respond legally F

Poison True F

Prefetch_Transaction False H

QoS_Accept False F

Read_Data_Chunking True G

Read_Interleaving_Disabled No read data interleaving G

RME_Support True when axi_rme_support == 1 J

Shareable_Transactions True F

Trace_Signals True F

Unique_ID_Support True G

Untranslated_Transactions False F

Wakeup_Signals True F

Write_Plus_CMO False H

WriteEvict_Transaction True F

3.1.3 Distributor ACE5-Lite manager interface

The GICD uses the AMBA® ACE5-Lite manager interface to access all pending, property, and
translation tables that are allocated to the GIC. This interface is only present when LPIs are
supported, or the GIC has an ACE5-Lite cross-chip interface, or both.

The interface can be configured to be 64-bit, 128-bit, 256-bit, or 512-bit wide.

For multichip configurations, if the GIC has an ACE5-Lite cross-chip interface, then it uses the
GICD ACE5-Lite manager interface for cross-chip communications. The system must ensure that
traffic from the GICD ACE5-Lite manager interface can reach the cross-chip ACE5-Lite subordinate
interfaces of other GICDs in the system, in a free-flowing way without blocking access to memory.

The following table shows the issuing capabilities of the Distributor ACE5-Lite manager interface.

Table 3-6: Distributor ACE5-Lite manager interface issuing capabilities

CapabilityAttribute

Read Write

8-bit reads to Property table (physical or virtual) 9 0

8-bit read or write to the Pending table (physical or
virtual)

2 2

Accesses to ITS tables, 64-bit or less sum(mpfa_counts of all
ITSs)

Number of ITS

256-bit read of ITS command queue Number of ITS 0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

CapabilityAttribute

Read Write
512-bit accesses of Pending tables (physical or
virtual)

1 1

256-bit accesses of Pending tables or Property tables 2 2

Accesses to vPE Configuration table or vPT, 256-bit
or less

3 3

Cross-chip transactions - Set by the ace_cc_credits
parameter

Each transaction uses a unique transaction ID.

The following GIC registers are shared between Redistributors, and these registers must be set to
the same value by each core that has enabled LPIs:

• GICR_PROPBASER

• GICR_PENDBASER, but excluding the ADDRESS field

• GICR_VPROPBASER and GITS_BASERn, in configurations that support GICv4.1

The ACE5-Lite manager interface cannot issue barriers or Cache Maintenance Operations (CMOs).
However, it can issue shareable, ReadOnce and WriteUnique, transactions if programmed to do so.

3.1.3.1 AMBA bus properties, GICD manager interface

The AMBA® protocols define multiple property types that indicate the capabilities of a device.

The following table lists the Distributor ACE5-Lite manager interface properties.

Table 3-7: GICD ACE5-Lite manager interface properties

AMBA property Manager interface ACE5-Lite issue

Atomic_Transactions False F

Barrier_Transactions False F

Cache_Stash_Transactions False F

Check_Type False F

CMO_On_Read False G

CMO_On_Write False G

Coherency_Connection_Signals False F

DeAllocation_Transactions False F

DVM_v8 False F

DVM_v8.1 False F

DVM_v8.4 False H

DVM_v9.2 False J

Exclusive_Accesses Not used F

InvalidateHint_Transaction False J

Loopback_Signals False F

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

AMBA property Manager interface ACE5-Lite issue
Max_Transaction_Bytes 64 F

MPAM_Support Support as defined by the GIC architecture G

MTE_Support False when axi_mte_support==0.
Standard when axi_mte_support==1.

H

NSAccess_Identifiers False F

Persist_CMO False F

Poison True F

Prefetch_Transaction False H

QoS_Accept False F

Read_Data_Chunking True G

Read_Interleaving_Disabled Read data interleaving is accepted G

RME_Support True when axi_rme_support == 1. J

Shareable_Transactions Not used F

Trace_Signals False F

Unique_ID_Support True G

Untranslated_Transactions False F

Wakeup_Signals True F

Write_Plus_CMO False H

WriteEvict_Transaction False F

The manager interface does not issue fixed bursts.

3.1.4 Distributor Q-Channels

There is a single Q-Channel for clock gating the GIC-700 Distributor. The Q-Channel interface
denies access when the Distributor is busy processing interrupts.

The Distributor also has a separate Q-Channel that enables power control for each configured ITS.
The GIC only accepts a low-power request when GITS_CTLR.Quiescent is set. If the Quiescent bit
is set, the Q-Channel qacceptn_its_<n> signal is asserted, and the GIC guarantees that the bus to
the relevant ITS is idle in both directions and that the ITS can be powered down. To perform wake-
on-LPI functionality, you can use GITS_FCTLR.PWE to disable the bus while the ITS is still active
and able to translate interrupts. If the bus is disabled, then when the qactive_gicd signal asserts
on the corresponding ITS, the system must re-enable the bus and program the GICD so that it is
ready to receive LPIs. The system must route the qactive_gicd signal to a power controller that
implements the following sequence:

1. Power up the GICD

2. Restore the GICD program state

3. Turn on the associated ITS Q-Channel on the GICD, which allows the ITS to proceed

The qreqn* signals are synchronized internally, and can be driven asynchronously. See B.2 Power
control signals on page 279.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

As the qactive output signal includes combinatorial and asynchronous inputs, then you must
consider qactive as an asynchronous output.

For more information, see the AMBA® Low Power Interface Specification.

3.1.5 Distributor P-Channel

The P-Channel is used for power control of the GIC-700 Distributor.

The P-Channel is present only in multichip configurations. It is used to safely isolate the Distributor
from other chips to allow the save and restore of its register states.

Related information
Power management on page 86

3.1.6 Distributor configuration

You can configure several options that relate to the operation of the Distributor block.

Table 3-8: Configurable options for the Distributor

Feature Range of options

Number of chips 1-64

Affinity level that
is used for chip
selection.

2, 3

Affinity0 width 0-4

Affinity1 width 0-8

Affinity2 width 0-8

Affinity3 width 0-4

LPI support True, False

LPI cache depth, or
cache entries ÷ 2.

8, 16, 32, 64, 128, 256, 512

Number of LPI cache
banks.

1, 2, 4

Number of ITS blocks
on the chip.

0-32

Number of credits
for transferring LPIs
between chips.

1-8

Number of credits
for transferring SGIs
between chips.

1-8

Number of credits
for transferring vSGIs
between chips.

1-8

GICv4.1 support True, False

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 309

https://developer.arm.com/documentation/ihi0068/d

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

Feature Range of options
Number of vPEs
supported, 2<value>.

2-14

Number of message-
based SPIs permitted
in system.

32-1984, in blocks of 32. To support 1984 SPIs, the cores must support the GICv3.1
extensions, otherwise the maximum is 960 SPIs.

Number of SPI
Collators.

0-32

Remove cores from a
preconfigured GIC.

Options include:

• No support for reducing the number of cores

• Secure software can reduce the number of cores

• The gicd_pe_off tie-off signal can reduce the number of cores

Local chip addressing • Unified cross-chip addressing. All Distributors use the same addressing scheme.

• Local cross-chip addressing. Each Distributor has its own addressing scheme.

RAM I/O support Enables I/O to be present and routed to each RAM in a subblock. These I/O have no inherent
functionality inside the design. You can use the I/O to control elements within your RAM
models. See B.7 RAM I/O signals on page 290.

Remove support for 1
of N SPIs.

True, False

For more information, see the Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and
Integration Manual.

3.2 GIC Cluster Interface
The GIC Cluster Interface (GCI) is responsible for PPIs and SGIs that are associated with its related
cluster or group of cores.

The following figure shows the GCI.

Figure 3-2: GCI

GCI

ppi<n>

 cpu_active

 ppi_id[15:0]

ppi<n>_r

Cluster of

cores

Cluster of

cores

Cluster of

cores

 Q-Channel

 cpu_wake_request

GIC Stream protocol interfaces

 icdp* icpd*

Distributor

 AXI5-Stream
interface

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

The GCI performs the following functions:

• Maintaining the SGI and PPI programming

• Monitoring, and if necessary, synchronizing the PPI wires

• Prioritizing SGIs, PPIs, and any other interrupts that are sent from the Distributor, and
forwarding them to the core.

• Maintaining the GIC Stream protocol and communicating with the cluster.

There can be multiple GCIs in a configuration and they can be sized to match your system. For
example, if you have two clusters of eight cores, then you can have one GCI positioned next to
each cluster. You can use a GCI for each cluster to reduce the PPI wiring and enable the GCI to be
powered down with the cores for extra power savings. Alternatively, for a small system, combining
all cores into one GCI might be the best solution. See Configuration options in the Arm® CoreLink™

GIC-700 Generic Interrupt Controller Configuration and Integration Manual for more information.

The GCI (GICR) registers are programmed through the Distributor ACE5-Lite subordinate interface.
The Distributor also contains the architectural LPI functionality.

Local PE wake
If a GIC configuration has ci_wake == 1, then each GCI has cpu_wake_request signals for the PEs
that connect to that GCI. This configuration setting places another set of wakeup signals close to
the cores. To wake a PE, the system designer can choose to use the cpu_wake_request signals or
the wake_request signals from the Wake Request block.

When a system uses the cpu_wake_request signals, if the system is able to power down a GCI,
the system designer must connect the corresponding wake_request signals to a power controller.
When the GCI is powered down, the cpu_wake_request signals can not wake the cores, but the use
of the wake_request signals enables all cores on that GCI to be woken. See also 3.6 Wake Request
on page 53.

Related information
PPIs on page 69

3.2.1 GCI AXI5-Stream interface

Each GCI has an upstream and downstream AXI5-Stream interface for communicating with the
Distributor. This interface is 16-bit, 32-bit, or 64-bit wide and uses a fully credited protocol.

3.2.2 GCI GIC Stream Protocol interface

The GIC-700 uses the GIC Stream Protocol interface to send interrupts to the core and receive
notifications when the core activates interrupts. The GIC Stream Protocol interface has a pair

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

of 16-bit or 32-bit wide AXI5-Stream interfaces, one upstream interface, and one downstream
interface.

The GIC Stream Protocol interface, also referred to as the GIC Stream interface, uses the GIC
Stream protocol to pass interrupts and responses to the CPU interface inside each core.

See the GIC Stream Protocol interface appendix in the Arm® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3 and version 4 for more information.

Table 3-9: GIC Stream Protocol interface signals

Signal Description

iri<*> The iri prefix identifies the names of the downstream interface signals. These signals are sent by the GIC Stream transmitter.
On this interface, the GCI is the transmitter and the CPU interface is the receiver.

icc<*> The icc prefix identifies the names of the upstream interface signals. These signals are sent by the GIC Stream transmitter. On
this interface, the CPU interface is the transmitter and the GCI is the receiver.

iritdest The GCI uses this signal to direct packets to one core within the cluster

icctid The cluster uses this signal to determine which core within the cluster sent a packet

iritwakeup The GCI uses this signal to indicate that it wants to send a message to a CPU interface in the cluster

icctwakeup The cluster uses this signal to indicate that it wants to send a message to the GCI

Both the iritdest and icctid signals can support 64 cores that use packed binary encoding, as
opposed to one-hot encoding. They can also be divided down using an AXI5-Stream crossbar to
support clusters of an arbitrary number of cores from 1-64.

The necessary crossbar is generated as part of the render process, depending on the number of
GIC Stream buses that are specified for each GCI.

3.2.3 GCI Q-Channel

The GCI has a single Q-Channel interface that is used to ensure that the GCI can be safely clock
gated hierarchically.

If the GCI is busy, actively processing interrupts or sending messages upstream or downstream, the
Q-Channel denies a quiescence request that it receives on the qreqn signal, by asserting the qdeny
signal. For more information, see the AMBA® Low Power Interface Specification.

The qreqn input signal is synchronized inside the GCI. The qactive signal is connected to the PPI
wires directly, and must be considered as an asynchronous output.

Related information
Power control signals on page 279

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0068/d

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

3.2.4 GCI PPI signals

GIC-700 supports 16, 32, or 48 PPIs, and synchronized output return wires, for each core. The
number of PPIs and return wires must be the same for all cores that are sharing a GCI.

Level-sensitive PPI signals are active-LOW by default, as with previous Arm GIC implementations.
However, individual PPI signals can be inverted and synchronized using the following parameters:

• GIC700_<usrcfg>_PPI<ppi_id>_<cpu_number>_<ppi_number>_<INV>

• GIC700_<usrcfg>_PPI<ppi_id>_<cpu_number>_<ppi_number>_<SYNC>
Where <usrcfg> is user-defined text that is assigned when the GIC is configured, which can
help with identifying a GIC configuration.

Every ppi<n> signal has a corresponding ppi<n>_r signal from after the synchronizer or capture
flop. These ppi<n>_r signals can be used to create pulse extenders for edge-triggered interrupts
that cross clock domains. The GIC700_<usrcfg>_PPI<ppi_id>_<cpu_number>_<ppi_number>_<INV>
parameter also inverts the ppi<n>_r signal.

If you plan to use edge-triggered PPIs and use the Q-Channel to clock gate the GCI hierarchically,
then you must include pulse extenders. The pulse extenders ensure that interrupts are not missed
while the clock restarts.

For information about the purpose of each PPI used by the core in your system, refer to the
relevant core Technical Reference Manual.

Related information
PPI signals on page 70
SPI Collator wires on page 50

3.2.5 GCI configuration

You can configure several options that relate to the operation of the GCI.

Table 3-10: Configurable options for the GCI

Feature Range of options

The number of cores that attach to this GCI 1-64

The number of PPIs for each core. To support more than 16 PPIs, the core must support the
GICv3.1 extensions.

16, 32, 48

ECC support for the RAM. See 4.15 Reliability, Accessibility, and Serviceability on page 92
for more information.

True, False

Data bus width for the GCI processor AXI5-Stream interface 16, 32

AXI5-Stream data bus width 16, 32, 64

GIC Stream bus structure Flexible buses and
domains

For more information, see the Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and
Integration Manual.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

3.3 Interrupt Translation Service
The Interrupt Translation Service (ITS) provides a software mechanism for translating message-based
interrupts into LPIs or vLPIs.

The following figure shows the ITS block, when the GIC is configured to include the optional
bypass switch and the optional direct port.

Figure 3-3: ITS block

ITS base address,
target_address

ACE5-Lite

Bypass switch
(optional)

Manager interface

ACE5-Lite
(optional)

Subordinate interface

ITS

 Q-Channel

its_id[7:0] its_transr_page_offset

ACE5-Lite
 icid* GICD
 icdi*

msir*
msi*

Direct port (optional)
 AXI5-Stream

interface

The ITS is an implementation of the GICv3 and GICv4 Interrupt Translation Service as described
in the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3
and version 4. The ITS translates MSI requests to the required LPI and target. It also has a set of
commands for managing LPIs for core power management and load balancing.

A main use of the ITS is the translation of MSI/MSIx messages from a PCIe Root Complex (RC).
To complete the translation, the ITS must be supplied with a DeviceID that is derived from the
PCIe RequestorID. To reduce the distance that the DeviceID is transferred and to enable better
compartmentalization between RCs, the ITS is best placed next to the RC. To ease integration, the
ITS has an optional bypass switch as shown in the ITS block diagram. If the bypass switch is not
configured, the ACE5-Lite subordinate port connects to the ITS directly. See 3.3.1 ITS ACE5-Lite
subordinate interface on page 42.

See 4.10 ITS on page 77 for more information.

The following figure provides an example of the ITS integration process.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

Figure 3-4: ITS integration

PCIe root complex

SMMU

ITS

Interconnect

An ITS can be placed anywhere in the system so that it is seen by devices that want to send
MSIs. However, the system is responsible for ensuring that the DeviceID reaching each ITS, is
not spoofed by rogue software using a<x>user signals or the direct MSI-64 port. See 3.4 MSI-64
Encapsulator on page 47.

If the ITS is placed downstream of an interconnect, care must be taken to avoid
system deadlock. For more information, see the Functional integration guidelines
chapter in the Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and
Integration Manual.

3.3.1 ITS ACE5-Lite subordinate interface

The ITS AMBA® ACE5-Lite subordinate interface has a configurable data width of 64 bits, 128 bits,
256 bits, or 512 bits.

The ITS ACE5-Lite subordinate port contains only the GITS_TRANSLATER register. See the Arm®

Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4 for
more information.

If the bypass switch configuration option is selected, the port accepts all ACE5-Lite traffic, and
filters accesses to the ITS based on an address match set by the target_address[ADDR_WIDTH
−17:0] ITS base address tie-off. Without the bypass switch, the upper bits of the address, 16 and
above, are ignored, and the system address decoders must ensure that only relevant ITS writes
arrive at the ITS. Writes to the ITS subordinate interface must set the awaddr[16:0] signal to
0x0040, irrespective of whether the bypass switch is selected.

The ACE5-Lite subordinate interface ignores all awatop, a<x>snoop, a<x>cache, a<x>domain, and
a<x>prot signals information other than to filter non-memory transactions such as atomics and
cache maintenance operations, to ensure that it replies in a protocol-compliant manner.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

The GIC-700 uses the wstrb signal to determine the size of a transaction. The GIC rejects
transactions where the strobes do not form a continuous block that is address aligned with the
resultant size of the transaction.

To generate an LPI, the ITS requires the DeviceID of the issuing manager. For PCIe, the DeviceID is
derived from the RequestorID.

The GIC-700 supports two different methods for deriving the DeviceID with the ACE5-Lite
subordinate interface:

• When using the MSI-64 configuration parameter, the write to GITS_TRANSLATER is converted
to 64-bit accesses at an unmapped system address and the DeviceID is transferred in the upper
32 bits of the access. In this case, only burst length 1, 64-bit ACE5-Lite writes are accepted.

• When not using MSI-64, the DeviceID is transported on the awuser_s[did_width−1:0] signal
during the address (AW) phase of the register access. In this case, burst length 1, 32-bit or 16-
bit writes are accepted.

These two modes cannot be mixed on a single ITS. The DeviceID must be transferred using a
method that malicious software cannot spoof.

The ITS also supports a direct MSI interface, where MSIs are sent directly on an AXI5-Stream
interface to the ITS. See 3.3.3 MSI delivery interface on page 45. This interface can be
configured alongside or instead of an ACE5-Lite subordinate interface.

If the bypass switch is configured, it includes a transaction tracker that ensures PCIe
ordering requirements are met. The transaction tracker allows continuous downstream
traffic including interleaved MSIs, unless the buffer slots become full. There are two buffers,
bypass_max_outstanding, which specifies the number of concurrent downstream transactions
allowed and bypass_interrupt_count, which specifies the number of concurrent MSIs that can be
waiting for their prerequisite transactions to complete.

• The ITS subordinate port contains only write-only registers, so the read channel
always uses a simple transaction tracker that only allows transactions to one
destination at a time.

• If the Distributor and ITS both share the ACE5-Lite subordinate port, the port
properties match those of the Distributor ACE5-Lite subordinate port, which
3.1.2 Distributor ACE5-Lite subordinate interface on page 30 describes.

The following table shows the acceptance capabilities of the ITS ACE5-Lite subordinate interface.

Table 3-11: ITS ACE5-Lite subordinate interface acceptance capabilities

Attribute With bypass switch Without bypass switch

Combined acceptance capability Read acceptance capability + Write acceptance capability 3

Read acceptance capability 512 1

Read data reorder depth 512 1

Write acceptance capability bypass_max_outstanding, but not exceeding 256 2

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

The ITS ACE5-Lite subordinate interface has an associated awakeup signal. To ensure that
incoming traffic wakes the ITS correctly when it is clock gated hierarchically through the Q-
Channel, the awakeup signal must be driven from a registered version of the awvalid and arvalid
signals. To prevent spurious wake events, ensure that the awakeup signal is registered cleanly.

3.3.1.1 AMBA bus properties, ITS

The AMBA® protocols define multiple property types that indicate the capabilities of a device.

The following table lists the ACE5-Lite properties of an ITS.

Table 3-12: GIC-700 ITS ACE5-Lite subordinate interface properties

AMBA property ITS subordinate interface PCIe forwarding ACE5-Lite
issue

Atomic_Transactions Ignore and respond legally Forwarded F

Barrier_Transactions False False F

Cache_Stash_Transactions Basic when axi_cache_stashing_support == 0. Ignore and
respond legally.
True when axi_cache_stashing_support == 1. Dataless cache
stash operations are supported.

Support non-dataless,
forwarded

F

Check_Type False False F

CMO_On_Read Ignore and respond legally Forwarded G

CMO_On_Write False False G

Coherency_Connection_Signals False False F

DeAllocation_Transactions Ignore and respond legally Forwarded F

DVM_v8 False False F

DVM_v8.1 False False F

DVM_v8.4 False False H

DVM_v9.2 False False J

Exclusive_Accesses False True F

InvalidateHint_Transaction Ignore and respond legally Forwarded J

Loopback_Signals True Forwarded F

Max_Transaction_Bytes 4096 4096 F

MPAM_Support False Forwarded G

MTE_Support Ignore and respond legally Forwarded H

NSAccess_Identifiers False False F

Persist_CMO Ignore and respond legally Forwarded F

Poison Logged or reported but otherwise ignored on reads Forwarded F

Prefetch_Transaction False False H

QoS_Accept False False F

Read_Data_Chunking True True G

Read_Interleaving_Disabled No read data interleaving Read data interleaving
is accepted

G

RME_Support Ignore and respond legally Forwarded J

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

AMBA property ITS subordinate interface PCIe forwarding ACE5-Lite
issue

Shareable_Transactions True True F

Trace_Signals True Forwarded F

Unique_ID_Support True Forwarded G

Untranslated_Transactions False False F

Wakeup_Signals True True F

Write_Plus_CMO False False H

WriteEvict_Transaction True Forwarded F

3.3.2 ITS AXI5-Stream interface

The ITS AXI5-Stream interface is a bi-directional interface of either 16-bit or 64-bit width, for
communication between the ITS and the Distributor on the same chip.

We expect that a typical distributed system is 16 bits wide. When a pre-existing wide interconnect
is used, the 64-bit option allows messages to be efficiently packed.

The interface is fully credited so all messages can be accepted without dependency on any other
ports.

3.3.3 MSI delivery interface

The MSI delivery interface is a bidirectional AXI5-Stream interface for passing MSIs to an ITS for
translation.

The data format on the msitdata signal is {DeviceID[31:0], EventID[31:0]}.

When the ITS accepts the request, it sets the msirtvalid signal HIGH.

The GIC decodes the entire 32 bits of DeviceID and EventID. Bits above the configured widths
must be zero, otherwise the GIC generates out-of-range errors and the expected translation does
not occur.

The msitid signal value that the ITS receives, is sent out on the msirtdest signal. This behavior
enables multiple sources to connect to the ITS using a standard AXI5-Stream infrastructure.

The MSI delivery interface can apply back pressure if the ITS or Distributor resources become busy,
and can be dependent on the Distributor ACE-Lite manager interface, for both reads and writes.

Related information
MSI delivery interface signals on page 298

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

3.3.4 ITS Q-Channel

The ITS has a Q-Channel interface which controls requests from an external clock gating source.

If the ITS is busy, the Q-Channel interface asserts the qdeny signal to deny an external request to
gate its clock. When an external request occurs, the interface requests a wakeup by asserting the
qactive signal.

The qreqn input signal is synchronized to the ITS.

Related information
Power control signals on page 279

3.3.5 ITS configuration

You can configure several options that relate to the operation of the ITS block.

Table 3-13: Configurable options for the ITS

Feature Range of options

DeviceID width 3-24

EventID width 1-20

CollectionID width 2-14

Inclusion of a bypass port True, False

MSI-64 support, which controls whether the DeviceID is sent using the awuser signals or on bits[63:32] that
are written to GITS_TRANSLATER. See 4.10.2 MSI-64 on page 79.

True, False

Include an ACE5-Lite subordinate interface for writes to GITS_TRANSLATER (or for bypass). True, False

Include an AXI5-Stream port for transferring “writes” to GITS_TRANSLATER. Other devices can use this port
to avoid using address-mapped transactions.

True, False

The number of credits for supporting transfer of LPIs using locked translations to the Distributor. 0-4

The number of credits for supporting transfer of LPIs using non-locked translations to the Distributor. 1-16

ACE5-Lite subordinate interface address width 20-52

ACE5-Lite subordinate interface data width 64, 128, 256, 512

ACE5-Lite subordinate interface read ID width 1-32

ACE5-Lite subordinate interface write ID width 1-32

ACE5-Lite loop signal width 1-8

AXI5-Stream data width 16, 64

ECC support for the caches.
For more information, see 4.15 Reliability, Accessibility, and Serviceability on page 92.

True, False

Collection cache depth, or cache entries ÷ 2 2, 4, 8, 16, 32, 64, 128,
256, 512

Device cache depth, or cache entries ÷ 2 2, 4, 8, 16, 32, 64, 128,
256, 512

Event cache depth, or cache entries ÷ 2. The number of Device and EventID pairs that are cached in the ITS. 2, 4, 8, 16, 32, 64, 128,
256, 512, 1024, 2048

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

Feature Range of options
Domain name.
For more information, see Figure 3-9: GIC top-level structure options on page 57.

Any legal domain identifier

For more information, see the Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and
Integration Manual.

3.4 MSI-64 Encapsulator
The MSI-64 Encapsulator reduces system wiring by combining the DeviceID onto the data bus for
writes to the GITS_TRANSLATER register.

The following figure shows an overview of the MSI-64 Encapsulator process.

Figure 3-5: MSI-64 Encapsulator

MSI-64 Encapsulator

Register slices

 ACE5-Lite
subordinate

 awdeviceid

 ACE5-Lite
manager

 msi64_translator_page

 msi_translator_page

The MSI-64 Encapsulator detects translations that target the page address of the
GITS_TRANSLATER register, which is set by the msi_translator_page tie-off signal. It then converts
accesses to 64-bit writes, with the awdeviceid signal value in the upper 32 bits of the data and
retargets them to the msi64_translator_page signal. This avoids having to use wires to transfer a
DeviceID to the GITS_TRANSLATER register for translation.

See 4.10.2 MSI-64 on page 79 for more information.

3.4.1 MSI-64 ACE5-Lite interfaces

The MSI-64 Encapsulator has an ACE5-Lite subordinate interface and an ACE5-Lite manager
interface.

MSI-64 ACE5-Lite subordinate interface with awdeviceid
This interface is a full ACE5-Lite subordinate port with an extra awdeviceid input signal,
which is valid, and must remain stable with the awvalid signal.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

MSI-64 ACE5-Lite manager interface
This interface is a full ACE5-Lite manager port.

The following table shows the transaction acceptance capabilities of both subordinate and manager
ports.

Table 3-14: Transaction acceptance

Transaction type Maximum number of transactions allowed

Read Unlimited

Write Unlimited

Combined Unlimited

Any leading wdata signal is registered and held until the awaddr signal arrives. These signals are
described in B.5 ACE5-Lite interface signals on page 283.

• The MSI-64 Encapsulator requires a data bus that has a width of 64 bits or
greater.

• The ACE5-Lite manager port never issues more than two addresses before the
wlast signal asserts.

• CMOs that target the addresses that the msi_translator_page signal selects, are
converted to single beat reads.

3.4.2 MSI-64 Encapsulator configuration

The MSI-64 Encapsulator does not have any configurable parameters at design time. However, if
this block is generated in your RTL design, it has several options that you can configure at build
time.

The MSI-64 Encapsulator is generated as part of any GIC configuration that includes an MSI-64
enabled ITS.

The following table shows the options for the MSI-64 Encapsulator that you can configure at build
time.

Table 3-15: Configurable options for the MSI-64 Encapsulator

RTL parameter Function Range of
options

DATA_WIDTH Specifies the width of rdata and wdata data signals 64, 128, 256,
512

ADDR_WIDTH Specifies the width of araddr and awaddr address signals 17-52

AWUSER_WIDTH Specifies the width of awuser signal 1-128

ARUSER_WIDTH Specifies the width of aruser signal 1-128

RUSER_WIDTH Specifies the width of ruser signal 1-128

WUSER_WIDTH Specifies the width of wuser signal 1-128

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

RTL parameter Function Range of
options

BUSER_WIDTH Specifies the width of buser signal 1-128

DID_WIDTH Specifies the width of the DeviceID 3-24

WID_WIDTH Specifies the width of wid signal 1-32

RID_WIDTH Specifies the width of rid signal 1-32

ARLOOP_WIDTH Width of the arloop and rloop signals 1-8

AWLOOP_WIDTH Width of the awloop and bloop signals 1-8

AWDEVICEID_FROM_AWUSER Extract Device ID from awuser signals 0, 1

AWUSER_AWDEVICEID_BASE Base of Device ID in awuser signals. Used when
AWDEVICEID_FROM_AWUSER == 1.

0-125

FWD_REG_TYPE Register slice type on forward AW, AR, and W channels 0 None
1 Reverse
2 Forward
3 Full

REV_REG_TYPE Register slice type on B and R channels 0 None
1 Reverse
2 Forward
3 Full

3.5 SPI Collator
The SPI Collator converts SPI wires into messages to be sent to the Distributor. The GIC can be
configured to provide up to 32 SPI Collators.

The following figure shows an SPI Collator block.

Figure 3-6: SPI Collator

SPI Collator

 Clock
Q-Channel

 Power
Q-Channel

GICD
 iccd*

 spi[m−1:0]
 spi_r[m−1:0]

 spi_base[10:0]

 AXI5-Stream
interfaces

 icdc*

Individual SPIs can be synchronized into the SPI Collator, or an SPI Collator can be placed in the
same clock domain as the interrupt sources and the messages that are synchronized into the
Distributor.

Placing the SPI Collators in clock domains that are always on and remote from the GIC Distributor,
enables more aggressive power saving because the Distributor can be clock gated hierarchically.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

3.5.1 SPI Collator AXI5-Stream interface

The AXI5-Stream interface enables communication between an SPI Collator and the Distributor.

The AXI5-Stream ports apply only transient backpressure to the AXI5-Stream interface, which
enables packets to be routed over any free-flowing interconnect.

3.5.2 SPI Collator wires

The SPI Collator wires can be extended to create other functions.

By default, the asserted level of an SPI is active-HIGH, as with previous Arm GIC implementations.
However, each SPI can be either inverted, synchronized, or both, using the parameters SPI_INV[n]
and SPI_SYNC[n], where:

• SPI_INV[n] == 1 indicates that the inverter is enabled

• SPI_SYNC[n] == 1 indicates that the synchronizer is enabled

• [n] = SPI_ID − 32

Each SPI input wire has a corresponding spi_r wire after the synchronizer or capture flop that
can be used to create pulse extenders for edge-triggered interrupts that cross clock domains. If
SPI_INV[n] is set to 1, then the wire after the synchronizer is inverted with respect to the input
unless the SPI_R_INV parameter is set to 1. If the SPI_R_INV parameter is set to 1, then it removes
any inversion that SPI_INV[n] applies to individual SPIs on that SPI Collator.

The following figure shows the effect of the SPI_INV[n], SPI_SYNC[n], and SPI_R_INV parameters
on the spi[0] signal.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

Figure 3-7: SPI parameters and signal conditioning

path when
SPI_SYNC[0]=0

path when
SPI_INV[0]=0

path when

SPI_SYNC[0]=1

path when

SPI_INV[0]=1

 spi[0]

 spi_r[0]

path when
SPI_INV[0]=0 | SPI_R_INV=0

path when

SPI_INV[0]=1 & SPI_R_INV=1

3.5.3 Using multiple SPI Collators

If a GIC configuration uses multiple SPI Collators, then the SPI_BASE value must be set so that the
SPI wires do not overlap.

The SPI_BASE value controls the base address of an SPI Collator, and it is set by using either an
SPI_BASE parameter or an spi_base signal. The choice of whether to use parameters or signals, to
set the base address of all SPI Collators on the chip, is decided during configuration.

For example, if the chip uses parameters to set the base addresses of its three SPI Collators, then
the SPI_BASE parameters could be set to:

• 1 SPI Collator with 64 wires - SPI_BASE 0

• 1 SPI Collator with 32 wires - SPI_BASE 64

• 1 SPI Collator with 128 wires - SPI_BASE 96

SPI Collators do not have to support a multiple of 32 wires.

Related information
Miscellaneous signals on page 289

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

3.5.4 SPI Collator power Q-Channel

The SPI Collator has a power Q-Channel interface that accepts requests from an external source,
such as the system power controller.

When the qactive_col signal is LOW, it indicates that all SPIs to the SPI Collator are in their idle
state of either 0 (active-HIGH) or 1 (active-LOW), so all messages are sent to the Distributor.

If the qactive_col signal is HIGH, the SPI Collator rejects any attempt to enter a low-power mode.

If the qreqn_col signal is LOW and is accepted, the SPI Collator enters low-power mode and the
AXI5-Stream channels to the Distributor are flushed out to ensure that there are no messages in
progress. When accepted, you can reset the SPI Collator safely without having to also reset the
Distributor. You can also reset the Distributor, but you must first complete the instructions that
are described in the subsections of section 4.13 Power management on page 86 before the
Distributor can be powered down.

When the SPI Collator and Distributor are both in the same domain, the power Q-Channel
interface is redundant and can be tied off.

In low-power mode, it is only safe to stop the SPI Collator clock if all edge-triggered interrupts into
the SPI Collator are pulse extended so that edges are not missed.

3.5.5 SPI Collator clock Q-Channel

The SPI Collator has a clock Q-Channel interface that accepts requests from an external clock
gating source, such as the system clock controller.

When the qactive_col_clk signal is LOW, it indicates that all SPI toggles and level transitions have
been passed to the Distributor, and that the SPI Collator does not require the clock.

If the qactive_col_clk signal is HIGH, the SPI Collator rejects any attempt to enter a low-power
mode.

If the qreqn_col_clk signal is LOW and is accepted, the SPI Collator enters low-power mode and
no new messages are sent to the Distributor until it enters low-power mode. If any interrupt line
changes state, the qactive_col_clk signal is asserted.

In low-power mode, it is only safe to stop the SPI Collator clock if all edge-triggered interrupts into
the SPI Collator are pulse extended so that edges are not missed.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

3.5.6 SPI Collator configuration

You can configure several options that relate to the operation of an SPI Collator block.

Table 3-16: Configurable options for an SPI Collator

Feature Range of options

The number of SPI wires. The total number of SPIs on all SPI
Collators must be ≤1984.

1-1024, in multiples of 32

The number of SPI Collators 0-32

SPI_INV is a wide vector of one bit for each SPI, indicating
whether to invert the interrupt

True, False

SPI_SYNC is a wide vector of one bit for each SPI, indicating
whether to synchronize the interrupt

True, False

SPI_R_INV is a single bit, indicating whether to invert the return
path for any spi_r signals where SPI_INV[n] == 1. See 3.5.2 SPI
Collator wires on page 50.

True, False

Base address tie-off signal support 0 The SPI_BASE parameter sets the ID of
the starting SPI_ID for this SPI Collator. The
parameter can be set to 0-1983.

1 The spi_base[10:0] signal sets the ID of the
starting SPI_ID for this SPI Collator

For more information, see the Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and
Integration Manual.

3.6 Wake Request
The Wake Request block converts AXI5-Stream wake requests into one wake_request signal for
each core. Each wake_request signal connects to the system power controller.

The following figure shows the Wake Request block.

Figure 3-8: Wake Request

Wake Request

Distributor

 wake_request
 wake_request
 wake_request
 wake_request
 wake_request

 icdw*

 AXI5-Stream
 interface

A wake_request signal wakes a powered-down core when one of the following conditions is true:

• An interrupt that targets only that specific core is pending.

• GICD_CTLR.E1NWF is set, and a 1 of N SPI selects that core as its target.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

The GIC-700 does not know whether a core is powered up or down. It only knows whether
software has enabled sending transactions on the AXI5-Stream interface. Therefore, a
wake_request signal remains asserted after a core has powered up. A wake_request signal
deasserts when software clears GICR_WAKER.ProcessorSleep and the GIC-700 clears the
GICR_WAKER.ChildrenAsleep bit.

If there are pending interrupts, either targeted or 1 of N, when GICR_WAKER.ProcessorSleep is
set, the wake_request signal might assert during the powerdown sequence. The power controller
must ignore the wake_request signal until the core is powered down.

An asserted wake_request[<cpus>−1:0] signal deasserts only when:

• The Distributor exits reset, which causes it to send a clear message to the Wake Request block.

• The core is woken and software clears the GICR_WAKER.ProcessorSleep bit, which indicates
that the core is able to communicate with the GIC.

• The Wake Request block is reset. If the system resets the Wake Request block, then it must
also reset the Distributor.

Core removal support
If a GIC configuration supports the removal of cores, then it is possible to modify how the GIC
drives the wake_request bus. The wake_compress configuration parameter controls how the bus is
driven as follows:

 wake_compress == 0
The GIC drives the wake_request bus by using a fixed mapping between a core and its
corresponding wake_request signal. Use this setting when each core has its own power
control logic.

 wake_compress == 1
The GIC only uses the lower bits of the wake_request bus when either Secure software or
the gicd_pe_off[max_pe_on_chip − 1:0] signal removes some cores from the configuration.
For example, if a configuration supports 16 cores and software or hardware removes
12 cores, then the GIC only uses the wake_request[3:0] signals. Use this setting when a
centralized processor controls the power logic of the cores that remain.

See A.1 Removing cores from a preconfigured GIC on page 268 for more information.

Related information
Power control signals on page 279

3.6.1 Wake Request AXI5-Stream interface

The AXI5-Stream interface enables the Wake Request block to communicate with the Distributor.

The AXI5-Stream interface does not exert back-pressure.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

3.6.2 Wake Request configuration

The Wake Request block has a single configuration option.

Table 3-17: Configurable options for Wake Request

Feature Range of options

Compress the width of the wake_request[<cpus> − 1:0] signal 0, 1

3.7 Interconnect
The GIC-700 uses AXI5-Stream interfaces for communication between some blocks.

These blocks are:

• Distributor to, and from, ITS

• Distributor to, and from, Redistributors

• Distributor to Distributor for cross-chip communications

• Distributor to, and from, an SPI Collator

• Distributor to the Wake Request block

All these interfaces use fully credited schemes where all messages are guaranteed to be accepted
without dependency on any other port.

Apart from the cross-chip communications, GIC-700 provides an AXI5-Stream interconnect for
transporting messages. However, messages can be sent over an existing interconnect provided the
interconnect is free-flowing.

3.7.1 Interconnect configuration

The internal interconnect is configured automatically in accordance with the number of cores and
ITS blocks in the system. The configuration produces a balanced tree structure with minimum Clock
Domain Crossings (CDCs).

The Arm internal scripts limit a single interconnect crossbar to 16 destinations. To work around this
limitation, you can use domains in the config file. For example, instead of 32 GCIs in one domain,
you can use two domains that each contain 16.

3.8 Hierarchy
The hierarchy of the GIC components can be selected using the structure configuration
parameter.

The structure configuration parameter has the following options:

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

 wrap This option provides the lowest level of structure, and wraps the following
blocks:

• The Redistributor is wrapped with interconnect components between
the Redistributor and the cores. The components that are wrapped at
this level are shown within the blue dashed lines in the following figure.
If the core is in a different clock domain, in accordance with the domain
tags, then half of the CoreLink™ ADB-400 domain bridge is included in the
gic700_ppi_wrap_<n>_<usrcfg>.v stitched file.

• The ITS is wrapped (along with any selected bypass switch) in the
gic700_its_wrap_<n>_<usrcfg>.v file.

• The GICD is wrapped, including an ITS if the monolithic parameter is set
to 1, in the gic700_gicd_wrap_<usrcfg>.v file.

 domain All blocks and wrapped components that are in the same domain are stitched
together in a file that is called gic700_domain_<name>_<usrcfg>.v and
includes ADB-400 domain bridges and collated low-power interfaces. Blocks
and components at this level are shown within the red dashed lines in the
following figure.

 full All domains are stitched together to create a single top-level GIC-700 file,
gic700_<usrcfg>.v.

The following figure shows the top-level options.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Components in GIC-700

Figure 3-9: GIC top-level structure options

Distributor
 ACE5-Lite manager interface

Interconnect

Redistributor
Interconnect

GIC Stream interfaces

 ACE5-Lite subordinate interface

Redistributor Redistributor

GIC Stream interfaces GIC Stream interface

ACE5-Lite interfaceACE5-Lite interface
ACE5-Lite interface

 Cross-chip interfaces
(AXI-Stream or ACE-Lite)

ManagerSubordinate

ADBADB

Interconnect
Redistributor

Interconnect

ADB
AMBA

Domain
Bridge (ADB)

ITS

Interconnect

ITSITS

AXI5-Stream interface
Top level
Redistributor level
Domain level

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4. Operation
This chapter provides an operational description of the GIC-700 product.

4.1 Interrupt types
The GIC-700 manages SPIs, SGIs, PPIs, and LPIs. When GICv4.1 is enabled, SGIs and LPIs can be
injected into virtual Processing Elements (vPEs).

4.2 Multichip operation
During silicon configuration, the system designers can configure the GIC-700 to support multichip
operation.

Systems that comprise more than one chip, can have several SoCs that are connected externally or
an SoC comprising several SoCs connected inside a single physical package. In all cases, each SoC is
integrated with a GIC-700. A multichip system can have up to 16 chips.

To control the consistency of all chips in the configuration, and make the GIC appear as a single
entity to the OS, the GIC-700 uses a set of registers that define the connectivity between chips.
These registers are referred to as the Routing table and consist of the following three register
types:

 GICD_CHIPR<n>
These Chip Registers define the Routing table. It specifies the SPIs that the chip owns, and
how the chip is accessed. This register exists on each chip in the multichip configuration so
that each chip has a copy of the Routing table. The register number <n> corresponds to the
value of its chip_id signal.

 GICD_DCHIPR
The Default Chip Register specifies the current chip that is responsible for the consistency of
the Routing table, and indicates when an update is in progress. A single copy of this register
exists on each chip in the multichip configuration.

 GICD_CHIPSR
The Chip Status Register specifies details of the current status of the chip. A single copy of
this register exists on each chip in the multichip configuration.

At reset, each chip in the multichip system configuration is effectively a standalone full-featured
GIC. The GICD_CHIPSR register on the chip indicates this state with bit RTS == Disconnected.

For the multichip configuration to be fully coherent, all chips in the configuration must be
interconnected and one chip must own the Routing table.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

The sequence for connecting chips together is described in A.6 Connecting the chips on page
273.

When multiple chips in the configuration are connected, each set of 32 SPIs (SPI block) is owned by
a specific chip, so that the SPI space between chips is partitioned. Also:

• SPIs that are not owned by any chip in accordance with the Routing table cannot be used.

• SPI wires on a chip can only be used for SPIs that are owned. However, message-based
accesses to SPIs owned on any chip are supported.

• The Routing table can only process one operation at a time. Therefore, software must
ensure that GICD_DCHIPR.PUP == 0 before commencing any operation such as writes to
GICD_CHIPRx or GICD_DCHIPR.

Local cross-chip addressing
The GIC provides the local_chip_addr configuration parameter that controls whether all chips use
the same address to reach a destination chip or each chip has its own local addressing to another
chip.

When local_chip_addr = 0, all chips use the same address to reach a destination chip, so the
addressing to a given chip must be the same from each start point to that chip.

When local_chip_addr = 1, each chip has its own local addressing to the other chips, which can
differ between chips. This setting enables addressing where the address for a fixed chip endpoint
can be different between the startpoints.

Software can discover the state of local_chip_addr by reading the GICD_CFGID.LCA bit.

4.3 Interrupt groups and security
The GIC-700 configures the interrupts that it receives into one of three groups. Each group
determines the security status of an interrupt and how it is routed.

The following registers control to what group each interrupt is assigned:

• GICD_IGROUPRn and GICD_IGROUPRnE

• GICD_IGRPMODRn and GICD_IGRPMODRnE

• GICR_IGROUPR0 and GICR_IGROUPR1E

• GICR_IGRPMODR0 and GICR_IGRPMODR1E

The groups are:

• Group 0

• Group 1 Secure

• Group 1 Non-secure

Each interrupt is programmed to belong to an interrupt group. Each interrupt group:

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

• Determines the Security state for interrupts in that group, depending on the Exception level of
the core.

• Has separate enable bits that control whether interrupts in that group can be forwarded to the
core.

• Has an impact on later routing decisions in the core interfaces.

The GIC-700 supports the three interrupt groups that the following table shows.

Table 4-1: Security and groupings

Interrupt type Example use

Secure Group 0 Interrupts for EL3 (Secure firmware)

Secure Group 1 Interrupts for Secure EL1 (Trusted OS)

Non-secure Group 1 Interrupts for the Non-secure state (OS and the hypervisor, or one of both)

The following table shows the interrupt signals that are used for each interrupt group, Security
state, and Exception level.

Table 4-2: Interrupt signals, Security states, and Exception levels

Group 1Core Exception level and Security state Group 0

Secure Non-secure

Secure EL0, EL1 FIQ IRQ FIQ

Non-secure EL0, EL1, EL2 FIQ FIQ IRQ

EL3 FIQ FIQ FIQ

When the GIC exits reset, the gicd_ctrl_ds tie-off signal controls the GIC-700 security as follows:

 gicd_ctrl_ds is LOW
Security enabled

 gicd_ctrl_ds is HIGH
Security disabled

Setting the gicd_ctlr_ds tie-off signal HIGH removes the security support of the GIC-700. Software
can determine the state of this signal by reading the GICD_CTLR.DS bit. When the system has no
concept of security, the gicd_ctlr_ds signal must be set HIGH to allow access to important registers.

If the gicd_ctlr_ds signal is HIGH, only a single Security state is supported. In a single Security state,
register access, and the behavior and number of interrupt groups supported are affected. For more
information, see Interrupt grouping, and Interrupt grouping and security in the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

We recommend that the gicd_ctlr_ds signal is only set HIGH when your system
does not support security. See Security model in the GICv3 and GICv4 Software
Overview for more information about the implications of disabling security.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

Group 0 is always Secure in systems with security. If you decide to write security-unaware software
using Group 0, it might not be portable to systems with a concept of security. Security-unaware
software is most portable when written using Group 1.

If a system has a concept of security but one or more cores do not, then you must not disable
security. Instead each core is only able to enable the interrupt groups corresponding to the Security
states that it supports.

If you know that your system is always security aware, then we recommend setting the gicd_ctlr_ds
signal LOW.

For more information, see the Arm® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3 and version 4 and the GICv3 and GICv4 Software Overview.

4.4 Affinity routing and assignment
The GIC-700 uses affinity routing, a hierarchical scheme, to identify connected cores and for
routing interrupts to specific cores.

The Arm architecture defines a register in a core that identifies the logical address of the core in
the system. This register, which is known as the Multiprocessor Identification Register (MPIDR), has a
hierarchical format. Each level of the hierarchy is known as an affinity level, with the highest affinity
level specified first:

• For 32-bit Armv8 processors, the MPIDR defines three levels of affinity, with an implicit affinity
level 3 value of 0.

• For 64-bit Armv8 processors, the MPIDR defines four levels of affinity.

The GIC-700 regards each hardware thread of a processor that supports multiple hardware threads
as a single independent core.

The affinity of a core is represented by four 8-bit fields using dot-decimal notation,
<Aff3>.<Aff2>.<Aff1>.<Aff0>, where Affn is a value for affinity level n. An example of an
identification for a specific core would be 0.255.0.15.

The affinity scheme matches the format of the MPIDR_EL1 register in Armv8-A. System designers
must ensure that the ID reported by the core of the MPIDR_EL1 register matches how the core is
connected to the interrupt controller.

The GIC-700 allows fully flexible allocation of MPIDR. However, it has two built-in default
assignments that are based on the aff0_thread configuration parameter:

 aff0_thread == 1
The four fields map to 0.<cluster>.<core>.<thread>

 aff0_thread == 0
The four fields map to 0.0.<cluster>.<core>

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

See the Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and Integration Manual for
information about the aff0_thread configuration parameter and how to build affinity schemes that
include heterogenous clusters and multithreaded cores.

The following figure shows the affinity hierarchical structure.

Figure 4-1: Affinity routing

Distributor

0

CPU
interface

0.x.x.x

0.0.0.x

0.255.x.x

0.255.0.x …..

…..00

CPU
interface

CPU
interface

CPU
interface

CPU
interface

CPU
interface

…..

0.0.255.x …..

Aff Level 3

Aff Level 2

…..…..

Aff Level 1

0.0.x.x

Aff Level 0
Redistributor

0.255.0.150.255.0.00.0.255.150.0.255.00.0.0.0 0.0.0.15

…..

15 1515

The GIC-700 can support up to 16 nodes at level 3, with each node able to host 256 child level
2 nodes. Similarly each level 2 node can host 256 level 1 nodes. However, level 1 nodes can only
host 16 child level 0 nodes.

If you enable the core removal functionality, then it alters how the MPIDR values are assigned to
each Redistributor. See A.1 Removing cores from a preconfigured GIC on page 268 for more
information.

For more information about affinity routing, see the GICv3 and GICv4 Software Overview and
the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and
version 4.

4.5 RAMs and ECC
The GIC-700 uses multiple RAMs to store a range of states for all types of interrupt. In typical
operation, the RAMs are transparent to software.

Each RAM can be protected from errors using an ECC with Single Error Correction and Double Error
Detection (SECDED). See the Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and
Integration Manual for information about the ECC configuration parameters.

If single or double errors are detected, they are reported in the software visible error records, see
4.15 Reliability, Accessibility, and Serviceability on page 92 for more information.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 309

https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.5.1 RAM error simulation

For each RAM, software can use a GICx_ERRINSR register to simulate a transient ECC single-bit or
double-bit error.

The GICR_ERRINSR applies to the RAM in the GIC Cluster Interface (GCI).

The GICD_ERRINSRn applies to the following RAMs:

 0x0 SGI RAM
 0x1 SPI RAM 0
 0x2 SPI RAM 1
 0x3 SPI TGT RAM.
 0x4 SPI LPI RAM
 0x5 LPI RAM bank 0
 0x6 LPI RAM bank 1
 0x7 LPI RAM bank 2
 0x8 LPI RAM bank 3
 0x9 Pending table map cache
 0xA VICM RAM
 0xB VICM search RAM
 0xC VTGT residency RAM
 0xD VTGT store RAM
 0xE VTGT search RAM
 0xF CC RAM

These registers cause an error to be inserted, to a specified address and location in the associated
RAM. The ECC encoder and decoder are checked but the RAM content is not modified. These
registers are all Secure access only, unless Secure software sets GICD_SAC.GICTNS to 1, to allow
Non-secure access.

After software inserts an error, the GIC reports the error in the associated error record, in the
same manner as a normal ECC error. However, the software injected error has no effect on the
functionality of the GIC, so software can inject errors injection during operation.

If a co-incident real error occurs, then the GIC reports the real error instead and triggers the normal
containment mechanism for that interrupt type.

Related information
GICD_ERRINSRn, Error Insertion Registers on page 160
GICR_ERRINSR, Error Insertion Registers on page 198
GITS_ERRINS_C, Error Insertion Collection cache register on page 223
GITS_ERRINS_D, Error Insertion Device cache register on page 220
GITS_ERRINS_V, Error Insertion Event cache register on page 222

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.5.2 Scrub

The GIC-700 holds significant programming and interrupt states in RAM, which is protected by
Single Error Correction and Double Error Detection (SECDED).

However, some RAM contents might be static for a long duration, and there is a potential for
errors to accumulate if a particular address is not periodically accessed. To prevent this occurring,
software can periodically trigger a low-priority scrub of a RAM, by setting the GITS_FCTLR.SIP,
GICR_FCTLR.SIP, and GICD_FCTLR.SIP bits. This process triggers a check and if necessary, a write-
back of all valid RAM entries. Any errors that are found during a scrub are also reported in the
relevant RAS error record.

4.6 Direct injection
The GIC-700 supports direct injection of SGIs (vSGIs) and LPIs (vLPIs) into virtual machines, without
the processor needing to change state to execute the hypervisor in a virtualized system.

To support these features, the GIC must be configured with the following parameters:

• gicv41_support = 1

• lpi_support = 1.
vSGI support requires lpi_support to be enabled because the GIC uses some ITS functionality
to process vSGIs.

To map vPEs within the GIC, software must use the ITS VMAPP command.

The GIC-700 requires the use of the Valid (V) and Allocate (A) bit in the VMAPP command. Behavior
is unpredictable if any of the following occur:

• Use of VMAPP(V1A1) command when any mapping already exists for the vPE.

• Use of VMAPP(V1A0) command before a VSYNC has completed after a VMAPP(A1V1) command for
the same vPE.

• Use of VMAPP(V0A0) command while mappings exist on any other ITS for the same vPE.

• The valid data fields of the all VMAPP commands for vPEs are not the same, excluding the
RDbase.

For more information, see the Arm® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3 and version 4.

To maintain information about the mapped vPEs, the GIC uses a single vPE table for each chip
that is shared between all Redistributors and ITSs on the chip (GITS_TYPER.SVPET != 0). The GIC
considers the table to be allocated when either:

• The first GICR_VPROPBASER.Valid bit is set

• The first GITS_CTLR.Enabled bit is set on an ITS with GITS_BASER2.Valid == 1

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

After the vPE table is allocated, the vPE table must be private to the GIC. The behavior is
unpredictable if:

• The vPE table is modified while allocated.

• The vPE table is nonzero and not previously flushed out by this GIC.

In a multichip configuration, each chip must have a unique vPE table.

The properties for the chip-wide table are then taken from either the GICR_VPROPBASER or
GITS_BASER2 register. Software can read the GICR_VCFGBASER register to discover properties of
the chip-wide table.

The GIC does not relinquish control of the memory until all GICR_VPROPBASER registers, and all
GITS_BASER2 registers on enabled ITSs, do not point at the vPE table. Any attempt to program
mismatched values does not update the current programming and may be reported as an error.

4.6.1 Doorbells

Doorbell interrupts are physical LPIs that indicate to the hypervisor that an interrupt is available for
that vPE.

Each vPE can be programmed with a unique doorbell using the ITS VMAPP or VMOVP command.
When the first vLPI or vSGI becomes pending for a vPE, the GIC generates a single doorbell
interrupt for that vPE. The doorbell interrupt is then masked until the vPE becomes resident.

The GIC-700 has the following doorbell characteristics:

• Doorbell IDs must be unique and not mapped to any DeviceID and EventID on any ITS.

• GIC-700 does not support individual doorbells, so GITS_TYPER.nID == 1.

• Doorbells only generate if the relevant virtual group enable is set when the vPE was last made
resident. The vPE has not been made resident since being mapped, see 4.6.2 Residency and
VMOVP on page 65.

• The GIC ignores and reports VMAPP and VMOVP commands that specify a doorbell ID that is
outside of the range of GICR_PROPBASER.IDbits.

Doorbell properties are cached when mappings are first made. You can change the properties by
updating the LPI Configuration table and issuing a VINVDBL command from any ITS that has the vPE
mapped.

Doorbell properties are not transferred between chips and are refetched if a VMOVP moves a vPE to
a remote chip.

Software must not disable GICR_CTLR.EnableLPIs bits while the vPE mapping exists, because this
prevents doorbells fetching properties, and they are cached as disabled.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.6.2 Residency and VMOVP

Software freely moves vPEs around between PEs on both the local and remote chips, using the ITS
VMOVP command.

The GIC-700 only supports GITS_TYPER.VMOVP ==1. Therefore, the VMOVP command must only
run on a single ITS (with a mapping to the vPE) for the GIC to ensure that all ITS in the system
seamlessly continue to deliver interrupts to the vPE. The GIC only updates each ITS when it next
accesses the vPE.

Doorbells are delivered to the PE that the vPE is mapped to. For more information on doorbells,
see 4.6.1 Doorbells on page 65. However, the GIC supports making vPEs resident (to deliver
interrupts) on any PE on the same chip, as the current mapping without a VMOVP. That is, there is
no need to issue VMOVP before making a vPE resident, unless either moving chip or balancing the
doorbells across different PEs.

To deliver the interrupt to a vPE, it must be made resident on a PE, which is completed by using
GICR_VPROPBASER of the relevant PE and polling for GICR_VPROPBASER.Dirty == 0. The GIC
attempts to deliver any interrupt to the PE before dropping the GICR_VPROPBASER.Dirty bit.

We recommend that the CPU Virtual Group enabled are set before making a vPE resident. This is
to ensure the GIC can enforce that an interrupt has reached the PE and therefore prevents a race
with the GuestOS reaching WFI before the interrupt is delivered. The behavior is unpredictable if
software attempts to do any of the following:

• Make a vPE resident on multiple PEs.

• Map a vPE resident when not mapped to PE on the same chip.

• Issue a VMOVP command to a resident vPE.

The GIC is designed to ensure that the highest priority interrupt is always ready, waiting for when
a vPE is made resident. However, there are two bits in GICD_FCTLR2 that control whether the
residency change is delayed under certain conditions:

 GICD_FCTLR2.RWC – Residency wait during command
If an LPI command is active, which could make an interrupt available for a vPE, the GIC does
not stall the residency handshake, unless RWC is set.

 GICD_FCTLR2.RWS – Residency wait during search
Under heavy load, LPIs are sent to the PT. Under extremely heavy load, and when a vPE has
been recently resident or when LPI commands run, it is possible that the highest priority
interrupt for a vPE has not yet been retrieved. To ensure fast residency changes, the GIC
does not wait on PT searches for residency, unless RWS is set.
Sometimes, specifically for Double Error Detection (DED) errors or INVALL commands, setting
GICD_FCTLR2.RWS leads to a significant increase in the latency of the residency handshake.

Interrupts found under the two previous conditions are delivered when they are found and are the
highest priority, if the vPE is still resident. If the vPE is taken out of residency, a new doorbell is
generated, if enabled.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

We recommend that the RWC and RWS bits are not set during normal operation.

When making an interrupt non-resident by writing GICR_VPROPBASER.Valid == 0, then
GICR_VPROPBASER.PendingLast indicates whether there are remaining interrupts for the vPE. If it
is set after writing GICR_VPROPBASER.Dirty == 0, then the doorbell remains masked and software
must make the vPE resident again at some point in the future.

If GICR_VPROPBASER.PendingLast is written to 1 when GICR_VPROPBASER.Valid is cleared, the
GIC optimizes the residency handshake and leaves the doorbell masked without checking if there
are further interrupts for the vPE.

4.6.3 Errors and debug

The vPE Configuration table is stored in RAM and backed up in the main memory. If corruption
occurs during accesses to the vPE table (or virtual Pending tables), then the error is recorded in
error record 0, with one of the SYN_VPE_CFG* error syndromes.

If this corruption occurs, or error record 0 overflows, use the GICR_VERRR register to check the
status of vPEs by completing a FIND command.

If any vPE is marked as errored, then it has become corrupted and software must flush out the
error.

If not resetting the GIC, the vPE can be flushed out of the GIC by doing the following:

1. Issue VMAP(V0A0) commands on all ITSs.

2. Issue VMAPP(V1A1) on one ITS with a vPT_size of at least as large as the original.

3. Issue VMAPP(V0A1) on the same ITS to flush out everything.

4. Clear the error using the GICR_VERRR CLR command.

5. Repeat the GICR_VERRR FIND command until it indicates no errors.

6. Recreate vPE as normal with a new vPT.

GICR_VERRR can also be used to set errors for software test purposes, and to read a range of data
stored in the GIC about a vPE.

4.7 SGIs
Software Generated Interrupts (SGIs) are inter-processor interrupts, that is, interrupts generated from
one core and sent to other cores.

Each core, or vPE if configured, in the system processes an SGI independently of the other cores.
The priority of an SGI, and other settings, are also independent for each core.

Physical SGIs are generated by writing to System registers in the CPU interface of the core that
generates the interrupt. SGIs are edge triggered.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

Up to 16 SGIs can be recorded for each target core or vPE, where each SGI has a different INTID in
the ID0-ID15 range.

4.7.1 SGI programming

The generation of an SGI depends on whether the SGI is physical or virtual.

Physical SGIs
To program a physical SGI, each processor can use its GICR register map. See 5.5 Redistributor
registers for SGIs and PPIs summary on page 187.

Virtual SGIs
To program a virtual SGI, software can issue a vSGI ITS command.

Software can also program the vSGIs by writing to the virtual Pending table of a vPE, and then
issuing a VMAPP command to allocate the memory to the GIC. After issuing VMAPP command,
software must not write to the virtual Pending table to attempt to generate a virtual SGI. See
the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and
version 4 for more information.

4.7.2 SGI direct injection

Software can directly inject SGIs by writing the vPE and SGI-INTID to the GITS_SGIR register.

The GITS_SGIR register is always accessed using the GICD ACE5-Lite subordinate interface, even
in a distributed system.

Unlike their physical equivalent, vSGIs do not have an active state, so no deactivation is required.

If the vPE is not mapped on the ITS that the GIC uses to generate the vSGI, then the GIC
generates a debug error. See 4.15.4.3 SGI RAM error records 3-4 on page 101.

4.7.3 SGI multichip

When chips are connected, then physical SGIs are routed to the destination chip based on the
target affinity. Virtual SGIs are routed to the target vPE, irrespective of the chip that the vPE is
currently mapped to.

4.7.4 SGI error recovery procedure

If an uncorrectable SGI error occurs, then software must clear the error for that interrupt. After
clearing the error, software can reprogram the interrupt to the intended settings.

For uncorrectable errors that occur in the SGI RAM, software is required to perform the following
recovery sequence:

1. Read the error record, to determine if an uncorrectable error has occurred.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

2. Clear the error record, to enable future errors to be tracked.

3. Read all GICR_ICDERRR registers, so that you can identify the SGIs that have errors. The
GICR_ICDERRR registers must be read from the Secure side.

4. If necessary, read out any of the current programmed states. This includes programmed
data that is corrupted and generates an error, unless GICT_ERR0CTRL.UE is disabled. We
recommend that the intended programming is stored in memory, so that this step is not
required.
The GICR_NSACR is overwritten when an error occurs, so the pre-error value cannot be read
back at this stage.

5. Write to GICR_ICENABLER0, to disable all interrupts that have errors.

6. Write 1 to the GICR_ICDERRR bits that step 3 on page 69 indicates are showing an SGI
error. This write clears the interrupt error and reverts the corresponding GICR_IGROUPR0,
GICR_IGRPMODR0, and GICR_NSACR bits to their default values as programmed in the
corresponding bits of GICR_SGIDR.

7. Reprogram the interrupt to the intended settings.

8. Re-enable the reprogrammed interrupts by writing to the relevant GICR_ISENABLER0.

9. Recheck the error record, to ensure that no more errors are reported. If necessary, repeat the
recovery sequence from step 2 on page 69.

While errored, the GIC uses the values in GICR_SGIDR to determine if SGIs are generated.

The GIC does not provide a GICR_ISDERRR register, so you cannot set errors on the SGI RAM.

Related information
SGI RAM error records 3-4 on page 101

4.8 PPIs
A Private Peripheral Interrupt (PPI) identifies an interrupt source, such as a timer, that is private to
the core, and which is independent of the same source for another core. PPIs are typically used for
peripherals that are tightly coupled to a particular core.

Interrupts that connect to the PPI inputs associated with one core, are only sent to that core. Each
core processes a PPI independently of other cores. The settings of a PPI are also independent for
each core.

A PPI is unique to one core. However, the PPIs to other cores can have the same INTID. Up to 48
PPIs can be recorded for each target core, where each PPI has a different INTID in the ID16-ID31
or ID1056-ID1087 range. To use the ID1056-ID1087 range, the core must support the GICv3.1
extensions.

PPI signals are active-LOW level-sensitive by default. However, you can set a PPI signal to be either
level-sensitive or edge-triggered using GICR_ICFGR1, GICR_ICFGR2E, and GICR_ICFGR3E. See
the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and
version 4 for more information.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

The GIC-700 provides an option, through parameters, to include one or both a synchronizer and
inverter on each PPI interrupt signal. See 3.2.4 GCI PPI signals on page 39 for more information.

For information about the purpose of each PPI used by the processor core in your system, refer to
the processor Technical Reference Manual.

4.8.1 PPI signals

Each PPI is a physical interrupt signal that can be configured to be either a level-sensitive interrupt
or an edge-triggered interrupt.

The two configurations of physical PPI signal are:

 Level-sensitive
The interrupt is pending while the interrupt input is asserted. As with previous Arm GICs,
PPIs are active-LOW by default. However, you can change these default settings, see 4.1
Interrupt types on page 58 for more information.

 Edge-triggered
A rising-edge on the interrupt input causes the interrupt to become pending. The pending bit
is cleared later when the interrupt is activated by the CPU interface.

To set the correct settings for the system, you must program the GICR_ICFGR1, GICR_ICFGR2E,
and GICR_ICFGR3E registers.

For more information, see the GICv3 and GICv4 Software Overview and the Arm® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4.

4.8.2 PPI programming

To program a physical PPI, each processor can use its GICR register map.

Related information
Redistributor registers for SGIs and PPIs summary on page 187

4.8.3 PPI direct injection

The GIC-700 cannot directly inject PPIs into vPEs.

4.8.4 PPI multichip

Multichip operation does not affect PPIs.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 309

https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.8.5 PPI error recovery procedure

If an uncorrectable PPI error occurs, then software must clear the error for that PPI. After clearing
the error, software can reprogram the interrupt to the intended settings.

This recovery procedure is also applicable to SGI programming in the GCI RAM.

PPI priority values can be stored in a RAM inside the GCI and can be protected with ECC.

If an uncorrectable error occurs, the GIC uses the default priority values that GICR_DPRIR specifies
for the relevant interrupt group, and it continues to deliver the interrupt as normal but with a
default priority.

Errors affecting PPIs are reported in GICT error records 7-8. See 4.15.4.5 PPI RAM error records
7-8 on page 103.

Software can determine the errored PPI IDs by reading GICR_ISERR0 or GICR_ISERR1E.

Software can clear PPI errors by rewriting the relevant priority field in GICR_IPRIORITYRn or
GICR_IPRIORITYnE, or by writing to GICR_ICERR0 or GICR_ICERR1E, in which case the priority
takes the relevant default value that GICR_DPRIR specifies.

If a GICD_IPRIORITYR register of a corrupted PPI is read, then the corrupted data is made
available. This data is reported in error record 0 with a SYN_GICD_CORRUPTED error syndrome. If
GICT_ERR0CTLR.UE == 1, then the GIC issues an SLVERR ACE5-Lite bus error.

For debug purposes, software can trigger these error cases by writing to GICR_ISERR0 or
GICR_ISERR1E. To test the ECC error reporting, software can use GICR_ERRINSR.

4.9 SPIs
A Shared Peripheral Interrupt (SPI) is generated by a peripheral that is accessible across the whole
system such as a USB receiver, and which can connect to several cores. SPIs are typically used for
peripherals that are not tightly coupled to a specific core.

You can program each SPI to target either a particular core or any core. Activating an SPI on one
core activates the SPI for all cores. That is, the GIC-700 allows at most one core to activate an SPI
(cannot be activated by multiple cores). The settings for each SPI are also shared between all cores.

SPIs are generated either by wire inputs or by writes to the ACE5-Lite subordinate programming
interface. The GIC-700 can support up to 1984 SPIs corresponding to the spi input signals on the
SPI Collators. Each SPI Collator has a limit of 1024 signals. The number of SPIs available depends
on the implemented configuration. The first SPI has an ID number of 32. The permitted ID values
are in steps of 32, in the following ranges:

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

• ID32-ID991

• ID4096-ID5119

During configuration of the GIC, you can allocate some or all SPIs to be message-based or you can
set all SPIs to be a physical spi signal. If an SPI ID is allocated as a physical spi input signal, then
software can still use that SPI ID as a message-based SPI, provided that the hardware ensures that
the spi signal is held to a logic level that represents the inactive state.

You can configure whether each SPI is triggered on a rising edge or is active-HIGH level-sensitive.
The GIC-700 provides an option, through a parameter, to include one or both of a synchronizer or
inverter for each SPI interrupt wire.

The SPI Collator converts wire-based interrupts into messages to reduce system wiring, and to
allow more aggressive clock gating of the GIC to reduce power consumption. See 3.5 SPI Collator
on page 49 for more information.

SPIs are programmed through the GICD register address space, which is spread coherently across
all configured chips to provide a single view to the Operating System (OS).

You can trigger a valid SPI by using the GICD_SETSPI_NSR or GICD_SETSPI_SR registers, see
the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and
version 4.

4.9.1 SPI signals

Each SPI is a physical interrupt signal that can be configured to be either a level-sensitive interrupt
or an edge-triggered interrupt.

The two configurations of physical SPI signal are:

 Level-sensitive
The interrupt is pending while the interrupt input is asserted. As with previous Arm GICs,
SPIs are active-HIGH by default. However, you can change these default settings, see 4.1
Interrupt types on page 58 for more information.

 Edge-triggered
A rising-edge on the interrupt input causes the interrupt to become pending. The pending bit
is cleared later when the interrupt is activated by the CPU interface.

To set the correct settings for the system, you must program the GICD_ICFGRn or GICD_ICFGRnE
registers.

The GIC-700 provides optional synchronizers on every interrupt wire input. The GIC also providers
return signals, spi_r, to enable the use of pulse extenders when sending edge-triggered interrupts
across domain boundaries, see 3.5.2 SPI Collator wires on page 50.

For more information, see the GICv3 and GICv4 Software Overview and the Arm® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.9.2 SPI programming

To program an SPI, each processor can use the GICD or GICDA register map.

Related information
Distributor registers (GICD/GICDA) summary on page 130

4.9.3 SPI routing and 1 of N selection

If GICD_TYPER.No1N==0, then the GIC-700 supports 1 of N selection of SPI interrupts. You can
program an SPI to target several cores, and the GIC-700 can select which cores receive an SPI.

When the relevant GICD_IROUTERn.Interrupt_Routing_Mode == 1, the GIC selects an appropriate
core for an SPI.

When GICD_IROUTERn.Interrupt_Routing_Mode == 0, the SPI is routed to the core specified by
the remaining fields of GICD_IROUTERn.

The GIC-700 only sends an SPI to cores that are powered up and have the relevant interrupt group
enabled. The GIC-700 prioritizes cores that are considered active, but if there are no active cores, it
selects inactive cores.

The selections that the GIC-700 makes can be controlled or influenced by several 1 of N features:

 cpu_active signal
A cpu_active signal is an input to a Redistributor that corresponds to a particular core. When
a cpu_active signal is LOW, it indicates to the GIC that a core is in a transparent low-power
state such as retention, and that it must be selected as a target for an SPI if there are no
other options possible.
Ideally, the cores that are in retention are not woken without explicit software intervention,
so that cores spend more time in retention. To ensure that this behavior is usually the case,
use the following guidelines:

• Cores in retention must drive their corresponding cpu_active signal LOW.

• Powered-up cores that are not in retention must drive their cpu_active signal HIGH.

Typically, a power controller or power control logic generates the cpu_active signal. If this
signal is not available in the system, the input must be tied HIGH.

• When a core is powered down, the value of its cpu_active signal is
irrelevant. This irrelevancy is because the software programming
requirements for the GIC ensure that it knows when cores are powered
up or down.

• The cpu_active signal provides an indication only, it cannot stop selection
of the core or stop the GIC sending messages to the core.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

 GICR_CTLR.DPGxx (Disabled Processor Group)
Setting a DPG bit prevents 1 of N interrupts of a particular group being sent to that core.
Any interrupts that have not reached a core at the time of the change, are recalled and
reprioritized by the GIC.

 Processor and GICD group enables and GICR_WAKER.ProcessorSleep
A 1 of N interrupt is not sent to a core if one of the following is true:

• The core is asleep, as indicated by GICR_WAKER.ProcessorSleep.

• The interrupt group is disabled by either the processor or the GICD_CTLR group enables.

 Interrupt class
This is an implementation-defined feature that the GIC-700 provides. Each core can be
assigned to either class 0 or class 1 by writing to the relevant GICR_CLASSR register. An SPI,
programmed as 1 of N, by GICD_IROUTERn.Interrupt_Routing_Mode, can be programmed to
target either class 0, class 1, or both classes by the GICD_ICLARn register. By default, all 1 of
N SPIs can go to both classes, so the interrupt class feature is disabled by default. The system
can use this partitioning for any purpose, for example in an Arm® big.LITTLE™ system, all the
big cores can be in class 1 and little cores in class 0, allowing 1 of N SPIs to be partitioned
according to the amount of processing they require.

 GICD_CTLR.E1NWF
The GICD_CTLR.E1NWF bit controls whether the GIC-700 wakes a core if there are no
other possible targets for a 1 of N SPI.
The GIC tries to wake the minimum of cores possible and only wakes a core if there is no
other possible target awake that is able to accept the 1 of N interrupt. Therefore, the GIC
uses the GICR_CTLR.DPG and GICR_CLASSR.Class bits to determine if any core is awake
that can accept the interrupt. If a suitable core is not awake, the GIC then wakes a core.

We strongly recommend that if you use GICD_CTLR.E1NWF, you must also set the
GICR_CTLR.DPGx bits to specify whether a core is likely to accept a particular interrupt
group in a timely manner. The GIC does not continue to wake cores until one is found. The
GIC-700 uses two passes to try to find the best place for a 1 of N interrupt, by using a
round-robin arbiter between:

• Any core that has its cpu_active signal set, is fully enabled for the interrupt, and has no
other pending interrupts.

• Any core that is fully enabled for the interrupt and has no interrupts of a higher priority
than the 1 of N interrupt.

If neither option is available to the 1 of N, the interrupt is assigned to any legal target and
regularly re-evaluated to ensure that it is not excluded from other SPIs of the same priority.

4.9.4 SPI direct injection

The GIC-700 cannot directly inject SPIs into vPEs.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.9.5 SPI ownership for multichip operation

The owner of an SPI block is defined by the GICD_CHIPR<n> registers.

You can remove SPI blocks from a chip and add them to another chip by reprogramming the
relevant GICD_CHIPR<n> registers during operation. As with all Routing table operations,
GICD_DCHIPR.PUP must be polled to check completion of the operation.

Before you change the owner of an SPI block, you must ensure that the GICD_CTLR group enables
have cleared, GICD_CTLR.RWP has returned to 0, and that the SPI blocks are removed from a chip
before they are added to another chip.

When an SPI block is removed from, or added to, a chip, all programming that is associated with
the SPI block returns to the reset state.

You must not alter the SPI_BLOCK_MIN of an online chip because the results are unpredictable. To
change SPI_BLOCK_MIN:

1. Move the chip offline by setting GICD_CHIPR<n>.SocketState = 0.

2. Alter SPI_BLOCK_MIN when the chip is brought back online.

4.9.6 SPI operation for multichip operation

When the Routing table is set up, SPIs can be programmed through any connected chip, and
accesses to update stored values are routed over the cross-chip interface of the chip that owns the
SPIs.

SPIs can be routed to remote chips by programming the relevant GICD_IROUTERn register.
Remote chips are targeted using either Affinity2 or Affinity3, and the affinity level can be
discovered using GICD_CFGID.AFSL.

If SPIs within an SPI block are sent to multiple chips, we recommend that you do not read or write
the GICD_ISACTIVERn(E), GICD_ICACTIVERn(E), GICD_ISPENDRn(E), and GICD_ICPENDRn(E)
registers. It is inefficient and these registers are not needed for immediate operation.

You can set interrupts to pending by writing to GICD_SETSPI_NSR, GICD_CLRSPI_NSR,
GICD_SETSPI_SR, and GICD_CLRSPI_SR. For efficient operation, we recommend that sources are
programmed to write SPI IDs that their chip owns. Other SPI IDs are supported if these SPIs are
owned somewhere in your system.

By default, the GIC-700 does not guarantee that the pending bit has reached the point of
serialization for writes to set interrupts pending. This behavior means that there is a race between
the pending bit being set and an activate being processed by the GIC after the bresp signal asserts.
To ensure that writes always propagate to the point of serialization, set GICD_FCTLR.POS = 1.

SPI Collators in multichip
The SPI Collator wires are always connected to the lowest owned SPIs on the chip.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

For example, if GICD_CHIPRn.SPI_BLOCK_MIN = 4, the SPI Collator wires to chip x drive SPI
IDs that start from 160, calculated by (4 × 32) + 32 = 160. Therefore, in a homogeneous 2-chip
system, each chip must not use more wires than 16 × (the number of configured SPI blocks).

SPI 1 of N
The GIC-700 never sends a 1 of N SPI to another chip.

4.9.7 SPI error recovery procedure

If an uncorrectable SPI error occurs, then software must clear the error for that SPI. After clearing
the error, software can reprogram the interrupt to the intended settings.

If an SPI has an uncorrectable error, GICD_ICERRRn identifies the SPI. While in this error state, the
interrupt reverts to a disabled, Secure Group 0, edge-triggered SPI, which is already pending.

For uncorrectable errors, software is required to perform the following recovery sequence:

1. Read the error record, to determine if an uncorrectable error has occurred.

2. Clear the error record, to enable future errors to be tracked.

3. Read all GICD_ICERRRn registers, so that you can identify the SPIs that have errors. The
GICD_ICERRRn registers must be read from the Secure side. See step 6 on page 76
If the error record reports only one error, the block that contains the error can be determined
using the ID in the GICT_ERR2MISC0 register, by calculating the block number as 1 + (ID / 32).
However, if an overflow occurs, software must check all GICD_ICERRRn registers.

4. If necessary, read out any of the current programmed states. This includes programmed
data that is corrupted and generates an error, unless GICT_ERR0CTRL.UE is disabled. We
recommend that intended programming is stored in memory so that this step is not required.

5. Write to GICD_ICENABLERn, to disable all interrupts that have errors.

6. Write 1 to the GICD_ICERRRn bits that step 3 on page 76 indicates are showing an SPI
error. This write clears the interrupt error and reverts the corresponding GICD_IGROUPRn,
GICD_IGRPMODRn, GICD_ICFGRn, and GICD_NSACRn bits to their default values.
If Secure software allows Non-secure software to clear an error for a Non-secure interrupt,
it can first clear the error on the Secure data (GICD_GROUPn, GICD_GRPMODn, and
GICD_NASCRn). The software uses the corresponding bit of the GICD_ICGERRn and must
reprogram the three registers mentioned previously. Non-secure software is then allowed to
read and clear GICD_ICERRR for those specific interrupts.

7. Read GICD_ICERRRn, to check that the error has cleared. If the error remains, then clear all
the GICD_CTLR group enables so that it forces all SPIs to return to their owner chips. When
GICD_CTLR.RWP returns to 0, repeat the write to GICD_ICERRRn. When the error clear is
accepted, you can re-enable the group enables.

8. Reprogram the interrupt to the intended settings.

9. If the interrupt is reprogrammed to be level-sensitive, write to GICD_ICPENDRn to ensure that
any edge-sensitive pending bits are cleared.

10. If the interrupt is edge-triggered, we recommend that software checks the device, if possible, in
case an edge is lost.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

11. Ensure that the active bit is set correctly depending on whether it is being processed. Clear
the active bit using GICD_ICACTIVE to ensure that the interrupt is delivered when it is set to
pending in the future. However, if the interrupt is being processed in a core, the interrupt might
be delivered again before it is deactivated.

12. Re-enable the reprogrammed interrupts by writing to GICD_ISENABLER.

13. Recheck the error record, to ensure that no more errors are reported. If necessary, repeat step
2 on page 76.

To aid software debug, Secure software can use the GICD_ISERRn and GICD_ISERRRnE registers
to insert error cases.

Related information
SPI RAM error records 1-2 on page 100

4.10 ITS
The GIC-700 supports up to 32 Interrupt Translation Services (ITSs) for each chip. Each ITS is
responsible for translating message-based interrupts from peripherals into LPIs or vLPIs.

Each ITS is compliant with the GICv3 and GICv4.1 architecture and is responsible for mapping
translation requests with an EventID and DeviceID through to an INTID and target. The following
figure shows the ITS process for a physical INTID (pINTID).

Figure 4-2: Physical ITS process

Device table

Interrupt Translation
Table (ITT) base, size

ITT base, size

DeviceID

DeviceID

ITT

pINTID, collection

EventID
base

size

Collection table

Target, address

CollectionID

collection

To reduce memory traffic and keep interrupt latency to a minimum, GIC-700 has three 2-way set
associative caches in each ITS:

DeviceID cache DeviceID to ITT base address
EventID cache DeviceID and EventID to collection
Collection cache Collection to target core

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

If ECC protection is not required for a cache, you can remove ECC from each RAM individually.
See the Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and Integration Manual for
more information.

It is common for the DeviceID to be a non-contiguous number that is derived from the PCIe
RequestorID. To ensure that this does not result in a sparse DeviceID table and wasted memory,
the GIC-700 supports indirect Device tables (GITS_BASERn.Indirect = 1) where the first-level table
points at subtables that can be allocated at runtime. See the Arm® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3 and version 4 for more information.

The GIC-700 uses memory-backed collections only, which means that before the ITS is enabled
by writing to GITS_CTLR.Enabled, memory must be allocated for the Device table, the Collection
table, and the ITS command queue. To comply with the architecture, software must pre-clear
these tables to 0, apart from pointers to cleared level-two Device tables, unless the tables were
previously populated by the GIC-700.

When software uses GICv4.1 commands, it must provide a pointer to the chip-wide vPE table
before enabling the ITS.

The GIC-700 ITS supports all GICv3 and GICv4.1 commands that the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4 describes.

GITS_TYPER.PTA is 0 for all configurations, which means that all references to processor cores in
ITS commands are implemented through the GICR_TYPER.ProcessorNumber field.

Command and translation errors are reported through the RAS registers. See 4.15 Reliability,
Accessibility, and Serviceability on page 92.

For information about how to program and use the ITS, see the GICv3 and GICv4 Software
Overview.

4.10.1 ITS cache control, locking, and test

The GIC-700 can lock certain interrupt translations in the EventID cache.

If a translation is missed in a cache, several memory reads can be required to obtain the data
necessary from memory. This behavior can result in a range of latency that might not be acceptable
for some LPIs.

The GIC-700 can lock certain translations into the ITS cache, with the following guarantee:

• Interrupts that are locked in ITS caches, always hit and never require any translation.

The ITS caches are automatically managed and invalidated as necessary when the GITS_BASERn
registers are updated. Therefore, software intervention is not required. However, to aid debug and
integration testing, you can force invalidation of the appropriate cache by setting the relevant bit in
the GITS_FCTLR register.

A forced invalidation of the Event cache abandons all locked entries.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

The GITS_OPR and GITS_OPSR registers control cache locking, when software provides
the DEVICE_ID, EVENT_ID, and the correct GITS_OPR.LOCK_TYPE (ITS lock = 2). The GIC
attempts to perform the lock, and reports the status in GITS_OPSR. If the lock succeeds,
GITS_OPSR.REQUEST_COMPLETE == 1 and GITS_OPSR.REQUEST_PASS == 1.

Each cache set is 2-way set associative. Only one entry can be locked in each cache set. Any
attempt to lock both ways in a set, reports as failed in GITS_OPSR. You can also use the GITS_OPR
register to unlock entries that are locked.

The GITS_OPR register has two test features:

 Trial Tests the mapping by writing a DeviceID and EventID to GITS_OPR
with GITS_OPR.LOCK_TYPE = 1 (Trial). This causes the ITS to translate
the supplied DeviceID and, or EventID pair, and report the generated
translation data in GITS_OPSR. The GIC also reports whether the
translation fails, GITS_OPSR.REQUEST_PASS == 0, or if it hit a locked entry,
GITS_OPSR.ENTRY_LOCKED. The interrupt is not set to pending.

 Track Can be used to detect the arrival of a certain EventID and, or DeviceID pair,
which the GIC reports by setting GITS_OPSR.REQUEST_COMPLETE.

While any GITS_OPR operation, other than Track, is in progress, the
GITS_OPSR.REQUEST_IN_PROGRESS bit is set and no further updates are accepted by
GITS_OPR until the previous operation completes. To ensure that the operation is accepted, we
recommend that the GITS_OPR value is read after writing. You can abort Track operation by writing
GITS_OPR.LOCK_TYPE == Track abort.

4.10.2 MSI-64

The MSI-64 Encapsulator can be used to combine the DeviceID into single memory access writes
to the GITS_TRANSLATER register in the ITS.

The ITS translates DeviceID/EventID pairs into LPI physical INTIDs.

A normal MSI/MSI64 write contains the EventID in the lower 16 bits or 32 bits of data. However,
the DeviceID must be transported using a different method. The DeviceID is often derived directly
from a PCIe RequestorID or System Memory Management Unit (SMMU) StreamID. If the EventID is
greater than 16 bits, then 16-bit MSI writes are padded with zeros.

The GIC-700 ITS supports two mechanisms:

 awuser_*_s signal
The DeviceID arrives on sideband User signals. You must ensure that rogue software cannot
directly or indirectly, perform an access to the GITS_TRANSLATER register with a DeviceID
that matches a real device.

 MSI-64
When configured to support MSI-64, the ITS expects the DeviceID to be in the upper 32 bits
of a 64-bit write to the GITS_TRANSLATER register.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

To prevent rogue software accessing the GITS_TRANSLATER register and spoofing any
device, we recommend that the GITS_TRANSLATER register is moved to an arbitrary page
that is protected by the hypervisor.

The GIC-700 uses two methods to support this:

• The MSI-64 Encapsulator modifies the page address of accesses to the architectural
GITS_TRANSLATER address, set by the msi_translator_page tie-off signal, to the system-
defined page set by the msi64_translator_page signal.

• When the ITS shares an ACE5-Lite subordinate port, the its_transr_page_offset tie-off
signal allows the GITS_TRANSLATER register page to be moved to anywhere in the
address map, to match the msi64_translator_page signal value that is independent of the
GICD address map reset.
The msi64_translator_page and its_transr_page_offset signals, or one of either, must not
be on top of any other GIC register page.

To ensure that this method of mapping is hidden from software, all accesses to the
GITS_TRANSLATER register must pass through an Encapsulator, or similar embedded
functionality. See 3.4 MSI-64 Encapsulator on page 47 for more information.

The following figure shows an example of how to integrate the MSI-64 Encapsulator in
a system. The MSI-64 Encapsulator connects upstream of the interconnect and targets
an ITS downstream of the interconnect. In this scenario, the DeviceID is transported on
the data channels of the interconnect to the ITS. This topology benefits those systems
where the width of the awuser signal on the interconnect is too narrow to transport the
DeviceID.

Figure 4-3: MSI-64 Encapsulator with DeviceID sent in the data[63:32] bits

Device

MSI-64 Encapsulator

Interconnect

ITS

4.10.3 ITS commands and errors

Each ITS detects a wide range of command errors and translation errors, and reports them in
Armv8.2 RAS-compliant error records in the Distributor.

The ITS record error syndromes comprise four groups that each have separate enables in the
GITS_FCTLR register. The following table shows the ITS record error syndrome groups.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

Table 4-3: ITS record error syndrome groups

Group Control

ACE5-Lite subordinate interface write translation errors. Only when the ITS has a separate ACE5-
Lite subordinate port.

GITS_FCTLR.AEE (Access Error
Enable)

Translation errors on incoming writes to GITS_TRANSLATER GITS_FCTLR.UEE (Unmapped Error
Enable)

Errors during commands GITS_FCTLR.CEE (Command Error
Enable)

Other errors such as memory system, or memory allocation errors None

See 4.15.4.15 ITS command and translation error records 27+ on page 109 for information
about all the detected syndromes.

ITS commands must be written by software before they are executed.

The ITS Command queue operates a stall mechanism on any error, irrespective of the
GITS_FCTLR.CEE value. To execute commands, software writes to a Command queue in memory
and then updates the GITS_CWRITER.Offset to indicate that there are commands to run.

• Normally, the GITS_CREADR.Offset increments until it matches the GITS_CWRITER.Offset,
wrapping as necessary, to indicate that the Command queue has completed.

• If an error occurs, GITS_CREADR.Stalled is set, which indicates that processing has stopped
and software intervention is required. If GITS_FCTLR.CEE is set, at least one error is
reported in the relevant error record to aid software debug. You can correct the command
that the GITS_CREADR identifies and then resume the Command queue, by writing to
GITS_CWRITER.Retry. If the command is no longer required, you must rewrite it as a SYNC
command before you resume.

To determine when Command queue execution completes, you can either:

• Poll GITS_CREADR.Offset until it matches GITS_CWRITER.Offset

• Put an INT command in the queue and waiting for that interrupt to arrive

If you add an INT command, then we recommend that you enable GITS_FCTLR.CEE and that you
configure the fault handling interrupt or error recovery interrupt to be delivered to a core that can
resolve Command queue issues. See 4.15.3 Error recovery and fault handling interrupts on page
93 for more information.

4.11 LPIs
Locality-specific Peripheral Interrupts (LPIs) are always message-based, and can be from a peripheral,
or from a PCIe root complex.

An LPI targets only one core. LPIs are generated when the peripheral writes to the ITS. The ITS
contains the registers to control the generation and maintenance of LPIs. The ITS provides INTID
translation, allowing peripherals to be owned directly by a virtual machine if an SMMU is also
present for those peripherals.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

If you use GIC architecture version 3, the ITS enables interrupts to be translated to the ID space of
the hypervisor instead of directly to a virtual machine. If you use GIC architecture version 4.1, the
hypervisor can configure the ITS to directly send interrupts.

4.11.1 LPI programming and generation

Only an ITS can generate an LPI. See GICv3 and GICv4 Software Overview for more information.

4.11.2 LPI direct injection

The ITS can directly inject an LPI to a vPE, if the LPI is mapped to a vPE and the ITS uses a VMAPI or
VMAPTI command.

4.11.3 LPI multichip operation

The GIC-700 does not use physical target addresses, so GITS_TYPER.PTA == 0. Therefore,
GIC-700 uses the value of GICR_TYPER.ProcessorNumber to route all LPIs and commands to their
targets.

The GIC-700 splits the GITS_TYPER.ProcessorNumber value into two fields, Chip_ID and the
padded linear on-chip core number.

The width of the padded on-chip core number field is defined by the max_pe_on_chip configuration
parameter. This parameter sets the maximum number of cores or threads on a single chip in
the configuration. The width of the linear on-chip core number field is discoverable through
GICD_CFGID.PEW.

For example, if max_pe_on_chip = 17, the width of the lower part of the on-chip core number field
is ceil[log2(17)] = 5 bits. Therefore, the ProcessorNumber value of the first core on chip 1 is 0x20,
the value of the second core on chip 1 is 0x21, the value of the first core on chip 2 is 0x40.

The following figure shows the ProcessorNumber fields with typical values.

Figure 4-4: ProcessorNumber fields

16124 12488

000001000

Chip_ID Core number

100001000

Chip 1, Core 1 = 0x20

Chip 1, Core 2 = 0x21

000000100 Chip 2, Core 1 = 0x40

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 309

https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

If software attempts to access a chip that does not exist, is offline, or access a core that does not
exist, the request is dropped and reported through the ITS command and translation error records.

4.11.4 LPI caching

If LPI support is configured, the GIC-700 supports a single LPI cache for each chip with up to 4
banks.

The LPI cache is 2-way set associative based on the lowest bits of the LPI INTID, and stores LPI
properties from the LPI Property table. The relevant set is checked for valid properties as each LPI
arrives in the system. If multiple banks are selected, then to select the bank the GIC uses the lower
bits of the core or vPE number.

The cache is fully associative for pending LPIs, which means that the LPI system fills almost all
lines in the cache before sending anything to the Pending tables. The GIC-700 is not optimized for
collating LPIs that have the same INTID. However the system is designed to reorder and sort the
cache over time. In some circumstances, this behavior can cause duplicated interrupts to not be
collated efficiently. However, the reduced use of the Pending table, results in better latency bounds
under load.

This method of caching means that priorities are associated with an incoming LPI and remain with it
until it is serviced. The GIC does not accept changes in the LPI Property table, until the relevant INV
and SYNC commands are executed through an ITS, GICR_INVLPIR, or GICR_INVALLR.

Up to 16 concurrent INV commands can be run at a time. The GIC sets GICR_SYNCR.BUSY to zero
as soon as the INV is hazarded and any matching interrupts have been recalled from the target PE.

The command slot becomes free after the GIC discovers that the interrupt does not exist in the
cache, which might require a linear search depending on load and cache contents. If the cache
overflows, then it might also be necessary to check the Pending table for the invalidated ID.

The GIC-700 considers priority and enable when choosing data to retain in the cache. However,
pending interrupts always take priority over interrupts that are not pending, so there is no
guarantee that the highest priority interrupt data always remains stored in the cache.

See the GICD_UTILR register for information about how software can use the utilization engines to
optimize the LPI cache contents.

Related information
Distributor configuration on page 36

4.11.5 Choosing between LPIs and SPIs

Message-based interrupts can be either LPIs or SPIs.

The decision by software to use an LPI or SPI for an interrupt, depends on whether there are
message-based SPIs available and if the GIC-700 has LPI support. The allocation of message-based

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

SPIs is set during the GIC configuration process. Also, if the hardware ensures that an spi signal
is held to a logic level that represents the inactive state, then software can use that SPI ID as a
message-based SPI.

The interrupt type can be selected by either making the peripheral write to a different GIC-700
address, or by changing the address translation for the interrupt write in the SMMU. Changing
only the SMMU is possible because the registers for Non-secure message-based interrupts,
GICD_SETSPI_NSR, and GITS_TRANSLATER, are at the same address offset in different pages.

The following factors can help you to decide which interrupt type is most appropriate:

• Only the ITS provides INTID translation, therefore LPIs are preferable for peripherals that a
virtual machine owns. This is because the hypervisor can let the virtual machine program the
peripheral directly, and the ITS converts the virtual machine interrupt IDs to unique physical
IDs.

• In GIC architecture version 4.1, the hypervisor can route LPIs directly to a virtual machine.
However, SPIs that target a virtual machine, interrupt the hypervisor and are inserted through
the CPU interface list registers.

• LPIs are always Group 1 Non-secure, so message-based interrupts that target Secure software
must use SPIs.

• Only SPIs are able to target all cores, which means that the GIC-700 attempts to automatically
balance the interrupt load to cores that are active but not handling other interrupts.

• The GIC-700 can provide more LPIs than SPIs.

• You might decide not to include LPI support in a small system where the features of the ITS are
not required and there are few message-based interrupts.

• SPIs usually have a better worst-case interrupt latency than LPIs. This difference is because
SPIs have all their settings stored internally to the GIC-700, whereas LPIs that are not cached
require external memory accesses. The cache hit rate is expected to be higher for the LPIs
that occur more frequently. Therefore, we recommend using SPIs for any latency-sensitive
interrupts that are expected to occur infrequently.

For more information, see the GICv3 and GICv4 Software Overview.

4.11.6 LPI error recovery procedure

Uncorrectable LPI errors can occur in either the LPI cache or the TGT cache. In both cases, the GIC
reports the error in the GICT_ERR10MISC1 register and normal operation continues.

When an uncorrectable error occurs, the GICT_ERR<n>MISC1 register contains the RAM contents
of the corrupted line. The line in RAM is dropped, and any pending interrupts that it might contain
are lost.

Software can use the data in the GICT_ERR<n>MISC1 register to check several interrupt sources,
such as the corrupted INTID. This ID is never more than 2 bits away from the recorded ID. In this
case, no recovery in the GIC is required, other than to clear the error record.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 309

https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

Software must decide whether to abort, check interrupt sources, or continue with the expectation
that the interrupt source repeats the LPI.

4.12 Memory access and attributes
The LPI and ITS translations and properties are located in memory tables whose locations are
defined in registers that specify their base address, size, and access attributes.

We recommend that all tables are placed in Normal memory. All ITS tables are private, and after
allocation, only the GIC accesses them. However, the LPI Property table and ITS Command queue
are written to by cores, and read by the GIC.

The following table shows the a<x>cache and a<x>domain signal mappings for the memory
transactions that the GIC generates.

Table 4-4: Memory access registers

Access type Register Mapping control bit1

LPI Property table GICR_PROPBASER

LPI Pending table GICR_PENDBASER

LPI virtual Property tables

LPI virtual Pending tables

ITS VMAPP command

vPE Configuration table GICR_VPROPBASER and GITS_BASER2

GICD_FCTLR2.DCC

ITS Device table GITS_BASER0

ITS translation table GITS_BASER0

ITS Collection table GITS_BASER1

ITS Command queue GITS_CBASER

GITS_FCTLR.DCC

The main Cacheability value is derived from the *BASER*.OuterCache field, unless it is zero, in
which case the Cacheability value is a value that the following table shows.

Table 4-5: Cacheability values

Main Cacheability value
(*BASER*.OuterCache)

Other Cacheability
value
(*BASER*.InnerCache)

arcache
signal

awcache
signal

arcache
signal
(DCC = 1)

awcache
signal
(DCC = 1)

0b000, Device-nGnRnE - 0b0010 0b0010 0b0010 0b0010

Match 0b0011 0b0011 0b0011 0b00110b001, Normal Non-cacheable

No match 0b0011 0b0011 0b0011 0b0011

Match 0b0011 0b0011 0b1110 0b01100b010, Normal Cacheable RA Write-Through

No match 0b0011 0b0011 0b1110 0b0110

Match 0b1111 0b0111 0b1111 0b01110b011, Normal Cacheable RA Write-Back

No match 0b0011 0b0011 0b1111 0b0111

0b100, Normal Cacheable WA Write-Through Match 0b0011 0b0011 0b1010 0b1110

1 The mappings are designed for the Armv8, Armv8.2, and Armv8.4 generation of cores. However, setting this bit
converts the GIC-700 to full featured mapping.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

Main Cacheability value
(*BASER*.OuterCache)

Other Cacheability
value
(*BASER*.InnerCache)

arcache
signal

awcache
signal

arcache
signal
(DCC = 1)

awcache
signal
(DCC = 1)

No match 0b0011 0b0011 0b1010 0b1110

Match 0b1011 0b1111 0b1011 0b11110b101, Normal Cacheable WA Write-Back

No match 0b0011 0b0011 0b1011 0b1111

Match 0b0011 0b0011 0b1110 0b11100b110, Normal Cacheable WA RA Write-
Through No match 0b0011 0b0011 0b1110 0b1110

Match 0b1111 0b1111 0b1111 0b11110b111, Normal Cacheable WA RA Write-Back

No match 0b0011 0b0011 0b1111 0b1111

The a<x>domain signal is driven according to the *BASER*.Shareability field unless the resultant
Cacheability is Device or Non-cacheable, in which case it becomes 0b11, system Shareable in
accordance with the AMBA® AXI Protocol Specification.

4.12.1 MPAM information

The GIC-700 supports Memory Partitioning and Monitoring (MPAM) and it assigns PARTIDR and
PMG values to all memory accesses that it issues on the ACE5-Lite manager interface.

There is one copy of GICR_PARTIDR for all cores on a chip, so the cores must all use the same
value.

GICR_PARTIDR is used for all accesses apart from ITS tables that use GITS_PARTIDR.

Accesses to the vPE Configuration table use either GICR_PARTIDR when at least one
GICR_VPROPBASER is valid, or alternatively the GITS_BASER of the issuing ITS.

MPAM has no effect on cache allocation or partitioning within the GIC.

4.13 Power management
The GIC-700 can be powered down by the system power controller. The GIC also supports
the power controller powering down the cores that the GIC services. The GICR_WAKER and
the GICR_PWRR registers provide bits to control functions that are associated with power
management.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 309

https://developer.arm.com/documentation/ihi0022/j

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.13.1 Redistributor power management

At reset, the Redistributors are considered to be powered down. To power up the Redistributors,
software must use the GICR_PWRR register.

This requirement is true for all GIC-700 configurations.

The GICR_PWRR register can control Redistributor power management either by operating
through the core, or through the Redistributor.

If operating through the core, each core must program its GICR_PWRR.RDPD = 0 and
GICR_PWRR.RDAG = 0 to ensure that the Redistributor powers up. Alternatively, a single core
can power up the Redistributor for all cores that connect to the same Redistributor by writing
GICR_PWRR.RDPD = 0 and GICR_PWRR.RDAG = 1.

You can use GICR_PWRR.RDG to identify which core shares a Redistributor.

The powerdown sequence is shown in the following pseudocode:

Power off (setting RDPD to 1):
 // Check group not transitioning.
 repeat
 until (GICR_PWRR.RDGPD == GICR_PWRR.RDGPO)

 // Write to power the CPU off.
 GICR_PWRR.RDPD = 1;

The powerup sequence is shown in the following pseudocode:

Power on (setting RDPD to 0):
 repeat
 // Check group not transitioning.
 repeat
 until (GICR_PWRR.RDGPD == GICR_PWRR.RDGPO)

 // Write to power the CPU on.
 GICR_PWRR.RDPD = 0;

 // Check access, if RDPD == 0 then powered on.
 until (GICR_PWRR.RDPD == 0)

GICR_PWRR must be accessed using the GICR address space that relates to the core being
powered on or off.

Some GICR_* registers are not accessible until software programs GICR_PWRR.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.13.2 Processor core power management

The GIC architecture defines the programming sequence to safely power down a core that
connects to the GIC-700.

The powerdown programming sequence uses the GICR_WAKER.ProcessorSleep bit. When all cores
within a cluster are powered down using the architectural sequence, you can power gate the GIC
Stream interface for that cluster.

Before a core is powered down, you must set the GICR_WAKER.ProcessorSleep bit to 1. The
core must then poll the GICR_WAKER.ChildrenAsleep bit to ensure that there are no outstanding
transactions on the GIC Stream interface of the core.

To ensure that there are no interrupts during the powerdown of the core, in a typical powerdown
sequence you must:

1. Mask interrupts on the core.

2. Clear the CPU interface enables.

3. Set the interrupt bypass disable on the CPU interface.

The core powerdown sequence that you use must match the core powerdown
sequence that is described in the Technical Reference Manual for your
processor.

When a core is powered down and the GICR_WAKER.ProcessorSleep bit is set to 1, if the GIC-700
receives an interrupt that targets only that core, the Wake Request block asserts the wake_request
signal that corresponds to that core. The wake_request signal must connect to the system power
controller. See 3.6 Wake Request on page 53.

You must not set the GICR_WAKER.ProcessorSleep bit to 1, unless the core enters a power
state where the GIC-700 uses the power controller to wake the core instead of the GIC Stream
interface. For example, with Arm® Cortex®-A53 and Cortex®-A57 processors, if a core enters a
low-power state that is based on the Wait For Interrupt (WFI) or Wait For Event (WFE) instructions,
such as retention, you must not set the GICR_WAKER.ProcessorSleep bit to 1.

Interrupts can cause the core to leave the low-power state, entered by executing a WFI or WFE
instruction, as defined in the Arm® Architecture Reference Manual for A-profile architecture. The
system integrator can use a cpu_active signal to ensure that interrupts that can target multiple
cores are much less likely to target cores in certain low-power states. In such a system, software
has more control of the conditions under which cores leave low-power states.

Interrupts that target only one core are unaffected by the cpu_active signal and are always sent to
that core. Moreover, if the GICR_WAKER.ProcessorSleep bit for that core is set, the wake_request
signal is asserted for that core.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 309

https://developer.arm.com/documentation/ddi0487/ja

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

See the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version
3 and version 4 for information about power management, and about wakeup signals and their
relation to the core outputs.

4.13.3 Power control and P-Channel

You can use the P-Channel to isolate a chip from the system.

The P-Channel has the following states:

 RUN (pstate signal == 0x0)
The normal functional mode

 CONFIG (pstate signal == 0x9)
The GIC does not send any cross-chip messages. It accepts incoming messages but does not
process them.

 OFF (pstate signal == 0xF)
The GIC does not send any cross-chip messages and does not accept any incoming
messages. The icrdtready signal is clamped LOW to prevent accesses entering the GIC.

While in both the CONFIG and OFF states, register accesses that are normally sent to another chip
are serviced locally. Therefore, the Routing table registers read the local versions instead of the
copies of the Routing table owner. The same is true for SPIs that are owned remotely. Therefore, it
is safe to save and restore the Distributor register values in either of these P-Channel states.

The GIC can exit reset in either the RUN or OFF states by setting the initial value of the pstate
signal. If you have saved register values and intend to restore them, you must use the OFF state
and restore the Routing table first, before attempting to restore any SPI registers.

Related information
Isolating a chip from the system on page 276

4.13.4 SPI RAM retention

If the GIC is regularly powered down and reset, then saving and restoring state can be time
consuming when there are many SPIs. At the exit of reset, the spi_ram_retained signal enables the
GIC to trust the SPI programming state that the RAMs contain.

The u_spi_ram0 and u_spi_ram1 instances store the state of the following registers:

• GICD_IGROUPRn(E)

• GICD_ISENABLERn(E)

• GICD_ISPENDRn(E)

• GICD_ISACTIVERn(E)

• GICD_IPRIORITYRn(E)

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

• GICD_ICFGRn(E)

• GICD_IGRPMODRn(E)

• GICD_NSACRn(E)

• GICD_IROUTERn(E)

• GICD_I*ERR*

If the spi_ram_retained signal is HIGH when GIC-700 exits reset, then the GICD trusts the data in
the u_spi_ram0 and u_spi_ram1 RAM instances.

The GIC-700 does not drive the RAM retention signals. Therefore, after the GIC enters the
QSTOPPED state, some other logic must drive the RAM retention signals.

Entering SPI RAM retention
To prepare for SPI RAM retention, perform the following steps:

1. Ensure that the GIC is IDLE by:

a. Completing the GICR_WAKER.ProcessorSleep handshake for all PEs.

b. Clear the GICD_CTLR.Enable* bits for all groups and then poll for GICD_CTLR.RWP == 0.

2. Put all SPI Collators into the Q_STOPPED state.
This step ensures that no more interrupts can arrive from the SPI Collators. The SPI Collators
deny any interrupts that are not in their idle state. Depending on the system configuration, the
system might need to include some external interrupt masking.

3. Put the GIC into the Q_STOPPED state by using the GICD Q-Channel interface.

4. The system drives the necessary signals to the SPI RAMs, to put them into retention.
The system integrator could use the RAM I/O sideband signals to connect the retention signals
to the RAM instances. See B.7 RAM I/O signals on page 290.

The system can now safely power down the GIC.

Restoring from SPI RAM retention
To restore from SPI RAM retention, perform the following steps:

1. Power up the GIC.

2. Drive the spi_ram_retained signal HIGH before exiting reset.
Only change the state of the spi_ram_retained signal while in reset.

3. Exit reset on the GICD.

4. Reprogram the GIC as normal, except that all registers that scale with SPIs retain their values.
Software must program all Redistributor registers (GICR) and common non-scaling registers
such as GICD_CTLR.

5. Put the GIC into the Q_RUN state, by using the GICD Q-Channel interface.

6. Put all SPI Collators into the Q_RUN state.

7. Set the GICD_CTLR.Enable* bits for all groups and then poll for GICD_CTLR.RWP == 0.

8. Wake all the PEs.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.14 Performance Monitoring Unit
The GIC-700 contains a PMU for counting the main GIC events from the Distributor and any
configured ITS blocks on the same chip.

The PMU does not track GIC Cluster Interface (GCI) events. Software can count the
delivery of PPI and SGI interrupts by recording calls to the core interrupt service
routine.

The GIC events are described in Table 5-108: GICP_EVTYPERn.EVENT field encoding on page
251.

The PMU has five counters with snapshot capability and overflow interrupt.

Secure and Non-secure interrupts are counted together so Non-secure software cannot, by default,
access the GICP (PMU) register space. However, Secure software can decide to allow access. Non-
secure software can be given access to the GICP (PMU) register space by either:

• Software programming the GICD_SAC.GICPNS bit to 1

• Setting the gicp_allow_ns tie-off signal HIGH, during silicon integration

If GICD_CTLR.DS == 1, the GICP register space is accessible to all software.

Overflow interrupt
Software can enable the overflow interrupt for each counter by setting the relevant bit
of GICP_INTENSET0. For example, bit[0] enables GICP_EVCNTR0 and bit[1] enables
GICP_EVCNTR1. Similarly, software can disable the overflow interrupt enable by corresponding
writes to GICP_INTENCLR0.

When enabled, the interrupt activates at any of these events:

• A write to a GICP_OVSSET0 for any counter

• An overflow on any enabled counter

The GICP_OVSSET0 and GICP_OVSCLR0 registers can be used for save and restore operations
and for testing the correct integration of the pmu_int interrupt signal.

The pmu_int signal can be used to trigger external logic, for example, to trigger a read of the
captured data.

Alternatively, by programming a valid SPI ID into the GICP_IRQCR.SPIID field, the pmu_int signal
SPI is delivered internally in accordance with normal SPI programming.

The GICP_IRQCR.SPIID field must be programmed to 0 if internal routing is not required, or if
internal routing is required, to a legally supported SPI ID. If the programmed ID value is less than 32

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

or out of range, or for multichip configurations, not owned on chip, the register updates to 0 and
no internal delivery occurs.

Snapshot
Each PMU counter GICP_EVCNTRn has a corresponding GICP_SVRn snapshot register. On a
snapshot event, all five counters are copied to their backup registers so that all consistent data is
copied out over a longer period.

The snapshot events are:

• A handshake on the 4-phase sample_req/sample_ack signal external handshake

• A write of 1 to the GICP_CAPR.CAPTURE bit

• An overflow of an enabled counter when GICP_EVTYPERn.OVFCAP is set

There is only one set of snapshot registers, so data is replaced in multiple capture events.

4.15 Reliability, Accessibility, and Serviceability
The GIC-700 uses a range of RAS features for all RAMs, which include Single Error Correction and
Double Error Detection (SECDED), and Scrub, software and bus error reporting.

The GIC makes all necessary information available to software through Armv8.2 RAS architecture-
compliant register space.

4.15.1 Non-secure access

You can control whether Non-secure software has access to the RAS architecture-compliant
register space by using GICD_SAC.GICTNS. The gict_allow_ns tie-off signal sets the reset value of
the GICTNS bit.

If there is an error, and if GICD_CTLR.DS == 0, all SPIs, PPIs, and SGIs resort to a Secure group.
Therefore, interrupt programming is not revealed to the Non-secure side.

4.15.2 Error record classification

The GIC reports errors in Armv8.2 RAS architecture-compliant error records, which are accessible
through the ACE5-Lite subordinate programming interface.

The classes of error records are:

• Correctable ECC errors

• Uncorrectable ECC errors

• ITS command and translation errors

• Software access errors

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

The error records have a separate reset so that they can be read after a main GIC reset to
determine any problems.

4.15.3 Error recovery and fault handling interrupts

You can assign a recorded correctable ECC error to the fault handling interrupt by setting
GICT_ERR<n>CTLR.CFI.

All correctable ECC errors have error counters, so the interrupt only fires when the counter in the
associated GICT_ERR<n>MISC0 register overflows. You can preset the counter to any value by
writing to GICT_ERR<n>MISC0.Count. For example, to fire an interrupt on any correctable error,
write 0xFF, or to fire an interrupt on every second correctable error, write 0xFE.

You can assign a recorded uncorrectable ECC error either to the fault handling interrupt, fault_int
signal, by setting GICT_ERR<n>CTLR.FI, or to the error recovery interrupt, err_int signal, by setting
GICT_ERR<n>CTLR.UI. The interrupt fires on every uncorrectable interrupt occurrence irrespective
of the counter value.

You can route the fault_int and err_int signals out as interrupt wires for situations where error
recovery is handled by a core that does not receive interrupts directly from the GIC, such as
a central system control processor. Alternatively, you can drive each interrupt internally by
programming the associated GICT_ERRIRQCR<n> register.

Each GICT_ERRIRQCR<n> register contains an ID field that must be programmed to 0 if
internal routing is not required, or if internal routing is required, to a legally supported SPI ID.
If the programmed ID value is less than 32, out of range, or not owned on chip for multichip
configurations, the register updates to 0 and no internal delivery occurs.

We recommend that if the err_int and fault_int signals are internally routed, the target interrupts
must not have SPI Collator wires, or if they are present they are tied off. This recommendation
prevents software checking for the same ID at multiple destinations.

The err_int and fault_int signals do not have direct test enable registers. You can test connectivity
using error record 0 and triggering an error, such as an illegal AXI access to a nonexistent register.

4.15.4 Error handling records

The GIC-700 has several error records. The range of error handling records that are available
depends on the configuration of the GIC-700.

The following table lists the GIC-700 error handling records. The Type column uses the following
acronyms:

 CE Correctable error
 UEO Restartable error and contained
 UER Recoverable error

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

Table 4-6: Error handling records

Record Description Type Description, events, and recovery sequences

0 Software error in GICD programming UEO Table 4-7: Software errors, record 0 on page 95

1 Correctable SPI RAM errors CE

2 Uncorrectable SPI RAM errors UER

Table 4-8: SPI RAM errors, records 1-2 on page 101.
GICT_ERR<n>STATUS.SERR == 7, data value from associative memory.

3 Correctable SGI RAM errors CE

4 Uncorrectable SGI RAM errors UER

Table 4-9: SGI RAM errors, records 3-4 on page 102.
GICT_ERR<n>STATUS.SERR == 7, control value from associative
memory.

5 Correctable TGT-SPI cache errors CE

6 Uncorrectable TGT-SPI cache errors UER

Table 4-10: TGT-SPI RAM errors, records 5-6 on page 102.
GICT_ERR<n>STATUS.SERR == 7, control value from associative
memory.

7 Correctable PPI RAM errors CE

8 Uncorrectable PPI RAM errors UER

Table 4-11: PPI RAM errors, records 7-8 on page 103.
GICT_ERR<n>STATUS.SERR == 7, control value from associative
memory.

9 Correctable LPI RAM errors CE

10 Uncorrectable LPI RAM errors UER

Table 4-12: LPI RAM errors, records 9-10 on page 104.
GICT_ERR<n>STATUS.SERR == 7, control value from associative
memory.

Records 9-10 are not present if there is no LPI support.

11 Correctable PTS RAM errors CE

12 Uncorrectable PTS RAM errors UER

4.15.4.7 PTS RAM error records 11-12 on page 104.
GICT_ERR<n>STATUS.SERR == 7, control value from associative
memory.

13 Correctable TGT-LPI RAM errors CE

14 Uncorrectable TGT-LPI RAM errors UER

4.15.4.8 TGT-LPI RAM error records 13-14 on page 104.
GICT_ERR<n>STATUS.SERR == 7, control value from associative
memory.

15 Correctable vICM RAM errors CE

16 Uncorrectable vICM RAM errors UER

4.15.4.9 vICM RAM error records 15-16 on page 105.
GICT_ERR<n>STATUS.SERR == 7, control value from associative
memory.

Records 15-24 are not present if there is no vLPI support.

17 Correctable vICM-VSPA RAM errors CE

18 Uncorrectable vICM-VSPA RAM errors UER

4.15.4.10 vICM-VSPA RAM error records 17-18 on page 105.
GICT_ERR<n>STATUS.SERR == 7, control value from associative
memory.

19 Correctable vTGT-VSTR RAM errors CE

20 Uncorrectable vTGT-VSTR RAM errors UER

4.15.4.11 vTGT-VSTR RAM error records 19-20 on page 106.
GICT_ERR<n>STATUS.SERR == 7, control value from associative
memory.

21 Correctable vTGT-VRES RAM errors CE

22 Uncorrectable vTGT-VRES RAM errors UER

4.15.4.12 vTGT-VRES RAM error records 21-22 on page 107.
GICT_ERR<n>STATUS.SERR == 7, control value from associative
memory.

23 Correctable vTGT-Search RAM errors CE

24 Uncorrectable vTGT-Search RAM
errors

UER

4.15.4.13 vTGT-Search RAM error records 23-24 on page 107.
GICT_ERR<n>STATUS.SERR == 7, control value from associative
memory.

25 Correctable error from ITS RAM CE

26 Uncorrectable error from ITS RAM UEO

Table 4-20: ITS RAM errors, records 25-26 on page 108.
GICT_ERR<n>STATUS.SERR == 6, data value from associative memory.

27-27+ITS_NUM ITS command and translation errors UER 4.15.4.15 ITS command and translation error records 27+ on page
109.
GICT_ERR<n>STATUS.SERR == 14, illegal access.

One record for each ITS on the chip.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

Record Description Type Description, events, and recovery sequences
62 Correctable error from CC RAM CE

63 Uncorrectable error from CC RAM UEO

4.15.4.16 CC RAM error records 62-63 on page 124

4.15.4.1 Software error record 0

Software error record 0 records software errors that are uncorrectable.

Record 0 contains software programming errors from a wide range of sources within the GIC-700.
In general, these errors are contained. For uncorrected errors, the information that is provided gives
enough information to enable recovery without significant loss of functionality.

We recommend that record 0 is connected to a high priority interrupt. This connection prevents
the record from overflowing if it receives more errors than it is able to process with the possible
loss of information that is required for recovery. See 4.15.3 Error recovery and fault handling
interrupts on page 93 for more information.

The following table describes the syndromes that are recorded in record 0, the reported
information, and recovery instructions.

Table 4-7: Software errors, record 0

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.
Data description
(other bits RES0)
Always packed from
0 (lowest = 0)

Recovery, prevention

0x0, SYN_ACE_BAD
Illegal ACE5-Lite subordinate access.

0xE AccessRnW, bit[12]
AccessSparse, bit[11]

AccessSize, bits[10:8]

AccessLength,
bits[7:0]

Repeat illegal access, with appropriate size and
properties.
Full access address is given in GICT_ERR0ADDR.

0x1, SYN_PPI_PWRDWN
Attempt to access a powered down
Redistributor.

0xF Redistributor,
bits[24:16]
Core, bits[8:0]

Ensure that the Redistributor is powered up before
accessing. See GICR_PWRR.
Attempt was made by the core reported in MISC0.

0x2, SYN_PPI_PWRCHANGE
Attempt to power down
Redistributor rejected.

0xF Redistributor,
bits[24:16]
Core, bits[8:0]

Ensure that the core accessing the register, or
all cores with the same GICR_PWRR.RDG if
GICR_PWRR.RDAG is set, has completed the
GICR_WAKER.ProcessorSleep handshake.

0x4, SYN_PROPBASE_ACC
Attempt to reprogram PROPBASE
registers to a value that is not
accepted because another value is
already in use.

0xF Core, bits[8:0] GICR_PROPBASER is shared between all cores
on a chip. When any GICR_CTLR.Enable_LPIs bit
is set, the value is locked and cannot be updated
unless a complete GICR_WAKER.Sleep handshake
is complete.
See A.2 Other power management on page 271.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.
Data description
(other bits RES0)
Always packed from
0 (lowest = 0)

Recovery, prevention

0x5, SYN_PENDBASE_ACC
Attempt to reprogram PENDBASE
registers to a value that is not
accepted because another value is
already in use.

0xF Core, bits[8:0] When any GICR_CTLR.Enable_LPIs bit is set, the
Shareability, InnerCache, and OuterCache fields
are locked for the whole chip. They can only be
changed by completing the GICR_WAKER.Sleep
handshake.
See A.2 Other power management on page 271.
Otherwise, repeat the register access using the
current global values.

0x7, SYN_WAKER_CHANGE
Attempt to change GICR_WAKER
abandoned due to handshake rules.

0xF Core, bits[8:0] GICR_WAKER.ProcessorSleep and
GICR_WAKER.ChildrenAsleep form a 4-phase
handshake. The attempt to change state must
be repeated when the previous transition has
completed.

0x8, SYN_SLEEP_FAIL
Attempt to put GIC to sleep failed as
cores are not fully asleep.

0xF Core, bits[8:0] All cores must be asleep, using the
GICR_WAKER.ProcessorSleep handshake, before
you flush the LPI cache using GICR_WAKER.Sleep.

0x9, SYN_PGE_ON_QUIESCE
Core put to sleep before its Group
enables were cleared.

0xF Core, bits[8:0] The core must disable its group enables before
it toggles the GICR_WAKER.ProcessorSleep
handshake, otherwise, the GIC clears its record of
the Group enables, causing a mismatch between
the GIC and the core.

0x10, SYN_SGI_NO_TGT
SGI sent with no valid destinations.

0xE Core, bits[8:0] If the SGI is required, software must repeat the SGI
from the reported core with a valid target list.
If this level of RAS functionality is required, the
software must track generated SGIs externally.

0x11, SYN_SGI_CORRUPTED
SGI corrupted without effect.

0x6 Core, bits[8:0] An SGI is corrupted due to a RAM error in the
PPI RAM. The RAM error details are reported
separately in record 8. The GIC ignores the SGI
generated from the recorded core. If you want
software to recover from this error, it must use an
external record of the generated SGI.

0x12, SYN_GICR_CORRUPTED
Data was read from GICR register
space that has encountered an
uncorrectable error.

0x6 GICT_ERR0ADDR is
populated

Software has tried to read corrupted data that is
stored in SGI RAM or PPI RAM. Check records 4
and 8, and perform a recovery sequence for those
interrupts.

0x13, SYN_GICD_CORRUPTED
Data was read from GICD register
space that encountered an
uncorrectable error.

0x6 GICT_ERR0ADDR is
populated

Software has tried to read corrupted data that is
stored in SPI RAM.
Check record 2 and perform a recovery sequence
for those interrupts.

0x14, SYN_ITS_OFF
Data was read from an ITS that is
powered down.

0xF GICT_ERR0ADDR is
populated

Ensure that the qreqn_its<x> signal power control
Q-Channel is in the RUN state before accessing
the relevant ITS.

0x18, SYN_SPI_BLOCK
Attempt to access an SPI block that is
not implemented.

0xE Block, bits[4:0] No recovery is required.
Correct the software.

0x19, SYN_SPI_OOR
Attempt to access a non-
implemented SPI using (SET|CLR)SPI.

0xE ID, bits[9:0] Reprogram the issuing device so that it sends a
supported SPI ID.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.
Data description
(other bits RES0)
Always packed from
0 (lowest = 0)

Recovery, prevention

0x1A, SYN_SPI_NO_DEST_TGT
An SPI has no legal target
destinations.

0xF ID, bits[9:0] Before enabling the specified SPI, reprogram the
SPI to target an existing core.
The same SPI might repeat this error several times
and cause an overflow.

0x1B, SYN_SPI_NO_DEST_1OFN
A 1 of N SPI cannot be delivered due
to bad GICR_CTRL.DPG<0|1NS|1S>
or GICR_CLASSR programming.

0xF ID, bits[9:0] Ensure that there is at least one valid target for
the specified 1 of N interrupt, that is, ensure that
at least one core has acceptable DPG and CLASS
settings to enable delivery.
The same SPI might repeat this error several times
and cause an overflow.

0x1C, SYN_COL_OOR
A collator message is received for
a non-implemented SPI, or is larger
than the number of owned SPIs in a
multichip configuration.

0xF ID, bits[9:0] In a multichip configuration, ensure that there are
enough owned SPIs to support all SPI wires that
are used. Any unsupported interrupts must be
disabled at the source.

0x1D, SYN_DEACT_IN
A Deactivate command to a
nonexistent SPI, or with incorrect
groups set. Deactivate commands
to LPI and nonexistent PPI are not
reported.

0xE None A Deactivate command occurred to a
nonexistent SPI, or that SPI group prevents the
deactivate occurring. Software must check the
active states of SPIs.

0x25, SYN_VSGI_OFFLINE
Pending vSGI to a vPEID mapped to
an offline chip.

0xF Chip [log2(chips)−1:0]
ID (multi-hot) [15:0]

vPEID[log2(vpes)−1:0]

Software must ensure that vPEs are either moved
off chips or unmapped, before it takes the chip
offline.

0x30, SYN_VSGI_UNMAPPED
Pending vSGI to a vPEID that is not
mapped.

0xF ID (multi-hot) [15:0]
vPEID[log2(vpes)−1:0]

Software must not attempt to generate vSGIs to
unmapped vPEs.

0x33, SYN_VSGI_LOST
Pending vSGI to a vPEID that has
inconsistent mapping information
across multiple chips.

0xF ID (multi-hot) [15:0]
vPEID
[log2(vpes)−1:0]

Software must check for any reported
uncorrectable errors. Software must also
ensure that it issues the correct sequence of
VMAPP(V=xA=x) commands, as the Arm®

Generic Interrupt Controller Architecture
Specification, GIC architecture version 3 and
version 4 describes.

0x34, SYN_VPT_READ_FAIL
An attempt was made to read the
vPE configuration from the virtual
Pending table, with an error received
with the read response.

0x12 vPEID
[log2(vpes)−1:0]

Software must check the memory system and
ensure that a valid and accessible address has been
provided in the VMAPP(V1A1) command.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.
Data description
(other bits RES0)
Always packed from
0 (lowest = 0)

Recovery, prevention

0x35, SYN_VPT_WRITE_FAIL
An attempt was made to write the
vPE configuration to the virtual
Pending table, with an error received
with the write response.

The vICM reports bad write
responses on the chip where the
access occurs, rather than the chip
that contains the ITS that generated
the command or interrupt.

0x12 vPEID
[log2(vpes)−1:0]

Software must check the memory system and
ensure that a valid and accessible address has been
provided in the VMAPP(V1A1) command.

0x39, SYN_VPE_CFG_PTR_FAIL
An attempt was made to access an
indirect vPE Configuration table with
an invalid level 2 pointer.

0xD vPEID
[log2(vpes)−1:0]

Software must ensure that the L1 entries in the
vPE Configuration table, point to legal accessible
memory.

0x3A,
SYN_VPE_CFG_TOP_READ_FAIL
An attempt was made to read
the level 1 of an indirect vPE
Configuration table, with an error
received with the read response.

0x12 vPEID
[log2(vpes)−1:0]

Software must ensure that the GITS_BASER2
and GICR_VPROPBASER registers point to legal
accessible L1 table when using indirect tables. If
coincident VICM RAM errors are reported, then
the tracking of vPE error state might be lost.

0x3B,
SYN_VPE_CFG_LEAF_READ_FAIL
An attempt was made to read
the level 2 of an indirect vPE
Configuration table or any vPE
Configuration read when the table is
not indirect, with an error received
with the read response.

0x12 vPEID
[log2(vpes)−1:0]

Software must ensure that the L1 entries in the
vPE Configuration table, point to legal accessible
memory. If coincident VICM RAM errors are
reported, then the tracking of vPE error state
might be lost.

0x3C, SYN_VPE_CFG_WRITE_FAIL
An attempt was made to write
the level 2 of an indirect vPE
Configuration table or any vPE
Configuration write when the table
is not indirect, with an error received
with the write response.

The vICM reports bad write
responses on the chip where the
access occurs, rather than the chip
that contains the ITS that generated
the command or interrupt.

0x12 vPEID
[log2(vpes)−1:0]

Software must ensure that the L1 entries in the
vPE Configuration table, point to legal accessible
memory.

0x3D, SYN_VPE_CFG_OVERFLOW
A vPE Configuration table access was
aborted due to table entry overflow
in the address space.

0xD vPEID
[log2(vpes)−1:0]

Software must not program the vPE Configuration
table address to a value that might cause
subsequent table accesses to overflow the
available memory.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.
Data description
(other bits RES0)
Always packed from
0 (lowest = 0)

Recovery, prevention

0x40, SYN_LPI_PROP_READ_FAIL
An attempt was made to read
properties for a single interrupt,
where an error response was
received with the data.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Software must reprogram the LPI Property table
for the specified ID with error-free data and then
issue an INV command through the ITS. If an
overflow occurred, an INVALL command must be
issued to all cores.

0x41, SYN_PT_PROP_READ_FAIL
An attempt was made to read
properties for a block of interrupts,
where an error response was
received with the data.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Software must reprogram the LPI Property table
for the specified ID with error-free data and then
issue an INV command through the ITS. If an
overflow occurred, an INVALL command must be
issued to all cores.

0x42,
SYN_PT_COARSE_MAP_READ_FAIL
An attempt was made to read the
coarse map for a target, where an
error response was received with the
data.

0x12 Virtual, bit[30]
Target, bits[29:16]

No recovery is necessary because the GIC
assumes that the coarse map is full.

0x43,
SYN_PT_COARSE_MAP_WRITE_FAIL
An attempt was made to write the
coarse map for a target, with an error
received with the write response.

0x12 Virtual, bit[30]
Target, bits[29:16]

The GIC attempts to continue, however this error
indicates issues with the memory system, and
operation might be unpredictable.

0x44, SYN_PT_TABLE_READ_FAIL
An attempt was made to read a
block of interrupts from a Pending
table, where an error response was
received with the data.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Software must determine the reason for the
pending error read fail. The GIC uses the data
that is supplied, however, it is possible for the LPI
interrupt to be lost around the specified LPI.

0x45, SYN_PT_TABLE_WRITE_FAIL
An attempt was made to write-back
a block of interrupts from a Pending
table, with an error received with the
write response.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

The GIC tries to continue, however, this error
indicates issues with the memory system, and
operation might be unpredictable.

0x46,
SYN_PT_SUB_TABLE_READ_FAIL
An attempt was made to read a
subblock of interrupts from a Pending
table, where an error response was
received with the data.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Software must determine the reason for the
pending error read fail. The GIC uses the data
that is supplied, however, it is possible for the LPI
interrupt to be lost around the specified LPI.

0x47,
SYN_PT_TABLE_WRITE_FAIL_BYTE
An attempt was made to write-back a
subblock of interrupts from a Pending
table, with an error received with the
write response.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

The GIC tries to continue, however, this error
indicates issues with the memory system, and
operation might be unpredictable.

0x48, SYN_DBL_PROP_READ_FAIL
An attempt was made to read
properties for a single doorbell,
where an error response was
received with the data.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Software must ensure that GICR_PROPBASER
registers point at a legal accessible LPI property
table. The doorbell is cached as disabled so a
recovery attempt must issue an INVDB command
to the specified vPE.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

GICT_ERR<n>STATUS.IERR
(Syndrome)

GICT_ERR<n>STATUS
.SERR

GICT_ERR<n>MISC0.
Data description
(other bits RES0)
Always packed from
0 (lowest = 0)

Recovery, prevention

0x50, SYN_VPROPBASER_DATA
An attempt was made to program
additional GICR_VPROPBASER.Valid
bits with data mismatching
GICR_VCFGBASER.

0xF CPU [log2(cpus)−1:0] Software must ensure that the following registers
point at the same table in memory:

• All GICR_VPROPBASER registers (with
GICR_VPROPBASER.Valid == 1).

• All GITS_BASER2 registers with corresponding
GITS_CTLR.Enabled == 1 of ITS and GICD
blocks on the same chip.

0x52, SYN_VERRR_BUSY
An attempt was made to access
GICR_VERRR while the register is
busy from a previous operation.

0xF CPU [log2(cpus)−1:0] When using GICR_VERRR to extract debug
information, then software must ensure that
GICR_VERRR.Busy = 0.
Note:
There is one common copy of GICR_VERRR that
is shared between all GICR register spaces.

0x53, SYN_VERRR_ALLOC
An attempt was made to access
GICR_VERRR while there is no vPE
Configuration table allocation.

0xF CPU [log2(cpus)−1:0] Before software attempts to use GICR_VERRR, it
must ensure that the vPE Configuration table is
allocated with either GICR_VPROPBASER.Valid ==
1 or GITS_CTLR.Enabled == 1.

0x54, SYN_VERRR_VPE_OOR
A request was made to GICR_VERRR
with a vPEID that is out of range.

0xE CPU [log2(cpus)−1:0] When using GICR_VERRR, software must only
access vPEs within the range that the allocated
vPE Configuration table specifies.

0x56, SYN_VSGIR_ALLOC
An attempt was made to access
GICR_VSGIR while there is no vPE
Configuration table allocation.

0xF CPU [log2(cpus)−1:0] Before software attempts to use GICR_VSGIR, it
must ensure that the vPE Configuration table has
been allocated with either GICR_VPROPBASER or
GITS_BASER2.

0x57, SYN_VSGIR_VPE_OOR
A request was made to GICR_VSGIR
with a vPEID that is out of range.

0xE CPU [log2(cpus)−1:0] When software uses GICD_VSGIR, it must only
access vPEs within the range that the allocated
vPE Configuration table specifies.

0x58, SYN_VINV_BUSY
An attempt was made to access
GICR_VINVCHIPR while the register
is busy from a previous operation.

0xF CPU [log2(cpus)−1:0] Before software attempts to start an invalidate
operation, it must ensure that GICR_VINVCHIPR is
not busy by checking that GICR_VINVCHIPR.Valid
== 0.

0x59, SYN_VINV_ALLOC
An attempt was made to access
GICR_VINVCHIPR while there is no
vPE Configuration table allocation.

0xF CPU [log2(cpus)−1:0] Before software attempts to use
GICR_VINVCHIPR, it must ensure that the vPE
Configuration table has been allocated with either
GICR_VPROPBASER or GITS_BASER2.

0x70, SYN_ITS_REG_INV_BUSY
An attempt was made to invalidate
an interrupt while register busy.

0xF Core, bits[31:16]
Data, bits[15:0]

Software must ensure that either or both of the
GICR_INVLPI and GICR_INVALLR registers are idle,
by checking GICR_SYNCR before, or after, each
use.

0x71, SYN_ITS_REG_INV_OOR
An attempt was made to invalidate
an OOR interrupt.

0xE Core, bits[31:16]
Data, bits[15:0]

Software must ensure that the ID that is provided
to GICR_INVLPIR is an LPI or vLPI ID. Also,
GICR_WAKER.Sleep is not set and for physical LPIs
that GICR_CTLR.Enable_LPI is set.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.15.4.2 SPI RAM error records 1-2

SPI RAM error record 1 records RAM ECC errors that are correctable. SPI RAM error record 2
records RAM ECC errors that are uncorrectable.

The GIC-700 has two SPI RAM, SPI0 and SPI1 that contain the programming for SPIs. SPI0
contains SPIs that have even-numbered IDs, and SPI1 contains SPIs that have odd-numbered IDs.

If a correctable error is detected in SPI RAM, it is corrected and the error is reported in error record
1. See 4.15.3 Error recovery and fault handling interrupts on page 93 for information about the
error counters and interrupt generation options.

Correctable errors do not require software to take any action within the GIC. However, software
can choose to track error locations in case a RAM row or column can be repaired, and the RAM has
repair capability.

The GICT_ERR1MISC0 reports data for SPI error records 1-2 shown in the following table.

Table 4-8: SPI RAM errors, records 1-2

Record GICT_ERR1MISC0.Data

1 = Correctable • Bit location, bits[31:log2(SPIs)]

• ID, bits[log2(SPIs) − 1:0]

Where SPIs is the number of SPIs that the configuration supports.

2 = Uncorrectable ID, bits[log2(SPIs) − 1:0]

For example, if a GIC configuration supports 512 SPIs then:

• GICT_ERR1MISC0.Data[31:9] is the bit location.

• GICT_ERR1MISC0.Data[8:0] is the ID.

To calculate the INTID:

• If ID ≤ 960, then INTID = 32 + ID.

• If ID > 960, then INTID = 4096 + ID.

The RAM address can be determined from the ID >> 1. ID[0] specifies the SPI RAM number.

Related information
SPI error recovery procedure on page 76

4.15.4.3 SGI RAM error records 3-4

SGI RAM error record 3 records RAM ECC errors that are correctable. SGI RAM error record 4
records RAM ECC errors that are uncorrectable.

The Distributor records a subset of the SGI programming, and stores this information in the SGI
RAM, to ensure that it can make the correct routing decisions for SGIs.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

If a correctable error is detected in SGI RAM, the error is corrected and the error is reported
in error record 3. See 4.15.3 Error recovery and fault handling interrupts on page 93 for
information about the error counters and interrupt generation options.

Correctable errors do not require software to take any action within the GIC. However, the GIC
can choose to track error locations in case a RAM row or column can be repaired, and the RAM has
repair capability.

The GICT_ERR<n>MISC0 reports data for SGI error records 3-4 shown in the following table.

Table 4-9: SGI RAM errors, records 3-4

Record GICT_ERR<n>MISC0.Data

3 = Correctable • Bit location, bits[(ceiling(cores / 16) × 16)]+

• Address, bits[(ceiling(cores / 16) × 16) − 1:0]

4 = Uncorrectable Address, bits[(ceiling(cores / 16) × 16) − 1:0]

The RAM stores information for the same SGI for up to 16 cores on a single row. The corrupted
SGI number is given by:

• address MOD 16 on cores (address − (address MOD 16)) to (address − (address MOD 16)) + 15

GICR_SGIDR contains default values for GICR_IGROUPR0, GICR_IGRPMODR0, and GICR_NSACR
for each SGI.

When an SGI is in error, the GIC operates using the values that GICR_SGIDR contains.

Related information
SGI error recovery procedure on page 68

4.15.4.4 TGT-SPI RAM error records 5-6

TGT-SPI RAM error record 5, records RAM ECC errors that are correctable. TGT-SPI RAM error
record 6, records RAM ECC errors that are uncorrectable. Each error generates an SPI interrupt.

The TGT-SPI RAM stores the top three pending SPIs or doorbells for each PE.

The GICT_ERR<n>MISC0 register reports data for TGT-SPI error records 5-6 as the following table
shows.

Table 4-10: TGT-SPI RAM errors, records 5-6

Record GICT_ERR<n>MISC0.Data

5 = Correctable • Bit location, bits[31:log2(cores)]

• Address, bits[log2(cores) − 1:0]

6 = Uncorrectable Address, bits[log2(cores) − 1:0]

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

The GIC can recover most uncorrectable errors that occur in the TGT-SPI RAM. However, if an
SPI is activated while handling an error, then the GIC might not mask the interrupt so a spurious
interrupt can occur.

The GIC automatically recovers any lost doorbells that might occur.

4.15.4.5 PPI RAM error records 7-8

PPI RAM error record 7 records RAM ECC errors that are correctable. PPI RAM error record 8
records RAM ECC errors that are uncorrectable.

Error records 7-8 record the errors from PPI RAM that contain GICR_IPRIORITYRn and
GICR_IPRIORITYRnE information for PPIs and SGIs. PPI RAM also contains a buffer that stores
generated SGIs when backpressure occurs.

The GICT_ERR<n>MISC0 reports data for PPI error records 7-8 shown in the following table.

Table 4-11: PPI RAM errors, records 7-8

Record GICT_ERR<n>MISC0.Data

7 = Correctable • PPI block, bits[19+]

• Bit location, bits[18:12]

• Offset, bits[11:8]

• SGI/Int, bit[7]

• Core, bits[6:0]

8 = Uncorrectable • PPI block, bits[12+]

• Offset, bits[11:8]

• SGI/Int, bit[7]

• Core, bits[6:0]

For uncorrectable errors, if:

 Bit[7], SGI/Int == 0
Software must perform the recovery sequence that 4.8.5 PPI error recovery procedure on
page 70 describes.

 Bit[7], SGI/Int == 1
The GIC did not generate the SGI because an error occurred during SGI generation. Although
an SGI generation error occurs, the GIC continues to operate normally.

4.15.4.6 LPI RAM error records 9-10

LPI RAM error record 9 records RAM ECC errors that are correctable. LPI RAM error record 10
records RAM ECC errors that are uncorrectable. Each error generates an LPI interrupt.

LPI RAM error records 9-10 are present if LPI support is configured.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

The LPI RAM is the main LPI cache and it stores the LPI properties and pending information.

The GICT_ERR<n>MISC0 register reports data for LPI error records 9-10 shown in the following
table.

Table 4-12: LPI RAM errors, records 9-10

Record GICT_ERR<n>MISC0.Data

9 = Correctable • Bit location, bits[14+]

• Pending, bits[13:12]. These bits indicate if there were pending interrupts in the cache at the
time of the corruption.

• LPI channel, bits[11:10]

• Address, bits[9:0]

10 =
Uncorrectable

• Pending, bits[13:12]

• LPI channel, bits[11:10]

• Address, bits[9:0]

When an uncorrectable error occurs, the data shown in the table is stored and the
GICT_ERR<n>MISC1 register is updated to contain the RAM contents of the corrupted line. The
line in RAM is dropped, and any pending interrupts that it might contain are lost.

For uncorrectable errors, software must perform the recovery sequence that 4.11.6 LPI error
recovery procedure on page 84 describes.

4.15.4.7 PTS RAM error records 11-12

Pending Table System (PTS) RAM error record 11 records RAM ECC errors that are correctable. PTS
RAM error record 12 records RAM ECC errors that are uncorrectable. Each error generates an LPI
interrupt.

PTS RAM error records 11-12 are present if LPI support is configured.

Error records 11-12, record errors from the Pending table map cache.

The GICT_ERR<n>MISC0 register reports data for PTS error records 11-12 shown in the following
table.

Table 4-13: PTS RAM errors, records 11-12

Record GICT_ERR<n>MISC0.Data

11 = Correctable • Bit location, bits[31:4]

• Address[3:0]

12 = Uncorrectable Address[3:0]

No recovery is required for uncorrectable errors. The GIC continues to operate with a small but
temporary performance hit.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.15.4.8 TGT-LPI RAM error records 13-14

TGT-LPI RAM error record 13, records RAM ECC errors that are correctable. TGT-LPI RAM error
record 14, records RAM ECC errors that are uncorrectable. Each error generates an LPI interrupt.

TGT-LPI RAM error records 13-14 are present if LPI support is configured.

Error records 13-14, record errors from the main TGT-LPI cache.

The GICT_ERR<n>MISC0 register reports data for TGT-LPI error records 13-14 shown in the
following table.

Table 4-14: TGT-LPI RAM errors, records 13-14

Record GICT_ERR<n>MISC0.Data

13 = Correctable • Bit location, bits[31:log2(cores)]

• Address, bits[log2(cores) − 1:0]

14 = Uncorrectable Address, bits[log2(cores) − 1:0]

For TGT-LPI error recovery, see 4.11.6 LPI error recovery procedure on page 84.

4.15.4.9 vICM RAM error records 15-16

virtual ITS Communication Module (vICM) RAM error record 15 records RAM ECC errors that are
correctable. vICM RAM error record 16 records RAM ECC errors that are uncorrectable. Each error
generates an vICM interrupt.

vICM RAM error records 15-16 are present if GIC-700 is configured to support GICv4.1.

Error records 15-16, record errors from the vICM RAM, which caches the vPE Configuration table.

The GICT_ERR<n>MISC0 register reports data for vICM error records 15-16 shown in the
following table. vpe_width is a configuration parameter that sets the number of VPEs that the GIC
supports, that is, 2vpe_width VPEs.

Table 4-15: vICM RAM errors, records 15-16

Record GICT_ERR<n>MISC0.Data

15 = Correctable • Bit location, bits[31:log2vpe_width]

• Address, bits[log2vpe_width − 1:0]

16 = Uncorrectable Address, bits[log2vpe_width − 1:0]

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.15.4.10 vICM-VSPA RAM error records 17-18

virtual ITS Communication Module Virtual SGI Pending Array (vICM-VSPA) RAM error record 17
records RAM ECC errors that are correctable. vICM-VSPA RAM error record 18 records RAM ECC
errors that are uncorrectable. Each error generates a vICM-VSPA interrupt.

vICM-VSPA RAM error records 17-18 are present if GIC-700 is configured to support GICv4.1.

Error records 17-18, record errors from the vICM search RAM.

The GICT_ERR<n>MISC0 register reports data for vICM-VSPA error records 17-18 shown in the
following table. vpe_width is a configuration parameter that sets the number of VPEs that the GIC
supports, that is, 2vpe_width VPEs.

Table 4-16: vICM-VSPA RAM errors, records 17-18

Record GICT_ERR<n>MISC0.Data

17 = Correctable When vpe_width ≤ 8:

• Bit location, bits[31:1]

• Address, bit[0]

When vpe_width > 8:

• Bit location, bits[31:log22vpe_width / 128]

• Address, bits[log2(2vpe_width / 128) − 1:0]

18 = Uncorrectable When vpe_width ≤ 8:

• Address, bit[0]

When vpe_width > 8:

• Address, bits[log2(2vpe_width / 128) − 1:0]

4.15.4.11 vTGT-VSTR RAM error records 19-20

vTGT Store (vTGT-VSTR) RAM error record 19 records RAM ECC errors that are correctable. vTGT-
VSTR RAM error record 20 records RAM ECC errors that are uncorrectable. Each error generates a
vTGT-VSTR interrupt.

vTGT-VSTR RAM error records 19-20 are present if GIC-700 is configured to support GICv4.1.

Error records 19-20, record errors from the vTGT Store that stores the highest priority LPIs, vSGI,
and doorbell information for each vPE.

The GICT_ERR<n>MISC0 register reports data for vTGT-VSTR error records 19-20 shown in the
following table. vpe_width is a configuration parameter that sets the number of VPEs that the GIC
supports, that is, 2vpe_width VPEs.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

Table 4-17: vTGT-VSTR RAM errors, records 19-20

Record GICT_ERR<n>MISC0.Data

19 = Correctable • Bit location, bits[31:vpe_width]

• Address, bits[vpe_width − 1:0]

20 = Uncorrectable Address, bits[vpe_width − 1:0]

4.15.4.12 vTGT-VRES RAM error records 21-22

VTGT Residency (vTGT-VRES) RAM error record 21 records RAM ECC errors that are correctable.
vTGT-VRES RAM error record 22 records RAM ECC errors that are uncorrectable. Each error
generates a vTGT-VRES interrupt.

vTGT-VRES RAM error records 21-22 are present if GIC-700 is configured to support GICv4.1.

Error records 21-22, record errors from the vTGT Residency RAM that stores the highest priority
vLPIs and vSGI information for resident vPEs.

The GICT_ERR<n>MISC0 register reports data for vTGT-VRES error records 21-22 shown in the
following table.

Table 4-18: vTGT-VRES RAM errors, records 21-22

Record GICT_ERR<n>MISC0.Data

21 = Correctable • Bit location, bits[31:log2(cores)]

• Address, bits[log2(cores) − 1:0]

22 = Uncorrectable Address, bits[log2(cores) − 1:0]

4.15.4.13 vTGT-Search RAM error records 23-24

virtual Target-Search (vTGT-Search) RAM error record 23 records RAM ECC errors that are
correctable. vTGT-Search RAM error record 24 records RAM ECC errors that are uncorrectable.
Each error generates a vTGT-Search interrupt.

vTGT-Search RAM error records 23-24 are present if GIC-700 is configured to support GICv4.1.

Error records 23-24, record errors from the vTGT search RAM, which the GIC uses for efficient
searching of all vPEs.

The GICT_ERR<n>MISC0 register reports data for vTGT-Search error records 23-24 shown in the
following table. vpe_width is a configuration parameter that sets the number of VPEs that the GIC
supports, that is, 2vpe_width VPEs.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

Table 4-19: vTGT-Search RAM errors, records 23-24

Record GICT_ERR<n>MISC0.Data

23 = Correctable When vpe_width ≤ 8:

• Bit location, bits[31:1]

• Address, bit[0]

When vpe_width > 8:

• Bit location, bits[31:log22vpe_width / 128]

• Address, bits[log2(2vpe_width / 128) − 1:0]

24 = Uncorrectable When vpe_width ≤ 8:

• Address, bit[0]

When vpe_width > 8:

• Address, bits[log2(2vpe_width / 128) − 1:0]

4.15.4.14 ITS RAM error records 25-26

ITS RAM error record 25 records ITS RAM ECC errors that are correctable. ITS RAM error record
26 records ITS RAM ECC errors that are uncorrectable.

ITS RAM error records 25-26 are present if an ITS is configured.

Error records 25-26 record the errors from ITS RAM.

All ITS tables are memory backed allowing uncorrectable errors to be read from RAM again without
software intervention. These records are used for tracking RAM errors and for possible RAM
maintenance.

The GICT_ERR<n>MISC0 register reports data for ITS RAM error records 25-26 shown in the
following table.

Table 4-20: ITS RAM errors, records 25-26

Record GICT_ERR<n>MISC0.Data

25 = Correctable • Address, bits[31:x + 10]

• Bit location, bits[x + 9:x + 2]

• RAM, bits[x + 1:x]

• ITS, bits[x − 1:0]

Where x = log2(ITS)

26 = Uncorrectable • Address, bits[31:x + 3)]

• RAM, bits[x + 2:x]

• ITS, bits[x − 1:0]

Where x = log2(ITS)

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

GICT_ERR<n>MISC0 gives information relating to the corrupted ITS, RAM, and RAM address. The
bit location of a correctable error is also given. The ITS RAM encoding is shown in the following
table.

Table 4-21: ITS RAM encoding

RAM Record 25 Record 26

0 None None

1 Device cache Device cache

2 Collection cache Collection cache

3 Event cache Event cache

4.15.4.15 ITS command and translation error records 27+

The ITS command and translation error records 27+ record uncorrectable command and translation
errors from each configured ITS.

The ITS command and translation error records capture software events so that the operation of
software can be tracked. The software command errors that are captured are uncorrectable errors
only, which require software to correct the command to restart.

The GICT_ERR<n>STATUS.IERR field indicates whether an error is either related to the
architecture (0) or implementation defined (1). In both cases, the full 24-bit syndrome is reported in
GICT_ERR<n>MISC0. Extra data is reported in GICT_ERR<n>MISC1.

The data that is captured for each ITS software syndrome is shown in the following table.

Table 4-22: ITS command and translation errors, records 27+

MAPD commands

Error mnemonic Encoding IERR Stall Mask Description MISC1
data

MAPD_DEVICE_OOR 0x10801 0 1 CEE A MAPD command has tried to map a device with a DeviceID that is
outside the supported range, or that is beyond the memory allocated.

0

MAPD_ITTSIZE_OOR 0x10802 0 1 CEE A command has tried to allocate an ITT table that is larger than the
supported EventID size.

0

MAPC commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

MAPC_COLLECTION_OOR 0x10903 0 1 CEE A MAPC command has tried to map a CollectionID that is not
supported. See GITS_TYPER.

-

MAPC_TGT_OOR 0x10920 1 1 CEE A MAPC command has tried to map to a core that does not
exist.

-

MAPC_SRC_CHIP_OOR 0x10922 1 0 - Specified targetPE (RDnum) references an out-of-range,
nonexistent chip.

RDbase
from
command

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

MAPC commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

MAPC_SRC_TGT_OFF 0x10923 1 0 - Specified targetPE (RDnum) has GICR_CTLR.EnableLPI = 0. RDbase
from
command

MAPC_SRC_CHIP_OFF 0x10925 1 0 - Specified targetPE (RDnum) references an offline chip. See
5.2.15 GICD_CHIPR<n>, Chip Registers on page 152.

RDbase
from
command

MAPI commands

Error mnemonic Encoding IERR Stall Mask Description MISC1
data

MAPI_DEVICE_OOR 0x10B01 0 1 CEE A MAPI has tried to map a DeviceID that is not supported.
See GITS_BASER0, and for information about the supported range,
see GITS_TYPER.

0

MAPI_COLLECTION_OOR 0x10B03 0 1 CEE A MAPI has tried to map to a collection that is not supported.
See GITS_BASER1, and for information about the supported range,
see GITS_TYPER.

0

MAPI_UNMAPPED_DEVICE 0x10B04 0 1 CEE A MAPI has tried to map an interrupt to a device that is not
mapped.

0

MAPI_ID_OOR 0x10B05 0 1 CEE A MAPI has tried to map to an EventID size that is not supported.
The size that is supported is reported in GITS_TYPER, but might
be reduced depending on the MAPD command for the specified
DeviceID.

0

MAPTI commands

Error mnemonic Encoding IERR Stall Mask Description MISC1
data

MAPTI_DEVICE_OOR 0x10A01 0 1 - Specified DeviceID is outside of configured or allocated range. 0

MAPTI_COLLECTION_OOR 0x10A03 0 1 - Specified CollectionID is outside of the configured or allocated
range.

0

MAPTI_UNMAPPED_DEVICE 0x10A04 0 1 - Specified DeviceID has not been allocated with previous MAPD
command.

0

MAPTI_ID_OOR 0x10A05 0 1 - Specified EventID is outside the range allocated with ITTSize on
the relevant MAPD command.

0

MAPTI_PHYSICALID_OOR 0x10A06 0 1 - Specified physical INTID is greater than 16 bits.
If the Redistributor allocates a smaller PID range, then this is
reported on incoming LPI and other relevant ITS commands that
reach the Redistributor.

0

MOVI commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

MOVI_DEVICE_OOR 0x10101 0 1 CEE A MOVI has tried to map a device that is outside
the range that the ITS supports.
See GITS_BASER0, and for information about the
supported range, see GITS_TYPER.

0

MOVI_COLLECTION_OOR 0x10103 0 1 CEE A MOVI has tried to use a collection that is
outside the range that the ITS supports.
See GITS_BASER1, and for information about the
supported range, see GITS_TYPER.

0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

MOVI commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

MOVI_UNMAPPED_DEVICE 0x10104 0 1 CEE A MOVI has tried to move an interrupt from a
device that is not mapped.

0

MOVI_ID_OOR 0x10105 0 1 CEE A MOVI has tried to use an EventID that is outside
the size that the corresponding MAPD command
supports.

0

MOVI_UNMAPPED_INTERRUPT 0x10107 0 1 CEE A MOVI command has tried to operate on an
interrupt that is not mapped.

0

MOVI_ID_IS_VIRTUAL 0x10108 0 1 - Specified DeviceID/EventID pair has been
mapped as a virtual LPI and so a VMOVI command
must be used.

0

MOVI_UNMAPPED_COLLECTION 0x10109 0 1 CEE A MOVI command has tried to operate on a
collection that is not mapped.

0

MOVI_SRC_TGT_OOR 0x10120 1 0 - Specified DeviceID/EventID pair has been
mapped to a nonexistent target on an online chip
by previous commands.

RD that LPI is
mapped to

MOVI_DST_TGT_OOR 0x10121 1 0 - Specified target collection (ICID) is mapped to a
nonexistent target on an online chip by previous
commands.

RD that specified
collection ICID is
mapped to

MOVI_SRC_CHIP_OOR 0x10122 1 0 - Specified DeviceID/EventID pair has been
mapped to an out-of-range chip by previous
commands.

RD that LPI is
mapped to

MOVI_SRC_TGT_OFF 0x10123 1 0 - Specified DeviceID/EventID pair is mapped to a
PE with GICR_CTLR.EnableLPI = 0.

RD that LPI is
mapped to

MOVI_DST_TGT_OFF 0x10124 1 0 - Specified target collection (ICID) is mapped to a
PE with GICR_CTLR.EnableLPI = 0.

RD that specified
collection ICID is
mapped to

MOVI_SRC_CHIP_OFF 0x10125 1 0 - Specified DeviceID/EventID pair is mapped to an
offline chip. See 5.2.15 GICD_CHIPR<n>, Chip
Registers on page 152.

RD that LPI is
mapped to

MOVI_DST_CHIP_OOR 0x10128 1 0 - Specified target collection (ICID) is mapped to an
out-of-range or nonexistent chip.

RD that specified
collection ICID is
mapped to

MOVI_DST_CHIP_OFF 0x10129 1 0 - Specified target collection (ICID) is mapped to an
offline chip. See 5.2.15 GICD_CHIPR<n>, Chip
Registers on page 152.

RD that specified
collection ICID is
mapped to

MOVALL commands

Error mnemonic Encoding IERR Stall Mask Description MISC1
data

MOVALL_SRC_TGT_OOR 0x10E20 1 0 - Specified RDbase1 references a nonexistent target on an online
chip. If MISC1 data is 0, then either RDbase1 or RDbase2 are
greater than the hardware supports.

RDbase1
from
command
or 0

MOVALL_DST_TGT_OOR 0x10E21 1 0 - MOVALL to a core that does not exist.
Command is ignored.

RDbase2
from
command

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

MOVALL commands

Error mnemonic Encoding IERR Stall Mask Description MISC1
data

MOVALL_SRC_CHIP_OOR 0x10E22 1 0 - Specified RDbase1 is on an out-of-range nonexistent chip. RDbase1
from
command

MOVALL_SRC_TGT_OFF 0x10E23 1 0 - Specified RDbase1 has GICR_CTLR.EnableLPI = 0. RDbase1
from
command

MOVALL_DST_TGT_OFF 0x10E24 1 0 - Specified RDbase2 has GICR_CTLR.EnableLPI = 0. RDbase2
from
command

MOVALL_SRC_CHIP_OFF 0x10E25 1 0 - Specified RDbase1 is on an offline chip. See 5.2.15
GICD_CHIPR<n>, Chip Registers on page 152.

RDbase1
from
command

MOVALL_DST_CHIP_OOR 0x10E28 1 0 - Specified RDbase2 is on an out-of-range nonexistent chip. RDbase2
from
command

MOVALL_DST_CHIP_OFF 0x10E29 1 0 - Specified RDbase2 is on an offline chip. See 5.2.15
GICD_CHIPR<n>, Chip Registers on page 152.

RDbase2
from
command

DISCARD commands

Error mnemonic Encoding IERR Stall Mask Description MISC1
data

DISCARD_DEVICE_OOR 0x10F01 0 1 CEE A DISCARD has tried to use a device that is outside the
range that the ITS supports.
See GITS_BASER0, and for information about the
supported range, see GITS_TYPER.

0

DISCARD_UNMAPPED_DEVICE 0x10F04 0 1 CEE A DISCARD has tried to drop an interrupt from a device
that is not mapped.

0

DISCARD_ID_OOR 0x10F05 0 1 CEE A DISCARD command has tried to use an EventID that is
outside the size that the corresponding MAPD command
supports.

0

DISCARD_UNMAPPED_INTERRUPT 0x10F07 0 1 CEE A MOVI command has tried to operate on an interrupt that
is not mapped.

0

DISCARD_ITE_INVALID 0x10F10 0 1 CEE A MOVI command has tried to operate on an EventID that
the corresponding MAPD command does not support.

0

CLEAR commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

CLEAR_DEVICE_OOR 0x10501 0 1 CEE A CLEAR has attempted to use a
device that is outside the range that
the ITS supports.
See GITS_BASER0, and for information
about the supported range, see
GITS_TYPER.

0

CLEAR_UNMAPPED_DEVICE 0x10504 0 1 CEE A CLEAR has tried to drop an interrupt
from a device that is not mapped.

0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

CLEAR commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

CLEAR_ID_OOR 0x10505 0 1 CEE A CLEAR has tried to drop an
interrupt from an EventID that the
corresponding MAPD command does
not support.

0

CLEAR_UNMAPPED_INTERRUPT 0x10507 0 1 CEE A CLEAR has attempted to drop an
interrupt that is not mapped.

0

CLEAR_ITE_INVALID 0x10510 0 1 CEE A CLEAR has tried to drop an
interrupt from an EventID that the
corresponding MAPD command does
not support.

0

CLEAR_SRC_TGT_OOR 0x10520 1 0 - Specified DeviceID/EventID pair
has been mapped to a nonexistent
target on an online chip by previous
commands.

RD that LPI is mapped to

CLEAR_SRC_CHIP_OOR 0x10522 1 0 - Specified DeviceID/EventID pair has
been mapped to an out-of-range chip
by previous commands.

RD that LPI is mapped to

CLEAR_SRC_TGT_OFF 0x10523 1 0 - Specified DeviceID/EventID
pair is mapped to a PE with
GICR_CTLR.EnableLPI = 0.

RD that LPI is mapped to

CLEAR_SRC_CHIP_OFF 0x10525 1 0 - Specified DeviceID/EventID pair is
mapped to an offline chip. See 5.2.15
GICD_CHIPR<n>, Chip Registers on
page 152.

RD that LPI is mapped to

CLEAR_PHYSICAL_ID_OOR 0x10526 1 0 - A CLEAR has tried to drop an interrupt,
which has a physical ID that the target
does not support.

pIntID of LPI

VCLEAR_VID_OOR 0x12526 1 0 - Specified DeviceID/EventID pair is
mapped to a vIntID that is outside the
specified vPT size range for its vPEID.

{chip[CHIP_ID_WIDTH−1:0],
vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VCLEAR_NO_MAP 0x12530 1 0 - Sent VCLEAR command to a vPEID
that is not mapped on its ITS.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VCLEAR_VPE_OOR 0x12531 1 0 - Specified DeviceID/EventID pair
is mapped to a vPEID that is
outside the GITS_BASER2 and
GICR_VPROPBASER configured range.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VCLEAR_CHIP_OFF 0x12525 1 0 - Specified DeviceID/EventID pair is
mapped to a vPEID that is currently
mapped to an offline chip by previous
VMAPP or VMOVP ID.

{chip[CHIP_ID_WIDTH−1:0],
vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VCLEAR_VID_OOR_CC 0x12532 1 0 - Specified DeviceID/EventID pair is
mapped to a vIntID that is outside the
specified vPT size range for its vPEID
and the error is detected on a remote
chip.

{chip[CHIP_ID_WIDTH−1:0],
vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

CLEAR commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

VCLEAR_VPE_LOST 0x12533 1 0 - Specified DeviceID/EventID pair is
mapped to a vPE that the system has
lost. The causes for this issue can be
taking chips offline, data corruption, or
conflicting programming such as illegal
VMAPP sequences.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

INV commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

INV_DEVICE_OOR 0x10C01 0 1 CEE An INV has tried to use a device that is
outside the range that the ITS supports.
See GITS_BASER0, and for information
about the supported range, see
GITS_TYPER.

0

INV_UNMAPPED_DEVICE 0x10C04 0 1 CEE An INV has tried to invalidate an interrupt
from a device that is not mapped.

0

INV_ID_OOR 0x10C05 0 1 CEE An INV has tried to use an EventID that
is outside the size that the corresponding
MAPD command supports.

0

INV_UNMAPPED_INTERRUPT 0x10C07 0 1 CEE An INV has tried to invalidate an interrupt
that is not mapped.

0

INV_ITE_INVALID 0x10C10 0 1 CEE An INV has tried to invalidate an interrupt
with an EventID that is invalid.

0

INV_SRC_TGT_OOR 0x10C20 1 0 - Specified DeviceID/EventID pair has been
mapped to a nonexistent target on an
online chip by previous commands.

RD that LPI is mapped to

INV_SRC_CHIP_OOR 0x10C22 1 0 - Specified DeviceID/EventID pair has
been mapped to an out-of-range chip by
previous commands.

RD that LPI is mapped to

INV_SRC_TGT_OFF 0x10C23 1 0 - Specified DeviceID/EventID
pair is mapped to a PE with
GICR_CTLR.EnableLPI = 0.

RD that LPI is mapped to

INV_SRC_CHIP_OFF 0x10C25 1 0 - Specified DeviceID/EventID pair is
mapped to an offline chip. See 5.2.15
GICD_CHIPR<n>, Chip Registers on page
152.

RD that LPI is mapped to

INV_PHYSICAL_ID_OOR 0x10C26 1 0 - An INV has tried to invalidate an interrupt
with a physical ID that is larger than the
target supports.
See GICR_PROPBASER.IDbits.

pIntID of LPI

VINV_VID_OOR 0x12C26 1 0 - Specified DeviceID/EventID pair is
mapped to a vINTID that is outside the
specified vPT size range for its vPEID.

{chip[CHIP_ID_WIDTH−1:0],
vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VINV_NO_MAP 0x12C30 1 0 - Specified DeviceID/EventID pair is
mapped to a vPEID that is not mapped on
its ITS.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

INV commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

VINV_VPE_OOR 0x12C31 1 0 - Specified DeviceID/EventID pair is
mapped to a vPEID that is outside the
GITS_BASER2 and GICR_VPROPBASER
configured range.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VINV_CHIP_OFF 0x12C25 1 0 - Specified DeviceID/EventID pair is
mapped to a vPEID that is currently
mapped to an offline chip by previous
VMAPP or VMOVP ID.

{chip[CHIP_ID_WIDTH−1:0],
vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VINV_VID_OOR_CC 0x12C32 1 0 - Specified DeviceID/EventID pair is
mapped to a vINTID that is outside the
specified vPT size range for its vPEID and
it is detected on a remote chip.

{chip[CHIP_ID_WIDTH−1:0],
vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VINV_VPE_LOST 0x12C33 1 0 - Specified DeviceID/EventID pair is
mapped to a vPE that the system has
lost. The causes of this issue can be
taking chips offline, data corruption, or
conflicting programming such as illegal
VMAPP sequences.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

INVALL commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

INVALL_COLLECTION_OOR 0x10D03 0 1 CEE An INVALL has tried to invalidate an
OOR collection. See GITS_TYPER.

0

INVALL_UNMAPPED_COLLECTION 0x10D09 0 1 CEE An INVALL has tried to invalidate a
collection that is not mapped.

0

INVALL_SRC_TGT_OOR 0x10D20 1 0 - An INVALL has been sent to an
illegal target.

RD that collection ICID is
mapped to

INVALL_SRC_CHIP_OOR 0x10D22 1 0 - An INVALL has tried to invalidate
an interrupt from a device that is not
mapped.

RD that collection ICID is
mapped to

INVALL_SRC_TGT_OFF 0x10D23 1 0 - An INVALL has been sent to a target
that has LPIs turned off.

RD that collection ICID is
mapped to

INVALL_SRC_CHIP_OFF 0x10D25 1 0 - Specified collection (ICID) is mapped
to an offline chip. See 5.2.15
GICD_CHIPR<n>, Chip Registers on
page 152.

RD that collection ICID is
mapped to

VINVALL_VCPU_OOR 0x12D03 0 1 - Specified vPEID that is outside the
hardware maximum or GITS_BASER2
configured range.

0

VINVALL_NO_MAP 0x12D30 1 0 - Specified vPEID that is not mapped
on the ITS.

vPEID

VINVALL_VPE_OOR 0x12D31 1 0 - Specified vPEID that is
outside the GITS_BASER2 and
GICR_VPROPBASER configured
range.

vPEID

VINVALL_CHIP_OFF 0x12D25 1 0 - Specified vPEID is currently mapped
to an offline chip by previous VMAPP
or VMOVP commands.

{chip[CHIP_ID_WIDTH−1:0],
0x0000,
vPEID[VPE_WIDTH−1:0]}

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

INVALL commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

VINVALL_VPE_LOST 0x12D33 1 0 - The system has lost the specified
vPE. The causes of this issue can be
taking chips offline, data corruption,
or conflicting programming such as
illegal VMAPP sequences.

vPEID

INT commands

Error mnemonic Encoding IERR Stall Mask Description Data
(data is only for
GITS_TRANSLATER write
interrupts not for INT com-
mands)

INT_DEVICE_OOR 0x10301 0 0, 1 UEE An incoming translation has attempted to
use a device that is outside the range that
the ITS supports.
See GITS_BASER0, and for information
about the supported range, see
GITS_TYPER.

If not stalled:
[31:0] DID

INT_UNMAPPED_DEVICE 0x10304 0 0, 1 UEE An incoming translation has tried to
invalidate an interrupt from a device that
is not mapped.

If not stalled:
[23:0] DID

INT_ID_OOR 0x10305 0 0, 1 UEE An INT has tried to use an EventID that
is outside the size that the corresponding
MAPD command supports.
The debug data bit[50] is the OR
reduction of VID bits[31:20] as indicated
by |VID[31:20].

If not stalled:
[50] VID[31:20] contains 1.

[43:24] VID[19:0]

[23:0] DID

INT_UNMAPPED_INTERRUPT 0x10307 0 0, 1 UEE An INT command has tried to raise an
interrupt that is not mapped.
The debug data bit[50] is the OR
reduction of VID bits[31:20] as indicated
by |VID[31:20].

If not stalled:
[50] VID[31:20] contains 1.

[43:24] VID

[23:0] DID

INT_ITE_INVALID 0x10310 0 0, 1 UEE An INT command has tried to raise
an interrupt with an EventID that the
corresponding MAPD command does not
support.

If not stalled:
[13:0] Collection ID

INT_TGT_OFF 0x10323 1 0 - INT received for a target with
GICR_CTLR.Enable_LPIs disabled.
Software must either enable LPI or
correct mappings.

Target is reported in
GICT_ERR<n>MISC1.

RD that LPI is mapped to

INT_CHIP_OFF 0x10325 1 0 - Specified DeviceID/EventID pair is
mapped to a PE of an offline chip. See
5.2.15 GICD_CHIPR<n>, Chip Registers
on page 152.

RD that LPI is mapped to

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

INT commands

Error mnemonic Encoding IERR Stall Mask Description Data
(data is only for
GITS_TRANSLATER write
interrupts not for INT com-
mands)

INT_PHYSICALID_OOR 0x10326 1 0 - INT received with a physical ID that is
beyond the range that is specified in
GICR_PROPBASER.IDbits.
Software must correct mappings.

Interrupt is dropped and ID is reported in
GICT_ERR<n>MISC1.

RD that LPI is mapped to

VLPI_VID_OOR 0x12426 1 0 - Specified DeviceID/EventID pair is
mapped to a vINTID that is outside the
specified vPT size range for its vPEID.

{chip[CHIP_ID_WIDTH−1:0],
vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VLPI_NO_MAP 0x12430 1 0 - Specified DeviceID/EventID pair is
mapped to a vPEID that is not mapped on
its ITS.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VLPI_VPE_OOR 0x12431 1 0 - Specified DeviceID/EventID pair is
mapped to a vPEID that is outside the
GITS_BASER2 and GICR_VPROPBASER
configured range.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VLPI_CHIP_OFF 0x12425 1 0 - Specified DeviceID/EventID pair is
mapped to a vPEID that is currently
mapped to an offline chip by previous
VMAPP or VMOVP commands.

{chip[CHIP_ID_WIDTH−1:0],
vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VLPI_VID_OOR_CC 0x12432 1 0 - Specified DeviceID/EventID pair is
mapped to a vINTID that is outside the
specified vPT size range for its vPEID and
the error is detected on a remote chip.

{chip[CHIP_ID_WIDTH−1:0],
vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VLPI_VPE_LOST 0x12433 1 0 - Specified DeviceID/EventID pair is
mapped to a vPEID that the system has
lost. The causes of this issue can be
taking chips offline, data corruption, or
conflicting programming such as illegal
VMAPP sequences.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMAPP commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

VMAPP_VCPU_OOR 0x12903 0 1 - Specified vPEID that is outside
the hardware maximum or
GITS_BASER2 configured range.

0

VMAPP_PHYSICALID_OOR 0x12904 0 1 - Specified PID (doorbell ID) is
above the hardware maximum
range or below 8192 except 1023.

0

VMAPP_VPTSIZE_OOR 0x12910 0 1 - Specified VPTsize outside of
hardware maximum range.

0

VMAPP_TGT_FULL_OOR 0x12920 1 0 - Specified Target (RDnum) is
outside of hardware range.

0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

VMAPP commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

VMAPP_TGT_OOR 0x12921 1 0 - Specified Target (RDnum) does not
exist but does reference an online
chip.

RDbase from command

VMAPP_ENLPI_OFF 0x12924 1 0 - Specified Target (RDnum) has
GICR_CTLR.EnableLPI = 0.

{chip[CHIP_ID_WIDTH−1:0],
DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMAPP_CHIP_OFF 0x12925 1 0 - Specified Target (RDnum) is
on an offline chip. See 5.2.15
GICD_CHIPR<n>, Chip Registers
on page 152.

{chip[CHIP_ID_WIDTH−1:0],
DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMAPP_DBID_OOR 0x12926 1 0 - Specified PID (doorbell ID) is
outside the range supported by
GICR_PROPBASER programming.

Ignore data.

VMAPP_CHIP_OOR 0x12928 1 0 - Specified Target (RDnum) is on a
nonexistent chip.

{chip[CHIP_ID_WIDTH−1:0],
DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMAPP_DST_CHIP_OFF 0x12929 1 0 - Specified Target (RDnum) is
an offline chip. See 5.2.15
GICD_CHIPR<n>, Chip Registers
on page 152.

{chip[CHIP_ID_WIDTH−1:0],
DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMAPP_NO_MAP 0x12930 1 0 - Specified vPEID when V=0 has not
been previously mapped.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMAPP_VPE_OOR 0x12931 1 0 - Specified vPEID is outside
the GITS_BASER2 and
GICR_VPROPBASER configured
range.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMAPP_VPE_LOST 0x12933 1 0 - The system has lost the specified
vPEID. The causes of this issue
can be taking chips offline,
data corruption, or conflicting
programming such as illegal VMAPP
sequences.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMAPP_ACE_LITE_VPT_RD_FAILURE 0x12934 1 0 - vPT read access performed as
a part of a VMAPP command
received SLVERR or DECODE
error.

{chip[CHIP_ID_WIDTH−1:0],
DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMAPP_VPROP_V 0x12936 1 0 - Specified Target (RDnum) does not
have GICR_VPROPBASER.Valid
set.

{chip[CHIP_ID_WIDTH−1:0],
DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMAPP_VPE_OOR_CC 0x12938 1 0 - Specified vPEID is outside
the GITS_BASER2 and
GICR_VPROPBASER configured
range and is detected on the
remote chip due illegal different
ranges on different chips.

{chip[CHIP_ID_WIDTH−1:0],
DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMAPP_VPE_CFG_TOP_INV 0x12939 1 0 - Specified vPEID maps to an invalid
L1 entry in indirect vPE config
table.

{chip[CHIP_ID_WIDTH−1:0],
DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

VMAPI commands

Error mnemonic Encoding IERR Stall Mask Description MISC1
data

VMAPI_DEVICE_OOR 0x12B01 0 1 - Specified DeviceID outside of the hardware maximum or
GITS_BASER0 configured range.

0

VMAPI_VCPU_OOR 0x12B03 0 1 - Specified vPEID that is outside the hardware maximum or
GITS_BASER2 configured range.

0

VMAPI_UNMAPPED_DEVICE 0x12B04 0 1 - Specified DeviceID has not been allocated with previous MAPD
command.

0

VMAPI_ID_OOR 0x12B05 0 1 - Specified EventID is outside the range allocated with ITTSize on
the relevant MAPD command.

0

VMAPTI commands

Error mnemonic Encoding IERR Stall Mask Description MISC1
data

VMAPTI_DEVICE_OOR 0x12A01 0 1 - Specified DeviceID outside of the hardware maximum or
GITS_BASER0 configured range.

0

VMAPTI_VCPU_OOR 0x12A03 0 1 - Specified vPEID that is outside the hardware maximum or
GITS_BASER2 configured range.

0

VMAPTI_UNMAPPED_DEVICE 0x12A04 0 1 - Specified DeviceID has not been allocated with previous MAPD
command.

0

VMAPTI_ID_OOR 0x12A05 0 1 - Specified EventID is outside the range allocated with ITTSize on
the relevant MAPD command.

0

VMAPTI_VIRTUALID_OOR 0x12A13 0 1 - Specified vID that above the hardware maximum range or below
8192.

0

VMOVP commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

VMOVP_VCPU_OOR 0x12203 0 1 - Specified vPEID that is outside the
hardware maximum or GITS_BASER2
configured range.

0

VMOVP_PHYSICALID_OOR 0x12204 0 1 - Specified doorbell PID that above the
hardware maximum range or below
8192 except 1023.

0

VMOVP_TGT_FULL_OOR 0x12220 1 0 - Specified target (RDnum) that is
outside of the hardware supported
range.

0

VMOVP_TGT_OOR 0x12221 1 0 - Specified Target (RDnum) does not
exist but does reference an online
chip.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVP_ENLPI_OFF 0x12224 1 0 - Specified Target (RDnum) has
GICR_CTLR.EnableLPI = 0.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVP_CHIP_OFF 0x12225 1 0 - Specified vPEID is currently mapped
to an offline chip by previous
commands.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVP_DBID_OOR 0x12226 1 0 - Specified doorbell PID is
outside range supported by
GICR_VPROPBASER programming.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

VMOVP commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

VMOVP_DST_CHIP_OOR 0x12228 1 0 - Specified Target (RDnum) is on an
out-of-range nonexistent chip.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVP_DST_CHIP_OFF 0x12229 1 0 - Specified Target (RDnum) is
on an offline chip. See 5.2.15
GICD_CHIPR<n>, Chip Registers on
page 152.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVP_NO_MAP 0x12230 1 0 - Specified vPEID has not been
previously mapped on this ITS.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVP_VPE_OOR 0x12231 1 0 - Specified vPEID is outside
the GITS_BASER2 and
GICR_VPROPBASER configured
range.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVP_VPE_LOST 0x12233 1 0 - Specified vPEID is mapped to a
vPEID that the system has lost. The
causes of this issue can be taking
chips offline, data corruption, or
conflicting programming such as
illegal VMAPP sequences.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVP_ACE_LITE_VPT_RD_FAILURE 0x12234 1 0 - vPT read access performed as a
part of a VMOVP command received
SLVERR or DECODE error.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVP_VPROP_V 0x12236 1 0 - Specified Target (RDnum) targets
a CPU that does not have
GICR_VPROPBASER.Valid set.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVP_VPE_REMAP 0x12237 1 0 - Sent VMOVP command moving a vPE
to a chip that already has this vPEID
mapped. This issue can only occur if
conflicting mapping are made for the
same vPE by illegal software.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVP_VPE_OOR_CC 0x12238 1 0 - Sent VMOVP command for a vPEID
that is outside the GITS_BASER2
and GICR_VPROPBASER configured
range on the destination chip. This
issue can only occur if conflicting
ranges are programmed on different
chips by illegal software.

{DoorbellID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVI commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

VMOVI_DEVICE_OOR 0x12101 0 1 - Specified DeviceID outside of the
hardware maximum or GITS_BASER0
configured range.

0

VMOVI_VCPU_OOR 0x12103 0 1 - Specified vPEID is outside the hardware
maximum or GITS_BASER2 configured
range.

0

VMOVI_UNMAPPED_DEVICE 0x12104 0 1 - Specified DeviceID has not been allocated
with previous MAPD command.

0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

VMOVI commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

VMOVI_ID_OOR 0x12105 0 1 - Specified EventID is outside the range
allocated with ITTSize on the relevant
MAPD command.

0

VMOVI_UNMAPPED_INTERRUPT 0x12107 0 1 - Specified DeviceID/EventID pair has not
been mapped by a previous MAPI or
MAPTI command.

0

VMOVI_ID_IS_PHYSICAL 0x12115 0 1 - Specified DeviceID/EventID has been
mapped to physical LPI. MOVI command
must be used.

0

VMOVI_VID_OOR 0x12126 1 0 - Specified DeviceID/EventID mapped to a
vINTID that is outside the specified vPT
size range for its vPEID.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVI_NO_MAP 0x12130 1 0 - Specified vPE is not mapped on this
ITS. This can happen if the vPE is
corrupted by memory system errors or
bad programming.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVI_VPE_OOR 0x12131 1 0 - Specified DeviceID/EventID has been
mapped to a vPEID that is outside the
GITS_BASER2 and GICR_VPROPBASER
configured range.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVI_CHIP_OFF 0x12125 1 0 - Specified DeviceID/EventID has been
mapped to an offline chip.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVI_VID_OOR_CC 0x12132 1 0 - Specified DeviceID/EventID has been
mapped to a vINTID that is outside the
specified vPT size range for its vPEID on a
remote chip.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVI_VPE_LOST 0x12133 1 0 - Specified DeviceID/EventID has been
mapped to a vPEID that the system has
lost. The causes of this issue can be
taking chips offline, data corruption, or
conflicting programming such as illegal
VMAPP sequences.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVI_DST_NO_MAP 0x12140 1 0 - Specified destination vPEID that is not
mapped on ITS.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVI_DST_VPE_OOR 0x12141 1 0 - Specified destination vPEID is outside the
GITS_BASER2 and GICR_VPROPBASER
configured range.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVI_DST_VID_OOR 0x12146 1 0 - Specified DeviceID/EventID has been
mapped to a vINTID that is outside the
specified vPT size range for its destination
vPEID.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVI_DST_CHIP_OFF 0x12129 1 0 - Specified destination vPEID is currently
mapped to an offline chip.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

VMOVI_DST_VID_OOR_CC 0x12142 1 0 - Specified DeviceID/EventID has been
mapped to a vINTID that is outside the
specified vPT size range for its destination
vPEID on a remote chip.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

VMOVI commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

VMOVI_DST_VPE_LOST 0x12143 1 0 - The system has lost the specified
destination vPEID. The causes of this
issue can be taking chips offline, data
corruption, or conflicting programming
such as illegal VMAPP sequences.

{vIntID[15:0],
vPEID[VPE_WIDTH−1:0]}

INVDB commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

INVDB_VCPU_OOR 0x12E03 0 1 - INVDB specified vPEID that is outside the hardware
maximum or GITS_BASER2 configured range.

0

INVDB_NO_MAP 0x12E30 1 0 - Sent INVDB command to a vPEID that is not mapped
on its ITS.

vPEID

INVDB_VPE_OOR 0x12E31 1 0 - Sent INVDB command for a vPEID that is outside the
GITS_BASER2 and GICR_VPROPBASER configured
range.

vPEID

INVDB_CHIP_OFF 0x12E25 1 0 - Sent INVDB command targeted to an offline chip. {chip[CHIP_ID_WIDTH−1:0],
0x0000,
vPEID[VPE_WIDTH−1:0]}

INVDB_VPE_LOST 0x12E33 1 0 - Sent INVDB command for a vPEID that has
inconsistent mappings in the system.

vPEID

VSGI commands

Error mnemonic Encoding IERR Stall Mask Description MISC1 data

VSGI_VCPU_OOR 0x12303 0 1 - VSGI command specified
a vPEID that is outside
the hardware maximum or
GITS_BASER2 configured range.

0

VSGI_CMD_NO_MAP 0x12330 1 0 - Sent VSGI command to a vPEID
that is not mapped on its ITS.

{Priority[3:0], 0b0,
Enable, Group,
PendingClear, vIntID[3:0],
vPEID[VPE_WIDTH−1:0]}

VSGI_CMD_VPE_OOR 0x12331 1 0 - Sent VSGI command for
a vPEID that is outside
the GITS_BASER2 and
GICR_VPROPBASER configured
range.

{Priority[3:0], 0b0,
Enable, Group,
PendingClear, vIntID[3:0],
vPEID[VPE_WIDTH−1:0]}

VSGI_CMD_CHIP_OFF 0x12325 1 0 - Sent VSGI command targeted to
an offline chip.

{chip[CHIP_ID_WIDTH−1:0],
0x0, Priority[3:0],
0b0, Enable, Group,
PendingClear, vIntID[3:0],
vPEID[VPE_WIDTH−1:0]}

VSGI_CMD_VPE_LOST 0x12333 1 0 - Sent VSGI command for a
vPEID that has inconsistent
mappings in the system.

{Priority[3:0], 0b0,
Enable, Group,
PendingClear, vIntID[3:0],
vPEID[VPE_WIDTH−1:0]}

VSGI_CMD_ACE_LITE_VPT_RD_FAILURE 0x12334 1 0 - vPT read access performed
as a part of a VSGI command
received SLVERR or DECODE
error.

{chip[CHIP_ID_WIDTH−1:0],
0x0, Priority[3:0],
0b0, Enable, Group,
PendingClear, vIntID[3:0],
vPEID[VPE_WIDTH−1:0]}

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

Implementation-defined features, non-virtual commands

Error mnemonic Encoding IERR Stall Mask Description MISC1
data

OPR_DEVICE_OOR 0x100C0 1 - CEE Software has tried an operation
through GITS_OPR using a device
that is outside the range that the ITS
supports.
See GITS_BASER0, and for information
about the supported range, see
GITS_TYPER.

0

OPR_UNMAPPED_COLLECTION 0x100C1 1 - CEE Software has tried an operation
through GITS_OPR using a collection
that is outside the range that the ITS
supports.
See GITS_BASER0, and for information
about the supported range, see
GITS_TYPER.

0

OPR_ID_OOR 0x100C2 1 - CEE Software has tried to lock an interrupt
using an EventID that is larger than the
specified device supports.
The GITS_OPSR register reports a fail.

0

OPR_UNMAPPED_DEVICE 0x100C3 1 - CEE Software has tried to lock an interrupt
from a device that is not mapped
through GITS_OPR.
The GITS_OPSR register reports a fail.

0

OPR_UNMAPPED_INTERRUPT 0x100C5 1 - CEE Software has tried to lock an interrupt
that is not mapped through GITS_OPR.
The GITS_OPSR register reports a fail.

0

OPR_SET_LOCKED 0x100C6 1 - CEE Software has tried to lock an interrupt
into the cache but the set already
contains a locked interrupt.
The GITS_OPSR register reports a fail.

0

ACE_LITE_ACCESS_FAILURE_CMD 0x100C8 1 - - An access that the ITS issues, receives
an SLVERR or DECODE error.
The address is given in
GICT_ERR<n>MISC1. This error can
occur from multiple sources.

Software must determine whether
the Command queue is stalled, by
checking GITS_CREADR.Stalled. If
the Command queue has stalled, the
command might not have occurred.
See 4.10.3 ITS commands and errors
on page 80.

[50:0]
ACE-Lite
manager
address
[51:1]

ACE_LITE_ACCESS_FAILURE_TRANSR 0x100C9 1 0 - An access that the ITS issues for
an interrupt, receives an SLVERR or
DECODE error.
The address is given in
GICT_ERR<n>MISC1. This error can
occur from multiple sources.

[50:0]
ACE-Lite
manager
address
[51:1]

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

Implementation-defined features, non-virtual commands

Error mnemonic Encoding IERR Stall Mask Description MISC1
data

ACE_LITE_ACCESS_FAILURE_LOCK 0x100CA 1 0 - An access that the ITS issues for an
OPR request, receives an SLVERR or
DECODE error.
The address is given in
GICT_ERR<n>MISC1. This error can
occur from multiple sources.

[50:0]
ACE-Lite
manager
address
[51:1]

ACE_LITE_TRANS_FAILURE 0x100CB 1 - AEE An unknown source in the system
has written to the subordinate port
with an access that is not a legal
GITS_TRANSLATER access.
The full address of the access is given
in GICT_ERR<n>MISC1.

If the address matches
GITS_TRANSLATER, then the size,
length, strobes, or access type is
wrong.

Read accesses are not tracked.

[15:0]
ACE-Lite
subordinate
address
[15:0]

ACE_LITE_ADDR_OOR 0x100CC 1 - - ITS programming has tried to create
an access to the address specified in
GICT_ERR<n>MISC1 that is larger
than the address space supported.

[50:0]
ACE-Lite
manager
address
[51:1]

INVALID_MULTI_LEVEL_DEV_TABLE_ENTRY 0x100CD 1 1/0 - Software is using a two-level Device
table and the first level table entry has
not completed for command.
Software must allocate and clear a new
second-level table, update the first-
level entry, and repeat the command.

0

INVALID_MULTI_LEVEL_DEV_TABLE_ENTRY_LOCK 0x100CE 1 0 - Software is using a two-level Device
table and the first level table entry has
not completed for OPR request.
Software must allocate and clear a new
second-level table, update the first-
level entry, and repeat the command.

0

IMDEF_INVALID_COMMAND 0x100CF 1 1 - ITS command queue read an invalid
opcode.
When gicv41_support==1,
this error can also indicate that a
command requiring GICv4.1 command
support has been detected but with
GITS_BASER2.Valid==0.

0

Implementation-defined features, virtual commands

Error mnemonic Encoding IERR Stall Mask Description MISC1
data

BASER2_DATA_ERR 0x12051 1 0 - Writing GITS_BASER2.Valid with data mismatching with the existing vPE
Configuration table.

0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.15.4.16 CC RAM error records 62-63

Cross-chip (CC) RAM error record 62 records RAM ECC errors that are correctable. CC RAM error
record 63 records RAM ECC errors that are uncorrectable.

The GICT_ERR<n>MISC0 register reports data for CC error records 62-63 shown in the following
table.

Table 4-23: CC RAM errors, records 62-63

Record GICT_ERR<n>MISC0.Data

62 =
Correctable

63 =
Uncorrectable

• Bit location, bits[5+x:x]

• Address, bits[x−1:0]

Where x = log2(chip_count × ((gicv41_support & vsgi_cc_tokens) + (lpi_support ×
lpi_cc_tokens) + sgi_cc_tokens)).

4.15.4.17 Clearing error records

After reading a GICT_ERR<n>STATUS register, software must clear the valid register bits so that
any new errors are recorded.

During this period, a new error might overwrite the syndrome for the error that was read
previously. If the register is read or written, the previous error is lost.

To prevent this, most bits use a modified version of write-1-to-clear:

• Writes to the GICT_ERR<n>STATUS.UE (uncorrectable error records) or
GICT_ERR<n>STATUS.CE (correctable error records) bits are ignored if
GICT_ERR<n>STATUS.OF is set and is not being cleared.

• Writes to other fields in the GICT_ERR<n>STATUS register are ignored if either
GICT_ERR<n>STATUS.UE or GICT_ERR<n>STATUS.CE are set and are not being cleared.

Similarly, GICT_ERR<n>MISC0 and GICT_ERR<n>MISC1 cannot be written, except the counter
fields, if the corresponding GICT_ERR<n>STATUS.MV bit is set, and GICT_ERR<n>ADDR cannot
be written if GICT_ERR<n>STATUS.AV is set.

Related information
SGI error recovery procedure on page 68
PPI error recovery procedure on page 70
SPI error recovery procedure on page 76
LPI error recovery procedure on page 84

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Operation

4.15.5 Bus errors

ACE5-Lite bus error syndromes such as bad transactions, and corrupted RAM data reads can be
made to report an ACE5-Lite external AXI Subordinate Error (SLVERR).

The GICT_ERR0CTLR.UE bit can be used to enable the SLVERR ACE5-Lite bus error for the
syndromes shown in the following table.

Table 4-24: Bus error syndromes

Syndrome Description Direction

SYN_ACE_BAD ACE5-Lite transactions are either bad or unrecognized Read and write

SYN_GICD_CORRUPTED Data read from SPI RAM is corrupted Read-only

SYN_GICR_CORRUPTED Data read from SGI or PPI RAM is corrupted Read-only

SYN_ITS_OFF Access to ITS attempted when powered down Read and write

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5. Programmers model for GIC-700
All the GIC-700 registers have names that are constructed of mnemonics that indicate the logical
block that the register belongs to and the register function.

The following information applies to the GIC-700 registers:

• The GIC-700 implements only memory-mapped registers.

• The GIC-700 has a single base address, except for the GITS_TRANSLATER register. The base
address is not fixed and can be different for each particular system implementation.

• The offset of each register from the base address is fixed.

• Accesses to reserved or unused address locations might result in a bus error, depending on the
value of GICT_ERR0CTLR.UE and GICT_ERR0CTLR.DIS_ACE.

• Unless otherwise stated in the accompanying text:

◦ Do not modify reserved register bits.

◦ Ignore reserved register bits on reads.

◦ A system reset or a Cold reset, resets all register bits to zero.

• The GIC-700 ACE5-Lite subordinate interface can be 64 bits, 128 bits, 256 bits, or 512 bits
wide, depending on the configuration. The Arm® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3 and version 4 defines the permitted sizes of access.

The GIC-700 guarantees single-copy atomicity for doubleword accesses.

• The GIC-700 supports data only in little-endian format.

• The access types for the GIC-700 are as follows:

 RO Read-only
 RW Read and write
 WO Write-only, reads return as UNKNOWN.

• Unless specified otherwise, all Secure registers are accessible by Non-secure accesses when
security is disabled, that is, GICD_CTLR.DS == 1.

5.1 Register map pages
The GIC-700 address map has multiple pages. The number of pages and the address aliasing
depends on the GIC configuration.

The following table shows the register map pages.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-1: Register map pages

Page offset

No v4.1
support

With v4.1
support

Page Description

0 GICD GICD main page

1 GICM GICM message-based interrupts

2 GICT GIC trace and debug page

3 GICP GIC PMU page

4 + 2×ITSnum 4 + 4×ITSnum GITS ITS address page.
ITSnum is the serial number of each ITS, which is from 0 to ITScount−1.

5 + 2×ITSnum 5 + 4×ITSnum GITS
(translate)

ITS translation page

6 + 2×ITSnum 6 + 4×ITSnum GITS
(vSGI)

ITS vSGI page

7 + 2×ITSnum 7 + 4×ITSnum Reserved Reserved

4 +
2×ITScount +
2×RDnum

4 +
4×ITScount +
4×RDnum

GICR
(LPI)

GICR LPI registers.
ITScount is the total number of ITS.

5 +
2×ITScount +
2×RDnum

5 +
4×ITScount +
4×RDnum

GICR
(SGI)

GICR PPI + SGI registers.
RDnum is the serial number of each “internal Redistributor”, which is from 0 to RDcount−1.

6 +
2×ITScount +
2×RDnum

6 +
4×ITScount +
4×RDnum

GICR
(vLPI)

GICR vLPI registers

7 +
2×ITScount +
2×RDnum

7 +
4×ITScount +
4×RDnum

Reserved Reserved

4 +
2×ITScount +
2×RDcount

4 +
4×ITScount +
4×RDcount

GICDA Alias to GICD (page after last GICR page).
RDcount is the total number of “internal Redistributors”, which equals total number of CPU
cores.

RDcount can change if the GICD_RDOFFRn registers or the gicd_pe_off tie-off signal removes
Redistributors. In this case, the GICDA page moves to the page above the last Redistributor.

For more information, see the Arm® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3 and version 4.

You must set up the system address map so that each core accesses the GICD page on its local
chip at the same address. All other pages must be globally accessible, although access of pages on
a remote chip by a core is expected to be rare. Allowing the GIC pages to be globally accessible
might require the system interconnect to alias the page addresses.

Page offset
The ACE5-Lite address bits[x:16] control which GIC register page is accessed. The value of x
depends on the axis_addr_width GICD configuration parameter.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

In non-monolithic configurations, the GIC-700 ignores address bits above ceil[log2(page_count)] +
15. For example, a configuration that uses 11 pages ignores address bits above 19, so any address
bits of the form 0xXXXXX00000 is accepted and it accesses the GICD page.

In monolithic configurations, where the Distributor and ITS share the ACE5-Lite subordinate port,
the gicd_page_offset and its_transr_page_offset address tie-off signals control the full page address
of the GICD and GITS_TRANSLATER pages. The page address comprises address bits[x:16]. For
example, if the GICD page is at 32-bit address 0xFFFF0000, the gicd_page_offset tie-off is 16-bit
0xFFFF. See B.6 Miscellaneous signals on page 289 for information about the gicd_page_offset
and its_transr_page_offset tie-off signals.

5.1.1 Discovery

We recommend that the operating system is provided with pointers to the start of the Distributor,
every ITS, and the first Redistributor page on each chip.

To verify that the pages relate to GIC registers, software can check these pointers against the
discovery registers, which start at offset 0xFFD0 for each GIC page. These registers allow
discovery of the architecture version and, for GIC-700, whether the page contains the Distributor,
ITS, or Redistributor registers. For example, to discover the page type, software can:

1. Read from 0xFFE0 to determine the PIDR0.PART_0 value.

2. Read from 0xFFE4 to determine the PIDR1.PART_1 value.

3. Concatenate PART_1 (4 bits) and PART_0 (8 bits), to discover the 12-bit part number, PART_1||
PART_0. A value of:

• 0x492 indicates that this page contains Distributor registers.

• 0x493 indicates that this page contains Redistributor registers.

• 0x494 indicates that this page contains ITS registers.

When this information is known, software can obtain additional information from registers that are
specific to each page.

For Redistributors, we recommend that you examine GICR_TYPER to determine:

• Whether the implementation has two or four pages for each Redistributor, which depends on
the features implemented. It can be inferred that GIC-700 has four pages for each Redistributor
because the GICR_TYPER.VLPIS bit indicates that it supports virtual LPIs.

• Whether it is the last Redistributor in the series of pages

• Which core the Redistributor is for, based on affinity values

This information allows you to iteratively search through all Redistributors in a discovery process.

The GITS_TYPER register in the GIC-700 indicates that you must program the ITS with unique
ProcessorNumbers, instead of physical target addresses. The GICR_TYPER contains the unique
ProcessorNumber that you must use to reference a Redistributor when programming the ITS.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

In a multichip configuration, the ProcessorNumber upper bits are derived from the
chip_id tie-off signal. Therefore, the chip_id signal value must be set before the GIC
exits from reset.

For more information, see the GICv3 and GICv4 Software Overview.

5.1.2 GIC-700 register access and banking

The GIC-700 uses an access and banking scheme for its registers.

For more information about the register access and banking scheme, see the Arm® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4.

The key characteristics of the scheme are:

• Some registers such as the Distributor Control Register, GICD_CTLR, and the Redistributor
Control Register, GICR_CTLR, are banked by security that provides separate Secure and Non-
secure copies of the registers. A Secure access to the address, accesses the Secure copy of the
register. A Non-secure access to the address, accesses the Non-secure copy.

• Some registers, such as the Interrupt Group Registers, GICD_IGROUPRn, are only accessible
using Secure accesses.

• Non-secure accesses to registers, or parts of a register, which are only accessible to Secure
accesses are Read-As-Zero and Writes Ignored (RAZ/WI).

5.2 Distributor registers (GICD/GICDA) summary
The GIC-700 Distributor functions are controlled through the Distributor registers identified with
the prefix GICD. The Distributor Alias registers are identified with the prefix GICDA.

The following table lists the Distributor registers in base offset order and provides a reference to
the register description that is described in either this document or the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

Address offsets are relative to the Distributor base address defined by the system memory map.

Offsets that are not shown or are marked as reserved, are Reserved and RAZ/WI. Accesses to
these offsets might be reported in error record 0 as a SYN_ACE_BAD access.

Table 5-2: Distributor registers (GICD/GICDA) summary

Offset Name Type Reset Width Description Architecture
defined?

0x0000 GICD_CTLR RW Configuration
dependent

32 Distributor Control Register Yes

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 309

https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0x0004 GICD_TYPER RO Configuration
dependent

32 Interrupt Controller Type Register Yes

0x0008 GICD_IIDR RO 0x040nn43B
The nn value
depends on the
rxpy identifier.

32 Distributor Implementer Identification Register Yes

0x000C GICD_TYPER2 RO Configuration
dependent

32 Interrupt Controller Type 2 Register Yes

0x0010-
0x001C

- - - - Reserved -

0x0020 GICD_FCTLR RW 0x0 32 Function Control Register No

0x0024 GICD_SAC RW Tie-off
dependent2

32 Secure Access Control register No

0x0028 GICD_CCCGR RW 0x0 32 Cross-Chip Control Group Register. Only present for
multichip configurations when GICD_CFGID.ACE_CC ==
0.

No

0x002C GICD_CCCCR RW 0x0 32 Cross-Chip Control Credit Register. Only present for
multichip configurations when GICD_CFGID.ACE_CC ==
0.

No

0x0030 GICD_FCTLR2 RW 0x0 32 Function Control Register 2 No

0x0034 GICD_UTILR RW 0x0 32 Utilization Register No

0x0038 GICD_FCTLR3 RW 0x9F 32 Function Control Register 3 No

0x003C GICD_CCCTLR RW 0x0 32 Cross-Chip Control Register. Only present when
GICD_CFGID.ACE_CC == 1.

No

0x0040 GICD_SETSPI_NSR WO - 32 Non-secure SPI Set Register Yes

0x0044 - - - - Reserved -

0x0048 GICD_CLRSPI_NSR WO - 32 Non-secure SPI Clear Register Yes

0x004C - - - - Reserved -

0x0050 GICD_SETSPI_SR3 4 WO - 32 Secure SPI Set Register Yes

0x0054 - - - - Reserved -

0x0058 GICD_CLRSPI_SR3 4 WO - 32 Secure SPI Clear Register Yes

0x005C-
0x007C

- - - - Reserved -

0x0080-
0x00FC

GICD_IGROUPRn4 RW 0x0 32 Interrupt Group Registers, n = 0-31, but n=0 is Reserved Yes

0x0100-
0x017C

GICD_ISENABLERn RW 0x0 32 Interrupt Set-Enable Registers, n = 0-31, but n=0 is
Reserved

Yes

0x0180-
0x01FC

GICD_ICENABLERn RW 0x0 32 Interrupt Clear-Enable Registers, n = 0-31, but n=0 is
Reserved

Yes

2 The reset values of GICD_SAC.GICTNS and GICD_SAC.GICPNS are controlled by the gict_allow_ns and
gicp_allow_ns tie-off signals respectively.

3 The existence of this register depends on the configuration of the GIC-700. If Security support is not included, then
this register is Reserved.

4 This register is only accessible from a Secure access.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0x0200-
0x027C

GICD_ISPENDRn RW SPI signal
dependent

32 Interrupt Set-Pending Registers, n = 0-31, but n=0 is
Reserved

Yes

0x0280-
0x02FC

GICD_ICPENDRn RW SPI signal
dependent

32 Interrupt Clear-Pending Registers, n = 0-31, but n=0 is
Reserved

Yes

0x0300-
0x037C

GICD_ISACTIVERn RW 0x0 32 Interrupt Set-Active Registers, n = 0-31, but n=0 is
Reserved

Yes

0x0380-
0x03FC

GICD_ICACTIVERn RW 0x0 32 Interrupt Clear-Active Registers, n = 0-31, but n=0 is
Reserved

Yes

0x0400-
0x07FC

GICD_IPRIORITYRn RW Security
dependent

32 Interrupt Priority Registers, n = 0-255, but n=0-7 are
Reserved when affinity routing is enabled

Yes

0x0800-
0x0BFC

- - - - Reserved -

0x0C00-
0x0CFC

GICD_ICFGRn RW 0x0 32 Interrupt Configuration Registers, n = 0-63, but n=0-1 are
Reserved

Yes

0x0D00-
0x0D7C

GICD_IGRPMODRn RW 0x0 32 Interrupt Group Modifier Registers, n = 0-31, but n=0 is
Reserved. If GICD_CTLR.DS == 1, then this register is
RAZ/WI.

Yes

0x0D80-
0x0DFC

- - - - Reserved -

0x0E00-
0x0EFC

GICD_NSACRn3 RW 0x0 32 Non-secure Access Control Registers, n = 0-63, but n=0-1
are Reserved when affinity routing is enabled

Yes

0x0F00-
0x0FFC

- - - - Reserved -

0x1000-
0x107C

GICD_IGROUPRnE RW 0x0 32 Interrupt Group Registers Extended, n = 0-31. Only
present when > 960 SPIs, otherwise Reserved.

Yes

0x1080-
0x11FC

- - - - Reserved -

0x1200-
0x127C

GICD_ISENABLERnE RW 0x0 32 Interrupt Set-Enable Registers Extended, n = 0-31. Only
present when > 960 SPIs, otherwise Reserved.

Yes

0x1280-
0x13FC

- - - - Reserved -

0x1400-
0x147C

GICD_ICENABLERnE RW 0x0 32 Interrupt Clear-Enable Registers Extended, n = 0-31. Only
present when > 960 SPIs, otherwise Reserved.

Yes

0x1480-
0x15FC

- - - - Reserved -

0x1600-
0x167C

GICD_ISPENDRnE RW SPI signal
dependent

32 Interrupt Set-Pending Registers Extended, n = 0-31. Only
present when > 960 SPIs, otherwise Reserved.

Yes

0x1680-
0x17FC

- - - - Reserved -

0x1800-
0x187C

GICD_ICPENDRnE RW SPI signal
dependent

32 Interrupt Clear-Pending Registers Extended, n = 0-31.
Only present when > 960 SPIs, otherwise Reserved.

Yes

0x1880-
0x19FC

- - - - Reserved -

0x1A00-
0x1A7C

GICD_ISACTIVERnE RW 0x0 32 Interrupt Set-Active Registers Extended, n = 0-31. Only
present when > 960 SPIs, otherwise Reserved.

Yes

0x1A80-
0x1BFC

- - - - Reserved -

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0x1C00-
0x1C7C

GICD_ICACTIVERnE RW 0x0 32 Interrupt Clear-Active Registers Extended, n = 0-31. Only
present when > 960 SPIs, otherwise Reserved.

Yes

0x1C80-
0x1FFC

- - - - Reserved -

0x2000-
0x23FC

GICD_IPRIORITYRnE RW 0x0 32 Interrupt Priority Registers Extended, n = 0-255. Only
present when > 960 SPIs, otherwise Reserved.

Yes

0x2400-
0x2FFC

- - - - Reserved -

0x3000-
0x30FC

GICD_ICFGRnE RW 0x0 32 Interrupt Configuration Registers Extended, n = 0-63.
Only present when > 960 SPIs, otherwise Reserved.

Yes

0x3100-
0x33FC

- - - - Reserved -

0x3400-
0x347C

GICD_IGRPMODRnE RW 0x0 32 Interrupt Group Modifier Registers Extended, n = 0-31.
Only present when > 960 SPIs, otherwise Reserved. If
GICD_CTLR.DS == 1, then this register is RAZ/WI.

Yes

0x3480-
0x35FC

- - - - Reserved -

0x3600-
0x36FC

GICD_NSACRnE RW 0x0 32 Non-secure Access Control Registers Extended, n = 0-63.
Only present when > 960 SPIs, otherwise Reserved.

Yes

0x3700-
0x5FFC

- - - - Reserved -

0x6000-
0x7FF8

GICD_IROUTERn RW 0x0080000000
if configured.

64 Interrupt Routing Registers, n = 0-991, but n=0-31 are
Reserved when affinity routing is enabled.
See the GICv3 and GICv4 Software Overview.

All SPIs are reset with Interrupt_Routing_Mode == 1. The
first register is GICD_IROUTER32, at address 0x6100.

Yes

0x8000-
0x9FF8

GICD_IROUTERnE RW 0x0 64 Interrupt Routing Registers Extended, n = 0-1023. Only
present when > 960 SPIs, otherwise Reserved.

Yes

0xA000-
0xBFFC

- - - - Reserved -

0xC000 GICD_CHIPSR RO P-Channel
dependent

32 Chip Status Register. Reserved in single-chip
configurations.

No

0xC004 GICD_DCHIPR RW 0x0 32 Default Chip Register. Reserved in single-chip
configurations.

No

0xC008-
0xC080

GICD_CHIPRn RW 0x0 64 Chip Registers, n = 0-15. Reserved in single-chip
configurations.

No

0xC088-
0xC7FC

- - - - Reserved -

0xC800-
0xC838

GICD_RDOFFRn RW 0x0 64 Redistributor Off Registers, n = 0-7. Only present when
GICD_CFGID.RDC == 1.

No

0xC840-
0xD014

- - - - Reserved -

0xD018 GICD_VCFGBASER RO 0x0 64 Copy of GICR_VCFGBASER. Only present when no local
redistributors.

No

0xD020-
0xD05C

- - - - Reserved -

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 309

https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0xD060 GICD_VSLEEPR RW 0x0 32 VICM Sleep Register. Only present when no local
redistributors.

No

0xD064-
0xDFFC

- - - - Reserved -

0xE000-
0xE0FC

GICD_ICLARn RW 0x0 32 Interrupt Class Registers, n = 0-63, but n=0-1 are
Reserved

No

0xE100-
0xE17C

GICD_ICERRRn RW 0x0 32 Interrupt Clear Error Registers, n = 0-31, but n=0 is
Reserved

No

0xE180-
0xE1FC

GICD_ICGERRn RW 0x0 32 Interrupt Clear Group Error registers, n = 0-31, but n=0 is
Reserved

No

0xE200-
0xE27C

GICD_ISERRRn RW 0x0 32 Interrupt Set Error Registers, n = 0-31, but n=0 is
Reserved

No

0xE280-
0xE2FC

- - - - Reserved -

0xE400-
0xE47C

GICD_ICERRRnE RW 0x0 32 Interrupt Clear Error Registers Extended, n = 0-31. Only
present when > 960 SPIs, otherwise Reserved.

No

0xE480-
0xE5FC

- - - - Reserved -

0xE600-
0xE67C

GICD_ICGERRnE RW 0x0 32 Interrupt Clear Group Error registers Extended, n = 0-31.
Only present when > 960 SPIs, otherwise Reserved.

No

0xE680-
0xE7FC

- - - - Reserved -

0xE800-
0xE87C

GICD_ISERRRnE RW 0x0 32 Interrupt Set Error Registers Extended, n = 0-31. Only
present when > 960 SPIs, otherwise Reserved.

No

0xE880-
0xE9FC

- - - - Reserved -

0xEA00-
0xEA78

GICD_ERRINSRn RW Configuration
dependent

64 Error Insertion Registers, n = 0-15 No

0xEA78-
0xEBFC

- - - - Reserved -

0xEC00-
0xECFC

GICD_ICLARnE RW 0x0 32 Interrupt Class Registers Extended, n = 0-63. Only present
when > 960 SPIs, otherwise Reserved.

No

0xED00-
0xEFFC

- - - - Reserved -

0xF000 GICD_CFGID RO Configuration
dependent

64 Configuration ID Register No

0xF008-
0xFFCC

- - - - Reserved -

0xFFD0 GICD_PIDR4 RO 0x44 32 Peripheral ID 4 Register Yes

0xFFD4 GICD_PIDR5 RO 0x00 32 Peripheral ID 5 Register Yes

0xFFD8 GICD_PIDR6 RO 0x00 32 Peripheral ID 6 Register Yes

0xFFDC GICD_PIDR7 RO 0x00 32 Peripheral ID 7 Register Yes

0xFFE0 GICD_PIDR0 RO 0x92 32 Peripheral ID 0 Register Yes

0xFFE4 GICD_PIDR1 RO 0xB4 32 Peripheral ID 1 Register Yes

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0xFFE8 GICD_PIDR2 RO Configuration
dependent

32 Peripheral ID 2 Register Yes

0xFFEC GICD_PIDR3 RO 0x00 32 Peripheral ID 3 Register Yes

0xFFF0 GICD_CIDR0 RO 0x0D 32 Component ID 0 Register Yes

0xFFF4 GICD_CIDR1 RO 0xF0 32 Component ID 1 Register Yes

0xFFF8 GICD_CIDR2 RO 0x05 32 Component ID 2 Register Yes

0xFFFC GICD_CIDR3 RO 0xB1 32 Component ID 3 Register Yes

5.2.1 GICD_CTLR, Distributor Control Register

This register enables interrupts and affinity routing.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-1: GICD_CTLR bit assignments

31 8 7 6 5 4 3 2 1 0

EnableGrp1S
Reserved
ARE_S
ARE_NS
DS
E1NWF

30

RWP

Reserved

EnableGrp0
EnableGrp1NS

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-3: GICD_CTLR bit descriptions

Bits Name Description Type Reset

[31] RWP Register Write Pending:

0 No register write in progress
1 Register write in progress

RO 0

[30:8] - Reserved - -

[7] E1NWF Enable 1 of N Wakeup Functionality RW 0

[6] DS Disable Security status:

0 The gicd_ctlr_ds signal was LOW when the GIC exited reset. Therefore, the
Distributor supports two Security states and Non-secure accesses cannot access and
modify registers that control Group 0 interrupts.

1 The gicd_ctlr_ds signal was HIGH when the GIC exited reset. Therefore, the
Distributor only supports a single Security state and Non-secure accesses can access
and modify registers that control Group 0 interrupts.

RO gicd_ctlr_ds
signal

[5] ARE_NS Affinity Routing Enable, Non-secure state RO 1

[4] ARE_S Affinity Routing Enable, Secure state RO 1

[3] - Reserved - -

[2] EnableGrp1S Enable Secure Group 1 interrupts RW 0

[1] EnableGrp1NS Enable Non-secure Group 1 interrupts RW 0

[0] EnableGrp0 Enable Group 0 interrupts RW 0

5.2.2 GICD_TYPER, Interrupt Controller Type Register

This register returns information about the configuration of the GIC-700. You can use this register
to determine the number of Security states, the number of INTIDs, and the number of processor
cores that the GIC supports.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-2: GICD_TYPER bit assignments

31 4 0

ESPI

527 11 910 78

ESPI_range

16171819 152425 2326

NMI

ITLinesNumber

SecurityExtn

IDbits

A3V
No1N

RSS

MBIS
LPIS

DVIS

num_LPIs CPU
Number

Table 5-4: GICD_TYPER bit assignments

Bits Name Description

[31:27] ESPI_Range Returns the number of extended SPIs that GIC-700 supports, and is given by 32×spi_blocks − 960. The
spi_blocks parameter is set when the GIC is configured.

[26] RSS Range selector support. Returns:

0 The GIC supports targeted SGIs with affinity level 0 values of 0-15.

[25] No1N 1 of N SPI:

0 The GIC-700 supports 1 of N SPI interrupts. This value occurs when spi_1ofn_support == 1.
1 The GIC-700 does not support 1 of N SPI interrupts. This value occurs when spi_1ofn_support ==

0.

[24] A3V Affinity level 3 values. Depending on the configuration, returns either:

0 The GIC-700 Distributor only supports zero values of affinity level 3.
1 The GIC-700 Distributor supports nonzero values of affinity level 3.

[23:19] IDbits Interrupt identifier bits:

0b01111 The GIC-700 supports 16 interrupt identifier bits.

[18] DVIS Direct virtual LPI injection support:

0 The GIC-700 does not support direct virtual LPI injection.
1 The GIC-700 does support direct virtual LPI injection.

See the GICv3 and GICv4 Software Overview.

[17] LPIS Indicates whether the GIC supports LPIs. Depending on the configuration, returns either:

0 LPIs are not supported.
1 LPIs are supported.

[16] MBIS Message-based interrupt support:

1 The GIC-700 supports message-based interrupts.

[15:11] num_LPIs Returns 0b00000 because GICD_TYPER.IDbits indicates the number of LPIs that the GIC supports.

[10] SecurityExtn Security state support. Depending on the gicd_ctlr_ds signal as the GIC exits reset, returns either:

0 gicd_ctlr_ds signal was HIGH during reset, so the GIC-700 supports only a single Security state.
1 gicd_ctlr_ds signal was LOW during reset, so the GIC-700 supports two Security states.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 309

https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[9] NMI Indicates whether the GIC supports non-maskable interrupts (NMIs). Depending on the configuration, returns

either:

0 NMIs are not supported. This value occurs when nmi_support == 0.
1 NMIs are supported. This value occurs when nmi_support == 1.

[8] ESPI Extended SPI:

0 The GIC is configured to support ≤960 SPIs.
1 The GIC is configured to support >960 SPIs.

[7:5] CPUNumber Returns 0b000 because GICD_CTLR.ARE==1 (ARE_NS & ARE_S).

[4:0] ITLinesNumber Returns the maximum SPI INTID that this GIC-700 implementation supports, and is given by
32×(ITLinesNumber + 1) − 1. If GICD_TYPER.ESPI ==1, then this field returns 0x1E.

5.2.3 GICD_IIDR, Distributor Implementer Identification Register

This register provides information about the implementer and revision of the Distributor.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-3: GICD_IIDR bit assignments

31 0

Reserved

1112

RevisionProductID Implementer

1619 1524 23 20

Variant

Table 5-5: GICD_IIDR bit descriptions

Bits Name Function

[31:24] ProductID Indicates the product ID:

0x04 GIC-700

[23:20] - Reserved, RAZ

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Function
[19:16] Variant Indicates the major revision, or variant, of the product rxpy identifier:

0x0 r0
0x1 r1
0x2 r2
0x3 r3

[15:12] Revision Indicates the minor revision of the product rxpy identifier:

0x0 p0
0x1 p1
0x2 p2

[11:0] Implementer Identifies the implementer:

0x43B Arm

5.2.4 GICD_TYPER2, Interrupt Controller Type Register 2

This register returns the number of bits that GIC-700 uses for a vPEID.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-4: GICD_TYPER2 bit assignments

VID

31 8 7 6 5 4 0

RES0

VIL

RES0

Table 5-6: GICD_TYPER2 bit descriptions

Bits Name Description

[31:8] - Reserved, RES0.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[7] VIL Returns the number of bits that GIC-700 can use for a vPEID:

0 GIC-700 supports 16 bits of vPEID.
1 GIC-700 supports GICD_TYPER2.VID + 1 bit of vPEID.

If GICD_TYPER.DVIS == 0, then this bit returns zero.

[6:5] - Reserved, RES0.

[4:0] VID Returns the value of the vpe_width configuration parameter. Values above 0xF are reserved.
If GICD_TYPER.DVIS == 0, then this field returns zero.

5.2.5 GICD_FCTLR, Function Control Register

This register controls non-architectural functionality such as the scrubbing of all RAMs in the local
Distributor. The register is not distributed and only acts on the local chip.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
Some bits are only accessible by Secure accesses.

Bit descriptions
Figure 5-5: GICD_FCTLR bit assignments

31 27 26 25 23 20 19 18 17 16 15 1 0

ReservedCLPL

SIPNSACRPOS

Reserved

Reserved

24

Reserved

Table 5-7: GICD_FCTLR bit assignments

Bits Name Description

[31:27] - Reserved, RES0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[26] POS Point of serialization. Secure access only.

When an interrupt is sent remotely and POS is set, it ensures that writes to GICD_SETSPI and GICD_CLRSPI propagate
to remote chips before ACE5-Lite sends a response. Applies only to edge-triggered interrupts.

0 Store locally and propagate when possible
1 Propagate access to POS

Resets to 0b0.

[25:24] - Reserved, RES0

[23:20] CLPL Cross-chip LPI limit. Secure access only.
This field enables you to reduce the number of cross-chip LPI transactions that can be outstanding to each chip:

0 The lpi_cc_tokens configuration parameter sets the maximum number of cross-chip LPI transactions
that can be outstanding to each chip.

1-15 The maximum number of cross-chip LPI transactions that can be outstanding to each chip. If you set a value
that is greater than lpi_cc_tokens, then the GIC behaves as if CLPL == 0.

[19:18] - Reserved, RES0

[17:16] NSACR Non-secure access control. Values are as described in the GICD_NSACR register. This is the value that is used if an SPI
has an error.
Secure access only. Resets to 0b00.

[15:1] - Reserved, returns 0b000

[0] SIP Scrub in progress.
When read:

0 No scrub in progress
1 Scrub in progress

When written:

0 Abort the scrub
1 Start a scrub

When a scrub is complete, the GIC clears the bit to 0.

5.2.6 GICD_SAC, Secure Access Control register

This register allows Secure software to control Non-secure access to GIC-700 Secure features by
other software. It also controls whether Secure PMU events are visible to Non-secure software.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-6: GICD_SAC bit assignments

31

3

2

1

0

Reserved

GICPNS

GICTNS

Reserved

4

SPF

Table 5-8: GICD_SAC bit assignments

Bits Name Description Type

[31:4] - Reserved, returns zero -

[3] SPF Controls whether Secure PMU events are visible to Non-secure software:

0 Secure PMU event masking is disabled. The GIC reports Secure and Non-secure PMU
events to Non-secure software and Secure software.

1 Secure PMU event masking is enabled. The GIC reports Non-secure PMU events but it
does not report Secure PMU events to Non-secure software. All PMU events are visible
to Secure software.

RW

[2] GICPNS Controls whether the Non-secure world can access the Secure PMU data:

0 Secure access only
1 Allow Non-secure access to the GICP registers

The gicp_allow_ns tie-off signal controls the reset value for each chip.

RW

[1] GICTNS Controls whether the Non-secure world can access the Secure trace data:

0 Secure access only
1 Allow Non-secure access to the GICT registers

The gict_allow_ns tie-off signal controls the reset value for each chip.

RW

[0] - Reserved, RES0 -

5.2.7 GICD_CCCGR, Cross-Chip Control Group Register

This register enables software to assign each chip to one of four credit groups. A credit group sets
the number of outstanding AXI5-Stream transactions that can be sent to that group of chips.

Configurations
This register is available in multichip configurations when GICD_CFGID.ACE_CC == 0. RES0 when
GICD_CFGID.ACE_CC == 1.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-7: GICD_CCCGR bit assignments

31 34 056 12

Chip

2728 1112 910 782930 1617 131819 14152425 2223 202125

0123456789101112131415

Table 5-9: GICD_CCCGR bit descriptions

Bits Name Description

[31:0]
Bits[2n+1:2n], for n
= 0 to 15

Chip<n> Controls the credit group that software assigns to chip n:

0b00 Chip n is in credit group 0, which supports GICD_CCCCR.Group0
outstanding AXI5-Stream transactions.

0b01 Chip n is in credit group 1, which supports GICD_CCCCR.Group1
outstanding AXI5-Stream transactions.

0b10 Chip n is in credit group 2, which supports GICD_CCCCR.Group2
outstanding AXI5-Stream transactions.

0b11 Chip n is in credit group 3, which supports GICD_CCCCR.Group3
outstanding AXI5-Stream transactions.

The chip_id tie-off signal sets the value of n for each chip.

5.2.8 GICD_CCCCR, Cross-Chip Control Credit Register

This register controls the number of outstanding AXI5-Stream transactions to a set of remote chips
that are assigned to the same credit group. The GICD_CCCGR register controls the assignment of
chips to a credit group.

Configurations
This register is available in multichip configurations when GICD_CFGID.ACE_CC == 0. RES0 when
GICD_CFGID.ACE_CC == 1.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-8: GICD_CCCCR bit assignments

31 078

Group 1Group 3 Group 0

16 1524 23

Group 2

Table 5-10: GICD_CCCCR bit descriptions

Bits Name Description

[31:24] Group3 The number of outstanding AXI5-Stream transactions that are available for chips that GICD_CCCGR
assigns to group 3:

n n outstanding AXI5-Stream transactions available
0 No limit

[23:16] Group2 The number of outstanding AXI5-Stream transactions that are available for chips that GICD_CCCGR
assigns to group 2:

n n outstanding AXI5-Stream transactions available
0 No limit

[15:8] Group1 The number of outstanding AXI5-Stream transactions that are available for chips that GICD_CCCGR
assigns to group 1:

n n outstanding AXI5-Stream transactions available
0 No limit

[7:0] Group0 The number of outstanding AXI5-Stream transactions that are available for chips that GICD_CCCGR
assigns to group 0:

n n outstanding AXI5-Stream transactions available
0 No limit

5.2.9 GICD_FCTLR2, Function Control Register 2

This register controls clock gating and other non-architectural controls in the local Distributor. The
register is not distributed and only acts on the local chip.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-9: GICD_FCTLR2 bit assignments

31 30 29 28 27 20 19 18 17 16 11 10 0

CGOReservedReserved

ARP
DCCQDENY

RWC

RCD
AWP

IRP

RWS

1526 25 24

SLC
Reserved

Table 5-11: GICD_FCTLR2 bit assignments

Bits Name Description

[31] ARP Report read poison if corrupted data from a RAM is read

[30] AWP Report write poison. Reject poisoned writes on the subordinate interface.

[29] IRP Ignore read poison from manager

[28] RCD Read chunking disable

[27:26] - Reserved, RES0

[25] SLC Strict LPI caching:

0 Use fully associative caching in the LPI caches. We recommend that SLC == 0, to use fully associative caching
for LPIs.

1 Use 2-way set associative caching in the LPI caches

[24:20] - Reserved, RES0

[19] RWC Residency wait on command. See 4.6.2 Residency and VMOVP on page 65 for more information.

[18] QDENY Q-Channel deny.
Overrides the Q-Channel logic and forces the Distributor to reject powerdown requests.

[17] DCC Do not correct cache.
Modifies the a<x>cache output signal from the Distributor.

See 4.12 Memory access and attributes on page 85.

[16] RWS Residency wait on Pending Table System (PTS) RAM search. See 4.6.2 Residency and VMOVP on page 65 for more
information.

[15:11] - Reserved, RES0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[10:0] CGO Clock gate override. One bit for each clock gate:

0 Use full clock gating
1 Leave clock running. If clock gates are not implemented, then you must use this value.

The clock gate bit assignments are:

Bit[10], CGO[10] Virtual residency control
Bit[9], CGO[9] Virtual CPU communications block
Bit[8], CGO[8] ITS communications block
Bit[7], CGO[7] Pending table search and control
Bit[6], CGO[6] Trace and debug
Bit[5], CGO[5] SGI and GICR registers
Bit[4], CGO[4] LPI cache and search
Bit[3], CGO[3] ACE5-Lite manager interface
Bit[2], CGO[2] ACE5-Lite subordinate interface
Bit[1], CGO[1] SPI registers and search
Bit[0], CGO[0] CPU communications block

5.2.10 GICD_UTILR, Utilization Register

This register controls the utilization engine in the LPI caches. The register is not distributed and
only acts on the local chip.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-10: GICD_UTILR bit assignments

UEDU

31 30 29 20 19 16 15 14 13 4 3 0

ReservedUEOUReserved

UEDEUEOE
UEOT UEDT

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-12: GICD_UTILR bit descriptions

Out of location utilization engine settings

Bits Name Description Type

[31] UEOT Out of location utilization engine trigger.
The LPI system merges LPIs of the same ID after they reach the target cache. The engine ensures optimal use
of the LPI cache and it merges LPIs of the same ID that have not reached the Point-of-Serialization in the target
cache.

UEOE must be 1 for this bit to have any effect.

No effect in configurations without LPIs.

WO

[30] UEOE Out of location utilization engine enable:

0 Engine is disabled
1 Enable the engine for any triggers

No effect in configurations without LPIs.

RW

[29:20] - Reserved, RES0 -

[19:16] UEOU Out of location utilization engine upper threshold.
Automatically trigger the engine when the LPI cache bank is UEOU/16 full.

RW

Disabled utilization engine settings

Bits Name Description Type

[15] UEDT Disabled utilization engine trigger.
By default the LPI system evicts disabled LPIs as a priority when it needs space in the cache. This engine
automatically evicts all disabled interrupts to improve cache performance.

UEDE must be 1 for this bit to have any effect.
No effect in configurations without LPIs.

WO

[14] UEDE Disabled utilization engine enable:

0 Engine is disabled
1 Enable the engine for any triggers

No effect in configurations without LPIs.

RW

[13:4] - Reserved, RES0 -

[3:0] UEDU Disabled utilization engine upper threshold.
Automatically trigger the engine when the LPI cache bank is UEDU/16 full.

RW

5.2.11 GICD_FCTLR3, Function Control Register 3

This register allows software to set some limitations on the cross-chip AXI5-Stream
communications. The register is not distributed and only acts on the local chip. The GIC ignores
this register for cross-chip ACE5-Lite communications, that is, when GICD_CFGID.ACE_CC == 1.

Configurations
This register is available in all configurations.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-11: GICD_FCTLR3 bit assignments

31 8 7 6 5 4 0

NCP0Reserved

SCP1 Reserved

Table 5-13: GICD_FCTLR3 bit descriptions

Bits Name Description

[31:8] - Reserved, RES0

[7] SCP1 Controls whether to use separate credits for SPI and LPI commands:

0 Unified credit
1 Separate credit. This value occurs at reset.

Sharing reduces the maximum number of outstanding 64-bit AXI5-Stream beats that are possible by two, if programmed in
the sending and receiving chip.

This bit has no effect in single-chip configurations. Any restriction limits the performance of cross-chip traffic, so if possible
leave it unrestricted.

[6:5] - Reserved, RES0

[4:0] NCP0 This field sets the maximum number of 64-bit AXI5-Stream beats between two chips. The allowable range of values for
NCP0 is 6-31. The value at reset is 31.

The maximum outgoing AXI5-Stream beats are 6 + NCP0 + SCP1.

The maximum AXI5-Stream responses are 3 + SCP1(remote chip) + NCP0 (remote chip).

This field has no effect in single-chip configurations. Any restriction limits the performance of cross-chip traffic, so if
possible leave it unrestricted.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.2.12 GICD_CCCTLR, Cross-Chip Control Register

This register controls the features in the GICD that relate to an ACE5-Lite cross-chip interface. The
register is not distributed and only acts on the local socket.

Configurations
This register is available in multichip configurations when GICD_CFGID.ACE_CC == 1.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-12: GICD_CCCTLR bit assignments

31 34 0

CC_MOD

12

Reserved

1112

CC_CREDIT

CC_BUFF
CC_SHARED

Reserved

Table 5-14: GICD_CCCTLR bit descriptions

Bits Name Description

[31:12] - Reserved

[11:4] CC_CREDIT The number of credits that are available:

0xFF 255 credits are available
… …
0x02 2 credits are available
0x01 1 credit is available
0x00 The number of credits available is ace_cc_credits. The ace_cc_credits

value is set during the GIC configuration stage.

[3] CC_SHARED Controls whether transactions are shareable:

1 All transactions use shared IDs
0 Unordered, always use unique IDs

[2] - Reserved

[1] CC_BUFF Controls whether transactions are bufferable:

1 Transactions are bufferable
0 Transactions are Non-bufferable

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 149 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[0] CC_MOD Controls whether transactions are bufferable:

1 Normal
0 Device

5.2.13 GICD_CHIPSR, Chip Status Register

This register returns the status of the chip in a multichip configuration. A single copy of this register
exists on each chip in a multichip configuration.

Configurations
This register is available in all multichip configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure reads.

Bit descriptions
Figure 5-13: GICD_CHIPSR bit assignments

31 12 11 10 9 8 7 6 5 4 3 2 1 0

RTSReserved

SPI_busy Reserved
GTS

GTO
SGI_busy

LPI_busy
CC_busy Reserved

Reserved

Table 5-15: GICD_CHIPSR bit descriptions

Bits Name Description

[31:12] - Reserved, RES0

[11] SPI_busy 0 ongoing SPI-related cross-chip traffic
1 no traffic

[10] SGI_busy 0 ongoing SGI-related traffic or not all cores are asleep
1 no traffic

[9] LPI_busy 0 ongoing LPI-related traffic
1 no traffic

[8] CC_busy 0 ongoing cross-chip traffic
1 no traffic

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[7:6] - Reserved, RES0

[5:4] RTS Routing table status:

0b00 disconnected
0b01 updating
0b10 consistent
0b11 Reserved

[3] - Reserved, RES0

[2] GTO Gating transaction ongoing:

0 no accesses
1 accesses ongoing

[1] GTS Gating status:

0 not gated
1 gated

[0] - Reserved, RES0

5.2.14 GICD_DCHIPR, Default Chip Register

This register allows Secure software to access the status of a chip in a multichip system. A single
copy of this register exists on each chip in a multichip configuration.

Configurations
This register is available in all multichip configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-14: GICD_DCHIPR bit assignments

31 34 0

PUP

1910

Reserved rt_owner Reserved

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-16: GICD_DCHIPR bit assignments

Bits Name Description Type

[31:10] - Reserved -

[9:4] rt_owner Routing table owner:
Value = 0-maximum chip, in the configuration

RW

[3:1] - Reserved -

[0] PUP Power update in progress:

0 PUP not in progress
1 PUP in progress

RO

5.2.15 GICD_CHIPR<n>, Chip Registers

Each register controls the configuration of the chip in a multichip system. This register exists on
each chip in a multichip configuration and is identified by the chip number.

Configurations
This register is available in all multichip configurations.

Attributes

Width 64-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Ignores writes if any interrupt group enable is set, that is, GICD_CTLR.EnableGrp0 == 1, or
EnableGrp1NS == 1, or EnableGrp1S == 1.

Bit descriptions
Figure 5-15: GICD_CHIPR<n> bit assignments

31 3 0

63 32

Reserved

SocketState

12

ADDR

9 8

SPI_BLOCKSSPI_BLOCK_MIN

PUP
Reserved

16 1415

5152

ADDR

Reserved

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-17: GICD_CHIPR<n> bit assignments

Bits Name Description Type

[63:52] - Reserved -

[51:16] ADDR When routing messages to the remote chip, this field controls:

• The value of the icdrtdest signal for an AXI5-Stream cross-chip interface.

• The value of the awaddr[AXIM_ADDR_WIDTH−1:16] signal for an ACE5-Lite cross-chip interface.

The chip_addr_width configuration parameter controls the width of this field, so the field spans
from bit[16] upwards.

RW

[15] - Reserved -

[14:9] SPI_BLOCK_MIN Controls the minimum number of SPIs in a group (block). The permitted values are 0-62. RW

[8:3] SPI_BLOCKS Controls the number of SPI blocks. The permitted values are 0-62. RW

[2] - Reserved -

[1] PUP This bit returns the power update status:

0 Power update is complete.
1 Power update in progress.

RO

[0] SocketState This bit controls the state of the chip:

0 Chip is offline.
1 Chip is online.

RW

5.2.16 GICD_RDOFFR<n>, Redistributor Off Registers

Each register allows Secure software to remove up to 64 cores from the GIC.

Configurations
This register is available in configurations when GICD_CFGID.RDC == 1.

Attributes

Width 64-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Software must program this register before any other GIC registers are accessed (other than reads
to GICR_TYPER and the ID registers) and before the GIC receives messages from any processors.
Otherwise the behavior is unpredictable.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 153 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-16: GICD_RDOFFR<n> bit assignments

31 0

63 32

RD_OFF<n>

RD_OFF<n>

Table 5-18: GICD_RDOFFR<n> bit descriptions

Bits Name Description

[63:0] RD_OFF<n> Controls whether a core is removed from the GIC:

Bit[m] = 0 The core is not removed.
Bit[m] = 1 Removes the core that is given by 64 × <n> + m. Where <n> represents the numeric identifier of this

register, that is, 0-7.

The bit order in the GICD_RDOFFR register is the order that the Redistributor pages appear in the default GIC
address map, as defined by the order of GCI blocks and buses within them. These values are set by the ppi_ref
and bus parameters in the configuration file.

When software removes cores by setting some GICD_RDOFFR bits, the GICD updates other software-visible fields
to match the reduced core count. These updates include:

• Moving GICR_TYPER.Last to the last Redistributor.

• Moving the GICDA register page to the page above the last Redistributor.

• Modifying the RAM RAS features such as scrub and error insertion, so that unused lines can never be accessed
and report errors. See Limitations on page 270 for information about an MBIST limitation.

5.2.17 GICD_VCFGBASER, vICM Final vPE CFG Attribute Register

This register returns the access attributes of the vPE CFG table.

Configurations
This register is available in all configurations when ppi_count == 0, that is, there are zero GCIs.

Attributes

Width 64-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 154 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-17: GICD_VCFGBASER bit assignments

31 1012 11 9 7 6 0

Inner
CacheAddr

63 32

Shareability

Size

62 61

Entry_
Size

Outer
Cache

5859 5556 5354

Page
_Size Addr

5152

SleepValid RES0Indirect

Table 5-19: GICD_VCFGBASER bit descriptions

Bits Name Description

[63] Valid Indicates whether the access attributes of the vPE CFG table are valid:

0 The access attributes of the vPE CFG table are not valid
1 The access attributes of the vPE CFG table are valid

[62] Sleep Returns the value of GICD_VSLEEPR.Sleep

[61:59] Entry_Size Returns the value of GITS_BASER2.Entry_Size

[58:56] OuterCache Returns the value of GITS_BASER2.OuterCache

[55] Indirect Returns the value of GITS_BASER2.Indirect

[54:53] Page_Size Returns the value of GITS_BASER2.Page_Size

[52] - RES0

[51:12] Addr Returns bits[51:12] of the vPE CFG table base address

[11:10] Shareability Returns the value of GITS_BASER2.Shareability

[9:7] InnerCache Returns the value of GITS_BASER2.InnerCache

[6:0] Size Returns the value of GITS_BASER2.Size

5.2.18 GICD_VSLEEPR, vICM Sleep Register

This register allows software to put the VICM to sleep and drain interrupts and programming out of
the GICD.

Configurations
This register is available in all configurations when ppi_count == 0, that is, there are zero GCIs.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 155 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-18: GICD_VSLEEPR bit assignments

31 0

Sleep

12

Reserved

Quiescent

Table 5-20: GICD_VSLEEPR bit descriptions

Bits Name Description Type

[31:2] - Reserved -

[1] Quiescent Indicates whether the VICM is active:

0 VICM is awake
1 VICM is asleep

RO

[0] Sleep Controls whether the VICM is asleep

0 Abandon sleep
1 Put VICM to sleep and drain interrupts and programming out of the GICD

RW

5.2.19 GICD_ICLARn, Interrupt Class Registers

These registers control whether a 1 of N SPI can target a core that is assigned to class 0 or
class 1 group. Each register controls 16 SPIs and the GIC-700 has 60 registers, GICD_ICLAR2-
GICD_ICLAR61.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
The Distributor provides up to 60 registers to support the first 960 SPIs. If you configure the
GIC-700 to use fewer than 960 SPIs, then it reduces the number of registers accordingly. For
locations where interrupts are not implemented, the register is RAZ/WI. See also GICD_ICLARnE.

These registers are only accessible when the corresponding
GICD_IROUTERn.Interrupt_Routing_Mode == 1.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-19: GICD_ICLARn bit assignments

31 34 056 12

Class

2728 1112 910 782930 1617 131819 14152425 2223 202125

nn+1n+2n+3n+4n+5n+6n+7n+8n+9n+10n+11n+12n+13n+14n+15

Table 5-21: GICD_ICLARn bit descriptions

Bits Name Description

[31:0]
Bits[2x+1:2x], for
x = 0 to 15

Class<x> Controls whether the 1 of N SPI can target a core, depending on the class group that the
core is assigned to:

0b00 The SPI can target a core that is assigned to class 0 or class 1
0b01 The SPI can target a core that is assigned to class 1
0b10 The SPI can target a core that is assigned to class 0
0b11 The SPI cannot target a core that is assigned to class 0 or class 1

The SPI that a bit refers to, depends on its bit position and the base address offset of the
GICD_ICLARn, that is, SPI = 16×n + bit[number]/2.

5.2.20 GICD_ICERRRn, Interrupt Clear Error Registers

These registers can clear the error status of an SPI or return the error status of an SPI. Each
register monitors 32 SPIs and the GIC-700 has 30 registers, GICD_ICERRR1-GICD_ICERRR30.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
The Distributor provides up to 30 registers to support 960 SPIs. If you configure the GIC-700
to use fewer than 960 SPIs, it reduces the number of registers accordingly. For locations where
interrupts are not implemented, the register is RAZ/WI.

Bit descriptions
Figure 5-20: GICD_ICERRRn bit assignments

31 0

Status

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-22: GICD_ICERRRn bit descriptions

Bits Name Description

[31:0] Status Indicates whether an SPI is in an error state:

0 If read, the SPI is not in an error state and programming is valid. Writing 0 has no effect.
1 If read, the SPI is in an error state and programming is not valid. Writing 1 clears the error.

Non-secure software can access this register, only if Secure software has previously used the GICD_ICGERRn or
GICD_ICGERRnE to clear the group information, and it has reprogrammed the group.

The SPI that a bit refers to, depends on its bit position and the base address offset of the GICD_ICERRRn, that is, SPI =
32×n + bit[number].

5.2.21 GICD_ICGERRn, Interrupt Clear Group Error registers

These registers can clear the error status of the GICD_IGROUPRn, GICD_IGRPMODRn, and
GICD_NSACRn registers of an SPI or return the error status of an SPI. Each register monitors 32
SPIs and the GIC-700 has 30 registers, GICD_ICGERR1-GICD_ICGERR30.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
This register is Secure access only.

The Distributor provides up to 30 registers to support 960 SPIs. If you configure the GIC-700
to use fewer than 960 SPIs, it reduces the number of registers accordingly. For locations where
interrupts are not implemented, the register is RAZ/WI.

Bit descriptions
Figure 5-21: GICD_ICGERRn bit assignments

31 0

Status

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-23: GICD_ICGERRn bit descriptions

Bits Name Description

[31:0] Status Indicates whether an SPI is in an error state:

0 If read, the SPI is not in an error state and programming is valid. Writing 0 has no effect.
1 If read, the SPI is in an error state and programming is not valid. Writing 1 clears the error group information.

The SPI that a bit refers to, depends on its bit position and the base address offset of the GICD_ICGERRn, that is, SPI =
32×n + bit[number].

5.2.22 GICD_ISERRRn, Interrupt Set Error Registers

These registers can set the error status of an SPI or return the error status of an SPI. Each register
monitors 32 SPIs and the GIC-700 has 30 registers, GICD_ISERRR1-GICD_ISERRR30. Software
can use these registers to test the operation of its interrupt error clear function.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
This register is Secure access only.

The Distributor provides up to 30 registers to support 960 SPIs. If you configure the GIC-700
to use fewer than 960 SPIs, it reduces the number of registers accordingly. For locations where
interrupts are not implemented, the register is RAZ/WI.

Bit descriptions
Figure 5-22: GICD_ISERRRn bit assignments

31 0

Status

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-24: GICD_ISERRRn bit descriptions

Bits Name Description

[31:0] Status Indicates whether an SPI is in an error state:

0 If read, the SPI is not in an error state and programming is valid. Writing 0 has no effect.
1 If read, the SPI is in an error state and programming is not valid. Writing 1 sets the error and contains the SPI.

The SPI that a bit refers to, depends on its bit position and the base address offset of the GICD_ISERRRn, that is, SPI =
32×n + bit[number].

5.2.23 GICD_ERRINSRn, Error Insertion Registers

This register can insert errors into the internal RAMs. You can use this register to test your error
recovery software.

Configurations
This register is available in all configurations.

Attributes

Width 64-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the functions of this register.

Bit descriptions
See 4.5.1 RAM error simulation on page 62 for which RAM corresponds to the register suffix
identifier n.

The bit assignments within this register depend on whether a write access or read access occurs.

The following table shows the bit assignments for write accesses.

Table 5-25: GICD_ERRINSRn bit assignments for writes

Bits Name Description

[63] Valid Set to 1, to start the error injection process. The GIC sets this bit to 0 when it completes the process.

[62:61] - RES0

[60] DisableWriteCheck Controls whether to include an encoding check:

0 Include an encoder check
1 Disable an encoder check

[59:48] - RES0

[47:32] ADDR Address

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[31] ERRINS2VALID Controls whether the second error is valid:

0 The ERRINS2LOC field is not valid
1 The ERRINS2LOC field is valid

[30:25] - RES0

[24:16] ERRINS2LOC Sets the bit location of the second error

[15] ERRINS1VALID Controls whether the first error is valid:

0 The ERRINS1LOC field is not valid
1 The ERRINS1LOC field is valid

[14:9] - RES0

[8:0] ERRINS1LOC Sets the bit location of the first error

The following table shows the bit assignments for read accesses.

Table 5-26: GICD_ERRINSRn bit assignments for reads

Bits Name Description

[63] Valid Indicates if the error injection process is complete:

0 Error injection process is complete
1 Error injection process is in progress

[62:61] Status Indicates if the error injection process was successful, and is only valid when Valid == 0:

0b00 The GIC performed the error injection process
0b01 An out-of-range error occurred. To fix this error, check that the RAM ID and the error locations are

correct.
0b10 A coincident error occurred
0b11 An encoder or decoder mismatch occurred

[60] RAM_Present Indicates whether a RAM with ECC is present:

0 RAM is not present, or it is present but has no ECC
1 RAM with ECC is present

[59:48] - RES0

[47:32] RAM_MAX Returns the maximum address of the RAM

[31:9] - RES0

[8:0] RAM WIDTH Returns the highest maximum bit width of the RAM. For example, a value of 15 indicates a 16-bit wide RAM.

5.2.24 GICD_ICLARnE, Interrupt Class Registers Extended

These registers control whether a 1 of N SPI can target a core that is assigned to class 0 or
class 1 group. Each register controls 16 SPIs and the GIC-700 has 64 registers, GICD_ICLAR0E-
GICD_ICLAR63E.

Configurations
This register is available in all configurations with > 960 SPIs.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
The Distributor provides up to 64 registers to support the extended SPIs, 961-1984. If you
configure the GIC-700 to use fewer than 1984 SPIs, then it reduces the number of registers
accordingly. For locations where interrupts are not implemented, the register is RAZ/WI.

Bit descriptions
Figure 5-23: GICD_ICLARnE bit assignments

31 34 056 12

Class

2728 1112 910 782930 1617 131819 14152425 2223 202125

nn+1n+2n+3n+4n+5n+6n+7n+8n+9n+10n+11n+12n+13n+14n+15

Table 5-27: GICD_ICLARnE bit descriptions

Bits Name Description

[31:0]
Bits[2x+1:2x],
for x = 0 to 15

Class<x> Controls whether the 1 of N SPI can target a core, depending on the class group that the
core is assigned to:

0b00 The SPI can target a core that is assigned to class 0 or class 1
0b01 The SPI can target a core that is assigned to class 1
0b10 The SPI can target a core that is assigned to class 0
0b11 The SPI cannot target a core that is assigned to class 0 or class 1

The SPI that a bit refers to, depends on its bit position and the base address offset of the
GICD_ICLARnE, that is, SPI = 960 + 16×n + bit[number]/2.

5.2.25 GICD_ICERRRnE, Interrupt Clear Error Registers Extended

These registers can clear the error status of an SPI in the extended SPI range, or return the
error status of an SPI. Each register monitors 32 SPIs and the GIC-700 has up to 32 registers,
GICD_ICERRR0E-GICD_ICERRR31E.

Configurations
This register is available in all configurations with > 960 SPIs.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 162 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Usage constraints
The Distributor provides up to 32 registers to support the extended SPIs, 961-1984. If you
configure the GIC-700 to use fewer than 1984 SPIs, it reduces the number of registers accordingly.
For locations where interrupts are not implemented, the register is RAZ/WI.

Bit descriptions
Figure 5-24: GICD_ICERRRnE bit assignments

31 0

Status

Table 5-28: GICD_ICERRRnE bit descriptions

Bits Name Description

[31:0] Status Indicates whether an SPI is in an error state:

0 If read, the SPI is not in an error state and programming is valid. Writing 0 has no effect.
1 If read, the SPI is in an error state and programming is not valid. Writing 1 clears the error.

Non-secure software can access this register, only if Secure software has previously used the 5.2.21 GICD_ICGERRn,
Interrupt Clear Group Error registers on page 158 or 5.2.26 GICD_ICGERRnE, Interrupt Clear Group Error registers
Extended on page 163 to clear the group information, and it has reprogrammed the group.

The SPI that a bit refers to, depends on its bit position and the base address offset of the GICD_ICERRRnE, that is, SPI =
960 + 32×n + bit[number].

5.2.26 GICD_ICGERRnE, Interrupt Clear Group Error registers Extended

These registers can clear the error status of the GICD_IGROUPRnE, GICD_IGRPMODRnE, and
GICD_NSACRnE registers of an SPI, or it returns the error status of an SPI. Each register monitors
32 SPIs and the GIC-700 has up to 32 registers, GICD_ICGERR0E-GICD_ICGERR31E.

Configurations
This register is available in all configurations with > 960 SPIs.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
This register is Secure access only.

The Distributor provides up to 32 registers to support the extended SPIs, 961-1984. If you
configure the GIC-700 to use fewer than 1984 SPIs, it reduces the number of registers accordingly.
For locations where interrupts are not implemented, the register is RAZ/WI.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-25: GICD_ICGERRnE bit assignments

31 0

Status

Table 5-29: GICD_ICGERRnE bit descriptions

Bits Name Description

[31:0] Status Indicates whether an SPI is in an error state:

0 If read, the SPI is not in an error state and programming is valid. Writing 0 has no effect.
1 If read, the SPI is in an error state and programming is not valid. Writing 1 clears the error group information.

The SPI that a bit refers to, depends on its bit position and the base address offset of the GICD_ICGERRnE, that is, SPI =
960 + 32×n + bit[number].

5.2.27 GICD_ISERRRnE, Interrupt Set Error Registers Extended

These registers can set the error status of an SPI in the extended SPI range, or return the error
status of an SPI. Each register monitors 32 SPIs and the GIC-700 has up to 32 extended registers,
GICD_ISERRR0E-GICD_ISERRR31E. Software can use these registers to test the operation of its
interrupt error clear function.

Configurations
This register is available in all configurations with > 960 SPIs.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
This register is Secure access only.

The Distributor provides up to 32 registers to support the extended SPIs, 961-1984. If you
configure the GIC-700 to use fewer than 1984 SPIs, it reduces the number of registers accordingly.
For locations where interrupts are not implemented, the register is RAZ/WI.

Bit descriptions
Figure 5-26: GICD_ISERRRnE bit assignments

31 0

Status

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 164 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-30: GICD_ISERRRnE bit descriptions

Bits Name Description

[31:0] Status Indicates whether an SPI is in an error state:

0 If read, the SPI is not in an error state and programming is valid. Writing 0 has no effect.
1 If read, the SPI is in an error state and programming is not valid. Writing 1 sets the error and contains the SPI.

The SPI that a bit refers to, depends on its bit position and the base address offset of the GICD_ISERRRnE, that is, SPI =
960 + 32×n + bit[number].

5.2.28 GICD_CFGID, Configuration ID Register

This register contains information that enables test software to determine if the GIC-700 system is
compatible.

Configurations
This register is available in all configurations.

Attributes

Width 64-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
The RDC bit is only accessible by Secure accesses.

Bit descriptions
Figure 5-27: GICD_CFGID bit assignments

31 15 0

63 32

CNUM

AFF0Reserved

20 78

ITSs

2728 2526 2324 2122

4344

CHIPS

4748

34 1211121314

SO

SPIS

AFSL

353639405253

AFF1AFF2AFF3PEW

LPIS
VLPIS

LCA
NITS

ACE_CCRDC

CHIPS_UPPER
EITS

CNUM_UPPER
Reserved

Table 5-31: GICD_CFGID bit assignments

Bits Name Description

[63:53] - Reserved, returns zero

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 165 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[52:48] PEW Width of lower part of on-chip core number field, ceil[log2(max_pe_on_chip)]. max_pe_on_chip is a

configuration option that is set during system integration, which defines the maximum number of cores on a
single chip in the system. See 4.11.3 LPI multichip operation on page 82 for more information.

[47:44] AFF3 Returns the Affinity3 bits

[43:40] AFF2 Returns the Affinity2 bits

[39:36] AFF1 Returns the Affinity1 bits

[35:32] AFF0 Returns the Affinity0 bits

[31:28] CHIPS Returns the number of supported chips − 1[3:0]

[27:26] CHIPS_UPPER Returns the number of supported chips − 1[5:4]

[25] EITS Returns 1 when the GIC supports more than 16 ITSs

[24] RDC Redistributor collapse. A Secure read indicates whether the GIC enables Secure software to program the core
numbering:

0 Secure software cannot program the core numbering
1 Secure software can program the core numbering by programming GICD_RDOFFRn and GICR_MPIDR.

This bit is set to 1 when prog_mpidr == prog. The prog_mpidr parameter is set during
configuration of the GIC.

[23] ACE_CC Indicates the AMBA® protocol that the cross-chip interface uses:

0 The cross-chip interface uses the AXI5-Stream protocol
1 The cross-chip interface uses the ACE5-Lite protocol

The cross-chip interface is not present when CHIPS == CHIPS_UPPER == 0.

[22] NITS No ITS present. Indicates whether a local ITS is present:

0 The chip contains a local ITS
1 The chip has no local ITS

Returns zero if LPIS == 0 (no LPI support).

[21] LCA Local chip addressing:

0 All chips use the same addressing scheme to communicate with another chip
1 Each chip can use its own local addressing scheme when it communicates with another chip

See Local cross-chip addressing on page 59 for more information.

[20:15] SPIS Number of SPI blocks supported

[14] AFSL Chip affinity selection level

[13] VLPIS GICv4.1 supported

[12] LPIS LPI supported

[11:8] ITSs The number of supported ITSs minus 1. When:

• EITS == 0, then the ITSs field represents 0-15

• EITS == 1, then the ITSs field represents 16-31

Returns zero if LPIS == 0 (no LPI support).

[7:4] CNUM Chip number[3:0]

[3:2] CNUM_UPPER Chip number[5:4]

[1] - Reserved, returns zero

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[0] SO Socket online status:

0 Chip is offline
1 Chip is online

5.2.29 GICD_PIDR4, Peripheral ID4 register

This register returns byte[4] of the peripheral ID. The GICD_PIDR4 register is part of the set of
Distributor peripheral identification registers.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-28: GICD_PIDR4 bit assignments

31 34 078

Reserved SIZE DES_2

Table 5-32: GICD_PIDR4 bit descriptions

Bits Name Description

[31:8] - Reserved, RAZ

[7:4] SIZE Returns 0x4, which indicates that the Distributor occupies 64KB of memory, (2SIZE × 4KB).

[3:0] DES_2 Returns 0x4, which represents bits[10:7] of the JEDEC JEP106 identification code. Together,
GICD_PIDR1.DES_0, GICD_PIDR2.DES_1, and DES_2 identify the component designer.

5.2.30 GICD_PIDR3, Peripheral ID3 register

This register returns byte[3] of the peripheral ID. The GICD_PIDR3 register is part of the set of
Distributor peripheral identification registers.

Configurations
This register is available in all configurations.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 167 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-29: GICD_PIDR3 bit assignments

31 34 078

Reserved REVAND CMOD

Table 5-33: GICD_PIDR3 bit descriptions

Bits Name Description

[31:8] - Reserved, RAZ

[7:4] REVAND Indicates minor errata fixes specific to the revision of the component being used, for example metal
fixes after implementation. 0x0 indicates that there are no errata fixes to this component.
0x0.

[3:0] CMOD Customer modified. Indicates whether the customer has modified the behavior of the component.
Usually, this field is 0x0. Customers change this value when they make authorized modifications to
this component.
0x0.

5.2.31 GICD_PIDR2, Peripheral ID2 register

This register returns byte[2] of the peripheral ID. The GICD_PIDR2 register is part of the set of
Distributor peripheral identification registers.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 168 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-30: GICD_PIDR2 bit assignments

31 34 0

JEDEC

278

Reserved DES_1ArchRev

Table 5-34: GICD_PIDR2 bit descriptions

Bits Name Description

[31:8] - Reserved, RAZ

[7:4] ArchRev Identifies the version of the GIC architecture with which the Distributor complies:

0x3 GICv3
0x4 GICv4

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to
GICD_PIDR1[7:4].

5.2.32 GICD_PIDR1, Peripheral ID1 register

This register returns byte[1] of the peripheral ID. The GICD_PIDR1 register is part of the set of
Distributor peripheral identification registers.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-31: GICD_PIDR1 bit assignments

31 34 078

Reserved DES_0 PART_1

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 169 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-35: GICD_PIDR1 bit descriptions

Bits Name Description

[31:8] - Reserved, RAZ

[7:4] DES_0 Returns 0xB, which represents bits[3:0] of the JEDEC JEP106 identification code. Together, DES_0,
GICD_PIDR2.DES_1, and GICD_PIDR4.DES_2 identify the component designer.

[3:0] PART_1 Returns 0x4, which represents bits[11:8] of the 12-bit part number of the Distributor. Together,
GICD_PIDR0.PART_0 and PART_1 field values indicate the part number of the Distributor.

5.2.33 GICD_PIDR0, Peripheral ID0 register

This register returns byte[0] of the peripheral ID. The GICD_PIDR0 register is part of the set of
Distributor peripheral identification registers.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.2 Distributor registers (GICD/GICDA) summary on page 130 for the

address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-32: GICD_PIDR0 bit assignments

31 078

Reserved PART_0

Table 5-36: GICD_PIDR0 bit descriptions

Bits Name Description

[31:8] - Reserved, RAZ

[7:0] PART_0 Returns 0x92, which represents bits[7:0] of the 12-bit part number of the Distributor. Together,
PART_0 and GICD_PIDR1.PART_1 field values indicate the part number of the Distributor.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.3 Distributor registers (GICM) for message-based SPIs
summary

The functions for the GIC-700 message-based SPIs are controlled through the Distributor registers
identified with the prefix GICM.

This page was previously known as the GICA page.

The following table lists the message-based SPI registers in base offset order and provides a
reference to the register description that is described in either this document or the Arm® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4. The WO
registers allow 16-bit accesses.

Table 5-37: Distributor registers (GICM) for message-based SPIs summary

Offset Name Type Reset Width Description Architecture
defined?

0x0000-
0x0004

- - - - Reserved -

0x0008 GICM_TYPER RO Configuration dependent 64 Message-based Type Register Yes

0x0010-
0x003C

- - - - Reserved -

0x0040 GICM_SETSPI_NSR WO - 32 Message-based Non-secure SPI Set
Register

Yes

0x0044 - - - - Reserved -

0x0048 GICM_CLRSPI_NSR WO - 32 Message-based Non-secure SPI Clear
Register

Yes

0x004C - - - - Reserved -

0x0050 GICM_SETSPI_SR5 WO6 - 32 Message-based Secure SPI Set Register Yes

0x0054 - - - - Reserved -

0x0058 GICM_CLRSPI_SR5 WO6 - 32 Message-based Secure SPI Clear Register Yes

0x005C-
0x0FC8

- - - - Reserved -

0x0FCC GICM_IIDR RO 0x040nn43B
The nn value depends on the
rxpy identifier.

32 Message-based Distributor Implementer
Identification Register

Yes

0x0FD0-
0xFFCC

- - - - Reserved -

0xFFD0 GICM_PIDR4 RO 0x44 32 Peripheral ID 4 register No

0xFFD4 GICM_PIDR5 RO 0x00 32 Peripheral ID 5 register No

0xFFD8 GICM_PIDR6 RO 0x00 32 Peripheral ID 6 register No

0xFFDC GICM_PIDR7 RO 0x00 32 Peripheral ID 7 register No

0xFFE0 GICM_PIDR0 RO 0x97 32 Peripheral ID 0 register No

5 The existence of this register depends on the configuration of the GIC-700. If Security support is not included, this
register does not exist.

6 This register is only accessible from a Secure access.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 171 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0xFFE4 GICM_PIDR1 RO 0xB4 32 Peripheral ID 1 register No

0xFFE8 GICM_PIDR2 RO 0x3B 32 Peripheral ID 2 register No

0xFFEC GICM_PIDR3 RO 0x00 32 Peripheral ID 3 register No

0xFFF0 GICM_CIDR0 RO 0x0D 32 Component ID 0 register No

0xFFF4 GICM_CIDR1 RO 0xF0 32 Component ID 1 register No

0xFFF8 GICM_CIDR2 RO 0x05 32 Component ID 2 register No

0xFFFC GICM_CIDR3 RO 0xB1 32 Component ID 3 register No

5.3.1 GICM_TYPER, Message-based Type Register

This register returns information about the number of SPIs that are assigned to the frame.

Configurations
This register is available in all configurations.

Attributes

Width 64-bit
Functional group See 5.3 Distributor registers (GICM) for message-based SPIs summary on

page 170 for the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-33: GICM_TYPER bit assignments

31 30 29 28 16 15 11 10 0

NumSPISReservedINTID

Valid SR
CLR

63 32

Reserved

Table 5-38: GICM_TYPER bit descriptions

Bits Name Description

[63:32] - Reserved, RES0

[31] Valid Returns 1 to indicate that the register reports information about the capabilities of the frame

[30] CLR Returns 1 to indicate that the GICM_CLRSPI registers are present

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 172 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[29] SR Indicates whether the GICM_CLRSPI_SR and GICM_SETSPI_SR registers are present:

0 GICM_CLRSPI_SR and GICM_SETSPI_SR registers are not present because GICD_CTLR.DS == 1
1 GICM_CLRSPI_SR and GICM_SETSPI_SR registers are present

[28:16] INTID The INTID of the lowest or first SPI that is assigned to the frame

[15:11] - Reserved, RES0

[10:0] NumSPIS Returns the number of SPIs that are assigned to the frame.
If the software is written for GICv2m, then we recommend setting GICT_ERR<n>CTLR.DIS_SPI_OOR to 0b10 or
0b01. These values ensure that errors are not generated if software attempts to use the unimplemented SPI block
with SPI IDs 992-1023.

5.3.2 GICM_IIDR, Message-based Distributor Implementer Identification
Register

This register provides information about the implementer and revision of the message-based
Distributor page.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.3 Distributor registers (GICM) for message-based SPIs summary on

page 170 for the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-34: GICM_IIDR bit assignments

31 0

Reserved

1112

RevisionProductID Implementer

1619 1524 23 20

Variant

Table 5-39: GICM_IIDR bit descriptions

Bits Name Description

[31:24] ProductID Indicates the product ID:

0x04 GIC-700

[23:20] - Reserved, RAZ

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 173 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[19:16] Variant Indicates the major revision, or variant, of the product rxpy identifier:

0x1 r1
0x2 r2
0x3 r3

[15:12] Revision Indicates the minor revision of the product rxpy identifier:

0x0 p0
0x1 p1
0x2 p2

[11:0] Implementer Identifies the implementer:

0x43B Arm

5.4 Redistributor registers for control and physical LPIs
summary

The functions for the GIC-700 physical LPIs are controlled through the Redistributor registers
identified with the prefix GICR. These registers start from the base address of the Redistributor.

For more information about LPIs, see the GICv3 and GICv4 Software Overview.

For descriptions of registers that are not specific to the GIC-700, see the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

Table 5-40: Redistributor registers for control and physical LPIs summary

Offset Name Type Reset Width Description Architecture
defined?

0x0000 GICR_CTLR RW Configuration dependent 32 Redistributor Control Register Yes

0x0004 GICR_IIDR RO 0x040nn43B
The nn value depends on the
rxpy identifier.

32 Redistributor Implementation
Identification Register

Yes

0x0008 GICR_TYPER RO Configuration dependent 64 Redistributor Type Register Yes

0x0010 - - - - Reserved -

0x0014 GICR_WAKER RW7 0x6 32 Power Management Control Register 8

0x0018 GICR_MPAMIDR RO 0x000101FF 32 Report maximum PARTID and PMG
Register

Yes

0x001C GICR_PARTIDR RW 0x0 32 Set PARTID and PMG Register Yes

0x0020 GICR_FCTLR RW 0x0 32 Function Control Register No

0x0024 GICR_PWRR RW Configuration dependent 32 Power Register No

0x0028 GICR_CLASSR RW 0x0 32 Class Register No

7 This register is only accessible from a Secure access.
8 Parts of this register are architecture defined and the other parts are microarchitecture defined.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 309

https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0x002C-
0x006C

- - - - Reserved -

0x0070 GICR_PROPBASER9 RW Configuration dependent 64 Redistributor Properties Base Address
Register

Yes

0x0078 GICR_PENDBASER9 RW7 Configuration dependent 64 Redistributor LPI Pending Table Base
Address Register

Yes

0x0080-
0x009C

- - - - Reserved -

0x00A0 GICR_INVLPIR WO - 64 - Yes

0x00A8-
0x00AC

- - - - Reserved -

0x00B0 GICR_INVALLR WO - 64 - Yes

0x00B8-
0x00BC

- - - - Reserved -

0x00C0 GICR_SYNCR RO 0x0 32 - Yes

0x00C4-
0x00FC

- - - - Reserved -

0x0100 GICR_MPIDR WO - 32 MPIDR Register. Only present when
GICD_CFGID.RDC == 1.

No

0x0104-
0xFFCC

- - - Reserved -

0xFFD0 GICR_PIDR4 RO 0x44 32 Peripheral ID 4 Register No

0xFFD4 GICR_PIDR5 RO 0x00 32 Peripheral ID 5 Register No

0xFFD8 GICR_PIDR6 RO 0x00 32 Peripheral ID 6 Register No

0xFFDC GICR_PIDR7 RO 0x00 32 Peripheral ID 7 Register No

0xFFE0 GICR_PIDR0 RO 0x93 32 Peripheral ID 0 Register No

0xFFE4 GICR_PIDR1 RO 0xB4 32 Peripheral ID 1 Register No

0xFFE8 GICR_PIDR2 RO Configuration dependent 32 Peripheral ID 2 Register No

0xFFEC GICR_PIDR3 RO 0x00 32 Peripheral ID 3 Register No

0xFFF0 GICR_CIDR0 RO 0x0D 32 Component ID 0 Register No

0xFFF4 GICR_CIDR1 RO 0xF0 32 Component ID 1 Register No

0xFFF8 GICR_CIDR2 RO 0x05 32 Component ID 2 Register No

0xFFFC GICR_CIDR3 RO 0xB1 32 Component ID 3 Register No

9 The existence of this register depends on the configuration of the GIC-700. If ITS and LPI support is not included,
this register does not exist.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 175 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.4.1 GICR_CTLR, Redistributor Control Register

This register controls the operation of a Redistributor, and enables the signaling of LPIs by the
Redistributor to the connected core.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.4 Redistributor registers for control and physical LPIs summary on page

174 for the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-35: GICR_CTLR bit assignments

31 30 27 26 25 24 23 4 3 2 1 0

ReservedReserved

RWP EnableLPIs
CES

DPG0DPG1SUWP
DPG1NS IF

Table 5-41: GICR_CTLR bit descriptions

Bits Name Description Type

[31] UWP Upstream write pending. Indicates whether all upstream writes have been communicated to the
Distributor:

0 The effects of all upstream writes have been communicated to the Distributor.
1 Not all the effects of upstream writes have been communicated to the Distributor.

RO

[30:27] - Reserved, RAZ -

[26] DPG1S Disable processor selection for Group 1 Secure interrupts

[25] DPG1NS Disable processor selection for Group 1 Non-secure interrupts

[24] DPG0 Disable processor selection for Group 0 interrupts

RW when
GICD_TYPER.No1N
== 0.
RES0 when
GICD_TYPER.No1N
== 1.

[23:4] - Reserved, RAZ -

[3] RWP Register write pending:

0 No register write in progress
1 Register write in progress

RO

[2] IF Returns 1 if LPIs are supported, indicating that GICR_INVLPIR and GICR_INVALLR are implemented,
else returns 0.

RO

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description Type
[1] CES Clear enable supported. Returns 1 to indicate that software can change GICR_CTLR.EnableLPIs from

1 to 0.
RO

[0] EnableLPIs Controls whether LPI support is enabled:

0 LPI support is disabled
1 LPI support is enabled

If EnableLPIs changes from 1 to 0, then the GIC flushes out all LPIs on the PE. When
GICR_CTLR.RWP becomes zero, the GIC no longer accesses the Pending table of this PE. After all
EnableLPIs (and RWP bits) are clear, then the GIC no longer accesses the LPI Property table.

RW

5.4.2 GICR_IIDR, Redistributor Implementation Identification Register

This register provides information about the implementer and revision of the Redistributor.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.4 Redistributor registers for control and physical LPIs summary on page

174 for the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-36: GICR_IIDR bit assignments

31 0

Reserved

1112

RevisionProductID Implementer

1619 1524 23 20

Variant

Table 5-42: GICR_IIDR bit descriptions

Bits Name Function

[31:24] ProductID Indicates the product ID:

0x04 GIC-700

[23:20] - Reserved, RAZ

[19:16] Variant Indicates the major revision, or variant, of the product rxpy identifier:

0x0 r0
0x1 r1
0x2 r2
0x3 r3

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 177 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Function
[15:12] Revision Indicates the minor revision of the product rxpy identifier:

0x0 p0
0x1 p1
0x2 p2

[11:0] Implementer Identifies the implementer:

0x43B Arm

5.4.3 GICR_TYPER, Redistributor Type Register

This register returns information about the features that this Redistributor supports.

Configurations
This register is available in all configurations.

Attributes

Width 64-bit
Functional group See 5.4 Redistributor registers for control and physical LPIs summary on page

174 for the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-37: GICR_TYPER bit assignments

31 26 25 24 23 8 7 6 5 4 3 2 1 0

ProcessorNumberPPInum

63 32

AffinityValue

PLPIS
VLPIS

Dirty
MPAM

DirectLPILast
DPGS

CommonLPIAff

27

VSGI
RVPEID

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-43: GICR_TYPER bit descriptions

Bits Name Description

[63:32] AffinityValue Affinity level values for this Redistributor:

Bits[63:56], AF3 The affinity level 3 value
Bits[55:48], AF2 The affinity level 2 value
Bits[47:40], AF1 The affinity level 1 value
Bits[39:32], AF0 The affinity level 0 value

[31:27] PPInum Indicates the maximum PPI INTID that the GIC-700 supports:

0b00000 Maximum PPI INTID is 31
0b00001 Maximum PPI INTID is 1087

[26] VSGI Indicates whether this Redistributor supports direct injection of SGIs:

0 This Redistributor does not support direct injection of SGIs. This value occurs when
gicv41_support == 0.

1 This Redistributor supports direct injection of SGIs. This value occurs when gicv41_support == 1.

[25:24] CommonLPIAff Returns:

0b00 Single chip configuration
0b01 If chip set by AF3
0b10 If chip set by AF2
0b11 Reserved

Redistributors that belong to the same CommonLPIAff group must point at the same copy of the vPE
Configuration table.

[23:8] ProcessorNumber Returns the core number and chip number that uniquely identifies this core in the system

[7] RVPEID Returns:

0 The GICR_VPENDBASER register does not record the index into the vPE Configuration table. This
value occurs when gicv41_support == 0.

1 The GICR_VPENDBASER register records the index into the vPE Configuration table. This value
occurs when gicv41_support == 1.

[6] MPAM Indicates whether GIC-700 supports Memory Partitioning and Monitoring (MPAM):

0 MPAM is not supported. This value occurs when lpi_support == 0.
1 MPAM is supported. This value occurs when lpi_support == 1.

[5] DPGS Returns 1, to indicate that the GIC-700 supports Disable Processor Group Selections. See GICR_CTLR.DPG1S,
GICR_CTLR.DPG1NS, and GICR_CTLR.DPG0.

[4] Last Last Redistributor:

0 This Redistributor is not the last Redistributor on the chip
1 This Redistributor is the last Redistributor on the chip

[3] DirectLPI Returns 0, to indicate that:

• The GICR_INVLPIR, GICR_INVALLR, and GICR_SYNCR registers are implemented.

• The GICR_SETLPIR and GICR_CLRLPIR are not implemented.

The GICR_INVLPIR and GICR_INVALLR are present in all configurations of the GIC that support LPIs.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 179 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[2] Dirty Returns:

0 no vLPI support. This value occurs when gicv41_support == 0.
1 The Redistributor sets the state of GICR_VPENDBASER.Dirty after GICR_VPROPBASER.Valid is set

to 1. After every residency change, software must poll for GICR_VPENDBASER.Dirty == 0. This value
occurs when gicv41_support == 1.

[1] VLPIS Indicates whether the Redistributor supports virtual LPIs:

0 The Redistributor does not support virtual LPIs or the direct injection of virtual LPIs. This value occurs
when gicv41_support == 0.

1 The Redistributor supports virtual LPIs and the direct injection of virtual LPIs. This value occurs when
gicv41_support == 1.

See the GICv3 and GICv4 Software Overview.

[0] PLPIS Indicates whether the Redistributor supports physical LPIs:

0 The Redistributor does not support physical LPIs. This value occurs when lpi_support == 0.
1 The Redistributor supports physical LPIs. This value occurs when lpi_support == 1.

5.4.4 GICR_WAKER, Power Management Control Register

This register controls whether the GIC-700 can be powered down.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.4 Redistributor registers for control and physical LPIs summary on page

174 for the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-38: GICR_WAKER bit assignments

31 3 0

Sleep

1230

Reserved

ProcessorSleep
ChildrenAsleep

Quiescent

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 180 of 309

https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-44: GICR_WAKER bit descriptions

Bits Name Description Type

[31] Quiescent Indicates that the GIC-700 is idle and can be powered down if necessary. RO

[30:3] - Reserved, RAZ -

[2] ChildrenAsleep Indicates that the bus between the CPU interface and this GIC Cluster Interface (GCI) is quiescent. RO

[1] ProcessorSleep Controls whether the GIC must assert a wake request signal before the GCI delivers an interrupt to the
core:

0 The GIC never asserts a wake_request signal and the GCI delivers the interrupt to the core.
1 The GIC asserts a wake_request signal if there is a pending interrupt that targets the connected

core. See 4.13.2 Processor core power management on page 87.
If the GIC configuration supports local PE wake, then the GCI has cpu_wake_request signals. For
these configurations, when a pending interrupt targets the connected core:

• The GCI asserts the cpu_wake_request signal.

• The Wake Request block asserts the wake_request signal.

See Local PE wake on page 38.

RW

[0] Sleep Indicates the sleep state:

0 Normal operation
1 The GIC-700 ensures that all the caches are consistent with external memory and that it is safe to

power down. See A.2 Other power management on page 271.

RW

5.4.5 GICR_MPAMIDR, Report maximum PARTID and PMG Register

This register returns the maximum values that the Memory Partitioning and Monitoring (MPAM) fields
can be set to in GICR_PARTIDR.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.4 Redistributor registers for control and physical LPIs summary on page

174 for the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-39: GICR_MPAMIDR bit assignments

PARTIDmax

31 0

Reserved

24 23

PMGmax

16 15

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 181 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-45: GICR_MPAMIDR bit descriptions

Bits Name Description

[31:24] - Reserved

[23:16] PMGmax Performance monitoring group. Returns 0x01, and indicates the maximum value that
GICR_PARTIDR.PMG can be set to.

[15:0] PARTIDmax Returns 0x01FF, and indicates the maximum value that GICR_PARTIDR.PARTID can be set to

5.4.6 GICR_PARTIDR, Set PARTID and PMG Register

This register sets the Partition ID and PMG values that the Redistributor uses during memory
accesses.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.4 Redistributor registers for control and physical LPIs summary on page

174 for the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-40: GICR_PARTIDR bit assignments

PARTID

31 0

Reserved

PMG

17 9 8

Reserved

16 15

Table 5-46: GICR_PARTIDR bit descriptions

Bits Name Description

[31:17] - Reserved

[16] PMG The performance monitoring group value that the Redistributor uses when it accesses memory

[15:9] - Reserved

[8:0] PARTID The Partition ID value that the Redistributor uses when it accesses memory

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 182 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.4.7 GICR_FCTLR, Function Control Register

This register controls the scrubbing of all RAMs in the associated Redistributor.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.4 Redistributor registers for control and physical LPIs summary on page

174 for the address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-41: GICR_FCTLR bit assignments

31 4 0

SIP

5 12

Reserved CGO

QD

Table 5-47: GICR_FCTLR bit descriptions

Bits Name Description

[31:5] - Reserved, RAZ/WI

[4:2] CGO Clock gate override. One bit for each clock gate:

0 Use full clock gating
1 Leave clock running. If clock gates are not implemented, then you must use this value.

The clock gate bit assignments are:

Bit[4], CGO[2] Search clock gate
Bit[3], CGO[1] Downstream message clock gate
Bit[2], CGO[0] Upstream message clock gate

[1] QD Q-Channel deny:

0 Allow Q-Channel accesses
1 Deny Q-Channel accesses

[0] SIP Scrub in progress:

0 No scrub in progress
1 Scrub in progress

This bit is read and written by software. When a scrub is complete, the GIC clears the bit to 0.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 183 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.4.8 GICR_PWRR, Power Register

This register controls the powerup sequence of the Redistributors. Software must write to this
register during the powerup sequence.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.4 Redistributor registers for control and physical LPIs summary on page

174 for the address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-42: GICR_PWRR bit assignments

31 24 23 15 14 8 7 4 3 2 1 0

ReservedRDGORDGReserved

RDPD
RDAG

RDGPO
RDGPD

Table 5-48: GICR_PWRR bit descriptions

Bits Name Description Type

[31:24] - Reserved, RAZ -

[23:15] RDG RDGroup. This field indicates the number of the GIC Cluster Interface (GCI) of this Redistributor. RO

[14:8] RDGO RDGroupOffset. This field indicates the identifier of the current core within the GCI. RO

[7:4] - Reserved, RAZ -

[3] RDGPO RDGroupPoweredOff. This bit indicates:

0 GCI is powered up and can be accessed
1 It is safe to power down the GCI

RO

[2] RDGPD RDGroupPowerDown. This bit indicates the intentional power state of the GCI:

0 Intend to power up
1 Intend to power down

The GCI has reached its intentional power state when RDGPD = RDGPO.

RO

[1] RDAG RDApplyGroup. Setting this bit to 1 applies the RDPD value to all Redistributors on the same GCI.
If the RDPD value cannot be applied to all cores in the group, then the GIC ignores this request.

WO

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 184 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description Type
[0] RDPD RDPowerDown:

0 Redistributor is powered up and can be accessed
1 The core permits the Redistributor to be powered down

Writes to 1 are ignored if GICR_WAKER.ProcessorSleep != 1.

Writes are ignored if RDGPD != RDGPO and changing to not match RDGPD.

If all other cores in the Redistributor group have RDPD == 1, then setting this bit to 1 also sets RDGPD = 1.

RW

Related information
Redistributor power management on page 86

5.4.9 GICR_CLASSR, Class Register

This register specifies which class of 1 of N interrupt the CPU accepts.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.4 Redistributor registers for control and physical LPIs summary on page

174 for the address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-43: GICR_CLASSR bit assignments

31 0

Class

1

Reserved

Table 5-49: GICR_CLASSR bit descriptions

Bits Name Description

[31:1] - Reserved, RAZ/WI

[0] Class Interrupt class:

0 Class 0
1 Class 1

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 185 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Related information
SPI routing and 1 of N selection on page 73
GICD_ICLARn, Interrupt Class Registers on page 156

5.4.10 GICR_MPIDR, MPIDR Register

This register allows Secure software to write the affinity values of a Redistributor.

Configurations
This register is available in configurations when GICD_CFGID.RDC == 1.

Attributes

Width 32-bit
Functional group See 5.4 Redistributor registers for control and physical LPIs summary on page

174 for the address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Software must program this register after it writes to the GICD_RDOFFRn registers and before the
GIC receives messages from any processors. Otherwise the behavior is unpredictable.

Bit descriptions
Figure 5-44: GICR_MPIDR bit assignments

Affinity0

31 24 08 716 15

Affinity1Affinity2Affinity3

23

Table 5-50: GICR_MPIDR bit descriptions

Bits Name Description

[31:24] Affinity3 Sets the affinity level 3 value of this Redistributor.
The max_affinity_width3 configuration parameter controls how many of the lower bits are implemented. This
field ignores writes for cross-chip configurations or when max_affinity_width3 is zero.

Software can use GICR_TYPER.AffinityValue to read the affinity level 3 value.

[23:16] Affinity2 Sets the affinity level 2 value of this Redistributor.
The max_affinity_width2 configuration parameter controls how many of the lower bits are implemented. This
field ignores writes for cross-chip configurations with chip affinity level 2 or when max_affinity_width2 is zero.

Software can use GICR_TYPER.AffinityValue to read the affinity level 2 value.

[15:8] Affinity1 Sets the affinity level 1 value of this Redistributor.
The max_affinity_width1 configuration parameter controls how many of the lower bits are implemented. This
field ignores writes when max_affinity_width1 is zero.

Software can use GICR_TYPER.AffinityValue to read the affinity level 1 value.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 186 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[7:0] Affinity0 Sets the affinity level 0 value of this Redistributor.

The max_affinity_width0 configuration parameter controls how many of the lower bits are implemented. This
field ignores writes when max_affinity_width0 is zero.

Software can use GICR_TYPER.AffinityValue to read the affinity level 0 value.

5.4.11 GICR_PIDR2, Peripheral ID2 Register

This register returns byte[2] of the peripheral ID. The GICR_PIDR2 register is part of the set of
Redistributor peripheral identification registers.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.4 Redistributor registers for control and physical LPIs summary on page

174 for the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-45: GICR_PIDR2 bit assignments

31 34 0

JEDEC

278

Reserved DES_1ArchRev

Table 5-51: GICR_PIDR2 bit descriptions

Bits Name Description

[31:8] - Reserved, RAZ

[7:4] ArchRev Identifies the version of the GIC architecture with which the Redistributor complies:

0x3 GICv3
0x4 GICv4

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to
GICR_PIDR1[7:4].

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 187 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.5 Redistributor registers for SGIs and PPIs summary
The functions for the GIC-700 SGIs and PPIs are controlled through the Redistributor registers
identified with the prefix GICR.

For descriptions of registers that are not specific to the GIC-700, see the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

Table 5-52: Redistributor registers for SGIs and PPIs summary

Offset Name Type Reset Width Description Architecture
defined?

0x0000-
0x007C

- - - - Reserved -

0x0080 GICR_IGROUPR0 RW 0x0 32 Interrupt Group Register Yes

0x0084 GICR_IGROUPR1E RW 0x0 32 Interrupt Group Register Extended. Only present
when ppis_per_cpu > 16.

Yes

0x0088-
0x00FC

- - - - Reserved -

0x0100 GICR_ISENABLER0 RW 0x0 32 Interrupt Set-Enable Register Yes

0x0104 GICR_ISENABLER1E RW 0x0 32 Interrupt Set-Enable Register Extended. Only present
when ppis_per_cpu > 16.

Yes

0x0108-
0x017C

- - - - Reserved -

0x0180 GICR_ICENABLER0 RW 0x0 32 Interrupt Clear-Enable Register Yes

0x0184 GICR_ICENABLER1E RW 0x0 32 Interrupt Clear-Enable Register Extended. Only
present when ppis_per_cpu > 16.

Yes

0x0188-
0x01FC

- - - - Reserved -

0x0200 GICR_ISPENDR0 RW PPI signal
dependent

32 Interrupt Set-Pending Register Yes

0x0204 GICR_ISPENDR1E RW PPI signal
dependent

32 Interrupt Set-Pending Register Extended. Only present
when ppis_per_cpu > 16.

Yes

0x0208-
0x027C

- - - - Reserved -

0x0280 GICR_ICPENDR0 RW PPI signal
dependent

32 Peripheral Clear Pending Register Yes

0x0284 GICR_ICPENDR1E RW PPI signal
dependent

32 Peripheral Clear-Pending Register Extended. Only
present when ppis_per_cpu > 16.

Yes

0x0288-
0x02FC

- - - - Reserved -

0x0300 GICR_ISACTIVER0 RW 0x0 32 Interrupt Set-Active Register Yes

0x0304 GICR_ISACTIVER1E RW 0x0 32 Interrupt Set-Active Register Extended. Only present
when ppis_per_cpu > 16.

Yes

0x0308-
0x037C

- - - - Reserved -

0x0380 GICR_ICACTIVER0 RW 0x0 32 Interrupt Clear-Active Register Yes

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 188 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0x0384 GICR_ICACTIVER1E RW 0x0 32 Interrupt Clear-Active Register Extended. Only present
when ppis_per_cpu > 16.

Yes

0x0388-
0x03FC

- - - - Reserved -

0x0400-
0x041C

GICR_IPRIORITYRn RW 0x0 32 Interrupt Priority Registers Yes

0x0420 GICR_IPRIORITYRnE RW 0x0 32 Interrupt Priority Registers Extended. Only present
when ppis_per_cpu > 16.

Yes

0x0440-
0x0BFC

- - - - Reserved -

0x0C00-
0x0C04

GICR_ICFGRn RW 0xAAAAAAAA
when n == 0.
0x0 when n ==
1.

32 Interrupt Configuration Registers Yes

0x0C08-
0x0C0C

GICR_ICFGRnE RW 0x0 32 Interrupt Configuration Registers Extended. Only
present when ppis_per_cpu > 16.

Yes

0x0C10-
0x0CFC

- - - - Reserved -

0x0D00 GICR_IGRPMODR0 RW 0x0 32 Interrupt Group Modifier Register Yes

0x0D04-
0x0C0C

GICR_IGRPMODR1E RW 0x0 32 Interrupt Group Modifier Register Extended. Only
present when ppis_per_cpu > 16.

Yes

0x0D08-
0x0DFC

- - - - Reserved -

0x0E00 GICR_NSACR RW 0x0 32 Non-secure Access Control Register Yes

0x0E04-
0xBFFC

- - - - Reserved -

0xC000 GICR_MISCSTATUSR RO 0x0 32 Miscellaneous Status Register No

0xC004 - - - - Reserved -

0xC008 GICR_ICDERRR RW 0x0 32 Interrupt Clear Distribution Error Register No

0xC00C - - - - Reserved -

0xC010 GICR_SGIDR RW - 64 SGI Default Register No

0xC018 GICR_DPRIR RW 0x0 32 Default Priority Register No

0xC01C-
0xC0FC

- - - - Reserved -

0xC100 GICR_ICERRR0 RW 0x0 32 Interrupt Clear Error Register

0xC104 GICR_ICERRR1E RW 0x0 32 Interrupt Clear Error Register Extended. Only present
when ppis_per_cpu > 16.

0xC108-
0xC17C

- - - - Reserved -

0xC180 GICR_ISERRR0 RW 0x0 32 Interrupt Set Error Register No

0xC184 GICR_ISERRR1E RW 0x0 32 Interrupt Set Error Register Extended. Only present
when ppis_per_cpu > 16.

No

0xC188-
0xEFFC

- - - - Reserved -

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 189 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0xF000 GICR_CFGID0 RO Configuration
dependent

32 Configuration ID0 Register No

0xF004 GICR_CFGID1 RO Configuration
dependent

32 Configuration ID1 Register No

0xF010 GICR_ERRINSR RW 0x0 64 Error Insertion Register No

5.5.1 GICR_MISCSTATUSR, Miscellaneous Status Register

Use this register to test the integration of the cpu_active and wake_request input signals. You can
also use the register to debug the CPU interface enables as seen by the GIC-700.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.5 Redistributor registers for SGIs and PPIs summary on page 187 for

the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-46: GICR_MISCSTATUSR bit assignments

31 34 0

EnableGrp0

5 122930

Reserved

EnableGrp1NSecure
EnableGrp1Secure

cpu_active
wake_request AccessType

Reserved

Table 5-53: GICR_MISCSTATUSR bit descriptions

Bits Name Description

[31] cpu_active Returns the status of the cpu_active signal for the core corresponding to the Redistributor whose register is
being read:

0 cpu_active input signal is not active
1 cpu_active input signal is active

This bit is undefined when ProcessorSleep or ChildrenAsleep is set for a core, because the core is presumed
to be powered down.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 190 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[30] wake_request Returns the status of the wake_request signal:

0 wake_request signal is not active
1 wake_request signal is asserted

[29:5] - Reserved

[4] AccessType Returns the access type:

0 Secure access
1 Non-secure access

[3] - Reserved

[2]10 EnableGrp1Secure In systems that enable two Security states, when GICD_CTLR.DS == 0, then:

• For Secure reads, returns the Group 1 Secure CPU interface enable.

• For Non-secure reads, returns zero.

In systems that only enable a single Security state, when GICD_CTLR.DS == 1, then this bit returns zero.

[1]10 EnableGrp1NSecure In systems that enable two Security states, when GICD_CTLR.DS == 0, then:

• For Secure reads, this bit returns the Group 1 Non-secure CPU interface enable.

• For Non-secure reads, when GICD_CTLR.ARE_NS == 1, this bit returns the Group 1 Non-secure CPU
interface enable.

• For Non-secure reads when GICD_CTLR.ARE_NS == 0, this bit returns zero.

In systems that only enable a single Security state, when GICD_CTLR.DS == 1, this bit returns the Group 1
CPU interface enable.

[0]10 EnableGrp0 In systems that enable two Security states, when GICD_CTLR.DS == 0, then:

• For Secure reads, this bit returns the Group 0 CPU interface enable.

• For Non-secure reads when GICD_CTLR.ARE_NS == 0, this bit returns the Group 1 Non-secure CPU
interface enable.

• For Non-secure reads when GICD_CTLR.ARE_NS == 1, this bit returns zero.

In systems that only enable a single Security state, when GICD_CTLR.DS == 1, this bit returns the Group 0
CPU interface enable.

5.5.2 GICR_ICDERRR, Interrupt Clear Distribution Error Register

This register indicates if the SGI distribution data has been corrupted in SRAM. You can use this
register to clear an SGI error.

Configurations
This register is available in all configurations.

10 These bits are a copy of the CPU interface group enables for the core corresponding to this Redistributor. These
copies are undefined when ProcessorSleep or ChildrenSleep is set for a core, because the core is presumed to
be powered down. Upstream write packets maintain these copies that can de-synchronize after an incorrect
powerdown sequence. This register enables you to debug this scenario. For more information, see the Arm®

Generic Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 191 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Attributes

Width 32-bit
Functional group See 5.5 Redistributor registers for SGIs and PPIs summary on page 187 for

the address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-47: GICR_ICDERRR bit assignments

31 0

Reserved

16 15

Error

Table 5-54: GICR_ICDERRR bit descriptions

Bits Name Description

[31:16] - Reserved

[15:0] Error Indicates whether an SGI is in an error state:

Bit[n] = 0 If read, SGIn is not in an error state. Writing 0 has no effect.
Bit[n] = 1 If read, SGIn is in an error state, so the interrupt is not delivered. Writing 1 clears the error on SGIn.

5.5.3 GICR_SGIDR, SGI Default Register

This register controls the default value of SGI settings, for use in the case of a Double-bit Error
Detect Error (DEDERR).

Configurations
This register is available in all configurations. If SGI ECC is not enabled, then this register is RES0.

Attributes

Width 64-bit
Functional group See 5.5 Redistributor registers for SGIs and PPIs summary on page 187 for

the address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses. Before r2p0, this register did not support 32-bit writes.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 192 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Table 5-55: GICR_SGIDR bit descriptions

Bits Name Description

[3] + 4n:
[63, 59, 55, 51, 47, 43, 39, 35, 31, 27, 23, 19, 15, 11, 7, 3]

- Reserved, RES0

[2] + 4n:
[62, 58, 54, 50, 46, 42, 38, 34, 30, 26, 22, 18, 14, 10, 6, 2]

GRPMOD As GICR_IGRPMODR0 register

[1] + 4n:
[61, 57, 53, 49, 45, 41, 37, 33, 29, 25, 21, 17, 13, 9, 5, 1]

GRP As GICR_IGROUPR0 register

[0] + 4n:
[60, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4, 0]

NSACR 1 = Allow Non-secure access to interrupt <n>

5.5.4 GICR_DPRIR, Default Priority Register

This register controls the default priority of errored interrupts.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.5 Redistributor registers for SGIs and PPIs summary on page 187 for

the address offset, type, and reset value of this register.

Usage constraints
Some fields are only writable by using a Secure access.

Bit descriptions
Figure 5-48: GICR_DPRIR bit assignments

Reserved

31 24 23 19 18 16 15 11 10 8 7 3 2 0

G0PRIReservedG1NSPRIReservedG1SPRIReserved

Table 5-56: GICR_DPRIR bit descriptions

Bits Name Description

[31:24] - Reserved, RES0

[23:19] G1SPRI The default priority that the GIC uses for errored Secure Group 1 interrupts. Lower priority values
correspond to greater priority of the interrupt. Only Secure writes can update this field.

[18:16] - Reserved, RES0

[15:11] G1NSPRI The default priority that the GIC uses for errored Non-secure Group 1 interrupts. Lower priority
values correspond to greater priority of the interrupt.

[10:8] - Reserved, RES0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 193 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[7:3] G0PRI The default priority that the GIC uses for errored Group 0 interrupts. Lower priority values

correspond to greater priority of the interrupt. Only Secure writes can update this field.

[2:0] - Reserved, RES0

5.5.5 GICR_ICERRR0, Interrupt Clear Error Register 0

This register indicates if the SGI or PPI data has been corrupted in the GCI RAM. Software can use
this register to clear an SGI or PPI error.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.5 Redistributor registers for SGIs and PPIs summary on page 187 for

the address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-49: GICR_ICERRR0 bit assignments

31 0

Status

Table 5-57: GICR_ICERRR0 bit descriptions

Bits Name Description

[31:16] Indicates whether a PPI is in an error state:

Bit[n] = 0 If read, PPI[n−16] is not in an error state. Writing 0 has no effect.
Bit[n] = 1 If read, PPI[n−16] is in an error state, so the interrupt is not delivered. Writing 1 clears the error on

PPI[n−16].

[15:0]

Status

Indicates whether an SGI is in an error state:

Bit[n] = 0 If read, SGI[n] is not in an error state. Writing 0 has no effect.
Bit[n] = 1 If read, SGI[n] is in an error state, so the interrupt is not delivered. Writing 1 clears the error on SGI[n].

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 194 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.5.6 GICR_ICERRR1E, Interrupt Clear Error Register Extended

This register indicates if the PPI[47:16] data has been corrupted in the GCI RAM. Software can use
this register to clear an error.

Configurations
This register available in configurations with > 16 PPIs, that is, when GICR_TYPER.PPInum >0.

Attributes

Width 32-bit
Functional group See 5.5 Redistributor registers for SGIs and PPIs summary on page 187 for

the address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-50: GICR_ICERRR1E bit assignments

31 0

Status

Table 5-58: GICR_ICERRR1E bit descriptions

Bits Name Description

[31:0] Status Indicates whether a PPI[47:16] is in an error state:

Bit[n] = 0 If read, PPI[n+16] is not in an error state. Writing 0 has no effect.
Bit[n] = 1 If read, PPI[n+16] is in an error state, so the interrupt is not delivered. Writing 1 clears the error on

PPI[n+16].

5.5.7 GICR_ISERRR0, Interrupt Set Error Register 0

This register indicates if the SGI or PPI data has been corrupted in the GCI RAM. For testing
purposes, software can use this register to set an SGI or PPI error.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.5 Redistributor registers for SGIs and PPIs summary on page 187 for

the address offset, type, and reset value of this register.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 195 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-51: GICR_ISERRR0 bit assignments

31 0

Status

Table 5-59: GICR_ISERRR0 bit descriptions

Bits Name Description

[31:16] Indicates whether a PPI is in an error state:

Bit[n] = 0 If read, PPI[n−16] is not in an error state. Writing 0 has no effect.
Bit[n] = 1 If read, PPI[n−16] is in an error state, so the interrupt is not delivered. Writing 1 sets the error on

PPI[n−16].

[15:0]

Status

Indicates whether an SGI is in an error state:

Bit[n] = 0 If read, SGI[n] is not in an error state. Writing 0 has no effect.
Bit[n] = 1 If read, SGI[n] is in an error state, so the interrupt is not delivered. Writing 1 sets the error on SGI[n].

5.5.8 GICR_ISERRR1E, Interrupt Set Error Register Extended

This register indicates if the PPI[47:16] data has been corrupted in the GCI RAM. For testing
purposes, software can use this register to set a PPI error.

Configurations
This register is available in configurations with > 16 PPIs, that is, when GICR_TYPER.PPInum >0.

Attributes

Width 32-bit
Functional group See 5.5 Redistributor registers for SGIs and PPIs summary on page 187 for

the address offset, type, and reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-52: GICR_ISERRR1E bit assignments

31 0

Status

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 196 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-60: GICR_ISERRR1E bit descriptions

Bits Name Description

[31:0] Status Indicates whether a PPI[47:16] is in an error state:

Bit[n] = 0 If read, PPI[n+16] is not in an error state. Writing 0 has no effect.
Bit[n] = 1 If read, PPI[n+16] is in an error state, so the interrupt is not delivered. Writing 1 sets the error on

PPI[n+16].

5.5.9 GICR_CFGID0, Configuration ID0 Register

This register returns information about the configuration of the Redistributors.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.5 Redistributor registers for SGIs and PPIs summary on page 187 for

the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-53: GICR_CFGID0 bit assignments

31 0

ECCSupport

910 8

PPINumberReserved

Table 5-61: GICR_CFGID0 bit descriptions

Bits Name Description

[31:10] - Reserved, RAZ

[9] ECCSupport 1 = ECC is supported

[8:0] PPINumber RedistributorID.
The ppi_id[15:0] tie-off signal sets the value of the ID. Each Redistributor must have a unique ID.

Related information
Miscellaneous signals on page 289

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 197 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.5.10 GICR_CFGID1, Configuration ID1 Register

This register returns information about the configuration of the Redistributors.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.5 Redistributor registers for SGIs and PPIs summary on page 187 for

the address offset, type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-54: GICR_CFGID1 bit assignments

31 34 02728 1112

ReservedReserved

1619 1524 23 20

NumCPUsVersion UserValue Reserved
PPIs_
per_

Processor

Table 5-62: GICR_CFGID1 bit descriptions

Bits Name Description

[31:28] Version Identifies the major and minor revisions of GIC-700:

0x8 r0p0 and r0p1
0x1 r1p0
0x2 r2p0
0x3 r2p1
0x4 r2p2
0x5 r3p0

[27:24] UserValue Modification value that you can set. Indicates whether the customer has modified the
behavior of the Redistributor. Usually, this field is 0x0. Customers change this value when
they make authorized modifications to the Redistributor.

[23:20] - Reserved, RAZ

[19:16] PPIs_per_Processor The number of PPIs for each core

[15:12] - Reserved

[11:4] NumCPUs The number of cores that this Redistributor supports.
GIC-700 supports up to 64 cores, so the maximum value of this field is 0x3F.

[3:0] - Reserved, RAZ

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 198 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.5.11 GICR_ERRINSR, Error Insertion Registers

This register can inject errors into the PPI RAM. You can use this register to test your error
recovery software.

Configurations
This register is available in configurations where the GIC Cluster Interface (GCI) supports ECC. See
Limitations on page 270 for information about situations where the GICRn_ERRINSR register is
not present.

Attributes

Width 64-bit
Functional group See 5.5 Redistributor registers for SGIs and PPIs summary on page 187 for

the address offset, type, and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the contents of this register.

Bit descriptions
The bit assignments within this register depend on whether a write access or read access occurs.

The following table shows the bit assignments for write accesses.

Table 5-63: GICR_ERRINSR bit assignments for writes

Bits Name Description

[63] Valid Set to 1, to start the error injection process. The GIC sets this bit to 0 when it completes
the process.

[62:61] - RES0

[60] DisableWriteCheck Controls whether to include an encoding check:

0 Include an encoder check
1 Disable an encoder check

[59:48] - RES0

[47:32] ADDR Address

[31] ERRINS2VALID Controls whether the second error is valid:

0 The ERRINS2LOC field is not valid
1 The ERRINS2LOC field is valid

[30:25] - RES0

[24:16] ERRINS2LOC Sets the address location of the second error

[15] ERRINS1VALID Controls whether the first error is valid:

0 The ERRINS1LOC field is not valid
1 The ERRINS1LOC field is valid

[14:9] - RES0

[8:0] ERRINS1LOC Sets the address location of the first error

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 199 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

The following table shows the bit assignments for read accesses.

Table 5-64: GICR_ERRINSR bit assignments for reads

Bits Name Description

[63] Valid Indicates if the error injection process is complete:

0 Error injection process is complete
1 Error injection process is in progress

[62:61] Status Indicates if the error injection process was successful, and the value is only valid when Valid ==
0:

0b00 The GIC performed the error injection process
0b01 An out-of-range error occurred. To fix this error, check that the RAM ID and the

error locations are correct.
0b10 A coincident error occurred
0b11 An encoder or decoder mismatch occurred

[60] RAM_Present Indicates whether a RAM with ECC is present:

0 RAM is not present, or it is present but has no ECC
1 RAM with ECC is present

[59:48] - RES0

[47:32] RAM_MAX Returns the maximum address of the RAM

[31:9] - RES0

[8:0] RAM WIDTH Returns the highest maximum bit width of the RAM. For example, a value of 15 indicates a 16-
bit wide RAM.

5.6 vLPI register summary
The functions for the GIC-700 vLPIs are controlled through the Redistributor registers identified
with the prefix GICR.

This page does not exist in GIC-700 configurations that do not support vLPIs.

See the Arm® Generic Interrupt Controller Architecture Specification, GIC architecture version 3
and version 4 for information about the vLPI registers.

Table 5-65: vLPI register summary

Offset Name Type Reset Width Description Architecture
defined?

0x0000-
0x006C

- - - - Reserved -

0x0070 GICR_VPROPBASER RW - 64 Virtual Redistributor Properties Base Address
Register

Yes

0x0078 GICR_VPENDBASER RW - 64 Virtual Pending Table Base Address Register Yes

0x007C - - - - Reserved -

0x0080 GICR_VSGIR WO - 32 Virtual SGI Register Yes

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0x0084 - - - - Reserved -

0x0088 GICR_VSGIPENDR RO 0x0 32 Virtual SGI Pending Register Yes

0x008C-
0xBFFC

- - - - Reserved -

0xC000 GICR_VFCTLR RW 0x0 32 Virtual Function Control Register No

0xC004-
0xC0FC

- - - - Reserved -

0xC100 GICR_VCFGBASER RO 0x0 64 vICM Final vPE CFG Attribute Register No

0xC108-
0xC11C

- - - - Reserved -

0xC120 GICR_VINVCHIPR RW 0 32 vPE Invalidate Chip Register No

0xC124-
0xE0FC

- - - - Reserved -

0xE100 GICR_VERRR RW 0x0 64 vICM vPE Error Register No

0xE108-
0xFFFC

- - - - Reserved -

5.6.1 GICR_VFCTLR, Virtual Function Control Register

This register controls the chicken bit functionality in the vICM. You can use GICR_VFCTLR to
restrict the vLPI and vSGI buffer size to 1, and restrict the number of cross-chip vSGI tokens.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.6 vLPI register summary on page 200 for the address offset, type, and

reset value of this register.

Usage constraints
Only accessible by Secure accesses.

Bit descriptions
Figure 5-55: GICR_VFCTLR bit assignments

31 3 2 1 0

Reserved

CredLimCount CredLim
SGILim

45

LPILim

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 201 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-66: GICR_VFCTLR bit descriptions

Bits Name Description

[31:5] - Reserved, RES0

[4:3] CredLimCount When CredLim == 1, this field can reduce the number of vSGIs that can be sent to each chip:

0 1 vSGI can be outstanding to each chip
1 2 vSGIs can be outstanding to each chip
2 3 vSGIs can be outstanding to each chip
3 4 vSGIs can be outstanding to each chip

If you set a value that is greater than vsgi_cc_tokens − 1, then the GIC behaves as if
CredLim == 0.

[2] LPILim When set to 1, limits vLPI buffer size to 1

[1] SGILim When set to 1, limits vSGI buffer size to 1

[0] CredLim This bit enables you to reduce the number of vSGIs that can be sent to each chip:

0 The vsgi_cc_tokens configuration parameter sets the number of vSGIs that can be
sent to each chip

1 The CredLimCount field sets the number of vSGIs that can be sent to each chip

5.6.2 GICR_VCFGBASER, vICM Final vPE CFG Attribute Register

This register returns the access attributes of the vPE CFG table.

Configurations
This register is available in all configurations that support vLPIs.

Attributes

Width 64-bit
Functional group See 5.6 vLPI register summary on page 200 for the address offset, type, and

reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 202 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-56: GICR_VCFGBASER bit assignments

31 1012 11 9 7 6 0

Inner
CacheAddr

63 32

Shareability

Size

62 61

Entry_
Size

Outer
Cache

5859 5556 5354

Page
_Size Addr

5152

SleepValid RES0Indirect

Table 5-67: GICR_VCFGBASER bit descriptions

Bits Name Description

[63] Valid Indicates whether the access attributes of the vPE CFG table are valid:

0 The access attributes of the vPE CFG table are not valid
1 The access attributes of the vPE CFG table are valid

[62] Sleep Returns the value of GICR_WAKER.Sleep

[61:59] Entry_Size Returns the value of GICR_VPROPBASER.Entry_Size

[58:56] OuterCache Returns the value of GICR_VPROPBASER.OuterCache

[55] Indirect Returns the value of GICR_VPROPBASER.Indirect

[54:53] Page_Size Returns the value of GICR_VPROPBASER.Page_Size

[52] - RES0

[51:12] Addr Returns bits[51:12] of the vPE CFG table base address

[11:10] Shareability Returns the value of GICR_VPROPBASER.Shareability

[9:7] InnerCache Returns the value of GICR_VPROPBASER.InnerCache

[6:0] Size Returns the value of GICR_VPROPBASER.Size

5.6.3 GICR_VINVCHIPR, vPE Invalidate Chip Register

This register can invalidate the vICM RAM in selected chips.

Configurations
This register is available in all configurations that support vLPIs.

Attributes

Width 32-bit
Functional group See 5.6 vLPI register summary on page 200 for the address offset, type, and

reset value of this register.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 203 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-57: GICR_VINVCHIPR bit assignments

ChipList

31 30 n n−1 0

RES0

Valid

Table 5-68: GICR_VINVCHIPR bit descriptions

Bits Name Description

[31] Valid Set to 1, to start an invalidation request to the vPEs in the chips that GICR_VINVCHIPR.ChipList
specifies.
When read as 0, it indicates that the invalidate request is complete.

[30:n] - RES0

[n−1:0]ChipList When one or more bits are set to 1, it selects a list of chips. Only vPEs with chip information set in this
field are invalidated in RAM.
For reads, returns RES0.

The chip_count configuration parameter sets the value of n.

5.6.4 GICR_VERRR, vICM vPE Error Register

This register can set and clear the error bit for a vPE in the vICM RAM. You can use the register
to find vPEs with an error in the vICM and obtain vPE information from the vTGT cache and the
vICM.

Configurations
This register is available in all configurations that support vLPIs.

Attributes

Width 64-bit
Functional group See 5.6 vLPI register summary on page 200 for the address offset, type, and

reset value of this register.

Usage constraints
Only accessible using a 64-bit access.

Bit descriptions
The bit assignments within this register can change, depending on whether you are initiating a
request or reading the information of a read (RD) request.

The following table shows the bit assignments when initiating a request.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 204 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-69: GICR_VERRR bit assignments, for request initiation

Bits Name Description Type

[63] Busy Set to 1, to start a request. The GIC sets this bit to 0 when it completes the request. RW

[62] Response This bit indicates if the request was successful, and is only valid when Busy == 0:

0 The GIC performed the request
1 The GIC failed to perform the request

RO

[61:60] Opcode Request type:

0 RD. Read vPE information.
1 SET. Set the error bit.
2 CLR. Clear the error bit.
3 FIND. Find a vPE that contains an error.

RW

[59:17] - RES0 -

[16:14] Read_block Controls which data to retrieve for an RD operation (Opcode == 0):

0 Doorbell data. See Table 5-70: GICR_VERRR bit assignments, for a Doorbell read request on page
205.

1 vPT data. See Table 5-71: GICR_VERRR bit assignments, for a vPT read request on page 206.
2, 5-7 vCONF data. See Table 5-72: GICR_VERRR bit assignments, for a vCONF read request on page

207.
3 vSGI[15:8] programming. See Table 5-73: GICR_VERRR bit assignments, for a vSGI read request

on page 208.
4 vSGI[7:0] programming. See Table 5-73: GICR_VERRR bit assignments, for a vSGI read request on

page 208.

RW

[13:n] - RES0 -

[n−1:0] vPEID For RD, SET, and CLR requests (Opcode ≤ 2), this field selects the vPE that receives the request.
For FIND requests (Opcode == 3), this field selects the vPE where the error search starts. If no errors are
found for that vPE, the search incrementally checks the other vPEs. The search wraps around to ensure all
vPEs are searched. The search ends when an error is found or when the search has checked all the vPEs.

RW

When you read the GICR_VERRR register, the following tables show the bit assignments for the
different request types:

Response to a Doorbell read request
The following table shows the bit assignments when the GIC performs a read (RD) request of
the Doorbell information.

Table 5-70: GICR_VERRR bit assignments, for a Doorbell read request

Bits Name Description

[63] Busy Indicates if the read request is complete:

0 Doorbell read request is complete
1 Doorbell read request is in progress

[62] Response Indicates if the request was successful, and is only valid when Busy == 0:

0 The GIC performed the request
1 The GIC failed to perform the request

[61:60] Opcode Returns 0 because an RD request was requested

[59] - RES0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 205 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[58] Errored Indicates if the request has errored in the vTGT cache:

0 The request did not cause an error
1 The request has errored in the vTGT cache. The Doorbell ID might be incorrect.

[57:42] DB_ID Returns the default Doorbell identifier

[41] DB_Mask Returns the default Doorbell mask

[40:38] - RES0

[37] DB_Prop Indicates if the default Doorbell properties are valid:

0 The default Doorbell properties are not valid
1 The default Doorbell properties are valid

[36] DB_Enabled Indicates if the default Doorbell is enabled:

0 The default Doorbell is not enabled
1 The default Doorbell is enabled

[35:32] DB_Priority Returns the priority of the default Doorbell. 0b0000 is the lowest priority and 0b1111 is the highest
priority.

[31:9] - RES0

[8:0] DB_PE Returns the PE that the default Doorbell targets

Response to a vPT read request
The following table shows the bit assignments when the GIC performs a read (RD) request of
the vPT information.

Table 5-71: GICR_VERRR bit assignments, for a vPT read request

Bits Name Description

[63] Busy Indicates if the read request is complete:

0 vPT read request is complete
1 vPT read request is in progress

[62] Response Indicates if the request was successful, and is only valid when Busy == 0:

0 The GIC performed the request
1 The GIC failed to perform the request

[61:60] Opcode Returns 0 because an RD request was requested

[59] Mapped Indicates if the vPE is mapped on the local chip:

0 The vPE is not mapped on the local chip
1 The vPE is mapped on the local chip

[58] Errored Indicates if the vPE is errored:

0 The vPE is not errored
1 The vPE is errored

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 206 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[57:42] Mapped_ITS Returns the ITSs that the vPE is mapped on:

• Bit[57] is ITS15

• Bit[56] is ITS14

• …

• Bit[42] is ITS0

[41:36] - RES0

[35:0] vPT_Addr Returns the vPT base address, bits[51:15], for the vPE

Response to a vCONF read request
The following table shows the bit assignments when the GIC performs a read (RD) request of
the vCONF information.

Table 5-72: GICR_VERRR bit assignments, for a vCONF read request

Bits Name Description

[63] Busy Indicates if the read request is complete:

0 vCONF read request is complete
1 vCONF read request is in progress

[62] Response Indicates if the request was successful, and is only valid when Busy == 0:

0 The GIC performed the request
1 The GIC failed to perform the request

[61:60] Opcode Returns 0 because an RD request was requested

[59] Mapped Indicates if the vPE is mapped on the local chip:

0 The vPE is not mapped on the local chip
1 The vPE is mapped on the local chip

[58] Errored Indicates if the vPE is errored:

0 The vPE is not errored
1 The vPE is errored

[57:42] Mapped_ITS When GICD_CFGID.EITS == 1, returns the ITSs that the vPE is mapped on:

• Bit[57] is ITS31

• Bit[56] is ITS30

• …

• Bit[42] is ITS16

When GICD_CFGID.EITS == 0, this field is RES0.

[41:36] - RES0

[35:0] vCONF_Addr Returns the vCONF base address, bits[51:15], for the vPE

Response to a vSGI read request
The following table shows the bit assignments when the GIC performs a read (RD) request of
the vSGI programming information.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 207 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-73: GICR_VERRR bit assignments, for a vSGI read request

Bits Name Description

[63] Busy Indicates if the read request is complete:

0 vSGI read request is complete
1 vSGI read request is in progress

[62] Response Indicates if the request was successful, and is only valid when Busy == 0:

0 The GIC performed the request
1 The GIC failed to perform the request

[61:60] Opcode Returns 0 because an RD request was requested

[59] - RES0

[58] Errored Indicates if the request has errored in the vTGT cache:

0 The request did not cause an error
1 The request has errored in the vTGT cache. The vSGI programming might be incorrect.

[57:48] - RES0

[47:40] vSGI_Group Each bit represents a vSGI and it indicates which group the vSGI belongs to:

0 The vSGI belongs to Group 0
1 The vSGI belongs to Group 1

Bit[40] represents vSGI[0] and bit[47] represents vSGI[7].

[39:32] vSGI_Enabled Each bit represents a vSGI and indicates if the vSGI is enabled:

0 The vSGI is not enabled
1 The vSGI is enabled

Bit[32] represents vSGI[0] and bit[39] represents vSGI[7].

[32:0] vSGI_Priority Each nibble represents a vSGI and it returns the priority of the vSGI. 0b0000 is the lowest priority and
0b1111 is the highest priority. Bits[3:0] represent vSGI[0] and bits[31:28] represent vSGI[7].

5.7 ITS control register summary
The GIC-700 Interrupt Translation Service (ITS) functions are controlled through registers that are
identified with the prefix GITS.

This page does not exist in GIC-700 configurations that do not support LPIs.

For descriptions of registers that are not specific to the GIC-700, see the Arm® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3 and version 4.

Table 5-74: ITS control register summary

Offset Name Type Reset Width Description Architecture
defined?

0x0000 GITS_CTLR RW 0x80000000 32 ITS Control Register Yes

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 208 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0x0004 GITS_IIDR RO 0x040nn43B
The nn value depends on the
rxpy identifier.

32 ITS Implementer Identification
Register

Yes

0x0008 GITS_TYPER RO Configuration dependent 64 ITS Type Register Yes

0x0010 GITS_MPAMIDR RO 0x000101FF 32 MPAM ID Register Yes

0x0014 GITS_PARTIDR RW 0x0 32 Part ID Register Yes

0x0018-
0x001C

- - - - Reserved -

0x0020 GITS_FCTLR RW 0x0 32 Function Control Register No

0x0024 - - - - Reserved -

0x0028 GITS_OPR RW 0x0 64 Operations Register No

0x0030 GITS_OPSR RO 0x0 64 Operation Status Register No

0x0038-
0x007C

- - - - Reserved -

0x0080 GITS_CBASER RW 0x0 64 Command Queue Control Register.
See the GICv3 and GICv4 Software
Overview.

Yes

0x0088 GITS_CWRITER RW 0x0 64 Command Queue Write Pointer
Register

Yes

0x0090 GITS_CREADR RO 0x0 64 Command Queue Read Pointer
Register

Yes

0x0098-
0x00FC

- - - - Reserved -

0x0100 GITS_BASER0 RW 0x0107000000000000 64 ITS Translation Table Descriptor
Register0

Yes

0x0108 GITS_BASER1 RW 0x0401000000000000 64 ITS Translation Table Descriptor
Register1

Yes

0x0110 GITS_BASER2 RW Configuration dependent 64 ITS Translation Table Descriptor
Register2

Yes

0x0118-
0xDFFC

- - - - Reserved -

0xC000 GITS_ERRINS_D RW Configuration dependent 64 Device Cache error injection No

0xC008 GITS_ERRINS_V RW Configuration dependent 64 Event Cache error injection No

0xC010 GITS_ERRINS_C RW Configuration dependent 64 Collection Cache error injection No

0xC018-
0xEFFC

- - - - Reserved -

0xF000 GITS_CFGID RO Configuration dependent 64 Configuration ID Register No

0xF008-
0xFFCC

- - - - Reserved -

0xFFD0 GITS_PIDR4 RO 0x44 32 Peripheral ID 4 Register No

0xFFD4 GITS_PIDR5 RO 0x00 32 Peripheral ID 5 Register No

0xFFD8 GITS_PIDR6 RO 0x00 32 Peripheral ID 6 Register No

0xFFDC GITS_PIDR7 RO 0x00 32 Peripheral ID 7 Register No

0xFFE0 GITS_PIDR0 RO 0x94 32 Peripheral ID 0 Register No

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 209 of 309

https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0xFFE4 GITS_PIDR1 RO 0xB4 32 Peripheral ID 1 Register No

0xFFE8 GITS_PIDR2 RO Configuration dependent 32 Peripheral ID 2 Register No

0xFFEC GITS_PIDR3 RO 0x00 32 Peripheral ID 3 Register No

0xFFF0 GITS_CIDR0 RO 0x0D 32 Component ID 0 Register No

0xFFF4 GITS_CIDR1 RO 0xF0 32 Component ID 1 Register No

0xFFF8 GITS_CIDR2 RO 0x05 32 Component ID 2 Register No

0xFFFC GITS_CIDR3 RO 0xB1 32 Component ID 3 Register No

5.7.1 GITS_IIDR, ITS Implementer Identification Register

This register provides information about the implementer and revision of the ITS.

Configurations
This register is available in all configurations that have one or more ITS blocks.

Attributes

Width 32-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-58: GITS_IIDR bit assignments

31 0

Reserved

1112

RevisionProductID Implementer

1619 1524 23 20

Variant

Table 5-75: GITS_IIDR bit descriptions

Bits Name Description

[31:24] ProductID Indicates the product ID:

0x04 GIC-700

[23:20] - Reserved, RAZ

[19:16] Variant Indicates the major revision, or variant, of the product rxpy identifier:

0x0 r0
0x1 r1
0x2 r2
0x3 r3

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 210 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[15:12] Revision Indicates the minor revision of the product rxpy identifier:

0x0 p0. It also represents p1 when Variant == 0x0.
0x1 p1
0x2 p2

[11:0] Implementer Identifies the implementer:

0x43B Arm

5.7.2 GITS_TYPER, ITS Type Register

This register returns information about the features that this ITS supports.

Configurations
This register is available in all configurations that have one or more ITS blocks.

Attributes

Width 64-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-59: GITS_TYPER bit assignments

31 24 23 20 19 18 17 13 12 8 7 4 3 2 1 0

IDBitsDevBitsReservedHCC

CIDBits

63 36 35 32

Reserved

37

CIL

Physical
VirtualCCT

SEIS
PTA

38394041424344

VMOVP
MPAM

VSGI
nID
SVPET

VMAPP

Reserved

4546

Reserved
INV

47

ITTEntry
Size

Table 5-76: GITS_TYPER bit descriptions

Bits Name Description

[63:47] - Reserved, RAZ

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 211 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[46] INV Returns 1, to indicate that:

• The Device cache and Event cache are invalidated when writing to GITS_BASER0.

• The Collection cache is invalidated when writing to GITS_BASER1.

[45:44] - Reserved, RAZ

[43] nID Indicates whether GIC-700 supports individual doorbells:

1 Individual doorbell is not supported.

[42:41] SVPET Returns:

0b00 vPE table is not shared with Redistributors. This bit value occurs when the GIC does not support
GICv4.1.

0b01 vPE table is shared with the groups of Redistributors that GITS_MPIDR.Aff3 indicates. This
bit value occurs for all configurations of the GIC except for a multichip configuration with
chip_affinity_select_level == 2.

0b10 vPE table is shared with the groups of Redistributors that GITS_MPIDR.[Aff3, Aff2] indicate. This bit
value occurs for a GIC multichip configuration with chip_affinity_select_level == 2.

When this field is not 0, it reports the same value as the GICR_TYPER.CommonLPIAff field of the Redistributors it
shares the table with.

[40] VMAPP Returns 1, to indicate a GICv4.1 VMAPP command layout.

[39] VSGI Indicates whether this ITS supports direct injection of SGIs:

0 This ITS does not support direct injection of SGIs. This value occurs when gicv41_support == 0.
1 This ITS supports direct injection of SGIs. This value occurs when gicv41_support == 1.

[38] MPAM Indicates whether the ITS supports Memory Partitioning and Monitoring (MPAM):

0 MPAM is not supported. This value occurs when lpi_support == 0.
1 MPAM is supported. This value occurs when lpi_support == 1.

[37] VMOVP Indicates the form of the VMOVP command:

0 This bit value occurs when gicv41_support == 0.
1 When software moves a vPE, then it need only issue a VMOVP on one of the ITSs that has a mapping for

that vPE. The ITSList and Sequence Number fields in the VMOVP command are RES0. This bit value occurs
when gicv41_support == 1.

[36] CIL Collection ID limit:

1 The size of the Collection ID is set by the CIDBits field.

[35:32] CIDBits The number of Collection ID bits, minus one.
Set by the col_width configuration parameter.

[31:24] HCC Hardware collection count:

0 Interrupt collections are held in external memory only.

[23:20] - Reserved, returns 0

[19] PTA Physical target addresses:

0 The GIC-700 does not support physical target addresses.

[18] SEIS System error interrupts:

0 The GIC-700 does not support locally generated System Error interrupts.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 212 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[17:13] DevBits The number of device identifier bits implemented, minus one.

Set by the did_width configuration parameter.

[12:8] IDBits The number of interrupt identifier bits implemented, minus one.
Set by the vid_width configuration parameter.

[7:4] ITTEntrySize The number of bytes for each entry, minus one:

0x3 The GIC-700 supports a 4-byte ITT entry size.

[3] - Reserved

[2] CCT Cumulative Collection tables:

0 Total number of supported collections is determined by the number of collections that are held in memory
only.

[1] Virtual Indicates whether the ITS supports virtual LPIs and direct injection of virtual LPIs:

0 The ITS does not support virtual LPIs or direct injection of virtual LPIs. This bit value occurs when
gicv41_support == 0.

1 The ITS supports virtual LPIs and direct injection of virtual LPIs. This bit value occurs when
gicv41_support == 1.

See the GICv3 and GICv4 Software Overview.

[0] Physical Physical LPIs:

1 The GIC-700 supports physical LPIs.

5.7.3 GITS_MPAMIDR, MPAM ID Register

This register returns the maximum values that the Memory Partitioning and Monitoring (MPAM) fields
can be set to in GITS_PARTIDR.

Configurations
This register is available in all configurations that have one or more ITS blocks.

Attributes

Width 32-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 213 of 309

https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-60: GITS_MPAMIDR bit assignments

PARTIDmax

31 0

Reserved

24 23

PMGmax

16 15

Table 5-77: GITS_MPAMIDR bit descriptions

Bits Name Description

[31:24] - Reserved

[23:16] PMGmax Performance monitoring group. Returns 0x01, and indicates the maximum value that
GITS_PARTIDR.PMG can be set to.

[15:0] PARTIDmax Returns 0x01FF, and indicates the maximum value that GITS_PARTIDR.PARTID can be set to

5.7.4 GITS_PARTIDR, PART ID Register

This register sets the Partition ID and PMG values that the ITS uses during memory accesses.

Configurations
This register is available in all configurations that have one or more ITS blocks.

Attributes

Width 32-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-61: GITS_PARTIDR bit assignments

PARTID

31 0

Reserved

PMG

17 9 8

Reserved

16 15

Table 5-78: GITS_PARTIDR bit descriptions

Bits Name Description

[31:17] - Reserved

[16] PMG The performance monitoring group value that the ITS uses when it accesses memory

[15:9] - Reserved

[8:0] PARTID The Partition ID value that the ITS uses when it accesses memory

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 214 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.7.5 GITS_FCTLR, Function Control Register

This register controls many functions in the local GITS such as cache invalidation, clock gating, and
the scrubbing of all RAMs. The register is not distributed and only acts on the local chip.

Configurations
This register is available in all configurations that have one or more ITS blocks.

Attributes

Width 32-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
If the ITS is not quiescent, then the GIC ignores writes to some fields. The ITS is quiescent when
GITS_CTLR.Quiescent == 1.

Bit descriptions
Figure 5-62: GITS_FCTLR bit assignments

31 3 2 1 0

CGO

7830 29 19 18 17 16 15 9

Reserved

IDC
ICC

AEE

CEE
UEE

LTE
SIP

IEC
PWE

DCC

10

QD

POCE

11

QAK

12 4624 23 20

CRED

1314

Reserved

Reserved

LEO

LLCRED

Table 5-79: GITS_FCTLR bit descriptions

Bits Name Description Type

[31] DCC Disable cache conversion:

0 Use SMMU attribute for AMBA mapping
1 Use Direct attribute for AMBA mapping

Writes ignored if the ITS is not quiescent.

RW

[30] PWE Powerdown when enabled:

0 Requests GITS_CTLR.Quiescent to indicate that the ITS is quiescent and can be powered down.
1 Do not request GITS_CTLR.Quiescent to indicate that the ITS is quiescent.

RW

[29:24] - Reserved, RAZ/WI -

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 215 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description Type
[23:20] CRED LPI credit initialization:

0x0 Default to the configured credit value of GITS_CFGID.LPI_Credit_Count + 1
0x1 1 credit
0x2 2 credits
… …
0xE 14 credits
0xF 15 credits

RW

[19] - Reserved, RAZ/WI -

[18] IEC Invalidate Event cache:
When written:

0 No effect
1 Invalidate Event cache

When read:

0 Invalidation complete
1 Event cache invalidation in progress, including the BASER0 write-initiated invalidate

RW

[17] IDC Invalidate Device cache:
When written:

0 No effect
1 Invalidate Device cache

When read:

0 Invalidation complete
1 Device cache invalidation in progress, including the BASER0 write-initiated invalidate

RW

[16] ICC Invalidate Collection cache:
When written:

0 No effect
1 Invalidate Collection cache

When read:

0 Invalidation complete
1 Collection cache invalidation in progress, including the BASER1 write-initiated invalidate

RW

[15:14] - Reserved, RAZ/WI -

[13:12] LLCRED Low-latency LPI credit:

0b00 Default to the configured credit value of GITS_CFGID.Low_Latency_LPI_Credit_Count
0b01 1 credit
0b10 2 credits
0b11 3 credits

RW

[11] POCE Poison check enable:

0 Disable poison checking on the ACE5-Lite subordinate port
1 Enable poison checking on the ACE5-Lite subordinate port

RW

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 216 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description Type
[10] QAK Quiescent ACK override:

0 Disable quiescent ACK override
1 Enable quiescent ACK override

RW

[9] QD Q-Channel deny:

0 Do not deny Q-Channel requests
1 Always deny Q-Channel requests

RW

[8] AEE Access error enable:

0 Do not enable reporting of subordinate access errors
1 Enable reporting of subordinate access errors

Writes ignored if the ITS is not quiescent.

RW

[7] LEO LPI error overflow.

0 LPI errors are always sent
1 To prevent excessive debug messages, LPI errors set the overflow bit in debug messages.

Writes ignored if the ITS is not quiescent.

RW

[6:4] CGO Clock gate override. One bit for each clock gate:

0 Use full clock gating
1 Leave clock running. If clock gates are not implemented, then you must use this value.

The clock gate bit assignments are:

Bit[6], CGO[2] Debug clock
Bit[5], CGO[1] Command clock
Bit[4], CGO[0] ITU clock

RW

[3] CEE Command error enable:

0 Do not enable reporting of command errors and errors from GITS_OPR operations.
1 Enable reporting of command errors and errors from GITS_OPR operations. See 4.15.4.15 ITS command

and translation error records 27+ on page 109.

Writes ignored if the ITS is not quiescent.

RW

[2] UEE Unmapped error enable:

0 Do not enable reporting of unmapped interrupt errors
1 Enable reporting of unmapped interrupt errors

Writes ignored if the ITS is not quiescent.

RW

[1] LTE Latency tracking enable:

0 Disable latency tracking of interrupts
1 Enable latency tracking of interrupts

Writes ignored if the ITS is not quiescent.

RW

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 217 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description Type
[0] SIP Scrub in progress.

When read:

0 No scrub in progress
1 Scrub in progress

When written:

0 Abort the scrub
1 Start a scrub

When a scrub is complete, the GIC clears the bit to 0.

RW

5.7.6 GITS_OPR, Operations Register

This register controls cache lock.

Configurations
This register is available in all configurations that have one or more ITS blocks.

Attributes

Width 64-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-63: GITS_OPR bit assignments

EVENT_ID

31 20 19 0

Reserved

DEVICE_ID

63 60 59 56 55 32

ReservedLOCK_
TYPE

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 218 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-80: GITS_OPR bit descriptions

Bits Name Description

[63:60] LOCK_TYPE Lock type supported:

0 Track
1 Trial
2 ITS lock
3 ITS unlock
4 Track abort
8 ITS unlock all
5‑7, 9‑15 Reserved

Note:
• If GITS_OPSR.REQUEST_IN_PROGRESS == 1, when attempting a new access (other than

Track abort (4) during a Track) the behavior is unpredictable.

• Invalidating the VCACHE by using GITS_FCTLR.XXX unlocks all the locked entries.
However, if a GITS_OPR lock request occurs while an invalidation is in progress
(GITS_FCTLR.XXX == 1), then it is unpredictable whether the entries remain locked when
the invalidation completes. This unpredictable behavior might cause GITS_OPSR to return
an incorrect status.

[59:56] - Reserved, RES0

[55:32] DEVICE_ID Sets the DeviceID. The number of bits that are implemented in this field is configuration
dependent. To determine the width of this field, software can read GITS_TYPER.DevBits.

[31:20] - Reserved, RES0

[19:0] EVENT_ID Sets the EventID. The number of bits that are implemented in this field is configuration
dependent. To determine the width of this field, software can read GITS_TYPER.IDBits.

5.7.7 GITS_OPSR, Operation Status Register

This register indicates cache lock status.

Configurations
This register is available in all configurations that have one or more ITS blocks.

Attributes

Width 64-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 219 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-64: GITS_OPSR bit assignments

63 48 32

Reserved

45474962 61 60

31 16 15 0

PIDReserved

46

ENTRY_LOCKED
REQUEST_IN_PROGRESS
REQUEST_PASS
REQUEST_COMPLETE

50

Reserved

TARGET

VIRTUAL

Table 5-81: GITS_OPSR bit descriptions

Bits Name Description

[63] REQUEST_COMPLETE Request to GITS_OPR completed

[62] REQUEST_PASS Request to GITS_OPR completed without error

[61] REQUEST_IN_PROGRESS Request to GITS_OPR in progress

[60:50] - Reserved, RES0

[49] VIRTUAL Indicates whether the interrupt is virtual or physical:

0 A physical interrupt is targeting the PE that GITS_OPSR.TARGET selects
1 A virtual interrupt is targeting the vPE that GITS_OPSR.TARGET selects

Valid for trial and lock operations.

[48] ENTRY_LOCKED Locked entry in cache corresponds to request (valid for trial and lock operations)

[47:46] - Reserved, RES0

[45:32] TARGET Target of interrupt, which is either:

• a vPE when GITS_OPSR.VIRTUAL == 1

• a PE when GITS_OPSR.VIRTUAL == 0

Valid for trial and lock operations.

[31:16] - Reserved, RES0

[15:0] PID ID of interrupt requested (valid for trial and lock operations)

5.7.8 GITS_ERRINS_D, Error Insertion Device cache register

This register can insert errors into the ITS Device cache RAM. You can use this register to test your
error recovery software.

Configurations
This register is available in GIC-700 configurations when the ITS Device cache supports ECC.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 220 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Attributes

Width 64-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the contents of this register.

Bit descriptions
The bit assignments within this register depend on whether a write access or read access occurs.

The following table shows the bit assignments for write accesses.

Table 5-82: GITS_ERRINS_D bit assignments for writes

Bits Name Description

[63] Valid Set to 1, to start the error injection process. The GIC sets this bit to 0 when it completes
the process.

[62:61] - RES0

[60] DisableWriteCheck Controls whether to include an encoding check:

0 Include an encoder check
1 Disable an encoder check

[59:48] - RES0

[47:32] ADDR Address

[31] ERRINS2VALID Controls whether the second error is valid:

0 The ERRINS2LOC field is not valid
1 The ERRINS2LOC field is valid

[30:25] - RES0

[24:16] ERRINS2LOC Sets the address location of the second error

[15] ERRINS1VALID Controls whether the first error is valid:

0 The ERRINS1LOC field is not valid
1 The ERRINS1LOC field is valid

[14:9] - RES0

[8:0] ERRINS1LOC Sets the address location of the first error

The following table shows the bit assignments for read accesses.

Table 5-83: GITS_ERRINS_D bit assignments for reads

Bits Name Description

[63] Valid Indicates if the error injection process is complete:

0 Error injection process is complete
1 Error injection process is in progress

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 221 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[62:61] Status Indicates if the error injection process was successful, and is only valid when Valid == 0:

0b00 The GIC performed the error injection process
0b01 An out-of-range error occurred. To fix this error, check that the RAM ID and the

error locations are correct.
0b10 A coincident error occurred
0b11 An encoder or decoder mismatch occurred

[60] RAM_Present Indicates whether a RAM with ECC is present:

0 RAM is not present, or it is present but has no ECC
1 RAM with ECC is present

[59:48] - RES0

[47:32] RAM_MAX Returns the maximum address of the RAM

[31:9] - RES0

[8:0] RAM WIDTH Returns the highest maximum bit width of the RAM. For example, a value of 15 indicates a 16-
bit wide RAM.

5.7.9 GITS_ERRINS_V, Error Insertion Event cache register

This register can insert errors into the ITS Event cache RAM. You can use this register to test your
error recovery software.

Configurations
This register is available in GIC-700 configurations when the ITS Event cache supports ECC.

Attributes

Width 64-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the contents of this register.

Bit descriptions
The bit assignments within this register depend on whether a write access or read access occurs.

The following table shows the bit assignments for write accesses.

Table 5-84: GITS_ERRINS_V bit assignments for writes

Bits Name Description

[63] Valid Set to 1, to start the error injection process. The GIC sets this bit to 0 when it completes
the process.

[62:61] - RES0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 222 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[60] DisableWriteCheck Controls whether to include an encoding check:

0 Include an encoder check
1 Disable an encoder check

[59:48] - RES0

[47:32] ADDR Address

[31] ERRINS2VALID Controls whether the second error is valid:

0 The ERRINS2LOC field is not valid
1 The ERRINS2LOC field is valid

[30:25] - RES0

[24:16] ERRINS2LOC Sets the address location of the second error

[15] ERRINS1VALID Controls whether the first error is valid:

0 The ERRINS1LOC field is not valid
1 The ERRINS1LOC field is valid

[14:9] - RES0

[8:0] ERRINS1LOC Sets the address location of the first error

The following table shows the bit assignments for read accesses.

Table 5-85: GITS_ERRINS_V bit assignments for reads

Bits Name Description

[63] Valid Indicates if the error injection process is complete:

0 Error injection process is complete
1 Error injection process is in progress

[62:61] Status Indicates if the error injection process was successful, and is only valid when Valid == 0:

0b00 The GIC performed the error injection process
0b01 An out-of-range error occurred. To fix this error, check that the RAM ID and the

error locations are correct.
0b10 A coincident error occurred
0b11 An encoder or decoder mismatch occurred

[60] RAM_Present Indicates whether a RAM with ECC is present:

0 RAM is not present, or it is present but has no ECC
1 RAM with ECC is present

[59:48] - RES0

[47:32] RAM_MAX Returns the maximum address of the RAM

[31:9] - RES0

[8:0] RAM WIDTH Returns the highest maximum bit width of the RAM. For example, a value of 15 indicates a 16-
bit wide RAM.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 223 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.7.10 GITS_ERRINS_C, Error Insertion Collection cache register

This register can insert errors into the ITS Collection cache RAM. You can use this register to test
your error recovery software.

Configurations
This register is available in GIC-700 configurations when the ITS Collection cache supports ECC.

Attributes

Width 64-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the contents of this register.

Bit descriptions
The bit assignments within this register depend on whether a write access or read access occurs.

The following table shows the bit assignments for write accesses.

Table 5-86: GITS_ERRINS_C bit assignments for writes

Bits Name Description

[63] Valid Set to 1, to start the error injection process. The GIC sets this bit to 0 when it completes
the process.

[62:61] - RES0

[60] DisableWriteCheck Controls whether to include an encoding check:

0 Include an encoder check
1 Disable an encoder check

[59:48] - RES0

[47:32] ADDR Address

[31] ERRINS2VALID Controls whether the second error is valid:

0 The ERRINS2LOC field is not valid
1 The ERRINS2LOC field is valid

[30:25] - RES0

[24:16] ERRINS2LOC Sets the address location of the second error

[15] ERRINS1VALID Controls whether the first error is valid:

0 The ERRINS1LOC field is not valid
1 The ERRINS1LOC field is valid

[14:9] - RES0

[8:0] ERRINS1LOC Sets the address location of the first error

The following table shows the bit assignments for read accesses.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 224 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-87: GITS_ERRINS_C bit assignments for reads

Bits Name Description

[63] Valid Indicates if the error injection process is complete:

0 Error injection process is complete
1 Error injection process is in progress

[62:61] Status Indicates if the error injection process was successful, and is only valid when Valid == 0:

0b00 The GIC performed the error injection process
0b01 An out-of-range error occurred. To fix this error, check that the RAM ID and the

error locations are correct.
0b10 A coincident error occurred
0b11 An encoder or decoder mismatch occurred

[60] RAM_Present Indicates whether a RAM with ECC is present:

0 RAM is not present, or it is present but has no ECC
1 RAM with ECC is present

[59:48] - RES0

[47:32] RAM_MAX Returns the maximum address of the RAM

[31:9] - RES0

[8:0] RAM WIDTH Returns the highest maximum bit width of the RAM. For example, a value of 15 indicates a 16-
bit wide RAM.

5.7.11 GITS_CFGID, Configuration ID Register

This register returns information about the configuration of the ITS block such as its ID number.

Configurations
This register is available in all configurations that have one or more ITS blocks.

Attributes

Width 64-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 225 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-65: GITS_CFGID bit assignments

0

ITS_NUMBER

31 28 27 24 23 20 19 18 17 16 15 12 11 8 7

LPI_Credit_
CountTarget_Bits

Collection_
Cache_

Index_Bits

Device_
Cache_

Index_Bits

Event_
Cache_

Index_Bits

MSI_64
Low_Latency_SupportCache_ECC

Reserved

32

vPE_Bits

63 40 39 36 35

Reserved

Low_Latency_LPI_Credit_Count

Table 5-88: GITS_CFGID bit descriptions

Bits Name Description

[63:40] - Reserved, RES0

[39:36] Low_Latency_LPI_Credit_Count Number of low-latency LPI credits. The num_ll_int_credit configuration
parameter sets the value of this field.

[35:32] vPE_Bits Number of bits that are used for vPE IDs

[31:28] Event_Cache_Index_Bits Number of bits that are used to index the Event cache

[27:24] Device_Cache_Index_Bits Number of bits that are used to index the Device cache

[23:20] Collection_Cache_Index_Bits Number of bits that are used to index the Collection cache

[19] - Reserved

[18] Cache_ECC Translation caching has ECC protection

[17] Low_Latency_Support Lock translations in cache support

[16] MSI_64 MSI-64 Encapsulator support. The msi_64 configuration parameter sets the
value of this bit.

[15:12] Target_Bits Number of bits supported for targets

[11:8] LPI_Credit_Count Number of LPI credits − 1. The number_int_credit configuration
parameter minus 1, sets the value of this field.

[7:0] ITS_Number Returns the ITS block ID. The its_id[7:0] tie-off signal controls the ID value.
Each ITS block must have a unique ID.

Related information
Miscellaneous signals on page 289

5.7.12 GITS_PIDR2, Peripheral ID2 Register

This register returns byte[2] of the peripheral ID. The GITS_PIDR2 register is part of the set of ITS
peripheral identification registers.

Configurations
This register is available in all configurations that have one or more ITS blocks.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 226 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Attributes

Width 32-bit
Functional group See 5.7 ITS control register summary on page 208 for the address offset,

type, and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-66: GITS_PIDR2 bit assignments

31 34 0

JEDEC

278

Reserved DES_1ArchRev

Table 5-89: GITS_PIDR2 bit descriptions

Bits Name Description

[31:8] - Reserved, RAZ

[7:4] ArchRev Identifies the version of the GIC architecture with which the ITS complies:

0x3 GICv3
0x4 GICv4

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to
GITS_PIDR1[7:4].

5.8 ITS translation register summary
Interrupts to be translated by the GIC-700 Interrupt Translation Service (ITS) are identified by
EventIDs that are written to GITS_TRANSLATER, the ITS Translation Register.

This page does not exist in GIC-700 configurations that do not support LPIs or that do not have an
ITS.

Table 5-90: ITS translation register summary

Offset Name Type Reset Width Description

0x0000-
0x003C

- - - - Reserved

0x0040 GITS_TRANSLATER WO - 32 ITS Translation Register. See the Arm® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3 and version
4.

0x0044-
0xFFFC

- - - - Reserved

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 227 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.9 ITS vSGI register summary
Virtual SGIs to be injected directly into a virtual machine are written to the ITS translation register
GITS_SGIR.

This page does not exist in GIC-700 configurations that do not support vSGIs or that do not have
an ITS.

Table 5-91: ITS vSGI register summary

Offset Name Type Reset Width Description

0x0000-
0x001C

- - - - Reserved

0x0020 GITS_SGIR WO - 64 ITS vSGI Register. See the Arm® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3 and version 4.

0x0028-
0xFFFC

- - - - Reserved

5.10 GICT register summary
The GIC-700 trace and debug functions are controlled through registers that are identified with the
prefix GICT.

All registers comply with the RAS System Architecture chapter of the Arm® Architecture Reference
Manual for A-profile architecture, except for the GICT_PIDR* and GICT_CIDR* registers.

The GICD_SAC.GICTNS bit controls whether Non-secure software can access the
GICT registers.

Table 5-92: GICT register summary

Offset Name Type Reset Width Description

0x0000 + (n ×
64)

GICT_ERR<n>FR RO Record dependent 64 Error Record Feature Register

0x0008 + (n ×
64)

GICT_ERR<n>CTLR RW 0x0 64 Error Record Control Register

0x0010 + (n ×
64)

GICT_ERR<n>STATUS RW Record dependent 64 Error Record Primary Status register

0x0018 + (n ×
64)

GICT_ERR<n>ADDR RW Unknown 64 Error Record Address Register

0x0020 + (n ×
64)

GICT_ERR<n>MISC0 RW Unknown 64 Error Record Miscellaneous Register
0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 228 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ddi0487/ja
https://developer.arm.com/documentation/ddi0487/ja

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description
0x0028 + (n ×
64)

GICT_ERR<n>MISC1 RW Unknown 64 Error Record Miscellaneous Register
1

0xE000 GICT_ERRGSR RO 0x0 64 Error Group Status Register

0xE008-
0xE0FC

- - - - Reserved, RAZ/WI

0xE100 GICT_IIDR RO 0x040nn43B
The nn value depends on the rxpy
identifier.

32 Trace Implementer Identification
Register

0xE104-
0xE7FC

- - - - Reserved, RAZ/WI

0xE800-
0xE808

GICT_ERRIRQCR<n> RW 0x0 64 Error Interrupt Configuration
Registers

0xE810-
0xFFB8

- - - - Reserved, RAZ/WI

0xFFBC GICT_DEVARCH RO 0x47700A00 32 Device Architecture register

0xFFC0-
0xFFC4

- - - - Reserved, RAZ/WI

0xFFC8 GICT_DEVID RO Configuration dependent 32 Device Configuration register

0xFFCC - - - - Reserved, RAZ/WI

0xFFD0 GICT_PIDR4 RO 0x44 32 Peripheral ID 4 register

0xFFD4 GICT_PIDR5 RO 0x00 32 Peripheral ID 5 register

0xFFD8 GICT_PIDR6 RO 0x00 32 Peripheral ID 6 register

0xFFDC GICT_PIDR7 RO 0x00 32 Peripheral ID 7 register

0xFFE0 GICT_PIDR0 RO 0x95 32 Peripheral ID 0 register

0xFFE4 GICT_PIDR1 RO 0xB4 32 Peripheral ID 1 register

0xFFE8 GICT_PIDR2 RO 0x3B 32 Peripheral ID 2 register

0xFFEC GICT_PIDR3 RO 0x00 32 Peripheral ID 3 register

0xFFF0 GICT_CIDR0 RO 0x0D 32 Component ID 0 register

0xFFF4 GICT_CIDR1 RO 0xF0 32 Component ID 1 register

0xFFF8 GICT_CIDR2 RO 0x05 32 Component ID 2 register

0xFFFC GICT_CIDR3 RO 0xB1 32 Component ID 3 register

5.10.1 GICT_ERR<n>FR, Error Record Feature Register

This register returns information about the Armv8.2 RAS features that the GIC-700 implements.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 229 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Functional group See 5.10 GICT register summary on page 228 for the address offset, type,
and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the contents of this register.

Bit descriptions
Figure 5-67: GICT_ERR<n>FR bit assignments

ED

31 16 15 14 12 11 10 9 8 7 6 5 4 3 2 1 0

DEUIFIUECFICECRPReserved

Table 5-93: GICT_ERR<n>FR bit descriptions

Bits Name Description

[31:16] - Reserved, RAZ

[15] RP Repeat corrected error count:

0 The GIC-700 does not implement a repeat corrected error counter

[14:12] CEC Corrected error count:

0b000 The GIC-700 does not implement a standard corrected error counter in GICT_ERR<n>MISC0

[11:10] CFI Corrected errors fault interrupt. Depending on the configuration, returns either:

0b00 The GIC-700 does not provide a fault handling interrupt for corrected errors
0b10 The GIC-700 provides a controllable fault handling interrupt for corrected errors

[9:8] UE Uncorrected error. Depending on the configuration, returns either:

0b00 The GIC-700 does not provide an in-band uncorrected error reporting
0b10 The GIC-700 provides a controllable in-band uncorrected error reporting

[7:6] FI Fault handling interrupt for uncorrected errors. Depending on the configuration, returns either:

0b00 The GIC-700 does not provide a fault handling interrupt
0b10 The GIC-700 provides a controllable fault handling interrupt

[5:4] UI Error recovery interrupt for uncorrected errors. Depending on the configuration, returns either:

0b00 The GIC-700 does not provide an error recovery interrupt for uncorrected errors
0b10 The GIC-700 provides a controllable error recovery interrupt for uncorrected errors

[3:2] DE Deferring of errors support:

0b00 The GIC-700 does not support the deferring of errors

[1:0] ED Uncorrected error reporting:

0b01 Uncorrected error reporting is always enabled

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 230 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.10.2 GICT_ERR<n>CTLR, Error Record Control Register

This register controls how interrupts are handled.

Configurations
This register is available in all configurations.

Attributes

Width 64-bit
Functional group See 5.10 GICT register summary on page 228 for the address offset, type,

and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the functions of this register.

Bit descriptions
Figure 5-68: GICT_ERR<n>CTLR bit assignments

31 16 15 14 9 8 7 5 4 3 2 1 0

UIFIUEReservedReservedRPReserved

ReservedCFI

63 39 38 37 36 35 34 33 32

Reserved

DIS_ACE DIS_COL_OOR
DIS_DEACT

DIS_SPI_OOR
DIS_SGI
DIS_SPI_DST

Table 5-94: GICT_ERR<n>CTLR bit descriptions

Bits Name Description

[63:39] - Reserved, RAZ

[38] DIS_ACE RAZ/WI for all records except GICD error record 0.
For GICD error record 0, this bit can disable the reporting of illegal ACE accesses:

0 Illegal ACE accesses are treated as errors, which generate the SYN_ACE_BAD syndrome
1 Reporting of illegal ACE accesses is disabled

[37] DIS_SGI RAZ/WI for all records except GICD error record 0.
For GICD error record 0, this bit can disable the reporting of SGIs that are sent with no valid destinations:

0 Out-of-range SGI destinations are treated as errors, which generate the SYN_SGI_NO_TGT syndrome
1 Reporting of out-of-range SGI destinations is disabled

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 231 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[36] DIS_SPI_DST RAZ/WI for all records except GICD error record 0.

For GICD error record 0, this bit can disable the reporting of SPI destination errors:

0 SPIs with no available destination are treated as errors, which generate either a
SYN_SPI_NO_DEST_1OFN or SYN_SPI_NO_DEST_TGT syndrome

1 Reporting of SPIs with no available destination is disabled

[35:34] DIS_SPI_OOR RAZ/WI for all records except GICD error record 0.
For GICD error record 0, this field can disable the reporting of accesses to out-of-range SPIs:

0b00 SPI register accesses to nonexisting blocks are treated as errors, which generate either a
SYN_SPI_BLOCK or SYN_SPI_OOR syndrome

0b01 Reporting of SPI register accesses to all nonexisting blocks is disabled
0b10 Reporting of SPI register accesses to SPIs 992-1023 is disabled

[33] DIS_DEACT RAZ/WI for all records except GICD error record 0.
For GICD error record 0, this bit can disable the reporting of deactivations to nonexistent SPIs:

0 Out-of-range deactivate messages are treated as errors, which generate the SYN_DEACT_IN syndrome
1 Reporting of out-of-range deactivate messages is disabled

[32] DIS_COL_OOR RAZ/WI for all records except GICD error record 0.
For GICD error record 0, this bit can disable the reporting of an SPI Collator message for a non-implemented
SPI:

0 Out-of-range wired SPIs are treated as errors, which generate the SYN_COL_OOR syndrome
1 Reporting of out-of-range wired SPIs is disabled

[31:16] - Reserved, RAZ

[15] RP 0 = An error response to a transaction is reported

[14:9] - Reserved, RAZ

[8] CFI Controls whether a corrected error generates a fault handling interrupt.
SBZ on non-correctable errors else:

0 The GIC-700 does not assert a fault handling interrupt for corrected errors
1 The GIC-700 asserts a fault handling interrupt, the fault_int signal, when a corrected error occurs

[7:5] - Reserved, RAZ

[4] UE Uncorrected error.
RAZ/WI for all records except GICT error record (0) else:

0 Do not send External abort with transaction
1 Send External abort with transaction. See 4.15.5 Bus errors on page 125.

[3] FI Fault handling interrupt.
SBZ on Correctable Error (CE) records else:

0 Fault handling interrupt is not generated on any error
1 Fault handling interrupt, fault_int signal, is generated on all uncorrectable errors

[2] UI Error recovery interrupt for uncorrected error.
SBZ on CE records else:

0 Error recovery interrupt is not generated on any error
1 Error recovery interrupt, err_int signal, is generated on all uncorrectable errors

[1:0] - Reserved, RAZ

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 232 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.10.3 GICT_ERR<n>STATUS, Error Record Primary Status Register

This register indicates information relating to the recorded errors.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.10 GICT register summary on page 228 for the address offset, type,

and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the functions of this register.

Bit descriptions
Figure 5-69: GICT_ERR<n>STATUS bit assignments

SERR

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 8 7 0

IERRReservedUETCEOFERUEVAV

ReservedMV

Table 5-95: GICT_ERR<n>STATUS bit descriptions

Bits Name Description

[31] AV Indicates if the address is valid:

0 GICT_ERR<n>ADDR is not valid
1 GICT_ERR<n>ADDR contains an address that is associated with the highest priority error that this record stores.

Only present in record 0.

[30] V Indicates if this register is valid:

0 GICT_ERR<n>STATUS is not valid
1 GICT_ERR<n>STATUS is valid. One or more errors are recorded.

[29] UE Uncorrectable error bit.
SBZ in Correctable Error (CE) records.

[28] ER Indicates that at least one error has been reported over ACE5-Lite.
Set for record 0 only, and only for accesses to corrupted data, and bad incoming access.

[27] OF Record has overflowed

[26] MV Indicates if the GICT miscellaneous registers are valid:

0 GICT_ERR<n>MISC0 and GICT_ERR<n>MISC1 are not valid
1 GICT_ERR<n>MISC0 and GICT_ERR<n>MISC1 are valid

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 233 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[25:24] CE Correctable error. Indicates errors that are correctable as shown in Table 4-6: Error handling records on page 94:

0b00 No CE recorded
0b10 At least one CE recorded

[23:22] - Reserved, RAZ/WI

[21:20] UET Uncorrectable error type. RES0 unless UE == 1, in which case:

0b10 UEO, uncorrectable error and restartable
0b11 UER, uncorrectable error and recoverable

[19:16] - Reserved, RAZ/WI

[15:8] IERR Implementation-defined error code.
Returns information that Table 5-98: GICT_ERR<n>MISC0.Data field encoding on page 237 shows.

This field is RO apart from record 0 and record 27 (and above).

[7:0] SERR Architecturally defined primary error code.
Returns information that Table 5-98: GICT_ERR<n>MISC0.Data field encoding on page 237 shows. See the RAS System
Architecture chapter in the Arm® Architecture Reference Manual for A-profile architecture for more information about this
field.

This field is RO apart from record 0.

5.10.4 GICT_ERR<n>ADDR, Error Record Address Register

This register contains the address and security status of the write. This register is only present for
GICT software record 0.

Configurations
This register is available in all configurations.

Attributes

Width 64-bit
Functional group See 5.10 GICT register summary on page 228 for the address offset, type,

and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the functions of this register.

Ignores writes if GICT_ERR<n>STATUS.AV == 1.

All bits are RAZ/WI except when GICT_ERR<n>STATUS.IERR = 0, 0x12, 0x13, or 0x14.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 234 of 309

https://developer.arm.com/documentation/ddi0487/ja

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-70: GICT_ERR<n>ADDR bit assignments

0

PADDR

Reserved

32

31

63 62 5152

PADDR

NS

Table 5-96: GICT_ERR<n>ADDR bit descriptions

Bits Name Description

[63] NS Non-secure attribute:

0 The address is Secure
1 The address is Non-secure

[62:52] - Reserved, RAZ/WI

[51:0] PADDR The error address. The axis_addr_width configuration parameter controls how many bits in this
field are implemented, that is, from bit[0]-bit[axis_addr_width−1].

5.10.5 GICT_ERR<n>MISC0, Error Record Miscellaneous Register 0

This register contains the corrected error counter and information that assists with identifying the
RAM in which the error was detected.

Configurations
This register is available in all configurations.

Attributes

Width 64-bit
Functional group See 5.10 GICT register summary on page 228 for the address offset, type,

and reset value of this register.

Usage constraints
None

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 235 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-71: GICT_ERR<n>MISC0 bit assignments

Data

31 0

Count

63 42 41 40 39 32

REReserved

Overflow

Table 5-97: GICT_ERR<n>MISC0 bit descriptions

Bits Name Description

[63:42] - Reserved, RAZ

[41] RE Rounding error.
The rounding error counter is under-reporting.

[40] Overflow Sticky overflow bit:

0 Counter has not overflowed
1 Counter has overflowed

If the corrected fault handling interrupt is enabled, then the GIC-700 generates a fault handling interrupt.

[39:32] Count Error count.
Is present for all error records containing RAM errors. Incremented for each corrected error or uncorrectable error that
does not match the recorded syndrome.

[31:0] Data Information that is associated with the error. A description of each error code is given in one of the following tables:

• Table 4-7: Software errors, record 0 on page 95

• Table 4-8: SPI RAM errors, records 1-2 on page 101

• Table 4-9: SGI RAM errors, records 3-4 on page 102

• Table 4-10: TGT-SPI RAM errors, records 5-6 on page 102

• Table 4-11: PPI RAM errors, records 7-8 on page 103

• Table 4-12: LPI RAM errors, records 9-10 on page 104

• Table 4-13: PTS RAM errors, records 11-12 on page 104

• Table 4-14: TGT-LPI RAM errors, records 13-14 on page 105

• Table 4-15: vICM RAM errors, records 15-16 on page 105

• Table 4-16: vICM-VSPA RAM errors, records 17-18 on page 106

• Table 4-17: vTGT-VSTR RAM errors, records 19-20 on page 107

• Table 4-18: vTGT-VRES RAM errors, records 21-22 on page 107

• Table 4-19: vTGT-Search RAM errors, records 23-24 on page 108

• Table 4-20: ITS RAM errors, records 25-26 on page 108

• 4.15.4.15 ITS command and translation error records 27+ on page 109

• Table 4-23: CC RAM errors, records 62-63 on page 125

The following table shows the Data field encoding for each error record and syndrome.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 236 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-98: GICT_ERR<n>MISC0.Data field encoding

Record GICT_ERR<n>STATUS.IERR (syndrome) GICT_ERR<n>STATUS
.SERR

Value and description of
GICT_ERR<n>MISC0.Data
(other bits RES0)
Always packed from 0 (lowest
= 0)

Software
error (0)

0x0, SYN_ACE_BAD
Illegal ACE5-Lite subordinate access.

0xE AccessRnW, bit[12]
AccessSparse, bit[11]

AccessSize, bits[10:8]

AccessLength, bits[7:0]

Software
error (0)

0x1, SYN_PPI_PWRDWN
Attempt to access a powered down Redistributor.

0xF Redistributor, bits[24:16]
Core, bits[8:0]

Software
error (0)

0x2, SYN_PPI_PWRCHANGE
Attempt to power down Redistributor rejected.

0xF Redistributor, bits[24:16]
Core, bits[8:0]

Software
error (0)

0x4, SYN_PROPBASE_ACC
Attempt to reprogram PROPBASE registers to a value that is
not accepted because another value is already in use.

0xF Core, bits[8:0]

Software
error (0)

0x5, SYN_PENDBASE_ACC
Attempt to reprogram PENDBASE registers to a value that is
not accepted because another value is already in use.

0xF Core, bits[8:0]

Software
error (0)

0x7, SYN_WAKER_CHANGE
Attempt to change GICR_WAKER abandoned due to handshake
rules.

0xF Core, bits[8:0]

Software
error (0)

0x8, SYN_SLEEP_FAIL
Attempt to put GIC to sleep failed because cores are not fully
asleep.

0xF Core, bits[8:0]

Software
error (0)

0x9, SYN_PGE_ON_QUIESCE
Core put to sleep before its Group enables were cleared.

0xF Core, bits[8:0]

Software
error (0)

0x10, SYN_SGI_NO_TGT
SGI sent with no valid destinations.

0xE Core, bits[8:0]

Software
error (0)

0x11, SYN_SGI_CORRUPTED
SGI corrupted without effect.

0x6 Core, bits[8:0]

Software
error (0)

0x12, SYN_GICR_CORRUPTED
Data was read from GICR register space that encountered an
uncorrectable error.

0x6 GICT_ERR0ADDR is populated

Software
error (0)

0x13, SYN_GICD_CORRUPTED
Data was read from GICD register space that encountered an
uncorrectable error.

0x6 GICT_ERR0ADDR is populated

Software
error (0)

0x14, SYN_ITS_OFF
Data was read from an ITS that is powered down.

0xF GICT_ERR0ADDR is populated

Software
error (0)

0x18, SYN_SPI_BLOCK.
Attempt to access an SPI block that is not implemented.

0xE Block, bits[4:0]

Software
error (0)

0x19, SYN_SPI_OOR
Attempt to access a non-implemented SPI using (SET|CLR)SPI.

0xE ID, bits[9:0]

Software
error (0)

0x1A, SYN_SPI_NO_DEST_TGT
An SPI has no legal target destinations.

0xF ID, bits[9:0]

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 237 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Record GICT_ERR<n>STATUS.IERR (syndrome) GICT_ERR<n>STATUS
.SERR

Value and description of
GICT_ERR<n>MISC0.Data
(other bits RES0)
Always packed from 0 (lowest
= 0)

Software
error (0)

0x1B, SYN_SPI_NO_DEST_1OFN
A 1 of N SPI cannot be delivered due to bad
GICR_CTLR.DPG<0|1NS|1S> or GICR_CLASSR programming.

0xF ID, bits[9:0]

Software
error (0)

0x1C, SYN_COL_OOR
A collator message is received for a non-implemented SPI,
or is larger than the number of owned SPIs in a multichip
configuration.

0xF ID, bits[9:0]

Software
error (0)

0x1D, SYN_DEACT_IN
A Deactivate command to a nonexistent SPI, or with
incorrect groups set. Deactivate commands to LPI and
nonexistent PPI are not reported.

0xE None

Software
error (0)

0x25, SYN_VSGI_OFFLINE
Pending vSGI to a vPEID mapped to an offline chip.

0xF Chip [log2(chips)−1:0]
ID (multi-hot) [15:0]

vPEID[log2(vpes)−1:0]

Software
error (0)

0x30, SYN_VSGI_UNMAPPED
Pending vSGI to a vPEID that is not mapped.

0xF ID (multi-hot) [15:0]
vPEID[log2(vpes)−1:0]

Software
error (0)

0x33, SYN_VSGI_LOST
Pending vSGI to a vPEID that has inconsistent mapping
information across multiple chips.

0xF ID (multi-hot) [15:0]
vPEID [log2(vpes)−1:0]

Software
error (0)

0x34, SYN_VPT_READ_FAIL
An attempt was made to read the vPE configuration from the
virtual Pending table, with an error received with the read
response.

0x12 vPEID [log2(vpes)−1:0]

Software
error (0)

0x35, SYN_VPT_WRITE_FAIL
An attempt was made to write the vPE configuration to the
virtual Pending table, with an error received with the write
response.

The vICM reports bad write responses on the chip where the
access occurs, rather than the chip that contains the ITS that
generated the command or interrupt.

0x12 vPEID [log2(vpes)−1:0]

Software
error (0)

0x39, SYN_VPE_CFG_PTR_FAIL
An attempt was made to access an indirect vPE Configuration
table with an invalid level 2 pointer.

0xD vPEID [log2(vpes)−1:0]

Software
error (0)

0x3A, SYN_VPE_CFG_TOP_READ_FAIL
An attempt was made to read the level 1 of an indirect vPE
Configuration table, with an error received with the read
response.

0x12 vPEID [log2(vpes)−1:0]

Software
error (0)

0x3B, SYN_VPE_CFG_LEAF_READ_FAIL
An attempt was made to read the level 2 of an indirect vPE
Configuration table or any vPE Configuration read when the
table is not indirect, with an error received with the read
response.

0x12 vPEID [log2(vpes)−1:0]

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 238 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Record GICT_ERR<n>STATUS.IERR (syndrome) GICT_ERR<n>STATUS
.SERR

Value and description of
GICT_ERR<n>MISC0.Data
(other bits RES0)
Always packed from 0 (lowest
= 0)

Software
error (0)

0x3C, SYN_VPE_CFG_WRITE_FAIL
An attempt was made to write the level 2 of an indirect vPE
Configuration table or any vPE Configuration write when
the table is not indirect, with an error received with the read
response.

The vICM reports bad write responses on the chip where the
access occurs, rather than the chip that contains the ITS that
generated the command or interrupt.

0x12 vPEID [log2(vpes)−1:0]

Software
error (0)

0x3D, SYN_VPE_CFG_OVERFLOW
A vPE Configuration table access was aborted due to table
entry overflow in the address space.

0xD vPEID [log2(vpes)−1:0]

Software
error (0)

0x40, SYN_LPI_PROP_READ_FAIL
An attempt was made to read properties for a single interrupt
where an error response was received with the data.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Software
error (0)

0x41, SYN_PT_PROP_READ_FAIL
An attempt was made to read properties for a block of
interrupts where an error response was received with the data.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Software
error (0)

0x42, SYN_PT_COARSE_MAP_READ_FAIL
An attempt was made to read the coarse map for a target
where an error response was received with the data.

0x12 Virtual, bit[30]
Target, bits[29:16]

Software
error (0)

0x43, SYN_PT_COARSE_MAP_WRITE_FAIL
An attempt was made to write the coarse map for a target with
an error received with the write response.

0x12 Virtual, bit[30]
Target, bits[29:16]

Software
error (0)

0x44, SYN_PT_TABLE_READ_FAIL
An attempt was made to read a block of interrupts from a
Pending table, where an error response was received with the
data.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Software
error (0)

0x45, SYN_PT_TABLE_WRITE_FAIL
An attempt was made to write-back a block of interrupts from a
Pending table with an error received with the write response.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Software
error (0)

0x46, SYN_PT_SUB_TABLE_READ_FAIL
An attempt was made to read a subblock of interrupts from a
Pending table, where an error response was received with the
data.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Software
error (0)

0x47, SYN_PT_TABLE_WRITE_FAIL_BYTE
An attempt was made to write-back a subblock of interrupts
from a Pending table, with an error received with the write
response.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Software
error (0)

0x48, SYN_DBL_PROP_READ_FAIL
An attempt was made to read properties for a single doorbell,
where an error response was received with the data.

0x12 Virtual, bit[30]
Target, bits[29:16]

ID, bits[15:0]

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 239 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Record GICT_ERR<n>STATUS.IERR (syndrome) GICT_ERR<n>STATUS
.SERR

Value and description of
GICT_ERR<n>MISC0.Data
(other bits RES0)
Always packed from 0 (lowest
= 0)

Software
error (0)

0x50, SYN_VPROPBASER_DATA
An attempt was made to program additional
GICR_VPROPBASER.Valid bits with data mismatching
GICR_VCFGBASER.

0xF CPU [log2(cpus)−1:0]

Software
error (0)

0x52, SYN_VERRR_BUSY
An attempt was made to access GICR_VERRR while the register
is busy from a previous operation.

0xF CPU [log2(cpus)−1:0]

Software
error (0)

0x53, SYN_VERRR_ALLOC
An attempt was made to access GICR_VERRR while there is no
vPE Configuration table allocation.

0xF CPU [log2(cpus)−1:0]

Software
error (0)

0x54, SYN_VERRR_VPE_OOR
A request was made to GICR_VERRR with a vPEID that is out
of range.

0xE CPU [log2(cpus)−1:0]

Software
error (0)

0x56, SYN_VSGIR_ALLOC
An attempt was made to access GICR_VSGIR while there is no
vPE Configuration table allocation.

0xF CPU [log2(cpus)−1:0]

Software
error (0)

0x57, SYN_VSGIR_VPE_OOR
A request was made to GICR_VSGIR with a vPEID that is out of
range.

0xE CPU [log2(cpus)−1:0]

Software
error (0)

0x58, SYN_VINV_BUSY
An attempt was made to access GICR_VINVCHIPR while the
register is busy from a previous operation.

0xF CPU [log2(cpus)−1:0]

Software
error (0)

0x59, SYN_VINV_ALLOC
An attempt was made to access GICR_VINVCHIPR while there
is no vPE Configuration table allocation.

0xF CPU [log2(cpus)−1:0]

Software
error (0)

0x70, SYN_ITS_REG_INV_BUSY
An attempt was made to invalidate an interrupt while register
busy.

0xF CPU, [log2(cores) − 1:0]
Data, bits[15:0]

Software
error (0)

0x71, SYN_ITS_REG_INV_OOR
An attempt was made to invalidate an OOR interrupt.

0xE CPU, [log2(cores) − 1:0]
Data, bits[15:0]

Correctable
SPI RAM
errors (1)

0x00 a real error
0x01 an injected error

0x7

Uncorrectable
SPI RAM
errors (2)

0x00 a real error
0x01 an injected error

0x7

See Table 4-8: SPI RAM errors,
records 1-2 on page 101

Correctable
SGI RAM
errors (3)

0x00 a real error
0x01 an injected error

0x7

Uncorrectable
SGI RAM
errors (4)

0x00 a real error
0x01 an injected error

0x7

See Table 4-9: SGI RAM errors,
records 3-4 on page 102

Correctable
TGT-SPI
cache errors
(5)

0x00 a real error
0x01 an injected error

0x7 See Table 4-10: TGT-SPI RAM
errors, records 5-6 on page 102

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 240 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Record GICT_ERR<n>STATUS.IERR (syndrome) GICT_ERR<n>STATUS
.SERR

Value and description of
GICT_ERR<n>MISC0.Data
(other bits RES0)
Always packed from 0 (lowest
= 0)

Uncorrectable
TGT-SPI
cache errors
(6)

0x00 a real error
0x01 an injected error

0x7

Correctable
PPI RAM
errors (7)

0x00 a real error
0x01 an injected error

0x7

Uncorrectable
PPI RAM
errors (8)

0x00 a real error
0x01 an injected error

0x7

See Table 4-11: PPI RAM errors,
records 7-8 on page 103

Correctable
LPI RAM
errors (9)

0x00 a real error
0x01 an injected error

0x7

Uncorrectable
LPI RAM
errors (10)

0x00 a real error
0x01 an injected error

0x7

See Table 4-12: LPI RAM errors,
records 9-10 on page 104

Correctable
PTS RAM
error (11)

0x00 a real error
0x01 an injected error

0x7

Uncorrectable
PTS RAM
error (12)

0x00 a real error
0x01 an injected error

0x7

See Table 4-13: PTS RAM
errors, records 11-12 on page
104

Correctable
TGT-LPI RAM
error (13)

0x00 a real error
0x01 an injected error

0x7

Uncorrectable
TGT-LPI RAM
error (14)

0x00 a real error
0x01 an injected error

0x7

See Table 4-14: TGT-LPI RAM
errors, records 13-14 on page
105

Correctable
vICM RAM
error (15)

0x00 a real error
0x01 an injected error

0x7

Uncorrectable
vICM RAM
error (16)

0x00 a real error
0x01 an injected error

0x7

See Table 4-15: vICM RAM
errors, records 15-16 on page
105

Correctable
vICM-VSPA
RAM error
(17)

0x00 a real error
0x01 an injected error

0x7

Uncorrectable
vICM-VSPA
RAM error
(18)

0x00 a real error
0x01 an injected error

0x7

See Table 4-16: vICM-VSPA
RAM errors, records 17-18 on
page 106

Correctable
vTGT-VSTR
RAM error
(19)

0x00 a real error
0x01 an injected error

0x7 See Table 4-17: vTGT-VSTR
RAM errors, records 19-20 on
page 107

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 241 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Record GICT_ERR<n>STATUS.IERR (syndrome) GICT_ERR<n>STATUS
.SERR

Value and description of
GICT_ERR<n>MISC0.Data
(other bits RES0)
Always packed from 0 (lowest
= 0)

Uncorrectable
vTGT-VSTR
RAM error
(20)

0x00 a real error
0x01 an injected error

0x7

Correctable
vTGT-VRES
RAM error
(21)

0x00 a real error
0x01 an injected error

0x7

Uncorrectable
vTGT-VRES
RAM error
(22)

0x00 a real error
0x01 an injected error

0x7

See Table 4-18: vTGT-VRES
RAM errors, records 21-22 on
page 107

Correctable
vTGT-Search
RAM error
(23)

0x00 a real error
0x01 an injected error

0x7

Uncorrectable
vTGT-Search
RAM error
(24)

0x00 a real error
0x01 an injected error

0x7

See Table 4-19: vTGT-Search
RAM errors, records 23-24 on
page 108

Correctable
error from ITS
RAM (25)

0x00 a real error
0x01 an injected error

0x6

Uncorrectable
error from ITS
RAM (26)

0x00 a real error
0x01 an injected error

0x6

See Table 4-20: ITS RAM errors,
records 25-26 on page 108

Command or
translation
error in ITS
(27+)

0x00 architectural
0x01 non-architectural

0x1 ITS 24-bit syndrome. See
4.15.4.15 ITS command and
translation error records 27+ on
page 109.

Correctable
error from CC
RAM (62)

0x00 a real error
0x01 an injected error

0x7

Uncorrectable
error from CC
RAM (63)

0x00 a real error
0x01 an injected error

0x7

See Table 4-23: CC RAM errors,
records 62-63 on page 125

5.10.6 GICT_ERR<n>MISC1, Error Record Miscellaneous Register 1

This register contains the data value of an uncorrectable error in the LPI RAM, TGT-LPI RAM, or
ITS software information. The register is not present for other error records.

Configurations
This register is available in all configurations.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 242 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Attributes

Width 64-bit
Functional group See 5.10 GICT register summary on page 228 for the address offset, type,

and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the functions of this register.

If GICT_ERR<n>STATUS.MV == 1, then GICT_ERR<n>MISC1 ignores writes.

Bit descriptions
Figure 5-72: GICT_ERR<n>MISC1 bit assignments

31 x+1 x 0

INFOReserved

63 32

Reserved

Table 5-99: GICT_ERR<n>MISC1 bit descriptions

Bits Name Description

[63:x+1] - Reserved, RAZ

[x:0] INFO Contains the corrupted data that is read from the RAM.
The value x depends on the width of the RAM, which is set during the configuration of GIC-700.

5.10.7 GICT_ERRGSR, Error Group Status Register

This register shows the status of the GIC-700 Armv8.2 RAS architecture-compliant error records
for correctable and uncorrectable RAM ECC errors, ITS command and translation errors, and
uncorrectable software errors.

Configurations
This register is available in all configurations.

Attributes

Width 64-bit
Functional group See 5.10 GICT register summary on page 228 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 243 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-73: GICT_ERRGSR bit assignments

31 0

63 32

Status

Status

Table 5-100: GICT_ERRGSR bit descriptions

Bits Name Description

[n] Status Indicates the status of error record n, where n is 0-27+ depending on the configuration:

0 The error record is not reporting any errors
1 The error record is reporting one or more errors

5.10.8 GICT_IIDR, Trace Implementer Identification Register

This register provides information about the implementer and revision of the trace page.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.10 GICT register summary on page 228 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-74: GICT_IIDR bit assignments

31 0

Reserved

1112

RevisionProductID Implementer

1619 1524 23 20

Variant

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 244 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-101: GICT_IIDR bit descriptions

Bits Name Description

[31:24] ProductID Indicates the product ID:

0x04 GIC-700

[23:20] - Reserved, RAZ

[19:16] Variant Indicates the major revision, or variant, of the product rxpy identifier:

0x2 r2
0x3 r3

[15:12] Revision Indicates the minor revision of the product rxpy identifier:

0x1 p1
0x2 p2

[11:0] Implementer Identifies the implementer:

0x43B Arm

5.10.9 GICT_ERRIRQCR<n>, Error Interrupt Configuration Registers

GICT_ERRIRQCR0 controls which SPI is generated when a fault handling interrupt occurs.
GICT_ERRIRQCR1 controls which SPI is generated when an error recovery interrupt occurs.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.10 GICT register summary on page 228 for the address offset, type,

and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can access the functions of this register.

Bit descriptions
Figure 5-75: GICT_ERRIRQCR<n> bit assignments

31 011 10

Reserved SPIID

Table 5-102: GICT_ERRIRQCR<n> bit descriptions

Bits Name Description

[31:11] - Reserved, RAZ

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 245 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[10:0] SPIID Sets the SPI ID that the GIC generates when a fault handling interrupt occurs (<n>==0) or when an

error recovery interrupt occurs(<n>==1).
If the value is less than 32, out of range, or not owned on chip for multichip configurations, the register
updates to 0 and no internal delivery occurs.

Set this field to 0 when the interrupt routes externally to a core that does not receive interrupts directly
from the GIC such as a central system control processor.

Note:
The behavior is unpredictable if software attempts to share the same interrupt ID in
GICT_ERRIRQCRn with an external source using either:

• an SPI wire

• the GICD_SETSPI_NSR or GICD_SETSPI_SR registers

In a multichip configuration, the SPIID field must only be programmed to an SPI ID that the chip owns.
The relevant GICD_CHIPRn register controls the SPI ownership.

We recommend that if these registers are used, then the SPI must not be used for another device,
either with a wire or as a message-based interrupt.

5.10.10 GICT_DEVID, Device Configuration register

This register returns information about the configuration of the GIC-700 GICT such as whether an
LPI or ITS is available.

GICT_DEVID was previously known as GICT_ERRIDR.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.10 GICT register summary on page 228 for the address offset, type,

and reset value of this register.

Usage constraints
If GICD_SAC.GICTNS == 0, then only Secure software can read this register.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 246 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-76: GICT_DEVID bit assignments

31 0

Reserved

16 15

NUM

Table 5-103: GICT_DEVID bit descriptions

Bits Name Description

[31:16] - Reserved, RAZ

[15:0] NUM Returns the index of the last error record, plus one:

9 No LPI available
28-60 LPI available with one or more ITS. The number of ITSs = NUM − 28.
64 This value occurs when the GIC has an ACE5-Lite cross-chip interface.

5.10.11 GICT_PIDR2, Peripheral ID2 Register

This register returns byte[2] of the peripheral ID. The GICT_PIDR2 register is part of the set of
trace and debug peripheral identification registers.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.10 GICT register summary on page 228 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-77: GICT_PIDR2 bit assignments

31 34 0

JEDEC

278

Reserved DES_1ArchRev

Table 5-104: GICT_PIDR2 bit descriptions

Bits Name Description

[31:8] - Reserved, RAZ

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 247 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[7:4] ArchRev Identifies the version of the GIC architecture with which the trace and debug block complies:

0x3 GICv3
0x4 GICv4

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to
GICT_PIDR1[7:4].

5.11 GICP register summary
The GIC-700 Performance Monitoring Unit functions are controlled through registers that are
identified with the prefix GICP.

The GICD_SAC.GICPNS bit controls whether Non-secure software can access the GICP registers.

Table 5-105: GICP register summary

Offset Name Type Reset Width Description Architecture
defined?

0x000 +
(n × 4)

GICP_EVCNTRn RW Unknown 32 Event Counter Registers, n = 0-4 No

0x400 +
(n × 4)

GICP_EVTYPERn RW Unknown 32 Event Type Configuration
Registers, n = 0-4

No

0x600 +
(n × 4)

GICP_SVRn RO Unknown 32 Shadow Value Registers, n = 0-4 No

0xA00 +
(n × 4)

GICP_FRn RW Unknown 32 Filter Registers, n = 0-4 No

0xC00 GICP_CNTENSET0 RW 0x0 64 Counter Enable Set Register No

0xC20 GICP_CNTENCLR0 RW 0x0 64 Counter Enable Clear Register No

0xC40 GICP_INTENSET0 RW 0x0 64 Interrupt Contribution Enable Set
Register 0

No

0xC60 GICP_INTENCLR0 RW 0x0 64 Interrupt Contribution Enable
Clear Register 0

No

0xC80 GICP_OVSCLR0 RW 0x0 64 Overflow Status Clear Register 0 No

0xCC0 GICP_OVSSET0 RW 0x0 64 Overflow Status Set Register 0 No

0xD88 GICP_CAPR WO - 32 Counter Shadow Value Capture
Register

No

0xE00 GICP_CFGR RO 0x401F04 32 Configuration Information
Register

No

0xE04 GICP_CR RW 0x0 32 Control Register No

0xE08 GICP_IIDR RO 0x040nn43B
The nn value depends on the
rxpy identifier.

32 PMU Implementer Identification
Register

No

0xE50 GICP_IRQCR RW 0x0 32 Interrupt Configuration Register No

0xFB8 GICP_PMAUTHSTATUS RO 0x088 32 Authentication Status register No

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 248 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Offset Name Type Reset Width Description Architecture
defined?

0xFBC GICP_PMDEVARCH RO 0x47702A56 32 Device Architecture register No

0xFCC GICP_PMDEVTYPE RO 0x56 32 Device Type register No

0xFD0 GICP_PIDR4 RO 0x44 32 Peripheral ID 4 Register No

0xFD4 GICP_PIDR5 RO 0x00 32 Peripheral ID 5 Register No

0xFD8 GICP_PIDR6 RO 0x00 32 Peripheral ID 6 Register No

0xFDC GICP_PIDR7 RO 0x00 32 Peripheral ID 7 Register No

0xFE0 GICP_PIDR0 RO 0x96 32 Peripheral ID 0 Register No

0xFE4 GICP_PIDR1 RO 0xB4 32 Peripheral ID 1 Register No

0xFE8 GICP_PIDR2 RO 0x3B 32 Peripheral ID 2 Register No

0xFEC GICP_PIDR3 RO 0x00 32 Peripheral ID 3 Register No

0xFF0 GICP_CIDR0 RO 0x0D 32 Component ID 0 Register No

0xFF4 GICP_CIDR1 RO 0xF0 32 Component ID 1 Register No

0xFF8 GICP_CIDR2 RO 0x05 32 Component ID 2 Register No

0xFFC GICP_CIDR3 RO 0xB1 32 Component ID 3 Register No

5.11.1 GICP_EVCNTRn, Event Counter Registers

These registers contain the values of event counter n. The GIC-700 supports five counters, n =
0-4.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-78: GICP_EVCNTRn bit assignments

31 0

COUNT

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 249 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-106: GICP_EVCNTRn bit descriptions

Bits Name Description

[31:0] COUNT Counter value.
If the counter is enabled, the counter value increments when an event matching
GICP_EVTYPERn.EVENT occurs.

5.11.2 GICP_EVTYPERn, Event Type Configuration Registers

These registers configure which events that event counter n counts. The GIC-700 supports five
counters, n = 0-4.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-79: GICP_EVTYPERn bit assignments

31 30 0

EVENT

781516

EVENT_TYPEOVFCAP

1718

ReservedReserved

Table 5-107: GICP_EVTYPERn bit descriptions

Bits Name Description

[31] OVFCAP When set to 1, an overflow of counter n triggers a capture if GICP_CAPR.CAPTURE is set

[30:18] - Reserved

[17:16] EVENT_TYPE Event tracking type:

0b00 Count events
0b10 MaximumEvent
0b01, 0b11 Reserved

[15:8] - Reserved

[7:0] EVENT Event identifier. See Table 5-108: GICP_EVTYPERn.EVENT field encoding on page 251.
All events reset to an unknown value. Registers corresponding to unimplemented counters are
RES0.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 250 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

The following table shows the events that the GIC can count. The mask column indicates whether
Secure events can be masked when GICD_SAC.SPF = 1 and GICD_CTLR.DS == 0.

Table 5-108: GICP_EVTYPERn.EVENT field encoding

EventID Event Description Mask Filter

0x0 CLK Clock cycle Unmasked None

0x1 CLK_NG Clock cycle that prevents Q-Channel clock
gating

Unmasked None

0x2-0x3 - Reserved - -

0x4 DN_MSG_PHY Downstream message to core excluding PPIs Masked TargetVP

0x5 DN_SET_PHY Set to core SPIs, LPIs, and doorbells The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

TargetVP/ID
range

0x6 DN_SET1OFN_PHY Set to core, which is a 1 of N interrupt The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

TargetVP/ID
range

0x7 - Reserved - -

0x8 UP_MSG_PHY Upstream message from core Masked TargetVP

0x9 UP_ACT_SPI Upstream activate The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

TargetVP/ID
range

0xA UP_REL_PHY Upstream release The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

Target

0xB UP_ACT_LPI Upstream activate of LPI Unmasked TargetVP/ID
range

0xC UP_SET_COMP_PHY A set followed by an activate. This event
counts the set and then decrements on
release.

The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

Target

0xD UP_DEACT Upstream deactivate. SPIs only. The event is masked when the
Deactivate packet has either Group
0 or Secure Group 1 set

TargetVP/ID
range

0xE UP_ACT_DBL Upstream activate of doorbell Unmasked TargetVP(vPE)/
ID range

0x10 SGI_BRD Broadcast SGI messages. Target = source. The event is masked when the the
Generate SGI packet has the NS bit
set to 0

TargetVP/ID
range

0x11 SGI_TAR Targeted SGI messages. Target = source. The event is masked when the the
Generate SGI packet has the NS bit
set to 0

TargetVP/ID
range

0x12 SGI_ALL All SGI messages. Target = source. The event is masked when the the
Generate SGI packet has the NS bit
set to 0

TargetVP/ID
range

0x13 SGI_ACC Accepted SGI. Target = source. The event is masked when the the
Generate SGI packet has the NS bit
set to 0

TargetVP/ID
range

0x14 SGI_BRD_CC_IN Broadcast SGI message from cross-chip The event is masked when the the
Generate SGI packet has the NS bit
set to 0

ID range/Chip

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 251 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

EventID Event Description Mask Filter
0x15 SGI_TAR_CC_IN Targeted SGI message from cross-chip The event is masked when the the

Generate SGI packet has the NS bit
set to 0

ID range/Chip

0x16 SGI_TAR_CC_OUT Targeted SGI sent cross-chip The event is masked when the the
Generate SGI packet has the NS bit
set to 0

Chip/ID range

0x17 SGI_CC_OUT Any SGI being sent cross-chip The event is masked when the the
Generate SGI packet has the NS bit
set to 0

Chip

0x18 SGI_CC_OUT_RESP Response from any outgoing SGI The event is masked when the the
Generate SGI packet has the NS bit
set to 0

Chip

0x20 ITS_NLL_LPI Incoming LPI Unmasked TargetVP/ID
range/ITS

0x21 ITS_LL_LPI Incoming low latency LPI Unmasked TargetVP/ID
range/ITS

0x22 ITS_LPI Incoming LPI (or low latency) Unmasked TargetVP/ID
range/ITS

0x23 ITS_LPI_CMD Incoming LPI command Unmasked TargetVP/ID
range/ITS

0x24 ITS_DID_MISS Number of DeviceID cache misses Unmasked TargetVP/ID
range/ITS

0x25 ITS_VID_MISS Number of EventID cache misses Unmasked TargetVP/ID
range/ITS

0x26 ITS_COL_MISS Number of Collection cache misses Unmasked TargetVP/ID
range/ITS

0x27 ITS_LAT Latency of the ITS transaction Unmasked TargetVP/ID
range/ITS

0x28 ITS_MPFA Number of free slots during translation Unmasked TargetVP/ID
range/ITS

0x29 LPI_CC_OUT LPI sent cross-chip Unmasked ID range/Chip

0x2A LPI_CMD_CC_OUT LPI command sent cross-chip Unmasked ID range/Chip

0x2B LPI_CC_IN LPI coming in from cross-chip Unmasked ID range/Chip

0x2C LPI_CMD_CC_IN LPI command coming in from cross-chip Unmasked ID range/Chip

0x2D LPI_CC_OUT_RESP Response to LPI sent cross-chip Unmasked Chip

0x2E LPI_CMD_CC_OUT_RESP Response to LPI command sent cross-chip Unmasked Chip

0x30 LPI_OWN_STORED LPI stored in own location. Prevents clock
gating and Q-Channel clock gating.

Unmasked -

0x31 LPI_OOL_STORED LPI stored out of location. Prevents clock
gating and Q-Channel clock gating.

Unmasked -

0x32 LPI_HIT_EN LPI property read cache hit enabled. Uses the
filter from counter 0 only.

Unmasked TargetVP/ID
range

0x33 LPI_HIT_DIS LPI property read cache hit disabled. Uses
the filter from counter 0 only.

Unmasked TargetVP/ID
range

0x34 LPI_HIT LPI property read cache hit. Uses the filter
from counter 0 only.

Unmasked TargetVP/ID
range

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 252 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

EventID Event Description Mask Filter
0x35 LPI_MATCH LPI coalesced. Uses the filter from counter 0

only.
Unmasked TargetVP/ID

range

0x36 LPI_FAS Number of slots free on new LPI Unmasked None

0x37 LPI_PROP_EN Enabled LPI property fetch. Uses the filter
from counter 0.

Unmasked TargetVP/ID
range

0x38 LPI_PROP_DIS Disabled LPI property fetch. Uses the filter
from counter 0.

Unmasked TargetVP/ID
range

0x39 LPI_PROP LPI property fetch. Uses the filter from
counter 0.

Unmasked TargetVP/ID
range

0x50 SPI_COL_MSG New message from SPI Collator The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

ID range

0x51 SPI_ENABLED SPI enabled (new SPI or register access if
pending)

The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

ID range

0x52 SPI_DISABLED SPI disabled (new SPI that is disabled or
register access if pending)

The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

ID range

0x53 SPI_PENDING_SET New SPI pending valid The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

ID range

0x54 SPI_PENDING_CLR SPI pending bit cleared The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

ID range

0x55 SPI_MATCH Collated edge-based SPI. Excludes collation
in the SPI Collator.

The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

ID range

0x57 SPI_CC_IN SPI from remote chip The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

ID range/Chip

0x58 SPI_CC_OUT SPI sent to remote chip The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

ID range/Chip

0x59 SPI_CC_OUT_RESP Response to SPI sent to remote chip The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

Chip

0x5A SPI_CC_DEACT SPI deactivate message sent The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

ID range/Chip

0x5B SPI_CC_DEACT_RESP Response to deactivate sent cross-chip The event is masked when it
corresponds to an interrupt that is
either Group 0 or Secure Group 1

Chip

0x60 PT_IN_EN Enabled interrupt written to Pending table Unmasked TargetVP/ID
range

0x61 PT_IN_DIS Disabled interrupt written to Pending table Unmasked TargetVP/ID
range

0x62 PT_PRI Priority of interrupt written to Pending table Unmasked TargetVP/ID
range

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 253 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

EventID Event Description Mask Filter
0x63 PT_IN Interrupt written to Pending table Unmasked TargetVP/ID

range

0x64 PT_MATCH Interrupt already set in Pending table Unmasked TargetVP/ID
range

0x65 PT_OUT_EN Enabled interrupt taken out of Pending table
(also covered PT_MATCH when enabled)

Unmasked TargetVP/ID
range

0x66 PT_OUT_DIS Disabled interrupt taken out of Pending table
(also covered PT_MATCH when disabled)

Unmasked TargetVP/ID
range

0x67 PT_OUT Interrupt taken out of Pending table (also
covered PT_MATCH)

Unmasked TargetVP/ID
range

0x70 VSGI_CC vSGI sent cross-chip Unmasked TargetVP/Chip

0x71 VSGI_CC_RESP vSGI cross-chip response Unmasked Chip

0x72 VSGI_IN_RAM vSGI stored in RAM Unmasked TargetVP

0x73 VLPI_BUFF_FILL Number of buffers used on vLPI arriving Unmasked -

0x74 VLPI_REJECT vLPI sent cross-chip being rejected Unmasked TargetVP/Chip

0x75 VSGI_REJECT vSGI sent cross-chip being rejected Unmasked TargetVP/Chip

0x76 VCMD_REJECT Virtual command sent cross-chip being
rejected

Unmasked TargetVP/Chip

0x78 RES_START Residency change start Unmasked TargetVP

0x79 RES_COMP Residency change end Unmasked TargetVP

0x80 ACC Counter(n − 1) − counter(n − 2) every cycle.
Prevents clock gating and Q-Channel clock
gating.

Unmasked None

0x81 OFLOW Overflow of counter n − 1. Overflow
counters cannot count overflows of the
counters that are using the OFLOW event.

Unmasked None

0x88 DN_SET_VIRT Virtual set command Unmasked TargetVP(PHY)/
ID range

0x89 UP_REL_VIRT Virtual release Unmasked TargetVP(PHY)

0x8A UP_ACT_VLPI Activate of vLPI Unmasked TargetVP(PHY)/
ID range

0x8B UP_ACT_VSGI Activate of vSGI Unmasked TargetVP(PHY)/
ID range

0x8C UP_SET_COMP_VIRT A set followed by an activate. This event
counts the set and then decrements on
release.

Unmasked Target(PHY)

5.11.3 GICP_SVRn, Shadow Value Registers

These registers contain the shadow value of event counter n. The GIC-700 supports five counters,
n = 0-4.

Configurations
This register is available in all configurations.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 254 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-80: GICP_SVRn bit assignments

31 0

COUNT

Table 5-109: GICP_SVRn bit descriptions

Bits Name Description

[31:0] COUNT Captured counter value.
This field holds the captured counter values of the corresponding entry in GICP_EVCNTRn.

5.11.4 GICP_FRn, Filter Registers

These registers configure the filtering of event counter n. The GIC-700 supports five counters, n =
0-4.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 255 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-81: GICP_FRn bit assignments

Filter

31 30 29 28 16 15 0

Reserved

FilterEncoding
FilterType

Table 5-110: GICP_FRn bit descriptions

Bits Name Description

[31:30] FilterType Filter type:

0b00 Filter on core or vPE or both
0b01 Filter on INTID
0b10 Filter on chip or ITS
0b11 Reserved, no effect

[29] FilterEncoding 0 Filter on range
1 Filter on an exact match

[28:16] - Reserved

[15:0] Filter If the corresponding GICP_EVTYPERn.EVENT indicates an event that cannot be filtered, then the value in this
register is ignored.
When FilterEncoding == 1, counter n counts events that are only associated with an exact match of the
FilterType.

When FilterEncoding == 0, this field is encoded so that the first LSB that is zero, indicates the uppermost of a
contiguous span of least significant FilterType content bits, that the GIC ignores for the purposes of matching. For
example, setting Filter to:

• 0b11110111_11110111 matches with values of 0b11110111_1111xxxx for FilterType content

• 0b11110111_11110110 matches with values of 0b11110111_1111011x for FilterType content

• 0b11110101_11111111 matches with values of 0b111101xx_xxxxxxxx for FilterType content

For events with filtering that is specified as TargetVP in Table 5-108: GICP_EVTYPERn.EVENT field encoding on
page 251, then the top 2 bits of the filter value have alternative functionality:

Filter bit[15]
0 = Use vPE in match
1 = Do not use vPE. Virtual events fail in the filter.

Filter bit[14]
0 = Use PE in match
1 = Do not use PE. Physical events fail in the filter.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 256 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.11.5 GICP_CNTENSET0, Counter Enable Set Register 0

These registers contain the counter enables for each event counter. The GIC-700 supports five
event counters.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-82: GICP_CNTENSET0 bit assignments

31 4 0

CNTEN

5

Reserved

Table 5-111: GICP_CNTENSET0 bit descriptions

Bits Name Description

[31:5] - Reserved, RAZ

[4:0] CNTEN Counter enable. The CNTEN[n] bit is the enable for counter n. This field resets to an unknown value.
Reads return the state of the counter enables.
Writing:

Bit[n] = 1 Sets the enable for counter n.
Bit[n] = 0 No effect. To disable a counter, use GICP_CNTENCLR0.

Counter n is enabled when CNTEN[n] == 1 and GICP_CR.E == 1.

5.11.6 GICP_CNTENCLR0, Counter Enable Clear Register 0

This register contains the counter disables for each event counter. The GIC-700 supports five
event counters.

Configurations
This register is available in all configurations.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 257 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-83: GICP_CNTENCLR0 bit assignments

31 4 0

CNTEN

5

Reserved

Table 5-112: GICP_CNTENCLR0 bit descriptions

Bits Name Description

[31:5] - Reserved, RAZ

[4:0] CNTEN Counter disable. The CNTEN[n] bit is the disable for counter n. This field resets to an unknown value.
Reads return the state of the counter enables.
Writing:

Bit[n] = 1 Disables counter n
Bit[n] = 0 No effect. To enable a counter, use GICP_CNTENSET0.

Counter n is disabled when CNTEN[n] == 0 or GICP_CR.E == 0.

5.11.7 GICP_INTENSET0, Interrupt Contribution Enable Set Register 0

This register contains the set mechanism for the counter interrupt contribution enables. The
GIC-700 supports five counters, n = 0-4.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 258 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-84: GICP_INTENSET0 bit assignments

31 4 0

INTEN

5

Reserved

Table 5-113: GICP_INTENSET0 bit descriptions

Bits Name Description

[31:5] - Reserved, RAZ

[4:0] INTEN Interrupt enable. The INTEN[n] bit is the interrupt enable for counter n. This field resets to an unknown
value. Reads return the state of the interrupt enables.
Writing:

Bit[n] = 1 Sets the interrupt enable for counter n
Bit[n] = 0 No effect. To disable a counter interrupt enable, use GICP_INTENCLR0.

The interrupt enable for counter n is enabled when INTEN[n] == 1 and GICP_CR.E == 1.

Overflow of counter n sets GICP_OVSSET0.OVS[n] to 1 and that triggers the PMU interrupt if
INTEN[n] == 1.

5.11.8 GICP_INTENCLR0, Interrupt Contribution Enable Clear Register 0

This register contains the clear mechanism for the counter interrupt contribution enables. The
GIC-700 supports five counters, n = 0-4.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-85: GICP_INTENCLR0 bit assignments

31 4 0

INTEN

5

Reserved

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 259 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Table 5-114: GICP_INTENCLR0 bit descriptions

Bits Name Description

[31:5] - Reserved, RAZ

[4:0] INTEN Interrupt enable. The INTEN[n] bit is the interrupt disable for counter n. This field resets to an unknown
value. Reads return the state of the interrupt enables.
Writing:

Bit[n] = 1 Clears the interrupt enable for counter n
Bit[n] = 0 No effect. To set a counter interrupt enable, use GICP_INTENSET0.

5.11.9 GICP_OVSCLR0, Overflow Status Clear Register 0

This register provides the clear mechanism for the counter overflow status bits and provides read
access to the counter overflow status bit values. The GIC-700 supports five counters, n = 0-4.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-86: GICP_OVSCLR0 bit assignments

31 4 0

OVS

5

Reserved

Table 5-115: GICP_OVSCLR0 bit descriptions

Bits Name Description

[31:5] - Reserved, RAZ

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 260 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[4:0] OVS Overflow status. The OVS[n] bit is the overflow clear for counter n. This field resets to zero. Reads

return the state of the overflow status bits.
Writing:

Bit[n] = 1 Clears the overflow status for counter n
Bit[n] = 0 No effect. To set a counter overflow status, use GICP_OVSSET0.

Overflow of counter n, that is a transition past the maximum unsigned value of the counter that causes
the value to wrap and become zero, sets the corresponding OVS bit. In addition, this event can trigger
the PMU interrupt and cause a capture of the PMU counter values, see 5.11.2 GICP_EVTYPERn, Event
Type Configuration Registers on page 250.

5.11.10 GICP_OVSSET0, Overflow Status Set Register 0

This register provides the set mechanism for the counter overflow status bits and provides read
access to the counter overflow status bit values. The GIC-700 supports five counters, n = 0-4.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-87: GICP_OVSSET0 bit assignments

31 4 0

OVS

5

Reserved

Table 5-116: GICP_OVSSET0 bit descriptions

Bits Name Description

[31:5] - Reserved, RAZ

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 261 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bits Name Description
[4:0] OVS Overflow status. The OVS[n] bit is the overflow set for counter n. This field resets to zero. Reads return

the state of the overflow status bits.
Writing:

Bit[n] = 1 Sets the overflow status for counter n
Bit[n] = 0 No effect. To clear a counter overflow status, use GICP_OVSCLR0.

When the agent controlling the GIC-700 sets an OVS bit, it is similar to an OVS bit being set because of
a counter overflow. Setting the OVS bit triggers the overflow interrupt if it is enabled.

5.11.11 GICP_CAPR, Counter Shadow Value Capture Register

This register controls the counter shadow value capture mechanism.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-88: GICP_CAPR bit assignments

31 0

CAPTURE

1

Reserved

Table 5-117: GICP_CAPR bit descriptions

Bits Name Description Type

[31:1] - Reserved -

[0] CAPTURE A write of 1 triggers a capture of all values within the PMU into their respective shadow
registers.
A write of 0 has no effect.

See Snapshot on page 92 for information about other snapshot event triggers.

WO

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 262 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

5.11.12 GICP_CFGR, Configuration Information Register

This register returns information about the PMU implementation.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-89: GICP_CFGR bit assignments

31 23 22 21 14 13 8 7 6 5 0

NCTRSIZEReservedReserved

ReservedCAPTURE

Table 5-118: GICP_CFGR bit descriptions

Bits Name Description

[31:23] - Reserved, RAZ

[22] CAPTURE Returns 1, to indicate that the GIC supports capture

[21:14] - Reserved, RAZ

[13:8] SIZE Returns 31, to indicate that the GIC supports 32-bit counters

[7:6] - Reserved, RAZ

[5:0] NCTR Returns 4, to indicate that the GIC provides five counters

5.11.13 GICP_CR, Control Register

This register controls whether all counters are enabled or disabled.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 263 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Functional group See 5.11 GICP register summary on page 248 for the address offset, type,
and reset value of this register.

Usage constraints
There are no usage constraints.

Bit descriptions
Figure 5-90: GICP_CR bit assignments

31 01

Reserved E

Table 5-119: GICP_CR bit descriptions

Bits Name Description

[31:1] - Reserved

[0] E Global counter enable:

0 No events are counted and the values in GICP_EVCNTRn do not change
1 The counters are enabled

Resets to 0.

This bit takes precedence over the GICP_CNTENSET0.CNTEN bits.

5.11.14 GICP_IIDR, PMU Implementer Identification Register

This register provides information about the implementer and revision of the PMU page.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 264 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-91: GICP_IIDR bit assignments

31 0

Reserved

1112

RevisionProductID Implementer

1619 1524 23 20

Variant

Table 5-120: GICP_IIDR bit descriptions

Bits Name Description

[31:24] ProductID Indicates the product ID:

0x04 GIC-700

[23:20] - Reserved, RAZ

[19:16] Variant Indicates the major revision, or variant, of the product rxpy identifier:

0x2 r2
0x3 r3

[15:12] Revision Indicates the minor revision of the product rxpy identifier:

0x1 p1
0x2 p2

[11:0] Implementer Identifies the implementer:

0x43B Arm

5.11.15 GICP_IRQCR, Interrupt Configuration Register

This register controls which SPI is generated when a PMU overflow interrupt occurs.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 265 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-92: GICP_IRQCR bit assignments

31 011 10

Reserved SPIID

Table 5-121: GICP_IRQCR bit descriptions

Bits Name Description

[31:11] - Reserved, RAZ

[10:0] SPIID Sets the SPI ID that the GIC generates when a PMU overflow interrupt occurs.
If the value is less than 32, out of range, or not owned on chip for multichip configurations, the register
updates to 0 and no internal delivery occurs.

Set this field to 0 when the interrupt routes externally to a core that does not receive interrupts directly
from the GIC such as a central system control processor.

Note:
The behavior is unpredictable if software attempts to share the same interrupt ID in GICP_IRQCR
with an external source using either:

• an SPI wire

• the GICD_SETSPI_NSR or GICD_SETSPI_SR registers

Creates a level-triggered interrupt if it is owned on chip. Otherwise it behaves as a normal message-
based SPI.

In a multichip configuration, the SPIID field must only be programmed to an SPI ID that the chip owns.
The relevant GICD_CHIPRn register controls the SPI ownership.

We recommend that if these registers are used, then the SPI must not be used for another device
either with a wire or as a message-based interrupt.

5.11.16 GICP_PIDR2, Peripheral ID2 Register

This register returns byte[2] of the peripheral ID. The GICP_PIDR2 register is part of the set of
performance monitoring peripheral identification registers.

Configurations
This register is available in all configurations.

Attributes

Width 32-bit
Functional group See 5.11 GICP register summary on page 248 for the address offset, type,

and reset value of this register.

Usage constraints
There are no usage constraints.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 266 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Programmers model for GIC-700

Bit descriptions
Figure 5-93: GICP_PIDR2 bit assignments

31 34 0

JEDEC

278

Reserved DES_1ArchRev

Table 5-122: GICP_PIDR2 bit descriptions

Bits Name Description

[31:8] - Reserved, RAZ

[7:4] ArchRev Identifies the version of the GIC architecture with which the PMU complies:

0x3 GICv3
0x4 GICv4

[3] JEDEC Indicates that a JEDEC-assigned JEP106 identity code is used

[2:0] DES_1 Bits[6:4] of the JEP106 identity code. Bits[3:0] of the JEP106 identity code are assigned to
GICP_PIDR1[7:4].

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 267 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Getting started with GIC-700

Appendix A Getting started with GIC-700
There are some basic tasks that you must complete before you can start to use GIC-700.

Each Redistributor must be powered on using its GICR_PWRR register to enable the Redistributors
to be accessed, see 4.13.1 Redistributor power management on page 86 for more information.

When the GIC-700 is powered up, it must be programmed as the GICv3 and GICv4 Software
Overview describes.

A.1 Removing cores from a preconfigured GIC
The GIC can be configured to either enable Secure software or a tie-off signal to remove cores
from a GIC configuration. This feature enables you to use a single GIC configuration in multiple
products that contain a different number of cores.

The prog_mpidr configuration parameter controls whether software or hardware can remove cores
from a GIC configuration.

Software control, when prog_mpidr == prog
This prog_mpidr setting enables Secure software to remove cores during the boot up of a system. If
GICD_CTLR.DS == 1, then Non-secure software can remove cores. The software flow is:

1. Software checks if GICD_CFGID.RDC == 1. When set to 1, it confirms that software can
remove cores from the configuration.

2. Software writes to GICD_RDOFFRn and sets a bit to 1 to remove that core from the
configuration. n has a value of 0-7 and each value represents 64 cores. For example, to remove:

• The 1st core, set GICD_RDOFFR0[0] to 1.

• The 22nd core, set GICD_RDOFFR0[21] to 1.

• The 72nd core, set GICD_RDOFFR1[7] to 1.

When cores are removed, the affinity values of the remaining cores automatically change, so
software must then program GICR_MPIDR. See Requirement to program GICR_MPIDR on page
269.

3. Software writes to each GICR_MPIDR to set the affinity values for the cores on that
Redistributor. The address map for these Redistributors is now a single contiguous block of
Redistributor address space.

4. Software can then start normal operation.

Software must program the GICD_RDOFFRn and GICR_MPIDR registers before
any other GIC registers are accessed (other than reads to GICR_TYPER and
read-only ID registers) and before the GIC receives messages from any cores.
Otherwise the behavior is unpredictable.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 268 of 309

https://developer.arm.com/documentation/dai0492/latest
https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Getting started with GIC-700

Example A-1: Requirement to program GICR_MPIDR

When software uses GICD_RDOFFRn to remove a core, the following core in the sequence then
effectively inherits the affinity settings of the removed core. The following example shows the
importance of the subsequent programming of the GICR_MPIDR registers.

In this example, there are 4 Redistributors with the following affinity values:

Redistributor 0 0.0.0.0, physical PE 0
Redistributor 1 0.1.0.0, physical PE 1
Redistributor 2 0.2.0.0, physical PE 2
Redistributor 3 0.2.1.0, physical PE 3

If software writes 0x2 to GICD_RDOFFR0, it removes PE 1 and its Redistributor, and the affinity
values for the remaining Redistributors are:

Redistributor 0 0.0.0.0, physical PE 0
Redistributor 1 0.1.0.0, physical PE 2
Redistributor 2 0.2.0.0, physical PE 3

The original Redistributor 2 and Redistributor 3 are now in separate clusters, but previously they
were in the same cluster. Therefore, to retain the intended heirarchy, software must also program
the GICR_MPIDR registers.

Hardware control, when prog_mpidr == strap
This prog_mpidr setting enables hardware to remove cores as the GIC exits reset. With this option,
the software is unaware that the GIC is supporting fewer cores than the configuration allows.

This option provides the following extra tie-off signals:

gicd_pe_off[max_pe_on_chip − 1:0]
Set a bit to 1, to remove the corresponding core. The behavior is unpredictable when all bits
are set to 1.

affinity0[(max_pe_on_chip × max_affinity_width0) − 1:0]
Sets the affinity 0 value for each core.

affinity1[(max_pe_on_chip × max_affinity_width1) − 1:0]
Sets the affinity 1 value for each core.

affinity2[(max_pe_on_chip × max_affinity_width2) − 1:0]
Sets the affinity 2 value for each core.

affinity3[(max_pe_on_chip × max_affinity_width3) − 1:0]
Sets the affinity 3 value for each core.

These tie-off signals must be set before the GIC is taken out of reset and must
remain stable, otherwise the behavior is unpredictable. If the width of the signal is
zero, then it is not present on the GIC instance.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 269 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Getting started with GIC-700

The bit order in these tie-off signals is the order that the Redistributor pages appear in the default
GIC address map, as defined by the order of GCI blocks and buses within them. These values are
set by the ppi_ref and bus parameters in the configuration file, that is, there is a fixed relationship
between the tie-off signal and a physical processor.

Example A-2: Example of removing cores from a 4-core configuration

This 4-core example has affinity 0, 1, and 2 with a width of 2 bits:

Core 0 MPIDR 0.0.0.0
Core 1 MPIDR 0.0.0.1
Core 2 MPIDR 0.0.1.0
Core 3 MPIDR 0.0.1.1

The following table shows the tie-off signal values when core 1 is removed and also when core 0
and core 2 are removed.

Signal No cores removed Core 1 removed Core 0 and 2 removed
Core 1 in each cluster moved to 0

gicd_pe_off 0b0000 0b0010 0b0101

affinity0 0b01_00_01_00 0b01_00_xx_00 0b00_xx_00_xx

affinity1 0b01_01_00_00 0b01_01_xx_00 0b01_xx_00_xx

affinity2 0b00_00_00_00 0b00_00_xx_00 0b00_xx_00_xx

When cores are removed by setting bits of the gicd_pe_off signal, the GICD updates other
software-visible features so that software cannot detect the reduced core count. These updates
include:

• Moving GICR_TYPER.Last to the last Redistributor.

• Moving the GICDA register page to the page above the last Redistributor.

Limitations
The removal of cores from a configuration, by software or hardware, has the following limitations:

GICR_CFGID0.PPI_number
This field reflects a tie-off on the GIC Cluster Interface (GCI). The system integrator must
change the tie-off as required. The tie-off has no function other than implementation-defined
discovery, so the tie-offs could all be tied to the same value.

MBIST
The GIC does not alter the MBIST interface, so the system integrator must add any
protection that is required.

Removed cores
If cores are removed, then the behavior is unpredictable if the GIC receives GIC Stream
messages from a removed core.

GICR<n>_ERRINSR
These registers are used for inserting errors, so that software can check the ECC operation
on the RAMs in the GIC Cluster Interface (GCI) block.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 270 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Getting started with GIC-700

However, if cores are removed then these registers are not updated. Therefore, when some,
but not all, cores are removed from a cluster interface, the GIC reports errors only in the RAS
records of the available cores. This behavior provides a mechanism for software to determine
which cores are removed. If this behavior is an issue for the system, then we recommend that
the GCI RAM is implemented as flops without ECC.

A.2 Other power management
The GIC-700 can be powered up and powered down using non-architectural protocols.

When powering down the GIC-700, software must preserve the state of the GIC-700, except for
any LPI pending interrupts that are preserved in pending tables, as defined in the Arm® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4.

You can preserve the LPI pending bits by using an implementation-defined powerdown sequence,
which ensures that the memory pointed to by each GICR_PENDBASER contains the updated
pending information for the LPIs. The implementation-defined powerdown sequence must:

1. Complete the powerdown sequence for all cores.

2. Set GICR_WAKER.Sleep to 1.

3. If GICD_TYPER.LPIS==1, poll GICR_WAKER until GICR_WAKER.Quiescent is set.

• GICR_WAKER.Sleep can only be set to 1 when:

◦ All Redistributors have GICR_WAKER.ProcessorSleep == 1.

◦ All Redistributors have GICR_WAKER.ChildrenAsleep == 1.

• GICR_WAKER.ProcessorSleep can only be set to 0 when:

◦ GICR_WAKER.Sleep == 0.

◦ GICR_WAKER.Quiescent == 0.

• If software decides to abort a sleep request due to an external wake request,
it can do so by clearing GICR_WAKER.Sleep at any time. Software does not
have to wait for GICR_WAKER.Quiescent to be set.

• There is only one GICR_WAKER.Sleep and one GICR_WAKER.Quiescent
bit that can be read and written through the GICR_WAKER register of any
Redistributor.

The powerdown described sequence ensures that all LPIs that are acknowledged by a write
response to the write GITS_TRANSLATER are saved to the Pending tables. Any interrupt that
arrives when the Sleep bit is set to 1 is ignored, and the ACE5-Lite transaction completes in
accordance with the ACE protocol.

We recommend that you disable any interrupt sources before setting GICR_WAKER.Sleep.
However, if you require wake-on-interrupt behavior, the write to GITS_TRANSLATER must be

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 271 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Getting started with GIC-700

gated upstream at a location that enables software to reprogram and enable the GIC-700 without
deadlock.

When the GICR_WAKER.Quiescent bit is set, it is safe to power down the GIC-700 without losing
LPI pending bits. Software must still perform other steps such as the save and restore of SPI state.
However, you must provide custom mechanisms to wake the GIC-700 if any interrupts arrive that
must not be ignored.

When the GIC-700 next powers up, you can program the GICR_PENDBASER registers to point to
the same memory to reload the LPI pending status. If there is no requirement to reload the pending
LPIs, we recommend that you speed up the initialization of the GIC-700 as follows:

1. Zero the Pending table.

2. Set GICR_PENDBASER.PTZ to 1.

GICR_PENDBASER registers can only be modified before the
GICR_CTLR.Enable_LPIs bit is set, or when the GICR_WAKER.Sleep and
GICR_WAKER.Quiescent bits are both set.

For more information, see the GICv3 and GICv4 Software Overview.

A.3 Setting error recovery and fault handling options
Use the following procedures to set the error recovery and fault handling option.

Procedure
1. Write to GICT_ERR<c>MISC0.Count to preset the counter to any value.

For example, to fire an interrupt on any correctable error, write 0xFF, or to fire an interrupt on
every second correctable error, write 0xFE.

2. Assign a recorded uncorrectable ECC error to one of these options:
• The fault-handling interrupt, fault_int signal, by setting GICT_ERR<n>CTLR.FI.
• The error recovery interrupt, err_int signal, by setting GICT_ERR<n>CTLR.UI. The interrupt

fires on every uncorrectable interrupt occurrence irrespective of the counter value.

We recommend that if the err_int and fault_int signals are internally routed, the target
interrupts must not have SPI Collator wires, or if they are present, are tied off. This prevents
software checking for the same ID at multiple destinations. The err_int and fault_int signals
do not have direct test enable registers. You can test connectivity using error record 0 and
triggering an error, such as an illegal AXI access to a nonexistent register.

3. Route the fault_int and err_int output signals as either:
• Interrupt wires for situations where error recovery is handled by a core that does not

receive interrupts directly from the GIC, such as a central system control processor.
• Drive each interrupt internally by programming the associated GICT_ERRIRQCR<n>

register. Each GICT_ERRIRQCR<n> register contains an ID field that must be programmed

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 272 of 309

https://developer.arm.com/documentation/dai0492/latest

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Getting started with GIC-700

to 0 if internal routing is not required, or if internal routing is required, to a legally supported
SPI ID.

If the programmed ID value is less than 32, out of range, or not owned on
chip for multichip configurations, the register updates to 0 and no internal
delivery occurs.

A.4 Setting a PMU counter
Use the following procedure to configure a counter.

About this task

PMU registers, other than enables, do not have defined reset values and must be
programmed before use.

Procedure
1. Program the counter GICP_EVCNTRn to a known value. This value could be 0 to count events,

or a higher number to trigger an overflow after a known number of events.
2. Program the associated GICP_EVTYPERn to count the required event.
3. Program the required filter type for the event by programming GICP_FRn.
4. Enable the counter by programming the corresponding bit in GICP_CNTENSET0.
5. Repeat the previous steps for all counters that are required.
6. Enable the global count enable in GICP_CR.E.

A.5 Changing the Routing table owner
In a multichip system, you can change the chip that owns the Routing table at any time. However,
the Routing table owner must be the last chip to be powered down.

About this task
The following procedure describes how to change the owner of the Routing table:

Procedure
1. Write to GICD_DCHIPR.rt_owner with a value that selects the appropriate chip to be the

Routing table owner.
The chip_id signal sets the identification value of a chip.

2. Poll for GICD_DCHIPR.PUP == 0.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 273 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Getting started with GIC-700

A.6 Connecting the chips
Use the following procedure to connect the chips in a multichip configuration.

Before you begin
The following restrictions apply when connecting or removing chips:

• You must consider that data that is read from GICD_CHIPRn is valid only when
GICD_DCHIPR.PUP == 0, otherwise the data might be updating.

• If you are connecting a new chip, the accesses must be done through a chip that is in the
Consistent state and not by writing to the new chip directly.

• If you access GICD_CHIPSR while a chip is being connected, it shows RTS == Updating. Also,
the GICD_DCHIPR.PUP bit is set, indicating that the Routing table is updating, so the values
cannot be trusted.

• Adding or removing a chip when GICD_CTLR group enables are set is unpredictable. To check
that group enables are off, software must poll GICD_CTLR.RWP.

• If you are connecting together multiple different instances of the GIC-700, the settings of the
gicd_ctrl_ds signal must match in all chips.

• If you are connecting together multiple different instances of the GIC-700, the settings for the
following parameters must match in all chips:

◦ All affinity widths (max_affinity_width*)

◦ Number of SPI blocks supported (spi_blocks)

◦ LPI support type (lpi_support)

◦ Total number of chips supported (chip_count)

◦ Chip address width (chip_addr_width)

◦ Chip affinity select level (chip_affinity_select_level)

◦ Maximum number of cores on any single chip (max_pe_on_chip)

◦ The number of vPEs (vpe_width)

◦ GICv4.1 architecture support (gicv41_support)

◦ 1 of N support (spi_1ofn_support)

◦ Cross-chip interface protocol (ace_cc)

◦ Cross-chip addressing mode (local_chip_addr)

◦ Non-maskable interrupt (NMI) support (nmi_support)

See the Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and Integration Manual
for information about configuration parameters and their options.

About this task
The procedure for connecting the chips in a multichip configuration is as follows:

Procedure
1. Ensure that the values of the chip_id tie-off input signals to all chips are correct.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 274 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Getting started with GIC-700

2. Ensure that all Group enables in the GICD_CTLR register are disabled and GICD_CTLR.RWP ==
0.

3. Designate a chip, chip x, to own the Routing table.
You can designate a different chip later, if necessary.

4. Before software brings a chip online by writing to the RT owner, it must program all local
GICD_CHIPRn.ADDR fields. The procedure depends on whether local chip addressing is
enabled.
When GICD_CFGID.LCA == 0:

a) Software programs all the GICD_CHIPRn.ADDR fields from a single chip, ideally the RT
owner, by writing to a single Distributor instance.
When the chip comes online, it broadcasts the address values to the other chips.

When GICD_CFGID.LCA == 1:

a) Software programs all the GICD_CHIPRn.ADDR fields, for each chip separately.
For example, each chip writes all the required GICD_CHIPRn.ADDR values to its own
Distributor. Software must ensure that all remote chip addresses are unique from any given
chip.

When the chip comes online, the address values are not broadcast to the other chips.
5. In a single register write, program GICD_CHIPRx with:

a) GICD_CHIPRx.ADDR so that each chip can forward messages to chip x.
Depending on how cross-chip messages are routed, this value can be the chip_id signal
value or a more complex identifier. For an:

• AXI5-Stream cross-chip interface, this value is sent on the icdrtdest signal.

• ACE5-Lite cross-chip interface, this value is sent on the awaddr[AXIM_ADDR_WIDTH
−1:16] signal.

b) GICD_CHIPRx.SPI_BLOCK_MIN and GICD_CHIPRx.SPI_BLOCKS to appropriate values for
the SPIs that chip x owns.
Step example: If the range of interrupt ids for chip x is ID96-ID159:

• Set SPI_BLOCK_MIN = (96 – 32) / 32 = 2

• Set SPI_BLOCKS = (159 – 96 + 1) / 32 = 2
c) GICD_CHIPRx.SocketState = 1

6. To check that the writes are successful, read GICD_CHIPRx.
The writes might fail due to security settings, an overlapping or nonexistent SPI, or if another
update is still in progress. If the accesses fail, then GICD_CHIPRx.SocketState == 0, indicating
that the chip is offline.

7. To check that the actions of this sequence have executed correctly, read the following register
fields and ensure that their values are as follows:

a. GICD_CHIPSR.RTS == 2 (Consistent)

b. GICD_DCHIPR.rt_owner == chip x

c. GICD_DCHIPR.PUP == 0

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 275 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Getting started with GIC-700

Step result: Chip x is now in the Consistent state and ready to accept connections to other
chips in the system configuration.

To connect more chips:

8. Set the relevant address and SPI ownership information of the next chip you want to connect
to, chip y, by writing to GICD_CHIPRy.
You can do this step through any chip that is already connected, or more efficiently by writing
to the chip that owns the Routing table, chip_id signal value == rt_owner.

9. Poll GICD_DCHIPR until bit PUP == 0, indicating that the connection is complete.
10. To check whether the write to GICD_CHIPRy is accepted, read GICD_CHIPRy.

For each chip connection, repeat steps 8 on page 276 through 10 on page 276.

A.7 Isolating a chip from the system
In a multichip system, you can isolate a chip from the system.

About this task
To isolate a chip from the system, use the following procedure:

Procedure
1. Ensure that all cores on the chip are asleep by setting GICR_WAKER.ProcessorSleep.
2. Ensure all ITS blocks on the chip are disabled and the buses are quiesced by using the

qreqn_its<n> Q-Channel interfaces.
Before isolating the chip, the ITSs must be powered off because the Routing table is invalid
when the GIC P-Channel is in the OFF state.

3. Ensure that LPIs from other chips are not routed to this chip.
4. Attempt to enter the CONFIG state (pstate signal = 0x9).

If the GIC is idle and all credits are returned, it accepts the request to go into CONFIG state,
otherwise it denies the request and remains in RUN state.

All SPIs must return to their own chip before a request is accepted. This means
that SPIs that are enabled and pending, but targeting a core on a remote chip
where the relevant CPU group is disabled, prevent transition into the CONFIG
state.

When in the CONFIG state, any cross-chip messages that change the internal state are held in
the cross-chip interface, and all messages assert the pactive signal. If the pactive signal asserts
while attempting to enter a lower power state, you must return to RUN (pstate signal == 0x0).

5. When in CONFIG state, any required state can be saved.
Writing to GICD_CHIPRn or GICD_DCHIPR for any purpose other than to restore saved values
after a hardware reset is unpredictable.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 276 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Getting started with GIC-700

6. If using GICv4.1, then software must write and poll the GICR_VINVCHIPR register on at
least one PE from all the other chips. This check ensures that no stale cached vPE routing
information exists that would unnecessarily wake the chip that is being powered down.

7. Power down the Redistributors using the GICR_PWRR registers.
8. Optional: Flush the LPI cache using GICR_WAKER.Sleep.

We recommend that if wake-on-interrupt is required, LPIs from other chips do not target this
chip while the chip is being powered down (step 3 on page 276). Also, LPIs from other chips
must be routed back while the chip is in the OFF state.

If LPIs arrive after sleep is set in the CONFIG state, then the LPIs are dropped.
9. Attempt to enter the OFF state.

If the pactive signal is HIGH, return to the CONFIG state.
10. Use the Q-Channel to put the GIC into a safe mode to reset.

If the SPI Collator is in a different domain to the Distributor and only one of the domains is
being reset, then the power Q-Channel must have also accepted before the reset can occur.
This might require masking interrupts outside of the GIC to ensure that all interrupt lines have
reached their idle state.

Power up is the reverse of the powerdown sequence. However, you must ensure that the
Routing table is restored before other registers, else the behavior is unpredictable. Restoring
values to the Routing table that are not exactly the same as those values read out before a
reset, can cause unpredictable behavior.

Accesses to GICD_CTLR continue to be broadcast to the isolated chip, which
requests wakeup.

Related information
Power control and P-Channel on page 89

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 277 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Appendix B Signal descriptions for GIC-700
This appendix describes the external input and output signals of the GIC-700.

B.1 Common control signals
The following table shows the GIC-700 common control signal set.

Signal definitions
Table B-1: Common control signals

Signal Direction Description

[<domain>]clk Input Clock input

[<domain>]reset_n Input Active-LOW reset

dbg_[<domain>]reset_n Input Active-LOW reset for the PMU and error records.
This signal is only present for the domain that contains the Distributor.

Test signals

Signal Direction Description

dftrstdisable Input Reset disable. Disables the external reset input for test mode. When this signal is HIGH, it forces the internal
active-LOW reset HIGH, bypassing the reset synchronizer.

dftse Input Scan enable. Disables clock gates for test mode.

dftcgen Input Clock gate enable. When this signal is HIGH, it forces all the clock gates on so that all internal clocks always run.

dftramhold Input RAM hold. When this signal is HIGH, it forces all the RAM chip selects LOW, preventing accesses to the RAMs.

MBIST controller signals

Signal Direction Description

[<domain>_]mbistack Output MBIST mode ready.
GIC-700 acknowledges that it is ready for MBIST testing.

[<domain>_]mbistreq Input MBIST mode request.
Request to GIC-700 to enable MBIST testing. This signal must be tied LOW during
functional operation.

[<domain>_]nmbistreset Input Resets MBIST logic.
Resets functional logic to enable MBIST operation by an active-LOW signal. This signal
must be tied HIGH during functional operation.

[<domain>_]mbistaddr[variable:0]11 Input Logical address.
The width is based on the RAM with the largest number of words. You must drive the
most significant bits to zero when accessing RAMs with fewer address bits.

[<domain>_]mbistindata[variable:0]11 Input Data in.
Write data. Width that is based on the RAM with the largest number of data bits.

[<domain>_]mbistoutdata[variable:0]11Output Data out.
Read data. Width that is based on the RAM with the largest number of data bits.

[<domain>_]mbistwriteen Input

[<domain>_]mbistreaden Input

Write control (mbistwriteen) and read control (mbistreaden). No access occurs if both
enables are LOW. It is illegal to activate both enables simultaneously.

11 The variable is configuration-dependent.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 278 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

MBIST controller signals

Signal Direction Description

[<domain>_]mbistarray[variable:0]11 Input Array selector.
This signal controls which RAM array is accessed. For the single RAM configuration, this
port is unused.

This signal is not present on a block containing only one RAM.

[<domain>_]mbistcfg Input MBIST ALLMODE enable.
When enabled, allows simultaneous access to all RAM arrays for maximum array power
consumption.

This signal is not present on a block containing only one RAM.

B.2 Power control signals
The following table shows the GIC-700 power control signals.

Signal definitions
Table B-2: Power control signals

Signal Direction Description

cpu_active[_<ppi_block>]
[_<bus>][<cpus>−1:0]

Input Indicates if the core is active and not in a low-power state such as retention. This signal is used
for lowering the priority of selection for 1 of N SPIs. There is 1 bit for each core on the ICC
bus. See 4.13.2 Processor core power management on page 87.

wake_request[<cpus>−1:0] Output Wake Request signal to power controller indicating that an interrupt is targeting this core and it
must be woken. When asserted, the wake_request signal is sticky unless the Distributor is put
into the gated state.

cpu_wake_request[<gci_cpus>
−1:0]

Output Wake request signal to a core, indicating that an interrupt is targeting the core and it must be
woken. When HIGH, the cpu_wake_request signal is sticky unless the GICR_PWRR.RDGPD
powerdown bit is set for that GIC Cluster Interface (GCI).

spi_ram_retained Input When HIGH, it informs the GICD that the SPI programming in the SPI RAMs has been retained
during powerdown. The GIC samples the value as it exits reset. See 4.13.4 SPI RAM retention
on page 89 for more information. This signal can only be used for single-chip configurations.

SPI Collator Q-Channel device interfaces for power control

Signal Direction Description

qreqn_col<n> Input

qacceptn_col<n> Output

qdeny_col<n> Output

qactive_col<n> Output

Q-Channel device interface to flush out the path between the SPI Collator and the Distributor to aid in
power down.
When asserted, messages are not sent to the Distributor until low-power state is exited.

If the GIC contains two or more SPI Collators, then <n> is a numeric identifier for an SPI Collator. For
example, if the GIC has two SPI Collators, then <n> is 0 or 1.

Note:
It is only safe to stop the SPI Collator clock if all interrupts are level sensitive, or if edge-triggered interrupts
are pulse extended into the SPI Collator.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 279 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

ITS Q-Channel device interfaces for power control

Signal Direction Description

qreqn_its[<its>] Input

qacceptn_its[<its>] Output

qdeny_its[<its>] Output

qactive_its[<its>] Output

Required to flush out the path between the ITS and the Distributor.
There is one Q-Channel for each ITS.

All Distributor ITS Q-Channels are combined as a single set of vectored signals, qreqn_its[its_count−1:0].
The its_count parameter sets the number of ITS blocks on the chip.

These signals are not present in monolithic configurations where the Distributor and ITS share an ACE5-
Lite port.

ITS Q-Channel device interface for clock control

Signal Direction Description

qreqn Input

qacceptn Output

qdeny Output

qactive Output

Q-Channel device interface for clock gating of an ITS.
The qreqn signal is synchronized into the GIC-700.

This bus must be treated asynchronously.

qactive_gicd Output This signal is HIGH when the ITS requires its AXI5-Stream bus to the Distributor to be active. If the Distributor is
powered down, the system can use this signal to wakeup the Distributor.

Distributor Q-Channel device interface for clock control

Signal Direction Description

qreqn Input

qacceptn Output

qdeny Output

qactive Output

Q-Channel device interface for clock gating of the Distributor.
The qreqn signal is synchronized into the GIC-700.

This bus must be treated asynchronously.

GCI Q-Channel device interface for clock control

Signal Direction Description

qreqn Input

qacceptn Output

qdeny Output

qactive Output

Q-Channel device interface for clock gating of a GCI.
The qreqn signal is synchronized into the GIC-700.

This bus must be treated asynchronously.

Q-Channel device interfaces for clock control

Signal Direction Description

[<domain_>]clkqreqn Input

[<domain_>]clkqacceptn Output

[<domain_>]clkqdeny Output

[<domain_>]clkqactive Output

Q-Channel device interface for clock gating of everything in the domain.
The [<domain_>]clkqreqn signal is synchronized into the GIC-700.

This bus must be treated asynchronously.

Q-Channel ADB-400 device interfaces for power control

Signal Direction Description

[<domain_>]pwrqreqn Input

[<domain_>]pwrqacceptn Output

[<domain_>]pwrqdeny Output

Q-Channel device interface for the CoreLink™ ADB-400 AMBA® Domain Bridge power interface
within the domain.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 280 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Q-Channel ADB-400 device interfaces for power control

Signal Direction Description
[<domain_>]pwrqactive Output

P-Channel device interface for chip-level save and restore

Signal Direction Description

preq Input

pstate[4:0] Input

paccept Output

pdeny Output

pactive Output

This P-Channel device interface is only present in multichip configurations.
See 4.13.3 Power control and P-Channel on page 89.

The preq signal is synchronized into the GIC-700.

The pstate signal must be stable when the preq signal is asserted.

This bus must be treated asynchronously.

B.3 Interrupt signals
The GIC-700 has interrupt signals for SPIs and PPIs.

Signal definitions
Table B-3: Interrupt signals

Signal Direction Description

ppi<n>[_<ppi_block>][_<bus>]
[<cpus>−1:0]
If there are:

• 16 PPIs for each core, n is
16-31.

• 32 PPIs for each core, n is
16-31 and 1056-1071.

• 48 PPIs for each core, n is
16-31 and 1056-1087.

Input PPI input wires for interrupt <n>. One bit for each core.
The PPIs for each core are independent and are typically used for peripherals that are not
shared between cores. For example, timers on the core typically use PPIs.

By default, PPIs are active-LOW. The GIC provides top-level RTL parameters so that a PPI
can be active-HIGH.

The GIC also provides top-level RTL parameters so that a PPI can be synchronized to the clk
signal.

By default, PPIs are level-sensitive interrupts. However, software can change an interrupt to
be edge triggered by programming the GICR_ICFGR1, GICR_ICFGR2E, and GICR_ICFGR3E
registers.

ppi<n>_r_[_<ppi_block>]
[_<bus>]

Output PPI output after synchronization and edge detection. You can use these signals to create
pulse extenders for edge-triggered interrupts that cross clock domains.

spi[spi_wire−1:0]
The spi_wire configuration
parameter controls the number
of SPIs.

Input This signal is the number of SPI wires that the GIC supports.
Note:
This is not the same as the number of SPIs supported because they could be message-
based only or be on another chip.

By default, SPIs are active-HIGH. The GIC provides top-level RTL parameters so that an SPI
can be active-LOW.

The GIC also provides top-level RTL parameters so that an SPI can be synchronized to the
clk signal.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 281 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Signal Direction Description
spi_r[spi_wire−1:0]
The spi_wire configuration
parameter controls the number
of SPIs.

Output SPI output after synchronization and edge detection. Can be used for cross-domain pulse
detection.
The SPI_R_INV top-level RTL parameter can remove any inversion that SPI_INV[n]
applies to individual SPIs on that SPI Collator. See 3.5.2 SPI Collator wires on page 50.

B.4 CPU interface signals
The CPU interface signals of a cluster connect to a Redistributor using two GIC Stream interfaces.
A Redistributor is also known as a GIC Cluster Interface (GCI).

In the following tables, <ppi_num>, <bus>, <cpuif_stream_width>, and <cpus> are
configuration options that are set using the ppi_ref, bus, cpuif_stream_width, and cpus
parameters. See the Arm® CoreLink™ GIC-700 Generic Interrupt Controller Configuration and
Integration Manual for more information.

Signal definitions
Table B-4: CPU interface signals

GIC Stream-compliant bus for communication from a cluster to a Redistributor

Signal Direction Description

icctready[_<ppi_num>]
[_<bus>]

Output

icctvalid[_<ppi_num>]
[_<bus>]

Input

icctdata[_<ppi_num>]
[_<bus>]
[<cpuif_stream_width>
−1:0]

Input

icctid[_<ppi_num>]
[_<bus>][<cpus>−1:0]

Input

icctlast[_<ppi_num>]
[_<bus>]

Input

This GIC Stream-compliant bus is fully credited and can be sent over any free-flowing interconnect.
For more information, see Table A-2 CPU interface to upstream Redistributor interface in the GIC Stream
Protocol interface Appendix of the Arm® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3 and version 4.

If the cluster issues IDs on the ICCTID signal with values other than <cpus−1:0>, then the behavior
is unpredictable.

icctwakeup[_<ppi_num>]
[_<bus>]

Input Registered wake signal to indicate that a message is arriving or is about to arrive on the icc bus

GIC Stream-compliant bus for communication from a Redistributor to a cluster

Signal Direction Description

iritready[_<ppi_num>]
[_<bus>]

Input

iritvalid[_<ppi_num>]
[_<bus>]

Output

iritdata[_<ppi_num>]
[_<bus>]
[<cpuif_stream_width>
−1:0]

Output

iritdest [_<ppi_num>]
[_<bus>][<cpus>−1:0]

Output

This GIC Stream-compliant bus is fully credited and can be sent over any free-flowing interconnect.
For more information, see Table A-1 Redistributor to downstream CPU interface in the GIC Stream
Protocol interface Appendix of the Arm® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3 and version 4.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 282 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

GIC Stream-compliant bus for communication from a Redistributor to a cluster

Signal Direction Description
iritlast[_<ppi_num>]
[_<bus>]

Output

iritwakeup[_<ppi_num>]
[_<bus>]

Output Registered wake signal to indicate that a message is arriving or is about to arrive on the IRI bus of the
cluster

B.5 ACE5-Lite interface signals
The following table shows the GIC-700 ACE5-Lite signals.

Table B-5: ACE5-Lite subordinate interface signals

Subordinate wakeup signal

Signal Direction Description

awakeup[_its_<num>]_s Input Interface wake up signal

Subordinate write address channel signals

Signal Direction Description

There are multiple versions of this bus. Buses that have _its_<num> are dedicated ITS subordinate ports for GITS_TRANSLATER
only. There is always one port that has no _its suffix that is used for all registers except GITS_TRANSLATER. This port is used for all
registers in monolithic configurations.

awvalid[_its_<num>]_s Input Write address valid

awready[_its_<num>]_s Output Write address ready

awid[_its_<num>]_s[n:0] Input Write address ID, where n = axis_wid_width−1

awaddr[_its_<num>]_s[n:0] Input Write address, where n = axis_addr_width−1

awlen[_its_<num>]_s[7:0] Input Write burst length

awsize[_its_<num>]_s[2:0] Input Write burst size

awburst[_its_<num>]_s[1:0] Input Write burst type

awprot[_its_<num>]_s[2:0] Input Write protection type

awcache[_its_<num>]_s[3:0] Input Write cache type

awuser[_its_<num>]_s[n:0] Input Optional User signal. For GICD interface, n = axis_awuser_width−1. For an ITS switch, n is
a minimum of did_width−1.
Indicates the DeviceID of writes to GITS_TRANSLATER if MSI_64 is not configured.

awsnoop[_its_<num>]_s[n:0] Input Indicates the transaction snoop type. n == 3 when axi_invalidate_hint_support==0
and n == 4 when axi_invalidate_hint_support==1.

awdomain[_its_<num>]_s[1:0] Input Indicates the shareability domain

awtrace[_its_<num>]_s Input Trace signal

awloop[_its_<num>]_s[n:0] Input Loopback signal, where n = axis_awloop_width−1

awatop_its_<num>_s[5:0] Input This signal is only present on ITSs with atomic support. It indicates the type of access being
received by the subordinate.

awqos_its_<num>_s[3:0] Input Write address Quality of Service (QoS) identifier

awidunq[_its_<num>]_s Input Write address unique ID indicator

awnse[_its_<num>]_s Input Write root/realm. Only present when RME_Support is True.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 283 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Subordinate write address channel signals

Signal Direction Description

There are multiple versions of this bus. Buses that have _its_<num> are dedicated ITS subordinate ports for GITS_TRANSLATER
only. There is always one port that has no _its suffix that is used for all registers except GITS_TRANSLATER. This port is used for all
registers in monolithic configurations.
awlock_its_<num>_s Input Write lock type for an ITS

awmpam[_its_<num>]_s[n:0] Input Write MPAM signal. n == 10 or 11, depending on whether MTE_SUPPORT is True.

awstashniden_its_<num>_s Input Node ID enable. This ITS signal is present only when the ITS is configured to include a bypass
switch.

awstashnid_its_<num>_s[10:0] Input Node identifier. This ITS signal is present only when the ITS is configured to include a bypass
switch.

awstashlpiden_its_<num>_s Input Logical processor ID enable. This ITS signal is present only when the ITS is configured to
include a bypass switch.

awstashlpid_its_<num>_s[4:0] Input Logical processor identifier. This ITS signal is present only when the ITS is configured to include
a bypass switch.

awtagop[_its_<num>]_s[1:0] Input Write request tag operation. Only present when MTE_Support is True.

Subordinate write data channel signals

Signal Direction Description

wvalid[_its_<num>]_s Input Write data valid

wready[_its_<num>]_s Output Write data ready

wdata[_its_<num>]_s[n:0] Input Write data, where n = axis_data_width−1

wstrb[_its_<num>]_s[n:0] Input Write data byte lane strobes

wtag[_its_<num>]_s[n:0] Input Write data tag, where n depends on axis_data_width. Only present when MTE_Support
is True.

wtagupdate[_its_<num>]_s[n:0] Input Write data tag update indicator, where n depends on axis_data_width. Only present
when MTE_Support is True.

wlast[_its_<num>]_s Input Write data last transfer indicator

wuser_its_<num>_s[n:0] Input Optional User signal

wtrace[_its_<num>]_s Input Trace signal

wpoison[_its_<num>]_s[n:0] Input Poison signal, where n varies depending on the ACE5-Lite interface

Subordinate write response channel signals

Signal Direction Description

bvalid[_its_<num>]_s Output Write response valid

bready[_its_<num>]_s Input Write response ready

bidunq[_its_<num>]_s Output Write response unique ID indicator

bid[_its_<num>]_s[n:0] Output Write response ID, where n = axis_wid_width−1

bresp[_its_<num>]_s[1:0] Output Write response

buser_its_<num>_s[n:0] Output Write response User signal, where n = axis_buser_width−1

btrace[_its_<num>]_s Output Trace signal

bloop[_its_<num>]_s[n:0] Output Loopback signal, where n = axis_awloop_width−1

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 284 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Subordinate read address channel signals

Signal Direction Description

arvalid[_its_<num>]_s Input Read address valid

arready[_its_<num>]_s Output Read address ready

arid[_its_<num>]_s[n:0] Input Read address ID, where n = axis_rid_width−1

araddr[_its_<num>]_s[n:0] Input Read address, where n = axis_addr_width−1

arlen[_its_<num>]_s[7:0] Input Read burst length

arsize[_its_<num>]_s[2:0] Input Read burst size

arburst[_its_<num>]_s[1:0] Input Read burst type

arprot[_its_<num>]_s[2:0] Input Read protection type

arcache[_its_<num>]_s[3:0] Input Read cache type

arsnoop[_its_<num>]_s[3:0] Input Indicates the transaction snoop type

ardomain[_its_<num>]_s[1:0] Input Indicates the shareability domain

arlock[_its_<num>]_s Input Read lock type

arqos_its_<num>_s[3:0] Input Read address Quality of Service (QoS) identifier for an ITS

archunken[_its_<num>]_s Input Chunk enable signal. If asserted, read data for this transaction can be returned out of order, in
128-bit chunks.

artagop[_its_<num>]_s[1:0] Input Read request tag operation. Only present when MTE_Support is True.

aruser[_its_<num>]_s[n:0] Input This signal indicates some user-defined sideband content that transfers with the read address.
The GIC-700 ignores aruser data that it receives on the GICD (Distributor) subordinate port or
the ITS page containing the GITS_TRANSLATER register. Where n = 0 on the GICD interface
and n = axis_aruser_width−1 on an ITS interface.

aridunq[_its_<num>]_s Input Read address unique ID indicator

arnse[_its_<num>]_s Input Read root/realm. Only present when RME_Support is True.

artrace[_its_<num>]_s Input Trace signal

arloop[_its_<num>]_s[n:0] Input Loopback signal, where n = axis_arloop_width−1

armpam[_its_<num>]_s[n:0] Input Read MPAM signal. n == 10 or 11, depending on whether RME_SUPPORT is True.

Subordinate read data channel signals

Signal Direction Description

rvalid[_its_<num>]_s Output Read data valid

rready[_its_<num>]_s Input Read data ready

rid[_its_<num>]_s[n:0] Output Read data ID, where n = axis_rid_width−1

rdata[_its_<num>]_s[n:0] Output Read data, where n = axis_data_width−1

rresp[_its_<num>]_s[1:0] Output Read data response

rtag[_its_<num>]_s[n:0] Output Read data tag, where n depends on axis_data_width. Only present when MTE_Support is
True.

ruser_its_<num>_s[n:0] Output Read response User signal, where n = axis_ruser_width−1

rlast[_its_<num>]_s Output Read data last transfer indicator

rtrace[_its_<num>]_s Output Trace signal

rloop[_its_<num>]_s[n:0] Output Loopback signal, where n = axis_arloop_width−1

rpoison[_its_<num>]_s[n:0] Output Poison signal, where n varies depending on the ACE5-Lite interface

ridunq[_its_<num>]_s Output Read data unique ID indicator

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 285 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Subordinate read data channel signals

Signal Direction Description
rchunkv[_its_<num>]_s Output If asserted, rchunknum_s and rchunkstrb_s are valid for this transfer

rchunknum[_its_<num>]_s[n:0] Output Indicates the number of chunks being transferred. Chunks are numbered incrementally from
zero, according to the data width and base address of the transaction. n = CHUNKNUM_
WIDTH−1.

rchunkstrb[_its_<num>]_s[n:0] Output Indicates which part of read data is valid for this transfer. Each bit corresponds to 128 bits of
data:

rchunkstrb[0] Corresponds to rdata[127:0]
rchunkstrb[1] Corresponds to rdata[255:128]

The following table shows the GIC-700 ACE5-Lite manager signals. These interfaces are only
present when the GIC is configured to supports LPIs.

Table B-6: ACE5-Lite manager interface signals

Manager wakeup signal. Only present if LPI support is configured.

Signal Direction Description

awakeup[_its_<num>]_m Input Interface wake up signal

Manager write address channel signals. Only present if LPI support is configured.

Signal Direction Description

Buses containing _its_<num> are used by the specific ITS for read/writes to the private tables and Command queue. Buses without an
_its suffix are used for accesses to the LPI Pending and Property tables. This port performs all accesses in monolithic configurations.

awvalid[_its_<num>]_m Output Write address valid

awready[_its_<num>]_m Input Write address ready

awid[_its_<num>]_m[n:0] Output Write address ID. n is calculated from various elements, during the configuration process.

awaddr[_its_<num>]_m[n:0] Output Write address, where n = axim_addr_width−1

awlen[_its_<num>]_m[7:0] Output Write burst length

awsize[_its_<num>]_m[2:0] Output Write burst size

awburst[_its_<num>]_m[1:0] Output Write burst type

awprot[_its_<num>]_m[2:0] Output Write protection type

awcache[_its_<num>]_m[3:0] Output Write cache type

awuser_its_<num>_m[n:0] Output Optional User signal. For an ITS switch, n is a minimum of did_width−1.

awsnoop[_its_<num>]_m[3:0] Output Indicates the transaction snoop type

awdomain[_its_<num>]_m[1:0] Output Indicates the shareability domain

awtrace[_its_<num>]_m Output Trace signal

awloop[_its_<num>]_m[n:0] Output Loopback signal, where n = axis_awloop_width−1

awatop[_its_<num>]_m[5:0] Output This signal is only present on ITSs with atomic support. It indicates the type of access being
forwarded by the manager port. Atomic accesses are never generated by an ITS and are only
forwarded from the subordinate port.

awqos[_its_<num>]_m[3:0] Output Write address Quality of Service (QoS) identifier

awidunq[_its_<num>]_m Output Write address unique ID indicator

awnse[_its_<num>]_m Output Write root/realm. Only present when RME_Support is True.

awlock[_its_<num>]_m Output Write lock type

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 286 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Manager write address channel signals. Only present if LPI support is configured.

Signal Direction Description

Buses containing _its_<num> are used by the specific ITS for read/writes to the private tables and Command queue. Buses without an
_its suffix are used for accesses to the LPI Pending and Property tables. This port performs all accesses in monolithic configurations.
awmpam[_its_<num>]_m[n:0] Output Write MPAM signal. n == 10 or 11, depending on whether RME_SUPPORT is True.

awstashniden_its_<num>_m Output Node ID enable. This ITS signal is present only when the ITS is configured to include a bypass
switch.

awstashnid_its_<num>_m[10:0] Output Node identifier. This ITS signal is present only when the ITS is configured to include a bypass
switch.

awstashlpiden_its_<num>_m Output Logical processor ID enable. This ITS signal is present only when the ITS is configured to
include a bypass switch.

awstashlpid_its_<num>_m[4:0] Output Logical processor identifier. This ITS signal is present only when the ITS is configured to
include a bypass switch.

awtagop[_its_<num>]_m[1:0] Output Write request tag operation. Only present when MTE_Support is True.

Manager write data channel signals. Only present if LPI support is configured.

Signal Direction Description

wvalid[_its_<num>]_m Output Write data valid

wready[_its_<num>]_m Input Write data ready

wdata[_its_<num>]_m[n:0] Output Write data, where n = axim_data_width−1

wstrb[_its_<num>]_m[n:0] Output Write data byte lane strobes

wtag[_its_<num>]_m[n:0] Output Write data tag, where n depends on axim_data_width. Only present when MTE_Support
is True.

wtagupdate[_its_<num>]_m[n:0] Output Write data tag update indicator, where n depends on axim_data_width. Only present
when MTE_Support is True.

wlast[_its_<num>]_m Output Write data last transfer indicator

wuser[_its_<num>]_m[n:0] Output Optional User signal, where n = axis_wuser_width−1

wtrace[_its_<num>]_m Output Trace signal

wpoison[_its_<num>]_m[n:0] Output Poison signal, where n varies depending on the ACE5-Lite interface

Manager write response channel signals. Only present if LPI support is configured.

Signal Direction Description

bvalid[_its_<num>]_m Input Write response valid

bready[_its_<num>]_m Output Write response ready

bidunq[_its_<num>]_m Input Write response unique ID indicator

bid[_its_<num>]_m[n:0] Input Write response ID. n is calculated during the configuration process, from various elements.

bresp[_its_<num>]_m[1:0] Input Write response

buser[_its_<num>]_m[n:0] Input Write response User signal, where n = axis_buser_width−1

btrace[_its_<num>]_m Input Trace signal

bloop[_its_<num>]_m[n:0] Input Loopback signal, where n = axis_awloop_width−1

Manager read address channel signals. Only present if LPI support is configured.

Signal Direction Description

arvalid[_its_<num>]_m Output Read address valid

arready[_its_<num>]_m Input Read address ready

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 287 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Manager read address channel signals. Only present if LPI support is configured.

Signal Direction Description
arid[_its_<num>]_m[n:0] Output Read address ID. n is calculated from various elements, during the configuration process.

araddr[_its_<num>]_m[n:0] Output Read address, where n = axim_addr_width−1

arlen[_its_<num>]_m[7:0] Output Read burst length

arsize[_its_<num>]_m[2:0] Output Read burst size

arburst[_its_<num>]_m[1:0] Output Read burst type

arprot[_its_<num>]_m[2:0] Output Read protection type

arcache[_its_<num>]_m[3:0] Output Read cache type

arsnoop[_its_<num>]_m[3:0] Output Indicates the transaction snoop type

ardomain[_its_<num>]_m[1:0] Output Indicates the shareability domain

arlock[_its_<num>]_m Output Read lock type

arnse[_its_<num>]_m Output Read root/realm. Only present when RME_Support is True.

arqos[_its_<num>]_m[3:0] Output Read address Quality of Service (QoS) identifier

archunken[_its_<num>]_m Output Chunk enable signal. If asserted, read data for this transaction can be returned out of order, in
128-bit chunks.

artagop[_its_<num>]_m[1:0] Output Read request tag operation. Only present when MTE_Support is True.

aruser[_its_<num>]_m[n:0] Output Optional User signal. For an ITS switch, n is a minimum of did_width−1.

aridunq[_its_<num>]_m Output Read address unique ID indicator

artrace[_its_<num>]_m Output Trace signal

arloop[_its_<num>]_m[n:0] Output Loopback signal, where n = axis_arloop_width−1

armpam[_its_<num>]_m[n:0] Output Read MPAM signal. n == 10 or 11, depending on whether RME_SUPPORT is True.

Manager read data channel signals. Only present if LPI support is configured.

Signal Direction Description

rvalid[_its_<num>]_m Input Read data valid

rready[_its_<num>]_m Output Read data ready

rid[_its_<num>]_m[n:0] Input Read data ID. n is calculated from various elements, during the configuration process.

rdata[_its_<num>]_m[n:0] Input Read data, where n = axim_data_width−1

rresp[_its_<num>]_m[1:0] Input Read data response

rtag[_its_<num>]_m[n:0] Input Read data tag, where n depends on axim_data_width. Only present when MTE_Support is
True.

ruser[_its_<num>]_m[n:0] Input Read response User signal, where n = axis_ruser_width−1

rlast[_its_<num>]_m Input Read data last transfer indicator

rtrace[_its_<num>]_m Input Trace signal

rloop[_its_<num>]_m[n:0] Input Loopback signal, where n = axis_arloop_width−1

rpoison[_its_<num>]_m[n:0] Input Poison signal, where n varies depending on the ACE5-Lite interface

rchunkv[_its_<num>]_m Input If asserted, rchunknum_m and rchunkstrb_m are valid for this transfer.

rchunknum[_its_<num>]_m[n:0] Input Indicates the number of chunks being transferred. Chunks are numbered incrementally from
zero, according to the data width and base address of the transaction. n = CHUNKNUM_
WIDTH−1.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 288 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Manager read data channel signals. Only present if LPI support is configured.

Signal Direction Description
rchunkstrb[_its_<num>]_m[n:0] Input Indicates which part of read data is valid for this transfer. n = axim_data_width/128−1.

Each bit corresponds to 128 bits of data. For example:

rchunkstrb[0] Corresponds to rdata[127:0]
rchunkstrb[1] Corresponds to rdata[255:128]

ridunq[_its_<num>]_m Input Read data unique ID indicator

B.6 Miscellaneous signals
The following table shows the GIC-700 miscellaneous signals.

Signal definitions
Table B-7: Miscellaneous signals

Signal Direction Description

chip_id[<CHIP_ID_WIDTH>−1:0] Input An ID number that identifies the chip in the system. Only present if there is more than one
chip in the system.

ppi_id[15:0] Input An ID number that identifies the GIC Cluster Interface (GCI) in the system. Software can
read the GICR_CFGID0 register to access the value of this signal.

its_id[7:0] Input An ID number that identifies the ITS block in the system. Software can read the
GITS_CFGID register to access the value of this signal. It must be tied to the ic<x>dtdest
signal value that is used to read the ITS using the AXI5-Stream interface.

fault_int Output Fault handling interrupt. The fault handling interrupt is defined in the RAS System
Architecture chapter of the Arm® Architecture Reference Manual for A-profile architecture.
The GIC-700 can deliver this interrupt internally but the output is provided for any other
device such as a system control processor that does not receive normal interrupts from the
GIC. See 4.15.3 Error recovery and fault handling interrupts on page 93.

err_int Output Error handling interrupt. The error handling interrupt is defined in the RAS System
Architecture chapter of the Arm® Architecture Reference Manual for A-profile architecture.
The GIC-700 can deliver this interrupt internally but the output is provided for any other
device such as a system control processor that does not receive normal interrupts from the
GIC. See 4.15.3 Error recovery and fault handling interrupts on page 93.

pmu_int Output PMU counter overflow interrupt. This signal is a level-sensitive interrupt. The GIC-700 can
deliver this interrupt internally but the output is provided as an external output to trigger
an external agent to service the GIC, for example, to read out the PMU counter snapshot
registers. See Overflow interrupt on page 91.

sample_req Input Request from a Cross Trigger Interface (CTI) to sample the PMU counters. Equivalent to
writing to the GICP_CAPR register. See Snapshot on page 92 for more information.

sample_ack Output This signal goes HIGH when the GIC acknowledges the PMU sample request from the CTI

gict_allow_ns Input From reset, this tie-off signal controls whether Non-secure software can access the GICT
Error Record registers

gicp_allow_ns Input From reset, this tie-off signal controls whether Non-secure software can access the GICP
PMU registers

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 289 of 309

https://developer.arm.com/documentation/ddi0487/ja
https://developer.arm.com/documentation/ddi0487/ja

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Signal Direction Description
gicd_ctlr_ds Input From reset, this tie-off signal controls whether the GIC supports both Security states:

• LOW = Security is enabled. The GIC supports both Security states.

• HIGH = Security is disabled. The GIC supports a single Security state.

Software can read the GICD_CTLR.DS bit to access the value of this signal.

gicd_page_offset Input From reset, this tie-off signal controls the page address bits[x:16] of the GICD page. Only
present in monolithic configurations. See Page offset on page 128.

gicd_pe_off[max_pe_on_chip −
1:0]

Input From reset, this tie-off signal controls which cores are removed from the GIC configuration.
The max_pe_on_chip parameter sets the number of cores that the chip supports. Set a
bit to 1, to remove the corresponding core. The behavior is unpredictable when all bits are
set to 1.
This signal is only present when prog_mpidr = strap

affinity0[(max_pe_on_chip ×
max_affinity_width0) − 1:0]

Input From reset, this tie-off signal sets the affinity 0 value for each core. This signal is only
present when prog_mpidr = strap and max_affinity_width0 is nonzero.

affinity1[(max_pe_on_chip ×
max_affinity_width1) − 1:0]

Input From reset, this tie-off signal sets the affinity 1 value for each core. This signal is only
present when prog_mpidr = strap and max_affinity_width1 is nonzero.

affinity2[(max_pe_on_chip ×
max_affinity_width2) − 1:0]

Input From reset, this tie-off signal sets the affinity 2 value for each core. This signal is only
present when prog_mpidr = strap, max_affinity_width2 is nonzero, and
affinity2 is not used to select chips.

affinity3[(max_pe_on_chip ×
max_affinity_width3) − 1:0]

Input From reset, this tie-off signal sets the affinity 3 value for each core. This signal is only
present when prog_mpidr = strap, max_affinity_width3 is nonzero, and
affinity3 is not used to select chips.

its_transr_page_offset Input From reset, this tie-off signal controls the page address of the GITS_TRANSLATER register.
Only present in monolithic configurations. See 4.10.2 MSI-64 on page 79 and Page offset
on page 128.

target_address<n>[ADDR_WIDTH
−17:0]

Input Modifies the address map to ensure only writes to the correct location can trigger MSI
requests. Only present when the bypass switch is configured. <n> represents an ITS
identifier.
Specifies the 64K page address that includes the GITS_TRANSLATER register address,
and is matched against the axaddr[ADDR_WIDTH−1:16] signal. See 3.3.1 ITS ACE5-Lite
subordinate interface on page 42.

msi_translator_page Input The target page address of the GITS_TRANSLATER register. The MSI-64 Encapsulator
does not support an msi_transalator_page signal value of 0. See 3.4 MSI-64 Encapsulator
on page 47.

msi64_translator_page Input The target address of the 64-bit GITS_TRANSLATER register. This page must be at a
different location to the msi_translator_page signal and at a location that is known only
to the hypervisor. The hypervisor must be able to protect the page from accesses from
devices and processors that can spoof incorrect DeviceIDs. See 3.4 MSI-64 Encapsulator
on page 47 and 4.10.2 MSI-64 on page 79.

awdeviceid Input The ACE5-Lite AW sideband signal that reports the DeviceID for writes to
GITS_TRANSLATER. The value is ignored for non-MSI writes. See 3.4 MSI-64 Encapsulator
on page 47 and 3.4.1 MSI-64 ACE5-Lite interfaces on page 47.

spi_base[10:0] Input This signal sets the base address of an SPI Collator.
This signal is only present when the GIC is configured to use signals rather than parameters
to set the base address of each SPI Collator. See 3.5.6 SPI Collator configuration on page
52.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 290 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

B.7 RAM I/O signals
The GIC can be configured to provide sideband I/O signals to each RAM. You can use the I/O to
control elements within your RAM models.

The RAM I/O signals are present when the GIC is configured to support the RAM I/O signals. See
3.1.6 Distributor configuration on page 36.

Signal definitions
Table B-8: RAM I/O signals

Signal Direction Description

ci_ram_in[CI_RAM_IN_WIDTH−1:0] Input

ci_ram_out[CI_RAM_OUT_WIDTH−1:0] Output

dcache_ram_in[DCACHE_RAM_IN_WIDTH−1:0] Input

dcache_ram_out[DCACHE_RAM_OUT_WIDTH−1:0] Output

vcache_ram_in[VCACHE_RAM_IN_WIDTH−1:0] Input

vcache_ram_out[VCACHE_RAM_OUT_WIDTH−1:0] Output

ccache_ram_in[CCACHE_RAM_IN_WIDTH−1:0] Input

ccache_ram_out[CCACHE_RAM_OUT_WIDTH−1:0] Output

vicm_ram_in[VICM_RAM_IN_WIDTH−1:0] Input

vicm_ram_out[VICM_RAM_OUT_WIDTH−1:0] Output

vtgt_store_ram_in[VTGT_VSTR_RAM_IN_WIDTH−1:0] Input

vtgt_store_ram_out[VTGT_VSTR_RAM_OUT_WIDTH
−1:0]

Output

vtgt_search_ram_in[VTGT_SRCH_RAM_IN_WIDTH−1:0] Input

vtgt_search_ram_out[VTGT_SRCH_RAM_OUT_WIDTH
−1:0]

Output

vtgt_residency_ram_in[VTGT_VRES_RAM_IN_WIDTH
−1:0]

Input

vtgt_residency_ram_out[VTGT_VRES_RAM_OUT_WIDTH
−1:0]

Output

vspa_ram_in[VSPA_RAM_IN_WIDTH−1:0] Input

vspa_ram_out[VSPA_RAM_OUT_WIDTH−1:0] Output

sgi_ram_in[SGI_RAM_IN_WIDTH−1:0] Input

sgi_ram_out[SGI_RAM_OUT_WIDTH−1:0] Output

tgt_spi_ram_in[TGT_SPI_RAM_IN_WIDTH−1:0] Input

tgt_spi_ram_out[TGT_SPI_RAM_OUT_WIDTH−1:0] Output

These I/O signals have no inherent functionality inside the GIC.

spi<n>_ram_in[SPI_RAM_IN_WIDTH−1:0] Input

spi<n>_ram_out[SPI_RAM_OUT_WIDTH−1:0] Output

These I/O signals have no inherent functionality inside the GIC. <n>
ranges from 0 upwards, and the number of signals depends on the
channel count.

lpi<0-3>_ram_in[LPI_RAM_IN_WIDTH−1:0] Input

lpi<0-3>_ram_out[LPI_RAM_OUT_WIDTH−1:0] Output

pts_ram_in[PTS_RAM_IN_WIDTH−1:0] Input

pts_ram_out[PTS_RAM_OUT_WIDTH−1:0] Output

These I/O signals have no inherent functionality inside the GIC.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 291 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Signal Direction Description
tgt_lpi_ram_in[TGT_LPI_RAM_IN_WIDTH−1:0] Input

tgt_lpi_ram_out[TGT_LPI_RAM_OUT_WIDTH−1:0] Output

cc_ram_in[CC_RAM_IN_WIDTH−1:0] Input

cc_ram_out[CC_RAM_OUT_WIDTH−1:0] Output

B.8 Interblock AXI5-Stream interface signals
The GIC-700 Distributor uses AXI5-Stream interfaces to communicate with the other GIC
components.

The following table shows the GIC-700 interblock signals.

Signal definitions
Table B-9: Interblock AXI5-Stream signals

Distributor to GIC Cluster Interface (GCI) AXI5-Stream interface, icdp bus

Signal Direction Description

icdptready Input

icdptvalid Output

icdptdata[<ppi_stream_data_width>−1:0] Output

icdptlast Output

AXI5-Stream compliant bus for communication between the Distributor and
a GCI. The interface is fully credited and can be sent over any free-flowing
interconnect.
The signal width is set using the ppi_stream_data_width configuration
option.

icdptwakeup Output Registered wake signal to indicate that a message is arriving or is about to arrive
on the icdp bus

icdptkeep[(<ppi_stream_data_width>/8)−1:0] Output Indicates the data bytes that must be transferred. This signal is only present on
the Distributor.

icdptdest[variable:0] Output Specifies the destination GCI block. This signal is only present on the Distributor.

GCI to Distributor AXI5-Stream interface, icpd bus

Signal Direction Description

icpdtready Input

icpdtvalid Output

icpdtdata[<gic_stream_width>−1:0] Output

icpdtlast Output

AXI5-Stream compliant bus for communication between a GCI and the Distributor.
The interface is fully credited and can be sent over any free-flowing interconnect.
The signal width is set using the gic_stream_width configuration option.

icpdtwakeup Output Registered wake signal to indicate that a message is arriving or is about to arrive on
the icpd bus

icpdtkeep[(<gic_stream_width>/8)−1:0] Output Indicates the data bytes that must be transferred. This signal is only present on the
GCI.

icpdtid[variable:0] Output Specifies the source GCI block. This signal is only present on the Distributor, so the
system must provide an icpdtid signal.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 292 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Distributor to ITS AXI5-Stream interface, icdi bus

Signal Direction Description

icditready Input

icditvalid Output

icditdata[<its_stream_data_width>−1:0] Output

icditlast Output

AXI5-Stream compliant bus for communication from the Distributor to an ITS. The
interface is fully credited and can be sent over any free-flowing interconnect.
The signal width is set using the its_stream_data_width configuration
option.

icditwakeup Output Indicates that a message is arriving or is about to arrive on the icdi bus

icditkeep[(<its_stream_data_width>/8)−1:0] Output Indicates the data bytes that must be transferred. This signal is only present on
the Distributor.

icditdest[variable:0] Output Specifies the destination ITS block. This signal is only present on the Distributor.

ITS to Distributor AXI5-Stream interface, icid bus

Signal Direction Description

icidtready Input

icidtvalid Output

icidtdata[<stream_data_width>−1:0] Output

icidtlast Output

AXI5-Stream compliant bus for communication from an ITS to the Distributor. The
interface is fully credited and can be sent over any free-flowing interconnect.
The signal width is set using the stream_data_width configuration option.

icidtwakeup Output Registered wake signal. Indicates that a message is arriving or is about to arrive on
the icid bus

icidtkeep[(<stream_data_width>/8)−1:0] Output Indicates the data bytes that must be transferred. This signal is only present on the
ITS.

icidtid[variable:0] Output Specifies the source ITS. This signal is only present on the Distributor, so the system
must provide an icidtid signal.

Distributor to Wake Request AXI5-Stream interface, icdw bus

Signal Direction Description

icdwtready Input

icdwtvalid Output

icdwtdata[15:0] Output

AXI5-Stream compliant bus for communication from the Distributor to the Wake Request block. The interface
is fully credited and can be sent over any free-flowing interconnect.
The icdw bus is not exposed when the top level is stitched.

icdwtwakeup Output Registered wake signal to indicate that a message is arriving or is about to arrive on the icdw bus.
This signal is not exposed when the top level is stitched.

Distributor to SPI Collator AXI5-Stream interface, icdc bus

Signal Direction Description

icdctready Input

icdctvalid Output

icdctdata[15:0] Output

AXI5-Stream compliant bus for communication between the Distributor and an SPI Collator. The interface
is fully credited and can be sent over any free-flowing interconnect.

icdctwakeup Output Registered wake signal to indicate that a message is arriving or is about to arrive on the icdc bus

icdctdest[variable:0] Output Specifies the destination SPI Collator. This signal is only present on the Distributor.

SPI Collator to Distributor AXI5-Stream interface, iccd bus

Signal Direction Description

iccdtready Input

iccdtvalid Output

iccdtdata[15:0] Output

AXI5-Stream compliant bus for communication between an SPI Collator and the Distributor. The interface is
fully credited and can be sent over any free-flowing interconnect.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 293 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

SPI Collator to Distributor AXI5-Stream interface, iccd bus

Signal Direction Description
iccdtwakeup Output Registered wake signal to indicate that a message is arriving or is about to arrive on the iccd bus

iccdtid[variable:0] Output Specifies the source SPI Collator. This signal is only present on the Distributor, so the system must provide
an iccdtid signal.

B.9 Interdomain signals
Interdomain signals are routed between domains.

Signal definitions
Table B-10: Interdomain signals

Signal Direction Description

wakeup_sm_*

wakeup_ms_*

async

Input and output,
depends on signal
name

These signals connect between halves of a CoreLink™ ADB-400. See the Arm®

CoreLink™ ADB-400 AMBA® Domain Bridge User Guide.
If you instantiate domain levels, you must ensure that matching input and output
pairs of interdomain signals connect together directly, and are not separated by
synchronizers.

B.10 Cross-chip AXI5-Stream interface signals
For multichip configurations, this interface enables communication between the local Distributor
and a remote chip. The SoC designer can configure whether the communication link to a remote
chip uses either an ACE5-Lite or an AXI5-Stream interface.

Signal definitions
Table B-11: Cross-chip AXI5-Stream signals

Distributor to remote chip AXI5-Stream interface, icdr bus

Signal Direction Description

icdrtready Input

icdrtvalid Output

icdrtdata[63:0] Output

icdrtlast Output

AXI5-Stream compliant bus for communication between the Distributor and a remote chip. The
interface is fully credited and can be sent over any free-flowing interconnect.

icdrtwakeup Output Registered wake signal to indicate that a message is arriving or is about to arrive on the icdr bus.
The icdrtvalid and icdrtready signals control data transfer.

icdrtdest[<chip_addr_width>
−1:0]

Output Specifies the destination remote chip. The signal width is set using the chip_addr_width
configuration option.
This signal is only present on the Distributor.

icdrtkeep Output Indicates the data bytes that must be transferred.
This signal is only present on the Distributor.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 294 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Remote chip to Distributor AXI5-Stream interface, icrd bus

Signal Direction Description

icrdtready Input

icrdtvalid Output

icrdtdata[63:0] Output

icrdtlast Output

AXI5-Stream compliant bus for communication between the remote chip and the Distributor. The interface is
fully credited and can be sent over any free-flowing interconnect.

icrdtwakeup Output Registered wake signal to indicate that a message is arriving or is about to arrive on the icrd bus. The icrdtvalid
and icrdtready signals control data transfer.

B.11 Cross-chip ACE5-Lite subordinate interface signals
For multichip configurations, this interface enables communication between the local Distributor
and a remote chip. When ace_cc == 1, the cross-chip interfaces use the ACE5-Lite protocol.

See 3.1.2.2 AMBA bus properties, GICD and CC subordinate interfaces on page 32 for information
about the ACE properties that the GIC supports.

If axi_cache_stashing_support == 0, the GIC does not support dataless cache
stashing transactions, so those transactions must not be sent to the cross-chip
subordinate interface.

Signal definitions
Table B-12: ACE5-Lite subordinate interface signals

Subordinate wakeup signal

Signal Direction Description

awakeup_cc_s Input Interface wake up signal

Subordinate write address channel signals

Signal Direction Description

awvalid_cc_s Input Write address valid

awready_cc_s Output Write address ready

awid_cc_s[n:0] Input Write address ID, where n = axis_cc_wid_width−1

awaddr_cc_s[n:0] Input Write address, where n = axis_cc_addr_width−1

awlen_cc_s[7:0] Input Write burst length

awsize_cc_s[2:0] Input Write burst size

awburst_cc_s[1:0] Input Write burst type

awprot_cc_s[2:0] Input Write protection type

awcache_cc_s[3:0] Input Write cache type

awsnoop_cc_s[n:0] Input Indicates the transaction snoop type. n == 3 when axi_invalidate_hint_support==0 and n ==
4 when axi_invalidate_hint_support==1.

awdomain_cc_s[1:0] Input Indicates the shareability domain

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 295 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Subordinate write address channel signals

Signal Direction Description
awtrace_cc_s Input Trace signal

awloop_cc_s[n:0] Input Loopback signal, where n = axis_cc_awloop_width−1

awatop_cc_s[5:0] Input Atomic transaction opcode

awqos_cc_s[3:0] Input Write address Quality of Service (QoS) identifier

awidunq_cc_s Input Write address unique ID indicator

awnse_cc_s Input Write root/realm. Only present when axi_rme_support==1.

awmpam_cc_s[n:0] Input Write MPAM signal. n == 10 or 11, depending on the axi_rme_support parameter.

awstashniden_cc_s Input Node ID enable

awstashnid_cc_s[10:0] Input Node identifier

awstashlpiden_cc_s Input Logical processor ID enable

awstashlpid_cc_s[4:0] Input Logical processor identifier

awtagop_cc_s[1:0] Input Write request tag operation. Only present when axi_mte_support==1.

Subordinate write data channel signals

Signal Direction Description

wvalid_cc_s Input Write data valid

wready_cc_s Output Write data ready

wdata_cc_s[n:0] Input Write data, where n = axis_cc_data_width−1

wstrb_cc_s[n:0] Input Write data byte lane strobes

wtag_cc_s[n:0] Input Write data tag, where n depends on axis_cc_data_width. Only present when axi_mte_
support==1.

wtagupdate_cc_s[n:0] Input Write data tag update indicator, where n depends on axis_cc_data_width. Only present when
axi_mte_support==1.

wlast_cc_s Input Write data last transfer indicator

wtrace_cc_s Input Trace signal

wpoison_cc_s[n:0] Input Poison signal, where n depends on axis_cc_data_width

Subordinate write response channel signals

Signal Direction Description

bvalid_cc_s Output Write response valid

bready_cc_s Input Write response ready

bidunq_cc_s Output Write response unique ID indicator

bid_cc_s[n:0] Output Write response ID, where n = axis_cc_wid_width−1

bresp_cc_s[1:0] Output Write response

btrace_cc_s Output Trace signal

bloop_cc_s[n:0] Output Loopback signal, where n = axis_cc_awloop_width−1

Subordinate read address channel signals

Signal Direction Description

arvalid_cc_s Input Read address valid

arready_cc_s Output Read address ready

arid_cc_s[n:0] Input Read address ID, where n = axis_cc_rid_width−1

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 296 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

Subordinate read address channel signals

Signal Direction Description
araddr_cc_s[n:0] Input Read address, where n = axis_cc_addr_width−1

arlen_cc_s[7:0] Input Read burst length

arsize_cc_s[2:0] Input Read burst size

arburst_cc_s[1:0] Input Read burst type

arprot_cc_s[2:0] Input Read protection type

arcache_cc_s[3:0] Input Read cache type

arsnoop_cc_s[3:0] Input Indicates the transaction snoop type

ardomain_cc_s[1:0] Input Indicates the shareability domain

arlock_cc_s Input Read lock type

arqos_cc_s[3:0] Input Read address Quality of Service (QoS) identifier

archunken_cc_s Input Chunk enable signal. If asserted, read data for this transaction can be returned out of order, in 128-bit
chunks.

artagop_cc_s[1:0] Input Read request tag operation. Only present when axi_mte_support==1.

aridunq_cc_s Input Read address unique ID indicator

arnse_cc_s Input Read root/realm. Only present when axi_rme_support==1.

artrace_cc_s Input Trace signal

arloop_cc_s[n:0] Input Loopback signal, where n = axis_cc_arloop_width−1

armpam_cc_s[n:0] Input Read MPAM signal. n == 10 or 11, depending on the axi_rme_support parameter.

Subordinate read data channel signals

Signal Direction Description

rvalid_cc_s Output Read data valid

rready_cc_s Input Read data ready

rid_cc_s[n:0] Output Read data ID, where n = axis_cc_rid_width−1

rdata_cc_s[n:0] Output Read data, where n = axis_cc_data_width−1

rresp_cc_s[1:0] Output Read data response

rtag_cc_s[n:0] Output Read data tag, where n depends on axis_cc_data_width. Only present when axi_mte_
support==1.

rlast_cc_s Output Read data last transfer indicator

rtrace_cc_s Output Trace signal

rloop_cc_s[n:0] Output Loopback signal, where n = axis_cc_arloop_width−1

rpoison_cc_s[n:0] Output Poison signal, where n depends on axis_cc_data_width

rchunkv_cc_s Output If asserted, rchunknum_s and rchunkstrb_s are valid for this transfer

rchunknum_cc_s[n:0] Output Indicates the number of chunks being transferred. Chunks are numbered incrementally from zero,
according to the data width and base address of the transaction. Where n = CHUNKNUM_WIDTH−1.

rchunkstrb_cc_s[n:0] Output Indicates which part of read data is valid for this transfer. n = axis_cc_data_width/128−1. Each bit
corresponds to 128 bits of data. For example:

rchunkstrb[0] Corresponds to rdata[127:0]
rchunkstrb[1] Corresponds to rdata[255:128]

ridunq_cc_s Output Read data unique ID indicator

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 297 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Signal descriptions for GIC-700

B.12 MSI delivery interface signals
The MSI delivery interface is an optional bidirectional AXI5-Stream interface. MSIs are sent to an
ITS for translation, so there can be multiple MSI delivery interfaces.

Signal definitions
Table B-13: MSI delivery interface signals

Device to ITS AXI5-Stream interface, msi* bus

Signal Direction Description

msitready[_<its>] Output

msitvalid[_<its>] Input

msitdata[_<its>][63:0] Input

msitid[_<its>]
[DIRECT_ID_WIDTH−1:0]

Input

AXI5-Stream compliant bus for sending MSIs to an ITS.
If there are multiple MSI delivery interfaces, then [_<its>] is a numerical identifier such as _2
that identifies an ITS in the system.

msitwakeup[_<its>] Input Indicates that an MSI is arriving or is about to arrive on the msit bus. The msitvalid and
msitready signals control data transfer.

ITS to device AXI5-Stream interface, msir* bus

Signal Direction Description

msirtready[_<its>] Input Ready signal

msirtvalid[_<its>] Output Valid signal

msirtdest[_<its>]
[DIRECT_ID_WIDTH−1:0]

Output Specifies the destination block.
The ITS sets this signal to the value that it receives on msitid[_<its>][DIRECT_ID_WIDTH−1:0].

msirtwakeup[_<its>] Output Indicates that a message is arriving or is about to arrive on the msirt bus. The msirtvalid and
msirtready signals control data transfer.

Related information
MSI delivery interface on page 45

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 298 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Implementation-defined features of GIC-700

Appendix C Implementation-defined
features of GIC-700

The GIC-700 implements features that are defined in the GICv4.1 architecture. Many of these
features also have options in the GICv4.1 architecture, which determine behavior that is specific to
the GIC-700. These features and options are configurable at build time.

The following table summarizes the implementation-defined features of the Arm® Generic
Interrupt Controller Architecture Specification, GIC architecture version 3 and version 4 that
GIC-700 uses. The table also gives references to sections within this manual that provide
information about implementation-defined behavior that is specific to the GIC-700.

Table C-1: Declared implementation-defined features

Architectural specification
reference

GICv4.1
architecture
feature Chapter Section

Description

1 of N model Introduction Models for
handling
interrupts

See 4.9.3 SPI routing and 1 of N selection on page 73

Direct LPI
support

GIC partitioning The GIC logical
components

Direct LPI support is by configuration if there are no ITS blocks in the system.

ITS to
Redistributor
communications

Locality-specific
peripheral
interrupts and
the ITS

LPIs This communication occurs over a fully credited AXI5-Stream.

INTIDs Distribution
and routing of
interrupts

INTIDs 16-bit width when supporting LPIs, otherwise the width is set to support the
number of SPIs and SGIs.

All error cases - Pseudocode
throughout the
document

All errors are reported through error records, see 4.15 Reliability, Accessibility,
and Serviceability on page 92.

Message-based
SPIs

Physical
interrupt
handling and
prioritization

Shared peripheral
interrupts

Pending bits for level sensitive SPIs that are set by writes to GICD_SETSPI_* or
GICM_SETSPI_* are not affected by writes to GICD_ICPENDRn.
Writes to GICD_CLRSPI_* or GICM_CLRSPI_* have no effect on pending bits set
by GICD_ISPENDRn.

Interrupt
grouping

Physical
interrupt
handling and
prioritization

Interrupt grouping All implemented SPIs, SGIs, and PPIs have programmable groups.

Interrupt
enables

Physical
interrupt
handling and
prioritization

Enabling individual
interrupts

All SGIs have a programmable enable.

Interrupt
prioritization

Physical
interrupt
handling and
prioritization

Interaction
of group and
individual
interrupt enables

Interrupts that are disabled through the GICC_CTLR register or the ICC_CTLR_*
registers are not considered in the selection of the highest pending interrupt and
do not block fully enabled interrupts of a lower priority.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 299 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10

Implementation-defined features of GIC-700

Architectural specification
reference

GICv4.1
architecture
feature Chapter Section

Description

Interrupt
prioritization

GIC-700 supports 32 priority levels, 16 for LPIs that are always Non-secure.

Effects of
disabling
interrupts

Physical
interrupt
handling and
prioritization

Effect of disabling
interrupts

Interrupts are set pending irrespective of the GICD_CTLR.EnableGrp* settings.

Changing
priority

Physical
interrupt
handling and
prioritization

Interrupt
prioritization.

Changing the
priority of enabled
PPIs, SGIs, and
SPIs.

Reprogramming an IPRIORITYRn register does not change the priority of an
active interrupt but causes a pending and not active interrupt to be recalled from
the CPU interface so that the new priority value can be applied.

LPI caching Locality-specific
peripheral
interrupts and
the ITS

LPIs See 4.11.4 LPI caching on page 83 and 4.10 ITS on page 77.

LPI
Configuration
tables

Locality-specific
peripheral
interrupts and
the ITS

LPI Configuration
tables

The GIC-700 has one GICR_PROPBASER register for all cores on a chip and
therefore points to a single table.
Each chip in a multichip configuration can point to a copy of the table in local
memory. See GICR_TYPER.CommonLPIAff for more information.

When interrupts are sent between chips, they keep the properties associated
with them until the next invalidate. All property fetches are always from the
offset specified in the GICR_PROPBASER register of the issuing chip.

LPI Pending
tables

Locality-specific
peripheral
interrupts and
the ITS

LPI Pending tables See the Arm® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3 and version 4

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 300 of 309

https://developer.arm.com/documentation/ihi0069/h
https://developer.arm.com/documentation/ihi0069/h

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Revisions

Appendix D Revisions
This appendix describes the technical changes between released issues of this document.

Table D-1: Issue 0000-01

Change Location

First release. -

Table D-2: Differences between issue 0000-01 and issue 0000-02

Change Location

Added content. 2.4 Comparison of GIC-700 and GIC-600 on page 22

Added more configuration options. • 3.1.6 Distributor configuration on page 36

• 3.3.5 ITS configuration on page 46

• 3.5.6 SPI Collator configuration on page 52

Added extra information. • 3.6 Wake Request on page 53

• 4.9.3 SPI routing and 1 of N selection on page 73

• 5.1.1 Discovery on page 129

Updated error records 11-13. Added error records 5, 6, and 14-27. 4.15.4 Error handling records on page 93

Deleted the syndromes 0x3, 0x6, 0xA, 0x28-0x2D.
Added the syndromes 0x70 and 0x71.

• 4.15.4.1 Software error record 0 on page 95

• Table 5-98: GICT_ERR<n>MISC0.Data field encoding on
page 237

Added error records. • 4.15.4.4 TGT-SPI RAM error records 5-6 on page 102

• 4.15.4.7 PTS RAM error records 11-12 on page 104

• 4.15.4.8 TGT-LPI RAM error records 13-14 on page 104

• 4.15.4.9 vICM RAM error records 15-16 on page 105

• 4.15.4.10 vICM-VSPA RAM error records 17-18 on page
105

• 4.15.4.11 vTGT-VSTR RAM error records 19-20 on page
106

• 4.15.4.12 vTGT-VRES RAM error records 21-22 on page
107

• 4.15.4.13 vTGT-Search RAM error records 23-24 on page
107

Added registers. • 5.2.21 GICD_ICGERRn, Interrupt Clear Group Error
registers on page 158

• 5.2.22 GICD_ISERRRn, Interrupt Set Error Registers on
page 159

• 5.2.24 GICD_ICLARnE, Interrupt Class Registers Extended
on page 161

• 5.2.26 GICD_ICGERRnE, Interrupt Clear Group Error
registers Extended on page 163

• 5.2.25 GICD_ICERRRnE, Interrupt Clear Error Registers
Extended on page 162

• 5.2.27 GICD_ISERRRnE, Interrupt Set Error Registers
Extended on page 164

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 301 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Revisions

Change Location
Added extra information to the DS bit. 5.2.1 GICD_CTLR, Distributor Control Register on page 135

Clarified the CGO bit assignments. Table 5-7: GICD_FCTLR bit assignments on page 140

Corrected the EVENT_ID description. Table 5-80: GITS_OPR bit descriptions on page 219

Corrected the Filter field description. 5.11.4 GICP_FRn, Filter Registers on page 255

Table D-3: Differences between issue 0000-02 and issue 0001-03

Change Location

Added the number of SPI Collators. 3.1.6 Distributor configuration on page 36

Added new content. • 3.3.3 MSI delivery interface on page 45

• B.12 MSI delivery interface signals on page 298

Corrected the extended PPI range to ID1056-ID1087. • 4.8 PPIs on page 69

• B.3 Interrupt signals on page 281

Added recovery and prevention information for syndromes 0x25-0x3C and
0x48-0x71. Removed syndrome 0x55.

Table 4-7: Software errors, record 0 on page 95

Added more commands. 4.15.4.15 ITS command and translation error
records 27+ on page 109

Corrected the base address of the GICD_ICLARnE registers. 5.2 Distributor registers (GICD/GICDA) summary on
page 130

Added p1 to the Revision field description. • 5.2.3 GICD_IIDR, Distributor Implementer
Identification Register on page 138

• 5.4.2 GICR_IIDR, Redistributor Implementation
Identification Register on page 177

• 5.7.1 GITS_IIDR, ITS Implementer Identification
Register on page 210

Corrected the RDG and RDGO field widths. 5.4.8 GICR_PWRR, Power Register on page 184

Corrected the descriptions for the PPIs_per_Processor and NumCPUs fields. 5.5.10 GICR_CFGID1, Configuration ID1 Register
on page 197

Added r0p1 to the Version field description. 5.5.10 GICR_CFGID1, Configuration ID1 Register
on page 197

Updated the DEVICE_ID and EVENT_ID descriptions. 5.7.6 GITS_OPR, Operations Register on page 218

Corrected the PADDR field width. 5.10.4 GICT_ERR<n>ADDR, Error Record Address
Register on page 234

Table D-4: Differences between issue 0001-03 and issue 0100-04

Change Location

Corrected the acceptance capabilities of the Distributor ACE5-Lite manager interface. 3.1.3 Distributor ACE5-Lite manager
interface on page 33

Added a configuration option that can remove cores from a preconfigured GIC. 3.1.6 Distributor configuration on page 36

Increased width of the DeviceID and EventID configurable options by 4 bits. 3.3.5 ITS configuration on page 46

Added a Wake Request configuration option. 3.6.2 Wake Request configuration on page
54

Added more information for 0x35, SYN_VPT_WRITE_FAIL and 0x3C,
SYN_VPE_CFG_WRITE_FAIL.

4.15.4.1 Software error record 0 on page
95

Updated the MAPC_TGT_OOR and MOVALL_SRC_TGT_OOR descriptions. Added
information about bit[50] for INT_ID_OOR and INT_UNMAPPED_INTERRUPT.

4.15.4.15 ITS command and translation
error records 27+ on page 109

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 302 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Revisions

Change Location
Corrected the Type assignment of GICD_CHIPSR from RW to RO. 5.2 Distributor registers (GICD/GICDA)

summary on page 130

Added the Variant field value for r1p0. • 5.2.3 GICD_IIDR, Distributor
Implementer Identification Register on
page 138

• 5.4.2 GICR_IIDR, Redistributor
Implementation Identification Register
on page 177

• 5.7.1 GITS_IIDR, ITS Implementer
Identification Register on page 210

Added the SLC bit. Table 5-11: GICD_FCTLR2 bit assignments
on page 145

Added the GICD_UTILR and GICD_FCTLR3 registers. • 5.2.10 GICD_UTILR, Utilization
Register on page 146

• 5.2.11 GICD_FCTLR3, Function
Control Register 3 on page 147

Corrected the SPI_busy, SGI_busy, LPI_busy, and CC_busy descriptions. 5.2.13 GICD_CHIPSR, Chip Status Register
on page 150

Added the GICD_RDOFFR registers. 5.2.16 GICD_RDOFFR<n>, Redistributor
Off Registers on page 153

Added the CHIPS field. Reduced the SPIS field width. Added the VLPIS and RDC bits. 5.2.28 GICD_CFGID, Configuration ID
Register on page 165

Renamed GICA registers to GICM registers. Added more GICM registers. • 5.3.1 GICM_TYPER, Message-based
Type Register on page 172.

• 5.3.2 GICM_IIDR, Message-based
Distributor Implementer Identification
Register on page 173.

Added the GICR_MPIDR register. 5.4.10 GICR_MPIDR, MPIDR Register on
page 186

Added the Version field value for r1p0. 5.5.10 GICR_CFGID1, Configuration ID1
Register on page 197

Added restrictions to the usage constraints. • 5.5.11 GICR_ERRINSR, Error Insertion
Registers on page 198

• 5.6.1 GICR_VFCTLR, Virtual Function
Control Register on page 201

Added the Sleep bit. 5.6.2 GICR_VCFGBASER, vICM Final vPE
CFG Attribute Register on page 202

Corrected the vPEID description. Table 5-69: GICR_VERRR bit assignments,
for request initiation on page 205

Added the INV bit. 5.7.2 GITS_TYPER, ITS Type Register on
page 211

Increased width of the DEVICE_ID and EVENT_ID fields by 4 bits. 5.7.6 GITS_OPR, Operations Register on
page 218

Corrected the Usage constraints and Configurations descriptions. Updated the RAM_MAX and
RAM WIDTH field descriptions.

• 5.7.8 GITS_ERRINS_D, Error Insertion
Device cache register on page 220

• 5.7.9 GITS_ERRINS_V, Error Insertion
Event cache register on page 222

• 5.7.10 GITS_ERRINS_C, Error Insertion
Collection cache register on page 223

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 303 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Revisions

Change Location
Added multiple DIS_* bits. 5.10.2 GICT_ERR<n>CTLR, Error Record

Control Register on page 230

Renamed GICT_ERRIDR to GICT_DEVID. 5.10.10 GICT_DEVID, Device Configuration
register on page 246

Added content. A.1 Removing cores from a preconfigured
GIC on page 268

Added a note to step 2. A.7 Isolating a chip from the system on
page 276

Added the gicd_pe_off and affinity signals. B.6 Miscellaneous signals on page 289

Table D-5: Differences between issue 0100-04 and issue 0100-05

Change Location

Added a 512-bit option for DATA_WIDTH. Table 3-15: Configurable options for the MSI-64 Encapsulator on
page 48

Added threads to the max_pe_on_chip description. 4.11.3 LPI multichip operation on page 82

Corrected the list of registers that require programming. • 4.8.1 PPI signals on page 70

• B.3 Interrupt signals on page 281

Added a note about SGI programming in the GCI RAM. 4.8.5 PPI error recovery procedure on page 70

Corrected the corrupted SGI number formula. 4.15.4.3 SGI RAM error records 3-4 on page 101

Corrected the cross-reference for the Bit[7], SGI/Int == 0 content. 4.15.4.5 PPI RAM error records 7-8 on page 103

Corrected the width and the reset value of GICD_ERRINSRn. 5.2 Distributor registers (GICD/GICDA) summary on page 130

Updated the ERRINS1LOC and ERRINS2LOC descriptions. Table 5-25: GICD_ERRINSRn bit assignments for writes on page
160

Corrected the GICR_CTLR reset value. 5.4 Redistributor registers for control and physical LPIs summary
on page 174

Corrected the access type of the IF bit, from RW to RO. 5.4.1 GICR_CTLR, Redistributor Control Register on page 175

Corrected the GICR_ICFGR1 reset value. 5.5 Redistributor registers for SGIs and PPIs summary on page 187

Corrected the GITS_BASER1 reset value.

Corrected the GITS_PIDR2 reset value.

5.7 ITS control register summary on page 208

Corrected the Count field description. Table 5-97: GICT_ERR<n>MISC0 bit descriptions on page 236

Corrected the GICP_PMDEVARCH reset value and the GICP_CIDR1
reset value.

5.11 GICP register summary on page 248

Table D-6: Differences between issue 0100-05 and issue 0200-06

Change Location

Added a configurable data bus width for the GCI processor AXI-Stream interface. 3.2.5 GCI configuration on page 40

Added the 0x3D, SYN_VPE_CFG_OVERFLOW error syndrome. Corrected the SERR
information for the 0x25-0x3C and 0x50-0x59 syndromes.

• 4.15.4.1 Software error record 0 on page 95

• 5.10.5 GICT_ERR<n>MISC0, Error Record
Miscellaneous Register 0 on page 235

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 304 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Revisions

Change Location
Updated the GICT_ERR<n>MISC0.Data information. • Table 4-8: SPI RAM errors, records 1-2 on

page 101

• Table 4-10: TGT-SPI RAM errors, records
5-6 on page 102

• Table 4-12: LPI RAM errors, records 9-10 on
page 104

• Table 4-13: PTS RAM errors, records 11-12
on page 104

• Table 4-14: TGT-LPI RAM errors, records
13-14 on page 105

• Table 4-15: vICM RAM errors, records
15-16 on page 105

• Table 4-16: vICM-VSPA RAM errors, records
17-18 on page 106

• Table 4-17: vTGT-VSTR RAM errors, records
19-20 on page 107

• Table 4-18: vTGT-VRES RAM errors, records
21-22 on page 107

• Table 4-19: vTGT-Search RAM errors,
records 23-24 on page 108

• Table 4-20: ITS RAM errors, records 25-26
on page 108

Increased the width of the CLPL field. 5.2.5 GICD_FCTLR, Function Control Register on
page 140

Added the EITS and LCA bits. Corrected the SO bit description. 5.2.28 GICD_CFGID, Configuration ID Register
on page 165

Added the Variant field value for r2p0. • 5.2.3 GICD_IIDR, Distributor Implementer
Identification Register on page 138

• 5.3.2 GICM_IIDR, Message-based
Distributor Implementer Identification
Register on page 173

• 5.4.2 GICR_IIDR, Redistributor
Implementation Identification Register on
page 177

• 5.7.1 GITS_IIDR, ITS Implementer
Identification Register on page 210

Corrected the width of the GICR_ERRINSR register. 5.5 Redistributor registers for SGIs and PPIs
summary on page 187

Added the CredLimCount field. 5.6.1 GICR_VFCTLR, Virtual Function Control
Register on page 201

Updated the Mapped_ITS description. Table 5-71: GICR_VERRR bit assignments, for a
vPT read request on page 206

Added the Mapped_ITS field. Table 5-72: GICR_VERRR bit assignments, for a
vCONF read request on page 207

Added information about a lock request occurring while an invalidation is in progress. 5.7.6 GITS_OPR, Operations Register on page
218

Added step 4, about local GICD_CHIPRx.ADDR programming. A.6 Connecting the chips on page 273

Added the cpu_wake_request signals. B.2 Power control signals on page 279

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 305 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Revisions

Table D-7: Differences between issue 0200-06 and issue 0201-07

Change Location

Replaced the non-inclusive language for:

• the type of ACE-Lite interface. The document now uses manager and subordinate
interfaces.

• the type of AXI5-Stream interface and GIC Stream interface. The document now
uses transmitter and receiver interfaces.

Throughout the document

Added more information about the qactive_gicd signal. 3.1.4 Distributor Q-Channels on page 35

Corrected the maximum number of outstanding write acceptance capabilities from 128
to 256.

3.3.1 ITS ACE5-Lite subordinate interface on
page 42

• Corrected a signal name, that is, gits_transr_page_offset becomes
its_transr_page_offset.

• Added Figure 4-3: MSI-64 Encapsulator with DeviceID sent in the data[63:32]
bits on page 80.

4.10.2 MSI-64 on page 79

Corrected the address range for GICD_ERRINSRn. 5.2 Distributor registers (GICD/GICDA) summary
on page 130

Added the SPF bit. 5.2.6 GICD_SAC, Secure Access Control register
on page 141

Corrected the bit assignments for CGO and QD. 5.4.7 GICR_FCTLR, Function Control Register on
page 182

Added the Version field value for r2p0 and r2p1. 5.5.10 GICR_CFGID1, Configuration ID1 Register
on page 197

Added the Variant field value for r2p0 and r2p1. 5.7.1 GITS_IIDR, ITS Implementer Identification
Register on page 210

Added the GICT_IIDR and GICP_IIDR registers. • 5.10.8 GICT_IIDR, Trace Implementer
Identification Register on page 244

• 5.11.14 GICP_IIDR, PMU Implementer
Identification Register on page 264

Corrected the NUM field values. 5.10.10 GICT_DEVID, Device Configuration
register on page 246

Added EVENT_TYPE == 0b01 as Reserved. Table 5-107: GICP_EVTYPERn bit descriptions on
page 250

Added the “Mask” column to the table.
In the Filter column, changed Target to TargetVP for many events.

Table 5-108: GICP_EVTYPERn.EVENT field
encoding on page 251

Added local chip addressing to step 4. A.6 Connecting the chips on page 273

Deleted the “Minimum of one cycle.” text from the [<domain>]reset_n signal
description.

B.1 Common control signals on page 278

Added Q-Channel device interfaces for the Distributor, GIC Cluster Interface (GCI), and
ITS. Added the qactive_gicd signal.

B.2 Power control signals on page 279

Removed the iccdtlast and icdctlast signals. Corrected the iccdtid and icdctdest
descriptions.

B.8 Interblock AXI5-Stream interface signals on
page 292

Deleted the “must not backpressure” text. • B.8 Interblock AXI5-Stream interface signals
on page 292

• B.10 Cross-chip AXI5-Stream interface
signals on page 294

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 306 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Revisions

Table D-8: Differences between issue 0201-07 and issue 0201-08

Change Location

Added information about message-based SPIs. • 4.9 SPIs on page 71

• 4.11.5 Choosing between LPIs and SPIs on
page 83

Added “when affinity routing is enabled” to the GICD_IPRIORITYRn, GICD_NSACRn,
and GICD_IROUTERn descriptions.

Table 5-2: Distributor registers (GICD/GICDA)
summary on page 130

Updated the Version field value for r2p1. 5.5.10 GICR_CFGID1, Configuration ID1 Register
on page 197

Corrected the GITS_BASER0 reset value. 5.7 ITS control register summary on page 208

Added the Revision field value for r2p1. 5.7.1 GITS_IIDR, ITS Implementer Identification
Register on page 210

Added the IERR value for ITS RAM records 25 and 26. Table 5-98: GICT_ERR<n>MISC0.Data field
encoding on page 237

Updated step 4 and step 5. A.6 Connecting the chips on page 273

For the GCI to Distributor path, ppi_stream_data_width changed to gic_stream_width.
For the ITS to Distributor path, its_stream_data_width changed to
stream_data_width.

B.8 Interblock AXI5-Stream interface signals on
page 292

Clarified that the system must provide the icpdtid, icidtid, and iccdtid signals. B.8 Interblock AXI5-Stream interface signals on
page 292

Added the Direction and Description table columns. B.9 Interdomain signals on page 294

Table D-9: Differences between issue 0201-08 and issue 0202-09

Change Location

Added information about write strobes. • 3.1.2 Distributor ACE5-Lite subordinate interface on page 30

• 3.3.1 ITS ACE5-Lite subordinate interface on page 42

Added LPI latency information. 4.11.4 LPI caching on page 83

Added SPI RAM retention and the spi_ram_retained signal. • 4.13.4 SPI RAM retention on page 89

• B.2 Power control signals on page 279

Corrected the GICT_ERR<n>MISC0.Data information. • Table 4-16: vICM-VSPA RAM errors, records 17-18 on page
106

• Table 4-17: vTGT-VSTR RAM errors, records 19-20 on page
107

• Table 4-19: vTGT-Search RAM errors, records 23-24 on page
108

• Table 4-20: ITS RAM errors, records 25-26 on page 108

Corrected the GICD_NSACRnE address range. 5.2 Distributor registers (GICD/GICDA) summary on page 130

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 307 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Revisions

Change Location
Added the Revision value for r2p2. • 5.2.3 GICD_IIDR, Distributor Implementer Identification

Register on page 138

• 5.3.2 GICM_IIDR, Message-based Distributor Implementer
Identification Register on page 173

• 5.4.2 GICR_IIDR, Redistributor Implementation Identification
Register on page 177

• 5.7.1 GITS_IIDR, ITS Implementer Identification Register on
page 210

• 5.10.8 GICT_IIDR, Trace Implementer Identification Register on
page 244

• 5.11.14 GICP_IIDR, PMU Implementer Identification Register
on page 264

Added a usage constraint about interrupt group enables. 5.2.15 GICD_CHIPR<n>, Chip Registers on page 152

Corrected the address offset for GICM_IIDR. 5.3 Distributor registers (GICM) for message-based SPIs summary
on page 170

Corrected the ECCSupport bit number. 5.5.9 GICR_CFGID0, Configuration ID0 Register on page 197

• Corrected the PPIs_per_Processor description.

• Added the Version value for r2p2.

5.5.10 GICR_CFGID1, Configuration ID1 Register on page 197

Updated the description of the SPIID field. • 5.10.9 GICT_ERRIRQCR<n>, Error Interrupt Configuration
Registers on page 245

• 5.11.15 GICP_IRQCR, Interrupt Configuration Register on
page 265

Added the awstash* signals to the subordinate and manager
interfaces of an ITS.

B.5 ACE5-Lite interface signals on page 283

Table D-10: Differences between issue 0202-09 and issue 0300-10

Change Location

Up to 8 SGIs can now be sent to other chips. 3.1.6 Distributor configuration on page 36

Updated the AMBA properties. • 3.1.2.2 AMBA bus properties, GICD and CC subordinate
interfaces on page 32

• 3.1.3.1 AMBA bus properties, GICD manager interface on
page 34

• 3.3.1.1 AMBA bus properties, ITS on page 44

Added AWDEVICEID_FROM_AWUSER and
AWUSER_AWDEVICEID_BASE options.

3.4.2 MSI-64 Encapsulator configuration on page 48

Added information about the accessibility of some GICR_* registers. 4.13.1 Redistributor power management on page 86

Added the VMAPP_DST_CHIP_OFF error. 4.15.4.15 ITS command and translation error records 27+ on
page 109

Added cross-chip RAM. 4.15.4.16 CC RAM error records 62-63 on page 124

Added NMI bit and updated the No1N bit description. 5.2.2 GICD_TYPER, Interrupt Controller Type Register on page
136

Added registers for AXI5-Stream cross-chip configurations. • 5.2.7 GICD_CCCGR, Cross-Chip Control Group Register on
page 142

• 5.2.8 GICD_CCCCR, Cross-Chip Control Credit Register on
page 143

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 308 of 309

Arm® CoreLink™ GIC-700 Generic Interrupt Controller
Technical Reference Manual

Document ID: 101516_0300_10_en
Issue: 10
Revisions

Change Location
Added register for ACE5-Lite cross-chip configurations. 5.2.12 GICD_CCCTLR, Cross-Chip Control Register on page

148

Increased the width of rt_owner field to 6 bits. 5.2.14 GICD_DCHIPR, Default Chip Register on page 151

Increased the width of ADDR field to 36 bits. 5.2.15 GICD_CHIPR<n>, Chip Registers on page 152

Changed GICR_CTLR.Last to GICR_TYPER.Last. • 5.2.16 GICD_RDOFFR<n>, Redistributor Off Registers on
page 153

• A.1 Removing cores from a preconfigured GIC on page 268

Added registers that support a GICD that is configured to have no local
PEs.

• 5.2.17 GICD_VCFGBASER, vICM Final vPE CFG Attribute
Register on page 154

• 5.2.18 GICD_VSLEEPR, vICM Sleep Register on page 155

Added CHIPS_UPPER, ACE_CC, NITS, and CNUM_UPPER fields. 5.2.28 GICD_CFGID, Configuration ID Register on page 165

Added the Revision value for r3p0. • 5.2.3 GICD_IIDR, Distributor Implementer Identification
Register on page 138

• 5.3.2 GICM_IIDR, Message-based Distributor Implementer
Identification Register on page 173

• 5.4.2 GICR_IIDR, Redistributor Implementation
Identification Register on page 177

• 5.7.1 GITS_IIDR, ITS Implementer Identification Register on
page 210

• 5.10.8 GICT_IIDR, Trace Implementer Identification
Register on page 244

• 5.11.14 GICP_IIDR, PMU Implementer Identification
Register on page 264

Added the Version value for r3p0. 5.5.10 GICR_CFGID1, Configuration ID1 Register on page 197

Corrected the number base in the usage constraint. 5.10.4 GICT_ERR<n>ADDR, Error Record Address Register on
page 234

Added the Requirement to program GICR_MPIDR example. Requirement to program GICR_MPIDR on page 269

Added five extra parameters that must match in all chips. A.6 Connecting the chips on page 273

Added the cc_ram_in and cc_ram_out signals. B.7 RAM I/O signals on page 290

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 309 of 309

	Arm® CoreLink™ GIC-700 Generic Interrupt Controller Technical Reference Manual
	Contents
	1. Introduction
	1.1 Product revision status
	1.2 Intended audience
	1.3 Conventions
	1.4 Useful resources

	2. About the GIC-700
	2.1 Component overview
	2.2 Compliance
	2.3 Features
	2.4 Comparison of GIC-700 and GIC-600
	2.5 Test features
	2.6 Product documentation
	2.7 Product revisions

	3. Components in GIC-700
	3.1 Distributor (GICD)
	3.1.1 Distributor AXI5-Stream interfaces
	3.1.2 Distributor ACE5-Lite subordinate interface
	3.1.2.1 SLVERR error cases
	3.1.2.2 AMBA bus properties, GICD and CC subordinate interfaces

	3.1.3 Distributor ACE5-Lite manager interface
	3.1.3.1 AMBA bus properties, GICD manager interface

	3.1.4 Distributor Q-Channels
	3.1.5 Distributor P-Channel
	3.1.6 Distributor configuration

	3.2 GIC Cluster Interface
	3.2.1 GCI AXI5-Stream interface
	3.2.2 GCI GIC Stream Protocol interface
	3.2.3 GCI Q-Channel
	3.2.4 GCI PPI signals
	3.2.5 GCI configuration

	3.3 Interrupt Translation Service
	3.3.1 ITS ACE5-Lite subordinate interface
	3.3.1.1 AMBA bus properties, ITS

	3.3.2 ITS AXI5-Stream interface
	3.3.3 MSI delivery interface
	3.3.4 ITS Q-Channel
	3.3.5 ITS configuration

	3.4 MSI-64 Encapsulator
	3.4.1 MSI-64 ACE5-Lite interfaces
	3.4.2 MSI-64 Encapsulator configuration

	3.5 SPI Collator
	3.5.1 SPI Collator AXI5-Stream interface
	3.5.2 SPI Collator wires
	3.5.3 Using multiple SPI Collators
	3.5.4 SPI Collator power Q-Channel
	3.5.5 SPI Collator clock Q-Channel
	3.5.6 SPI Collator configuration

	3.6 Wake Request
	3.6.1 Wake Request AXI5-Stream interface
	3.6.2 Wake Request configuration

	3.7 Interconnect
	3.7.1 Interconnect configuration

	3.8 Hierarchy

	4. Operation
	4.1 Interrupt types
	4.2 Multichip operation
	4.3 Interrupt groups and security
	4.4 Affinity routing and assignment
	4.5 RAMs and ECC
	4.5.1 RAM error simulation
	4.5.2 Scrub

	4.6 Direct injection
	4.6.1 Doorbells
	4.6.2 Residency and VMOVP
	4.6.3 Errors and debug

	4.7 SGIs
	4.7.1 SGI programming
	4.7.2 SGI direct injection
	4.7.3 SGI multichip
	4.7.4 SGI error recovery procedure

	4.8 PPIs
	4.8.1 PPI signals
	4.8.2 PPI programming
	4.8.3 PPI direct injection
	4.8.4 PPI multichip
	4.8.5 PPI error recovery procedure

	4.9 SPIs
	4.9.1 SPI signals
	4.9.2 SPI programming
	4.9.3 SPI routing and 1 of N selection
	4.9.4 SPI direct injection
	4.9.5 SPI ownership for multichip operation
	4.9.6 SPI operation for multichip operation
	4.9.7 SPI error recovery procedure

	4.10 ITS
	4.10.1 ITS cache control, locking, and test
	4.10.2 MSI-64
	4.10.3 ITS commands and errors

	4.11 LPIs
	4.11.1 LPI programming and generation
	4.11.2 LPI direct injection
	4.11.3 LPI multichip operation
	4.11.4 LPI caching
	4.11.5 Choosing between LPIs and SPIs
	4.11.6 LPI error recovery procedure

	4.12 Memory access and attributes
	4.12.1 MPAM information

	4.13 Power management
	4.13.1 Redistributor power management
	4.13.2 Processor core power management
	4.13.3 Power control and P-Channel
	4.13.4 SPI RAM retention

	4.14 Performance Monitoring Unit
	4.15 Reliability, Accessibility, and Serviceability
	4.15.1 Non-secure access
	4.15.2 Error record classification
	4.15.3 Error recovery and fault handling interrupts
	4.15.4 Error handling records
	4.15.4.1 Software error record 0
	4.15.4.2 SPI RAM error records 1-2
	4.15.4.3 SGI RAM error records 3-4
	4.15.4.4 TGT-SPI RAM error records 5-6
	4.15.4.5 PPI RAM error records 7-8
	4.15.4.6 LPI RAM error records 9-10
	4.15.4.7 PTS RAM error records 11-12
	4.15.4.8 TGT-LPI RAM error records 13-14
	4.15.4.9 vICM RAM error records 15-16
	4.15.4.10 vICM-VSPA RAM error records 17-18
	4.15.4.11 vTGT-VSTR RAM error records 19-20
	4.15.4.12 vTGT-VRES RAM error records 21-22
	4.15.4.13 vTGT-Search RAM error records 23-24
	4.15.4.14 ITS RAM error records 25-26
	4.15.4.15 ITS command and translation error records 27+
	4.15.4.16 CC RAM error records 62-63
	4.15.4.17 Clearing error records

	4.15.5 Bus errors

	5. Programmers model for GIC-700
	5.1 Register map pages
	5.1.1 Discovery
	5.1.2 GIC-700 register access and banking

	5.2 Distributor registers (GICD/GICDA) summary
	5.2.1 GICD_CTLR, Distributor Control Register
	5.2.2 GICD_TYPER, Interrupt Controller Type Register
	5.2.3 GICD_IIDR, Distributor Implementer Identification Register
	5.2.4 GICD_TYPER2, Interrupt Controller Type Register 2
	5.2.5 GICD_FCTLR, Function Control Register
	5.2.6 GICD_SAC, Secure Access Control register
	5.2.7 GICD_CCCGR, Cross-Chip Control Group Register
	5.2.8 GICD_CCCCR, Cross-Chip Control Credit Register
	5.2.9 GICD_FCTLR2, Function Control Register 2
	5.2.10 GICD_UTILR, Utilization Register
	5.2.11 GICD_FCTLR3, Function Control Register 3
	5.2.12 GICD_CCCTLR, Cross-Chip Control Register
	5.2.13 GICD_CHIPSR, Chip Status Register
	5.2.14 GICD_DCHIPR, Default Chip Register
	5.2.15 GICD_CHIPR<n>, Chip Registers
	5.2.16 GICD_RDOFFR<n>, Redistributor Off Registers
	5.2.17 GICD_VCFGBASER, vICM Final vPE CFG Attribute Register
	5.2.18 GICD_VSLEEPR, vICM Sleep Register
	5.2.19 GICD_ICLARn, Interrupt Class Registers
	5.2.20 GICD_ICERRRn, Interrupt Clear Error Registers
	5.2.21 GICD_ICGERRn, Interrupt Clear Group Error registers
	5.2.22 GICD_ISERRRn, Interrupt Set Error Registers
	5.2.23 GICD_ERRINSRn, Error Insertion Registers
	5.2.24 GICD_ICLARnE, Interrupt Class Registers Extended
	5.2.25 GICD_ICERRRnE, Interrupt Clear Error Registers Extended
	5.2.26 GICD_ICGERRnE, Interrupt Clear Group Error registers Extended
	5.2.27 GICD_ISERRRnE, Interrupt Set Error Registers Extended
	5.2.28 GICD_CFGID, Configuration ID Register
	5.2.29 GICD_PIDR4, Peripheral ID4 register
	5.2.30 GICD_PIDR3, Peripheral ID3 register
	5.2.31 GICD_PIDR2, Peripheral ID2 register
	5.2.32 GICD_PIDR1, Peripheral ID1 register
	5.2.33 GICD_PIDR0, Peripheral ID0 register

	5.3 Distributor registers (GICM) for message-based SPIs summary
	5.3.1 GICM_TYPER, Message-based Type Register
	5.3.2 GICM_IIDR, Message-based Distributor Implementer Identification Register

	5.4 Redistributor registers for control and physical LPIs summary
	5.4.1 GICR_CTLR, Redistributor Control Register
	5.4.2 GICR_IIDR, Redistributor Implementation Identification Register
	5.4.3 GICR_TYPER, Redistributor Type Register
	5.4.4 GICR_WAKER, Power Management Control Register
	5.4.5 GICR_MPAMIDR, Report maximum PARTID and PMG Register
	5.4.6 GICR_PARTIDR, Set PARTID and PMG Register
	5.4.7 GICR_FCTLR, Function Control Register
	5.4.8 GICR_PWRR, Power Register
	5.4.9 GICR_CLASSR, Class Register
	5.4.10 GICR_MPIDR, MPIDR Register
	5.4.11 GICR_PIDR2, Peripheral ID2 Register

	5.5 Redistributor registers for SGIs and PPIs summary
	5.5.1 GICR_MISCSTATUSR, Miscellaneous Status Register
	5.5.2 GICR_ICDERRR, Interrupt Clear Distribution Error Register
	5.5.3 GICR_SGIDR, SGI Default Register
	5.5.4 GICR_DPRIR, Default Priority Register
	5.5.5 GICR_ICERRR0, Interrupt Clear Error Register 0
	5.5.6 GICR_ICERRR1E, Interrupt Clear Error Register Extended
	5.5.7 GICR_ISERRR0, Interrupt Set Error Register 0
	5.5.8 GICR_ISERRR1E, Interrupt Set Error Register Extended
	5.5.9 GICR_CFGID0, Configuration ID0 Register
	5.5.10 GICR_CFGID1, Configuration ID1 Register
	5.5.11 GICR_ERRINSR, Error Insertion Registers

	5.6 vLPI register summary
	5.6.1 GICR_VFCTLR, Virtual Function Control Register
	5.6.2 GICR_VCFGBASER, vICM Final vPE CFG Attribute Register
	5.6.3 GICR_VINVCHIPR, vPE Invalidate Chip Register
	5.6.4 GICR_VERRR, vICM vPE Error Register

	5.7 ITS control register summary
	5.7.1 GITS_IIDR, ITS Implementer Identification Register
	5.7.2 GITS_TYPER, ITS Type Register
	5.7.3 GITS_MPAMIDR, MPAM ID Register
	5.7.4 GITS_PARTIDR, PART ID Register
	5.7.5 GITS_FCTLR, Function Control Register
	5.7.6 GITS_OPR, Operations Register
	5.7.7 GITS_OPSR, Operation Status Register
	5.7.8 GITS_ERRINS_D, Error Insertion Device cache register
	5.7.9 GITS_ERRINS_V, Error Insertion Event cache register
	5.7.10 GITS_ERRINS_C, Error Insertion Collection cache register
	5.7.11 GITS_CFGID, Configuration ID Register
	5.7.12 GITS_PIDR2, Peripheral ID2 Register

	5.8 ITS translation register summary
	5.9 ITS vSGI register summary
	5.10 GICT register summary
	5.10.1 GICT_ERR<n>FR, Error Record Feature Register
	5.10.2 GICT_ERR<n>CTLR, Error Record Control Register
	5.10.3 GICT_ERR<n>STATUS, Error Record Primary Status Register
	5.10.4 GICT_ERR<n>ADDR, Error Record Address Register
	5.10.5 GICT_ERR<n>MISC0, Error Record Miscellaneous Register 0
	5.10.6 GICT_ERR<n>MISC1, Error Record Miscellaneous Register 1
	5.10.7 GICT_ERRGSR, Error Group Status Register
	5.10.8 GICT_IIDR, Trace Implementer Identification Register
	5.10.9 GICT_ERRIRQCR<n>, Error Interrupt Configuration Registers
	5.10.10 GICT_DEVID, Device Configuration register
	5.10.11 GICT_PIDR2, Peripheral ID2 Register

	5.11 GICP register summary
	5.11.1 GICP_EVCNTRn, Event Counter Registers
	5.11.2 GICP_EVTYPERn, Event Type Configuration Registers
	5.11.3 GICP_SVRn, Shadow Value Registers
	5.11.4 GICP_FRn, Filter Registers
	5.11.5 GICP_CNTENSET0, Counter Enable Set Register 0
	5.11.6 GICP_CNTENCLR0, Counter Enable Clear Register 0
	5.11.7 GICP_INTENSET0, Interrupt Contribution Enable Set Register 0
	5.11.8 GICP_INTENCLR0, Interrupt Contribution Enable Clear Register 0
	5.11.9 GICP_OVSCLR0, Overflow Status Clear Register 0
	5.11.10 GICP_OVSSET0, Overflow Status Set Register 0
	5.11.11 GICP_CAPR, Counter Shadow Value Capture Register
	5.11.12 GICP_CFGR, Configuration Information Register
	5.11.13 GICP_CR, Control Register
	5.11.14 GICP_IIDR, PMU Implementer Identification Register
	5.11.15 GICP_IRQCR, Interrupt Configuration Register
	5.11.16 GICP_PIDR2, Peripheral ID2 Register

	A. Getting started with GIC-700
	A.1 Removing cores from a preconfigured GIC
	A.2 Other power management
	A.3 Setting error recovery and fault handling options
	A.4 Setting a PMU counter
	A.5 Changing the Routing table owner
	A.6 Connecting the chips
	A.7 Isolating a chip from the system

	B. Signal descriptions for GIC-700
	B.1 Common control signals
	B.2 Power control signals
	B.3 Interrupt signals
	B.4 CPU interface signals
	B.5 ACE5-Lite interface signals
	B.6 Miscellaneous signals
	B.7 RAM I/O signals
	B.8 Interblock AXI5-Stream interface signals
	B.9 Interdomain signals
	B.10 Cross-chip AXI5-Stream interface signals
	B.11 Cross-chip ACE5-Lite subordinate interface signals
	B.12 MSI delivery interface signals

	C. Implementation-defined features of GIC-700
	D. Revisions

