
Armv8-M Memory Model and Memory
Protection
Version 1.1

User Guide
Non-Confidential
Copyright © 2022–2023 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
107565_0101_01_en



Armv8-M Memory Model and Memory Protection User
Guide

Document ID: 107565_0101_01_en
Version 1.1

Armv8-M Memory Model and Memory Protection
User Guide

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 14 December 2022 Non-Confidential First release

0101-01 19 July 2023 Non-Confidential Second release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 76



Armv8-M Memory Model and Memory Protection User
Guide

Document ID: 107565_0101_01_en
Version 1.1

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 76

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey


Armv8-M Memory Model and Memory Protection User
Guide

Document ID: 107565_0101_01_en
Version 1.1

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 76

mailto:terms@arm.com


Armv8-M Memory Model and Memory Protection User
Guide

Document ID: 107565_0101_01_en
Version 1.1

Contents

Contents

1. Introduction...................................................................................................................................................... 7
1.1 Memory model................................................................................................................................................ 7
1.2 Memory Protection Unit (MPU).................................................................................................................. 7
1.3 Differences between Armv7-M and Armv8-M MPU.............................................................................8

2. Memory system............................................................................................................................................ 10
2.1 Memory address space............................................................................................................................... 10
2.1.1 Importance of PPB space....................................................................................................................... 11
2.2 Memory types and attributes....................................................................................................................12
2.2.1 Normal memory.........................................................................................................................................13
2.2.2 Device memory......................................................................................................................................... 14
2.3 Memory barriers........................................................................................................................................... 15
2.3.1 Data Memory Barrier (DMB)................................................................................................................. 16
2.3.2 Data Synchronization Barrier (DSB)..................................................................................................... 16
2.3.3 Instruction Synchronization Barrier (ISB).............................................................................................17
2.3.4 When do you need a DSB followed by an ISB?............................................................................... 17
2.3.5 Load-Acquire and Store-Release instructions.....................................................................................18
2.4 Alignment behavior...................................................................................................................................... 19
2.5 Memory endianness.....................................................................................................................................20
2.6 Exclusive accesses........................................................................................................................................21
2.7 Caches and memory hierarchy..................................................................................................................23
2.7.1 Introduction to caches.............................................................................................................................23
2.7.2 Memory hierarchy.....................................................................................................................................24
2.7.3 Implications of caches for programmers............................................................................................. 24
2.8 Tightly Coupled Memory (TCM)............................................................................................................... 25

3. Memory protection...................................................................................................................................... 27
3.1 Memory Protection Unit.............................................................................................................................27
3.2 MPU programmers model.......................................................................................................................... 30
3.2.1 MPU registers overview..........................................................................................................................30
3.2.2 Configuring an MPU region....................................................................................................................31
3.3 Attribute indirection.....................................................................................................................................33
3.3.1 Memory Attribute Indirection Register (MAIR0/MAIR1)................................................................. 34

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 76



Armv8-M Memory Model and Memory Protection User
Guide

Document ID: 107565_0101_01_en
Version 1.1

Contents

3.4 PRIVDEFENA bit usage.............................................................................................................................. 35
3.5 The importance of the HFNMIENA bit.................................................................................................. 35
3.6 Significance of XN and PXN bits..............................................................................................................35
3.7 Security Extension and MPU.....................................................................................................................36
3.8 Default memory map and MPU............................................................................................................... 36
3.9 MemManage faults in Armv8-M Mainline..............................................................................................37

4. Getting started with Armv8-M based systems.....................................................................................38
4.1 CMSIS support for MPU............................................................................................................................ 38
4.2 Debug tools support....................................................................................................................................39

5. Use case examples.......................................................................................................................................43
5.1 Generic Information.....................................................................................................................................43
5.1.1 What is inside a program image?..........................................................................................................43
5.1.2 Memory map..............................................................................................................................................46
5.1.3 Tool versions.............................................................................................................................................. 46
5.2 trap_access..................................................................................................................................................... 47
5.2.1 Project structure........................................................................................................................................47
5.2.2 Memory Map and Scatter file definitions........................................................................................... 48
5.2.3 MPU configurations..................................................................................................................................51
5.2.4 Triggering MemManage faults................................................................................................................52
5.2.5 Output in Target Console....................................................................................................................... 53
5.3 rtos_context_switch......................................................................................................................................54
5.3.1 Basic Building Blocks................................................................................................................................55
5.3.2 Putting it all together...............................................................................................................................62
5.3.3 Additional Information............................................................................................................................. 65
5.4 TCM_implement............................................................................................................................................66
5.4.1 Project structure........................................................................................................................................67
5.4.2 Memory map and scatter file definitions............................................................................................ 68
5.4.3 MPU configurations..................................................................................................................................70
5.4.4 Controlling the deposit system..............................................................................................................70
5.4.5 Output in Target Console....................................................................................................................... 72

6. References...................................................................................................................................................... 75

7. Next steps...................................................................................................................................................... 76

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 76



Armv8-M Memory Model and Memory Protection User
Guide

Document ID: 107565_0101_01_en
Version 1.1

Introduction

1. Introduction
This guide gives an overview of the Armv8-M Memory Model and the Memory Protection Unit
(MPU) implemented in Cortex-M processors. This guide uses examples to help explain the concepts
it introduces.

This chapter gives an overview of the following topics:

• Memory model

• Memory Protection Unit (MPU)

• Differences between Armv7-M and Armv8-M MPU

1.1 Memory model
The Armv8-M architecture supports 32-bit memory addressing and has a 4GB linear address space.
The memory space is unified, that is both instructions and data share the same address space.
The default memory map or default memory address space is defined by the architecture. The
default memory map divides the 4GB address range into a number of regions. For more details, see
Chapter B8: The System address map in the Arm Architecture Reference Manual.

Each region within the memory address space has a set of memory attributes and access
permissions. These memory attributes include the following:

• Memory type

• Shareability

• Cacheability

Although the pre-defined memory map is fixed, the architecture provides a high degree of
flexibility to allow system designers to differentiate their product with different memory types and
peripherals.

Memory addresses can be either Little-Endian (LE) or Big-Endian (BE). The Armv8-M architecture
supports unaligned data accesses if unaligned access support is enabled using the Configuration
Control Register (CCR).

1.2 Memory Protection Unit (MPU)
The Armv8-M architecture supports the optional Protected Memory System Architecture
(PMSAv8) as an architecture extension. This extension provides a Memory Protection Unit (MPU) in
the Cortex-M processor series. In Arm Cortex-M processors, the number of regions is configurable
by silicon designers, and can be up to 16 regions in current Armv8-M Cortex-M processors
(Cortex-M33, Cortex-M55, Cortex-M85).The MPU is a programmable device that can define
memory access permissions, such as privileged access only, and memory attributes, for example

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
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Cacheability, for different memory regions. The MPU can make an embedded system more robust
and in some cases it can make the system more secure by:

• Preventing application tasks from corrupting stack or data memory used by other tasks and the
OS kernel

• Preventing unprivileged tasks from accessing certain peripherals that can be critical to reliability
or the security of the system

• Defining SRAM or RAM space as non-executable (Execute-never, XN) to prevent code injection
attacks

• Using the Privileged Execute-never (PXN) feature to prevent accidental execution of user code
and data by the OS

Note:

PXN feature is available only in Armv8.1-M, but not in Armv6-M, Armv7-M and Armv8.0-M
architectures.

The MPU must be programmed by privileged software and should be configured and enabled
before use. If the MPU is not enabled, then from a software point of view the MPU is not present.
The MPU can also be used to define memory attributes such as Cacheability which can be
exported to a system-level cache or to other memory controllers. If a memory accesses violates
the access permissions defined by the MPU or accesses a memory location that is not defined by
an MPU region, then the transfer would be blocked and a MemManage fault exception would be
triggered.

More details on Memory Protection Unit will be covered extensively in subsequent sections.

1.3 Differences between Armv7-M and Armv8-M MPU
Although the Memory Protection Unit’s operations are conceptually similar between the Armv7-
M and Armv8-M architectures, the Armv8-M architecture has a different programmers’ model to
program the MPU regions compared to the Armv7-M architecture.

The following processors contain an MPU implementation based on the PMSAv7 architecture:

• Cortex-M0+

• Cortex-M3

• Cortex-M4

• Cortex-M7

The following processors contain an MPU implementation based on the PMSAv8 architecture:

• Cortex-M23

• Cortex-M33

• Cortex-M55

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
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• Cortex-M85

• Star

When migrating from Armv7-M-based processors to Armv8-M-based processors, the MPU-related
code should be changed to support PMSAv8.

The following table shows the main differences between Armv8-M-based and older MPUs:

Armv6-M and Armv7-M MPU Armv8-M MPU

The MPU in the ARMv6-M and ARMv7-M architectures requires
that an MPU memory region must be aligned to an address which
is a multiple of the region size, and that the region size must be a
power of two.

In the Armv8-M architecture the start and end address of a region
only need to be aligned to a 32 byte boundary. That is, MPU regions
can be any size.

MPU regions can overlap. Higher regions number have higher
priority when MPU regions overlapped

Regions are not allowed to overlap. As the MPU region definition is
much more flexible, overlapping MPU regions are not necessary.

Memory attributes for each region are programmed in the
corresponding MPU_RASR register

Memory regions define memory attributes using an index into a set of
memory attribute registers.

The concept of sub-regions is widely used within a single MPU
region

There is no concept of sub-regions in PMSAv8. Because PMSAv8
gives more flexibility in region address configuration, there is no need
to retain the sub-region concept used in Armv6-M- and Armv7-M-
based processors
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2. Memory system
This chapter describes the following topics:

• Memory address space

• Memory types and attributes

• Memory barriers

• Alignment behavior

• Memory endianness

• Exclusive accesses

• Caches and memory hierarchy

• Tightly Coupled Memory (TCM)

2.1 Memory address space
The Armv8-M architecture is a memory-mapped architecture. Cortex-M processors support 32-bit
memory addressing, which allows 4GB of memory space. The address is 2^32 bytes, but typically
the memory system is at least 32-bit wide (word size).Each of those addresses is word-aligned,
meaning that the address is divisible by 4.

Imagine a word with a word-aligned address that we will call A. This word consists of the four
bytes with addresses A, A+1, A+2, and A+3. While instruction fetches are always halfword-aligned,
some load and store instructions support unaligned addresses. Address calculations are normally
performed using ordinary integer instructions. This means that they normally wrap around if they
overflow or underflow the address space. This unified memory space can be used to store both
instructions and data for a program. All memory addresses used in Armv8-M are physical addresses
(PAs). There is no concept of virtual addresses (VAs).

The architecturally predefined 32-bit memory address space is subdivided for code, data, and
peripherals, with regions for on-chip and off-chip resources. On-chip refers to resources that are
closely coupled to the processor. The address space supports eight primary partitions of 0.5GB
each, as follows:

• Code

• SRAM

• Peripheral

• Two RAM regions

• Two Device regions

• System

The default memory map is divided into eight memory segments, which are summarized in the
following table:
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Region Address range Example usage Default eXecute-Never (XN)
attribute

Code 0x00000000 –
0x1FFFFFFF

Memory to hold program image, typically ROM or flash memory No

SRAM 0x20000000 –
0x3FFFFFFF

Fast SRAM memory, usually on-chip RAM No

Peripheral 0x40000000 –
0x5FFFFFFF

Peripheral memory space, on-chip Yes

2x RAM 0x60000000 –
0x9FFFFFFF

Typical RAM memory, usually off-chip RAM No

2x Device 0xA0000000 –
0xDFFFFFFF

Peripheral memory space, off-chip Yes

System 0xE0000000 –
0xFFFFFFFF

Contains memory mapped registers and the Vendor system
region, Vendor_SYS

Yes

The System region of the memory map, starting at 0xE0000000, subdivides as follows:

• The 1MB region at offset +0x00000000 is reserved as a Private Peripheral Bus (PPB)

• The region from offset +0x00100000 is the Vendor system region, Vendor_SYS

2.1.1 Importance of PPB space

The 1MB region reserved as PPB plays a vital role in the system memory map. The PPB memory
region contains register space for supporting key processor resources including NVIC, MPU, and
debug features. Accesses to the PPB region are always marked as little-endian only regardless of
the processor’s endian state. By default, only privileged accesses are allowed to write to or read
from the PPB address space.

Figure 2-1: PPB within the System region
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Within the PPB memory region, the System Control Space (SCS) is a memory-mapped 4KB address
space that provides 32-bit registers for control, configuration, and status reporting. If the Security
Extension is implemented, both Secure and Non-secure SCS regions are present. The SCS includes
the System Control Block (SCB), which provides configuration registers for the processor. Examples
of some of the registers that are part of the SCB include the following:

• System management registers (E.g. System Control Register (SCR), Configuration Control
Register (CCR))

• ID registers (E.g. CPUID)

• Fault Status and Address registers

• Vector Table Offset register

• Interrupt Control State register

For more information about the different default memory access attributes corresponding to each
of the eight memory regions, see section B8.1 System address map in the Armv8-M Architecture
Reference Manual

2.2 Memory types and attributes
When describing the memory model, a memory access is an instruction fetch from memory, or a
load or store data access. A memory access is governed by:

• Whether the access is a read, write, or instruction fetch

• The address alignment

• Data endianness

• Memory attributes

Every memory region has a memory type that affects how the processor can access the addresses
in that region. The two memory types are Normal memory and Device memory, and they are
mutually exclusive. Additionally, memory attributes are specified to control:

Memory
attribute

Description

Access
Permission

Restricts whether an address is read/write or read-only and also whether it is only accessible in privileged mode

Execute
Permission

Determines whether code can be executed from a memory region. This is referred as eXecute Never attribute, see default
memory map table in Section:Memory address space

Sharability The sharability attribute is used in multiprocessor systems. However, this attribute is not generally used with Cortex-M
processors.

Cacheability The memory attribute settings can support two cache levels: inner cache and outer cache. Both inner and outer cache
memories can have their own unique cache policies (for example, write-through cache or write-back cache). When a
region is marked as cacheable, it means that the data may be cached but not that it must be cached. Device memory is not
cacheable.
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2.2.1 Normal memory

Address regions defined as Normal memory type have the following properties:

• The Processing Element (PE) assumes that read and write accesses can be repeated with no
side effects. They return the last value that was written to the accessed resource.

• Accesses can be merged before accessing the target memory system.

• A weakly ordered memory model is implemented. This means that there is no requirement
for Normal accesses to complete in order with respect to other Normal and Device accesses.
However, the PE must handle dependencies, which sets a series of constraints on the
reordering of memory accesses targeting the same address. These constraints are listed and
described in the section B7.2.3 Ordering and observability in the Armv8-M Architecture
Reference Manual. Additionally, ordering can be enforced if required by using barriers, which
will be covered in a later section in this guide.

• Speculative accesses are permitted. Speculative access means that the data or instruction can
be fetched before explicitly being referenced. This can occur, for example, when performing
branch prediction or speculative cache line fills.

There is no technical limitation of the memory types (e.g. SRAM, DRAM, MRAM)
being used as Normal memory.

2.2.1.1 Dependency handling example

Even if Normal memory is weakly ordered, constraints are imposed so that accesses to the same
address are correctly handled. For example, in the following code:

MOVW r0, #0xAAAA
MOVT r0, #0xBBBB
MOV  r1, #0x1000
MOV  r2, #0xCC

STR  r0, [r1]
STRB r2, [r1, #3] 
LDRH r0, [r1, #2]

The STR instruction stores the word 0xBBBBAAAA in address 0x1000. Then, the STRB instruction
stores a byte 0xCC in address 0x1003. Therefore, STR and STRB must complete in the order in
which they appear in the code, so that LDRH returns the most up-to-date halfword value 0xCCBB
from address 0x1002.

Normal memory is less restrictive than Device memory and therefore offers better performance.
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2.2.2 Device memory

Device memory is a memory type that is assigned to regions of memory where accesses can have
side effects. Some of the main features of Device memory are:

• It is not cacheable.

• It is always treated as shareable.

• It does not support speculative data accesses.

• Any unaligned access to Device memory generates an UNALIGNED UsageFault exception.

It is recommended that Device regions are marked as execute-never, because speculative
instruction fetches would otherwise be permitted, which could corrupt the values of read-sensitive
registers. In addition, instruction fetches from Device memory may trigger MemManage faults on
some systems.

Device memory is assigned a combination of Device memory attributes. In Armv8-M architecture,
there are four variants of Device memory as the result of a limited combination of three different
attributes.

The Device memory attributes are:

• Gathering (G) and non-Gathering (nG): Device memory regions, marked with the G attribute,
allow multiple accesses of the same type (read or write) to the same or different locations to be
merged into a single transaction.

• Reordering (R) and non-Reordering (nR): For regions marked with the nR attribute, accesses to a
peripheral must occur in program order.

• Early Write Acknowledgement (E) and no Early Write Acknowledgement (nE): Assigning
the nE attribute recommends that only the endpoint of the write access returns a write
acknowledgment of the access, and that no earlier point in the memory system (for example, a
buffer) returns a write acknowledgment.

Based on the Device memory attributes, Device memory can implement four different variants,
which are:

1. Device-nGnRnE

2. Device-nGnRE

3. Device-nGRE

4. Device-GRE

Device accesses ordering example
Consider a memory map with the following three Device regions:

• Region A: Device-nGnRnE

• Region B: Device-GRE

• Region C: Device-nGnRnE

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
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For the following sequence of load instructions:

LDR r0, A
LDR r1, B
LDR r2, A+8
LDR r3, C
LDR r4, B+8

• Region A is marked as nR, therefore the two accesses to region A are guaranteed to be in order
with respect to each other.

• Region B is marked as R, therefore the two loads from region B are not guaranteed to be in
program order with respect to each other. Note that none of the accesses to region B are
guaranteed to occur in program order with respect to any of the accesses to regions A and C.

• Region C is marked as nR. It is not guaranteed whether the accesses to region A will occur in
program order with respect to accesses to region C.

The terms strong and weak memory type are commonly used when describing Device memory.
Device-nGnRnE is the strongest memory type, as it defines rules that memory accesses must obey.
Therefore, it can also be said that it is the most restrictive Device memory type. On the contrary,
Device-GRE is the weakest Device memory type.

The rules of stronger Device memory types are always valid for weaker Device memory types. This
means that memory marked with G/R/E attributes may, but not must, be gathered, reordered, or
early acknowledged.

In Arm Cortex-M processors based of Armv8-M architecture, Device memory is
always treated as shareable. However this behaviour could be different in Cortex-M
processors based on Armv6-M/Armv7-M architectures.

2.3 Memory barriers
The Armv8-M architecture supports out-of-order completion of instructions and data accesses
to optimize execution. However, the Armv8-M architecture supports memory barriers to ensure
that an operation has completed before continuing execution. By using barrier instructions, a PE
can guarantee completion of any preceding load and store instructions and flush any prefetched
instructions.

The most common barrier instructions are:

• Data Memory Barrier (DMB)

• Data Synchronization Barrier (DSB)

• Instruction Synchronization Barrier (ISB)

In Armv8.1-M architecture with Reliability,Availability and Serviceability (RAS) extension, Error
Synchronization Barriers (ESB) are introduced. For additional information on the different memory

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 76



Armv8-M Memory Model and Memory Protection User
Guide

Document ID: 107565_0101_01_en
Version 1.1

Memory system

barriers, see section B7.2.9 Memory barriers and section B16.4 in the Armv8-M Architecture
Reference Manual.

2.3.1 Data Memory Barrier (DMB)

Data Memory Barriers are used to ensure that all explicit memory accesses that appear in program
order before the DMB instruction are observed before any explicit memory accesses that appear in
program order after the DMB instruction. Note that DMB applies only to memory access instructions,
not to any other instructions, as shown in the following figure:

Figure 2-2: Data Memory Barrier

2.3.2 Data Synchronization Barrier (DSB)

A Data Synchronization Barrier ensures that memory accesses before the DSB instruction have
completed before the completion of the DSB instruction.

Any instruction that appears in program order after the DSB cannot execute until the DSB completes.
The DSB is a “stronger” barrier than the DMB.

Figure 2-3: Data Synchronization Barrier
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2.3.3 Instruction Synchronization Barrier (ISB)

An Instruction Synchronization Barrier ensures that all instructions that come after the ISB
instruction in program order are fetched from the cache or memory after the ISB instruction has
completed.

Using an ISB instruction guarantees that the effects of context-changing operations (for example,
changing CONTROL register bits) executed before the ISB are visible to the instructions fetched
after the ISB.

Performing an ISB operation flushes the pipeline in the PE and is a context synchronization event.

The implicit context synchronization events include Exception Entry, Exception Exit,
Debug Entry, and Debug Exit

2.3.4 When do you need a DSB followed by an ISB?

Here are few example scenarios where you need a Data Synchronization Barrier (DSB) followed by
an Instruction Synchronization Barrier (ISB).

1. MPU configuration:

A DSB is used after enabling the MPU to ensure that the subsequent ISB instruction is executed
only after the write to the MPU Control register is completed. The ISB instruction is used after
the DSB to ensure the processor pipeline is flushed and subsequent instructions are re-fetched
with new MPU configuration settings.

2. Enable or disable the floating-point unit (FPU):

Before using an FPU, you need to program CPACR (Coprocessor Access Control Register) to
enable the FPU. The CPACR register lets you enable or disable the FPU. Because writing to the
CPACR register affects subsequent floating-point instructions, a DSB instruction is executed to
ensure that the write to the CPACR register is completed. The ISB instruction is used after the
DSB to ensure that new FPU settings are applied to subsequent floating-point instructions.

3. Enabling interrupts using NVIC:

If a pended interrupt request needs to be recognized immediately after being enabled in the
NVIC, a DSB instruction followed by an ISB instruction is recommended. The DSB instruction
ensures that the write to the NVIC enable register is complete, while the ISB instruction
ensures that IRQ is executed.

4. Vector table configuration:

In Cortex-M processors, typically the location of the vector table is determined by the Vector
Table Offset Register (VTOR). If you need to change the vector table base address, then a DSB
instruction should be used after writing a new value to the VTOR register. This ensures that the
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write to the VTOR register is complete. An ISB followed by a DSB is required to ensure that any
subsequent exceptions and interrupts use the new vector table base address.

2.3.5 Load-Acquire and Store-Release instructions

Load-Acquire and Store-Release instructions are load and store instructions with implicit barrier
semantics.

A Load-Acquire (LDA) instruction ensures that all reads and writes caused by loads and stores that
appear in program order after the LDA are observed after the LDA. However, accesses before the
LDA are not affected.

Figure 2-4: Load-Acquire

A Store-Release (STL) instruction ensures that all reads and writes caused by loads and stores that
appear in program order before the STL are observed before the STL. However, accesses after the
STL are not affected.
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Figure 2-5: Store-Release

LDA and STL instructions can be combined to protect critical sections of code, as shown in the
following figure:

Figure 2-6: Combining LDA and STL to protect critical code

Ordering is not enforced within the critical section of code.

2.4 Alignment behavior
In Armv8-M, all instruction fetches are halfword-aligned.

Unaligned data accesses in Normal memory are only supported if the Main Extension is
implemented, otherwise they generate an alignment HardFault. Accesses to Device memory must
always be aligned.
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Specific instructions always generate alignment faults for some unaligned data accesses. For
example, LDAH (Load-Acquire Halfword) and STLH (Store-Release Halfword) instructions always
generate an alignment fault for non halfword-aligned data accesses.

Additionally, some instructions generate alignment faults for some unaligned data accesses when
CCR(Configuration Control Register).UNALIGN_TRP bit is set to 1. For example, non-word-
aligned data accesses using the LDR{T} and STR{T} instructions generate an alignment fault if
CCR.UNALIGN_TRP is set to 1.

For more detailed information on alignment behavior, see the section B7.6 Alignment behavior in
the Armv8-M Architecture Reference Manual.

2.5 Memory endianness
Cortex-M processors are used in either Little-Endian or Big-Endian memory system. The following
figures show, for both little-endian and big-endian, the relationship in memory between:

• The word at address A.

• The halfwords at addresses A and A+2.

• The bytes at addresses A, A+1, A+2, and A+3.

Figure 2-7: Little-endian format

Figure 2-8: Big-endian format
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In a little-endian memory system the least significant byte is at the lowest address. In a big-endian
memory system the most significant byte is at the lowest address.

The endianness of data accesses is indicated by Application Interrupt and Reset Control
Register(AIRCR). AIRCR.ENDIANNESS bit can either implemented with a static value or configured
by a hardware input on reset. In Arm Cortex-M processors, Endianness cannot be changed at
runtime.

The endian mapping has following restrictions:

• The endianness setting only applies to data accesses. Instruction fetches are always little-
endian.

• All accesses to the Private Peripheral Bus (PPB) are always little-endian.

In most of the Cortex-M based systems, the Endianess of the memory system
is fixed, and majority of the Cortex-M systems on the market use Little Endian
memory system.

Endianness example
Consider the following code. We want to determine the final value in the r2 register, depending on
the endianness of the system.

MOV  r0, #0x4223056C
MOV  r1, #0x1000
STR  r0, [r1]
LDRB r2, [r1]

• In the case of little-endian, the value 0x6C is stored in the least significant byte in the memory
address 0x1000. LDRB loads the least significant byte in address 0x1000. Therefore the final
value in r2 is 0x6C.

• In the case of big-endian, the value 0x42 is stored in the least significant byte in the memory
address 0x1000. LDRB loads the least significant byte in address 0x1000. Therefore the final
value in r2 is 0x42.

2.6 Exclusive accesses
Semaphores are commonly used for allocating shared resources to applications. When a shared
resource can only be safely accessed by one thread at a time, it is commonly called Mutual
Exclusion (MUTEX). In such cases, when a resource is being used by one process, it is locked
to that process and cannot serve another process until the lock is released. To create a MUTEX
semaphore, a memory location is defined as the lock flag to indicate whether a shared resource is
locked by a process. When a process or application wants to use the resource, it needs to check
whether the resource has been locked first. If it is not being used, then it can set the lock flag
to indicate that the resource is now locked. In traditional Arm processors, the access to the lock
flag is carried out by a single SWP instruction. It allows the lock flag read and write to be atomic,

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 76



Armv8-M Memory Model and Memory Protection User
Guide

Document ID: 107565_0101_01_en
Version 1.1

Memory system

preventing the resource from being locked by two processes at the same time. To overcome this
situation, exclusive access instruction pairs (LDREX/STREX, LDREXB/STREXB, and LDREXH/STREXH) were
introduced.

The exclusive state machine operates in a pair of instructions. Out of reset, the exclusive state
machine is always in Open state. On executing the LDREX instruction, the state machine enters
Exclusive state. An STREX instruction can successfully write into a memory location (marked as lock
flag) only when the state machine is in Exclusive state. This exclusive state machine is depicted in
the following figure:

Figure 2-9: Exclusive State Machine

The exclusive write (for example STREX) can fail in the following conditions:

• An LDREX instruction was not executed before an STREX instruction

• A CLREX instruction was executed

• A context switch operation occurred, resulting in clearing the exclusive state

The sequence to acquire a lock using exclusive instructions is shown in the following diagram:
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Figure 2-10: Using exclusive access in a semaphore

Exclusive access instructions allow software to create atomic behaviors in software. However, in
hardware level the bus transfers are not forced into a locked sequence. Exclusive accesses are
preferrable than using locked bus transfers because they have much lower impact to the interrupt
latency.

2.7 Caches and memory hierarchy
The Armv8-M architecture defines support for caches within the architecture and with memory
attributes. Memory attributes can be exported on a supporting bus protocol such as AMBA (AHB
or AXI protocols) to support system caches. In situations where a breakdown in coherency can
occur, software must manage the caches using cache maintenance operations that are memory
mapped.

2.7.1 Introduction to caches

A cache is a block of high-speed memory locations containing both address information (commonly
known as a TAG) and the associated data. The purpose is to increase the average speed of a
memory access. Caches operate on two principles of locality:

Spatial locality
An access to one location is likely to be followed by accesses from adjacent locations, for
example, sequential instruction execution or usage of a data structure.
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Temporal locality
An access to an area of memory is likely to be repeated within a short time period, for
example, execution of a code loop.

To minimize the quantity of control information stored, the spatial locality property is used to group
several locations together under the same tag. This logical block is commonly known as a cache
line. When data is loaded into a cache, access times for subsequent loads and stores are reduced,
resulting in overall performance benefits. An access to information already in a cache is known as a
cache hit, and other accesses are called cache misses. Normally, caches are self-managing, with the
updates occurring automatically. Whenever the processor wants to access a cacheable location, the
cache is checked. If the access is a cache hit, the access occurs immediately, otherwise a location is
allocated and the cache line loaded from memory.

2.7.2 Memory hierarchy

Memory close to a processor has very low latency, but is limited in size and expensive to
implement. Further from the processor it is easier to implement larger blocks of memory but these
have increased latency. To optimize overall performance, an Armv8-M memory system can include
multiple levels of cache in a hierarchical memory system.

The following figure shows an example system with multiple levels of caches.

Figure 2-11: Memory hierarchy example

2.7.3 Implications of caches for programmers

Caches are largely invisible to the application programmer, but can become visible due to a
breakdown in coherency. Such a breakdown can occur when:

• Memory locations are updated by other agents in the systems.

• Other bus managers in the system are not aware of memories updated by the applications and
ended up using outdated data.

Software can ensure the data coherency of caches in the following ways:

• By not using the caches in situations where coherency issues can arise. This can be achieved
by:
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◦ Using Non-cacheable or, in some cases, Write-Through Cacheable memory.

◦ Not enabling caches in the system.

• By using cache maintenance operations to manage the coherency issues in system software.

• By using sophisticated hardware coherency mechanisms implemented at a system level to
ensure the coherency of data accesses to memory for cacheable locations by observers within
the different Shareability domains.

If software requires coherency between instruction execution and memory, it must manage this
coherency using the ISB and DSB memory barriers and cache maintenance operations.

2.8 Tightly Coupled Memory (TCM)
TCM is designed to provide low-latency memory that can be used by the processor. This memory
can be used to hold critical routines, such as interrupt handling routines or real-time tasks where
the indeterminacy of a cache would be highly undesirable. In addition, you can use TCM to hold
ordinary variables, data types whose locality properties are not well suited to caching, and critical
data structures such as interrupt stacks. A TCM is physically located very close to the processor
core. Accesses to the TCM will typically be configured to capture or return data in a single cycle.
By storing time-critical routines such as exception handlers in the TCM, the processor can have
immediate access to the subroutine rather than having to wait for an initial code fetch from
external memory.

TCM is expected to be used as part of the physical memory map of the system, and is not expected
to be backed by a level of external memory with the same physical addresses. Particular memory
locations must be contained either in the TCM or in the cache. In particular, no coherency
mechanisms are supported between the TCM and the cache. This means that it is important when
allocating the base address of the TCM to ensure that the same address ranges are not contained
in the cache.

For example in the Cortex-M7 processor, the memory system includes support for TCM. If
TCM is implemented, then TCM ports connect a low-latency memory to the processor, and the
TCM ports provide Instruction TCM (ITCM) and Data TCM (DTCM) interfaces. ITCM is a 64-
bit memory interface and DTCM is two 32-bit memory interfaces (D0TCM and D1TCM). Each
TCM has a fixed base address and a size for each TCM should be configured during the reset
initialization routine (TCM settings can also be defined by silicon designers and not necessary to
program TCM configuration registers). Typically, RAM or RAM-like memory (for example SRAM or
FRAM) are connected to the TCM port, that is Normal-type memory in Arm architecture. For best
performance, DTCM is typically used to store critical variables and frequently updated variables
and ITCM is typically used to access critical functions, exception vector table(s), and interrupt
service routines. However, there is no functional restriction regarding which TCM should be used
to place code and data. Note that the memory systems in the Cortex-M7/M55/M85 processors
are designed in such a way that the addresses that target TCM will reach only the ITCM/DTCM
interface while the remaining address range (which does not fall under physical TCM address) will
by default go through the AXI interface. Compiler-generated code will typically perform data loads
from the ITCM to access literal pool data and other constant values in the program image.
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It is important to note that Tightly Coupled Memory and its interface are
not defined by the Armv8-M architecture. However, Cortex-M processor
implementations which include TCM have the necessary enable and control
registers for TCM. For example, for Cortex-M55, ITCMCR and DTCMCR are used to
enable the TCM.

If TCMs are enabled out of reset, to identify whether TCMs are available in your memory system,
you can read ID_MMFR0 (Memory Model Feature Register 0) register and check that bits [19:16]
read as 4'b0001.

Please see the use case example [TCM for latency critical code] in Use case examples to see how
TCM is used to place a critical section of code.
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3. Memory protection
Memory protection is used to restrict access to code and data depending on the specific execution
context.

For example, an Operating System (OS) commonly runs in privileged mode. In privileged mode, OS
code can be executed and OS data can be accessed. Additionally, application memory space can
be accessed. However, when executing an application, the application should not be able to access
OS data or code. Therefore, applications should be considered unprivileged and have restricted
access to specific memory regions. This is one basic example to illustrate the need of memory
protection mechanisms. Please see the use case example rtos_context_switch in Use case examples
that shows how to create a very simple RTOS (Real Time Operating System) capable of dealing with
context switching and thread isolation. If memory protection is supported in the processor, illegal
memory accesses can be trapped before leaving the processor.

This chapter describes the following:

• Memory Protection Unit (MPU)

• MPU programmers model

• MPU registers overview

◦ The significance of XN and PXN bits

◦ Where can the PRIVDEFENA bit be used?

◦ The importance of the HFNMIENA bit

• Programming memory regions with the MPU

• MPU faults and categories

3.1 Memory Protection Unit
The MPU is an optional component in Cortex-M processor systems. In systems that require high
reliability, the MPU can protect memory regions by defining access permissions for different
privilege states. The MPU can also define other memory attributes such as Cacheability, which can
be exported to system-level cache unit or memory controllers.

In systems without an embedded OS, the MPU can be programmed to have a static configuration.
The configuration can be used for functions including the following:

• Setting a RAM/SRAM region to be read-only to protect important data from accidental
corruption

• Making a portion of RAM/SRAM space at the bottom of the stack inaccessible to detect stack
overflow

• Setting a RAM/SRAM region to be XN to mitigate code injection attacks

• Defining memory attribute settings that can be used by system level cache or memory
controllers
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In systems with an embedded OS, the MPU can be programmed at each context switch so that
each application task can have a different MPU configuration. In this way, you can:

• Define memory access permissions so that stack operations of an application task can only
access their own allocated space, to prevent stack corruption of other stacks in case of a stack
leak

• Define memory access permissions so that an application task can only have access to its own
data and a limited set of peripherals

The Protected Memory System Architecture (PMSA) is the architecture that defines the operation
of the MPU for Cortex-M processors. With the development of the Armv8-M architecture, the
PMSA has been updated to the PMSAv8. The MPU programmers’ model allows privileged software
to define memory regions and assign memory access permissions and memory attributes to each of
them. The number of supported MPU regions can vary across devices. Typically eight MPU regions
are implemented in most systems.

The MPU is software programmable and can be configured in a number of different ways using
the MPU regions available on a device. The MPU monitors instruction fetches and data accesses
from the processor and triggers a fault exception when an access violation is detected. If the MPU
is enabled, and if a memory access violates the access permissions defined by the MPU or if an
access to a region which is not programmed by MPU is attempted, then the transfer would be
blocked and a MemManage fault would be triggered. Some examples of MPU violations that can
result in MemManage faults include the following:

• The address accessed matches more than one MPU region.

• The transaction does not match all of the access conditions for the MPU region being accessed.

• The address accessed only matches the system address map and the system address map is not
enabled.

Armv8-M implementations with the Main Extension have a dedicated Memory Management Fault
(MemManage) that is triggered by accesses that violate the MPU configuration settings. The Main
Extension also provides the MemManage Fault Status Register (MMFSR) and the MemManage
Fault Address Register (MMFAR) which provide information about the cause of the fault and
the address being accessed in the case of data faults. These provide useful information to RTOS
kernels that isolate memory on a per-thread basis, or provide on-demand stack allocation. If the
MemManage fault is disabled or cannot be triggered because the current execution priority is
too high, then the fault is escalated to a HardFault. Armv8-M implementations without the Main
Extension can only use the HardFault exception.

For each MPU region, the following information is needed for a complete description of memory
space allocated for that MPU region:

• Base and limit addresses

• Memory type: Normal or Device

• Read-only or Read-Write

• Privileged or unprivileged

• Execution permission
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• Shareability

• Cacheability, for Normal memory

• Device attributes, for Device memory

The MPU must be enabled after being programmed. If the MPU is not enabled, then the processor
does not have visibility of MPU configuration. For each region, the memory attributes define the
ordering and merging behaviors of that region, as well as caching and buffering attributes.

The following figure shows an example of a memory map with four MPU regions and the attributes
for each:

Figure 3-1: MPU regions example

With the MPU enabled, an access to an address that does not match any MPU
regions (No region in the above figure) will fault unless the access is privileged and
MPU_CTRL.PRIVDEFENA is set (see [MPU_CTRL, MPU Control Register]). In this
case the default memory map would be applied.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 76



Armv8-M Memory Model and Memory Protection User
Guide

Document ID: 107565_0101_01_en
Version 1.1

Memory protection

3.2 MPU programmers model
The Armv8-M MPU supports a configurable number of programmable regions with a typical
implementation supporting between zero and eight regions per security state.

• The smallest size that can be programmed for an MPU region is 32 bytes.

• The maximum size of any MPU region is 4GB, but the MPU region size must be a multiple of
32 bytes.

• All regions must start at a 32 byte-aligned address.

• Regions can have separate read/write access permissions for privileged and unprivileged code.

• The execute-never (XN) attribute enables separation of code and data regions.

The MPU is configured by a series of memory mapped-registers in the System Control Space (SCS).

3.2.1 MPU registers overview

To program MPU regions and enable the MPU, it is necessary to know which registers should
be configured. Note that the MPU registers are memory-mapped. The following table shows a
summary of all the MPU registers available in the MPU programmers’ model.

Address Register name Type Description Notes

0xE000ED90 MPU_TYPE RO MPU Type
Register

The MPU Type register indicates how many regions the MPU supports for the
selected security state. This register is read-only

0xE000ED94 MPU_CTRL RW MPU Control
Register

The MPU Control register provides various programmable bit fields for MPU enable
and features. Refer to the sections PRIVDEFENA bit usage and The importance of
the HFNMIENA bit for more information.

0xE000ED98 MPU_RNR RW MPU Region
Number
Register

The MPU Region Number Register selects the region that is accessed by the
MPU_RBAR and MPU_RLAR registers

0xE000ED9C MPU_RBAR RW MPU Region
Base Address
Register

The MPU Region Base Address Register defines the starting address and access
permissions of an MPU region

0xE000EDA0 MPU_RLAR RW MPU Region
Limit Address
Register

The MPU Region Limit Address Register defines the end address of an MPU region,
region enable, and an indirection index to memory attribute array

0xE000EDA4 MPU_RBAR_A1 RW MPU Region
Base Address
Register Alias
1

Provides indirect read and write access to the base address of the currently
selected MPU region selected by MPU_RNR. This helps in faster programming of
different MPU regions

0xE000EDA8 MPU_RLAR_A1 RW MPU Region
Limit Address
Register Alias
1

Provides indirect read and write access to the limit address of the currently
selected MPU region selected by MPU_RNR. This helps in faster programming of
different MPU regions

0xE000EDAC MPU_RBAR_A2 RW MPU Region
Base Address
Register Alias
2

Provides indirect read and write access to the base address of the currently
selected MPU region selected by MPU_RNR. This helps in faster programming of
different MPU regions
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Address Register name Type Description Notes
0xE000EDB0 MPU_RLAR_A2 RW MPU Region

Limit Address
Register Alias
2

Provides indirect read and write access to the limit address of the currently
selected MPU region selected by MPU_RNR. This helps in faster programming of
different MPU regions

0xE000EDB4 MPU_RBAR_A3 RW MPU Region
Base Address
Register Alias
3

Provides indirect read and write access to the base address of the currently
selected MPU region selected by MPU_RNR. This helps in faster programming of
different MPU regions

0xE000EDB8 MPU_RLAR_A3 RW MPU Region
Limit Address
Register Alias
3

Provides indirect read and write access to the limit address of the currently
selected MPU region selected by MPU_RNR. This helps in faster programming of
different MPU regions

0xE000EDC0 MPU_MAIR0 RW MPU Memory
Attribute
Indirection
Register 0

The MPU Attribute Indirection Register 0 provides four sets of 8-bit memory
attributes which can be referenced by AttrIndx in MPU_RLAR to determine the
memory attribute for an MPU region. Refer to the section Attribute indirection for
more details.

0xE000EDC4 MPU_MAIR1 RW MPU Memory
Attribute
Indirection
Register 1

The MPU Attribute Indirection Register 1 provides four sets of 8-bit memory
attributes, which can be referenced by AttrIndx in MPU_RLAR to determine the
memory attribute for an MPU region. Refer to the section Attribute indirection for
more details.

MPU_RBAR_A1/2/3 and MPU_RLAR_A1/2/3 are aliases of the MPU_RBAR and
MPU_RLAR registers to allow faster programming of different MPU regions. The
region number that is selected when using MPU_RBARn and MPU_RLARn is equal
to (MPU_RNR[7:2]<<2) + n. MPU_RBAR_A1/2/3 and MPU_RLAR_A1/2/3 enable
software to program multiple MPU regions quickly without the need to reprogram
MPU_RNR every time.

For detailed register descriptions and bit positions, see Section B10.1 Memory Protection Unit in
the Armv8-M Architecture Reference Manual.

3.2.2 Configuring an MPU region

The MPU must be configured before it is enabled. A Data Memory Barrier (DMB) operation is
recommended to force any outstanding writes to memory before enabling the MPU.

The necessary memory types must be encoded into the MAIR registers so that they can be
referenced from the MPU_RLAR register for each region. MPU_RNR selects which region
MPU_RBAR and MPU_RLAR are currently configuring. The start and end address of each region
can be programmed into the MPU_RBAR and MPU_RLAR registers, along with the required access
permissions, shareability, and executability.

When all the required regions have been configured, the MPU can be enabled by setting the
ENABLE bit in MPU_CTRL. To ensure that any subsequent memory accesses use the new MPU
configuration, software must execute a DSB followed by an Instruction Synchronization Barrier (ISB).
The following figure summarizes the various stages that are required to configure an MPU region:
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Figure 3-2: Configuring memory regions in the MPU

See Use case examples for actual code sequences used for MPU region programming and
configuration settings.
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3.3 Attribute indirection
The attribute indirection mechanism allows multiple MPU regions to share a set of memory
attributes. For example, in the following figure MPU regions 1, 2 and 3 are all assigned to SRAM, so
they can share cache-related memory attributes.

Figure 3-3: MPU attribute indirection

At the same time, regions 1, 2, and 3 can still have their own access permission, XN, and
shareability attributes. This is required as each region can have different uses in the application.
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3.3.1 Memory Attribute Indirection Register (MAIR0/MAIR1)

As mentioned in earlier sections there are two types of Memory types: (a) Normal memory and (b)
Device memory.

Figure 3-4: MAIR register

Normal Memory type is used for MPU regions that are used to access general instruction or data
memory. Normal memory allows the processor to perform some memory access optimizations,
such as access re-ordering or merging. It also allows memory to be cached and is suitable for
holding executable code. Normal memory can have several attributes that can be applied to it. The
following memory attributes are available:

• Shareability : Normal memory can be shareable or Non-shareable.

• eXecute Never : Memories can be marked as executable or eXecute Never (XN).

• Cacheability: Memories can be cacheable or non-cacheable.The cacheability can be further
divided into cache policy, allocation, and transient hint.

◦ Cache policy : Write-Through or Write-Back Allocation

◦ Cache line allocation hints : For read and write access.

◦ Transient hint : A hint to the cache that the data might only be needed in the cache
temporarily.

The architecture supports two levels of cache attributes. These are the inner cache and outer
cache attributes. Typically, the inner cache attribute is used by any integrated caches, while the
outer cache attributes are exported on using the bus system sideband signals. Depending on the
processor implementation, the inner cache attributes can also be exported to the memory system
using extra sideband signals.
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Configuring an MPU region with a cacheable memory type does not mean that the data must
be cached, but only indicates to the hardware that it might be cached. If a region is defined
as cacheable, software takes responsibility for performing any necessary cache maintenance
operations.

The transient hint attribute indicates that the benefit of caching is for a relatively short period. In
other words, it’s a hint to the cache system. When the cache has a predictable replacement policy
(e.g. LRU or round-robin) this could be implemented by allocating straight into positions which
are already very close to eviction. It is purely implementation choice on whether a specific system
memory can be marked as a transient memory.

For detailed register descriptions and bit positions, see Section B10.1 Memory Protection Unit in
the Armv8-M Architecture Reference Manual.

3.4 PRIVDEFENA bit usage
The PRIVDEFENA bit in the MPU Control (MPU_CTRL) register is used to enable the background
region (for example, region number -1). By using PRIVDEFENA and if no other regions are set up,
privileged programs will be able to access all memory locations, and only unprivileged programs
will be blocked. However, if other MPU regions are programmed and enabled, they can override
the background region. For example, for two systems with similar region setups but only one
with PRIVDEFENA set to 1, the one with PRIVDEFENA set to 1 will allow privileged access to
background regions. This corresponds to the right-hand side of the diagram shown in Attribute
indirection.

3.5 The importance of the HFNMIENA bit
The HFNMIENA bit in the MPU Control (MPU_CTRL) register defines the behavior of the MPU
during execution of NMI, HardFault handlers, or when FAULTMASK is set. By default, the MPU is
bypassed (disabled) in these cases. This allows the HardFault handler and NMI handler to execute
even if the MPU was set up incorrectly.

3.6 Significance of XN and PXN bits
Execute-never (XN) indicates an execute-never region. The execute-never (XN) configuration is
used to prevent certain types of malicious attack from taking control over program execution by
inserting their code into memory, for example the Stack.

Any attempt to execute code from an XN region faults, generating a MemManage exception.
System space in the default memory map (See B8.1 System address map in the Armv8-M
Architecture Reference Manual) is always marked as Execute-never (XN). A memory region can also
be configured as execute-never by the execute-never (XN) bit in the MPU_RBAR register. This bit
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configuration indicates whether the processor can execute instructions from the MPU region or
not. Note that an enabled MPU cannot change the XN property of the System memory region.

As new MPU region attribute called Privileged execute-never (PXN) was introduced in the
Armv8.1-M architecture.

If an MPU region is configured with the PXN attribute set, and the processor attempts to execute
code in this region while at privileged level, a Memory Management Fault exception is triggered,
with IACCVIOL bit in MemManage Fault Status Register set to 1. The PXN attribute bit is in bit 4 of
MPU_RLAR (Region Limit Address Register) and its alias registers. It is available in both Secure and
Non-secure MPU, and this bit was previously fixed to 0 in Armv8.0-M.

The PXN feature allows privileged software to ensure that specific application tasks (threads)
execute only in unprivileged level. For example, a hacker cannot use stack corruption in a privileged
peripheral handler to branch into unprivileged code and execute them with privileged level.

This feature is particularly useful for TrustZone enabled systems with Secure firmware components
from various software vendors. In those cases, some of the security firmware components might
not be fully trusted and need to be restricted to unprivileged execution only. With Armv8.0-M,
the unprivileged software components must not have their own Secure entry points which are
callable from Non-secure state because the software components would execute in privileged state
if being called directly from Non-secure Handler mode. As a result, the entry points need to be
implemented separately with security checking which increases software overhead. With the PXN
attribute available in Armv8.1-M, these unprivileged software components can safely have their
own Secure API entry points.

3.7 Security Extension and MPU
If the Armv8-M Security Extension is implemented, there are two optional MPUs:

1. Secure MPU (MPU_S)

2. Non-secure MPU (MPU_NS)

Within each security state, the MPU can be configured independently. For example, a Cortex-M
processor with Security Extension could support four Secure MPU regions in Secure state and
eight Non-secure MPU regions in Non-secure state. For more information, refer Armv8-M Security
Extension User Guide.

3.8 Default memory map and MPU
The default memory map shown in Memory system is always applied in the following cases when:

• The MPU is not implemented

• The MPU is implemented but is disabled
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• Exception vector reads from the Vector Address Table

• Exception handler is NMI or HardFault or FAULTMASK=1 and MPU_CTRL.HFNMIENA is 0 (see
[MPU_CTRL, MPU Control Register]).

• Accesses to the PPB, within the range 0xE0000000-0xE00FFFFF

• Access is privileged, MPU_CTRL.PRIVDEFENA is set and no enabled regions match (see
[MPU_CTRL, MPU Control Register]).

• The access is a non-UDE debug access. (UDE - Unprivileged Debug Extension)

Additionally, the MPU’s capabilities when programming addresses in System space (addresses
0xE0000000 and higher) are restricted. System space is always execute-never. System space has
a default memory type of Device-nGnRE which can only be remapped to Device-nGnRnE using an
MPU.

3.9 MemManage faults in Armv8-M Mainline
MemManage faults occur when an MPU mismatch occurs if the Armv8-M Main Extension is
implemented. MemManage fault is enabled via SHCSR.MEMFAULTENA configuration settings.
When a MemManage fault is taken, we can obtain additional information about the cause of the
fault by looking at the contents of the following registers:

• MMFAR, MemManage Fault Address Register: shows the address of the memory location that
caused an MPU fault.

• MMFSR, MemManage Fault Status Register: shows the status of MPU faults.

• DEMCR, Debug Exception and Monitor Control Register: manages vector catch behavior and
DebugMonitor handling when debugging. It includes MemManage vector catch fields.

The following table shows a summary of the different MemManage faults and their conditions and
status bits set in the MMFSR and DEMCR registers when they occur:

Type MMFSR
status bit

DEMCR
vector catch
bit

Conditions

Data access DACCVIOL VC_MMERR Violation or fault on MPU as result of data access. The address of the access that
caused the fault is also recorded in the MMFAR register

Instruction access IACCVIOL VC_MMERR Violation or fault on MPU as result of instruction access

Exception entry stack
memory operations

MSTKERR VC_INTERR Failure on a hardware save of context, because of an MPU access violation.

Exception return stack
memory operations

MUNSTKERR VC_INTERR Failure on a hardware restore of context, because of an MPU access violation.

Lazy state preservation
error flag

MLSPERR VC_INTERR Records whether a MemManage fault occurred during FP lazy state preservation
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4. Getting started with Armv8-M based
systems

This chapter gives a brief introduction about the platforms, compilers, and tools support available
for Armv8-M MPU.

For more details on hardware platforms, simulation model support, and compiler
support see the Introduction to the Armv8-M architecture and its programmers
model user guide.

4.1 CMSIS support for MPU
CMSIS-Core is part of the Common Microcontroller Software Interface Standard (CMSIS) and
provides a standardized API for different aspects of software development for Cortex-M devices,
including:

• Startup and initialization code templates.

• Processor core instruction intrinsics.

• Processor core peripheral functions and macros.

• Device-specific system clock and peripheral macros and functions.

CMSIS-Core source code and documentation is available from the following CMSIS GitHub
repository:

• CMSIS Version 5

Few of the popular compilers that CMSIS-Core supports are listed below:

• Arm Compiler 6.

• GNU Arm Embedded Toolchain.

• IAR C/C++ Compiler.

Arm Compiler 6 is available as part of the following products:

• Arm Development Studio (Arm DS).

• Keil Microcontroller Development Kit (Keil MDK).

The fixed system address map and memory-mapped MPU registers in the Armv8-M architecture
make it easy to program the MPU in software. To make things even easier for developers to work
with the MPU, CMSIS-Core provides ready-to-use MPU functions and macros written in C. For
more information, see MPU Functions for Armv8-M in the CMSIS-Core (Cortex-M) documentation.
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The following CMSIS-Core C header files support the MPU:

• mpu_armv8.h

• core_armv8mml.h

You can refer to CMSIS-Core C header files corresponding to your Cortex-M processor core as
well. For example, if Cortex-M55 processor is used in your system, then refer core_cm55.h

The following macro must be set appropriately before using these headers to program the MPU:

• __MPU_PRESENT

This macro is defined by the CMSIS-Core device header file, which is normally provided by Arm
microcontroller device vendors. The device header file is typically available as part of a CMSIS
Device Family Pack (DFP) that includes other files, such as the startup and initialization code
mentioned in the list of header files above, enabling the user to develop a CMSIS-compliant
embedded application. The DFP, which is essentially an archive file, is created by the device vendor.

Arm also acts as a device vendor by providing some device headers and DFPs targeted at its
models and platforms described in section Hardware Platform and Simulation Model Support for
MPU.

Generic Armv8-M CMSIS-Core device headers can be found at ARMv8MML.h. Depending on your
Cortex-M processor selection, the corresponding processsor’s device header files can be referred.
For example, if Cortex-M55 processor is used in your system, then refer ARMCM55.h

DFPs are supported by different embedded development tools such as Keil MDK and Arm DS.
These packs and archives can be downloaded from the following repository on the Arm website.

• CMSIS Packs on Arm Developer

Also, some IDEs provide an integrated pack installer to make it even easier to download, install, and
use the DFPs and the CMSIS-Core files.

4.2 Debug tools support
Designed for the Arm architecture, Arm Development Studio is the most comprehensive embedded
C/C++ dedicated software development solution which supports debug for Cortex–M CPUs. Its
components include the following:

• Arm Compiler for Embedded 6 for compiling bare-metal embedded applications. Includes
support for the latest Arm architectures.

• Arm Compiler for Embedded FuSa to accelerate the building of safety-critical code and simplify
the TÜV SÜD certification process.

• Complete library of reference Fixed Virtual Platforms (FVPs) along with pre-built examples.

• Entitlement to Keil MDK Professional Edition is included in Silver, Gold, and Platinum editions.
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Arm Development Studio 2022.1 has been used to develop the use case examples in this guide.
It is not guaranteed that future Arm Development Studio versions correspond completely to the
content shown in this guide.

Arm Development Studio features that are particularly relevant for this guide include the following:

• MPU Registers view

Figure 4-1: MPU Registers View in Arm DS

• MemManage Fault Address and Status Registers view
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Figure 4-2: MemManage Fault Address and Status Registers View in Arm DS

• MPU Regions View
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Figure 4-3: MPU Regions View in Arm DS
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5. Use case examples
This chapter aims to show some user case examples related to MPU configuration.

The use case examples included are:

• trap_access : A simple example to show how memory can be protected by the MPU regions

• rtos_context_switch : A basic example to show simple real-time kernel context switching
operation

• TCM_implement : A simple example to show how TCM memory can be used for critical
operations

The source code for these examples can be found in GitHub repository

Before getting into the use case examples, let us try to understand generic information required for
these example projects.

5.1 Generic Information
In most basic applications, the programs can be completely written in C language. The C compiler
compiles the C program code into object files and then generates the executable program image
file using the linker.

5.1.1 What is inside a program image?

When a project is built using toolchain, it generates a program image. Inside this program image,
in addition to actual scenario that we would want to run, there is also a range of other software
components. They are:

• A Vector Table

• A reset handler/startup code

• C Startup code

• C runtime library functions

• Actual application code

Let us try to get a brief understanding of these software components in below sections.

5.1.1.1 Vector table

In Arm Cortex-M processors, the vector table contains the starting addresses of each exception
and interrupt. One of the exceptions is reset, which means that after reset, the processsor will
fetch the reset vector (starting address of the reset handler) from the vector table and start the
execution from reset handler. The first word in the vector table defines the starting value of Main
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Stack Pointer (MSP). If the vector table is not set up correctly in the program image, the device
cannot start.

In Arm-DS project examples shown with this guide, the vector table is defined in device-specific
startup code at <example_project>/RTE/Device/ARMv8MML/startup_ARMv8MML.c. Here is a snippet
of vector table that can be found in the startup code.

extern const VECTOR_TABLE_Type __VECTOR_TABLE[496];
       const VECTOR_TABLE_Type __VECTOR_TABLE[496] __VECTOR_TABLE_ATTRIBUTE = {
  (VECTOR_TABLE_Type)(&__INITIAL_SP),       /*     Initial Stack Pointer */
  Reset_Handler,                            /*     Reset Handler */
  NMI_Handler,                              /*     NMI Handler */
  HardFault_Handler,                        /*     Hard Fault Handler */
  MemManage_Handler,                        /*     MPU Fault Handler */
  BusFault_Handler,                         /*     Bus Fault Handler */
  UsageFault_Handler,                       /*     Usage Fault Handler */
  SecureFault_Handler,                      /*     Secure Fault Handler */
  0,                                        /*     Reserved */
  0,                                        /*     Reserved */
  0,                                        /*     Reserved */
  SVC_Handler,                              /*     SVC Handler */
  DebugMon_Handler,                         /*     Debug Monitor Handler */
  0,                                        /*     Reserved */
  PendSV_Handler,                           /*     PendSV Handler */
  SysTick_Handler,                          /*     SysTick Handler */

  /* Interrupts */
  Interrupt0_Handler,                       /*     Interrupt 0 */
  Interrupt1_Handler,                       /*     Interrupt 1 */
  Interrupt2_Handler,                       /*     Interrupt 2 */
  Interrupt3_Handler,                       /*     Interrupt 3 */
  Interrupt4_Handler,                       /*     Interrupt 4 */
  Interrupt5_Handler,                       /*     Interrupt 5 */
  Interrupt6_Handler,                       /*     Interrupt 6 */
  Interrupt7_Handler,                       /*     Interrupt 7 */
  Interrupt8_Handler,                       /*     Interrupt 8 */
  Interrupt9_Handler                        /*     Interrupt 9 */
                                            /* Interrupts 10 .. 480 are left out */
};

__VECTOR_TABLE - This symbol name is used for defining the static interrupt
vector table. The name must comply with any compiler/linker conventions, e.g.
if used for vector table relocation. CMSIS-Core specifies common default for
supported compilers.

__VECTOR_TABLE_ATTRIBUTE - This symbol name defines the additional
declaration specifications to be used when defining the static interrupt vector table.

Both __VECTOR_TABLE and __VECTOR_TABLE_ATTRIBUTE are expected to be
used only by startup file (i.e.) RTE/Device/ARMv8MML/startup_ARMv8MML.c

__INITIAL_SP - The initial stack pointer value is defined in CMSIS Pack files (e.g.
cmsis_armclang.h, cmsis_gcc.h).
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5.1.1.2 Reset_Handler()

The reset handler or startup code is the first piece of software to execute after a system reset.
Typically, the reset handler is used for setting up configuration data for the C startup code (such as
address range for stack and heap memories), which then branches into C startup code. Also, it is
considered a best practise to initialize stack pointers with its limit before entering C startup code.
Since this project uses CMSIS-CORE framework, the reset handler executes SystemInit() function
which sets up the configuration for clocks and PLLs, before branching to C startup code.

__NO_RETURN void Reset_Handler(void)
{
  __set_PSP((uint32_t)(&__INITIAL_SP));

  __set_MSPLIM((uint32_t)(&__STACK_LIMIT));
  __set_PSPLIM((uint32_t)(&__STACK_LIMIT));

#if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U)
  __TZ_set_STACKSEAL_S((uint32_t *)(&__STACK_SEAL));
#endif

  SystemInit();                             /* CMSIS System Initialization */
  __PROGRAM_START();                        /* Enter PreMain (C library entry point)
 */
}

Depending on the development tools being used, the reset handler can be optional.
If the reset handler is omitted, the C startup code is executed directly instead.
The startup code is typically provided by microcontroller vendors and is also often
bundled inside toolchains. They can be either in the form of assembly or C code

5.1.1.3 Default_Handler()

The device-specific startup code at <example_project>/RTE/Device/ARMv8MML/
startup_ARMv8MML.c provides weak aliases for each exception handler to Default_Handler. (Note
that the weak symbol is a special linker symbol that denotes a function that can be overridden
during link time.) As the exception handlers are marked as weak aliases, any function with the same
name will override this definition. This helps the programmer to define their own handlers without
the need to change the device-specific startup code.

For example, consider below code in startup code:

void Interrupt0_Handler     (void) __attribute__ ((weak, alias("Default_Handler")));

This code indicates the linker to assign the Default_Handler to Interrupt0_Handler if a
programmer does not provide a Interrupt0_Handler function themselves.

Also, if you look through the whole start-up code, you will find similar code for every possible
interrupt handler. This allows the code to create a default handler without requiring the
programmer to assign specific handler for each interrupt explicitly.
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5.1.1.4 C startup code

When using high level languages like C/C++, the processor will need to execute a piece of program
code to setup the program execution environment. This includes:

• Setting up the initial data values in SRAM (for e.g. global variables)

• Zero initialization of data memory for variables that are uninitialized at load time

• Initializing the data variables controlling heap memory (for e.g. malloc() usage)

After initialization, the C startup code branches to the start of the main() program. The C startup
code is automatically inserted by the toolchain and is toolchain specific, and is not inserted by
toolchain if the program is written in assembly.

For Arm compilers, the C startup code is labeled as __main, while the startup code
generated by GNU C compilers is normally labeled as _start

5.1.1.5 C runtime library functions

C library code is inserted into the program image by the linker when certain C/C++ functions are
used. C library code can also be included by way of data processing tasks such as floating point
calculations.

5.1.2 Memory map

Example projects use MPS2 FVP (Fixed Virtual Platform) to run the program. The memory map for
the MPS2 FVP can be found in MPS2 - memory map for models with the Arm®v8‑M additions. It
is important to consider the memory map of the platform used to define specific regions for ROM,
RAM etc., defined in scatter file (or linker script).

For additional details on scatter file definitions, please read the following:

• Arm Compiler for Embedded Reference Guide

• Arm Compiler for Embedded User Guide

5.1.3 Tool versions

This example project is created, built and run using following tool versions.

• Arm Development Studio 2022.1

• Arm Compiler for Embedded 6.18
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• Fast Models Fixed Virtual Platforms (FVP) 11.18

• CMSIS 5.8.0 (available in GitHub repository)

5.2 trap_access
This example aims to show:

• Basic programming of MPU regions.

• How to enable the MPU and MemManage faults?

• Trigger MemManage faults to show how memory is protected by MPU

The source code for this example is available at Memory_model/trap_access.

An execution flow chart for this example project is shown below:

Figure 5-1: Execution flow chart for trap_access

5.2.1 Project structure

The file structure of this example project is here shown:

│   main.c
│   mpu_defs.h
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│   mpu_prog.c
│   mpu_prog.h
└───RTE
    │   RTE_Components.h
    └───Device
        └───ARMv8MML
                ARMv8MML_ac6.sct
                startup_ARMv8MML.c
                system_ARMv8MML.c

• main.c: Sets the MPU, switches to unprivileged mode and triggers MemManage faults.

• mpu_prog.c: Programs MPU regions and enables the MPU.

• mpu_defs.h: Definitions for MPU region attributes.

• RTE/Device/ARMv8MML/startup_ARMv8MML.c: Vector table, interrupt/exception handlers.

• RTE/Device/ARMv8MML/ARMv8MML_ac6.sct: Scatter file.

• RTE/Device/ARMv8MML/system_ARMv8MML.c: Target definitions.

5.2.2 Memory Map and Scatter file definitions

A scatter file gives you the ability to control where the linker places different parts of your image
for your particular target including the location and size of various memory regions that are
mapped to ROM, RAM, and FLASH. Considering the target memory map of MPS2 FVP model
(Refer Memory map), the following execution regions are defined in the scatter file for this project.

Figure 5-2: Scatter file layout

Here is a snippet of scatter file definitions for this project. Please see the scatter file for the full
description of the different regions.

<...>

#define __ROM_BASE      0x00000000
#define __RAM_BASE      0x20000000
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#define __ROM_SIZE      0x00080000
#define __RAM_SIZE      0x00040000

/*----------------------------------------------------------------------------
  Scatter Region definition
 *----------------------------------------------------------------------------*/
LR_ROM __RO_BASE __RO_SIZE  {               ; load region size_region
  ER_ROM __RO_BASE __RO_SIZE  {             ; load address = execution address
   *.o (RESET, +First)
   *(InRoot$$Sections)
   .ANY (+RO)
   .ANY (+XO)
  }

  RW_RAM __RW_BASE __RW_SIZE  {                  
   ; RW data
   .ANY (+RW +ZI)
  }

  ARM_LIB_STACK __STACK_TOP EMPTY -__STACK_SIZE {
  ; Reserve empty region for stack
  }

<...>

In subsequent sections, you will be able to understand scatter file definitions used for this example
project and how it maps to actual memory address.

5.2.2.1 ROM and RAM regions

For this example project, two regions are defined in scatter file:

• LR_ROM: A read-only load region (LR_ROM) starts at __RO_BASE (0x0). In this example, the load
address is same as execution address (ER_ROM)

• RW_RAM: Read-write data region (RW_RAM) starts at __RW_BASE used for general memory read
and write operations.

The linker script generates the region-related symbols for each region specified in the scatter file.
Image$$ and Load$$ symbols are generated for each execution region by linker script.

Considering that ER_ROM and RW_RAM execution regions defined in scatter file , following linker
generated symbols are referenced as extern symbols in source code mpu_prog.c :

• Image$$ER_ROM$$Base - Denotes execution base address of the region ER_ROM located at
0x0000_00000

• Image$$ER_ROM$$Limit - Denotes the address of the byte beyond the end of the execution
region ER_ROM which equates to 0x0008_0000

• Image$$RW_RAM$$Base - Denotes execution base address of region RW_RAM located at
0x2000_0000

• Image$$RW_RAM$$Limit - Denotes the address of the byte beyond the end of execution region
RW_RAM which equates to 0x2004_0000

For more details on linker generated symbols corresponding to its scatter file refer Section 4.5 of
Arm Compiler for Embedded Reference Guide
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Typically, the Static Random Access Memory (SRAM) in the processor system is
used in a number of ways:

• Data : Data usually contains global and static variables

• Stack : The role of stack memory includes storing temporary data when handling
function calls.

• Heap : The use of heap memory is optional and and is only needed when the
application uses functions like malloc() that perform dynamic memory allocation.

5.2.2.2 RESET

The vector table is defined with a named region called “RESET”. This RESET region will be defined
by CMSIS Pack installation. Using this name, the linker script can specify where the vector table
is placed. A linker script (scatter-loading file) example for the Arm toolchain using the RESET
named region shown in the scatter file at RTE/Device/ARMv8MML/ARMv8MML.sct. The line
*.o (RESET, +First) of the scatter file example shown above specify that RESET named region is
placed as first item in the internal ROM starting __RO_BASE. This address value should match the
initial Vector Table Offet Register (VTOR) of the hardware platform being used. If it does not, the
startup sequence will fail as the processor will not be able to read the vector table (i.e.) the initial
value of Main Stack Pointer (MSP) and the starting address of the reset handler.

5.2.2.3 Stack and Heap

For each software project, it is essential to ensure sufficent memory space is allocated for stack and
heap operations. In Arm Compiler toolchain, memory space for stack and heap sections is defined
using ARM_LIB_STACK and ARM_LIB_HEAP regions respectively. This is defined in the scatter file
as below:

<...>
#define __STACK_SIZE    0x00000200
#define __HEAP_SIZE     0x00000C00

<...>
 ; ============================================================ 
 ; ARM_LIB_STACK 0x2004_0000 EMPTY -0x200  ; Stack growing down
 ; ============================================================
  ARM_LIB_STACK __STACK_TOP EMPTY -__STACK_SIZE {   ; Reserve empty region for stack
  }
<...>

As ARM_LIB_STACK and ARM_LIB_HEAP are also part of execution regions, the linker script
generates Image$$ symbols similar to ER_ROM/RW_RAM regions explained in previous sections. In
this example project, the symbol Image$$ARM_LIB_STACK$$ZI$$Limit is referenced in MPU region
configuration. (Refer section MPU configurations)
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When defining the allocation of memory space, there is a need to consider the
amount of additional memory space required for exception stack frame(s) and for
the stack space required by exception handlers. In this example, since Floating point
extension and Security extension are not enabled, just 8 words (i.e. integer stack
frame) will be allocated for an exception stack frame. However, if Floating point
extension or Security extension is implemented, then you will have to consider
space for additional extended stack frames. For more details on the types of
exception stack frame, refer Section B3.19 of Armv8-M Architecture Reference
Manual

5.2.3 MPU configurations

When entering main(), the MPU regions are programmed using MPU Functions for Armv8-M by
calling the function setMPU(), which is defined in mpu_prog.c. Two MPU regions are used in this
example project are:

MPU
region

Information Address range eXecute
Never

Shareability Access
Permissions

Attr Index

0 ROM ER_ROM Base-
ER_ROM Limit

XN = 0 ARM_MPU_SH_OUTER Read
only, any
privilege

AttrIndx 0 (Normal memory, cacheable, outer
and inner Write-Through non-transient with
read allocate )

1 RAM RW_RAM Base-
ARM_LIB_STACK
ZI Limit

XN = 1 ARM_MPU_SH_OUTER Read/
write, any
privilege

AttrIndx 0 (Normal memory, cacheable, outer
and inner Write-Through non-transient with
read allocate )

Figure 5-3: MPU region and Scatter file layout

int setMPU(void){

    /* Set Attr 0 */
      ARM_MPU_SetMemAttr(0UL, ARM_MPU_ATTR(         /* Normal memory */
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      ARM_MPU_ATTR_MEMORY_(1UL, 0UL, 1UL, 0UL),     /* Outer Write-Through non-
transient */
      ARM_MPU_ATTR_MEMORY_(1UL, 0UL, 1UL, 0UL)      /* Inner Write-Through non-
transient */
    ));

    /* Set MPU regions
     * ----------------
     * The symbols used here are obtained from scatter file */
    unsigned int ROMAddr = (unsigned int) &Image$$ER_ROM$$Base;
    unsigned int ROMLimit = (unsigned int) &Image$$ER_ROM$$Limit;
    unsigned int RAMAddr = (unsigned int) &Image$$RW_RAM$$Base;
    unsigned int RAMLimit = (unsigned int) &Image$$ARM_LIB_STACK$$ZI$$Limit;

    /* Set region 0 */
    ARM_MPU_SetRegion(0UL,
            ARM_MPU_RBAR(ROMAddr, 
                         ARM_MPU_SH_OUTER, 
                         ARM_MPU_RO, 
                         ARM_MPU_NON_PRIV, 
                         ARM_MPU_EXEC),
            ARM_MPU_RLAR(ROMLimit, 0UL)
    );

    /* Set region 1 */
    ARM_MPU_SetRegion(1UL,
            ARM_MPU_RBAR(RAMAddr, 
                         ARM_MPU_SH_OUTER, 
                         ARM_MPU_RW, 
                         ARM_MPU_NON_PRIV, 
                         ARM_MPU_XN),
            ARM_MPU_RLAR(RAMLimit, 0UL)
    );

    /* Enable MemManage Faults */
    SCB->SHCSR |= SCB_SHCSR_MEMFAULTENA_Msk;

    /* Enable MPU with all region definitions and 
     * enable background regions only for privileged access. */
    ARM_MPU_Enable(MPU_CTRL_PRIVDEFENA_Msk | MPU_CTRL_HFNMIENA_Msk);

    return 0;
}

Note that, inside the CMSIS function ARM_MPU_Enable, a DMB barrier is inserted at the beginning and
DSB and ISB barriers are inserted at the end of the function. The DSB barrier is used to guarantee
that the register writes complete, while the ISB barrier is used to make sure the updates take effect
before the execution of next instruction.

5.2.4 Triggering MemManage faults

In main(), after setting the MPU regions and enabling the MPU, execution is switched to
unprivileged mode by writing on the CONTROL register. Now we are ready to execute the example
fault scenario in main(). There are two example fault scenarios included in main() function. It is
required that only one fault scenario is activated at a time. Hence, depending on your requirement,
choose one fault scenario for this example project.

#define PRIVILEGED_LOCATION 0x5800E000;

    printf("Example Project: trap_access Start \n");

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 76



Armv8-M Memory Model and Memory Protection User
Guide

Document ID: 107565_0101_01_en
Version 1.1

Use case examples

    /* Set MPU regions and enable MPU */
    setMPU();

    /* Switch to unprivileged mode */
    __set_CONTROL( __get_CONTROL( ) | CONTROL_nPRIV_Msk ) ;

      int x = 1;

    /* Scenario:1 - Write to a Read-only memory */

    int* test1 = (int*)&Image$$ER_ROM$$Base;     
    *test1 = x;                          

    /* Scenario:2 - Read privileged memory from unprivileged state */

    /* int* test2 = (int*)PRIVILEGED_LOCATION;
       x= *test2;                             */ 

Inside the CMSIS function __set_CONTROL, an ISB barrier is inserted at the end of
the function to guarantee the updates take effect before the next instruction.

Once you trigger the fault scenario, it is expected that you will enter into MemManage Fault. It is
good to note that the MemManage handler is also defined in main.c:

/*----------------------------------------------------------------------------
  MemManage Handler
 *----------------------------------------------------------------------------*/
void MemManage_Handler(void){
    printf("    We are in the MemManage handler. \n");
    printf("    MemManage Fault Address Register: \n        
                SCB->MMFAR = 0x%08x\n", SCB->MMFAR );
    printf("    MemManage Fault Status Register: \n        
                SCB->CFSR->MMFSR = 0x%08x\n", (0x000000FF)&(SCB->CFSR));
    assert(0);
}

5.2.5 Output in Target Console

Consider the following scenarios:

• Scenario:1 - Perform a write to a Read-only memory. This results in MemManage fault showing
following output in target console:

Example Project: trap_access Start
We are in the MemManage handler. 
    MemManage Fault Address Register: 
        SCB->MMFAR = 0x00000000
    MemManage Fault Status Register: 
        SCB->CFSR->MMFSR = 0x00000082
Example Project: trap_access End
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• Scenario:2 - Read privileged memory from unprivileged state. This results in a MemManage
fault showing following output in target console

Example Project: trap_access Start
We are in the MemManage handler. 
    MemManage Fault Address Register: 
        SCB->MMFAR = 0x5800e000
    MemManage Fault Status Register: 
        SCB->CFSR->MMFSR = 0x00000082
Example Project: trap_access End 

In both of the faults above, the MMFAR register shows the address causing the MemManage fault.
The MMFSR register provides the following information of the MemManage fault, from the value
0x82:

- The processor attempted a load or store to a memory location which is not
 permitted.
- `MMFAR` holds a valid fault address.

5.3 rtos_context_switch
The goal of this example is to show a simple and easy to understand the real-time kernel context
switching operations; using MPU regions concept available in Cortex-M processors. This goal is
accomplished by having two threads A and B, that switches alternatively between them and a
Systick Interrupt Service Routine(ISR) that acts as a kernel code.

Basic context switching and thread isolation requirements considered for this example are listed
below:

• Two isolated threads called as thread A and thread B will be created

• Both thread A and thread B will be executed in unprivileged mode.

• Each thread has its own dedicated process stack.

• The MPU regions are setup in such a way that the data and code corresponding to Thread A is
not accessible to Thread B and vice-versa.

• A System Tick Timer (SysTick) generates interrupts to switch between threads.

• The SysTick handler acts as a real-time kernel code and is responsible for context switching. The
Systick handler is also responsible for MPU reprogramming that is needed for thread isolation.

• The MPU regions for SysTick handler is setup in such a way that it neither of the threads can
access the memory used by kernel code (i.e.) SysTick handler.
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Figure 5-4: context_switch layout

The source code for this example is available at Memory_model/rtos_context_switch.

To understand this example, the implementation details are divided into two sections:

• Basic Building Blocks

• Putting it all together

5.3.1 Basic Building Blocks

The building blocks for this example are:

• Memory map and MPU Configurations

• The SysTick Timer

• Thread Initialization

• Thread Context Switch in SysTick handler
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5.3.1.1 Memory map and MPU Configurations

Below figure shows the overall memory map that will be used in this example.

Figure 5-5: Memory map

Considering the target memory map, the following execution regions are defined in the scatter file.
Please see the scatter file RTE/Device/ARMv8MML/ARMv8MML.sct for the full description of the
different regions.

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 76

https://github.com/ARM-software/m-profile-user-guide-examples/blob/main/Memory_model/rtos_context_switch/RTE/Device/ARMv8MML/ARMv8MML_ac6.sct


Armv8-M Memory Model and Memory Protection User
Guide

Document ID: 107565_0101_01_en
Version 1.1

Use case examples

Figure 5-6: Scatter file layout 1

Before triggering the context switch operations, initial set of MPU regions are programmed in
setMPU() function available in mpu_prog.c. The initial set of MPU regions include from MPU region
0 to MPU region 3 which are used define memory for Privileged and Unprivileged access with the
program as shown in above figure. setMPU function is called only once when executing startOS()
function. The startOS() function is called from main.c. Later in SysTick handler, the MPU regions
(MPU region 0 and MPU region 1) are reconfigured to new thread that is going to be executed out
of a context switch operation.

The MPU is configured in such a way that the background region is accessible only by privileged
access by setting MPU_CTRL.PRIVDEFENA bit. Since Thread-A,Thread-B are required to be
executed in unprivileged mode, individual MPU regions are setup for unprivileged thread execution
and for its data accesses. This is shown in below figure:
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Figure 5-7: Scatter file layout 2

5.3.1.2 The SysTick Timer

As a part of Armv8-M architecture, the architecture provides an in-built system timer called as
SysTick. A SysTick provides a simple, 24-bit decrementing, wrap-on-zero counter. Though SysTick
can be used for various purposes,in this example, SysTick acts as an RTOS tick timer that generates
interrupt requests at a programmable rate on a regular basis.

The variable SystemCoreClock holds the clock speed, and is updated by SystemCoreClockUpdate()
function based on hardware configuration. The SysTick is then setup to generate SysTick exception
at 2KHz. Timing interval (in number of clock cycle) will be SystemCoreClock/2000.

  SystemCoreClockUpdate();
  SysTick_Config(SystemCoreClock/2000);

It is good to note that SystemCoreClockUpdate() function operates based on
device’s vendor implementation. Check your vendor’s implementation to get more
details on clock frequency and its interval.

Using SysTick as an interrupt source, Thread A and Thread B are switched alternatively from SysTick
handler routine.

The SysTick handler SysTick_Handler() is defined in myRTOS.c and written using embedded
assembly as given in below code sequence:

extern __attribute__((naked)) void SysTick_Handler(){
    __asm(
        "PUSH   {r4-r11}\n"
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        "MOV     r1,sp\n"
        "MOV    r0,lr\n"
        "BL     SysTick_Handler_body\n"
        "POP    {r4-r11}\n"
        "BX     r0"
    );

Why SysTick_Handler() marked as naked? As SysTick exception handler
(SysTick_Handler()) is marked as weak alias, any function with the same name will
override this definition. When a function is declared with __attribute__((naked)),
the compiler does not generate prologue and epilogue sequences for that functions.
In this example, SysTick_Handler() is declared with __attribute__((naked)) to
ensure that context saving operations requierd for threads A and B are handled
completely in the body of SysTick_Handler().

5.3.1.3 Thread Initialization

For the RTOS to switch between threads, the context of each thread should be defined. To define
the context of a thread, the following data are required:

• Stack pointer

• Stack pointer limit

• Program counter

• Link register

• MPU configuration for the thread

• Thread identifier

• Callee registers (Saved and restored in SysTick handler)

newThread() is a function defined in myRTOS.c is used to create new threads by initialising the
different fields of the thread context:

int newThread(void * function, uint32_t * threadStackLim, ThreadContext
 *threadContext, MpuRegionCfg  *mpuConf,  unsigned int  threadID){
    for(int i = 0; i < NUM_CALLEE_REGS; i++){
        threadContext->calleeRegs[i] = 0x0;
    }
    threadContext -> spLimit  = threadStackLim;
    threadContext -> pc = function;
    threadContext -> lr = MY_EXC_RETURN;
    threadContext -> mpuCfg = mpuConf;
    threadContext -> id = threadID;
    // Initialise thread stack
    threadContext -> sp  = (threadStackLim + 
                           THREAD_STACK_SIZE - NORM_STACK_FRAME_SIZE);
    threadContext -> sp[NORM_STACK_FRAME_XPSR_OFFSET] = DEF_MY_XPSR;
    threadContext -> sp[NORM_STACK_FRAME_PC_OFFSET] = (uint32_t)function;
    return 0;
}
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Each thread have defined memory regions allocated for its code execution and data accesses
separately. The file threadDefs.h includes the definitions required for each thread.

If Security extension is implemented in a system, then while context switching to
next thread, the new thread’s stack pointer top should be sealed with a value of
0xFEF5EDA5. For more details on context switching operations across Secure and
Non-secure environments, refer Armv8-M Security Extension User Guide.

• Thread A calculates and prints numbers of the Fibonacci sequence. The thread A function
(thrA()), thread A data and thread A stack (uint32_t threadA_stk[THREAD_STACK_SIZE]) are in
threadA.c.

• Thread B calculates and prints numbers of the Pentagonal sequence. The thread B function
(thrB()), thread B data and thread B stack (uint32_t threadB_stk[THREAD_STACK_SIZE]) are in
threadB.c.

5.3.1.4 Thread Context Switch in SysTick handler

The context switch happens in SysTick exception handler. Once a SysTick interrupt occurs, the
processor hardware automatically stacks an exception frame (RETPSR, PC, LR, r12 and r3-r0) onto
the Process Stack (PSP) and branches to the SysTick handler routine in Handler Mode (which uses
the Main Stack).

As a part of context switching operation, the SysTick handler performs following operations:

• Manually save remaining registers r4-r11 on the Main Stack

• Save current thread’s PSP location

• Load next thread’s stack pointer memory location and assign it to PSP

• Manually unstack registers r4-r11

• Perform a Systick exception return operation by executing “BX LR”. Note that LR is written
with a value of 0xFFFFFFFD which makes the processor switch to unprivileged thread mode,
unstack next thread’s exception frame from PSP and continue on its PC.

This figure shows the layout on how each registers are saved on the stack (i.e.) 1. Registers saved
by Exception stack frame 2. Registers saved by Systick handler software routine
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Figure 5-8: Register save layout

Below flow-chart shows the steps performed in SysTick_Handler() as a part of Thread context
switching operations:

Figure 5-9: SysTick_handler_switch layout
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Once the current context is changed to the other thread, the MPU regions are reconfigured to its
corresponding thread by calling the function reprogMPU().

For example, if the current context is Thread-A and the context switch happens to Thread-B, then
MPU regions are reconfigured like below:

MPU Register Current context - Thread A New context - Thread B

MPU_RBAR0 (Base) 0x00100000 0x00200000

MPU_RLAR0 (Limit) 0x00140000 0x00240000

MPU_RBAR1 (Base) 0x21000000 0x21100000

MPU_RLAR1 (Limit) 0x21040000 0x21140000

5.3.2 Putting it all together

This section demonstrates the steps required for context switching using the building blocks
described in Basic Building Blocks.

• Step:1 - Reset Handler and System initialization

• Step:2 - Define and create new threads in main()

• Step:3 - Start SysTick Timer

• Step:4 - Enter SysTick Handler

• Step:5 - SysTick Handler routine

• Step:6 - Enter new thread in unprivileged mode.

5.3.2.1 Step:1

As a part of Reset_Handler() routine, following registers are initialized before branching to
__PROGRAM_START which is Arm C library entry point.

• Process Stack Pointer (PSP)

• Process Stack Pointer Limit (PSPLIM)

• Main Stack Pointer Limit (MSPLIM)

• Vector Table Offest Register (VTOR)

• CCR.UNALIGNED_TRP bit is set to 1 to trap any unaligned accesses

5.3.2.2 Step:2

Post performing Arm C library initialization routines successfully in __PROGRAM_START, the program
now enters main(). As a part of this main() routine, the MPU regions are initialized as per figure
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Scatter file layout-1 in Memory map and MPU Configurations. Thread-A and Thread-B are created
by calling newThread() function.

In this example, it is expected that the first thread to get executed is Thread-A. Hence, before
triggering the Systick interrupt which performs the context switch, the current context is initialized
as Thread-B.

    currentContext = &threadBContext;

Hence on SysTick interrupt handler return, Thread-A will be executed as a first thread.

5.3.2.3 Step:3

The SysTick timer interrupt is enabled by startOS() function (i.e.) the SysTick timer interrupt
is enabled by writing 1 to SYST_CSR.ENABLE register and processor will start SysTick timer by
decrementing the counter. When the counter reaches to a value of zero, SysTick interrupt is
triggered before reloading a non-zero value in the counter. The context switch operation handled
by SysTick handler.

The idle thread is run until the SysTick timer generates an exception that will start
running and alternating between threads.

5.3.2.4 Step:4

On a SysTick interrupt, the processor hardware save the registers (R0-R3,R12,LR,PC and RETPSR)
as a part of exception stacking process and enter SysTick Handler routine.

If you assuming that a SysTick interrupt occurs on Thread-A execution, then PSP
initialized for Thread-A will be used for exception stacking process

5.3.2.5 Step:5

In SysTick handler, following steps are performed:

• Save R4-R11 registers on to Main stack pointer.

• Save the PSP value into a memory location such that it can be used later.

• Load PSP value for the next thread from memory

• Restore R4-R11 values from Main stack pointer.
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• Perform exception return with EXC_RETURN as 0xFFFFFFFD (i.e.) return to thread mode with
new PSP stack pointer

Following figure depicts the context switch operation from Thread-A to Thread-B as an example:

Figure 5-10: Thread A to Thread B example

5.3.2.6 Step:6

Enter next thread in unprivileged thread mode using new PSP.

Assuming that the SysTick exception interrupted Thread-A, you will notice that the processor is
returning to Thread-B; hence, the context switch is complete!

5.3.2.6.1 Output in Target Console

Here is a snippet of expected output in your target console:

Fibonacci number: 0 

Fibonacci number: 1 

Fibonacci number: 2 

Fibonacci number: 3 

...

Pentagonal number: 2752 

Pentagonal number: 2882 

Pentagonal number: 3015 

Pentagonal number: 3151 

...

Fibonacci number: 8 

Fibonacci number: 13 
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Fibonacci number: 21 

Fibonacci number: 34 

5.3.3 Additional Information

Here are few additional notes considered for this example:

• For simplicity, Systick exception is used to switch between the threads in this example.
However, it is recommended to use PendSV exception for more complex context switching
operations(Refer Armv8-M Exception Model User Guide for more information).

• Though in a more realistic system, there will be number of threads to handle, and there might
be more sophisticated mechanisms to assign priority to these threads into different categories,
this example does not assign any priority between the threads.

• Some systems might choose to have the context switching written in assembly language for
performance reasons, but C language is used in this example for easy read.

• It does not use use any other higher priority interrupts (like NMI) to disrupt the switching
between the threads.

5.3.3.1 Triggering a MemManage fault

The MemManage Faults can be enabled before enabling the MPU in setMPU() in mpu_prog.c:

If we uncomment the following code in threadB.c:

// Uncomment to trigger MemManage fault
threadA_stk[1] = 0x0;

then, thread B tries to write on thread A stack which will trigger a MemManage fault. The
MemManage fault will enter MemManage_Handler() available in myRTOS.c.

5.3.3.2 Project structure

The file structure of this example project is shown below:

│   main.c
│   mpu_configs.c
│   mpu_configs.h
│   mpu_defs.h
│   mpu_prog.c
│   mpu_prog.h
│   mpu_reprog.c
│   mpu_reprog.h
│   myRTOS.c
│   myRTOS.h
│   threadA.c
│   threadB.c
│   threadDefs.h
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└───RTE
    │   RTE_Components.h
    └───Device
        └───ARMv8MML
                ARMv8MML_ac6.sct
                startup_ARMv8MML.c
                system_ARMv8MML.c

• main.c: Threads creation and initilization, starting the RTOS.

• mpu_configs.c: Setting thread A and thread B MPU configurations.

• mpu_defs.h: Definitions for MPU region attributes.

• mpu_prog.c: Initial MPU programming, enabling MemManage faults, enabling the MPU.

• mpu_reprog.c: Reprogramming the MPU when switching between threads.

• myRTOS.c:

◦ Starting the OS.

◦ Creating new threads.

◦ SysTick handler for thread management and context switching.

◦ MemManage handler.

• threadA.c: Calculates and prints numbers of the Fibonacci sequence.

• threadB.c: Calculates and prints numbers of the Pentagonal sequence.

• threadDefs.h: Definitions and type definitions for thread contexts.

5.4 TCM_implement
Tightly Coupled Memory (TCM) provides low-latency memory access. It can be used to hold time-
critical routines, such as interrupt handlers and real-time tasks where the indeterminacy of a cache
is undesirable. In addition, TCM can be used to hold critical data structures like interrupt stacks.

This example aims to show:

• How to enable the TCM.

• How to place latency-critical code in ITCM and latency-critical data in DTCM.

The source code for this example is available at Memory_model/TCM_implement.

An execution flow chart for this example project is shown below:
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Figure 5-11: Execution flow chart for TCM_implement example

5.4.1 Project structure

The file structure of this example project is as follows:

│   main.c
│   mpu_defs.h
│   mpu_prog.c
│   mpu_prog.h
│   Excep_prog.c
│   Excep_prog.h
│   check_is_full.c
└───RTE
    │   RTE_Components.h
    └───Device
        └───ARMCM55
                ARMCM55_ac6.sct
                startup_ARMCM55.c
                system_ARMCM55.c

• main.c: Sets the MPU, enables the cache, configures the SysTick timer, and starts the
background sequence.

• mpu_prog.c: Programs the MPU regions and enables the MPU.

• Excep_prog.c: Relocates the vector table to ITCM.

• mpu_defs.h: Definitions for MPU region attributes.

• check_is_full.c: Latency-critical function that checks the current deposit level then either sets
a flag to stop or continues filling the deposit. It also contains the SysTick handler with the
latency-critical code that controls the filling of the deposit.
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• RTE/Device/ARMCM55/startup_ARMCM55.c: Configures the vector table and interrupt/
exception handlers, enables the TCM, and invalidates the cache.

• RTE/Device/ARMCM55/ARMCM55_ac6.sct: Scatter file, specifies the physical memory regions
for the TCM, ROM, and RAM.

• RTE/Device/ARMCM55/system_ARMCM55.c: Target definitions.

5.4.2 Memory map and scatter file definitions

In this example, in addition to ROM and RAM, the TCM region is divided and aligned with the
memory map of the Cortex-M55. The following diagram shows a snippet of the scatter file
definitions for this project. Please see the complete scatter file for the full description of the
different regions.

Figure 5-12: Scatter file layout

The diagram shows that the scatter file defines four regions:

• RO_ROM: Read-only region starting at __RO_BASE, used for general memory read-only
operations. Most code is located in this region, for example the background sequence and
SysTick_Config(). In this example, the load address is also __RO_BASE. When booting the
system, all code is put in this region.
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• ITCM: A read-write load region (ITCM) starting at __ITCM_BASE (0x0). In this example, the TCM
is divided into two parts. The first part, 0x0000_0000 to 0x0000_0800, is for the new vector
table. The rest of the TCM is for latency-critical code, such as libraries.

• DTCM: A read-write region (DTCM) starting at __DTCM_BASE (0x2000_0000). In this example,
the data used in latency-critical code is all located at DTCM. According to the Cortex-M55
TRM, TCM control registers (ITCMCR and DTCMCR) can be read to obtain information about
TCM enablement and TCM size. In accordance with the TRM, we set the ITCM region starting
at 0x0 and the DTCM region starting at 0x2000_0000, both with size 256KB.

• RW_RAM: A read-write region (RW_RAM) starting at __RW_BASE used for general memory read
and write operations. Macros and global variables defined by main.c are located in normal RAM.

When the system boots, it enters into the RESET region. The line *.o (RESET, +First) of the
scatter file example shown above specifies that the RESET region is placed as the first item in the
ER_ROM region starting at __RO_BASE. This address value must match the initial Vector Table
Offset Register (VTOR) for the hardware platform being used.

Before enabling TCM, the MSP and vector table points at the default RAM and ROM address
regions respectively. After enabling the TCM, the MSP switches into the DTCM, and the vector
table switches into ITCM.

LR_ROM __RO_BASE __RO_SIZE  {                  ; load region size_region 
   ER_ROM __RO_BASE __RO_SIZE  {                    ; execution address
   *.o (RESET, +First)
   *(InRoot$$Sections)
   .ANY (+RO)
   .ANY (+XO)
  } 
  
  ITCM __ITCM_BASE __VectorTable_SIZE{
    *Excep_prog.o (NewVT)
  }
  
  ITCM_Code __ITCMCode_BASE __Code_SIZE{
    *check_is_full.o (+RO +XO)
    *armlib* (+RO +XO)
  }
  
  DTCM __DTCM_BASE __DTCM_SIZE - __STACK_SIZE - __HEAP_SIZE {
    *check_is_full.o (+RW +ZI)
    *armlib* (+RW +ZI)
  }

#if __HEAP_SIZE > 0
  ARM_LIB_HEAP  __HEAP_BASE EMPTY  __HEAP_SIZE  {   ; Reserve empty region for heap
  }
#endif

  ARM_LIB_STACK __STACK_TOP EMPTY -__STACK_SIZE {   ; Reserve empty region for stack
  } 

  RW_RAM __RW_BASE __RW_SIZE  {                     ; RW data
    .ANY (+RW +ZI)
  }
  
  RESET_MSP_STACK __RESETMSPSTACK_TOP EMPTY -__STACK_SIZE{
  }
}
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Once the vector table is relocated and the VTOR address is changed, the startup sequence
commences from the new vector table address location.

5.4.3 MPU configurations

When entering main(), the MPU regions are programmed using MPU Functions for Armv8-M by
calling the function setMPU(), which is defined in mpu_prog.c. This example project uses four MPU
regions:

MPU
region

Information Address range eXecute
Never

Shareability Access
Permissions

Attr Index

0 ITCM (new
vector
table)

ITCM Base- ITCM Limit XN = 0 ARM_MPU_SH_OUTER Read/
Write, any
privilege

AttrIndx 1 (Normal
memory, non-
cacheable)

1 ITCMCode ITCMCode Base- ITCMCode Limit XN = 0 ARM_MPU_SH_OUTER Read
only, any
privilege

AttrIndx 1 (Normal
memory, non-
cacheable)

2 ROM ROM Base- ROM Limit XN = 0 ARM_MPU_SH_NON Read
only, any
privilege

AttrIndx 0 (Normal
memory, cacheable,
outer and inner Write-
Through non-transient
with read allocate)

3 DTCM DTCM Base-
ARM_LIB_STACK ZILimit|XN =
 1|ARMMPUSHOUTER|Read/Write, anyprivilege|AttrIndx1(Normalmemory, non
 − cacheable)||4|RAM|RWRAMBase
 − RESETMSPSTACK ZI Limit

XN = 1 ARM_MPU_SH_NON Read/
Write, any
privilege

AttrIndx 0 (Normal
memory, cacheable,
outer and inner Write-
Through non-transient
with read allocate)

5.4.4 Controlling the deposit system

This example simulates a simple deposit mechanism as shown in the following diagram:

Figure 5-13: Deposit process
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In this mechanism, the container is filled using the inlet nozzle, and emptied using an outlet nozzle.
If the container is full and about to spill over, then the inlet should be stopped and the outlet
opened. Periodically, the volume of the deposit in the container should be checked so that the inlet
and outlet nozzle can be controlled properly.

To achieve the objective of simulating this deposit mechanism, the example is divided into two
sections:

• Latency-critical code

• Non-latency critical code

To check the volume of the deposit in the container, a SysTick Timer is configured to trigger
a SysTick exception periodically. In the SysTick handler, the volume of the deposit is checked.
Because it is important to take immediate action if the container is about to spill over, the SysTick
handler checks should be executed as soon as possible. Therefore the SysTick handler is considered
latency-critical, and located at ITCM. However, other code sequences are not considered latency-
critical, and can be placed in normal RAM and ROM.

5.4.4.1 Relocate the vector table

Typically, the vector table is located in the ROM region. This vector table needs to be relocated to
the TCM region. In this example, the contents of the old vector table are copied to the new vector
table using a memory copy operation. The example then changes the VTOR.

The new vector table is defined with an attribute section, NewVT. We can specify that the NewVT
belongs to the ITCM region. Now, the booting address is the address of the new vector table,
which is the starting place of ITCM.

5.4.4.2 Trigger the SysTick timer

In main(), after setting the MPU regions and enabling the MPU and cache, we set up the SysTick
timer by calling SysTick_Config(). Execution enters a while loop until the first SysTick exception
occurs. During the while loop, if the container is not yet full we continue making deposits and
increase the flow rate.

#define MAX_RPMS 100
#define RPMS_TO_INC 15

int rpms = 0;
int stir = 0;

int main(){
...
  /* Step3: Generate SysTick interrupt */
  SystemCoreClockUpdate();
  SysTick_Config(SystemCoreClock/200);

  /* Start background sequence */
  while(1){
    if(rpms < MAX_RPMS){
        stir = 1;
        rpms += RPMS_TO_INC;
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    }
    else{
        stir = 0;
        rpms = 0;
    }
    printf("Current revolutions per minute: %d \n", rpms);
  }
...
}

5.4.4.3 Handling SysTick exceptions

When the SysTick exception occurs, the program jumps into SysTick_Handler() to handle
this exception. This handler checks if the container is full, and either continues filling or stops
depending on the result of the check.

Because the check_is_full() function in SysTick_Handler() is latency-sensitive, the scatter file
adds the read-only part of *check_is_full.o into the ITCM region and the read-write part into the
DTCM region.

:::Note With the Arm compiler, we can relocate the latency-critical code simply by using the scatter
file, because the linker and Arm C compiler construct and use the symbol Region$$Table. However,
this is not a standard feature of all toolchains. If the toolchain does not provide this feature, we
need to manually relocate the latency-critical code in the same way we relocated the vector
table. ::

5.4.5 Output in Target Console

The Target Console shows the following output when running this example:

Example Project: TCM-implement Start
Vector table address is 0x10000000
New vector table address is 0x00000000
Current revolutions per minute: 15 
Current revolutions per minute: 30 
Current revolutions per minute: 45 
Current revolutions per minute: 60 
Current revolutions per minute: 75 
Current revolutions per minute: 90 
Current revolutions per minute: 105 
Current revolutions per minute: 0 
Current revolutions per minute: 15 
Current revolutions per minute: 30 
Current revolutions per minute: 45 
Current revolutions per minute: 60 
CurrNumber of checks in SysTick handler: 0 
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5.4.5.1 Test on MPS3 board

To execute the project on an AN555 (Cortex-M85), we need to modify the scatter file to match the
AN555 memory map.

The following diagram shows part of scatter file:

Figure 5-14: Scatter file layout

Once we relocate the VTOR for the MPS3 board, the boot address will be changed too. If we do
not connect the debugger, the boot address will be read from the board configuration, so we need
to change the config file. Otherwise, the boot address is loaded by the debugger, which does not
require manual configuration.

The output is shown below:

Arm MPS3 FPGA Prototyping Board Test Suite
Version 1.2.6 Build date: Jun 15 2023
Copyright (C) Arm Ltd 2023. All rights reserved.

Program started.
Vector table address is 0x11000000
New vector table address is 0x10000000
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Current revolutions per minute: 15 
Current revolutions per minute: 30 
Current revolutions per minute: 45 
Current revolutions per minute: 60 
Current revolutions per minute: 75 
Current revolutions per minute: 90 
Current revolutions per minute: 105 
Current revolutions per minute: 0 
Current revolutions per minute: 15 
Current revolutions per minute: 30 
Current revolutions per minute: 45 
Current revolutions per minute: 60 
Current revolutions per minute: 75 
Current revolutions per minute: 90 
Current revolutions per minute: 105 
Current revolutions per minute: 0 
Current revolutions per minute: 15 
Current revolutions per minute: 30 
Current revolutions per minute: 45 
Current revolutions per minute: 60 
Current revolutions per minute: 75 
Current revolutions per minute: 90 
Current revolutions per minute: 105 
Current revolutions per minutNumber of checks in SysTick handler: 0 
Current volume: 10 
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6. References
Here are some resources related to material in this guide:

• Armv8-M Architecture Reference Manual

• Books:

◦ The Definitive Guide to Arm Cortex-M3 and Cortex-M4 Processors - Joseph Yiu

◦ The Definitive Guide to Arm Cortex-M23 and Cortex-M33 Processors - Joseph Yiu

• Cortex-M resources

• Procedure Call Standard for the Arm Architecture
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7. Next steps
Refer to the following guides for more details about specific architectural extensions:

• Armv8-M Exception Model User Guide

• Armv8-M Security Extension User Guide
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