
Arm® Mali™ Offline Compiler
Version 8.0

User Guide

Non-Confidential
Copyright © 2019–2023 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
101863_0800_00_en

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Arm® Mali™ Offline Compiler
User Guide

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0700-
00

30 October 2019 Non-
Confidential

Document release for Mali Offline Compiler version 7.0.

0701-
00

28 February
2020

Non-
Confidential

Update for Mali Offline Compiler version 7.1.

0702-
00

26 August 2020 Non-
Confidential

Update for Mali Offline Compiler version 7.2.

0703-
00

27 November
2020

Non-
Confidential

Update for Mali Offline Compiler version 7.3.

0704-
00

26 August 2021 Non-
Confidential

Update for Mali Offline Compiler version 7.4.

0705-
00

22 February
2022

Non-
Confidential

Update for Mali Offline Compiler version 7.5.

0706-
00

26 May 2022 Non-
Confidential

Update for Mali Offline Compiler version 7.6.

0707-
00

26 August 2022 Non-
Confidential

Update for Mali Offline Compiler version 7.7.

0708-
00

25 November
2022

Non-
Confidential

Update for Mali Offline Compiler version 7.8.

0708-
01

1 December
2022

Non-
Confidential

Documentation update 1 for Mali Offline Compiler
version 7.8.

0709-
00

15 April 2023 Non-
Confidential

Update for Mali Offline Compiler version 7.9.

0800-
00

11 June 2023 Non-
Confidential

Update for Mali Offline Compiler version 8.0.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 30

https://www.arm.com/company/policies/trademarks

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 30

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00
Contents

Contents

1. Introduction.. 7
1.1 Conventions..7
1.2 Useful resources..8
1.3 Other information... 8

2. Platform support... 9
2.1 API support...9
2.2 GPU support.. 9
2.3 Binary generation support..10

3. Using Mali Offline Compiler.. 11
3.1 Install Mali Offline Compiler..11
3.2 Querying compiler capabilities.. 12
3.3 Compiling OpenGL ES shaders...12
3.4 Compiling Vulkan shaders.. 13
3.5 Compiling OpenCL kernels...15
3.5.1 Header includes...16
3.6 Syntax error reporting... 17
3.7 Performance analysis... 17
3.7.1 IDVS shader variants..17
3.7.2 Resource usage..18
3.7.3 Performance table...19
3.7.4 Shader properties..20
3.7.5 Recommended vertex attribute streams... 22
3.8 Performance considerations...23
3.9 Generating JSON reports...23

4. Mali GPU pipelines.. 25
4.1 Mali Midgard architecture.. 25
4.1.1 Midgard work register breakpoints...26
4.2 Mali Bifrost architecture... 26
4.2.1 Bifrost work register breakpoints..27
4.2.2 Bifrost shader core size...28

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00
Contents

4.3 Mali Valhall architecture..28
4.3.1 Valhall work register breakpoints.. 29
4.3.2 Valhall shader core size... 30

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Introduction

1. Introduction
Describes how to install, get started, and use Mali™ Offline Compiler to capture performance
measurements from your Mali and Immortalis devices.

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 30

https://developer.arm.com/glossary

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Introduction

Convention Use
An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Non-Arm resources Document ID Organization

Annotate and validate JSON documents - JSON Schema

1.3 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 30

https://developer.arm.com/documentation
https://json-schema.org/
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Platform support

2. Platform support
Arm® Mali™ Offline Compiler is a command-line tool that provides static analysis of graphics
shaders that are written in OpenGL ES Shading Language (ESSL) or Vulkan SPIR-V intermediate
representation. Compute kernels that are written in OpenCL C or OpenCL SPIR-V intermediate
representation are also supported.

Mali Offline Compiler can be used to:

• Validate the syntax of shaders

• Identify performance bottlenecks

• Measure the performance impact of any changes

2.1 API support
Arm® Mali™ Offline Compiler supports compiling shaders for the OpenGL ES and Vulkan graphics
APIs, and compiling kernels for the OpenCL compute API.

The following API versions are supported, subject to support being available for the targeted GPU
core:

• OpenGL ES 2.0 and 3.0-3.2

• Vulkan 1.0-1.3

• OpenCL 1.0-1.2, 2.0, and 3.0

OpenCL support is only available on Linux and macOS host installations.

2.2 GPU support
Arm® Mali™ Offline Compiler supports the following Arm Immortalis™ and Arm Mali GPU products:

Valhall architecture
• Immortalis-G715 (OpenGL ES, Vulkan, OpenCL)

• Mali-G715 (OpenGL ES, Vulkan, OpenCL)

• Mali-G710 (OpenGL ES, Vulkan, OpenCL)

• Mali-G615 (OpenGL ES, Vulkan, OpenCL)

• Mali-G610 (OpenGL ES, Vulkan, OpenCL)

• Mali-G510 (OpenGL ES, Vulkan, OpenCL)

• Mali-G310 (OpenGL ES, Vulkan, OpenCL)

• Mali-G78AE (OpenGL ES, Vulkan, OpenCL)

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Platform support

• Mali-G78 (OpenGL ES, Vulkan, OpenCL)

• Mali-G77 (OpenGL ES, Vulkan, OpenCL)

• Mali-G68 (OpenGL ES, Vulkan, OpenCL)

• Mali-G57 (OpenGL ES, Vulkan, OpenCL)

Bifrost architecture
• Mali-G76 (OpenGL ES, Vulkan, OpenCL)

• Mali-G72 (OpenGL ES, Vulkan, OpenCL)

• Mali-G71 (OpenGL ES, Vulkan, OpenCL)

• Mali-G52 (OpenGL ES, Vulkan, OpenCL)

• Mali-G51 (OpenGL ES, Vulkan, OpenCL)

• Mali-G31 (OpenGL ES, Vulkan, OpenCL)

Midgard architecture
• Mali-T880 (OpenGL ES, Vulkan, OpenCL)

• Mali-T860 (OpenGL ES, Vulkan, OpenCL)

• Mali-T830 (OpenGL ES, Vulkan, OpenCL)

• Mali-T820 (OpenGL ES, Vulkan, OpenCL)

• Mali-T760 (OpenGL ES, Vulkan, OpenCL)

• Mali-T720 (OpenGL ES, OpenCL)

Mali Offline Compiler targets the following driver versions for the supported GPUs:

• Bifrost and Valhall architecture GPUs use r42p0

• Midgard architecture GPUs use r23p0

2.3 Binary generation support
Arm® Mali™ Offline Compiler no longer provides the ability to generate binaries for graphics
shaders or compute kernels.

Compile and link entire shader programs using the production driver on the target device, and then
retrieve the binary using API calls such as glGetProgramBinary(). These whole-program binaries
are often more efficient than the single shader stage binaries produced by legacy Mali Offline
Compiler releases, as extra program-level optimizations can be applied.

Most compiled shader binaries are specific to a single pairing of GPU hardware
version and driver version, so reliance on binary-only shader distribution is not
recommended.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

3. Using Mali Offline Compiler
To query the capabilities of the compiler, or of a specific GPU, and to compile the shader, invoke
malioc with different command-line options. If compilation is successful, analyze the output
performance report.

3.1 Install Mali Offline Compiler
This topic describes how to install Arm® Mali™ Offline Compiler as part of Arm Mobile Studio.

About this task
If you have already installed Arm Mobile Studio, you do not need to do anything further to install
Mali Offline Compiler.

Before you begin
1. Log in to your Arm Account. If you don't have one, register at Downloads.

2. Download the Arm Mobile Studio install package for your platform.

Procedure
1. Install:

• On 64-bit Windows:

Arm Mobile Studio is provided with an installer executable. Double-click the .exe file and
follow the instructions in the Setup Wizard.

• On macOS:

Arm Mobile Studio is provided as a dmg package. To mount the package, double-click the
dmg package and follow the instructions. For easy access, the directory tree copies to the
Applications folder on your local file system.

• On Linux:

Arm Mobile Studio is provided as a gzipped tar archive. Use a recent version (1.13 or later)
of GNU tar to extract the tar archive to your preferred location:

tar xvzf Arm_Mobile_Studio_<version>_linux.tgz

2. Add the path to the installation directory to your PATH environment variable.

If you do not update your PATH, you must manually invoke the compiler from the installation
directory.

Next steps
Check your compiler configuration, see Querying compiler capabilities.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 30

https://developer.arm.com/downloads/-/arm-mobile-studio-downloads

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

3.2 Querying compiler capabilities
You can query information about the compiler configuration from the command line.

• The --list option lists all the valid combinations of supported driver versions, GPUs, and
hardware revisions. The listing shows the full capabilities of the compiler, but a specific GPU
might not support all the language versions and extensions that the compiler supports.

• The --info <gpu> option shows detailed capability information for a specific GPU. For example:

malioc --info -c Mali-G72

It only shows the language versions and extensions that the GPU supports.

3.3 Compiling OpenGL ES shaders
Use the following command-line syntax to compile OpenGL ES shader programs:

malioc [--opengles] [-c <target_gpu>] [<shader_type>] <file1> [<file2> ...] \

[-o <file>]

target_gpu is one of the GPUs that are listed in GPU support. If target_gpu is not specified the
latest supported GPU is used.

shader_type is one of the following:

• --vertex

• --tessellation_control

• --tessellation_evaluation

• --geometry

• --fragment

• --compute

You must specify one or more input files that contain the ESSL source code to compile. To read
input from stdin, instead of a file on disk, insert a single - character. If the input files use one of the
following default file extensions, you do not need to explicitly specify the shader type:

.vert

OpenGL ES vertex shader.

.tesc

OpenGL ES tessellation control shader.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

.tese

OpenGL ES tessellation evaluation shader.

.geom

OpenGL ES geometry shader.

.frag

OpenGL ES fragment shader.

.comp

OpenGL ES compute shader.

If you specify multiple input files:

• They are concatenated in the order in which they are specified, before compilation.

• They must all use the same extension if you do not explicitly specify the shader type.

By default, malioc emits reports to the stdout output stream. You can write directly to a file by
specifying the -o <file> option. The destination directory must exist because it is not created.

Use the -D option to define a macro on the command line for use in shader source code. For
example:

-Dfoo

Defines foo with a default value of 1.

-Dfoo=bar

Defines foo with the value bar.

3.4 Compiling Vulkan shaders
Use the following command-line syntax to compile Vulkan shaders:

malioc --vulkan [-c <target_gpu>] [<shader_type>] [--spirv] [-n <name>] \

<file1> [<file2> ...] [-o <file>]

target_gpu is one of the GPUs that are listed in GPU support. If target_gpu is not specified the
latest supported GPU is used.

shader_type is one of the following:

• --vertex

• --tessellation_control

• --tessellation_evaluation

• --geometry

• --fragment

• --compute

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

The input files are either:

• One or more GLSL, or ESSL, source shaders.

• A single SPIR-V binary module that has been compiled using Vulkan semantics.

To read input from stdin, instead of a file on disk, insert a single - character. You do not need to
explicitly specify the source shader type if the input files use one of the supported file extensions:

.vert

OpenGL or OpenGL ES syntax vertex shader.

.tesc

OpenGL or OpenGL ES syntax tessellation control shader.

.tese

OpenGL or OpenGL ES syntax tessellation evaluation shader.

.geom

OpenGL or OpenGL ES syntax geometry shader.

.frag

OpenGL or OpenGL ES syntax fragment shader.

.comp

OpenGL or OpenGL ES syntax compute shader.

.rgen

OpenGL or OpenGL ES syntax ray generation shader.

.rahit

OpenGL or OpenGL ES syntax ray any hit shader.

.rchit

OpenGL or OpenGL ES syntax ray closest hit shader.

.rint

OpenGL or OpenGL ES syntax ray intersection shader.

.rmiss

OpenGL or OpenGL ES syntax ray miss shader.

.rcall

OpenGL or OpenGL ES syntax ray callable shader.

For binary modules containing a single shader stage, malioc automatically detects
that they are SPIR-V binary modules, and attempts to deduce the shader type
and entry point name. For target binary modules containing multiple entry points,
you must specify the desired entry point manually. You can provide shader type
information either by using an auto-detected file extension, or a manually specified
shader type flag. The supported file extensions are appended with .spv, for example
.vert.spv. You can force interpretation of a file as SPIR-V by passing in the --spirv
option.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

If you specify multiple input files:

• They are concatenated in the order in which they are specified, before compilation.

• If you do not explicitly specify the shader type, they must all use the same extension.

If you pass an ESSL source file, it is automatically converted into a SPIR-V binary module using the
version of glslang that is provided in the installation. The resulting SPIR-V module is passed to the
Arm® Mali™ Offline Compiler backend.

Use the -n <name> option to specify a custom SPIR-V entry point for binary module inputs. You do
not need to specify -n <name> for SPIR-V modules which contain only a single entry point because
the entry point will be automatically detected.

By default, malioc emits reports to the stdout output stream. You can write directly to a file by
specifying the -o <file> option. The destination directory must exist because it is not created.

Use the -D option to define a macro on the command line for use in shader source code. For
example:

-Dfoo

Defines foo with a default value of 1.

-Dfoo=bar

Defines foo with the value bar.

3.5 Compiling OpenCL kernels
Use the following command-line syntax to compile OpenCL kernels:

malioc [--opencl <version>] [-c <target_gpu>] [--kernel] [--spirv] [-n <name>] \

<file1> [<file2> ...] [-o <file>]

Use the --opencl option to specify the targeted version of OpenCL:

1.1

Targets OpenCL 1.1.

1.2

Targets OpenCL 1.2.

2.0

Targets OpenCL 2.0.

3.0

Targets OpenCL 3.0.

If you do not explicitly specify --opencl the compiler defaults to targeting OpenCL 1.2. OpenCL
3.0 is required to support SPIR-V binary modules.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

target_gpu is one of the GPUs that are listed in GPU support. If target_gpu is not specified the
latest supported GPU is used.

To read input from stdin, instead of a file on disk, insert a single - character. You do not need to
explicitly specify the source shader type if the input files use one of the supported file extensions:

.cl

OpenCL C compute kernel.

cl.spv

OpenCL SPIR-V binary compute kernel.

For binary inputs malioc automatically detects that they are SPIR-V binary modules,
and attempts to deduce the shader type and entry point name. For target binary
modules containing multiple entry points, you must specify the desired entry point
manually. You can provide shader type information either by using an auto-detected
file extension, or a manually specified shader type flag. You can force interpretation
of a file as SPIR-V by using the --spirv option.

Use the -n <name> option to specify the entry point of the kernel to be compiled. You do not need
to specify -n <name> for SPIR-V modules which contain only a single entry point because the entry
point will be automatically detected.

If you specify multiple input files:

• They are concatenated in the order in which they are specified, before compilation.

• They must all have a .cl extension if you do not explicitly specify --kernel.

By default, malioc emits reports to the stdout output stream. You can write directly to a file by
specifying the -o <file> option. The destination directory must exist because it is not created.

Use the -D option to define a macro on the command line for use in kernel source code. For
example:

-Dfoo

Defines foo with a default value of 1.

-Dfoo=bar

Defines foo with the value bar.

3.5.1 Header includes

The OpenCL C language allows you to use header files in your source code, with the #include
preprocessor directive.

Relative path header inclusions use the current working directory as the root of the search path:

#include "my_header.h"

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

You can also use absolute path header inclusions:

#include "/work/my_header.h"

3.6 Syntax error reporting
If Arm® Mali™ Offline Compiler fails to compile a shader program due to an error in the code, it
produces a compilation error and emits an error message to the console.

Error messages only give a line number, which is the line number after all input source files have
been concatenated.

3.7 Performance analysis
If compilation is successful, Arm® Mali™ Offline Compiler emits a static analysis report outlining the
shader performance on the target GPU.

For example:

Configuration
=============

Hardware: Mali-T880 r2p0
Driver: Midgard r23p0-00rel0
Shader type: OpenGL ES Fragment

Main shader
===========

Work registers: 2 (100% occupancy)
Uniform registers: 2
Stack spilling: false

 A LS T Bound
Total Instruction Cycles: 6.0 1.0 0.0 A
Shortest Path Cycles: 1.7 1.0 0.0 A
Longest Path Cycles: 1.7 1.0 0.0 A

A = Arithmetic, LS = Load/Store, T = Texture

Shader properties
=================

Has uniform computation: true

3.7.1 IDVS shader variants

On Arm® Mali™ GPUs in the Bifrost and Valhall families, vertex shaders are executed using an
optimized shading flow called Index-Driven Vertex Shading (IDVS).

In the IDVS pipeline, vertex shaders are compiled into two binaries:
Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 17 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

• A position shader, which computes only position.

• A varying shader, which computes the remaining non-position vertex attribute outputs.

Figure 3-1: IDVS pipeline

Indices

Vertex
non-positions

Vertex
positions

Primitive
assembly

Culling and
tiling

Position
shading

Transform
positions

Tile list

Vertex varyingsVarying shading

The position shader is executed for every index vertex, but the varying shader is only executed
for vertices that are part of a visible primitive that survives culling. Mali Offline Compiler reports
separate performance tables for each of these variants.

3.7.2 Resource usage

The resource usage section of the report shows how resources are managed by the shader
program. You can see the usage of registers, stack memory, shared memory, ray traversal, and the
16-bit data path in the arithmetic unit.

Work register
Demand on the work register can impact the number of threads that the shader core can
execute simultaneously. This impact is because the available physical register pool is divided
among the shader threads that are executing. Reducing the work register usage per thread
can increase the number of threads that can be executed, which is often beneficial. See
Mali GPU pipelines for more details about work register usage for each Arm® Mali™ GPU
architecture.

Uniform registers
Uniform registers are used as read-only storage for uniform and literal constant values.
Programs that run out of uniform storage, as indicated by a '100% used' metric in the report,
need to fall back to per-thread memory loads for constant values. To reduce uniform register
pressure, use 16-bit data types, or reduce the number of uniforms and constants in your
shaders.

Shared storage
Shared storage allows threads in a single compute work group to share data. Mali GPUs use
cached system RAM to back shared memory, so shared memory has the same performance
as any other buffer access. Use shared storage only where you need algorithmic data sharing
across threads.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

Stack spilling
Shaders that spill to stack are expensive for a GPU to process. Reduce register pressure to
help stop the shaders from spilling. You can reduce register pressure in one of the following
ways:

• By reducing variable precision.

• By reducing the live ranges of variables.

• By simplifying the shader program.

16-bit arithmetic
16-bit arithmetic is more energy efficient, and higher performance, than 32-bit arithmetic.
For most operations, Mali can either submit a vec2 SIMD 16-bit operation or a scalar fp32
operation, so in the best case using 16-bit operations are twice as fast. Even in cases where
overall performance does not increase, a higher percentage of 16-bit operations improves
energy efficiency.

3.7.3 Performance table

The performance table gives an indication of the potential performance of the shader program for a
single shader core.

It contains the following rows:

Total Instruction Cycles
The cumulative number of execution cycles for all instructions that are generated for the
program, irrespective of program control flow.

Shortest Path Cycles
An estimate of the number of cycles for the shortest control flow path though the shader
program. This row normalizes the cycle cost based on the number of functional units present
in the design.

Longest Path Cycles
An estimate of the number of cycles for the longest control flow path though the shader
program. This row normalizes the cycle cost based on the number of functional units present
in the design. It is not always possible to determine the longest path based on static analysis,
for example if a uniform variable controls a loop iteration limit. So this row might indicate an
unknown cycle count ("N/A").

The reported statistics are broken down by functional unit. The unit column with the highest
cycle cost in either or both of the Shortest Path Cycles and Longest Path Cycles rows is a good
candidate to optimize. For example, a shader whose highest values are in the A (Arithmetic) column,
is arithmetic bound. Optimize the shader by reducing the number of, or the precision of, the
mathematical operations that it performs. The Bound column lists the functional units with the
highest cycle count, which allows you to quickly identify the units that are a bottleneck in your
shader code.

The functional unit columns that are displayed depend on the architecture of the GPU being
targeted. See Mali GPU pipelines for more details. In addition, there are some important

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

considerations to be aware of when reviewing the performance data. See Performance
considerations for more details.

3.7.4 Shader properties

The Shader properties section provides information about behavioral properties of the shader
program.

It can contain the following entries:

Has uniform computation
Shows if there was any optimized uniform computation. This is computation that depends
only on literal constants or uniform values, and therefore produces the same result for every
thread in a draw call or compute dispatch. While the drivers can optimize this, it still has a
cost, so where possible, move it from the shader into application logic on the CPU.

Has side-effects
Shows if this shader has side-effects that are visible in memory, outside of the fixed graphics
pipeline. They can be caused by:

• Writes into shader storage buffers

• Stores into images

• Uses of atomics

Side-effecting shaders cannot be optimized away by techniques such as hidden surface
removal, so their use should be minimized.

Has slow ray traversal
Shows if the shader is using at least one ray traversal which forces the compiler to fallback to
a slower traversal behavior.

To avoid the slow traversal behavior for ray query usage, Arm recommends having a
single rayQueryProceed() per rayQueryInitialize(). Both rayQueryProceed() and
rayQueryInitialize() must be called unconditionally. The following examples demonstrate
possible causes of a slower traversal:

// Slow due to divergent initialization
if (cond)
 rayQueryInitialize(rq, params_1);
else
 rayQueryInitialize(rq, params_2);

// Slow due to multiple proceeds for a single initialize
rayQueryInitialize(rq, params);
if (cond)
 rayQueryProceed(rq);
rayQueryProceed(rq);

// Slow due to multiple proceeds for a single initialize
rayQueryInitialize(rq, params);
rayQueryProceed(rq);

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

rayQueryProceed(rq);

For cases where multiple proceeds are required, we recommend placing a single non-
conditional rayQueryProceed() inside a while loop.

// Fast due to single initialize and single proceed call site
rayQueryInitialize(rq, params);
while (cond) {
 rayQueryProceed(rq);
}

For cases where a conditional proceed is required, we recommend placing the
rayQueryInitialize() inside the same conditional block as the rayQueryProceed().

// Fast due to single initialize and proceed under the same condition
if (cond) {
 rayQuery rq;
 rayQueryInitialize(rq, params);
 rayQueryProceed(rq);
}

Modifies coverage
Shows if a fragment shader has a coverage mask that can be changed by shader execution,
for example by using a discard statement. Shaders with modifiable coverage must use a
late-ZS update, which reduces efficiency of early ZS testing for later fragments at the same
coordinate.

Other API-side behaviors, such as setting of alpha-to-coverage, can also
impact coverage masks and are not considered here.

Uses late ZS test
Shows if a fragment shader contains logic that forces a late ZS test, for example by writing to
gl_FragDepth. This disables use of early-ZS testing and hidden surface removal, which can be
a significant efficiency loss.

Other API-side behaviors, such as disabling depth testing, can override this
behavior.

Uses late ZS update
Shows if a fragment shader contains logic that forces a late ZS update, for example by
reading the old depth value in the shader by using gl_LastFragDepthARM. This can reduce
efficiency of early ZS testing for later fragments at the same coordinate.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

Reads color buffer
Shows if a fragment shader contains logic that programmatically reads from the color buffer,
for example by reading from gl_LastFragColorARM. Shaders that read from the color buffer
in this manner are treated as transparent, and cannot be used as hidden-surface removal
occluders.

3.7.5 Recommended vertex attribute streams

To achieve optimal performance and memory bandwidth, you must tune the memory layout of your
application for vertex attributes to match the phased processing approach Arm® Mali™ GPUs use
for vertex shading.

The first processing phase computes only the vertex position, which is needed for primitive culling.
The second phase computes any non-position outputs, and is only executed for vertices that
contribute to a visible primitive.

Arm recommends storing all position-related input attributes interleaved in one memory range,
and all non-position input attributes interleaved in a separate memory range. Storing attribute
data interleaved but in separate memory ranges, ensures that the position shading phase only
loads useful position-related data from DRAM, and minimizes cache pollution caused by fetching
unnecessary non-position data. The non-position data is only fetched during phase two, and
therefore only for the vertices that survive culling.

Vertex shader reports contain a Recommended attribute stream section which defines the
mapping of attributes to in-memory streams that you must use to get the optimal geometry
memory bandwidth.

The Recommended attribute stream report section is not supported on Midgard
family GPUs.

Recommended attribute streams
=============================

Position attributes
 - inPos (location=dynamic)

Non-position attributes
 - inTexCoord (location=1)

For OpenGL ES, each attribute entry contains the symbol name from the source and, if set, the
static binding location set by a layout qualifier.

For Vulkan, each attribute entry contains the OpVariable index and static binding location set in the
SPIR-V module. If present, a symbol name from an associated OpDecorate annotation also displays.

Position attributes
 - OpVariable %17 'offset' (location=2)

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

 - OpVariable %64 (location=0)

The Vulkan variable decoration name presented here is the value after the name has
been converted into a legal Mali Offline Compiler symbol name. This might not be
exactly the same as the value stored in the input SPIR-V module.

3.8 Performance considerations
There are several important considerations to be aware of when analyzing the data in the
performance table:

• The cycle measurements are purely based on the execution cost of the instructions in the
program. The actual performance is also dependent on inputs that are not visible in the
instruction sequence, such as texture sampler configuration and texture format.

For example, using trilinear filtering for all texture samples halves the filtering rate. Therefore it
would double the texture cycle count compared to the value that is reported in the T (Texture)
column in the performance table.

• The shortest and longest control flow measurements are based on what is possible in the
shader source code. They are not based on the real run-time inputs, such as uniform values,
that are used for a specific draw call. These costings therefore define the flight-envelope of
performance possibilities but are not accurate for any single specific use of the shader.

• Arm® Mali™ Offline Compiler only processes single shaders at a time. The on-device driver
compilation process optimizes whole programs and pipelines, including use of pipeline state
information in the case of Vulkan. This optimization can result in the reported performance
being different to the performance that would be seen in a production device, although it
should be indicative.

You can directly measure pipeline activity on the target platform using the Arm
Streamline profiling tools. Profiling with Streamline can provide a useful comparison
with the static analysis that Mali Offline Compiler provides.

3.9 Generating JSON reports
By default, Arm® Mali™ Offline Compiler generates reports in a human readable text format.
To allow easier integration into other tooling or scripted workflows, it also supports generating
machine-readable JSON reports. These reports are enabled by adding the --format json
command-line option to any of the operations.

There are four types of JSON output report that Mali Offline Compiler can generate, identified by a
schema identifier field in the root JSON object:

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Using Mali Offline Compiler

list

For --list operations.

info

For --info operations.

error

For compile operations that fail with a compilation error.

performance

For compile operations that succeed.

To aid writing parsers, sample reports and JSON Schema definitions are provided for all four of
the supported output reports. These files are in <install_directory>/samples/json_reports and
<install_directory>/samples/json_schemas respectively.

To help with JSON parsing, the command line utility can return three possible process return codes:

0

The operation was successful and returns a list, info, or performance (compilation) JSON
report.

1

Compilation failed because of a shader syntax error. This utility returns an error JSON
report.

2

The tool failed because of a configuration error, such as a bad command line option. This
utility always emits human-readable text output, not a JSON report.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 30

https://json-schema.org/

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Mali GPU pipelines

4. Mali GPU pipelines
The internal microarchitecture of the shader core can influence both the register usage and the
processing pipelines that are reported in the performance analysis report.

Correct identification of the shader pipeline with the highest load is critical in performance analysis.
Optimizing that pipeline is more likely to give a performance benefit. This section provides a brief
summary of the register thresholds and processing pipelines for each supported Arm® Mali™ GPU
architecture.

4.1 Mali Midgard architecture
Arm® Mali™ Midgard GPU shader cores have three parallel pipeline classes:

Arithmetic unit (A)
The arithmetic pipeline executes all types of shader arithmetic instructions. There can be
multiple parallel arithmetic pipelines, the number present depends on the Mali GPU being
targeted. Data presented in the tool is normalized based on the number of pipelines in the
design.

Load/store unit (LS)
The load/store pipeline handles all non-texture memory access, including buffer access,
image access, and atomic operations. In addition, this pipeline implements the Midgard
varying interpolator.

Texture unit (T)
The texture pipeline handles all texture sampling and filtering operations.

Figure 4-1: Midgard shader core

Shader core

Non-fragment
thread creator

Fragment
thread creator

Arithmetic
units(s)

Load/store
unit

Texture
unit

Fragment
blend

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Mali GPU pipelines

4.1.1 Midgard work register breakpoints

Arm® Mali™ Midgard GPU shader cores allow variable numbers of threads to be created, depending
on the number of work registers that are used by the in-flight shader programs.

0-4 registers
Maximum thread capacity

5-8 registers
Half thread capacity

8-16 registers
Quarter thread capacity

Usually, running more threads simultaneously helps a GPU to keep busy. A good objective is to stay
at 0-4 registers for fragment shaders and 0-8 threads for other shader types.

The most effective way to reduce register pressure is to minimize the precision of stored variables.
Use mediump precision in preference to highp whenever possible.

4.2 Mali Bifrost architecture
Arm® Mali™ Bifrost GPU shader cores have four parallel pipeline classes:

Arithmetic unit (A)
The arithmetic pipeline, also known as the execution engine, executes all types of shader
instructions. There can be multiple parallel arithmetic pipelines, the number present depends
on the Mali GPU being targeted. To give an overall cost for the targeted shader core, data
presented in the tool is normalized based on the number of engines in the design.

Load/store unit (LS)
The load/store pipeline handles all non-texture memory access, including buffer access,
image access, and atomic operations.

Varying unit (V)
The varying pipeline is a dedicated pipeline which implements the varying interpolator.

Texture unit (T)
The texture pipeline handles all texture sampling and filtering operations.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Mali GPU pipelines

Figure 4-2: Bifrost shader core

Shader core

Load/store
unit

Execution
engine 0

Fragment
blend

Varying
unit

Texture
unit

Execution
engine 1

Execution
engine 2

Non-
fragment

warp creator

Fragment
warp

creator

Message fabric

4.2.1 Bifrost work register breakpoints

Arm® Mali™ Bifrost GPU shader cores allow you to create variable numbers of threads, depending
on the number of work registers that are used by the in-flight shader programs:

0-32 registers
Maximum thread capacity

33-64 registers
Half thread capacity

Usually, running more threads simultaneously helps a GPU to work effectively. Aim to use 0-32
registers for fragment shaders.

The most effective way to reduce register pressure is to minimize the precision of stored variables.
Use mediump precision in preference to highp whenever possible.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Mali GPU pipelines

4.2.2 Bifrost shader core size

The early-generation Bifrost shader cores, Arm® Mali™-G71 and Mali-G72, implement a single
texel-per-clock and single pixel-per-clock shader core. Later shader cores in the Bifrost family
implement a two texel-per-clock and two pixel-per-clock shader core, with an increase in arithmetic
performance to compensate. Not every GPU doubled the available performance though.

Mali Offline Compiler reports results per shader core. It is expected, for example, that performance
results for a Mali-G76 have approximately half the cycle count of the results for a Mali-G72. Silicon
implementations using a Mali-G76 generally implement fewer shader cores than an equivalent
Mali-G72 design. Remember therefore that the results must be scaled by the shader core count in
your target device.

4.3 Mali Valhall architecture
Arm® Mali™ Valhall GPU shader cores have six parallel pipeline classes, comprising three arithmetic
pipelines and three fixed-function support pipelines.

All Valhall GPUs implement two parallel processing engines, each containing their own set of
arithmetic pipelines. Data presented in the tool is normalized based on the number of engines in
the design, to give an overall cost for the targeted shader core, not just for a single engine.

Arithmetic fused multiply accumulate unit (FMA)
The FMA pipelines are the main arithmetic pipelines, implementing the floating-point
multipliers that are widely used in shader code. Each FMA pipeline implements a 16-wide
warp, and can issue a single 32-bit operation or two 16-bit operations per thread and per
clock cycle.

Most programs that are arithmetic-limited are limited by the performance of the FMA
pipeline.

Arithmetic convert unit (CVT)
The CVT pipelines implement simple operations, such as format conversion and integer
addition. Each CVT pipeline implements a 16-wide warp, and can issue a single 32-bit
operation or two 16-bit operations per thread and per clock cycle.

Arithmetic special functions unit (SFU)
The SFU pipelines implement a special functions unit for computation of complex functions
such as reciprocals and transcendental functions. Each SFU pipeline implements a 4-wide
issue path, executing a 16-wide warp over 4 clock cycles.

Load/store unit (LS)
The load/store pipeline handles all non-texture memory access, including buffer access,
image access, and atomic operations.

Varying unit (V)
The varying pipeline is a dedicated pipeline which implements the varying interpolator.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Mali GPU pipelines

Texture unit (T)
The texture pipeline handles all texture sampling and filtering operations.

For Mali Valhall GPUs the text performance report shows a single combined arithmetic cycle
cost (A). This cycle cost is estimated for the target GPU based on the identified FMA, CVT, and
SFU workload. To enable the full report, and show the individual arithmetic pipelines, use the --
detailed command line option.

Figure 4-3: Valhall shader core

Shader core

Message fabric

Non-fragment
warp creator

Fragment
warp creator

PU 0 PU 1

FMA CVT SFU FMA CVT SFU

Load/store
unit

Varying
unit

Texture
unit

Fragment
blend

4.3.1 Valhall work register breakpoints

Arm® Mali™ Valhall GPU shader cores allow variable numbers of threads to be created, depending
on the number of work registers that are used by the in-flight shader programs.

0-32 registers
Maximum thread capacity

33-64 registers
Half thread capacity

Usually, running more threads simultaneously helps a GPU to work effectively. Aim to use 0-32
registers for fragment shaders.

The most effective way to reduce register pressure is to minimize the precision of stored variables.
Use mediump precision in preference to highp whenever possible.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 30

Arm® Mali™ Offline Compiler User Guide Document ID: 101863_0800_00_en
Issue: 00

Mali GPU pipelines

4.3.2 Valhall shader core size

The early-generation Valhall shader cores (Arm® Mali™-G57, Mali-G68, Mali-G77, and Mali-G78)
implement a four texel-per-clock and two pixel-per-clock shader core, with a variable amount of
arithmetic performance depending on GPU mode.

The Mali-G610 and Mali-G710 shader core doubles the shader core throughput to eight texels per
clock and four pixels per clock, so the per-core cycle counts reported by Mali Offline Compiler are
expected to halve. However, Mali-G710 designs are likely to ship with fewer shader cores to offset
the increase in shader core size.

The Mali-G510 and Mali-G310 shader cores support configurable amounts of arithmetic, texturing,
and pixel throughput. This allows a silicon design to optimize the shader core for the expected
workload, which is ideal for cost-sensitive markets. However, the performance per core is not
consistent across configurations. The performance reports for Mali Offline Compiler assume the
following configurations:

Mali-G310
32 FMA/cycle, 4 texture ops/cycle, 4 pixels/cycle

Mali-G510
48 FMA/cycle, 8 texture ops/cycle, 4 pixels/cycle

You may need to rescale the reported performance in the reports if your target device uses a
different configuration. Check your chipset documentation for the correct configuration.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 30

	Arm® Mali™ Offline Compiler User Guide
	Contents
	1. Introduction
	1.1 Conventions
	1.2 Useful resources
	1.3 Other information

	2. Platform support
	2.1 API support
	2.2 GPU support
	2.3 Binary generation support

	3. Using Mali Offline Compiler
	3.1 Install Mali Offline Compiler
	3.2 Querying compiler capabilities
	3.3 Compiling OpenGL ES shaders
	3.4 Compiling Vulkan shaders
	3.5 Compiling OpenCL kernels
	3.5.1 Header includes

	3.6 Syntax error reporting
	3.7 Performance analysis
	3.7.1 IDVS shader variants
	3.7.2 Resource usage
	3.7.3 Performance table
	3.7.4 Shader properties
	3.7.5 Recommended vertex attribute streams

	3.8 Performance considerations
	3.9 Generating JSON reports

	4. Mali GPU pipelines
	4.1 Mali Midgard architecture
	4.1.1 Midgard work register breakpoints

	4.2 Mali Bifrost architecture
	4.2.1 Bifrost work register breakpoints
	4.2.2 Bifrost shader core size

	4.3 Mali Valhall architecture
	4.3.1 Valhall work register breakpoints
	4.3.2 Valhall shader core size

