

AMBA® TLM 2.0 Library

Reference Manual
Non-Confidential Issue 02
Copyright © 2019, 2023 Arm Limited (or its affiliates).
All rights reserved.

101459_02_en

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 61

AMBA® TLM 2.0 Library

Reference Manual

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

01 (1000-00) 1 January 2019 Non-Confidential First release

02 1 June 2023 Non-Confidential Second release

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, has undertaken no analysis to identify or understand the scope and content of,
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of
the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 61

document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
https://www.arm.com/company/policies/trademarks.

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on [Product Name], create
a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/documentation-
feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be
offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this document,
email terms@arm.com.

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com/
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 61

Contents

1. Introduction ... 6

1.1. Intended audience .. 6

1.2. Conventions .. 6

1.3. Useful resources ... 7

2. AMBA TLM 2.0 Library overview .. 8

2.1. Header file structure ... 8

2.2. Socket types .. 9

2.3. Clocking .. 11

3. AXI protocol ... 13

3.1. AXI phases ... 13

3.2. AXI payload generation .. 17

3.3. AXI payload fields ... 18

3.4. AXI helper functions .. 30

3.5. AXI transaction-level data and response functions .. 32

3.6. AXI beat-level data and response functions .. 33

3.7. AXI chunk-level data and response functions... 36

3.8. AXI atomic response data functions .. 36

3.9. AXI Memory Tagging Extension functions... 37

3.10. AXI signal-level support functions .. 37

3.11. AXI payload propagation .. 40

4. CHI protocol ... 42

4.1. CHI phases .. 42

4.2. CHI payload alterations .. 42

4.3. CHI link credits .. 43

4.4. CHI payload generation .. 43

4.5. CHI payload use... 43

4.6. CHI field location summary ... 44

4.7. CHI phase fields ... 45

4.8. CHI payload fields ... 52

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 61

4.9. CHI payload functions ... 57

4.10. CHI payload propagation ... 58

5. Additional payload features .. 59

5.1. Additional payload fields .. 59

5.2. Extension system .. 60

Appendix A. Revisions .. 61

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
1 Introduction

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 61

1. Introduction
This document describes a C++ library of TLM 2.0-compatible type definitions for modeling AMBA®
AXI, ACE, and CHI ports on SystemC models with approximate and cycle-accurate timing
requirements.

1.1. Intended audience

The reader of this document is assumed to understand SystemC, TLM 2.0 Generic Protocol payloads
and phases, and TLM 2.0 sockets. An understanding of the blocking and non-blocking transports used
by TLM 2.0 and the motivations for the form of those mechanisms is also assumed.

1.2. Conventions

The following subsections describe conventions used in Arm documents.

Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

Typographical conventions

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source
code.

monospace bold Language keywords when used outside example code.

monospace

underline
A permitted abbreviation for a command or option. You can enter the underlined text instead of the
full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

https://developer.arm.com/glossary

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
1 Introduction

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 61

Convention Use

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or
damage.

Requirements for the system. Not following these requirements will result in system failure or
damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better, or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.3. Useful resources

This document contains information that is specific to this product. See the following resources for
other relevant information.

• Arm Non-Confidential documents are available on developer.arm.com/documentation. Each
document link in the following tables provides direct access to the online version of the document.

• Arm Confidential documents are available to licensees only through the product package.

Arm architecture and specifications Document ID Confidentiality

AMBA® 5 CHI Architecture Specification IHI 0050E.c Non-Confidential

AMBA® AXI and ACE Protocol Specification IHI 0022H Non-Confidential

Non-Arm resources Document ID Organization

For information about the SystemC and TLM 2.0 standards, see IEEE
Standard for Standard SystemC Language Reference Manual, January 2012.

IEEE Std 1666-
2011

IEEE,
https://www.ieee.org/

https://developer.arm.com/documentation
https://developer.arm.com/documentation/ihi0050/ec
https://developer.arm.com/documentation/ihi0022/h/
https://www.ieee.org/

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
2 AMBA TLM 2.0 Library overview

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 61

2. AMBA TLM 2.0 Library overview
The AMBA® Transaction-Level Modeling (TLM) 2.0 Library allows you to model and simulate
Approximately-Timed (AT) and Cycle-Accurate (CA) AXI, ACE and CHI transactions and ports.

The supported versions of the AMBA AXI, ACE, and CHI protocols are:

• AMBA® AXI and ACE Protocol Specification issue H, and backward compatible with issue G, issue
F, and issue E

• AMBA® 5 CHI Architecture Specification issue E, and backward compatible with issue D, issue C,
and issue B

The AMBA TLM Library package includes:

• This document

• A pre-compiled binary library

• Examples of the library in use

• C++ source files

2.1. Header file structure

The AMBA TLM 2.0 Library is provided as a pre-compiled binary library and a collection of C++
header files. These header files define payload types, communication phases, base socket definitions,
and types to identify the protocol used at particular sockets.

The following table summarizes the provided header files.

Table 2-1: C++ header files

Header file Contents

arm_axi4.h #includes all the header files needed to model AMBA AXI.

arm_axi4_payload.h The constituent types required to describe the data and control payload of an AXI
transaction. The payload types are described in 3 AXI protocol.

arm_axi4_phase.h The phase type used to describe events in AXI for Approximately-Timed (AT) and
Cycle-Accurate (CA) modeling. These phases are described in the context of the
protocols that they form in 3.1 AXI phases.

arm_axi4_socket.h Base socket definitions for initiator and target TLM 2.0 sockets for AXI ports. These
definitions are described in 2.2 Socket types.

arm_chi.h #includes all the header files needed to model AMBA CHI.

arm_chi_payload.h The constituent types required to describe the data and control payload of a CHI
transaction. The payload types are described in 4 CHI protocol.

arm_chi_phase.h The phase type used to describe events in CHI Approximately-Timed (AT) and Cycle-
Accurate (CA) modeling. These are described in the context of the protocols they form
in 4.1 CHI phases.

https://developer.arm.com/documentation/ihi0022/
https://developer.arm.com/documentation/ihi0050/

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
2 AMBA TLM 2.0 Library overview

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 61

Header file Contents

arm_chi_socket.h Base socket definitions for initiator and target TLM 2.0 sockets for CHI ports. These
are described in 2.2 Socket types.

arm_tlm_helpers.h Miscellaneous helper type definitions used by other header files.

arm_tlm_protocol.h An enumeration of the varieties of AXI and CHI supportable by a socket. This
enumeration is described in 2.2.1 Socket protocol and port width.

arm_tlm_socket.h Contains common base socket definitions that contain protocol and port width
definitions for a port but are not committed to a particular payload or protocol. These
definitions are described in 2.2 Socket types and 2.2.1 Socket protocol and port width.

2.2. Socket types

Base initiator and target sockets are provided. A single socket models an entire AXI or CHI port
including address, data, response, snoop, and ACE WACK/RACK channels as applicable. Ports on
models should be derived from these base sockets.

Base sockets are provided as these types:

• ARM::TLM::BaseTargetSocket, derived from tlm::tlm_target_socket

• ARM::TLM::BaseInitiatorSocket, derived from tlm::tlm_initiator_socket

ARM::TLM::BaseTargetSocket and ARM::TLM::BaseInitiatorSocket are templates

that must be specialized with the payload type and protocol-defining phase type of the port.

The following table lists the supported specializations.

Table 2-2: Supported specializations

Socket types Applicability

ARM::TLM::BaseTargetSocket<ARM::CHI::ProtocolType>

ARM::TLM::BaseInitiatorSocket<ARM::CHI::ProtocolType>

For CHI models

ARM::TLM::BaseTargetSocket <ARM::AXI::ProtocolType>

ARM::TLM::BaseInitiatorSocket

<ARM::AXI::ProtocolType>

For AXI models

The types ARM::AXI::BaseTargetSocket and ARM::AXI::BaseInitiatorSocket are

provided with ARM::AXI::ProtocolType as their default specialization.

2.2.1. Socket protocol and port width

In addition to the port name, the two base socket types are passed on construction. There are two
arguments that configure the expected communications on the port.

The following table describes the arguments.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
2 AMBA TLM 2.0 Library overview

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 61

Table 2-3: Socket protocol and port width arguments

Argument Type Meaning

protocol ARM::TLM::Protocol The AXI or CHI protocol variant expected on the port.

port_width unsigned The width of the data channels of the port in bits. This must be a power
of two and be valid according to the AMBA® AXI and ACE Protocol
Specification or the AMBA® 5 CHI Architecture Specification.

The following table describes the valid values for the socket protocol argument.

Table 2-4: Protocol values

Protocol value Description

PROTOCOL_ACE Full ACE with DVM, barriers, snoop channels and ACE RACK/WACK channels

PROTOCOL_ACE_LITE ACE-Lite. ACE without snoop channels and RACK/WACK channels

PROTOCOL_ACE_LITE_DVM ACE-Lite with additional DVM support

PROTOCOL_AXI4 AXI4 without any ACE features

PROTOCOL_AXI4_LITE AXI4-Lite. AXI with simpler payload options

PROTOCOL_AXI5 AXI5 without any ACE features

PROTOCOL_AXI5_LITE AXI5-Lite. AXI with simpler payload options

PROTOCOL_ACE5 ACE5. Full ACE5

PROTOCOL_ACE5_LITE ACE5-Lite. ACE5 without snoop channels and RACK/WACK channels

PROTOCOL_ACE5_LITE_DVM ACE-Lite with additional DVM support

PROTOCOL_ACE5_LITE_ACP ACE-Lite with additional ACP support

PROTOCOL_CHI_B CHI implementing the CHI.B standard

PROTOCOL_CHI_C CHI implementing the CHI.C standard

PROTOCOL_CHI_D CHI implementing the CHI.D standard

PROTOCOL_CHI_E CHI implementing the CHI.E standard

2.2.2. Binding sockets

Sockets are bound together according to the standard TLM 2.0 method.
ARM::TLM::BaseTargetSocket and ARM::TLM::BaseInitiatorSocket overload the

member function bind() to ensure that the protocol and port width of bound sockets exactly match.

Connecting sockets with different protocols or port widths result in a SystemC error.

2.2.3. Supported transport interfaces

The AXI and CHI protocols support only a subset of the interfaces that the TLM 2.0 types,
tlm::tlm_fw_transport_if and tlm::tlm_bw_transport_if provide.

These transport call types are supported:

Non-blocking transport

https://developer.arm.com/documentation/ihi0022/h/
https://developer.arm.com/documentation/ihi0022/h/
https://developer.arm.com/documentation/ihi0050/ec

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
2 AMBA TLM 2.0 Library overview

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 61

 Non-blocking forward and backward calls are supported by all sockets. All
protocols that this library supports use these calls as the standard
communication method.

Blocking transport

 Blocking transport is not supported by the protocols that this library supports.

DMI

 DMI is not supported by the protocols that this library supports

Debug transport

 Sockets must implement the transport_dbg() call. Not all models can deal

with debug transactions correctly, therefore, it is always valid for a model to
return 0 and so decline to accept debug transactions.

Simple sockets

 Sockets ARM::TLM::SimpleInitiatorSocket and

ARM::TLM::SimpleTargetSocket are provided to implement non-blocking

transport and debug transport using member functions on objects other than
sockets. These work in a similar way to the TLM 2.0 types,
tlm_utils::tlm_simple_initiator_socket and

tlm_utils::tlm_simple_target_socket, but do not provide any

blocking to non-blocking adaptation.

ARM::AXI::SimpleInitiatorSocket and

ARM::AXI::SimpleTargetSocket are provided for use with AXI protocols.

2.3. Clocking

Non-blocking protocol communications are always associated with a clocking regime. Bound sockets
must share a clocking regime and that regime must have two distinct alternating periods in each clock
cycle.

These clock periods are supported:

Communicate

 When TLM 2.0 interface calls are made between ports

Update

 When internal state updates are made in response to communications

Two periods are required so that all communications in a cycle are known to occur before a state
update at the start of the next cycle takes place. A model does not require a free-running clock signal
but must respect the communicate/update clock periods of the model to which it is connected.

Where a free-running clock signal with alternative positive and negative-going events is present, this
clocking model can be implemented by using those events for Update and Communicate respectively.

AMBA TLM requires at minimum that where a clock signal associated with a socket is present,
communication does not take place that is triggered by the positive-going event of that clock. We
recommend that all communication is triggered only by the negative-going edge of the clock.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
2 AMBA TLM 2.0 Library overview

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 61

For this reason, this document refers to events causing communication as negedge and those causing
state update as posedge.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 61

3. AXI protocol
The AXI protocol aims to represent the low-level signaling present in the underlying AXI channels of a
port. This protocol enables cycle-accurate models of AXI port behavior to be constructed.

The AXI protocol is designed to be used at a range of abstractions from purely behavioral untimed
models to interfacing with RTL signal level simulations at a signal and cycle-accurate level.

3.1. AXI phases

AXI communications use several channels and most of these communications use READY and VALID
phases.

AXI channels

Each AXI port logically consists of several AXI channels. The complete set of channels is:

• AW

• W

• B

• AR

• R

• AC

• CR

• CD

• WACK

• RACK

• WQOSACCEPT

• RQOSACCEPT

AXI channel phases

All the channels of a port are modeled with a single TLM 2.0 socket. Each channel has a pair of phase
enumeration values from the type ARM::AXI::Phase representing VALID and READY signaling on

that channel. For example, AXI channel AW has phases AW_VALID and AW_READY. Two channels do

not have a pair of phase enumeration values, *ACK and *QOSACCEPT.

With non-blocking communication, these functions are used:

• AXI channels from Initiator port to Target port send their VALID event using
nb_transport_fw(). They receive a READY event either as a phase update to an

nb_transport_fw() call or by making an nb_transport_bw() call.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 61

• AXI channels from Target port to Initiator port (for example, B) send VALID with
nb_transport_bw() and READY with nb_transport_fw().

Figure 3-1 AXI Channel State Machine

Each AXI channel, except *ACK and *QOSACCEPT, obeys the state machine shown in Figure 3-1.
From state CLEAR, sending a VALID phase is analogous to raising a VALID signal on an AXI channel.
The port receiving the VALID phase call can then respond with READY (for example, AW_VALID

receives the response AW_READY), which is analogous to the READY signal being observed after a

raised VALID signal. READY can be communicated by either:

• Immediately changing the nb_transport_fw/bw() phase to READY, passed by reference,

and returning with tlm::TLM_UPDATED.

• Responding later in the opposite direction with a READY phase.

These two options are shown in Figure 3-1 as transitions from CLEAR to ACK and REQ respectively.
Responding immediately with READY indicates that the AXI channel communication has been
accepted in the same cycle as the VALID was presented. Responding later can indicate same-cycle
READY, where:

• A model can generate the required response function call before posedge.

• The response is in a different cycle (after the next posedge) it indicates a delayed READY.

Transition from the ACK state back to CLEAR in Figure 3-1 only happens when the next posedge
period passes. This restriction ensures that no more than one handshake takes place on each AXI
channel in each clock cycle. Where a free-running clock is not present, this restriction must remain to
ensure that the next update period in the agreed clocking regime has passed before the next VALID
phase can be sent.

CLEAR REQ

ACK posedge

posedge posedge

VALID

READY

TLM_ACCEPTED

negedge

negedge

TLM_ACCEPTED

negedge

VALID to READY

TLM_UPDATED

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 61

Although the AMBA® AXI and ACE Protocol Specification allows the READY signal to rise before the
VALID signal has arrived, this library does not model this behavior. Therefore, a READY call must only
be generated as a response to a received VALID phase. This means a VALID phase indicates that both
READY and VALID signals are high.

In all cases, a READY phase call must reference the same payload as that passed by the VALID phase
call.

The following table includes:

• All phases

• The direction phases should be transmitted, bw or fw, that is, backward or forward according to
the nb_transport_fw or nb_transport_bw calls mentioned in 3.1 AXI phases.

• The response for VALID calls. Optionally, immediately using the tlm::TLM_UPDATED response.

• The signal-level interpretation for each phase

Table 3-1: AXI channel phases

AXI channel ARM::AXI::Phase:: Direction Response (for VALIDs) Signal-level
interpretation

AR AR_VALID fw AR_READY ARVALID rise

AR AR_READY bw - ARVALID &
ARREADY

R R_VALID bw R_READY RVALID rise &
!RLAST

R R_VALID_LAST bw R_READY RVALID rise &
RLAST

R R_READY fw - RVALID &
RREADY

AW AW_VALID fw AW_READY AWVALID rise

AW AW_READY bw - AWVALID &
AWREADY

W W_VALID fw W_READY WVALID rise &
!WLAST

W W_VALID_LAST fw W_READY WVALID rise &
WLAST

W W_READY bw - WVALID &
WREADY

B B_VALID bw B_READY BVALID rise

B B_VALID_COMP bw B_READY BVALID rise &
BCOMP &
!BPERSIST

B B_VALID_PERSIST bw B_READY BVALID rise &
!BCOMP &
BPERSIST

https://developer.arm.com/documentation/ihi0022/h/

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 61

AXI channel ARM::AXI::Phase:: Direction Response (for VALIDs) Signal-level
interpretation

B B_VALID_COMP_PERSIST bw B_READY BVALID rise &
BCOMP &
BPERSIST

B B_VALID_TAGMATCH bw B_READY BVALID rise &
!BCOMP &
BTAGMATCH[1]

B B_VALID_COMP_TAGMATCH bw B_READY BVALID rise &
BCOMP &
BTAGMATCH[1]

B B_READY fw - BVALID &
BREADY

AC AC_VALID bw AC_READY ACVALID rise

AC AC_READY fw ACVALID &
ACREADY

CR CR_VALID fw CR_READY CRVALID rise

CR CR_READY bw CRVALID &
CRREADY

CD CD_VALID fw CD_READY CDVALID rise &
!CDLAST

CD CD_VALID_LAST fw CD_READY CDVALID rise &
CDLAST

CD CD_READY bw - CDVALID &
CDREADY

RACK RACK fw - RACK rise

WACK WACK fw - WACK rise

RQOSACCEPT RQOSACCEPT bw - RQOSACCEPT
change

WQOSACCEPT WQOSACCEPT bw - WQOSACCEPT
change

AXI data passing channels (R, W and CD) have an additional VALID_LAST phase which indicates that a
data beat is the last one of that burst. This VALID_LAST phase should be used with the last beat of a
burst on those channels for all burst lengths. VALID_LAST’s matching READY phase is the standard
READY phase for that AXI channel. There are no READY_LAST phases. Last beats are marked with
different phases to make tracking transaction progress easier for ports that you do not want to count
burst data beats.

In B channels which support cache maintenance operations for persistence or Memory Tagging
Extension (MTE), the B_VALID phases are extended to communicate the value of BCOMP,
BPERSIST, and BTAGMATCH[1] signals. The value of TAGMATCH[0] (pass or fail) is available in the
payload.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 61

When receiving a phase, if you want to compare it to one of the values in the preceding table, the
phase should be stripped to remove any additional fields in it. To strip the phase, use the Phase

phase_strip(Phase phase) function.

3.1.1. ACE WACK and RACK signals

On ACE ports, WACK and RACK signals indicate that an Initiator has completed a transaction and
can be snooped with respect to that data.

In this library that signal is communicated as a forward call with the phase set to RACK or WACK. The
payload communicated with that call should be the correct payload for the transaction being
acknowledged. The receiving port must reply with TLM_ACCEPTED. The timing requirements of
WACK and RACK are similar to the VALID/READY state machine of other AXI channels, but without
a REQ state.

3.1.2. QOSACCEPT

On ports that support it, the values of RQOSACCEPT and WQOSACCEPT signals can be
communicated across the TLM channel. These are communicated using bw calls.

The payload used in the call should not be accessed by the call recipient. The caller can either use a
dummy payload, provided by the AXI::Payload::get_dummy() function, or any other payload.

The value of the QOSACCEPT signal is communicated within the phase and can be extracted using
uint8_t phase_get_qos_accept(Phase phase) function. It can be set using the void

phase_set_qos_accept(Phase &phase, uint8_t qos_accept) function. Because the

QoS value is encoded within the phase value, the phase must be stripped before it can be tested for
which phase value it holds. This is done using the Phase phase_strip(Phase phase) function.

3.1.3. RCHUNKNUM and RCHUNKSTRB

In AXI chunking transactions, the RCHUNKNUM and RCHUNKSTRB signals are available in the
phase of the R beat phases.

The phase_get_chunk_number and phase_set_chunk_number functions access the RCHUNKNUM
value. The phase_get_chunk_strobe and phase_set_chunk_strobe access the RCHUNKSTRB value. As
with other phases that encode additional information, the phase should be stripped before being
compared to one of the enumeration values.

3.2. AXI payload generation

Payloads are reference-counted and are managed by a single global payload pool. Local payloads
allocated on the stack are not permitted and are protected by having a private constructor for the
payload.

A new AXI payload is constructed by calling ARM::AXI::Payload::new_payload() with

arguments that are essential for the construction and interpretation of the data of the payload. The
command, address, size, len, and burst arguments are described in 3.3 AXI payload fields.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 61

Except for the fields passed as arguments to the constructor, and unless otherwise stated, newly
generated payloads have all other fields set to 0.

The payload is allocated with a reference count of 1. The reference count of the payload can be
incremented and decremented using the ref() and unref() functions respectively. It is the duty of

the model that called the constructor to unref() the payload once it is no longer holding any

pointers to it. All models that keep a pointer to a payload should ref() the payload and unref() it

once the pointer is discarded.

3.3. AXI payload fields

The payload can represent any AXI transaction.

The fields the payload contains use the same enumeration encodings as the hardware implementation
as listed in the AMBA® AXI and ACE Protocol Specification.

3.3.1. Command field

The command field indicates on what AXI address channel the transaction was initiated, AR, AW, or

AC. It is set during payload construction and cannot be altered after construction.

This information can be derived from the AXI channel that corresponds to the phase accompanying
the payload but is also carried in the payload.

Name command

Type ARM::AXI::Command

Getter Command get_command() const

Setter N/A, fixed at payload construction

RTL signals N/A, not communicated as a signal

Default value N/A, set by the constructor

3.3.2. Len field

The len field indicates the burst length of the transaction. It is set during payload construction and

cannot be altered after construction.

The beat count for a transaction is equal to len + 1. This encoding matches the encoding of the

ARLEN and AWLEN signals.

In RTL, the number of data beats of a snoop transaction is implicitly defined by the cache line length
and data channel width. When constructing a snoop payload, the len field must be set to match the

number of data beats the transaction could potentially return, that is, set to number_of_beats –

1.

Name len

Type uint8_t

https://developer.arm.com/documentation/ihi0022/h/

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 61

Getter uint8_t get_len() const

Setter N/A, fixed at payload construction

RTL signals ARLEN, AWLEN

Default value N/A, set by the constructor

3.3.3. Size field

The size field indicates the size of each data beat in bytes. It is set during payload construction and

cannot be altered after construction.

The enumeration encodes the range of allowed beat sizes, that is, 1 to 128, and matches the
enumeration used by the ARSIZE and AWSIZE signals. The enumeration uses the beat size in bytes.
For example, 128-bit wide transactions must set size to SIZE_16. The beat element size in bytes can
be calculated using 1 << size. In snoop transactions, the field must be set to the width of the data

channel the transaction is operating across.

Name size

Type ARM::AXI::Size

Getter Size get_size() const

Setter N/A, fixed at payload construction

RTL signals ARSIZE, AWSIZE

Default value N/A, set by the constructor

3.3.4. Burst field

The burst field indicates the burst type of the transaction. It is set during payload construction and

cannot be altered after construction.

The enumeration matches the enumeration used by the ARBURST and AWBURST signals.

The burst field is optional in the new_payload constructor and defaults to INCR.

The burst field is only relevant in read and write operations.

In RTL, the burst type of a snoop transaction is implicitly defined, when constructing a snoop payload,
the burst field must be set to INCR, which is the default value.

Name burst

Type ARM::AXI::Burst

Getter Burst get_burst() const

Setter N/A, fixed at payload construction

RTL signals ARBURST, AWBURST

Default value N/A, set by the constructor, defaults to INCR if not specified

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 61

3.3.5. Address field

The address field indicates the address of the transaction. It is set during payload construction and

can be altered after construction unless the change alters the interpretation of a wrapping burst beat
orderings.

The field matches the field used by the ARADDR, AWADDR and ACADDR signals.

Name address

Type uint64_t

Getter uint64_t get_address() const

Setter void set_address(uint64_t new_address)

RTL signals ARADDR, AWADDR, ACADDR

Default value N/A, set by the constructor

In fixed and incrementing burst transactions, the address refers to the base address of the memory
accessed. In wrapping bursts, the address points to the critical beat of the transaction. For functional
memory models, it is the base address that is relevant to the operation and this is extractable by using
the get_base_address() function. In wrapping burst transactions, parts of the address

determine the data beat ordering, therefore, setting the address must only be performed if it does not
affect these bits. To test whether an address is valid, mask both new and old addresses with
payload->get_len() << payload->get_size() and compare them.

3.3.6. ID field

The id field indicates the ID of the transaction. It is set to 0 at payload construction and can be

altered after construction.

The field is only relevant in read and write operations. In snoop transactions, this field must be
ignored.

Name id

Type uint32_t

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARID, RID, AWID, BID

Default value 0

3.3.7. Lock field

The lock field indicates the exclusiveness of the transaction. It is set to LOCK_NORMAL at payload

construction and can be altered after construction.

The enumeration matches the enumeration used by the ARLOCK and AWLOCK signals.

The field is only relevant in read and write operations. In snoop transactions, this field must be
ignored.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 61

Name lock

Type ARM::AXI::Lock

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARLOCK, AWLOCK

Default value LOCK_NORMAL (0)

3.3.8. Cache field

The cache field indicates the Cacheability of the transaction. It is set to

CACHE_AR_DEVICE_NB/CACHE_AW_DEVICE_NB at payload construction and can be altered after

construction.

The enumeration matches the enumeration used by the ARCACHE and AWCACHE signals.

The element is accessible as an integer value, an enumeration for read and write transactions. It is
also accessible as a set of bit fields using the CacheBitEnum type allowing access to the individual B,

M, A and AO bits. The field is only relevant in read and write operations. In snoop transactions, it must
be ignored.

Name cache

Type ARM::AXI::Cache

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARCACHE, AWCACHE

Default value CACHE_AR_DEVICE_NB / CACHE_AW_DEVICE_NB (0)

3.3.9. Prot field

The prot field indicates the protection level of the transaction. It is set to PROT_D_S_UP (data,

secure, unprivileged) at payload construction and can be altered after construction.

The enumeration matches the enumeration used by the ARPROT, AWPROT and ACPROT signals.

The element is accessible as an integer value, an enumeration, and as a set of bit fields using the
ProtBitEnum type allowing access to the individual P, NS, and I bits.

Name prot

Type ARM::AXI::Prot

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARPROT, AWPROT, ACPROT

Default value PROT_D_S_UP (0)

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 61

3.3.10. QoS field

The qos field indicates the quality of service value of the transaction. It is set to 0 at payload

construction and can be altered after construction.

The field is only relevant in read and write operations. In snoop transactions, this field must be
ignored.

Name qos

Type uint8_t

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARQOS, AWQOS

Default value 0

3.3.11. Region field

The region field indicates the region of the transaction. It is set to 0 at payload construction and can

be altered after construction.

The field is only relevant in read and write operations. In snoop transactions, this field must be
ignored.

Name region

Type uint8_t

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARREGION, AWREGION

Default value 0

3.3.12. User field

The user field indicates the user-defined signaling of the transaction. It is set to 0 at payload

construction and can be altered after construction.

The field is only relevant in read and write operations. In snoop transactions, this field should be
ignored.

Name user

Type uint64_t

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARUSER, RUSER, AWUSER, WUSER, BUSER

Default value 0

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 61

3.3.13. Snoop field

The snoop field indicates the transaction coherency type. It is set to NO_SNOOP at payload

construction and can be altered after construction.

The enumeration matches the enumeration used by the ARPROT, ARSNOOP, AWSNOOP, and
ACSNOOP signals.

Name snoop

Type ARM::AXI::Snoop

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARSNOOP, AWSNOOP, ACSNOOP

Default value SNOOP_AW_WRITE_NO_SNOOP / SNOOP_AR_READ_NO_SNOOP /

SNOOP_AC_READ_ONCE (0)

3.3.14. Domain field

The domain field indicates the Shareability domain of the transaction. It is set to DOMAIN_NSH (not

shared) at payload construction and can be altered after construction.

The enumeration matches the enumeration used by the ARDOMAIN and AWDOMAIN signals.

The field is only relevant in read and write operations. In snoop transactions, this field must be
ignored.

Name domain

Type ARM::AXI::Domain

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARDOMAIN, AWDOMAIN

Default value DOMAIN_NSH (0)

3.3.15. Bar field

The bar field indicates whether the operation is a barrier transaction. It is set to BAR_NORM (normal

access) at payload construction and can be altered after construction.

The enumeration matches the enumeration used by the ARBAR and AWBAR signals.

The field is only relevant in read and write operations. In snoop transactions, this field must be
ignored.

Name bar

Type ARM::AXI::Bar

Getter N/A, directly accessible

Setter N/A, directly accessible

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 61

RTL signals ARBAR, AWBAR

Default value BAR_NORM (0)

3.3.16. Unique field

The unique field is used with various write transactions to improve the operation of lower levels of

the cache hierarchy. It is set to false at payload construction and can be altered after construction.

The field is only relevant in writes operations. In read and snoop transactions, this field must be
ignored.

Name unique

Type bool

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals AWUNIQUE

Default value false

3.3.17. Atop field

The atop field is used by atomic operations. It is set to ATOP_NON_ATOMIC at payload construction

and can be altered after construction. The field is only relevant in writes operations.

In read and snoop transactions, this field must be ignored.

Name atop

Type ARM::AXI::Atop

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals AWATOP

Default value false

3.3.18. VMID Extension field

The VMID extension field indicates the high order bits of the VMID used in DVM transactions. It is
set to 0 at payload construction and can be altered after construction.

The field is only relevant in DVM carrying read and snoop transactions. In write operations, it should
be ignored.

Name vmid_ext

Type uint8_t

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARVMIDEXT, ACVMIDEXT

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 61

Default value 0

3.3.19. Stash NID field

The Stash NID field indicates the node identifier of the physical interface that is the target interface
for the cache stash operation. It is set to 0 at payload construction and can be altered after
construction.

The field is only relevant in write operations. In read and snoop transactions, it should be ignored.

Name stash_nid

Type uint16_t

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals AWSTASHNID

Default value 0

3.3.20. Stash NID Valid field

The Stash NID Valid field indicates the Stash NID field is valid and should be used. It is set to false at
payload construction and can be altered after construction.

The field is only relevant in write operations. In read and snoop transactions, it should be ignored.

Name stash_nid_valid

Type bool

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals AWSTASHNIDEN

Default value false

3.3.21. Stash LPID field

The Stash LPID field indicates the logical processor sub-unit associated with the physical interface
that is the target for the cache stash operation. It is set to 0 at payload construction and can be
altered after construction.

The field is only relevant in write operations. In read and snoop transactions, it should be ignored.

Name stash_lpid

Type uint8_t

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals AWSTASHLPID

Default value 0

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 61

3.3.22. Stash LPID Valid field

The Stash LPID Valid field indicates the Stash LPID field is valid and should be used. It is set to false at
payload construction and can be altered after construction.

The field is only relevant in write operations. In read and snoop transactions, it should be ignored.

Name stash_lpid_valid

Type bool

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals AWSTASHLPIDEN

Default value false

3.3.23. Resp field

The resp field indicates the response status of the transaction. It is set to RESP_OKAY at payload

construction and can be altered after construction.

The enumeration matches that used by the RRESP, BRESP, and CRRESP signals with the addition of
the RESP_INCONSISTENT value.

Name resp

Type ARM::AXI::Resp

Getter Resp get_resp() const

Setter void set_resp(Resp resp)

RTL signals RRESP, BRESP, CRRESP

Default value RESP_OKAY (0)

In read operations, each beat can have a different resp value. If resp values for all beats are equal, resp
for the whole payload will be set to that value. If beat resps are not all equal, the resp field will be set
to RESP_INCONSISTENT and the resp values for each beat will be accessible with the

read_out_resps() function described in 3.5.1 AXI transaction-level read functions. The field

should not be set to RESP_INCONSISTENT directly.

3.3.24. Unique ID field

The unique ID indicator is an optional flag that indicates when a request on the read and write
address channels uses an AXI identifier that is unique for in-flight transactions. It is set to false at
payload construction and can be altered after construction.

The field is only relevant in read and write operations. In snoop transactions, it should be ignored.

Name idunq

Type bool

Getter N/A, directly accessible

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 61

Setter N/A, directly accessible

RTL signals ARIDUNQ, RIDUNQ, AWIDUNQ, BIDUNQ

Default value false

3.3.25. Chunk Enable field

The read data chunking option enables a Target interface to send read data for a transaction in any
order using a 128-bit granule. It is set to false at payload construction and can be altered after
construction.

The field is only relevant in read operations. In write and snoop transactions, it should be ignored.

Name chunk_en

Type bool

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARCHUNKEN

Default value false

3.3.26. Untranslated Transaction Secure Stream Identifier field

In untranslated transactions, this field represents the Secure Stream Identifier. When deasserted it
indicates a Non-secure stream. When asserted it indicates a Secure stream. It is set to false at payload
construction and can be altered after construction.

Name mmu_sec_sid

Type bool

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARMMUSECSID, AWMMUSECSID

Default value false

3.3.27. Untranslated Transaction Secure Identifier field

In untranslated transactions, this field represents the Stream Identifier. Secure and Non-secure
streams use different namespaces, qualified with AxMMUSECSID, so they can use the same stream
identifier values. It is set to 0 at payload construction and can be altered after construction.

Name mmu_sid

Type uint32_t

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARMMUSID, AWMMUSID

Default value 0

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 61

3.3.28. Untranslated Transaction Substream Identifier Valid field

In untranslated transactions, this field represents the Substream Identifier Valid. Indicates that the
transaction has a substream identifier. When deasserted, this signal indicates that the transaction
does not have a substream identifier. When asserted, this signal indicates that the transaction has a
substream identifier. It is set to false at payload construction and can be altered after construction.

Name mmu_ssid_v

Type bool

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARMMUSSIDV, AWMMUSSIDV

Default value false

3.3.29. Untranslated Transaction Substream Identifier field

In untranslated transactions, this field represents the Substream Identifier. This signal is only valid if
AxMMUSSIDV is asserted. For a single stream, the stream with substream 0 is a different stream
from the stream with no valid substream. It is set to 0 at payload construction and can be altered after
construction.

Name mmu_ssid

Type uint32_t

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARMMUSSID, AWMMUSSID

Default value 0

3.3.30. Untranslated Transaction Address Translated field

In untranslated transactions, this field represents Address Translated. It indicates that the
transaction has already undergone PCIe ATS translation. This translation might be a full or partial
translation in cases where two stages of translation are supported. When deasserted, this signal
indicates that the transaction has not been translated. When asserted, this signal indicates that the
transaction has been translated. It is set to false at payload construction and can be altered after
construction.

Name mmu_atst

Type bool

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARMMUATST, AWMMUATST

Default value false

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 61

3.3.31. Tag Match field

The Tag Match field indicates the result of a tag comparison on a write transaction. It is set to false at
payload construction and can be altered after construction. It represents BTAGMATCH[0] in RTL.
BTAGMATCH[1] is encoded into the phase. The field is only relevant in write operations. In read and
snoop transactions, it should be ignored.

Name tag_match

Type bool

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals BTAGMATCH[0]

Default value false

3.3.32. TagOp field

The TagOp field indicates the operation to be performed on the tags. It is set to TAG_OP_INVALID at
phase construction.

Name tag_op

Type TagOp

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARTAGOP, AWTAGOP

Default value TAG_OP_INVALID

3.3.33. CMO field

The CMO field indicates the operation indicates the type of operation being requested. It is set to
CMO_CLEAN_INVALID at phase construction.

Name cmo

Type CMO

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals AWCMO

Default value CMO_CLEAN_INVALID

3.3.34. MPAM field

The MPAM field contains the Memory Partitioning and Monitoring (MPAM) information. It is
initialized to the default constructor at payload construction.

Name mpam

Type Mpam

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 61

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARMPAM, AWMPAM

Default value Mpam()

3.3.35. NSAID field

The NSAID field contains the Non-secure access identifiers. It is initialized to 0 at payload
construction.

Name nsaid

Type uint8_t

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARNSAID, AWNSAID, CRNSAID

Default value 0

3.3.36. Loopback field

The Loopback field permits an agent that is issuing transactions to store information that is related to
the transaction in an indexed table. It is initialized to 0 at payload construction.

Name loop

Type uint64_t

Getter N/A, directly accessible

Setter N/A, directly accessible

RTL signals ARLOOP, AWLOOP, RLOOP, BLOOP

Default value 0

3.4. AXI helper functions

Several additional helper functions are provided to help working with AXI payloads.

get_beat_count()

As the value of the len field within the payload can be counter-intuitive, get_beat_count()

provides the correct number of data beats for the payload.

Function get_beat_count

Prototype unsigned get_beat_count() const

get_beats_complete()

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 61

The get_beats_complete() function provides the number of beats that have been filled within

the payload. Models should not expect to be able to access beats which have not yet been
communicated. This function is provided for debug purposes.

Function get_beats_complete

Prototype unsigned get_beats_complete() const

get_data_length()

The get_data_length() function provides the size (in bytes) of the data payload of the whole

transaction. Before calling the data copy out functions, a buffer must be allocated of at least the size
returned by get_data_length().

Function get_data_length

Prototype std::size_t get_data_length() const

get_base_address()

In wrapping transactions, the address field specifies an address of the critical beat rather than the
base of the transaction. The get_base_address() function provides the base address of any

transaction performing the appropriate rounding down for wrapping bursts.

Function get_base_address

Prototype uint64_t get_base_address() const

get_atomic_response_length()

In Atomic transactions, get_atomic_response_length() gives the length of the response.

Function get_atomic_response_length

Prototype std::size_t get_atomic_response_length() const

get_atomic_response_beat_count()

In Atomic transactions, get_atomic_response_beat_count() gives the number of response

data beats.

Function get_atomic_response_beat_count

Prototype unsigned get_atomic_response_beat_count() const

get_atomic_response_beat_length ()

In Atomic transactions, get_atomic_response_beat_length() gives the length of a single

beat.

Function get_atomic_response_beat_length

Prototype std::size_t get_atomic_response_beat_length() const

get_unaligned_skipped_chunks ()

In chunking transactions, get_unaligned_skipped_chunks() gives the number of chunks

which are skipped. Skipped chunks are within the payload, occupy the lowest chunk indexes, but are
not valid to be accessed.

Function get_unaligned_skipped_chunks

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 61

Prototype unsigned get_unaligned_skipped_chunks() const

3.5. AXI transaction-level data and response functions

Unlike the Generic TLM 2.0 payload, in ARM::AXI::Payload the data carried for the transaction

is not directly accessible. Data is accessed through copy in and copy out access functions. Copying out
data is only permitted on data that has previously been copied into the payload.

If the transaction is communicated across a socket as beats, copying out the data of the entire
transaction is only permitted once the last data beat has been received. If all data is entered in one
function call, the payload should have this data set before communicating the first data beat of the
transaction.

3.5.1. AXI transaction-level read functions

The library provides a set of read functions for whole read transactions.

read_in()

Copy in the data for a whole read transaction from an array of get_data_length() bytes.

resp is an optional array of per-beat responses that is get_beat_count() Resps long.

Function read_in

Prototype void read_in(const uint8_t* data, Resp* resp = NULL)

read_out()

Copy out the data for a whole read transaction to an array of get_data_length() bytes.

Function read_out

Prototype void read_out(uint8_t* data) const

read_out_resps()

Copy out the beat response values for a whole read transaction to an array get_beat_count()

Resps long.

Function read_out_resps

Prototype void read_out_resps(Resp* resp) const

3.5.2. AXI transaction-level write functions

The library provides a set of write functions for whole write transactions.

write_in()

Copy in the data for a whole write transaction from an array get_data_length() bytes long. An

optional array of byte strobes ceil(get_data_length() / 8.0) bytes long can be passed to

select what bytes to write. The strobes are organized as one bit for each data byte with the lowest bit

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 61

of byte strobe[0] corresponding to the lowest byte of data. If strobe is NULL (that is, the default

value if not specified), all bytes are written.

Function write_in

Prototype void write_in(const uint8_t* data, const uint8_t* strobe

= NULL)

write_out()

Copy out the data for a whole write transaction into an array get_data_length() bytes long.

Function write_out

Prototype void write_out(uint8_t* data) const

write_out_strobes()

Copy out the strobes for a whole write transaction into an array ceil(get_data_length() /

8.0) bytes long.

Function write_out_strobes

Prototype void write_out_strobes(uint8_t* strobe) const

3.5.3. AXI transaction-level snoop functions

The library provides a set of snoop functions for whole snoop transactions.

snoop_in()

Copy in the data for a whole snoop transaction from an array get_data_length() bytes long.

Function snoop_in

Prototype void snoop_in(const uint8_t* data)

snoop_out()

Copy out the data for a whole snoop transaction into an array get_data_length() bytes long.

Function snoop_out

Prototype void snoop_out(uint8_t* data) const

3.6. AXI beat-level data and response functions

If the transaction is communicated across a socket as beats, it is permissible to enter the data for
individual beats before that beat is communicated across the socket. The data of an individual beat
can be copied out of the payload once that beat has communicated across the socket. The beat index
supplied to the copy out access functions is the index of the beat in communication sequence, not
address sequence.

3.6.1. AXI beat-level read functions

The library provides a set of read functions for beat-level read transactions.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 61

read_in_beat()

Copy in the data for one beat of a read transaction from an array get_beat_data_length()

bytes long. The beat response will be set to resp.

Function read_in_beat

Prototype void read_in_beat(const uint8_t* data, Resp resp =

RESP_OKAY)

read_out_beat()

Copy out the data for one beat of a read transaction into an array get_beat_data_length()

bytes long. The first beat of a transaction has index 0. Only beats which have already been written
into a payload can be read out.

Function read_out_beat

Prototype void read_out_beat(unsigned beat_index, uint8_t* data)

const

read_out_beat_resp()

Get the response for one beat of a read transaction. The first beat of a transaction has index 0. Only
beats which have already been written into a payload can be copied out.

Function read_out_beat_resp

Prototype Resp read_out_beat_resp(unsigned beat_index) const

3.6.2. AXI beat-level write functions

The library provides a set of write functions for beat-level write transactions.

write_in_beat() for an array

Copy in the data for one beat of a write transaction. The write strobe is passed as an array
ceil(get_beat_data_length() / 8.0) bytes long with the same strobe organization as for

write_in() but with the lowest strobe bit corresponding to the beat data[0] rather than the data

of the whole transaction.

Function write_in_beat

Prototype void write_in_beat(const uint8_t* data, const uint8_t*

strobe = NULL)

write_in_beat() for a beat shorter than 64 bytes

Copy in the data for one beat of a write transaction where the beat is shorter than 64 bytes long
(size <= SIZE_64). strobe encodes the byte strobes for the beat with the lowest bit of strobe

being the strobe for data[0].

Function write_in_beat

Prototype void write_in_beat(const uint8_t* data, uint64_t strobe)

write_out_beat()

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 61

Copy out the data for one beat of a write transaction to an array get_beat_data_length()

bytes long. The first beat of a transaction has index 0. Only beats which have already been written
into a payload can be read out.

Function write_out_beat

Prototype void write_out_beat(unsigned beat_index, uint8_t* data)

const

write_out_beat_strobe() for an array

Copy out the strobes for one beat of a write transaction into an array
ceil(get_beat_data_length() / 8.0) bytes long. The first beat of a transaction has index

0. Only beats which have already been written into a payload can have their strobe copied out. The
strobes are organized as one bit per data byte with the lowest bit of byte strobe[0] corresponding

to the lowest byte of data.

Function write_out_beat_strobe

Prototype void write_out_beat_strobe(unsigned beat_index, uint8_t*

strobe) const

write_out_beat_strobe() for a beat shorter than 64 bytes

Get the strobe for one beat of a write transaction where the beat is shorter than 64 bytes long
(get_size() <= SIZE_64). The returned strobe will be organized with the lowest bit

corresponding to the lowest address byte in the beat.

Function write_out_beat_strobe

Prototype uint64_t write_out_beat_strobe(unsigned beat_index)

const

3.6.3. AXI beat-level snoop functions

The library provides a set of snoop functions for beat-level snoop transactions.

snoop_in_beat()

Copy in the data for one beat of a snoop transaction from an array get_beat_data_length()

bytes long.

Function snoop_in_beat

Prototype void snoop_in_beat(const uint8_t* data)

snoop_out_beat()

Copy out the data for one beat of a snoop transaction into an array get_beat_data_length()

bytes long. The first beat of a transaction has index 0. Only beats which have already been written
into a payload can have their strobe copied out.

Function snoop_out_beat

Prototype void snoop_out_beat(unsigned beat_index, uint8_t* data)

const

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 61

3.7. AXI chunk-level data and response functions

The library provides a set of functions for chunk-level transactions.

read_in_chunk()

Copy in the data for a single chunk to an array of 16 bytes.

Function: read_in_chunk

Prototype: void read_in_chunk(unsigned chunk_number, const uint8_t*

data, Resp resp = RESP_OKAY)

read_out_chunk()

Copy out the data for a single chunk to an array of 16 bytes.

Function: read_out_chunk

Prototype: void read_out_chunk(unsigned chunk_number, uint8_t*

data) const

read_out_chunk_resp()

Get the response for a single chunk.

Function: read_out_chunk_resp

Prototype: Resp read_out_chunk_resp(unsigned chunk_number) const

3.8. AXI atomic response data functions

Data associated with the request for an atomic transaction is accessible using the standard write
functions. The atomic response is accessible in the same payload using a set of functions for atomic
transactions that the library provides.

read_in_atomic_response()

Copy in the data for a whole atomic transaction response to an array
get_atomic_response_length() bytes.

Function: read_in_atomic_response

Prototype: void read_in_atomic_response(const uint8_t* data)

read_out_atomic_response()

Copy in the data for a whole atomic transaction response to an array
get_atomic_response_length() bytes.

Function: read_out_atomic_response

Prototype: void read_out_atomic_response(const uint8_t* data)

read_in_atomic_response_beat()

Copy in the data for one beat of an atomic transaction response to an array
get_atomic_response_beat_length() bytes.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 61

Function: read_in_atomic_response_beat

Prototype: void read_in_atomic_response_beat (const uint8_t* data)

read_out_atomic_response_beat()

Copy out the data for one beat of an atomic transaction response to an array
get_atomic_response_beat_length() bytes.

Function: read_out_atomic_response_beat

Prototype: void read_out_atomic_response_beat (const uint8_t* data)

3.9. AXI Memory Tagging Extension functions

The library provides a set of functions for using the Memory Tagging Extension (MTE).

get_mte_tag_count()

Get the number of MTE tags needed to be sent with the transaction.

Function: get_mte_tag_count

Prototype: unsigned get_mte_tag_count() const

set_mte_tag()

Set the MTE tag at a given index.

Function: set_mte_tag

Prototype: void set_mte_tag(unsigned chunk_index, MteTag tag)

get_mte_tag()

Get the MTE tag at a given index.

Function: get_mte_tag

Prototype: MteTag get_mte_tag(unsigned chunk_index) const

3.10. AXI signal-level support functions

To help with communication between the signal level and TLM 2.0 models, a set of functions is
provided to propagate data between the payload and raw signal-level interfaces.

3.10.1. AXI signal-level support read functions

The library provides a set of read functions to support signal-level read transactions.

read_in_beat_raw()

Copy in the data for one beat of a read transaction supplied in raw signal level format. width is the

width of the data channel (in bytes) in the signal level implementation of the AXI port. data is an array

(1 << width) bytes long.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 61

Function: read_in_beat_raw

Prototype: void read_in_beat_raw(Size width, const uint8_t* data,

Resp resp = RESP_OKAY)

read_out_beat_raw()

Copy out the data for one beat of a read transaction supplied in raw signal level format. width is the

width of the data channel (in bytes) in the signal level implementation of the AXI port. data is an array

(1 << width) bytes long. The first beat of a transaction has index 0. Only beats which have already

been written into a payload can be read out.

Function: read_out_beat_raw

Prototype: void read_out_beat_raw(Size width, unsigned beat_index,

uint8_t* data) const

read_in_chunk_beat_raw()

Copy in the data for one beat of a chunking read transaction supplied in raw signal level format.
width is the width of the data channel (in bytes) in the signal level implementation of the AXI port.

data is an array (1 << width) bytes long. chunk_number contains the index of the chunk

number, as supplied by RCHUNKNUM in signals or Phase. chunk_strobe contains the strobe , as

supplied by RCHUNKNUM in signals or Phase.

Function: read_in_chunk_beat_raw

Prototype: void read_in_chunk_beat_raw(Size width, const uint8_t*

data, unsigned chunk_number, unsigned chunk_strobe, Resp

resp = RESP_OKAY)

read_out_chunk_beat_raw()

Copy out the data for one beat of a read transaction supplied in raw signal level format. width is the

width of the data channel (in bytes) in the signal level implementation of the AXI port. data is an array

(1 << width) bytes long. The first beat of a transaction has index 0. Only beats that have already

been written into a payload can be read out.

Function: read_out_chunk_beat_raw

Prototype: void read_out_chunk_beat_raw(Size width, unsigned
chunk_number, unsigned chunk_strobe, uint8_t* data)

const

3.10.2. AXI signal-level support write functions

The library provides a set of write functions to support signal-level write transactions.

write_in_beat_raw() for a data channel

Copy in the data for one beat of a write transaction supplied in raw signal level format. width is the

width of the data channel (in bytes) in the signal level implementation of the AXI port. data is an array

(1 << width) bytes long. The write strobe is passed as an array ceil((1 << 'width') /

8.0) bytes long with the same strobe organization as for write_in() but with the lowest strobe

bit corresponding to the signal level beat data[0] rather than the data of the whole transaction.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 61

Function: write_in_beat_raw

Prototype: void write_in_beat_raw(Size width, const uint8_t* data,

const uint8_t* strobe)

write_in_beat_raw() for a data channel under 64 bytes wide

Copy in the data for one beat of a write transaction supplied in raw signal level format where width

<= SIZE_64. width is the width of the data channel (in bytes) in the signal level implementation of

the AXI port. data is an array (1 << width) bytes long. Strobes are organized with the lowest bit

being the strobe for byte data[0].

Function: write_in_beat_raw

Prototype: void write_in_beat_raw(Size width, const uint8_t* data,

uint64_t strobe)

write_out_beat_raw()

Copy out the data for one beat of a write transaction supplied in raw signal level format. data is an

array width bytes long. The first beat of a transaction has index 0. Only beats which have already

been written into a payload can have their strobe copied out.

Function: write_out_beat_raw

Prototype: void write_out_beat_raw(Size width, unsigned beat_index,

uint8_t* data) const

write_out_beat_raw_strobe()

Get the strobe for one beat of a write transaction. width is the width of the data channel (in bytes) in

the signal level implementation of the AXI port. The write strobe is passed as an array ceil(width

/ 8.0) bytes long with the same strobe organization as for write_in() but with the lowest

strobe bit corresponding to the lowest data byte of the signal level beat rather than the data of the
whole transaction.

Function: write_out_beat_raw_strobe

Prototype: void write_out_beat_raw_strobe(Size width, unsigned

beat_index,

write_out_beat_raw_strobe() for a data channel under 64 bytes wide

Get the strobe for one beat of a write transaction supplied in raw signal level format where width

<= SIZE_64. width is the width of the data channel (in bytes) in the signal level implementation of

the AXI port. Strobes are organized with the lowest bit being the strobe for byte data[0]. The first

beat of a transaction has index 0. Only beats that have already been written into a payload can have
their strobe copied out.

Function: write_out_beat_raw_strobe

Prototype: uint64_t write_out_beat_raw_strobe(Size width, unsigned

beat_index) const

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 61

3.10.3. AXI signal-level support snoop

There are no specific signal-level helper functions for handling snoop data. You can use the signal-
level read functions to handle the CD AXI channel.

3.11. AXI payload propagation

Two methods are provided to enable models to create new payloads derived from payloads that have
been received.

In a very simple system, payloads are generated at the transaction initiator, they are transmitted to
the target model which fills in the response fields and passes the payload back to the initiator. In more
complex systems, the payload can pass through several models between the initiator and the target. It
is legal and encouraged for a module that only propagates the transaction unchanged to forward the
payload that was received.

Other models need to amend the payload before propagating it. A model which receives a transaction
over a socket is only permitted to write the data and response fields and only if it is the final target
model. No other fields should be changed as the payload can still be in use by other models.

3.11.1. AXI descend function

The descend() function creates a new payload and it copies all fields from a previous payload to

create a new copy of that payload.

The function takes the same parameters as new_payload() and there is no restriction on what kind

of payload is generated from the parent. All fields not set by the constructor can be altered before
propagating just like a new payload. descend() can be called multiple times on a single payload

creating multiple derived transactions.

We recommend you use descend() when creating derived payloads rather than directly creating

new payloads. See 5.1.1 UID field and 5.1.2 Parent field for features that can help when handling
derived payloads. When responses of descended transactions return, it is the job of the model that
descended the payload to copy the response and data from the descended payload to the original
before propagating the original back upstream.

3.11.2. AXI clone function

clone() creates a new payload based on the original, similar to descend(), but data and response

fields of the payload are shared between the cloned payload and the original.

Models such as simple interconnects, address mappers and other models that change transaction
request fields but do not alter the command or the burst qualifications should use the clone()

function to create a new payload.

A new payload created using clone() will have all fields set to the same values as the original.

Construction time fields (command, size, len, burst and bits of the address) cannot be changed. All
other fields can be changed before the payload is propagated.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
3 AXI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 61

As the response and data fields are shared, a target model which sets the response and data values of
the cloned payload also sets those of the original. For this reason, each payload can be cloned at most
once. The model which cloned the payload does not need to copy the transaction response between
the cloned and original.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 61

4. CHI protocol
The AMBA CHI TLM 2.0 Library is designed to be sufficiently flexible to enable modeling of any CHI
connected element. This includes coherency and caching agents. The CHI payload is designed to be
usable by a range of abstractions from purely behavioral untimed models, to interfacing with RTL
signal level simulations at a signal and cycle-accurate level.

4.1. CHI phases

CHI communications use several channels.

CHI channels

Each CHI port logically consists of several CHI channels. The complete set of channels is:

• REQ

• SNP

• RSP

• DAT

Individual channels can be replicated to form multiple subchannels.

CHI channel phases

The channels of a port are modeled with a single TLM 2.0 socket. The channel field in
ARM::CHI::Phase indicates what channel is being used.

CHI uses link credits for flow control. With non-blocking communication, flits sent using a link credit
are accepted by the receiver without requiring a response. For example, nb_transport_fw/bw()

returns with tlm::TLM_ACCEPTED. For more information on link credits, see 4.3 CHI link credits.

4.2. CHI payload alterations

As with other TLM APIs, fields within the CHI TLM payload are considered one time mutable. A field
is set once by the relevant agent (either the requestor, or the target) and must not change again for
the duration of the lifetime of the transaction. As different parts of the transaction (requests,
responses, and data) can be communicated at different points in the system simultaneously, changing
the payload will result in changing all views of the payload globally, which is generally incorrect.

Due to CHI interconnects not being restricted to acyclic directed graph formation, the path of the
response can be different than the path of the request. In traditional schemes (for example, AXI) it
was possible to change fields of a payload request, by creating a new payload with the new field values
and passing this downstream. On the receipt of a response, the field altering agent can propagate any
response fields to the original payload and use this as the upstream response. As the response in the
CHI might take a different path than the request, and therefore the opportunity to convert the
descended payload back to the original before forwarding it to the requestor is no longer available.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 61

The payload descending field alteration scheme can only be used if the altering agent is the only route
to a requestor or target.

Many of the CHI fields change several times during the lifetime of the transaction. For example, the
TgtID, used by the interconnect to route the flit to the correct destination, will be different in various
flits (request, response, and data). Some transactions might generate two simultaneous responses to
different targets. As altering the payload post is not permitted, such fields are implemented in the
phase object. The phase is only valid during the TLM calls and a copy made in case the content is
required after a return from this call type.

4.3. CHI link credits

Link credits are communicated through TLM calls. These calls can set the appropriate Channel,
SubChannel values, and set LCrd to true in the phase object or set the command to LCrdReturn to
communicate a return of a credit. The payload used should not be altered by the target because no
fields within it are valid. The Requester can use either a valid payload or use the dummy payload.

4.4. CHI payload generation

Payloads are reference-counted and are managed by a single global payload pool. Local payloads
allocated on the stack are not permitted and are protected by having a private constructor for the
payload.

A new CHI payload is constructed by calling ARM::CHI::Payload::new_payload().

Unless otherwise stated, newly generated payloads will have all fields set to 0, except for the
AllowRetry field.

The payload is allocated with a reference count of 1. The reference count of the payload can be
incremented and decremented using the ref() and unref() functions respectively. It is the duty of

the model that called the constructor to unref() the payload once it is no longer holding any

pointers to it. All models which keep a pointer to a payload should ref() the payload and unref() it

once the pointer is discarded.

4.5. CHI payload use

All requests use a new payload unless the CHI protocol requires the request to generate responses to
a different node. If responses to a different node are required, the request must use the same payload
as the request that the responses belong to.

For example, all requests generated by a Request Node use a new payload, but a Home Node must
use an existing payload if it chooses to complete a transaction using DMT, DCT, or DWT.

In CHI, messages that are not attributable to a specific transaction can:

• Use a new payload.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 61

• Use an existing payload, if fields in that payload match payload fields in the message to send or can
be updated, subject to the payload alteration rules in 4.2 CHI payload alterations.

• Use the dummy payload if the message does not carry any fields in the payload.

Messages that this payload applies to include:

• L-Credits

• PCrdGrant

• *LCrdReturn

• TagMatch

• Persist

4.6. CHI field location summary

For CHI, the fields are split between phase and payload.

The following table shows each CHI field and its location and the corresponding TLM field.

Table 4-1: CHI field locations

CHI field Location TLM field

Target Identifier, TgtID Phase tgt_id

Source Identifier, SrcID Phase src_id

Home Node Identifier, HomeNID Phase home_nid

Return Node Identifier, ReturnNID Phase return_nid

Forward Node Identifier, FwdNID Phase fwd_nid

Logical Processor Identifier, LPID Payload lpid

Persistence Group Identifier, PGroupID Payload p_group_id

Stash Node Identifier, StashNID Phase stash_nid

Stash Node Identifier Valid, StashNIDValid Payload stash_nid_valid

Stash Logical Processor Identifier, StashLPID Phase stash_lpid.value

Stash Logical Processor Identifier Valid, StashLPIDValid Phase stash_lpid.valid

Stash Group Identifier, StashGroupID Payload stash_group_id

Transaction Identifier, TxnID Phase txn_id

Return Transaction Identifier, ReturnTxnID Phase return_txn_id

Forwarding Transaction Identifier, FwdTxnID Phase fwd_txn_id

Data Buffer Identifier, DBID Phase dbid

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 61

CHI field Location TLM field

Channel opcodes, Opcode Phase • req_opcode

• snp_opcode

• rsp_opcode

• dat_opcode

• raw_opcode

Deep persistence, Deep Payload deep

Address, Addr Payload address

Non-secure, NS Payload ns

Size of transaction data, Size Payload size

Memory Attribute, MemAttr Payload mem_attr

Snoop Attribute, SnpAttr Phase snp_attr

Do Direct Write Transfer, DoDWT Phase do_dwt

Likely Shared, LikelyShared Payload likely_shared

Ordering requirements, Order Phase order

Exclusive, Excl Payload exclusive

Endian Payload endian

Allow Retry, AllowRetry Phase allow_retry

Expect Completion Acknowledge, ExpCompAck Phase exp_comp_ack

SnoopMe Payload snoop_me

Return to Source, RetToSrc Payload ret_to_src

Data Pull, DataPull Payload data_pull

Do not transition to SD state, DoNotGoToSD Payload do_not_go_to_sd

Quality of Service priority level, QoS Phase qos

Protocol Credit Type, PCrdType Phase pcrd_type

Tag Operation, TagOp Phase tag_op

Tag Payload tag

Tag Update, TU Payload tu

Tag Group Identifier, TagGroupID Payload tag_group_id

Memory System Performance Resource Partitioning and
Monitoring, MPAM

Payload mpam

Virtual Machine Identifier Extension, VMIDExt Phase vmid_ext

4.7. CHI phase fields

The library provides a set of CHI phase fields.

CHI fields are split between the phase and payload, see the table in 4.6 CHI field location summary.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 61

4.7.1. Channel field

The channel field indicates the channel the transaction is being communicated on. It is set to

CHANNEL_REQ at phase construction. Other permissible values are CHANNEL_SNP,
CHANNEL_RSP and CHANNEL_DAT.

Name: channel

Type: Channel

Default value: CHANNEL_REQ

4.7.2. SubChannel field

When channels are replicated on a single interface, the sub_channel field indicates the replicated

sub-channel index the transaction is being communicated on. It is set to 0 at phase construction.

Name: sub_channel

Type: uint8_t

Default value: 0

4.7.3. Opcode field

The opcode field specifies the transaction type and is the primary field that determines the

transaction structure. It is set to 0 at phase construction. Four different enumerations are used
depending on the channel type, only one of which is valid at one time. The raw_opcode value allows

access to the numerical form of the value.

Name: req_opcode, snp_opcode, rsp_opcode, dat_opcode,

raw_opcode

Type: ARM::CHI::{Req, Snp, Rsp, Dat}Opcode, uint8_t

Default value: ARM::CHI::{REQ, SNP, RSP, DAT}_OPCODE_REQ_LCRD_RETURN, 0

4.7.4. LCrd field

The lcrd field indicates the call is to pass a link credit. On a credit pass call, only channel and

sub_channel phase fields are valid. All other phase fields and payload fields are undefined. It is set

to false at phase construction.

Name: lcrd

Type: bool

Default value: false

4.7.5. SrcID field

The src_id field indicates the node ID of the port on the component from which the packet was

sent. It is set to 0 at phase construction.

Name: src_id

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 61

Type: uint16_t

Default value: 0

4.7.6. TgtID field

The tgt_id field indicates the node ID of the port on the component to which the packet is targeted.

It is set to 0 at phase construction.

Name: tgt_id

Type: uint16_t

Default value: 0

4.7.7. StashNID field

The stash_nid field indicates the node ID of the Stash target. It is set to 0 at phase construction.

Name: stash_nid

Type: uint16_t

Default value: 0

4.7.8. ReturnNID field

The return_nid field indicates the node ID that the response with Data is to be sent to. It is set to 0

at phase construction.

Name: return_nid

Type: uint16_t

Default value: 0

4.7.9. FwdNID field

The fwd_nid field indicates the node ID of the original Requester. It is set to 0 at phase construction.

Name: fwd_nid

Type: uint16_t

Default value: 0

4.7.10. HomeNID field

The home_nid field indicates the node ID of the target of the CompAck response to be sent from the

Requester. It is set to 0 at phase construction.

Name: home_nid

Type: uint16_t

Default value: 0

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 61

4.7.11. SLCRepHint field

The slc_rep_hint field indicates node ID of the Stash target. It is set to 0 at phase construction.

Name: slc_rep_hint

Type: uint16_t

Default value: 0

4.7.12. TxnID field

The txn_id field indicates the unique transaction ID for each source node. It is set to 0 at phase

construction.

Name: txn_id

Type: uint16_t

Default value: 0

4.7.13. DBID field

The dbid field indicates the ID to be used as the TxnID in the response to this message. It is set to 0

at phase construction.

Name: dbid

Type: uint16_t

Default value: 0

4.7.14. ReturnTxnID field

The return_txn_id field indicates the unique transaction ID that conveys the value of TxnID in

the data response from the Target. It is set to 0 at payload construction. The field is only relevant in
DMT transactions.

Name: return_txn_id

Type: uint16_t

Default value: 0

4.7.15. FwdTxnID field

The fwd_txn_id field indicates the transaction ID used in the Request by the original Requester. It

is set to 0 at payload construction. The field is only relevant in DMT transactions.

Name: fwd_txn_id

Type: uint16_t

Default value: 0

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 61

4.7.16. VMIDExt field

The vmid_ext field indicates the Virtual Machine ID Extension. It is set to 0 at payload construction.

Name: vmid_ext

Type: uint8_t

Default value: 0

4.7.17. StashLPID field

The stash_lpid field indicates the Stash Logical Processor ID value and the Valid bit. Both the

value and the valid bit are set to 0 at payload construction.

Name: stash_lpid

Type: ARM::CHI::Phase::StashLPID

Default value: {0,0}

4.7.18. Order field

The order field indicates the order of the transaction. The type holds the same enumeration as the

AMBA® 5 CHI Architecture Specification. It is set to ORDER_NO_ORDER at phase construction.

Name: order

Type: Order

Default value: ORDER_NO_ORDER

4.7.19. SnpAttr field

The snp_attr field indicates the snoop attributes associated with the transaction. It is set to false

at phase construction.

Name: snp_attr

Type: bool

Default value: false

4.7.20. AllowRetry field

The allow_retry field indicates if the target is permitted to give a Retry response. It is set to true

at phase construction.

Name: allow_retry

Type: bool

Default value: true

https://developer.arm.com/documentation/ihi0050/

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 61

4.7.21. DataID field

The data_id field indicates the address offset of the data provided in the packet. It is set to 0 at

phase construction.

Name: data_id

Type: uint8_t

Default value: 0

4.7.22. Resp field

The resp field indicates the cache line state associated with a data transfer. It is set to RESP_I at

phase construction.

Name: resp

Type: Resp

Default value: RESP_I

4.7.23. FwdState field

The fwd_state field indicates the cache line state associated with a data transfer to the Requester

from the receiver of the snoop. It is set to RESP_I at phase construction.

Name: fwd_state

Type: Resp

Default value: RESP_I

4.7.24. RespErr field

The resp_err field indicates the error status associated with a data transfer. It is set to

RESP_ERR_OK at phase construction.

Name: resp_err

Type: RespErr

Default value: RESP_ERR_OK

4.7.25. CBusy field

The c_busy field indicates the current level of activity at the Completer. It is set to 0 at phase

construction.

Name: c_busy

Type: uint8_t

Default value: 0

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 61

4.7.26. ExpCompAck field

The exp_comp_ack bit indicates that the transaction will include a Completion Acknowledge

message. It is set to false at payload construction. In snoop transactions, this field must be ignored.

Name: exp_comp_ack

Type: bool

Default value: false

4.7.27. PCrdType field

The pcrd_type field indicates the type of Protocol Credit being used by a request that has the

AllowRetry field deasserted. It is set to 0 at phase construction.

Name: pcrd_type

Type: uint8_t

Default value: 0

4.7.28. QoS field

The qos field specifies 1 of 16 possible priority levels for the transaction with ascending values of

QoS indicating higher priority levels. It is set to 0 at phase construction.

Name: qos

Type: uint8_t

Default value: 0

4.7.29. TagOp field

The tag_op field indicates the operation to be performed on the tags present in the corresponding

DAT channel. It is set to 0 at phase construction.

Name: tag_op

Type: TagOp

Default value: TAG_OP_INVALID

4.7.30. DoDWT field

The do_dwt field indicates that the Subordinate requests write data directly from the Requester. It is

set to false at payload construction.

Name: do_dwt

Type: bool

Default value: false

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 61

4.8. CHI payload fields

The payload can represent any CHI transaction.

The payload contains fields that use the same enumeration encodings as the hardware
implementation as listed in the AMBA® 5 CHI Architecture Specification.

CHI fields are split between the phase and payload, see the table in 4.6 CHI field location summary.

4.8.1. Payload address field

The address field indicates the address value of the transaction. It is set to 0 at payload

construction.

Name: address

Type: uint64_t

Default value: 0

When transmitting data on channels smaller than a cache line, the critical chunk (that is, the beat
containing the byte that is addressed) is decoded from the respective bits of the address field. For
example, when addressing a 64-byte cache line on a 16-byte data channel, bits 5:4 are assumed to be
the critical chunk ID (CCID). This chunk is, when possible, given transmission priority and is encoded
as DataID in the DAT phase.

4.8.2. Size field

The size field indicates the Size value of the transaction. The enumeration matches that used by the

size field used in the REQ channel. It is set to SIZE_1 at payload construction. In snoop

transactions, this field must be ignored.

Name: size

Type: ARM::CHI::Size

Default value: SIZE_1 (0)

4.8.3. MemAttr field

The mem_attr field indicates the MemAttr value of the transaction. The enumeration matches that

used by the MemAttr field used in the REQ channel. It is set to 0 at payload construction. In snoop
transactions, this field must be ignored.

Name: mem_attr

Type: ARM::CHI:: MemAttr

Default value: MEM_ATTR_NORMAL_NC_NB (0)

https://developer.arm.com/documentation/ihi0050/

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 61

4.8.4. LPID field

The lpid field indicates the Logical Processor ID (LPID), used in conjunction with the src_id field

to uniquely identify the logical processor that generated the request. It is set to 0 at payload
construction. In snoop transactions, this field must be ignored.

Name: lpid

Type: uint8_t

Default value: 0

4.8.5. PGroupID field

The p_group_id field indicates the set of CleanSharedPersistSep transactions to which the request

applies. It is set to 0 at payload construction.

Name: p_group_id

Type: uint8_t

Default value: 0

4.8.6. StashGroupID field

The stash_group_id field indicates the set of StashOnceSep transactions to which the request

applies. It is set to 0 at payload construction.

Name: stash_group_id

Type: uint8_t

Default value: 0

4.8.7. TagGroupID field

The tag_group_id is typically expected to contain Exception Level, TTBR value, and CPU

identifier. It is set to 0 at payload construction.

Name: tag_group_id

Type: uint8_t

Default value: 0

4.8.8. Excl field

The exclusive field indicates that the corresponding transaction is an Exclusive access transaction.

It is set to false at payload construction. In snoop transactions, this field must be ignored.

Name: exclusive

Type: bool

Default value: false

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 61

4.8.9. SnoopMe field

The snoop_me field indicates that Home must determine whether to send a snoop to the Requester.

It is set to false at payload construction. The field is only relevant in Atomic transactions.

Name: snoop_me

Type: bool

Default value: false

4.8.10. Endian field

The endian bit indicates the endianness of Data in the Data packet for Atomic transactions. It is set

to false at payload construction. The field is only relevant in Atomic operations.

Name: endian

Type: bool

Default value: false

4.8.11. StashNIDValid field

The stash_nid_valid field indicates the Stash NID field is valid and should be used. It is set to

false at payload construction. The field is only relevant in write operations. In read and snoop
transactions, it should be ignored.

Name: stash_nid_valid

Type: bool

Default value: false

4.8.12. Deep field

The deep bit indicates that the Persist response must not be sent until all earlier writes are written to

the final destination. It is set to false at payload construction. The field is only relevant in Persistent
CMO operations.

Name: deep

Type: bool

Default value: false

4.8.13. NS field

The ns field indicates if the transaction is Non-secure or Secure. It is set to false at payload

construction.

Name: ns

Type: bool

Default value: false

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 61

4.8.14. LikelyShared field

The likely_shared field indicates an allocation hint for downstream caches. It is set to false at

payload construction. In snoop transactions, this field must be ignored.

Name: likely_shared

Type: bool

Default value: false

4.8.15. RetToSrc field

The ret_to_src bit instructs the receiver of the snoop to return Data with the Snoop response. It is

set to false at payload construction. The field is only relevant in Snoop transactions.

Name: ret_to_src

Type: bool

Default value: false

4.8.16. DoNotGoToSD field

The do_not_go_to_sd bit controls Snoopee use of SD state. It is set to false at payload

construction. The field is only relevant in Snoop transactions.

Name: do_not_go_to_sd

Type: bool

Default value: false

4.8.17. RSVDC field

The rsvdc field is used for user-defined values. It is set to 0 at payload construction.

Name: rsvdc

Type: uint32_t

Default value: 0

4.8.18. DataPull field

The data_pull field indicates the inclusion of an implied read request in the data response.

Name: data_pull

Type: ARM::CHI::DataPull

Default value: ARM::CHI:: DATA_PULL_NO_READ

4.8.19. DataSource field

The data_source field indicates the source of the data in a read data response.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 61

Name: data_source

Type: uint8_t

Default value: 0

4.8.20. MPAM field

The mpam field contains a label, identifying the partition to which it belongs, together with the

performance monitoring group within that partition.

Name: mpam

Type: ARM::CHI::Mpam

Default value: {0,0,false}

4.8.21. TU field

The tu (Tag Update) field indicates which of the allocation tags must be updated.

Name: tu

Type: uint8_t

Default value: 0

4.8.22. Tag field

The tag field provides sets of 4-bit tags, each associated with an aligned 16 bytes of data.

Name: tag

Type: uint8_t[4]

Default value: 0

4.8.23. Data field

The data field indicates the data of the transaction. It is cleared to 0 at payload construction.

Name: data

Type: uint8_t[64]

Default value: 0

4.8.24. BE field

The byte_enable field indicates the byte enable mask of the transaction. It is cleared to 0 at

payload construction.

Name: byte_enable

Type: uint64_t

Default value: 0

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 61

4.9. CHI payload functions

The library provides a set of payload functions for CHI transactions.

4.9.1. Payload creation functions

The library provides a set of payload creation functions for CHI transactions.

new_payload()

Create a new payload. The returned payload has its fields set to their default state.

Function: new_payload

Prototype: static Payload* new_payload()

descend()

Create a new payload and setting the parent payload to be the object the function is called on.

Function: descend

Prototype: Payload* descend()

get_dummy()

Get the dummy payload that can be used for LCRD passing operations. The content of the payload is
undefined. The payload can have ref and unref called on it, but we do not encourage it.

Function: get_dummy

Prototype: static Payload* get_dummy ()

4.9.2. Reference counting functions

The library provides a set of reference counting functions for CHI payloads.

ref()

Increment the payload reference count.

Function: ref

Prototype: void ref()

unref()

Decrement the payload reference count. If a payload reference count reached zero, it will be returned
to the pool.

Function: unref

Prototype: void unref()

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
4 CHI protocol

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 61

4.10. CHI payload propagation

In a very simple system, payloads are generated at the transaction initiator, they are transmitted to
the target model which fills in the response fields and passes the payload back to the initiator. In more
complex systems, the payload can pass through several models between the initiator and the target. It
is legal and encouraged for a module which only propagates the transaction unchanged to forward
the payload that was received.

Other models need to amend the payload before propagating it. A model which receives a transaction
over a socket is only permitted to write the data and response fields and only if it is the final target
model. No other fields should be changed as the payload can still be in use by other models.

4.10.1. CHI descend function

The descend() function creates a new payload and copies all fields from a previous payload to

create a new copy of that payload. The function takes the same parameters as new_payload() and

there is no restriction on what kind of payload is generated from the parent. All fields not set by the
constructor can be altered before propagating just like a new payload. descend() can be called

multiple times on a single payload creating multiple derived transactions.

It is strongly encouraged to use descend() when creating derived payloads rather than directly

creating new payloads. See 5.1.1 UID field and 5.1.2 Parent field for features that can help when
handling derived payloads. When responses of descended transactions return, it is the job of the
model that descended that payload to copy the response and data from the descended payload to the
original before propagating the original back upstream.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
5 Additional payload features

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 61

5. Additional payload features
Several fields are attached to all payloads to help the programmer working with AXI and CHI
payloads. These fields have no representation in the signal-level implementation and should have no
influence on the behavior of a model.

5.1. Additional payload fields

The library provides additional payload fields.

5.1.1. UID field

The uid field is a unique payload ID that can be used to refer to a specific payload. It is set to a unique

value at payload construction and cannot be altered after construction. The uid is unique for each

payload constructed and is not reused even if a payload is destroyed. uid is not copied by clone or

descend operations, and child payloads have a new, unique uid value. The uid of 0 is never allocated

to a payload and can be used as a sentinel value where uid fields are used as key values outside

ARM::AXI::Payload.

Name: uid

Type: uint64_t const

Getter: N/A, directly accessible

Setter: N/A, const

RTL signals: N/A, simulation construct

5.1.2. Parent field

The parent field is a pointer to the payload that this payload is descended from. In newly constructed
payloads it is set to NULL unless the payload is constructed by descending or cloning in which case the

parent field is set to point to the original payload. It cannot be altered post payload construction.

Descended and cloned payloads that refer to a parent increment the reference count of that parent
and decrement the parent reference count when they are destroyed. It is always safe to look at the
parent of any payload (if it has one) and no manual referencing is required. It is possible to walk up the
parent tree to find the original transaction that triggered the current one.

Name: parent

Type: Payload* const

Getter N/A, directly accessible

Setter N/A, const

RTL signals N/A, simulation construct

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
5 Additional payload features

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 61

5.2. Extension system

The payload extension system allows additional fields to be added to payloads. All payloads have
space allocated to hold all extensions whether they are set or not.

Values of extensions are copied when a payload is descended (or cloned in AXI). Extension fields in
new payloads are created using the default constructor and destroyed using the default destructor
when the payload is returned to the pool. Each extension can be of any object type.

Extensions must be declared before any payload object is created. Because extensions are typically
declared by models, no payloads can be created before all models in a system are instantiated.

A payload extension handle is a class that provides access to a payload extension value. Constructing
the handle during model instantiation adds the extension to the set allocated in payloads (if it has not
already been added). The first handle for an extension must be created to register the extension
before any payloads are created. Constructing two handles with the same name and type give
accessors to the same extension.

The following example code constructs an extension named CORE_ID of type uint32_t:

ARM::AXI::PayloadExtension<uint32_t> core_id_accessor(“CORE_ID”);

Providing a payload to the accessor through the get() function returns a non-const reference to the

value for that payload extension. Reading and writing the value of the extension can be done through
this reference. The following example code demonstrates changing an extension value:

uint32_t& core_id_value = core_id_accessor.get(&payload);

core_id_value &= 0xF;

5.2.1. Custom Extension Managers

When an extension manager is not defined, similar to the previous example, the default extension
manager is used.

The default extension manager uses the default constructor, copy constructor, and destructor for the
actions of creating a new payload, descending a payload, and returning the payload to the pool,
respectively. It is possible to perform relevant actions.

An example of a custom extension manager is available in tests/extensions.cpp.

AMBA® TLM 2.0 Library Reference Manual 101459_02_en

Issue 02
Appendix A Revisions

Copyright © 2019, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 61

Appendix A. Revisions
This appendix describes the technical changes between released issues of this document.

Table A-1: Issue 01

Change Location

First issue -

Table A-2: Differences between issue 01 and issue 02

Change Location

Document renamed from Arm® AMBA® TLM 2.0 Library Developer Guide
to AMBA® TLM 2.0 Library Reference Manual

-

Previous document issue numbering format updated from 1000-00 to
01

-

Editorial updates Whole document

Added information about CHI header files and socket types • 2.1 Header file structure

• 2.2 Socket types

Moved section to 2 AMBA TLM 2.0 Library overview 2.3 Clocking

Added sections to 3.1 AXI phases • 3.1.2 QOSACCEPT

• 3.1.3 RCHUNKNUM and RCHUNKSTRB

Added sections to 3 AXI protocol • 3.1 AXI phases

• 3.8 AXI atomic response data functions

• 3.9 AXI Memory Tagging Extension
functions

Added chapter 4 CHI protocol

Moved sections to 5 Additional payload features • 5.1 Additional payload fields

• 5.2 Extension system

	1. Introduction
	1.1. Intended audience
	1.2. Conventions
	1.3. Useful resources

	2. AMBA TLM 2.0 Library overview
	2.1. Header file structure
	2.2. Socket types
	2.2.1. Socket protocol and port width
	2.2.2. Binding sockets
	2.2.3. Supported transport interfaces

	2.3. Clocking

	3. AXI protocol
	3.1. AXI phases
	3.1.1. ACE WACK and RACK signals
	3.1.2. QOSACCEPT
	3.1.3. RCHUNKNUM and RCHUNKSTRB

	3.2. AXI payload generation
	3.3. AXI payload fields
	3.3.1. Command field
	3.3.2. Len field
	3.3.3. Size field
	3.3.4. Burst field
	3.3.5. Address field
	3.3.6. ID field
	3.3.7. Lock field
	3.3.8. Cache field
	3.3.9. Prot field
	3.3.10. QoS field
	3.3.11. Region field
	3.3.12. User field
	3.3.13. Snoop field
	3.3.14. Domain field
	3.3.15. Bar field
	3.3.16. Unique field
	3.3.17. Atop field
	3.3.18. VMID Extension field
	3.3.19. Stash NID field
	3.3.20. Stash NID Valid field
	3.3.21. Stash LPID field
	3.3.22. Stash LPID Valid field
	3.3.23. Resp field
	3.3.24. Unique ID field
	3.3.25. Chunk Enable field
	3.3.26. Untranslated Transaction Secure Stream Identifier field
	3.3.27. Untranslated Transaction Secure Identifier field
	3.3.28. Untranslated Transaction Substream Identifier Valid field
	3.3.29. Untranslated Transaction Substream Identifier field
	3.3.30. Untranslated Transaction Address Translated field
	3.3.31. Tag Match field
	3.3.32. TagOp field
	3.3.33. CMO field
	3.3.34. MPAM field
	3.3.35. NSAID field
	3.3.36. Loopback field

	3.4. AXI helper functions
	3.5. AXI transaction-level data and response functions
	3.5.1. AXI transaction-level read functions
	3.5.2. AXI transaction-level write functions
	3.5.3. AXI transaction-level snoop functions

	3.6. AXI beat-level data and response functions
	3.6.1. AXI beat-level read functions
	3.6.2. AXI beat-level write functions
	3.6.3. AXI beat-level snoop functions

	3.7. AXI chunk-level data and response functions
	3.8. AXI atomic response data functions
	3.9. AXI Memory Tagging Extension functions
	3.10. AXI signal-level support functions
	3.10.1. AXI signal-level support read functions
	3.10.2. AXI signal-level support write functions
	3.10.3. AXI signal-level support snoop

	3.11. AXI payload propagation
	3.11.1. AXI descend function
	3.11.2. AXI clone function

	4. CHI protocol
	4.1. CHI phases
	4.2. CHI payload alterations
	4.3. CHI link credits
	4.4. CHI payload generation
	4.5. CHI payload use
	4.6. CHI field location summary
	4.7. CHI phase fields
	4.7.1. Channel field
	4.7.2. SubChannel field
	4.7.3. Opcode field
	4.7.4. LCrd field
	4.7.5. SrcID field
	4.7.6. TgtID field
	4.7.7. StashNID field
	4.7.8. ReturnNID field
	4.7.9. FwdNID field
	4.7.10. HomeNID field
	4.7.11. SLCRepHint field
	4.7.12. TxnID field
	4.7.13. DBID field
	4.7.14. ReturnTxnID field
	4.7.15. FwdTxnID field
	4.7.16. VMIDExt field
	4.7.17. StashLPID field
	4.7.18. Order field
	4.7.19. SnpAttr field
	4.7.20. AllowRetry field
	4.7.21. DataID field
	4.7.22. Resp field
	4.7.23. FwdState field
	4.7.24. RespErr field
	4.7.25. CBusy field
	4.7.26. ExpCompAck field
	4.7.27. PCrdType field
	4.7.28. QoS field
	4.7.29. TagOp field
	4.7.30. DoDWT field

	4.8. CHI payload fields
	4.8.1. Payload address field
	4.8.2. Size field
	4.8.3. MemAttr field
	4.8.4. LPID field
	4.8.5. PGroupID field
	4.8.6. StashGroupID field
	4.8.7. TagGroupID field
	4.8.8. Excl field
	4.8.9. SnoopMe field
	4.8.10. Endian field
	4.8.11. StashNIDValid field
	4.8.12. Deep field
	4.8.13. NS field
	4.8.14. LikelyShared field
	4.8.15. RetToSrc field
	4.8.16. DoNotGoToSD field
	4.8.17. RSVDC field
	4.8.18. DataPull field
	4.8.19. DataSource field
	4.8.20. MPAM field
	4.8.21. TU field
	4.8.22. Tag field
	4.8.23. Data field
	4.8.24. BE field

	4.9. CHI payload functions
	4.9.1. Payload creation functions
	4.9.2. Reference counting functions

	4.10. CHI payload propagation
	4.10.1. CHI descend function

	5. Additional payload features
	5.1. Additional payload fields
	5.1.1. UID field
	5.1.2. Parent field

	5.2. Extension system
	5.2.1. Custom Extension Managers

	Appendix A. Revisions

