

DRTM Architecture for Arm

Document number: ARM DEN 0113

Release Quality: EAC

Document Version: 1.0

Confidentiality: Non-Confidential

Date of Issue: May 30, 2023

Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page ii
1.0 Non-confidential

Contents

About this document vii

Release Information vii

References x

Terms and abbreviations xi

Conventions xii
Typographical conventions xii
Numbers xii

Feedback xiii

Inclusive language commitment xiii

1 Overview of this document 14

2 DRTM architecture overview 15

2.1 DRTM background 15

2.2 DRTM overview 16

2.3 DRTM terms 17
2.3.1 DCE preamble 17
2.3.2 D-CRTM and DCE 17
2.3.3 DLME 17
2.3.4 Devices and non-host platforms 18

2.4 DRTM on Arm 18
2.4.1 Overview of DRTM on Arm 18
2.4.2 DRTM SMC functions 19

2.5 DRTM implementations 20
2.5.1 Firmware-backed implementation overview 20
2.5.2 Hardware-backed implementation overview 21

2.6 Differences from the TCG DRTM specification 22

2.7 DRTM and the TPM 22
2.7.1 Firmware-based measurements 23
2.7.2 TPM-based measurements 23

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page iii
1.0 Non-confidential

2.7.3 TPM PCR usage 23

2.8 Memory protection 24

2.9 Security considerations 24
2.9.1 Security goals 24
2.9.2 Security non-goals 24
2.9.3 Stakeholders 25
2.9.4 Threats and mitigations 25
2.9.5 Security considerations for stakeholders 27

3 Interface functions and data structures 29

3.1 Introduction to interface functions and data structures 29

3.2 DRTM_VERSION 30
3.2.1 DRTM_VERSION usage 30
3.2.2 DRTM_VERSION implementation responsibilities 30

3.3 DRTM_FEATURES 31
3.3.1 DRTM_FEATURES usage 34

3.4 DRTM_DYNAMIC_LAUNCH 35
3.4.1 DRTM_DYNAMIC_LAUNCH usage 35
3.4.2 DRTM_DYNAMIC_LAUNCH caller responsibilities 35
3.4.3 DRTM_DYNAMIC_LAUNCH implementation responsibilities 36

3.5 DRTM_UNPROTECT_MEMORY 37
3.5.1 DRTM_UNPROTECT_MEMORY usage 37
3.5.2 DRTM_UNPROTECT_MEMORY implementation responsibilities 37

3.6 DRTM_CLOSE_LOCALITY 38
3.6.1 DRTM_CLOSE_LOCALITY usage 38
3.6.2 DRTM_CLOSE_LOCALITY caller responsibilities 38
3.6.3 DRTM_CLOSE_LOCALITY implementation responsibilities 38

3.7 DRTM_GET_ERROR 39
3.7.1 DRTM_GET_ERROR usage 39
3.7.2 DRTM_GET_ERROR caller responsibilities 39
3.7.3 DRTM_GET_ERROR implementation responsibilities 39

3.8 DRTM_SET_ERROR 40
3.8.1 DRTM_SET_ERROR usage 40

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page iv
1.0 Non-confidential

3.8.2 DRTM_SET_ERROR caller responsibilities 40
3.8.3 DRTM_SET_ERROR implementation responsibilities 40

3.9 DRTM_SET_TCB_HASH 41
3.9.1 DRTM_SET_TCB_HASH usage 41
3.9.2 DRTM_SET_TCB_HASH caller responsibilities 41
3.9.3 DRTM_SET_TCB_HASH implementation responsibilities 42

3.10 DRTM_LOCK_TCB_HASHES 43
3.10.1 DRTM_LOCK_TCB_HASHES usage 43
3.10.2 DRTM_LOCK_TCB_HASHES caller responsibilities 43
3.10.3 DRTM_LOCK_TCB_HASHES implementation responsibilities 43

3.11 DRTM error encoding 44

3.12 DRTM_PARAMETERS 45

3.13 MEMORY_REGION_DESCRIPTOR_TABLE 47

3.14 DLME region 48

3.15 TCB_HASH_TABLE 52

3.16 DRTM event log 53
3.16.1 DRTM event log requirements 54
3.16.2 Event types 54

3.17 Return codes 56

4 Requirements for DRTM phases 58

4.1 Non-secure firmware and TCB-critical data 58

4.2 DCE preamble 59

4.3 Dynamic launch event 60

4.4 Firmware-backed D-CRTM requirements 61

4.5 DCE requirements 63

4.6 DLME 68
4.6.1 DLME initial state 68
4.6.2 DLME operation 69

4.7 Error handling and remediation 71

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page v
1.0 Non-confidential

4.8 TPM measurements 72
4.8.1 TPM measurement requirements 72
4.8.2 PCR schemas 72
4.8.3 Default PCR schema 72

5 System requirements 74

5.1 Processing elements 74

5.2 Multiple sockets 74

5.3 SMMU and DMA capable devices 74

5.4 Non-host platforms 74
5.4.1 GIC 75
5.4.2 Hardware trace 75

5.5 Security lifecycle 75

5.6 TPM 76
5.6.1 TPM requirements 76
5.6.2 Closing localities 77

5.7 ACPI 77

5.8 DMA protection 78

5.9 Platform 78

5.10 Firmware 79

5.11 Dynamic launch errors 79

5.12 SMCCC and PSCI requirements 80

5.13 Secure services 80

6 Hardware-backed implementation 81

6.1 Hardware-backed overview 81

6.2 Hardware-backed D-CRTM requirements 82

6.3 Hardware-backed DCE requirements 83

6.4 Hardware-backed system requirements 84
6.4.1 TPM 84

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page vi
1.0 Non-confidential

6.4.2 Coprocessor 85
6.4.3 DMA protection 86

6.5 Hardware-backed DRTM function requirements 86
6.5.1 DRTM_DYNAMIC_LAUNCH 86

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page vii
1.0 Non-confidential

About this document

Release Information
The change history table lists the changes that have been made to this document.

Date Issue Confidentiality Change

May 30, 2023 1.0 Non-confidential • Initial release

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page viii
1.0 Non-confidential

DRTM Architecture for Arm
Copyright ©2022-2023 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact
that some draft issues of this document have been released, to a limited circulation.

Arm Non-Confidential Document Licence (“Licence”)
This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property
(including, without limitation, any copyright) embodied in the document accompanying this Licence
(“Document”). Arm licenses its intellectual property in the Document to you on condition that you agree to the
terms of this Licence. By using or copying the Document you indicate that you agree to be bound by the terms of
this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled,
directly or indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the
terms of this Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property
in the Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free,
worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the

Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i)
above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product
that is not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any
intellectual property embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. Arm may make changes to the Document at any time and without notice. For the avoidance of doubt,
Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope
and content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT
PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE,
IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page ix
1.0 Non-confidential

USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY
LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR
EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS
OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other
rights, if Licensee is in breach of any of the terms and conditions of this Licence then Arm may terminate this
Licence immediately upon giving written notice to Licensee. Licensee may terminate this Licence at any time. Upon
termination of this Licence by Licensee or by Arm, Licensee shall stop using the Document and destroy all copies
of the Document in its possession. Upon termination of this Licence, all terms shall survive except for the licence
grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in
breach. Any termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any
Subsidiary hereunder shall automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use,
duplication or disclosure of the Document complies fully with any relevant export laws and regulations to assure
that the Document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.

 This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any
conflict between the English version of this Licence and any translation, the terms of the English version of this
Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. No licence, express, implied or otherwise, is granted
to Licensee under this Licence, to use the Arm trade marks in connection with the Document or any products
based thereon. Visit Arm’s website at https://www.arm.com/company/policies/trademarks for more information
about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2022-2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585 version 4.0

https://www.arm.com/company/policies/trademarks

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page x
1.0 Non-confidential

References
This document refers to the following documents.

Ref Document Number Title

[1] Arm DDI 0487 Arm® Architecture Reference Manual for A-profile
architecture

[2] Arm DEN 0022D Power State Coordination Interface

[3] Arm DEN 0028D SMC Calling Conventions

[4] TCG D-RTM Architecture, Version 1.0.0, June 17, 2013

[5] Arm DEN 0072 Platform Security Boot Guide

[6] TCG PC Client Platform Firmware Profile Specification,
Family “2.0”, Level 00 Revision 1.04, June 3, 2019

[7] Arm DEN 0094A Arm® Base System Architecture 1.0

[8] Trusted Platform Module Library Specification, Family
“2.0”, Level 00, Revision 01.59 – November 2019

[9] TCG PC Client Platform TPM Profile Specification for TPM
2.0, Version 1.05, September 4, 2020

[10] Arm DEN 0044A Arm® Base Boot Requirements 1.0

[11] TCG Glossary, Version 1.1, Revision 1.00, May 11, 2017

[12] TCG Algorithm Registry, Family “2.0", Level 00, Revision
01.32 June 25, 2020

[13] Advanced Configuration and Power Interface (ACPI)
Specification, Version 6.4, January 2021.

[14] Arm IHI 0069G Arm Generic Interrupt Controller Architecture
Specification, GIC architecture version 3 and version 4

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page xi
1.0 Non-confidential

Terms and abbreviations
This document uses the following terms and abbreviations.

Term Meaning

Application PE The term application PE refers to a PE used by the operating system or hypervisor
to execute user applications or kernel threads.

Boot PE The boot PE is the PE designated by hardware to boot the system following reset.

In this architecture it is the boot PE that initiates and performs the dynamic launch
and executes the phases of DRTM. All other PEs besides the boot PE are “off”
during DRTM.

CRTM Core Root of Trust for Measurement

DCE DRTM Configuration Environment

D-CRTM Dynamic Core Root of Trust for Measurement

Device A peripheral or controller that can be excluded from the TCB of the system
through DMA protection hardware such as an SMMU.

DLME Dynamically Launched Measured Environment

DRTM Dynamic Root of Trust for Measurement

Locality Locality is a mechanism in a TPM that supports a privilege hierarchy for clients of
the TPM. The platform in a system enforces access to the TPM so that clients can
only access localities they have the privilege to access.

Non-Host Platform A peripheral or controller in a system that has no DMA-protections and cannot be
restricted from reading or writing the DCE or DLME.

Non-application PE A Non-application PE is a PE that is not an application PE.

Normal world The Non-secure privilege levels (Non-secure EL0, EL1, and EL2) and resources, for
example memory, registers, and devices, that are not part of the Secure world.

Normal world DCE A DCE component that executes at a Non-secure privilege level.

PCR Platform Configuration Register. A protected location within a TPM containing a
digest of integrity measurements.

PE Processing element. This is the term used for a CPU core in the Arm v8-A
architecture. In this specification, unless otherwise stated, the term PE refers to an
application PE.

RTM Root of trust for measurement. The Root of Trust that makes the initial integrity
measurement in a measured boot flow.

Secure world

The environment that is provided by the Secure privilege levels in the Arm v8-A
architecture, S-EL0, S-EL1, S-EL2, EL3, and the resources, for example memory,
registers, and devices, that are accessible exclusively from the Secure privilege
levels.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page xii
1.0 Non-confidential

SRTM Static root of trust for measurement. From the TCG glossary [11]: An RTM where
the initial integrity measurement occurs at platform reset. The SRTM is static
because the PCRs associated with it cannot be re-initialized without a platform
reset.

TCB Trusted computing base

TPM Trusted Platform Module. A security module that is defined by TCG.

TCG Trusted Computing Group

UEFI Unified Extensible Firmware

Conventions

Typographical conventions
The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Also used for a few terms that have specific technical meanings, and are included in the
Glossary.

Red text

Indicates an open issue.

Blue text

Indicates a link, which can be:

• A cross-reference to another location within the document.

• A URL, for example http://infocenter.arm.com.

Numbers
Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.

In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters,
for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page xiii
1.0 Non-confidential

Feedback
Arm welcomes feedback on this product and its documentation. To provide feedback on the product, create a
ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/documentation-
feedback-survey.

Inclusive language commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be
offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future issue of this
document.

To report offensive language in this document, email terms@arm.com.

https://support.developer.arm.com/
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 14
1.0 Non-confidential

1 Overview of this document
This specification defines an architecture for Dynamic Root of Trust for Measurement (DRTM) for processors
based on the Arm A-profile architecture. This specification is based on concepts from the TCG D-RTM
Architecture [4], but functions as a self-contained, standalone document. It uses the principles and terminology
of the TCG architecture but contains significant differences as well.

The specification is structured as follows:

• Section 2, DRTM architecture overview, describes DRTM in general and an introduction to how this
architecture maps DRTM to Arm-based systems. This section includes a description of differences with the
TCG-defined architecture. This section also covers the security scope of DRTM on Arm and identifies threats
that are in and out of scope.

• Section 3, Interface functions and data structures, describes the Secure world ABIs needed to implement
DRTM on Arm.

• Section 4, Requirements for DRTM phases, describes the normative requirements that each phase of the
DRTM process must comply with.

• Section 5, System requirements, describes the system-level assumptions and requirements that must be in
place for a system to support the DRTM on Arm architecture.

• Section 6, Hardware-backed implementation, describes requirements specific to a hardware-backed
implementation of DRTM.

In this specification, tables with requirement IDs describe the normative requirements. These requirements are
distinct from the supporting informative text. The informative text provides more context to help clarify the
rationale for each requirement.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 15
1.0 Non-confidential

2 DRTM architecture overview

2.1 DRTM background
The Trusted Computing Base (TCB) of a system consists of all hardware, firmware, and software components
that are relied on to enforce the security of the system. A compromise in any TCB component affects the security
posture of the entire system.

The integrity of the software TCB for a system is typically established during boot. The boot process begins in an
immutable bootloader component, for example a boot ROM that loads the first mutable firmware image. Before
transferring control to the loaded image a cryptographic digest of the image is computed. This digest is known as
a measurement. That measurement might be:

• Immediately verified using a digital signature

• Securely stored in a Trusted Platform Module (TPM) for later use in security policies

The process is repeated for each loaded image in the boot chain. Critical data can be measured as well. This
process forms a chain of trust that is anchored in the immutable bootloader. The chain of trust continues
through all code that is executed up to the runtime environment such as a hypervisor or OS kernel.

Measured boot is a boot chain where the measurements taken during the boot process are stored securely in a
root of trust for storage such as a TPM. The code in the boot ROM that begins the chain of trust is called the
Core Root of Trust for Measurement (CRTM). When the CRTM executes on a processor, it is referred to as the
Root of Trust for Measurement (RTM).

In measured boot flow typical boot stages include:

• Processor execution beginning with the CRTM

• Loading and executing other bootloader stages

• Executing UEFI firmware

• Executing an OS loader

• Launching the OS kernel or hypervisor

The measurements of each stage are recorded in Platform Configuration Registers (PCRs) of a TPM. These PCRs
(0-15) are referred to as static PCRs because they cannot be re-initialized without a platform reset. The RTM in
this boot flow is called the Static Root of Trust for Measurement (SRTM). See example in Figure 1.

Figure 1: Example SRTM boot flow

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 16
1.0 Non-confidential

In an SRTM boot flow every component loaded up to and including the OS kernel is measured in the static PCRs
and becomes part of the system’s TCB. The PCRs allow a system to attest to what software is running on the
system and enables security policies such as allowing access to sealed secrets in the TPM only when the PCRs
reflect that the TCB has integrity.

2.2 DRTM overview
Establishing an attestable TCB becomes difficult when the number of components in the boot chain grows or
when firmware is dynamically extensible, for example by loading drivers from add-in peripherals. The larger and
more complex the TCB, the greater the attack surface and the risk of untrusted code executing which can
compromise security.

For example, UEFI is an extensible boot loader, where multiple EFI programs might run during the Boot Services
phase. The EFI programs can include drivers, device option ROMs, and a bootloader. If compromised, these
programs might be able to further compromise the target OS by tampering with the OS’s code or data.

Dynamic Root of Trust for Measurement (DRTM) begins a new chain of trust by measuring and executing a
protected payload. The newly started chain of trust results in a smaller TCB. DRTM is implemented by a trusted
agent that ensures the following:

• All cores are placed in a known state

• The target payload is protected against modification

• A single core measures and begins running the payload

• Execution is confined to the payload

• The payload is provided with data that can be used to validate key properties of the system

When the system has been running, the same mechanism can be used again to return execution to a new
measured payload without a system reset.

The event that initiates DRTM is referred to as the Dynamic Launch Event or DL Event.

A TPM device holds the measurements made during the dynamic launch, and these measurements are used by
the launched payload to enforce a system-specific security policy. The TPM architecture defines a set of PCRs
that are considered dynamic. Unlike the static PCRs used in the SRTM boot flow, the dynamic PCRs can be reset
by a DL Event. This feature allows DRTM to be initiated multiple times without a system reset.

Figure 2 shows the SRTM boot chain ending with the DL Event which launches the DRTM boot chain.

Figure 2: SRTM and DRTM boot chain illustration

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 17
1.0 Non-confidential

A key goal of DRTM is that the new TCB established by the DRTM boot chain does not have a trust dependency
on the SRTM trust chain or anything else which executed before the DL Event. A dynamic launch can be initiated
any number of times on a running system.

2.3 DRTM terms

2.3.1 DCE preamble
The preamble block shown in Figure 2 is referred to as the DRTM Configuration Environment (DCE) Preamble.
The DCE Preamble prepares the platform for DRTM by:

• Doing any needed configuration

• Loading the target payload image

• Preparing input parameters needed by DRTM

• Invoking the DL Event to start the dynamic launch

The DCE Preamble is closely coupled with the launched payload. It is typically supplied by the OS-provider or
might conform to a standardized boot protocol.

2.3.2 D-CRTM and DCE
A DRTM implementation is composed of two logical components:

• The Dynamic Code Root of Trust for Measurement (D-CRTM)

• The DRTM Configuration Environment (DCE).

The D-CRTM and DCE are supplied by the silicon provider or OEM.

The D-CRTM is the trust anchor, or root of trust, for the DRTM boot sequence and is where the dynamic launch
starts. The D-CRTM must be implemented in a trusted agent in the system. The D-CRTM initializes the TPM for
DRTM and prepares the environment for the next stage of DRTM, the DCE. The D-CRTM:

• Measures the DCE

• Verifies its signature

• Transfers control to it

The DCE executes on an application core. The DCE:

• Verifies the state of the system

• Measures security-critical attributes of the system

• Prepares the memory region for the target payload

• Measures the payload

• Transfers control to the payload

2.3.3 DLME
The protected payload is referred to as the Dynamically Launched Measured Environment, or DLME. The DLME
begins execution in a safe state, with a single thread of execution, DMA protections, and interrupts disabled. The
DCE provides data to the DLME that it can use to verify the configuration of the system. The trustworthy

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 18
1.0 Non-confidential

measurements made by the dynamic launch can be used to implement a system-specific security policy. The
policy decides whether the system is in the expected state.

The DLME can be an operating system-specific component supplied by the same vendor that provided the DCE
Preamble, or it can conform to a standardized boot protocol.

2.3.4 Devices and non-host platforms
The TCG DRTM architecture differentiates between two types of devices or controllers in a system that are
capable of DMA. A peripheral is a device or controller that can be excluded from the TCB of the system through
DMA protection hardware such as an IOMMU. A device or controller in a system that has no DMA-protections
and cannot be restricted from reading or writing the DCE or DLME is referred to as a non-host platform. A non-
host platform is trusted and is part of the system’s TCB.

In this specification device refers to peripherals as defined in the preceding paragraph. The term non-host
platform has the same usage as in the TCG specification.

2.4 DRTM on Arm

2.4.1 Overview of DRTM on Arm
Armv8-A processors have two security states: Secure and Non-Secure. Figure 3 shows the two security states.

Figure 3: Exception levels and security states example

As section 2.2 describes, the objective of DRTM is to begin a new chain of trust and instantiate a smaller TCB that
excludes untrusted and arbitrarily extensible components. DRTM does this by measuring and launching a
protected payload.

The scope of DRTM on Arm is the Non-secure side of the processor. The launch and execution of the protected
payload occurs at the highest Non-secure privilege level. The Secure privilege levels are not affected by DRTM.

A typical boot scenario for DRTM is for a Normal world OS loader to initiate a dynamic launch after loading OS
images.

A DRTM implementation on Arm provides the following security guarantee:

• A trustworthy measurement is made of the DLME image and security relevant state into the TPM.

• The DLME image is launched in a safe state:

o Single thread of execution on the boot PE. All other PEs are off

o Asynchronous Non-secure interrupts and exceptions are disabled

o The DLME region is protected against DMA

o Data needed by DLME to establish the new TCB is provided. The data includes:

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 19
1.0 Non-confidential

 A trustworthy map of the system’s memory

 An event log with the measurements made during the dynamic launch

 Trustworthy ACPI tables or hashes of ACPI tables, which can be used by the DLME to
validate the ones provided by Non-secure firmware

The architecture defines a new SMC function to initiate the dynamic launch. Figure 4 shows an example of a
DRTM implementation on an Arm system. Section 2.5 describes possible implementation approaches.

Figure 4: Example dynamic launch flow on Arm

2.4.2 DRTM SMC functions
This architecture defines a new set of SMC functions which provide the interfaces needed by the Normal world
DRTM client to perform initialization and initiate a DRTM dynamic launch.

Table 1 shows a summary of the DRTM SMC functions.

Table 1: DRTM functions

Function Description

DRTM_VERSION Returns the version of the DRTM implementation. See section 3.2.

DRTM_FEATURES Allows a client to query the DRTM implementation to determine the
supported DRTM capabilities of the platform. See section 3.3.

DRTM_DYNAMIC_LAUNCH Initiates a dynamic launch. See section 3.4.

DRTM_UNPROTECT_MEMORY Removes the memory protection put in place by the dynamic
launch. See section 3.5.

DRTM_CLOSE_LOCALITY Closes a locality in the TPM. See section 3.6.

DRTM_GET_ERROR Returns an error code from the previous dynamic launch. See
section 3.7.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 20
1.0 Non-confidential

DRTM_SET_ERROR Sets a DRTM error code indicating that a dynamic launch has failed.
See section 3.8.

DRTM_SET_TCB_HASH Used by firmware to record hashes of components of the TCB of the
system before the dynamic launch. See section 3.9.

DRTM_LOCK_TCB_HASHES Used by firmware to prevent further hashes from being recorded.
See section 3.10.

Figure 5 shows an example of how the functions might be used.

Figure 5: Example of SMC function usage

2.5 DRTM implementations
As section 2.3.2 describes, the D-CRTM must be in a trusted agent in the system. This specification describes two
approaches to implementation of the D-CRTM: firmware-backed and hardware-backed.

2.5.1 Firmware-backed implementation overview
In a firmware-backed implementation the D-CRTM is implemented in secure firmware. How other DRTM
components in a firmware implementation map to Arm v8 privilege levels is implementation-dependent and is
not specified by this architecture. The architecture permits flexibility where the D-CRTM and DCE are
implemented. Options include:

• A firmware implementation where the D-CRTM and the DCE are implemented together at EL3 as shown
in Figure 4.

• A firmware implementation where the DCE is located completely in Non-secure firmware as shown in
Figure 6.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 21
1.0 Non-confidential

• An implementation where an initial stage of the DCE is in Secure firmware and a second stage DCE is in
Non-secure firmware as shown in Figure 7.

Figure 6: Firmware-backed implementation dynamic launch

2.5.2 Hardware-backed implementation overview
In a hardware-backed implementation, the D-CRTM is in a coprocessor separate from the PE that initiated the
dynamic launch. A hardware-backed implementation provides a root of trust with a smaller footprint and a
higher level of assurance than a firmware-backed implementation. Section 6 describes requirements for a
hardware-backed implementation.

Figure 7 shows how DRTM components might map to PE privilege levels and the security coprocessor in a
hardware-backed implementation.

Figure 7: Hardware-backed implementation dynamic launch

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 22
1.0 Non-confidential

2.6 Differences from the TCG DRTM specification
As the overview in section 1 describes, this specification is based on concepts from the TCG D-RTM Architecture
[4]. The following are differences between the DRTM on Arm architecture compared to the TCG architecture:

• This architecture uses a different convention for PCR usage, and the terminology of PCR.Authorities,
PCR.Details, and PCR.DLME.Authority defined by the TCG architecture is not used.

• This architecture supports the concept of closing localities, which is not defined by TCG.

• The concept of Sensitive Resources defined in the TCG architecture is not used, as the Arm v8-A Secure
exception levels protect these kinds of resources.

• Except for the TPM event log, data structures defined by the TCG architecture are not used:

o DRTM Resources Table and Resource Description structure. The DLME data (see section 3.12)
provides equivalent functionality.

o DRTM_PUBLIC_KEY

o DLME_DESCRIPTOR. This structure is replaced by the DRTM parameters. See section 3.12.

o DLME_ARGUMENTS. This structure is replaced by the DLME data. See section 3.14.

o DLME_TRANSLATION_LIST structure.

• This architecture does not define DLME_Exit.

2.7 DRTM and the TPM
This architecture defines requirements for measurements that must be made by the DRTM implementation into
a TPM during the dynamic launch. The TPM implementation must comply with the appropriate TCG
specifications. See details in section 5.6. The TPM must support the dynamic localities designed for use with
DRTM.

A platform must have hardware protections in place so that access to the dynamic localities of the TPM can be
restricted to components with access rights to those localities. It must not be possible for software at Non-
secure privilege levels to access locality 4. For a firmware-backed implementation of DRTM, a typical approach
for managing the TPM is to use a Secure world TPM service where the service mediates access to the dynamic
localities.

For a hardware-backed implementation, there is a requirement that platforms provide hardware enforcement of
access to locality 4. This ensures that no component in the system can access locality 4 except the D-CRTM in the
security coprocessor.

For a firmware-backed implementation of DRTM, you can use a firmware TPM that runs as a Secure service.

This architecture includes the concept of closing a dynamic locality. The dynamic localities are used in sequence
by phases of DRTM: The D-CRTM uses locality 4, the DCE uses locality 3, and the DLME uses locality 2. When a
given phase of DRTM is completed, access to the associated locality is closed. After a locality is closed,
commands sent to the TPM through the closed locality results in an error until the next system reset or DL Event.

Section 5.6 describes the system-level requirements for a TPM implementation.

This architecture supports two approaches to the measurements made during the dynamic launch:

1) Firmware-based measurements

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 23
1.0 Non-confidential

2) TPM-based measurements

Sections 2.7.1 to 2.7.3 provide further details.

2.7.1 Firmware-based measurements
The default approach is for the D-CRTM and DCE to implement a software-based digest algorithm for computing
measurements. A measurement is computed and then extended into the TPM using the command
TPM2_PCR_Extend.

The firmware-based measurement approach must be supported by a DRTM implementation.

A DRTM client can discover the firmware-based digest algorithm used through the DRTM_FEATURES function.
See section 3.3.

2.7.2 TPM-based measurements
A DRTM implementation can optionally support TPM-based measurements. With TPM-based measurements,
the D-CRTM and DCE make measurements using the TPM command TPM2_PCR_Event. TPM2_PCR_Event sends
the data to be measured to the TPM and the digest computation is performed by the TPM. TPM2_PCR_Event
extends the measurements for all digest algorithms supported by the TPM.

A DRTM client can discover whether TPM-based measurements are supported using the DRTM_FEATURES
function. See section 3.3.

A DRTM client can request TPM-based measurements through the DRTM_PARAMETERS data structure passed to
DRTM_DYNAMIC_LAUNCH. See section 3.12.

With the TPM-based measurements, the TPM makes the measurements with all supported hash algorithms.
Measurements made with all algorithms provides an advantage because the DRTM client has maximum
flexibility in choosing which digest algorithm to base a security policy on. The only limitation is the algorithms
supported by the TPM.

A disadvantage of the TPM-based approach is that it can be slower than the firmware-based approach. A
discrete TPM chip does not have as much processing power as an Arm v8-A PE, and the TPM must compute
digests for all algorithms that it supports.

2.7.3 TPM PCR usage
This architecture can support flexibility in which TPM PCRs are used for measurements made by the D-CRTM and
DCE through PCR usage schemas. The available PCR usage schemas are advertised through the DRTM_FEATURES
function. See section 3.3.

When a client invokes DRTM_DYNAMIC_LAUNCH, the client requests a supported schema through a field in the
DRTM_PARAMETERS. See section 3.12.

Table 2 shows a summary of the default schema. Section 4.8.2 describes the schema details.

Table 2: Default PCR usage schema

PCR Usage

17 Measurements of DCE components, platform state, and any Secure firmware
components reloaded during DRTM.

18 Measurement of the public key that signed any DCE components.
Measurement of the DLME.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 24
1.0 Non-confidential

2.8 Memory protection
A key security requirement of this architecture is that the DLME is protected from DMA by devices during the
dynamic launch. The DLME might need to measure and validate supplemental images, and these images must
also be protected from DMA. The DLME and supplemental images all reside in Non-secure memory.

The DCE preamble must set up hardware-based DMA memory protections using the DRTM_PARAMETERS. See
section 3.12. The architecture allows for multiple types of memory protections, and the types supported by an
implementation can be discovered using the function DRTM_FEATURES. See section 3.3. The architecture
currently supports the following protection types:

• Complete DMA protection is hardware-based enforcement at the SMMU that blocks all DMA from Non-
secure devices.

• Region-based DMA protection is a platform-specific mechanism that provides hardware-based
enforcement of DMA accesses for a number of protected memory regions. Region-based DMA
protection enables a system to support active DMA during the dynamic launch process to memory that
is outside the protected regions.

The DRTM implementation of DRTM_DYNAMIC_LAUNCH puts the requested memory protections in place
before transitioning to the DLME. After the DLME has made any needed measurements or completed other
steps to verify the state of the system, the DLME removes the memory protections using the
DRTM_UNPROTECT_MEMORY function.

2.9 Security considerations
As section 2.2 describes, DRTM instantiates a smaller TCB in the Non-secure security state that excludes
untrusted and arbitrarily extensible components by measuring and launching a protected payload, the DLME.

This section describes the assets that a DRTM implementation protects along with threats to those assets and
corresponding mitigations. The responsibilities of key stakeholders are also identified.

The assets in scope are the DLME, the TPM, and components that comprise the DRTM implementation.

2.9.1 Security goals
The key security goal of DRTM is ensuring the integrity of the DLME and its execution environment by:

• Providing reliable measurements of the DLME and key system properties in a TPM device

• Providing a protected environment for the DLME to begin execution in and defend itself

The measurements are then used by the DLME or OS to enforce a security policy.

2.9.2 Security non-goals
There is no security goal related to confidentiality in the DRTM architecture, as DRTM does not protect or use
secrets. However, DRTM depends on a TCG-compliant TPM implementation that does have confidentiality
requirements. If the TPM implementation can be compromised, any DRTM-based security policy can also be
compromised.

There is no security goal related to availability in the DRTM architecture. It is assumed that the adversary is in
control of the component that initiates the dynamic launch and the target payload. If their goal is denial of
service, the adversary can skip initiating the dynamic launch.

The following are not security goals of this architecture:

• Attacks against the availability of a system

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 25
1.0 Non-confidential

• Defense against compromises in components within the same security boundary as the D-CRTM. In
firmware-backed DRTM this includes Secure world firmware components and services, Secure devices
that can be DMA-capable, and Non-host platforms. In hardware-backed DRTM this includes the security
coprocessor.

• Physical attacks against the TPM, including physical man-in-the-middle attacks

• Glitches of the SoC power supply or clocks during DRTM to bypass verification checks

• Laboratory attacks in which devices are unpackaged and probed

2.9.3 Stakeholders
The following are stakeholders who each have roles in implementing the architecture:

• Silicon providers: provides silicon and potentially firmware components

• OEM or ODM: designs and manufactures the system and integrates firmware

• OSV: operating system or hypervisor provider

• End user: for example a cloud service provider that integrates components from OEM and OSV and
defines a DRTM-based security policy for booting an OS

2.9.4 Threats and mitigations
Table 3 and Table 4 describe the threats in scope for this architecture, including mitigations addressed by the
architecture.

Table 3: Threats in scope

Threat Mitigation

Adversary compromises NS firmware, which
enables them to tamper at boot time with
Normal world DCE, DLME, or the DLME’s
supplemental images.

The DCE measures the DLME and Normal world DCE into
the TPM, allowing detection of tampering.

Adversary compromises NS firmware, which
enables them to tamper with security critical
ACPI tables.

DRTM provides trustworthy ACPI tables or trustworthy
hashes of ACPI tables in the data passed to the DLME.

Adversary compromises NS firmware and
modifies the UEFI system memory map and
reports an attacker controlled memory-mapped
I/O region to be “normal memory”. This allows
the attacker to spoof responses to any access
made to this region.

The DCE provides a trustworthy memory map to the
DLME, allowing it to detect any discrepancies in the
firmware provided map.

Adversary compromises a Non-secure device and
during the dynamic launch uses DMA to tamper
with the Normal world DCE, DLME, or the DLME’s
supplemental images.

There is a system requirement that all DMA-capable
devices must be behind an SMMU.

The DRTM implementation verifies that DMA protections
for Normal world DRTM components are in place.

Adversary uses a secondary PE to tamper with
Normal world DCE, DLME, or the DLME’s
supplemental images.

The DRTM implementation enforces that all PEs except
the boot PE are off.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 26
1.0 Non-confidential

Adversary gains access to locality 4 in the TPM
allowing them to reset dynamic PCRs and control
the PCR values. This enables them to potentially
unseal secrets in the TPM or attest that the
system has integrity.

The system must support hardware or Secure firmware-
based enforcement to mediate and control access to the
dynamic localities (localities 1-4) of the TPM.

Adversary triggers a Non-secure exception,
causing an adversary-controlled ISR to run during
a dynamic launch. This allows tampering with the
Normal world DCE, DLME, or the DLME’s
supplemental images from the ISR.

The DRTM implementation must ensure that DRTM
operation cannot be preempted by Non-secure
asynchronous exceptions. Examples include interrupts,
SError exceptions, and SDEI events.

Adversary tampers with the DRTM parameters
before DL Event.

The DCE verifies the DRTM parameters before use to
ensure basic validity. Parameters tampered with might
still be valid values, and in this case TPM measurements
made during a dynamic launch enables detection of the
tampering. For example, if the address or size of the
DLME image was tampered with, the measurement made
of the DLME enables detection of the tampering.

The DLME entry point in the DRTM parameters has a
separate measurement in the TPM, allowing detection of
tampering.

On an SoC with a GIC ITS, adversary abuses GIC
configuration to trigger an LPI interrupt during a
dynamic launch. This causes the GIC to write data
into the DLME region, bypassing SMMU controls.

The DRTM implementation must disable all ITSs and
ensure LPIs are disabled during the dynamic launch.

Table 4 shows the threats in scope for hardware-backed implementations, but out of scope for firmware-backed
implementations:

Table 4: Threats in scope for hardware-backed implementations

Threat Mitigation

Adversary tampers with Secure or Non-secure DRTM
components before they are executed.

The D-CRTM in the security coprocessor verifies the
signature of the initial DCE image and measures it
into the TPM, allowing detection of tampering.

All code executed from the D-CRTM until reaching
the DLME must be verified using digital signatures.

Adversary tampers with Secure world firmware
images.

Secure world firmware is reloaded, verified, and
measured into the TPM, allowing detection of
tampering.

Adversary compromises Secure world firmware and
spoofs a dynamic launch by resetting dynamic PCRs
and replaying measurements into PCRs.

Hardware protections prevent locality 4 from being
accessed by any component except the D-CRTM in
the security coprocessor.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 27
1.0 Non-confidential

Adversary compromises a Secure device and during
the dynamic launch uses DMA to tamper with DRTM
components.

The DRTM implementation puts DMA protections in
place so that DCE components and the DLME region
cannot be tampered with during the dynamic
launch.

An attacker triggers a Secure device interrupt during
the dynamic launch and the ISR tampers with the
dynamic launch.

The DRTM implementation either:

• Masks Secure asynchronous interrupts

• Aborts DRTM if an interrupt occurs

An attacker uses a JTAG probe to tamper with DRTM
components during the dynamic launch.

The D-CRTM detects and measures if external debug
can be enabled without a reset.

2.9.5 Security considerations for stakeholders
This section identifies security considerations that must be evaluated by the stakeholders who implement the
DRTM architecture and the underlying platform. These responsibilities include ensuring that the underlying
system meets the requirements defined in this specification and following best practices for threats not directly
addressed by DRTM.

This architecture does not dictate a specific split of responsibility among the stakeholders that implement the
DRTM architecture.

Security Consideration Stakeholder

This architecture depends on a set of system requirements being met which
provide the foundation for DRTM. These requirements are specified in section 5.

Silicon Provider,
OEM/ODM

The security of components that comprise the system’s TCB such as Non-host
platforms or Secure services must be evaluated. Is there an attack surface that
allows an adversary at a Non-secure or Secure privilege level to cause the
component to perform a memory access that can compromise DRTM?

Silicon Provider,
OEM/ODM

For hardware-backed DRTM, Secure components that comprise the system’s TCB
must be verified during the dynamic launch. Also, any security-critical state in the
system’s TCB that is preserved across the dynamic launch must be verified.
Threat modeling is required to determine what state is security-critical.

Silicon Provider,
OEM/ODM

This architecture requires a TCG-compliant TPM. A firmware TPM is an allowed
implementation. It is beyond the scope of this specification to define the security
properties for a firmware TPM implementation or for a hardware enclave-based
implementation. The TPM implementation is a critical component of the
system’s TCB and system level threat modeling is needed to evaluate possible
threats against a firmware or hardware enclave-based TPM.

Silicon Provider,
OEM/ODM

There are general threats against the DRTM SMC call interface that are not
specific to the DRTM architecture that must be considered by the implementer
of DRTM firmware. These include:

• Buffer overflows of privileged buffers

Silicon Provider,
OEM/ODM

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 28
1.0 Non-confidential

• Access control bypasses (for example, to achieve lateral or privilege
escalation)

The SMC Calling Conventions document [3] provides recommendations to
mitigate these types of threats and should be followed by the firmware
implementer and the software client invoking SMC calls.

The security of a DRTM implementation ultimately relies on the implementation
of a TPM-based security policy based on the measurements made by DRTM. This
policy enforcement can be in the DLME or in the OS. For example, a flaw in how
attestation is performed or how a secret is sealed to dynamic PCRs can
compromise the security goals of the end user.

End User

The DRTM implementation should follow best practices to mitigate against
software-induced fault-injection attacks, for example:

• Rowhammer family of attacks against DRAM modules

• Faults induced through power control APIs (for example, CLKSCREW
vulnerability)

Silicon Provider,
OEM/ODM

The dynamic launch starts the execution of the DLME in a safe state where it can
defend itself and validate security-critical properties of the system. Section 4.6.2
describes steps that are recommended to be taken by the DLME. The
implementer of the DLME should perform a security analysis to determine what
steps are necessary to initialize and transition to the OS runtime.

OSV

The DLME might depend on ACPI tables provided by Non-secure firmware that
impact the TCB of the system. This architecture defines how the DLME is
provided with copies of trustworthy ACPI tables or the means to validate ACPI
tables provided by Non-secure firmware.

It is the responsibility of the platform manufacturer to determine which ACPI
tables might impact the TCB of the system and provide hashes of these tables to
the DRTM implementation.

Silicon Provider,
OEM/ODM

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 29
1.0 Non-confidential

3 Interface functions and data structures

3.1 Introduction to interface functions and data structures
The DRTM functions are invoked by using SMC calls. The functions adhere to the SMC Calling Conventions [3]
and in particular, the register usage follows the specification for SMC64 calls.

The SMC Calling Conventions specification requires that all unimplemented functions return an Unknown SMC
Function Identifier which maps to the NOT_SUPPORTED error code. This specification follows this convention.
Therefore, a NOT_SUPPORTED error code indicates the firmware implementation does not support DRTM.

Unless otherwise specified, all in-memory data structures defined in this specification are in little-endian format.

Table 5: Interface function requirements

ID Requirement

R31000 A DRTM instance must implement the following functions:

DRTM_VERSION

DRTM_FEATURES

DRTM_DYNAMIC_LAUNCH

DRTM_UNPROTECT_MEMORY

DRTM_CLOSE_LOCALITY

DRTM_GET_ERROR

DRTM_SET_ERROR

R31010 If the DRTM_SET_TCB_HASH function is implemented, the DRTM_LOCK_TCB_HASHES
function must be implemented.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 30
1.0 Non-confidential

3.2 DRTM_VERSION
Returns the version of the DRTM implementation.

Parameter Register Value

uint32 Function ID W0 0xC400_0110

Return

uint32

W0

On success

Bit[31] Must be zero.

Bits[30:16] DRTM Major version
Must be 1 for this revision of the DRTM architecture for Arm.

Bits[15:0] DRTM Minor version
Must be 0 for this revision of the DRTM architecture for Arm.

On error:
NOT_SUPPORTED

DRTM is not supported.

3.2.1 DRTM_VERSION usage
This function returns the version of the DRTM implementation. Each DRTM implementation must support this
call and return its implementation version. For this revision of the DRTM interface, the major version is 1 and the
minor version is 0.

The version number is a 31-bit unsigned integer. The upper 15 bits denote the major revision, and the lower 16
bits denote the minor revision. The following rules apply to the version numbering:

• Different major revision values indicate possibly incompatible functions. A newer major revision might:
o Introduce new functions
o Deprecate older functions
o Change behavior of existing functions

• For two revisions, A and B, for which the major revision values are identical, if the minor revision value of
revision B is greater than the minor revision value of revision A, then every function in revision A must
work in a compatible way with revision B. However, revision B can have a higher function count than
revision A.

3.2.2 DRTM_VERSION implementation responsibilities
If this function returns a valid version number, all DRTM functions defined in this specification must be
implemented, unless it is explicitly stated that a function is optional.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 31
1.0 Non-confidential

3.3 DRTM_FEATURES
Allows a client to query the DRTM implementation to determine the supported DRTM capabilities of the
platform.

Parameter Register Value

uint32 Function ID W0 0xC400_0111

uint64 DRTM function ID
or feature ID

X1

Bit[63] = 0: Parameter is function ID of the DRTM interface.

whose implementation must be queried.

Bit[62:32]: Reserved. Must be zero.

Bit[31:0]: Function ID.

Bit[63] = 1: Parameter is ID of a feature supported by the

DRTM implementation.

Bit[62:8]: Reserved. Must be zero.

Bit[7:0]: Feature ID. IDs of supported features are
listed in Table 6.

Return

int64

X0

On success:

0 The function ID or feature ID
queried is implemented.

> 0
The feature ID queried is
implemented. See Table 6 for
feature-specific capabilities.

On error:

NOT_SUPPORTED
The function ID or feature ID
specified as an input parameter
is not supported.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 32
1.0 Non-confidential

Table 6: Return values for DRTM features

DRTM Feature
Name

Feature ID Return

Register

Return

Value

TPM features

0x1

X1

Bits [63:37]: Reserved. Must be zero.

Bits [36:33]: PCR Usage Schema. Bitmap of
supported usage schemas:

0b0001: Default Schema. See section 4.8.3.

0b0010: Reserved

0b0100: Reserved

0b1000: Reserved

Bit 32: TPM-based hash support
0: Implementation does not support TPM-
based hashing.

1: Implementation supports TPM-based
hashing. See section 2.7.2. The DRTM
implementation measures data by sending
it to the TPM using the command
TPM2_PCR_Event.

Bits [31:16] Reserved

Bits [15:0] Firmware hash algorithm
Value Identifies a single hash algorithm
used by the DRTM implementation for
firmware-based measurements. See section
2.7.1. Possible values are defined by the
TPM_ALG_ID constants defined in the TCG
Algorithm Registry [12]. A partial list is
shown below.

0x000B: SHA-256

0x000C: SHA-384

0x000D: SHA-512

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 33
1.0 Non-confidential

Minimum memory
requirement

0x2

X1

Bits [63:32] Minimum size of Normal World
DCE

If the system utilizes a Normal World DCE,
the value specifies the minimum amount of
space needed for the Normal World DCE
region. The value is specified in number of
4KB pages.

If the system does not use a Normal World
DCE, this value must be zero.

Bits [31:0] Minimum size of DLME data
Value specifies the minimum amount of
space that the DRTM implementation
needs for the DLME data. The value is
specified in number of 4KB pages.

DMA protection
features

0x3

X1

Bits [63:24] Reserved. Must be zero.
Bits [23:8] For region-based protection,
specifies the maximum number of memory
regions that can be protected through the
DRTM parameters.

Up to 64K regions can be supported.

This field is only valid if region-based DMA
protection is supported.

A value of 0 is valid, which means that no
regions can be specified in DRTM
parameter, but the DRTM implementation
implicitly protects one or more regions.

Bits [7:0] DMA protection support. Bitmap
with the types of DMA protection supported
by the DRTM implementation:

0b00000001: Complete DMA protection.

0b00000010: Region-based DMA
protection.

For further details on DMA protection, see
section 5.8.

Boot PE ID

0x4

X1

Bits [63:0] Identifies the boot PE. The
encoding is the same as the target_cpu
parameter to CPU_ON as defined in the PSCI
specification [2]. The PSCI encoding is based
on the affinity fields of the MPIDR register.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 34
1.0 Non-confidential

TCB hash features

0x5

X1

Bits [63:8] Reserved. Must be zero.

Bits [7:0] Maximum number of supported
TCB hashes that can be recorded with
DRTM_SET_TCB_HASH. See section 3.9. A
value of zero indicates that hashes cannot
be recorded with DRTM_SET_TCB_HASH.

3.3.1 DRTM_FEATURES usage

This function can be used to query the capabilities of the DRTM implementation. The caller passes a DRTM
function ID or feature ID and the return value advertises features and capabilities.

A return value of 0 means the function ID or feature ID is implemented.

A return value of greater than 0 means the feature ID is implemented, and there are other feature-specific
feature or capability bits available in other return value registers.

See Table 6 for supported feature IDs and features.

See section 2.8 for an overview of memory protection.

See section 2.7 for an overview of PCR usage and TPM-based and firmware-based measurements.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 35
1.0 Non-confidential

3.4 DRTM_DYNAMIC_LAUNCH
Initiates a DRTM dynamic launch.

Parameter Register Value

uint32 Function ID W0 0xC400_0114

uint64 DRTM parameters X1 64-bit physical address of the DRTM parameters.

Return

int64

X0

On error:

NOT_SUPPORTED DRTM is not supported.

INVALID_PARAMETERS

The address of the DRTM
parameters was invalid, or the
contents of the DRTM parameters
were invalid.

DENIED
The system is not in a state where
a dynamic launch can be initiated.

MEM_PROTECT_INVALID
Some or all memory protection
requests passed in the
DRTM_PARAMETERS are invalid.

SECONDARY_PE_NOT_OFF

Secondary PEs were detected to
be on.

3.4.1 DRTM_DYNAMIC_LAUNCH usage
This function initiates the dynamic launch process. It takes as a parameter the physical address of the DRTM
parameters structure. See section 3.12.

The function returns an error if the parameters are invalid or if the platform is incapable of initiating the launch
in its current state. Otherwise, the dynamic launch is performed and this function never returns. When the
launch is complete, execution begins at the DLME entry point.

The DRTM_FEATURES function can be used to query features implemented by the DRTM implementation,
including:

• Hash algorithm used by the implementation

• Whether the implementation supports TPM-based measurements

• The minimum size of the DLME region and the size of the Normal world DCE region

• The type of memory protection supported by the implementation

3.4.2 DRTM_DYNAMIC_LAUNCH caller responsibilities
Prior to invoking DRTM_DYNAMIC_LAUNCH the caller must prepare the system state as described in the
requirements in sections 4.1 and 4.2. This includes:

• Halting all PEs except the boot PE

• Preparing and initializing a DLME region

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 36
1.0 Non-confidential

• Defining a memory protection table

• Initializing the DRTM parameters

3.4.3 DRTM_DYNAMIC_LAUNCH implementation responsibilities
The implementation carries out the DRTM dynamic launch and executes the D-CRTM followed by executing the
DCE. The dynamic launch is complete when control is transferred to the DLME entry point.

The following are responsibilities of the implementation:

• Implement the requirements specified in section 4.3, Dynamic launch event.

• Implement the requirements specified in section 4.4, Firmware-backed D-CRTM requirements.

• Implement the requirements specified in section 4.5, DCE requirements.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 37
1.0 Non-confidential

3.5 DRTM_UNPROTECT_MEMORY
Removes the memory protection requested by the DRTM_PARAMETERS and put in place during the dynamic
launch.

Parameter Register Value

uint32 Function ID W0 0xC400_0113

Return

int64

X0

On error:

NOT_SUPPORTED DRTM is not supported.

DENIED
The system is not in a state
where memory can be
unprotected.

3.5.1 DRTM_UNPROTECT_MEMORY usage
This function is called by the DLME to remove the DMA protections put in place during the dynamic launch. The
function takes no arguments.

The DLME calls this function when it has done sufficient verification and initialization so that it can defend itself
from DMA attacks.

3.5.2 DRTM_UNPROTECT_MEMORY implementation responsibilities
The following are responsibilities of the implementation:

• If the caller invokes DRTM_UNPROTECT_MEMORY and there are no memory protections in place, the
implementation must return the error value DENIED.

• For complete DMA protection the implementation must not make any changes to the SMMU. The
function must be a NOP with respect to the SMMU.

• For region-based DMA protection the implementation must remove the memory protections requested
by DRTM_PARAMETERS and put in place during the dynamic launch.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 38
1.0 Non-confidential

3.6 DRTM_CLOSE_LOCALITY
Closes a locality in the TPM.

Parameter Register Value

uint32 Function ID X0 0xC400_0115

uint32 Locality X1 Specifies the locality to close. Valid values are 2 and 3.

Return

int64

X0

On success:
SUCCESS

On error:
NOT_SUPPORTED

DRTM is not supported.

INVALID_PARAMETERS The locality specified is not
valid.

ALREADY_CLOSED The locality is already closed.

DENIED
The locality has not been
relinquished.

3.6.1 DRTM_CLOSE_LOCALITY usage
This function is used by the DLME to close dynamic localities in the TPM. Localities that can be closed with this
function are 2 and 3.

Locality 2 is a dynamic locality used by the DLME to make any needed measurements. After the DLME has
completed its measurements, it invokes DRTM_CLOSE_LOCALITY to prevent further measurements from being
made.

Locality 3 is a dynamic locality used by the DCE to make any needed measurements. A Normal world DCE
component that runs at a Non-secure exception level can use this function to close locality 3 after all needed
measurements are made.

Note: if there is only a single stage DCE, the DCE executes in the Secure world and must close locality 3 when it
finishes making measurements.

3.6.2 DRTM_CLOSE_LOCALITY caller responsibilities
The caller must relinquish the locality it is trying to close at the TPM before invoking this function. Failure to do
this results in an error.

3.6.3 DRTM_CLOSE_LOCALITY implementation responsibilities
The implementation must interface to the TPM implementation in a platform-specific manner to close the target
locality. If the locality is already closed or has not been relinquished the implementation must return an error to
the caller.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 39
1.0 Non-confidential

3.7 DRTM_GET_ERROR
Returns an error code from the previous DRTM dynamic launch that entered remediation.

Parameter Register Value

uint32 Function ID W0 0xC400_0116

Return

int64 X1 Error code. See error encoding in section 3.11.

int64

X0

On success:
SUCCESS

Error code from previous launch
is returned in X1.

On error:
NOT_SUPPORTED

DRTM is not supported.

NOT_FOUND
An error occurred, and the error
code was not found.

3.7.1 DRTM_GET_ERROR usage
This function can be called by a DRTM client to determine if a previous invocation of DRTM_DYNAMIC_LAUNCH
failed and entered remediation. See section 4.7. If a previous invocation of DRTM_DYNAMIC_LAUNCH had not
occurred, then the value returned by DRTM_GET_ERROR is undefined.

An error code value of 0 indicates that the previous DRTM_LAUNCH did not enter remediation.

3.7.2 DRTM_GET_ERROR caller responsibilities
The DRTM_GET_ERROR function can be invoked in the DCE Preamble before the dynamic launch to determine
the error code from a previous dynamic launch. If a previous dynamic launch has not occurred, then
DRTM_GET_ERROR should not be invoked, as it will return an undefined value. The caller must determine using
implementation-specific means whether a dynamic launch had been previously initiated.

An error code value of zero indicates that no error occurred.

3.7.3 DRTM_GET_ERROR implementation responsibilities
If an error is detected during a dynamic launch and the DRTM implementation entered remediation (see section
4.7), the implementation must record an error code in a location that is preserved across the remediation-
initiated reset. How the error code is recorded is implementation-dependent. The implementation of
DRTM_GET_ERROR must return the recorded error code.

Calling the DRTM_GET_ERROR function does not clear the error. Multiple calls to DRTM_GET_ERROR returns the
same error code value.

The error code must be cleared by the DCE before transfer of control to the DLME.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 40
1.0 Non-confidential

3.8 DRTM_SET_ERROR
Sets a DRTM error code indicating that a dynamic launch has failed.

Parameter Register Value

uint32 Function ID W0 0xC400_0117

int64 Error Code X1 64-bit error code describing the reason for a dynamic launch
failure. See error encoding in section 3.11

Return

int64

X0

On success:
SUCCESS

The set error operation
succeeded.

On error:
NOT_SUPPORTED

DRTM is not supported.

DENIED
An error code has been
previously set.

3.8.1 DRTM_SET_ERROR usage
This function can be called by a Normal world DCE component or the DLME to report that an error was detected.
This function can only be called once. A second or subsequent invocation results in an error with a return value
of DENIED.

3.8.2 DRTM_SET_ERROR caller responsibilities
The DRTM_SET_ERROR function must only be called at most once and must be called either during the DCE stage
of DRTM or by the DLME.

Following the invocation of DRTM_SET_ERROR, the system must be reset to complete remediation.

3.8.3 DRTM_SET_ERROR implementation responsibilities
The implementation must persist the DRTM error code in a non-volatile location not accessible by the Normal
world so that it can be returned to a client using the DRTM_GET_ERROR function following the system reset.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 41
1.0 Non-confidential

3.9 DRTM_SET_TCB_HASH
Used by firmware to record hashes of components of the TCB of the system.

Parameter Register Value

uint32 Function ID W0 0xC400_0118

uint64 TCB Hash Table
Address

X1 64-bit physical address of a TCB hash table.

Return

int64

X0

On success:
SUCCESS

The operation succeeded. See
supplemental value in X1.

On error:
NOT_SUPPORTED

DRTM is not supported.

INVALID_PARAMETERS
The address in the parameter was
invalid or there was an error in the
header of the TCB_HASH_TABLE.

INVALID_DATA
An entry in the TCB_HASH_TABLE
contains an error. See
supplemental value in X1.

OUT_OF_RESOURCE
The maximum number of hashes
has been exceeded. See maximum
advertised by DRTM_FEATURES.

DENIED
The implementation is locked
against recording further hashes.

int64

X1
If X0 == SUCCESS Specifies how many valid entries

are populated in the table.

If X0 == INVALID_DATA Indicates which table entry
contains the error.

3.9.1 DRTM_SET_TCB_HASH usage
This function can be called by Normal world firmware before the dynamic launch to record hashes of
components belonging to the TCB, such as ACPI tables. These hashes are made available to the DLME in the
DLME data.

The function takes as a parameter the address of a TCB_HASH_TABLE containing one or more hashes.

3.9.2 DRTM_SET_TCB_HASH caller responsibilities
The hashes recorded by this function are made available to the DLME which uses them to validate the TCB of the
system, and so it is critical that firmware invoking this function be in an execution phase where all firmware

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 42
1.0 Non-confidential

components are under the authority of the platform manufacturer. For UEFI-based firmware this is the phase of
execution before the End of DXE event.

The following are responsibilities of the caller:

• The caller must compute TCB hashes using the hash algorithm in use by the DRTM implementation when
it performs firmware-based measurements (see 2.7.1). The caller determines the hash algorithm using
the DRTM_FEATURES function.

• The caller constructs a TCB_HASH_TABLE which consists of entries defining each hash. For each TCB
component to be measured, the caller must compute the digest of the component and record the digest
value in the TCB_HASH_TABLE.

• The caller should not set the Source of Entry field in a table entry, because it will be ignored.

• DRTM_SET_TCB_HASH can be invoked multiple times, for example once for each component being
measured. Alternatively, a single TCB_HASH_TABLE can be constructed containing all TCB hashes with
DRTM_SET_TCB_HASH being invoked once.

3.9.3 DRTM_SET_TCB_HASH implementation responsibilities
The following are responsibilities of the implementation:

• The implementation must verify the validity of the referenced TCB_HASH_TABLE based on the
requirements in Table 16 and Table 17. If there are any errors in TCB_HASH_TABLE, the return value
INVALID_PARAMETERS must be returned.

• The maximum number of entries in the hash table is implementation-specific. The maximum is
advertised through DRTM_FEATURES. If this maximum is exceeded, the implementation must return the
return value OUT_OF_RESOURCE.

• The implementation must perform error checking on the TCB_HASH_TABLE passed to this function
before recording any of the hashes. If there are any errors, the TCB hash table must be left as it was
before the invocation of this function.

• The implementation must ignore the Source of Entry if set in any table entry.

• The implementation must preserve the measurements made with this function so that a single list of
measurements can later be presented in the DLME data during the dynamic launch.

• After the function DRTM_LOCK_TCB_HASHES is invoked, the set of hashes is considered locked and
subsequent calls to this function must result in the error code DENIED.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 43
1.0 Non-confidential

3.10 DRTM_LOCK_TCB_HASHES
Used by firmware to prevent further hashes from being recorded.

Parameter Register Value

uint32 Function ID W0 0xC400_0119

Return

int64

X0

On success:
SUCCESS

The operation succeeded.

On error:
NOT_SUPPORTED

DRTM is not supported.

DENIED Hashes are already locked.

3.10.1 DRTM_LOCK_TCB_HASHES usage
After recording TCB hashes using DRTM_SET_TCB_HASH, firmware can invoke this function to prevent further
hashes from being recorded.

3.10.2 DRTM_LOCK_TCB_HASHES caller responsibilities
As section 3.9 describes, the function DRTM_SET_TCB_HASH can be used to record hashes of TCB components.
These measurements must be performed when Non-secure firmware is in an execution phase where all
components are under the authority of the platform manufacturer. For UEFI-based firmware this is the phase of
execution before the End of DXE event. Before transitioning to the next execution phase, firmware uses
DRTM_LOCK_TCB_HASHES to prevent further hashes from being recorded.

3.10.3 DRTM_LOCK_TCB_HASHES implementation responsibilities
This function must be implemented if DRTM_SET_TCB_HASH is implemented.

The implementation must record state to indicate that TCB measurement are locked. The implementation of
DRTM_SET_TCB_HASH uses this state data to prevent further measurements from being made. If the TCB hashes
are already locked, the error DENIED must be returned.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 44
1.0 Non-confidential

3.11 DRTM error encoding

Table 7: DRTM error encoding

Value

Bits [63:11] Error code specific data.

Each error code might define more fields specific to that error code.

Bits [10:3] Error code.

See Table 8.

Bits [2:0] DRTM phase when error occurred.
0: No error occurred

1: D-CRTM on PE

2: D-CRTM on coprocessor

3: DCE

4: Normal world DCE

5: DLME

6-7: reserved

Table 8: error codes

Description Value

No error occurred 0x0

Reserved 0x1

Error in DRTM parameters 0x2

Secure exception occurred during DRTM 0x3

TCB hashes were recorded but were not locked 0x4

An error occurred at the TPM 0x5

An error occurred verifying a digital signature 0x6

Reserved 0x7 – 0xFE

Vendor-specific error 0xFF

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 45
1.0 Non-confidential

3.12 DRTM_PARAMETERS
The DRTM parameters are created by the DCE preamble and are the input parameters to the DRTM dynamic
launch. The parameters describe dynamic launch features, the DLME region (see section 3.14), and any Normal
world DCE image. The existence of a Normal world DCE image is implementation-dependent.

Table 9: DRTM parameters definition

Field Byte Offset Byte Length Description

Revision 0 2 Revision of this data structure. Must have a
value of 1 for this revision of DRTM
architecture for Arm.

For a given DRTM major version number (see
DRTM_VERSION, 3.2), this structure is always
extended in a backwards compatible manner.

Reserved 2 2 Must be zero.

Launch Features 4 4 Selects optional features, if supported by the
implementation:

Bits[32:6]: Reserved. Must be zero.

Bits[5:3]: Memory protection type.
0: All. Complete DMA protection
requested.

1: Region. Region-based DMA protection
requested.

2-7: Reserved

Bits[2:1]: Requested PCR Usage Schema.
0: Default Schema (see section 4.8.3)

1-3: Reserved

Bit[0]: Type of hashing
0: Request firmware-based hashing (see
2.7.1).

1: Request TPM-based hashing (see section
2.7.2).

DLME region
address

8 8 Starting physical address of the DLME region.

DLME region size 16 8 Size of the DLME region in bytes.

DLME image start 24 8 Offset in bytes to the start of the DLME image
within the DLME region. See Figure 8.

DLME entry point
offset

32 8 Offset in bytes from the start of the DLME
image to the DLME image entry point.

DLME image size 40 8 Size of the DLME executable image in bytes.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 46
1.0 Non-confidential

DLME data offset 48 8 Offset in bytes to the DLME data within the
DLME region. See Figure 8.

Normal world DCE
region address

56 8 Physical address of the Normal world DCE
region. The address must be 4KB aligned.

Must be zero if a Normal world DCE is not in
use.

Normal world DCE
region size

64 8 Size of the Normal world DCE region in bytes.

Must be zero if a Normal world DCE is not in
use.

Memory protection
table address

72 8 For a memory protection type value of
Region in the Launch Features, this field
specifies the 64-bit physical address of the
memory protection table describing all
memory regions to be protected. The address
must be 4KB aligned.

Must be zero if region-based DMA protection
is not used.

Memory protection
table size

80 8 For a memory protection type value of
Region in the Launch Features, this field
specifies the size of the memory protection
table in bytes.

Must be zero if region-based DMA protection
is not used.

Table 10 describes the requirements for the DRTM parameters:

Table 10: DRTM parameters requirements

ID Requirement

R312000 The DRTM parameters must be in Non-secure, physically contiguous memory.

R312010 The DRTM parameters must start at a 4KB aligned address.

R312020 The address ranges described by the parameters must not overlap.

R312030 The address ranges described by the parameters must not wrap around.

R312040 The DLME image size must not extend beyond the bounds of the DLME region.

R312050 The DLME entry point offset must be within the bounds of the DLME image.

R312060 The DLME region must meet the requirements in section 3.14.

 If in use, the Normal world DCE region must be in Non-secure physically contiguous memory.

 If in use, the Normal world DCE region must start at a 4KB aligned address.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 47
1.0 Non-confidential

3.13 MEMORY_REGION_DESCRIPTOR_TABLE
The MEMORY_REGION_DESCRIPTOR_TABLE is a data structure that describes regions of physical memory. The
table header defines the number of regions in the table. Each region is described by its physical address, size,
and type.

Table 11: MEMORY_REGION_DESCRIPTOR_TABLE definition

Field Byte Offset Byte Length Description

Revision 0 2 Revision of this data structure. Must be the
value 1 for this version of the DRTM
architecture.

For a given DRTM major version (see
DRTM_VERSION, 3.2) this structure is always
extended in a backwards compatible manner.

Reserved 2 2 Must be zero.

Number of regions 4 4 Specifies the number of regions described in this
data structure.

Region 0 address 8 8 Starting physical address memory region 0

Region 0 size/type 16 8 Bits [63:57]: Reserved. Must be zero.

Bits[56-55]: Cacheability attributes. Only
applicable for region type 1. Attributes and
MAIR attribute encoding Attr<n> [7:4] [3:0] are
shown below:

0 – Not cacheable: 0000 0000

1 – Write combine: 0100 0100

2 – Write through: 1011 1011

3 – Write back: 1011 1011

Bits[54:52]: Region type
0 – normal, usable memory

1 - normal, usable memory with cacheability
attribute requirements. See bits 56-55.

2 – device memory, memory-mapped I/O

3 – non-volatile memory

4 – the region is reserved, and cannot be
used

5 – Reserved

6 – Reserved

7 – Reserved

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 48
1.0 Non-confidential

Bits[51:0]: Number of 4KB pages in region 0

Region 1 address 24 8 Starting physical address memory region 1

Region 1 size/type 32 8 Type and number of 4KB pages in region 1. See
definition for region 0.

Region N address (16*N)+8 8 Starting physical address memory region N

Region N size/type (16*N)+16 8 Type and number of 4KB pages in region N. See
definition for region 0.

Table 12 describes the requirements for a MEMORY_REGION_DESCRIPTOR_TABLE:

Table 12: Memory region descriptor requirements

ID Requirement

R313000 The descriptor table must be in physically contiguous memory.

R313010 All region addresses in the table must be 4KB aligned.

R313020 Regions described by the table must not overlap.

3.14 DLME region
The DLME region contains the DLME image and DLME data. See Figure 8. The DCE preamble determines the
address and size of the DLME region, loads the DLME image, and passes details of the region in the
DRTM_PARAMETERS. The DLME data is populated by the DRTM implementation.

The DRTM_PARAMETERS describes the key characteristics of the DLME region:

• Physical address and size of the region
• Size of the DLME executable image
• Offset to the start of the DLME image
• Offset of the DLME image entry point within the image
• Offset to the DLME data

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 49
1.0 Non-confidential

Figure 8: DLME region

Table 13 describes the requirements for the DLME region:

Table 13: DLME region requirements

ID Requirement

R314000 The DLME region must be in Non-secure physically contiguous memory.

R314010 The DLME region must start at a 4KB aligned address.

R314020 The DLME image must start at a 4KB aligned address.

R314030 The DLME data must start at a 4KB aligned address.

R314040 The DLME image must come before the DLME data and must not overlap with it.

Space in the DLME region that is outside the DLME image and the DLME data can be used by the DCE preamble
and the DLME for OS-specific purposes. See the regions labeled “free space” in Figure 8.

The DLME data consists of a header followed by a number of sub-regions containing data for use by the DLME.
The DCE populates the fields of the DLME data which contains the following sub-regions within it:

• Protected memory regions

• Address map

• DRTM event log

• A region containing trustworthy ACPI tables or a table of hashes of TCB components.

The sub-regions within the DLME data are consecutive in memory with no padding between sub-regions. The
DLME can find the start of each sub-region using the sizes in the DLME_DATA_HEADER.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 50
1.0 Non-confidential

Figure 9: DLME data

The DLME_DATA_HEADER describes the size each sub-region in the DLME data.

Table 14: DLME_DATA_HEADER definition

Field Byte
Offset

Byte
Length

Description

Revision 0 2 Revision of this data structure. Must be the value 1
for this version of the DRTM architecture.

For a given DRTM major version number (see
DRTM_VERSION, 3.2) this structure is always
extended in a backwards compatible manner.

Size 2 2 The size in bytes of the DLME_DATA_HEADER

Reserved 4 4 Must be zero.

DLME data size 8 8 Total size of the DLME data in bytes, including the
DLME_DATA_HEADER and all data regions referenced
by the parameters.

Protected regions size 16 8 Size in bytes of the protected regions memory
descriptor table.

Address map size 24 8 Size in bytes of the address map memory descriptor
table.

DRTM event log size 32 8 Size in bytes of the DRTM event log.

TCB hash table size 40 8 Size in bytes of the TCB hash table region. If the TCB
hash table is not present, the size must be zero.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 51
1.0 Non-confidential

ACPI tables region size 48 8 Size in bytes of the ACPI tables region. If the ACPI
table region is not present, the size must be zero.

Implementation-
specific region size

56 8 Size of region for implementation-specific use. The
presence of this region is optional. If it is not present,
the size must be zero.

Note, the DLME data can be reclaimed for use by the OS after the DLME image has finished using it.

Table 15 describes the requirements for the DLME data:

Table 15: DLME data requirements

ID Requirement

R314050 All the sub-regions referenced by the DLME_DATA_HEADER must be within the DLME region.

R314060 The following sub-regions must be present in the DLME data:

• Protected regions

• Address map

• DRTM event log

R314070 It is strongly recommended that the ACPI table or TCB hash table region be present in the DLME
data. See section 4.5 for further details.

R314080 The sub-regions referenced by the DLME_DATA_HEADER must be in the order described in Table
14 and must not overlap.

R314090 The size of fields in the DLME_DATA_HEADER must not extend beyond the bounds of the DLME
data.

R314100 The address map must be formatted as a MEMORY_REGION_DESCRIPTOR_TABLE (see section
3.13) and must define all regions of normal memory, memory mapped I/O, and non-volatile
memory accessible to the Normal world. The “type” field in the memory region descriptors must
identify the type of region.

R314110 The protected regions must be formatted as a MEMORY_REGION_DESCRIPTOR_TABLE (see
section 3.13) and must define all regions of memory protected by the DCE preamble through the
DRTM_PARAMETERS.

R314120 For the MEMORY_REGION_DESCRIPTOR_TABLE defining the address map and the protected
regions, the regions must be sorted with the first descriptor in the table being the lowest
address. Regions in the table that are directly adjacent to each other must be coalesced into a
single region.

R314130 The TCB hash table, if present, must be formatted as a TCB_HASH_TABLE. See section 3.15.

R314140 The ACPI tables region, if present, must start with an XSDT table at offset 0 which contains the
physical addresses of all the other ACPI tables in the region. See the ACPI specification [13] for
the definition of the XSDT.

R314150 The TCB hash table and ACPI tables regions are mutually exclusive and cannot both be present.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 52
1.0 Non-confidential

3.15 TCB_HASH_TABLE
The TCB_HASH_TABLE is a table data structure that describes one or more hashes. Each entry in the table
represents one hash and contains the following fields: a unique hash ID and the digest of the hashed data. The
table header defines the number of table entries.

This table is used:

• By firmware to report hashes of TCB components using the DRTM_SET_TCB_HASH function

• By the DRTM implementation to provide TCB hash data to the DLME

Table 16: TCB_HASH_TABLE definition

Field Byte Offset Byte Length Description

Revision 0 2 Revision of this data structure. Must be the
value 1 for this version of the DRTM
architecture.

For a given DRTM major version (see
DRTM_VERSION, 3.2) this structure is always
extended in a backwards compatible manner.

Number of hashes 2 2 Specifies the number of entries in this table.

Hash algorithm 4 2 Value identifies the algorithm used for hashes
recorded in this table. Possible values are
defined by the TPM_ALG_ID constants defined
in the TCG Algorithm Registry [12]. A partial list
is shown below.

0x000B: SHA-256

0x000C: SHA-384

0x000D: SHA-512

Note: The hash algorithm determines the size of
the hash digest fields in the entries of this table.
For example:

SHA-256: 32 bytes

SHA-384: 48 bytes

SHA-512: 64 bytes

Reserved 6 2 Reserved. Must be 0.

Hash 0 ID 8 4 A unique value that identifies the data that was
hashed.

Bit[31]: Source of Entry
0: DRTM implementation.

1: DRTM_SET_TCB_HASH function.

Bits[30:0]: Hash ID

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 53
1.0 Non-confidential

For the ACPI namespace this field consists of 4
ASCII bytes with the signature of the ACPI
table.

Hash 0 digest 12 X The digest of the TCB data. Consists of an array
of X bytes, with the array length depending on
the hash algorithm used.

Hash N ID 12+X 4 A unique value that identifies the data that was
hashed.

Hash N digest 16+X X The digest of the TCB data. Consists of an array
of X bytes, with the array length depending on
the hash algorithm used.

Table 17 describes the requirements for a TCB_HASH_TABLE:

Table 17: TCB_HASH_TABLE requirements

ID Requirement

R315000 The table must be in physically contiguous memory.

R315010 The Source of Entry bit in each table entry must be set by the DRTM implementation to
identify whether the entry came from an invocation of the DRTM_SET_TCB_HASH function or
directly from the DRTM implementation.

Note: the Source of Entry bit is ignored by the DRTM_SET_TCB_HASH function.

R315020 For table entries with an ID namespace of ACPI, the ID field must be the signature of the table.

R315030 The hash algorithm field must reflect the same algorithm used by the DRTM implementation
when it performs firmware-based measurements (see 2.7.1).

R315040 The maximum number of entries in the table is defined by the DRTM implementation and
advertised in DRTM_FEATURES.

R315050 It is permitted for there to be entries with duplicate IDs. It is the responsibility of the DLME to
evaluate duplicate entries.

3.16 DRTM event log
When measurements are made and extended into dynamic TPM PCRs during the dynamic launch the
measurement values are also recorded into an event log in memory. The event log makes it possible to
determine the set of measurements that make up a PCR value later.

The event log structure is specified in the TCG PC Client Platform Firmware Profile Specification [6].

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 54
1.0 Non-confidential

3.16.1 DRTM event log requirements

Table 18 describes the requirements for the DRTM event log:

Table 18: Event log requirements

ID Requirement

R316000 The DRTM event log must be in the DLME data which is allocated by the DCE preamble
before the dynamic launch event.

R316010 There must be a minimum of 64KB of space allocated for the event log.

R316020 The DRTM event log must follow the crypto agile event log structure defined in the TCG PC
Client Platform Firmware Profile Specification [6].

R316030 All measurements made into the TPM by the D-CRTM and DCE must be placed in the DRTM
event log. See section 4.8 for PCR numbers and event type details for a given PCR usage
schema.

R316040 The DRTM event log represents the most recent dynamic launch event. If multiple launch
events occur while a system is powered up a new log is written each time.

3.16.2 Event types
When measurements are extended into TPM PCRs during the phases of DRTM, the measurements are also
recorded in a TCG compliant event log. The table below defines the DRTM event types and the associated event
data.

Table 19: DRTM event types

Event Type Value Description

EVTYPE_ARM_BASE (EB) 0x9000 The base of the DRTM event types.

EVTYPE_ARM_PCR_SCHEMA EB + 1 Measurement of the PCR schema specified in the
DRTM_PARAMETERS. See section 3.12 for the
definition of possible schema values. The schema
is measured as a 1-byte value. For example, if the
schema used was b’0001 the measured value is 0x01.

• Digest = Hash(PCR Schema)

• Event data size = 0

EVTYPE_ARM_DCE EB + 2

Measurement of the DCE image. This event has no
event data.

• Digest = Hash(DCE image)

• Event data size = 0

EVTYPE_ARM_DCE_PUBKEY EB + 3

Measurement of the public key that signed the
DCE. This event has no event data.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 55
1.0 Non-confidential

• Digest = Hash(public key that signed DCE)

• Event data size = 0

EVTYPE_ARM_DLME EB + 4

Measurement of the DLME image. This event has
no event data.

• Digest = Hash(DLME image)

• Event data size = 0

EVTYPE_ARM_DLME_ENTRY_POINT EB + 5 Measurement of the 8-byte DLME entry point
offset passed in the DRTM_PARAMETERS.

• Digest = Hash(DLME image entry point offset)

• Event data size = 0

EVTYPE_ARM_DEBUG_CONFIG EB + 6

During development it can be necessary to
perform a dynamic launch on systems that have
debug or trace enabled. To permit the DLME to
detect this situation, a measurement is made by
the D-CRTM or DCE to record the debug and trace
state.

• If debug or hardware trace are enabled: Digest
= Hash(0x01)

• If debug and hardware trace are disabled:
Digest = Hash(0x00)

• Event data size = 0

EVTYPE_ARM_NONSECURE_CONFIG EB + 7

During development it might be necessary to
perform a dynamic launch on systems that are in a
non-deployment security lifecycle state. To permit
the DLME to detect this situation, a measurement
is made by the D-CRTM or DCE to record the
security lifecycle state.

• If system is a non-secure lifecycle state: Digest
= Hash(0x01)

• If system is in a deployed/secure lifecycle state:
Digest = Hash(0x00)

• Event data size = 0

EVTYPE_ARM_DCE_SECONDARY EB + 8

Measurement of a secondary DCE image. This
event has no event data.

• Digest = Hash(DCE image)

• Event data size = 0

EVTYPE_ARM_TZFW EB + 9

Measurement of any Secure firmware
components. This event has no event data.

• Digest = Hash(Secure firmware component)

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 56
1.0 Non-confidential

• Event data size = implementation defined
• Event data = an implementation-specific string

that identifies the Secure firmware component.

EVTYPE_ARM_SEPARATOR EB + 10

This is the last event extended by the DCE before
transferring control to DLME.

• Digest = Hash(“ARM_DRTM”)

• Event data size = 8

• Event data = “ARM_DRTM”

3.17 Return codes
Table 20 defines the possible values for error codes used with the interface functions. The error return type is a
64-bit signed integer. Zero and positive values denotes success and negative values indicates error.

Table 20: Return codes and values

Name Description Value

SUCCESS The call completed successfully. 0

NOT_SUPPORTED DRTM is not supported by this platform. -1

INVALID_PARAMETERS Some or all parameters passed to the call are
invalid.

-2

DENIED The call is not allowed because of the current
system state.

-3

NOT_FOUND The requested entity was not found. -4

INTERNAL_ERROR There was an internal error in the DRTM
implementation.

-5

MEM_PROTECT_INVALID Some or all memory protection requests were
invalid.

-6

COPROCESSOR_ERROR There was an error making a request to the
coprocessor. (Hardware-backed
implementation only)

-7

OUT_OF_RESOURCE Resources needed to complete the request are
not available.

-8

INVALID_DATA Data supplied to the function contains invalid
values.

-9

SECONDARY_PE_NOT_OFF One or more secondary PEs were detected to
not be off.

-10

ALREADY_CLOSED The specified locality is already closed -11

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 57
1.0 Non-confidential

TPM_ERROR The DRTM implementation encountered an
error at the TPM.

-12

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 58
1.0 Non-confidential

4 Requirements for DRTM phases

4.1 Non-secure firmware and TCB-critical data
As section 2.2 describes, the goal of DRTM is to establish a new smaller TCB that does not have a trust
dependency on components in the SRTM boot chain. In addition to code, the TCB can include data such as
security-critical ACPI tables that must be trustworthy so the new TCB can defend itself.

The recommended approach is for the DRTM implementation to directly provide hashes of security-critical ACPI
tables or copies of ACPI tables in the DLME data. See section 3.14.

There might be cases where UEFI firmware must generate or modify ACPI tables that impact the TCB of the
system, which prevents the DRTM implementation from directly providing ACPI table data. To accommodate a
wide range of systems, Non-secure firmware can report hashes of ACPI tables to the DRTM implementation if
the firmware can do this securely before any extensible components are loaded.

For UEFI firmware, before the End of DXE event the firmware is under the control of the platform manufacturer
and no extensible components are part of the boot flow. Before End of DXE the firmware can use the
DRTM_SET_TCB_HASH function to record the hashes of ACPI tables that impact the TCB.

See the considerations below:

• DRTM_SET_TCB_HASH should only be used if it is unavoidable for firmware to generate or modify TCB
critical ACPI tables. The preferred alternative is for the DRTM implementation to directly provide hashes
or the contents of TCB-critical ACPI tables in the DLME data.

• The use of the DRTM_SET_TCB_HASH function introduces a trust dependency on the Non-secure
firmware component that uses the function.

• A Non-secure firmware component that uses the DRTM_SET_TCB_HASH function becomes part of the
TCB, and the system must take steps to establish the trustworthiness of the Non-secure firmware. See
section 5.10.

• The DRTM_LOCK_TCB_HASHES function must be used before extensible components being loaded to
prevent further updates to the TCB hashes.

Table 21: Non-Secure firmware requirements

ID Requirement

R41000 For any ACPI tables whose hashes or content are not provided directly by the DRTM
implementation, it is strongly recommended that Non-secure firmware record hashes of all
ACPI tables that impact the TCB of the system using the DRTM_SET_TCB_HASH function.

R41010 When using DRTM_SET_TCB_HASH, Non-secure firmware must be in an execution phase
where all firmware components are under the authority of the platform manufacturer. For
UEFI-based firmware this is the phase of execution before the End of DXE event.

R41020 If Non-secure firmware uses DRTM_SET_TCB_HASH, it is strongly recommended that hashes
of the following ACPI tables be provided:

MADT
MCFG
GTDT
IORT
TPM2

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 59
1.0 Non-confidential

R41030 The RSDT, XSDT, FADT, DSDT, and SSDT should be measured by Non-secure firmware if they
do not change after transitioning to an execution phase where firmware components might
not be under the control of the platform manufacturer.

R41040 For other ACPI tables that are believed to not impact the TCB, it is still recommended that
Non-secure firmware record hashes of these tables if possible to provide an extra level of
security.

R41050 Before transitioning to an execution phase where firmware components might not be under
the control of the platform manufacturer, the DRTM_LOCK_TCB_HASHES function must be
used to prevent further hashes from being recorded.

4.2 DCE preamble
The dynamic launch is a single-threaded operation that happens on the boot PE. The DCE preamble ensures that
all PEs except the boot PE are off and this is verified by the D-CRTM. It is the responsibility of the DRTM client to
take platform-specific steps to halt or quiesce Secure and Non-secure software in the system that can be
affected by DRTM. Examples of Secure software that can be affected by DRTM include Trusted Applications
loaded and used by Non-secure software or an open session established between Non-secure software and a
Secure service.

The DCE Preamble is responsible for preparing the platform for DRTM and initiating the dynamic launch.

Table 22 specifies the requirements for the DCE Preamble.

Table 22: DCE preamble requirements

ID Requirement

R42000 If a previous dynamic launch occurred, the DCE preamble should check for errors from
previous dynamic launch events using the DRTM_GET_ERROR function.

Note: It is the responsibility of the DCE preamble to coordinate with the DLME to determine
whether a dynamic launch might have previously occurred and failed. For example, the DCE
preamble can set a flag in an OS-specific location indicating the initiation of a dynamic launch,
with the DLME clearing the flag.

R42010 The DCE preamble must ensure that all PEs except the boot PE are off using the CPU_OFF PSCI
function [2].

R42020 The DCE preamble must allocate memory for the DLME region with sufficient space for the
DLME image and the DLME data.

See section 3.14 for a description of the DLME region and its requirements.

R42030 The DCE preamble must load the DLME image into the DLME region.

R42040 The DCE preamble must determine if the implementation utilizes a Normal world DCE using
the DRTM_FEATURES function. If the minimum memory requirement for a Normal world DCE
is greater than zero a Normal world DCE is used. See section 3.3 for more details.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 60
1.0 Non-confidential

R42050 If a Normal world DCE is in use, the DCE preamble must allocate sufficient memory for the
Normal world DCE. The amount of memory required is platform-specific and can be
determined using the DRTM_FEATURES function.

R42060 The DCE preamble must prepare the DRTM_PARAMETERS. See section 3.12 for the
requirements for the DRTM_PARAMETERS.

R42070 If region-based DMA protection is in use, the DCE Preamble must protect the DLME region by
defining a memory protection table formatted as a MEMORY_REGION_DESCRIPTOR_TABLE.
See section 3.13.

R42080 If region-based DMA protection is in use, the DCE Preamble can request protection of other
memory regions besides the DLME region.

R42090 If region-based DMA protection is in use, the Region type field for all regions described by the
table must be set to 0 (normal, usable memory). The address and size of the table must be
passed in the DRTM_PARAMETERS.

R42100 If a Normal world DCE is in use, the DCE preamble must ensure the Normal world DCE region
is protected using the memory protection table passed in the DRTM_PARAMETERS.

R42110 If a TPM Command Response Buffer Interface is in normal memory, the DCE preamble must
ensure that the locality 3 CRB is protected using the memory protection table passed in the
DRTM_PARAMETERS. The DCE preamble may protect the CRB regions for locality 2 and 1.

R42120 The DCE preamble must ensure there are no active TPM localities at the time of the dynamic
launch.

R42130 The DRTM_PARAMETERS and any memory protection table must be created so that they can
be accessed coherently with the following attributes and data access permissions:

• Normal Write-Back Cacheable.

• Non-transient Read-Allocate.

• Non-transient Write-Allocate.

• Inner Shareable.

• Read-Write.

Arm recommends that the DRTM_PARAMETERS and any memory protection table be mapped
Execute-Never.

R42140 The DCE preamble may use space in the DLME region that is outside the DLME image and
DLME data for passing OS-specific data to the DLME.

4.3 Dynamic launch event
The Dynamic Launch Event, or DL Event, begins the DRTM process and moves execution into the D-CRTM. The DL
Event is initiated by the function DRTM_DYNAMIC_LAUNCH. See section 3.4.

Table 23 specifies the requirements for the DL Event.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 61
1.0 Non-confidential

Table 23: DL Event requirements

ID Requirement

R43000 The invocation of DRTM_DYNAMIC_LAUNCH must be in AArch64 state.

R43010 It must be possible to initiate a DRTM_DYNAMIC_LAUNCH repeatedly without a system reset.

4.4 Firmware-backed D-CRTM requirements
The invocation of DRTM_DYNAMIC_LAUNCH transitions control to the D-CRTM which is a trusted agent where
the dynamic launch process begins. For firmware-backed DRTM the trusted agent is implemented in Secure
firmware.

The first phase of the D-CRTM performs checks such as verifying the boot PE is being used, without changing the
state of the system. During this phase, the D-CRTM can return errors to the caller of DRTM_DYNAMIC_LAUNCH.

After the D-CRTM makes changes to the state of the system, such as resetting dynamic PCRs in the TPM, it
enters a second phase of execution and can no longer return errors to the caller of DRTM_DYNAMIC_LAUNCH.
The D-CRTM must enter remediation (see section 4.7) if any errors occur during this phase.

Table 24 specifies the requirements for the first phase of the D-CRTM in a firmware-backed implementation,
when errors can be returned to the caller.

Table 24: D-CRTM phase 1 requirements

ID Requirement

R44000 The D-CRTM must be immutable and tamper-resistant with respect to the Normal world.

R44010 The D-CRTM must only execute on the boot PE.

R44020 The D-CRTM must verify that the DCE preamble used PSCI CPU_OFF to turn off all PEs except
the boot PE, and if not return an error to the caller of DRTM_DYNAMIC_LAUNCH or enter
remediation.

R44030 An implementation of DRTM may require the boot PE to be a specific PE in the topology of the
SoC. In this case the D-CRTM must return an error if the PE used to initiate the dynamic launch
is not the correct one.

R44040 The D-CRTM must ensure that DRTM operation on the boot PE cannot be preempted by Non-
secure asynchronous exceptions unless explicitly enabled by the DLME. Examples include
interrupts, SError exceptions, and SDEI events.

R44050 If the caller of DRTM_DYNAMIC_LAUNCH was not in AArch64 state, the D-CRTM must return
an error.

R44060 The D-CRTM must verify that no TPM localities are active, and if not return an error to the
caller of DRTM_DYNAMIC_LAUNCH or enter remediation.

R44070 If the D-CRTM returns an error to the caller, the open or closed state of localities 1, 2, and 3
must be left unmodified.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 62
1.0 Non-confidential

Table 25 specifies the requirements for the second phase of the D-CRTM in a firmware-backed implementation
where errors cannot be returned to the caller.

Table 25: D-CRTM phase 2 requirements

ID Requirement

R44080 If the SoC implements a GIC ITS (Interrupt Translation Service [14]), the D-CRTM must:

• Ensure all ITSs are disabled (GITS_CTLR.Enabled = 0 and GITS_CTLR. Quiescent = 1)

• Ensure LPIs are disabled in all Redistributors (GICR_CTLR.EnableLPIs = 0 and
GICR_CTLR.RWP = 0)

These settings ensure that the GIC makes no memory accesses during the dynamic launch.

Implementation Note: In some GICv3.0 implementations it might not be possible to clear
GITS_CTLR.Enabled after it is set. For this case the D-CRTM must:

• Verify the location and size of the LPI Configuration tables and the LPI Pending tables
to ensure that they do not overlap any DRTM-protected memory region.

• Verify that GICR_PENDBASER and GICR_PROPBASER do not violate any of the rules
specified in the GIC architecture that lead to behavior defined as UNPREDICTABLE.

R44090 The D-CRTM must reset the dynamic PCRs in the TPM using TPM_HASH_START (or equivalent)
at locality 4.

R44100 The D-CRTM must open localities 1, 2, and 3 in an implementation-specific way.

R44110 The D-CRTM must map the DRTM parameters Execute-Never.

R44120 If the D-CRTM is distinct from the DCE image, the D-CRTM must load the DCE image and must
enforce verification of the cryptographic signature on the DCE.

R44130 Prior to loading a DCE image, the D-CRTM must prepare the memory region the DCE will
execute from and ensure it is protected from DMA.

R44140 If the D-CRTM is distinct from the DCE image, the D-CRTM must extend a measurement of the
DCE image into the TPM and record the measurement in the event log. See PCR schema details
in section 4.8.

R44150 If the D-CRTM is distinct from the DCE image, the D-CRTM must extend a measurement of the
public key that signed DCE image into the TPM and record the measurement in the event log.
See PCR schema details in section 4.8.

R44160 If the D-CRTM and DCE images are not distinct and a digest of the DCE cannot be computed,
the D-CRTM must:

• Extend the digest of the 1-byte value of zero into the TPM for the DCE image and
record the measurement in the event log.

• Extend the digest of the 1-byte value of zero into the TPM for the public key that
signed the DCE image and record the measurement in the event log.

See PCR schema details in section 4.8.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 63
1.0 Non-confidential

R44170 The D-CRTM must measure the PCR schema passed in the DRTM_PARAMETERS. See PCR
schema details in section 4.8.

R44180 If the platform supports a mechanism that permits a PE to detect if external debug (invasive or
non-invasive) is enabled, the D-CRTM must detect this, and:

• Extend a Boolean value into the TPM

• Record the measurement in the DRTM event log. See PCR schema details in section
4.8.

If external debug can be enabled dynamically without a system reset, the D-CRTM must
measure debug as enabled.

R44190 If it is possible in a deployed lifecycle state for a hardware trace feature to write trace data to
Non-secure memory and if the platform supports a mechanism that permits a PE to detect if
hardware trace is enabled, the D-CRTM must detect this and extend a Boolean value into the
TPM and record the measurement in the DRTM event log. See PCR schema details in section
4.8.

If the enabling of trace cannot be detected by a DRTM implementation or if trace can be
enabled dynamically without a system reset the D-CRTM must measure trace as enabled.

R44200 The D-CRTM may detect and measure the security lifecycle state of the platform into the TPM.
See PCR schema details in section 4.8.

Note: if the D-CRTM does not make this measurement, it must be done by the DCE.

R44210 If the D-CRTM is unable to log a measurement because there is no available space in the event
log region, the D-CRTM must extend a hash of the 1-byte value 0xFF into PCR[17] and PCR[18]
and enter remediation.

R44220 If the D-CRTM encounters an error, it must return an error to the caller of
DRTM_DYNAMIC_LAUNCH or enter remediation. See section 4.7.

R44230 The D-CRTM must only be updateable through a secure firmware update procedure that meets
the requirements specified in the Arm Platform Security Boot Guide [5]

R44240 Updates to the D-CRTM must be protected against rollback as specified by the requirements in
the Arm Platform Security Boot Guide [5].

4.5 DCE requirements
The DCE can consist of multiple components. It is not a requirement that the DCE be a single, monolithic image.
The requirements in this section are applicable to both firmware and hardware backed implementations of
DRTM.

Table 26 specifies the requirements for the DCE images.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 64
1.0 Non-confidential

Table 26: DCE image requirements

ID Requirement

R45000 The DCE must only be updateable through a secure firmware update procedure that meets the
requirements specified in the Arm Platform Security Boot Guide [5].

R45010 Updates to the DCE must be protected against rollback as specified by the requirements in the
Arm Platform Security Boot Guide [5].

R45020 The DCE image(s) must be digitally signed by the DCE provider following the requirements
specified in the Arm Platform Security Boot Guide [5].

Table 27 specifies general requirements for the DCE.

Table 27: General DCE requirements

ID Requirement

R45030 The DCE must map the DRTM parameters Execute-Never.

R45040 The DCE must verify the fields of the DRTM parameters before use. See section 3.12.

R45050 If the DCE is unable to log a measurement because there is no available space in the event log
region, the DCE must extend a hash of the 1-byte value 0xFF into PCR[17] and PCR[18] and
enter remediation.

R45060 If not done by the D-CRTM, the DCE must read and measure the security lifecycle state of the
platform and extend it into the TPM and record the measurement in the DRTM event log. See
PCR schema details in section 4.8.

R45070 If the DCE encounters an error, it must enter remediation. See section 4.7.

Table 28 specifies memory protection requirements.

Table 28: Memory protection requirements

ID Requirement

R45080 For complete DMA protection the DCE must configure the SMMUs in the system to block DMA
from all devices. To guarantee completion of all outstanding device accesses the DRTM
implementation must perform an invalidation of all Non-secure TLB information at the SMMU.

R45090 For region-based DMA protection, the DCE must verify any memory protection table specified
in the DRTM parameters before using the table.

R45100 For region-based DMA protection, the DCE must verify that the DLME region is in the memory
protection table specified in the DRTM_PARAMETERS.

R45110 For region-based DMA protection, if a TPM Command Response Buffer Interface is in normal
memory, the DCE must verify that the locality 3 CRB is protected using the memory protection
table specified in the DRTM_PARAMETERS.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 65
1.0 Non-confidential

R45120 For region-based DMA protection, the DCE must use a platform-dependent hardware
enforcement mechanism to protect the requested regions.

R45130 For region-based DMA protection the DLME region must be protected. However, for memory
outside of the DLME region, it is permitted for the implementation to protect a subset of the
protected regions required in the DRTM parameters if required for platform-dependent
reasons.

R45140 For region-based DMA protection, regions protected by the implementation must be described
in the protected regions area in the DLME data. The protected regions in the DLME data might
differ from the regions requested in the DRTM_PARAMETERS.

R45150 For a firmware-backed implementation, the DMA protection for both complete and region-
based DMA protection must prevent DMA accesses from Non-secure devices.

R45160 If complete DMA protection is in use, the DCE must define a single region in the protected
regions in the DLME data consisting of address 0x0 and the maximum region size. These
sentinel values do not define a protected region of memory, but instead communicate to the
DLME that all DMA is disabled.

The DCE can be composed of multiple components, where an initial DCE component started by the D-CRTM
loads, verifies, and measures a next stage DCE component. Table 29 defines requirements specific to an
implementation consisting of multiple DCE components.

Table 29: Multiple stage DCE requirements

ID Requirement

R45170 The prior stage DCE must load the next stage DCE image into a platform-appropriate memory
region and must enforce verification of the cryptographic signature on the next stage DCE
image.

R45180 The prior stage DCE may optionally extend a measurement of the next stage DCE image into
the TPM and record the measurement in the event log using the event type
EVTYPE_ARM_DCE_SECONDARY. See PCR schema details in section 4.8.

Table 30 specifies requirements that the DCE must perform with respect to the DLME.

Table 30: DCE requirements for the DLME

ID Requirement

R45190 The DCE must verify that DLME region is in Non-secure memory and that the requirements
described in section 3.14 are met.

R45200 The DCE must verify that the DLME data fits within the DLME region.

R45210 Before the DLME image is measured the DCE must verify that the DLME region is protected
from DMA based on the memory protection specified in the DRTM_PARAMETERS.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 66
1.0 Non-confidential

R45220 Before the DCE measures the DLME image or initializes the DLME data, it must clean and
invalidate the DLME region for all data caches to the Point of Coherency.

R45230 The DCE must extend a measurement of the DLME image into the TPM and record the
measurement in the DRTM event log. See PCR schema details in section 4.8.

The DLME image region is defined by the DLME image offset and DLME image size fields of the
DRTM_PARAMETERS. See section 3.12.

R45240 The DCE may perform digital signature verification of the DLME image if it detects a digital
signature in the image.

R45250 The DCE must initialize the DLME_DATA_HEADER. See section 3.14.

R45260 The DCE must populate the address map in the DLME data. See section 3.14.

R45270 The DCE must populate the protected regions in the DLME data. See section 3.14.

R45280 The DCE may use the implementation-specific region in the DLME data for implementation-
specific purposes. See section 3.14.

R45290 If firmware provides TCB hashes using the DRTM_SET_TCB_HASH function, firmware must also
lock the set of hashes using the DRTM_LOCK_TCB_HASHES function. If the hashes are not
locked, the DCE must record the error code 0x4 and enter remediation. See section 3.11.

R45300 Before the DLME is called, the DCE must extend the event type EVTYPE_ARM_SEPARATOR
into the TPM and record the measurement in the DRTM event log. See PCR and event type
details in section 4.8.2.

R45310 Before the DLME is called, the DCE must invalidate all instruction caches.

R45320 Before the DLME is called, any unused space in the DRTM event log region must be initialized
to zeros.

R45330 Before the DLME is called, the DCE must close locality 3.

R45340 Before the DLME is called, locality 2 must be active.

R45350 Before the DLME is called the DCE must set the DRTM error code to zero.

R45360 The DCE must identify the entry point of the DLME image from the offset in the DRTM
parameters. See section 3.12.

R45370 The DCE must extend a measurement of the DLME entry point offset into the TPM and record
the measurement in the DRTM event log. See PCR schema details in section 4.8.

R45380 The physical address of the DLME region must be passed to the DLME in X0 and the offset to
the DLME data area must be passed in X1.

R45390 The DCE must transfer control to the DLME entry point.

A Normal world DCE is a DCE component that executes in the Normal world. If a Normal world DCE component is
in use, the DCE preamble allocates space for the Normal world DCE to execute in and provides the address and

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 67
1.0 Non-confidential

size of that memory region in the DRTM_PARAMETERS. Table 31 specifies requirements for the DCE component
that loads and starts the Normal world DCE.

Table 31: Normal world DCE requirements

ID Requirement

R45400 The DRTM implementation must determine the address and size of the Normal world DCE
region from the DRTM_PARAMETERS.

R45410 The DRTM implementation must verify that the Normal world DCE region is protected from
DMA based on the protection specified in the DRTM_PARAMETERS.

For the DLME to defend itself, it might need a description of TCB hardware components. During the normal boot
flow of a system, the system firmware provides a set of ACPI tables that provide a system description for use by
the OS. To enable the DLME to detect tampering of TCB-critical ACPI tables it is strongly recommended that the
DCE provide: A) trustworthy hashes of TCB-critical ACPI tables, or B) trustworthy copies of TCB-critical ACPI
tables. The DLME data defines region where the hashes or copies of tables can be provided.

For the TCB hash table, the DCE can determine the contents of the table in two ways:

1. From data provided by firmware using the DRTM_SET_TCB_HASH function

2. Through implementation-specific means. For a simple system, the DRTM implementation might have a
static set of hashes that can be provided in the TCB hash table. If the DRTM implementation uses
implementation-specific means, it might advertise a value of zero in the TCB hash features of
DRTM_FEATURES.

It is permitted for TCB hash table entries to come from both the DRTM_SET_TCB_HASH function and directly
from the DRTM implementation through implementation-specific means. The DLME can differentiate between
the two sources of TCB hash data through the Source of Entry bit in each table entry.

The set of ACPI tables or other data that can impact the TCB of a system is system-specific. It is the responsibility
of the platform manufacturer to determine which ACPI tables or other data impact the TCB and make hashes or
copies of these components available in one of the ways described above.

Table 32 specifies requirements for the DCE-provided TCB hash table.

Table 32: ACPI table requirements

ID Requirement

R45420 The DCE must provide a TCB hash table region or copies of TCB-critical ACPI tables in the DLME
data.

R45430 The DCE must set the Source of Entry bit in each TCB hash table entry to identify whether the
entry came from the DRTM_SET_TCB_HASH function or from the DRTM implementation.

R45440 It is strongly recommended that trustworthy hashes or copies of the following ACPI tables be
provided:

MADT
MCFG
GTDT
IORT
TPM2

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 68
1.0 Non-confidential

Table 33 specifies how the boot PE must be configured when control is transferred to the DLME.

Table 33: Boot PE requirements

ID Requirement

R45450 Except as noted below, the boot PE must be configured as defined in the PSCI specification [2]
in the definition of the initial state of a PE after a CPU_ON operation. See the section Initial
state after CPU_ON, CPU_SUSPEND in the PSCI specification.

The following requirements supersede the definition in PSCI:

• Execution state must be AArch64

• Exception level must be the highest Non-secure exception level

• Little-endian

• Register X0 contains the physical address of the DLME region

• Register X1 contains the offset from the start of the DLME region to the DLME data

R45460 Non-secure asynchronous exceptions must be masked on the boot PE.

R45470 Debug exceptions must be masked on the boot PE.

4.6 DLME

4.6.1 DLME initial state
When the DLME entry point is executed, it can assume the following about the system state:

• The DLME receives execution control on the boot PE. All other PEs are off.

• The boot PE is configured as defined by CPU_ON in the PSCI specification [2], except as noted in Table 33

• Register X0 contains the physical address of the DLME region

• Register X1 contains the offset from the start of the DLME region to the DLME data

• The DMA protections requested in the DRTM_PARAMETERS are in effect

• TPM locality 2 is active. The DLME does not need to request locality 2

• The DLME data is populated as defined in section 3.14

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 69
1.0 Non-confidential

4.6.2 DLME operation
The DLME might be an operating system-specific component supplied by the same vendor that provided the DCE
Preamble component, or it might conform to a standardized boot protocol.

The DLME begins execution in a new minimal TCB established by DRTM and is in a protected state. See section
4.6.1. From this starting point, it prepares the operational environment for the runtime operation of the
hypervisor or operating system kernel. It is critical that the DLME not utilize any code or data outside of the
DLME region unless it has been validated in some way. Code can be verified using digital signatures or using
measurements extended into the TPM. Data can be validated to confirm it is safe to consume.

The DLME can itself be the OS kernel, or it might prepare the runtime environment and then hand off control to
the OS.

The following describes the responsibilities of the DLME to defend itself and prepare for the OS runtime:

• Boot PE Initialization. The DLME begins execution on the boot PE which is configured as defined in Table 33.
The DLME is responsible for initializing the boot PE into an operational state. This process typically includes
creating address translation tables, enabling the MMU, and putting exception vectors in place.

• Determining trust. The system must establish a security policy based on the measurements made by DRTM in
PCR[17] and PCR[18] (see section 4.8). The policy detects any tampering of the DLME and establishes whether
the boot flow should continue.

o The system can use local attestation to determine trust, where a security policy can be
implemented based on sealing to PCR[17] and/or PCR[18]. For example, a secret such as a disk
encryption key needed to boot the system can be sealed against dynamic PCRs.

o The system can use remote attestation where it sends a TPM quote to a remote verifier that can
determine whether the state measured by DRTM is as expected. For example, the verification of
the quote can be a criteria for access to a secure network.

o The system can use the DRTM event log in the DLME data to implement a policy around specific
system state measured by DRTM. For example, if DRTM measured that external debug was
enabled in the system the DLME can determine this from the event log. The DLME can then
implement an appropriate policy.

• DLME data.

o The DLME can determine the address of the DLME data from the DLME region address and
DLME data offset arguments passed to the DLME. See section 4.6.1.

o Space in the DLME region that is outside the DLME image and the DLME data can be used for
DLME-specific purposes. See the regions labeled “free space” in Figure 8. If the DLME requires a
specific amount of free space before or after the DLME image, it must determine the DLME
image size and then determine the available space in conjunction with the DLME region address
and the DLME data offset received as arguments.

• Protected regions. The protected regions in the DLME data describe the DMA protections requested by the
DCE Preamble and put in place by the DRTM implementation.

o If complete DMA protection was requested, this is indicated by a sentinel entry in the protected
regions.

o If region-based DMA protection was requested, the protected regions always include the DLME
region, which is guaranteed to have DMA protections. If additional memory protections beyond
the DLME region were requested, the DLME must examine the protected regions to verify they
are as expected. If necessary for platform-specific reasons, the DRTM implementation might
protect a subset of the regions requested.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 70
1.0 Non-confidential

• Memory map

o Before utilizing any address space outside of the DLME region, the DLME should check that
regions used are consistent with the address map provided by the DRTM implementation in the
DLME data.

o Before using an address map provided by untrusted firmware, the DLME should verify that the
map is consistent with the address map provided by the DRTM implementation in the DLME
data.

• ACPI Tables. The DLME must not use any untrusted data components, such as unverified ACPI tables
provided by Non-secure firmware, to establish the TCB.

o The DLME data contains: A) hashes of TCB-critical ACPI tables, or B) copies of ACPI tables. The
DLME can use this data to verify the ACPI tables provided by Non-secure firmware. The DLME
can determine which type of data is present by inspecting the DLME_DATA_HEADER.

o When processing a TCB hash the DLME should consider the following:

 The source of each table entry (DRTM_SET_TCB_HASH or the DRTM implementation)
can be distinguished with the Source of Entry bit in each entry.

 There might be entries with duplicate IDs in the TCB hash table. For ACPI tables such as
the SSDT this may be expected. For other type of IDs duplicates are not valid. It is the
responsibility of the DLME to evaluate any duplicate IDs and enter remediation if
necessary.

o Untrusted tables can be used as long as the content in them is not used to establish the TCB. The
DLME is free to make a policy decision around the ACPI tables that it considers security critical
and can refuse to boot or might disable functionality if the DRTM implementation does not
provide hashes or copies of required ACPI tables. Platform manufacturers must be aware of the
requirements for OSes they intend to support.

• Execution of other software. The DLME must not execute any untrusted components unless it has validated
the component or constrained its execution. This requirement means, for example, that the DLME must take
care in utilizing a component such as UEFI Runtime Services which has not been measured as part of DRTM
and is not trusted. Validation of code can include digital signatures or measurements.

• TPM usage. The DLME can use the TPM for making implementation or OS-specific measurements.

o If the DLME uses the TPM2 ACPI table, it should verify the integrity of the table using the ACPI
information in the DLME data.

o The dynamic PCRs 19-22 are reserved for use by the DLME.

o The DLME can make measurements using locality 2.

o If preventing further measurements into PCRs 17 and 18 is a requirement of the security policy
of the system, the DLME must close locality 2 using the DRTM_CLOSE_LOCALITY function.

• DRTM event log. The DLME should make the DRTM event log available to the OS runtime in an OS-specific
manner.

• DMA protections

o If the DLME uses the IORT ACPI table, it should verify the integrity of the table using the ACPI
information provided in the DLME data.

o The DLME should put appropriate DMA protections in place for the OS runtime before
transitioning to the OS.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 71
1.0 Non-confidential

o For complete DMA protection the DLME should have no expectation that the SMMU be restored
to any particular state following a call to DRTM_UNPROTECT_MEMORY. The DLME should
assume nothing about the state of the SMMU.

• Device I/O. If the DLME uses the MCFG ACPI table, it should verify the integrity of the table using the ACPI
information provided in the DLME data.

• Interrupts. The DLME should verify the integrity of the MADT ACPI table using the ACPI information provided
in the DLME data.

• Secrets in memory. The system must provide a mechanism to mitigate against platform reset attacks. See
section 5.9. The DLME should use the provided mechanism to ensure secrets are scrubbed from memory on a
reset.

• Error handling. Errors that occur during a dynamic launch will never reach the DLME. The DRTM
implementation might return errors to the DCE Preamble or might enter remediation which will reset the
system. Errors detected by the DLME are handled in a platform-specific manner. The DLME can use
DRTM_SET_ERROR to report detected errors.

• Remove memory protections. The DLME must use the DRTM_UNPROTECT_MEMORY function to remove the
memory protections put in place by the DCE preamble.

4.7 Error handling and remediation
During the dynamic launch, errors can occur that prevent the launch from succeeding. The actions a platform
takes when errors occur are referred to as remediation in this architecture.

When the DCE preamble initiates a dynamic launch, there are a class of errors that can be directly returned to
the caller as section 3.4 describes. For these errors, any remediation needed is the responsibility of the DCE
preamble.
As the dynamic launch progresses through the D-CRTM and DCE phases it might not be possible to return errors
to the caller of DRTM_DYNAMIC_LAUNCH. For these errors, remediation consists of the DRTM implementation
storing an error code and initiating a system reset. The error code can be retrieved by a DRTM client using the
DRTM_GET_ERROR function following the system reset.

For errors that require platform remediation the requirements are specified in Table 34.

Table 34: Remediation requirements

ID Requirement

R47000 The DRTM implementation must place an error code, as defined in section 3.11, in a storage
location so that the value persists across the system reset and the DCE preamble can
determine why the previous dynamic launch failed.

R47010 An implementation may record implementation-defined errors using the error code 0xFF and
an implementation-specific data value. See the DRTM error encoding in section 3.11.

R47020 If a Normal world DCE is used, it must record the error code using the DRTM_SET_ERROR
function. See section 3.8.

R47030 As a final step in remediation, the DRTM implementation must initiate a system reset.

R47040 An implementation may report DRTM errors to other error logging infrastructure that might
exist on a platform.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 72
1.0 Non-confidential

Errors detected by the DLME are handled in a platform-specific manner. The DLME can record error codes using
the DRTM_SET_ERROR function.

4.8 TPM measurements

4.8.1 TPM measurement requirements
The TPM measurement requirements in Table 35 are applicable to all phases of DRTM.

Table 35: TPM measurement requirements

ID Requirement

R48000 For firmware-based measurements (see 2.7.1), if the TPM implementation supports SHA-
384, all measurements must be made with a SHA-384 or stronger hashing algorithm. A
hashing algorithm of equivalent security strength to SHA-384 is also permitted.

If the TPM implementation does not support SHA-384, then measurements must be made
with a SHA-256 or stronger hashing algorithm (or equivalent).

R48010 If the PCR schema in use does not specify an order in which the measurements are to be
made, the order of the measurements must be deterministic between runs.

4.8.2 PCR schemas
This architecture supports a flexible approach by defining schemas that specify how TPM PCRs are used for
measurements. The available PCR usage schemas in a DRTM implementation are advertised using a bitmap in
DRTM_FEATURES. A DRTM client requests the schema to use through a value in the DRTM_PARAMETERS passed
to DRTM_DYNAMIC_LAUNCH.

The architecture defines a default schema that must be present in all implementations (see details in section
4.8.3).

4.8.3 Default PCR schema
The default schema uses PCR[17] and PCR[18]. For each PCR the definition includes:

• The component or item measured

• Event type for the DRTM event log

• Any ordering requirements for the measurements

The goal of the default PCR schema is to provide a stable PCR[18] measurement that the DLME or OS can use to
implement a security policy.

Table 36: Default PCR schema requirements

ID Requirement

R48020 For the default PCR usage schema the components or items measured, the measurement
order, and event type must comply with the requirements in Table 37 and Table 38 for
PCR[17] and PCR[18]. See Event types, 3.16.2, for details of how each event type is logged.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 73
1.0 Non-confidential

Table 37: Default PCR[17] schema details

Order Component Measured Event Type Usage

1 DCE image EVTYPE_ARM_DCE Required in all
implementations

2 PCR schema value in the
DRTM_PARAMETERS

EVTYPE_ARM_PCR_SCHEMA Required in all
implementations

3 Secure world TCB
images

EVTYPE_ARM_TZFW Required if measured by
the implementation

4 Debug/trace state EVTYPE_ARM_DEBUG_CONFIG Required if measured by
the implementation

5 Security lifecycle state EVTYPE_ARM_NONSECURE_CONFIG Required in all
implementations

6 Secondary DCE image(s) EVTYPE_ARM_DCE_SECONDARY Required if measured by
the implementation

7 Separator signifying the
end of DCE
measurements.

EVTYPE_ARM_SEPARATOR Required in all
implementations

Table 38: Default PCR[18] schema details

Order Component Event Type Usage

1 PCR schema in
DRTM_PARAMETERS

EVTYPE_ARM_PCR_SCHEMA Required in all
implementations

2 Public key that signed
DCE image(s)

EVTYPE_ARM_DCE_PUBKEY Required in all
implementations

3 DLME image EVTYPE_ARM_DLME Required in all
implementations

4 DLME image entry point EVTYPE_ARM_DLME_ENTRY_POINT Required in all
implementations

5 Separator signifying the
end of DCE
measurements.

EVTYPE_ARM_SEPARATOR Required in all
implementations

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 74
1.0 Non-confidential

5 System requirements
This section describes the hardware and software requirements needed to support DRTM.

5.1 Processing elements
In this specification, a processing element (PE) refers to an Arm core on which an operating system or hypervisor
runs, not cores that function as devices or peripherals. Table 39 specifies the requirements for the application
processor PEs to support DRTM:

Table 39: System requirements for PEs

ID Requirement

R51000 PEs must implement the Armv8-A or Armv9-A Architecture [1].

R51010 PEs must comply with the requirements in the Arm Base System Architecture 1.0 [7].

5.2 Multiple sockets
The rules and requirements in this specification apply equally to single- and multi-socket systems. The
expectation is that the boot PE and security coprocessor on which the DRTM boot flow is performed can perform
the needed checks and tasks defined by the architecture regardless of which socket a resource might be located
on.

5.3 SMMU and DMA capable devices
As section 2.8 describes, a key security requirement of this architecture is that the DLME and supplemental
images be protected against DMA attacks during a dynamic launch.

Table 40 specifies the requirements related to SMMU and DMA capable devices:

Table 40: System requirements for SMMUs

ID Requirement

R53000 All DMA capable devices in a system must be behind an SMMU, including both Secure and
Non-secure devices.

The requirement does not apply to non-host platforms.

R53010 An SMMU implementation must be compliant with the requirements specified in the Arm
Base System Architecture 1.0 [7].

5.4 Non-host platforms
A non-host platform (NHP) is a controller, peripheral, or PE in the system that is part of the system’s TCB and has
the ability to access memory without the protection of an SMMU. A non-application PE is a non-host platform.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 75
1.0 Non-confidential

Table 41: System requirements for non-host platforms

ID Requirement

R54000 If a NHP can access Non-secure memory at an address chosen by or influenced by software
running at a Non-secure privilege level the NHP must provide a means for the DRTM
implementation to quiesce, disable, or reset the NHP function that results in Non-secure
memory accesses.

5.4.1 GIC
An Arm Generic Interrupt Controller (GIC) implementation might include support for Locality-specific Peripheral
Interrupts (LPIs) or an Interrupt Translation Service (ITS). These features can result in Non-secure memory
accesses when an interrupt is triggered and due to this the GIC is treated as a Non-host platform.

Table 42: System requirements for GIC

ID Requirement

R54010 A GIC that implements Locality-specific Peripheral Interrupts (LPIs) should support clearing
GICR_CTLR.EnableLPIs.

R54020 A GIC implementation that does not support clearing GICR_CTLR.EnableLPIs after it is set
must not permit modification of GICR_PENDBASER when GICR_CTLR.EnableLPIs == 1.

5.4.2 Hardware trace
A system might support an embedded hardware trace capability where captured trace data is written into
system memory. Trace can be controlled by off-chip means or by on-chip self-hosted trace software. A hardware
trace feature that accesses system memory is considered a non-host platform and is considered part of the TCB
of the system.

Table 43: System requirements for trace

ID Requirement

R54030 In a deployed lifecycle state, if it is possible for hardware trace to write trace data to Non-
secure memory, the system should provide a means for a DRTM implementation to detect and
measure whether trace is enabled or not.

Note: If the enabling of trace cannot be detected by a DRTM implementation or if trace can be enabled
dynamically without a system reset the DRTM implementation measures trace as enabled.

5.5 Security lifecycle
A system must ensure that the protection of assets and the availability of system functions follow a prescribed
and constrained path from manufacture to system disposal. Therefore, the system must have a state machine
that it can use to make appropriate security decisions within a particular context. This is known as a security
lifecycle.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 76
1.0 Non-confidential

Each security state in the security lifecycle defines the security properties of the system. The security state
depends on software measurements, hardware configuration, debug mode, and the lifecycle phase. For
example, a lifecycle state can cover scenarios such as development, provisioning, deployment, returns, and end-
of-life. Table 44 specifies the lifecycle requirements.

Table 44: System requirements for lifecycle

ID Requirement

R54040 A system must have a security lifecycle that can be read and measured by the D-CRTM or DCE
and must include a way to distinguish between deployed and pre-deployment states.

5.6 TPM

5.6.1 TPM requirements
This architecture permits the following implementations of a TPM 2.0:
• Discrete chip
• Implementation in a hardware enclave in the SoC. A hardware enclave implementation executes on a

coprocessor other than the PEs that initiated DRTM.
• Firmware implementation in the Secure world

Table 45 specifies the requirements for the TPM implementation:

Table 45: System requirements for TPMs

ID Requirement

R56000 A TPM implementation must be compliant with the TPM Library Specification Family 2.0 [8].

R56010 A discrete TPM 2.0 chip must be certified by TCG.

R56020 The system must support hardware-based enforcement to protect locality 4 of the TPM, and it
must not be possible for locality 4 to be accessed by Non-secure privilege levels.

Implementation note: For a firmware-backed implementation of DRTM, a common approach
to protect locality 4 is to make a discrete TPM chip a Secure device and accessible only at
Secure privilege levels. This approach allows a TPM service running at a Secure privilege level
to mediate access to the TPM.

R56030 The platform interface to access the TPM must support the localities 1-4 of the TPM.

R56040 The implementation must support closing localities 2 and 3. See section 5.6.2.

R56050 A system-level reset must reset the TPM.

It is beyond the scope of this specification to define the security properties for a firmware TPM implementation
or for a hardware enclave-based implementation. The TPM implementation is a critical component of the TCB of
a system and system level threat modeling is required to evaluate possible threats.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 77
1.0 Non-confidential

5.6.2 Closing localities
This architecture defines the concept of closing TPM localities. When a locality is closed it means that an attempt
by software to request that locality is ignored by the TPM. Localities 3 and 2 can be closed to prevent further
extend operations into PCRs 17 and 18 following the dynamic launch. The DCE always closes locality 3. If
preventing further measurements into PCRs 17 and 18 is a requirement of the system's security policy, the DLME
can close locality 2 using the DRTM_CLOSE_LOCALITY function.

Table 46 specifies requirements for the TPM implementation with respect to closing localities:

Table 46: Requirements for closing TPM localities

ID Requirement

R56060 When a locality is closed:

• For a FIFO interface, the TPM must ignore writes to the TPM_ACCESS_x register.

• For a CRB interface, the TPM must ignore writes to the TPM_LOC_CTRL_x register.

• The behavior of all other TPM registers must conform to the definition in the TCG PTP
specification [9] when the active locality is “Not Set”. See the PTP sections “FIFO
Interface Locality Usage per Register” and “CRB Interface Locality Use per Register”.

R56070 Following a system reset, the TPM must treat the dynamic localities 1, 2, and 3 as closed.

R56080 The TPM must provide a means for the D-CRTM to open localities 1, 2, and 3 as part of the
dynamic launch sequence.

R56090 The TPM implementation must support closing locality 3. See the DRTM_CLOSE_LOCALITY
function, section 3.6.

R56100 The TPM implementation must support closing locality 2. See the DRTM_CLOSE_LOCALITY
function, section 3.6.

R56110 After a locality is closed, an attempt by a TPM client to access the closed locality must result in
an error returned by the interface used to send commands to the TPM.

How the closing of localities is implemented is platform-specific. As section 5.6.1 describes, access to the TPM
implementation must be mediated. The mediation layer that clients use to access the TPM is responsible for
enforcing access to closed localities.

5.7 ACPI
This specification assumes the platform uses an ACPI-based system description. Table 47 specifies the
requirements for ACPI:

Table 47: System requirements for ACPI

ID Requirement

R57000 The system must implement a system description based on ACPI that is compliant with the
definition in the Base Boot Requirements specification [10].

R57010 If Non-secure firmware updates or patches to ACPI tables that impact the TCB, the firmware
should provide measurements of the tables to the DRTM implementation using the

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 78
1.0 Non-confidential

DRTM_SET_TCB_HASH function. This step must occur while the Non-secure firmware is in a
phase of execution where all Non-secure firmware components are under the control of the
platform manufacturer.

The implication of this requirement is that Non-secure firmware should not perform late
patching or updates to ACPI tables that impact the TCB.

5.8 DMA protection
A key security requirement of this architecture is that the DLME is protected against DMA by devices during the
dynamic launch. The DLME might need to measure and validate supplemental images and these images must
also be protected from DMA. The DLME and supplemental images all reside in Non-secure memory.

DMA protection is specified by the DCE preamble and protections are enabled at the time of the dynamic launch.
The protections must remain enabled during the DRTM phases until explicitly removed by the DLME.

Complete DMA protection is hardware-based enforcement at the SMMU that blocks all DMA from Non-secure
devices. A DRTM implementation advertises this capability using the DRTM_FEATURES function and a DRTM
client requests the protection through the DRTM_PARAMETERS.

Region-based DMA protection is a platform-specific mechanism that provides hardware-based enforcement
against DMA for a number of memory regions. A DRTM implementation advertises this capability and the
number of regions supported using the DRTM_FEATURES function. A client defines a memory protection table
specifying the physical address and size of each region to be protected and passes the table in the
DRTM_PARAMETERS. Region-based protection allows DMA to continue during the dynamic launch while
maintaining the protections requested in the protection table. If necessary for platform-specific reasons, the
DRTM implementation might protect a subset of the regions requested. The DLME can determine all memory
regions that are protected using the DLME data.

The DLME disables the protections with the DRTM_UNPROTECT_MEMORY function following the dynamic
launch.

Table 48: System requirements for DMA protection

ID Requirement

R58000 A platform must support at least one type of DMA protection specified in this architecture.

R58010 For a firmware-backed implementation the DMA protection, whether complete or region-
based, must prevent DMA accesses from Non-secure devices.

R58020 For region-based DMA protection, DMA must be permitted to regions of memory not
included in the protected regions, subject to previously configured SMMU stream tables,
context descriptors, and translation tables.

5.9 Platform
Some platform implementations can include mechanisms in the SoC interconnect that enable configuration of
the physical address map of the system or how interconnect transactions are routed. Any such configuration
must only be possible from the Secure world.

Table 49: Platform configuration requirements

ID Requirement

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 79
1.0 Non-confidential

R59010 It must not be possible for components operating at Non-secure privilege levels to change
the physical memory map of a system. This requirement includes I/O regions such as a PCIe
ECAM.

This requirement does not apply to the programming of PCI BARs.

Physical memory aliasing is where a system permits configuration of the physical address map of the system so
that a single memory location can be accessed through multiple physical addresses.

Table 50: Physical memory aliasing

ID Requirement

R59020 A platform must not have memory that is physically aliased.

5.10 Firmware
It is assumed that system implements best practices to establish and protect the integrity of system firmware.

Table 51: Firmware integrity requirements

ID Requirement

R510000 For a firmware-backed DRTM implementation the integrity of the D-CRTM must be
established by the system using measurements or digital signatures.

R510010 If the DRTM_SET_TCB_HASH function is used by Non-secure firmware to report hashes of
TCB-critical data, this brings the Non-secure firmware component into the new TCB
established by DRTM. In this case, the integrity of the Non-secure firmware must be
established using measurements or digital signatures.

A platform reset attack or cold boot attack is where an attacker forcibly resets a system without a clean
shutdown and then attempts to extract secrets from the system’s memory.

Table 52: Requirements to mitigate platform reset attacks

ID Requirement

R510020 A platform must provide a mechanism to mitigate against platform reset attacks. Arm
recommends at a minimum an implementation of the MEM_PROTECT function specified in
PSCI 1.1 [2].

5.11 Dynamic launch errors
Dynamic launch errors can involve entering error remediation and a system-level reset. See section 4.7. In this
case the DRTM implementation records an error code in a location that persists across the system reset.
Following reset a DRTM client can then retrieve the error code using DRTM_GET_ERROR. For a successful
dynamic launch, the DCE clears the error code before transferring control to the DLME.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 80
1.0 Non-confidential

Table 53: System requirements for DRTM launch errors

ID Requirement

R511000 A platform must provide a means to store a 64-bit DRTM error code that persists across an
error remediation-initiated system reset. The error code should be tamper-resistant with
respect to the Normal world.

R511010 The error code may be cleared by the platform as part of a power-on-reset or a system reset
not caused by DRTM error remediation.

5.12 SMCCC and PSCI requirements
The Arm SMC Calling Convention (SMCCC) [3] defines a common calling mechanism for SMC calls. The Arm
Power State Coordination Interface [2] specification defines a mechanism to determine the SMCCC version
implemented by firmware.

Table 54: SMCCC and PSCI requirements

ID Requirement

R512000 System firmware must implement PSCI 1.0 or later.

R512010 System firmware should implement the MEM_PROTECT function specified in PSCI 1.1.

R512020 System firmware must implement SMCCC 1.0 later.

Note: The version of SMCCC can be determined using the PSCI_FEATURES function with the
SMCCC_VERSION function ID. See the “Discovery of Arm Architecture Service functions” in
the SMCCC specification appendices.

5.13 Secure services
A system can contain Secure services that execute on PEs at Secure privilege levels. Secure services can be part
of the TCB of a system, and so it is critical for the architecture of a system to comprehend possible threats to
DRTM posed by Secure services that can run asynchronously and access Non-secure memory.

 Secure services can perform functions based on requests made by Non-secure privilege levels. These requests
can be acted on synchronously on the requesting PE or asynchronously if triggered by Secure interrupts. The
interactions between the requester and the service might involve data shared in Non-secure memory buffers.

Table 55: Secure services

ID Requirement

R513000 If a Secure service can be invoked asynchronously and can access Non-secure memory at
addresses chosen by or influenced by software running at Non-secure privilege levels,
firmware in the Secure execution state must provide a mechanism for the DRTM
implementation to quiesce, disable, or reset the Secure service.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 81
1.0 Non-confidential

6 Hardware-backed implementation

6.1 Hardware-backed overview
As section 2.1 describes, the trusted computing base (TCB) of a system is made up of the components that
together enforce the security posture of a system. As section 2.9 describes, hardware-backed DRTM includes in
its security scope detecting compromised Secure world components that are part of the TCB of the system, so
providing a higher level of assurance in the measurements made by DRTM. Hardware-backed DRTM
accomplishes this by the following:

• A dynamic launch transitions control to the D-CRTM which is a trusted agent where the dynamic launch
process begins. For hardware-backed DRTM the trusted agent is in a coprocessor separate from the Arm
v8-A PE that initiated the launch. This approach protects and isolates the D-CRTM so that it cannot be
tampered with even if other Secure firmware in the system might have been compromised.

• System hardware enforces that only the D-CRTM and coprocessor have access to locality 4 in the TPM.
This protection provides hardware-based enforcement so that only the D-CRTM can initiate a dynamic
launch, reset the dynamic PCRs, and make the initial measurement of the DCE.

• The System’s TCB is reestablished. All Secure world firmware components that are part of the system’s
TCB are reloaded, verified, and measured.

• DMA and interrupts from Secure devices are not permitted.

• The chain of trust rooted in the D-CRTM on the coprocessor extends to the DCE and DLME which run on
the boot PE.

From the point of view of the DRTM client, the DRTM architectural interfaces in a hardware-backed
implementation remain identical to a firmware-backed implementation. The same SMC functions are used by
the DCE preamble to prepare the environment and initiate the dynamic launch. A DRTM firmware component
proxies function requests made by the DRTM client running on the PE to the DRTM coprocessor. See the
sequence diagram in Figure 10 which shows an example of the flow of a dynamic launch in a hardware-backed
implementation.

Figure 10: Hardware-backed implementation example

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 82
1.0 Non-confidential

6.2 Hardware-backed D-CRTM requirements
In a hardware-backed implementation, the D-CRTM is in a coprocessor that is distinct from the PE that initiated
the dynamic launch. After the DCE Preamble initiates the launch on the boot PE, Secure firmware in the DRTM
implementation receives the dynamic launch request and proxies it to the coprocessor where the D-CRTM is
located. See section 6.4.2 for further details about the coprocessor that hosts the D-CRTM.

Table 56 describes requirements for the DRTM firmware that transitions the dynamic launch to the D-CRTM in
the coprocessor.

Table 56: DRTM Firmware requirements for transition to D-CRTM

ID Requirement

R62000 The DRTM implementation must verify that the DCE preamble used PSCI CPU_OFF to turn off
all Pes except the boot PE and return an error to the caller of DRTM_DYNAMIC_LAUNCH if
this is not the case.

R62010 An implementation of DRTM might require the boot PE to be a specific PE in the topology of
the SoC. In this case the firmware must return an error if the PE used to initiate the dynamic
launch is not the correct one.

R62020 If the DRTM implementation returns an error to the caller of DRTM_DYNAMIC_LAUNCH the
state of the system must be left unmodified.

R62030 The DRTM implementation must map the DRTM parameters Execute-Never and pass the
parameters to the D-CRTM by an implementation-specific method.

R62040 The DRTM implementation must start execution of the D-CRTM by an implementation-
specific method.

R62050 If the DRTM implementation encounters an error, it must return the error to the caller or
enter remediation. See section 4.7.

Table 57 specifies the requirements for the D-CRTM in a hardware-backed implementation.

Table 57: Hardware-backed D-CRTM requirements

ID Requirement

R62060 The D-CRTM must hold all PEs in a reset state where all the logic on which the PE executes is
reset, including the integrated debug functionality. This reset state is referred to as a Cold
reset in the Arm Architecture [1].

R62070 The D-CRTM must verify no TPM localities are active. If this is not the case it must enter
remediation.

R62080 The D-CRTM must reset the dynamic PCRs in the TPM using TPM_HASH_START or equivalent
at locality 4.

R62090 The D-CRTM must open localities 1, 2, and 3 in an implementation-specific way.

R62100 The D-CRTM must measure the PCR schema passed in the DRTM_PARAMETERS. See PCR
schema details in section 4.8.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 83
1.0 Non-confidential

R62110 The D-CRTM must prepare a tamper-resistant memory space for the DCE to execute from.
The memory space must be protected against Secure devices that are DMA capable.

R62120 The D-CRTM must load the DCE image and must enforce verification of the cryptographic
signature on the DCE.

R62130 The D-CRTM must extend a measurement of the DCE image into the TPM and record the
measurement in the event log. See PCR schema details in section 4.8.

R62140 The D-CRTM must extend a measurement of the public key that signed the DCE image into
the TPM and record the measurement in the event log. See PCR schema details in section
4.8.

R62150 The D-CRTM must detect if external debug mechanisms are enabled in the platform. If
external debug is detected to be enabled, the D-CRTM must record a measurement of the
debug state into the TPM. See PCR schema details in section 4.8.

If external debug can be enabled dynamically without a system reset, the D-CRTM must
measure debug as enabled.

R62160 If it is possible in a deployed lifecycle state for a hardware trace feature to write trace data
to Non-secure memory and if the platform supports a mechanism that permits the D-CRTM
to detect if hardware trace is enabled, the D-CRTM must detect this and extend a Boolean
value into the TPM and record the measurement in the DRTM event log. See PCR schema
details in section 4.8.

If the enabling of trace cannot be detected by the D-CRTM or if trace can be enabled
dynamically without a system reset the D-CRTM must measure trace as enabled.

R62170 The D-CRTM may detect and measure the security lifecycle state of the platform into the
TPM. See PCR schema details in section 4.8.

Note: if the D-CRTM does not make this measurement, it must be done by the DCE.

R62180 The D-CRTM must release the boot PE from reset and cause execution to begin at the DCE
entry point.

R62190 If the D-CRTM is unable to log a measurement because there is no available space in the
event log region, the D-CRTM must extend a hash of the 1-byte value 0xFF into PCR[17] and
PCR[18] and enter remediation.

R62200 If the D-CRTM encounters an error, it must enter remediation. See section 4.7.

R62210 The D-CRTM must only be updateable through a secure firmware update procedure that
meets the requirements specified in the Arm Platform Security Boot Guide [5].

R62220 Updates to the D-CRTM must be protected against rollback as specified by the requirements
in the Arm Platform Security Boot Guide [5].

6.3 Hardware-backed DCE requirements
After the D-CRTM has released the boot PE from reset, execution begins in the DCE. Table 58 defines
requirements specific to the DCE in a hardware-backed implementation.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 84
1.0 Non-confidential

Table 58: Hardware-backed DCE requirements

ID Requirement

R63000 DCE components that execute at the Secure EL0, Secure EL1, Secure EL2, or EL3 privilege
levels must abort DRTM and enter remediation if an exception occurs during DCE execution.
DCE components that execute at Secure privilege levels may mask asynchronous interrupts.

R63010 All Secure world firmware components that are part of the system’s TCB must:

• Be loaded by the DCE with verification of the cryptographic signature of the component.

• Be measured by the DCE with the image measurement extended into the TPM and
recorded in the event log with event type EVTYPE_ARM_TZFW. See PCR schema details in
section 4.8.

Note: These requirements can preclude a system from using TCB components that are
dynamically loaded.

R63020 Any security critical state in the system’s TCB that is preserved across the dynamic launch
must be verified.

R63030 The DCE must ensure that DRTM operation on the boot PE cannot be preempted by Non-
secure asynchronous exceptions unless explicitly enabled by the DLME. Examples include
interrupts, SError exceptions, and SDEI events.

R63040 If the SoC implements a GIC ITS (Interrupt Translation Service [14]), the DCE must:

• Ensure all ITSs are disabled: GITS_CTLR.Enabled = 0 and GITS_CTLR.Quiescent = 1

• Ensure LPIs are disabled in all Redistributors: GICR_CTLR.EnableLPIs = 0 and
GICR_CTLR.RWP = 0

These requirements ensure that the GIC makes no memory accesses during the dynamic
launch.

Implementation Note: In some GICv3.0 implementations it might not be possible to clear
GITS_CTLR.Enabled after it is set. For this case the DCE must:

• Verify the location and size of the LPI Configuration tables and the LPI Pending tables
to ensure that they do not overlap any DRTM-protected memory region.

• Verify that GICR_PENDBASER and GICR_PROPBASER do not violate any of the rules
specified in the GIC architecture that lead to behavior defined as UNPREDICTABLE.

6.4 Hardware-backed system requirements

6.4.1 TPM

Section 5.6 describes the base requirements for a TPM implementation. Table 59 specifies additional TPM
requirements for a hardware-backed implementation of DRTM.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 85
1.0 Non-confidential

Table 59: TPM requirements in a hardware-backed implementation

ID Requirement

R64000 The TPM 2.0 must be a discrete chip or hardware enclave implementation.

R64010 Hardware must enforce access to locality 4 so that it is not possible for locality 4 to be accessed
by anything in the system except by the D-CRTM.

R64020 If the TPM implementation is a discrete chip, it must not be possible for any component in the
system, except for the coprocessor, to bypass the system's locality enforcement mechanism
and directly access the bus to which the TPM is connected.

R64030 A mechanism must be provided to close localities 2 and 3.

6.4.2 Coprocessor
In a hardware-backed implementation, the DRTM process is rooted in a D-CRTM that executes on a security
coprocessor that is distinct from the PE that initiated the dynamic launch. The D-CRTM is responsible for
preparing the DCE for execution, measuring the DCE, and transferring control to the DCE.

The hardware-backed D-CRTM requirements are specified in section 6.2.

Table 60 specifies the requirements for the DRTM security coprocessor:

Table 60: Coprocessor requirements

ID Requirement

R64040 The coprocessor must be a compute element isolated from all other hardware agents,
including the application PEs. The coprocessor must not share caches with the application
PEs.

R64050 The coprocessor must be tamper-resistant. The specific tamper-resistant properties required
depend on the system’s threat model.

R64060 The coprocessor must host the D-CRTM code that starts the dynamic launch.

R64070 The coprocessor must provide an interface that allows the DRTM firmware to make function
requests and get return codes for DRTM functions handled by the coprocessor.

R64080 The coprocessor must support a verified boot process to ensure the integrity of the D-CRTM.

R64090 The coprocessor must support a secure firmware update process that ensures that only
authorized updates to the D-CRTM are allowed.

R64100 The coprocessor must have rollback protection for firmware, so the D-CRTM can be
protected.

R64110 The coprocessor must be able to prevent external debug of the coprocessor itself.

R64120 The coprocessor must be able to detect if external debug mechanisms are enabled.

R64130 The coprocessor must be able to issue a Cold reset, as defined in the Arm Architecture [1], to
the Arm v8-A PEs on which DRTM is being performed.

DEN 0113 Copyright © 2022-2023 Arm Limited or its affiliates. All rights reserved. Page 86
1.0 Non-confidential

R64140 The coprocessor must be able to access the memory containing the DCE image.

R64150 The coprocessor must be able to cause the boot PE to execute the DCE entry point.

R64160 The coprocessor must be able to record a persistent error code if an error occurs during the
dynamic launch before entering remediation.

R64170 The coprocessor must be able to initiate a system-level reset if an error occurs during the
dynamic launch to complete remediation.

Table 45 in section 5.6.1 specifies the system requirements for TPM devices. Table 61 specifies additional
requirements for a hardware-backed implementation for how the security coprocessor relates to the TPM:

Table 61: Requirements for TPMs in a hardware-backed implementation

ID Requirement

R64180 The coprocessor must have exclusive access to access locality 4 of the discrete TPM.

6.4.3 DMA protection
Table 62 specifies DMA protection requirements for a hardware-backed implementation.

Table 62: DMA protection requirements

ID Requirement

R64190 Whether complete or region-based, the DMA protection must prevent DMA accesses from
both Non-secure and Secure devices.

6.5 Hardware-backed DRTM function requirements

6.5.1 DRTM_DYNAMIC_LAUNCH
The following are hardware-backed requirements for the DRTM_DYNAMIC_LAUNCH function:

• The dynamic launch request must be proxied to the D-CRTM in the coprocessor using an
implementation-specific method.

• The DMA protections put in place by the caller must prevent DMA accesses from both Non-secure and
Secure devices.

	About this document
	Release Information
	References
	Terms and abbreviations
	Conventions
	Typographical conventions
	Numbers

	Feedback
	Inclusive language commitment

	1 Overview of this document
	2 DRTM architecture overview
	2.1 DRTM background
	2.2 DRTM overview
	2.3 DRTM terms
	2.3.1 DCE preamble
	2.3.2 D-CRTM and DCE
	2.3.3 DLME
	2.3.4 Devices and non-host platforms

	2.4 DRTM on Arm
	2.4.1 Overview of DRTM on Arm
	2.4.2 DRTM SMC functions

	2.5 DRTM implementations
	2.5.1 Firmware-backed implementation overview
	2.5.2 Hardware-backed implementation overview

	2.6 Differences from the TCG DRTM specification
	2.7 DRTM and the TPM
	2.7.1 Firmware-based measurements
	2.7.2 TPM-based measurements
	2.7.3 TPM PCR usage

	2.8 Memory protection
	2.9 Security considerations
	2.9.1 Security goals
	2.9.2 Security non-goals
	2.9.3 Stakeholders
	2.9.4 Threats and mitigations
	2.9.5 Security considerations for stakeholders

	3 Interface functions and data structures
	3.1 Introduction to interface functions and data structures
	3.2 DRTM_VERSION
	3.2.1 DRTM_VERSION usage
	3.2.2 DRTM_VERSION implementation responsibilities

	3.3 DRTM_FEATURES
	3.3.1 DRTM_FEATURES usage

	3.4 DRTM_DYNAMIC_LAUNCH
	3.4.1 DRTM_DYNAMIC_LAUNCH usage
	3.4.2 DRTM_DYNAMIC_LAUNCH caller responsibilities
	3.4.3 DRTM_DYNAMIC_LAUNCH implementation responsibilities

	3.5 DRTM_UNPROTECT_MEMORY
	3.5.1 DRTM_UNPROTECT_MEMORY usage
	3.5.2 DRTM_UNPROTECT_MEMORY implementation responsibilities

	3.6 DRTM_CLOSE_LOCALITY
	3.6.1 DRTM_CLOSE_LOCALITY usage
	3.6.2 DRTM_CLOSE_LOCALITY caller responsibilities
	3.6.3 DRTM_CLOSE_LOCALITY implementation responsibilities

	3.7 DRTM_GET_ERROR
	3.7.1 DRTM_GET_ERROR usage
	3.7.2 DRTM_GET_ERROR caller responsibilities
	3.7.3 DRTM_GET_ERROR implementation responsibilities

	3.8 DRTM_SET_ERROR
	3.8.1 DRTM_SET_ERROR usage
	3.8.2 DRTM_SET_ERROR caller responsibilities
	3.8.3 DRTM_SET_ERROR implementation responsibilities

	3.9 DRTM_SET_TCB_HASH
	3.9.1 DRTM_SET_TCB_HASH usage
	3.9.2 DRTM_SET_TCB_HASH caller responsibilities
	3.9.3 DRTM_SET_TCB_HASH implementation responsibilities

	3.10 DRTM_LOCK_TCB_HASHES
	3.10.1 DRTM_LOCK_TCB_HASHES usage
	3.10.2 DRTM_LOCK_TCB_HASHES caller responsibilities
	3.10.3 DRTM_LOCK_TCB_HASHES implementation responsibilities

	3.11 DRTM error encoding
	3.12 DRTM_PARAMETERS
	3.13 MEMORY_REGION_DESCRIPTOR_TABLE
	3.14 DLME region
	3.15 TCB_HASH_TABLE
	3.16 DRTM event log
	3.16.1 DRTM event log requirements
	3.16.2 Event types

	3.17 Return codes

	4 Requirements for DRTM phases
	4.1 Non-secure firmware and TCB-critical data
	4.2 DCE preamble
	4.3 Dynamic launch event
	4.4 Firmware-backed D-CRTM requirements
	4.5 DCE requirements
	4.6 DLME
	4.6.1 DLME initial state
	4.6.2 DLME operation

	4.7 Error handling and remediation
	4.8 TPM measurements
	4.8.1 TPM measurement requirements
	4.8.2 PCR schemas
	4.8.3 Default PCR schema

	5 System requirements
	5.1 Processing elements
	5.2 Multiple sockets
	5.3 SMMU and DMA capable devices
	5.4 Non-host platforms
	5.4.1 GIC
	5.4.2 Hardware trace

	5.5 Security lifecycle
	5.6 TPM
	5.6.1 TPM requirements
	5.6.2 Closing localities

	5.7 ACPI
	5.8 DMA protection
	5.9 Platform
	5.10 Firmware
	5.11 Dynamic launch errors
	5.12 SMCCC and PSCI requirements
	5.13 Secure services

	6 Hardware-backed implementation
	6.1 Hardware-backed overview
	6.2 Hardware-backed D-CRTM requirements
	6.3 Hardware-backed DCE requirements
	6.4 Hardware-backed system requirements
	6.4.1 TPM
	6.4.2 Coprocessor
	6.4.3 DMA protection

	6.5 Hardware-backed DRTM function requirements
	6.5.1 DRTM_DYNAMIC_LAUNCH

