
MTE User Guide for Android OS
Version 1.0

Non-Confidential
Copyright © 2023 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
108035_0100_01_en

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

MTE User Guide for Android OS

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 25 May 2023 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 34

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 34

mailto:terms@arm.com

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Contents

Contents

1. Introduction to the Memory Tagging Extension... 7

2. Memory safety bugs.. 8
2.1 Common memory safety bugs..10

3. How does MTE work?.. 12
3.1 Example: buffer overflow... 14
3.2 Example: use-after-free...15
3.3 MTE modes..15
3.4 When to use SYNC and ASYNC MTE modes.. 16

4. Enabling MTE in Android projects... 18
4.1 Enabling MTE using the Android build system... 18
4.2 Enabling MTE using system properties...19
4.3 Enabling MTE using an environment variable... 20
4.4 Enabling MTE for applications in the Android manifest..20

5. MTE bug reports.. 22
5.1 Capture a bug report using Developer Options on your Android device..22
5.2 Capture a bug report using adb on your development machine.. 24
5.3 Interpreting the bug report..24
5.4 Tombstones.. 26

6. Debugging with Android Studio and MTE...28

7. Integrating MTE with memory management systems.. 30
7.1 Adding memory tagging to existing memory management code..30
7.1.1 The MTE utility implementation..30
7.1.2 The MTE allocator wrapper class... 31
7.2 Functional tests...31
7.3 Performance tests...32
7.4 Considerations and tips when implementing MTE...32
7.4.1 Overallocating vs untagged allocations... 32
7.4.2 MTE should be considered a complement, not a replacement of existing tools........................ 32

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Contents

7.4.3 Use ST2G when possible..33
7.4.4 Understand PROT_MTE.. 33
7.5 Alternative approaches for MTE implementation...33
7.5.1 Memory manager implementation, high-level..33
7.5.2 Per allocator type implementation, low-level...33

8. Related information... 34

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Introduction to the Memory Tagging Extension

1. Introduction to the Memory Tagging
Extension

Arm introduced the Memory Tagging Extension (MTE) as part of the Armv8.5 architecture. MTE is
a significant enhancement to the Arm architecture. It improves the security of connected devices
by detecting and mitigating memory-related vulnerabilities.

This guide introduces MTE. It shows developers how to use MTE to increase the robustness and
security of their software.

This guide includes the following information:

• Memory safety bugs explains why MTE is needed to detect memory bugs.

• How does MTE work? describes how MTE protects against memory bugs.

• Enabling MTE in Android projects shows different ways of enabling MTE in your Android
project.

• MTE bug reports explains how to obtain and navigate the bug report provided by MTE after a
memory bug is detected.

• Debugging with Android Studio and MTE describes how to use Android Studio to debug code
and locate memory bugs.

• Integrating MTE with memory management systems provides information for users who are
implementing their own memory allocators.

Google are running an MTE beta device signup program. You can register your interest at the
following link:

• MTE beta device signup

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 34

https://docs.google.com/forms/d/e/1FAIpQLSfUfmNOpRevVxhL8I1csY9oyrvk6BmIf8oNWyavOvcx52LIgQ/viewform

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Memory safety bugs

2. Memory safety bugs
Memory safety bugs are errors in handling memory by software. Memory safety bugs can occur in
the following situations:

• Software accesses memory beyond its allocated size and memory addresses. This is called a
spatial memory safety bug.

• Software accesses a memory location outside of the expected lifetime of the data, for example
after memory has been freed and reallocated. This is called a temporal memory safety bug.

Google’s Memory Safety Report states that memory safety bugs in native code continue to be a
major source of end-user crashes, a negative contributor to quality and stability, and the biggest
source of security vulnerabilities.

Memory safety bugs are the most common issue in the Android codebases. They account for over
70% of high severity security vulnerabilities and for millions of user-visible crashes.

Native code written in memory-unsafe languages like C, C++, and assembly, represents over 70%
of the Android platform code and is present in approximately 50% of Play Store applications.

Memory bugs have a negative impact on quality and stability. They account for a significant share
of the crashes observed on end-user devices. Therefore, a high density of memory safety bugs
results in a poor user experience.

Memory safety bugs are consistently the top contributor to Android security vulnerabilities. The
Google Project Zero team share their zero-day exploit tracking spreadsheet. This spreadsheet
shows that memory corruption issues comprise the majority of bugs used as security vulnerabilities
for attacks. The following diagram shows that memory safety bugs are the top contributor to
Android security vulnerabilities, as reported in Android Documentation: Memory Safety:

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 34

https://source.android.com/docs/security/test/memory-safety
https://googleprojectzero.blogspot.com/p/0day.html
https://docs.google.com/spreadsheets/d/1lkNJ0uQwbeC1ZTRrxdtuPLCIl7mlUreoKfSIgajnSyY/view#gid=0
https://source.android.com/docs/security/test/memory-safety

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Memory safety bugs

Figure 2-1: Memory safety bugs contribution to Android vulnerabilities

51.0%

34.8%

4.1%
10.1%

DoS OtherPermissions bypassMemory bugs

Keeping devices up-to-date with security fixes costs the Android ecosystem millions of dollars
annually. The high density of memory safety bugs in low-level vendor code significantly increases
both fix and test costs. However, detecting these bugs early during the development cycle can
lower these costs. Research shows that detecting bugs earlier can reduce costs by up to 6 times.

Unfortunately, it is often very difficult to detect and fix memory safety bugs. Code must first
trigger the error before the memory bug can be detected. Memory bugs are often intermittent
and difficult to reproduce, so testing and fixing these errors is often a costly and time-consuming
process.

From Android 12, Google is introducing systemic changes to reduce memory safety bugs in
Android codebases. As part of this effort Google is committed to the following:

• Extending the Android memory safety tools

• Introducing new requirements that encourage the Android ecosystem to address memory
safety bugs

As part of these new requirements, the Android Compatibility Definition Document (CDD) strongly
recommends the use of memory safety tools during development, integrated with Continuous
Integration (CI) and testing processes.

Existing memory safety tools include the following:

• AddressSanitizer (ASan)

• HWAddress Sanitizer (HWASan)

• Kernel Address Sanitizer (KASan)

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 34

https://www.researchgate.net/figure/IBM-System-Science-Institute-Relative-Cost-of-Fixing-Defects_fig1_255965523
https://source.android.com/compatibility/android-cdd
https://github.com/google/sanitizers/wiki/AddressSanitizer
https://developer.android.com/ndk/guides/hwasan
https://www.kernel.org/doc/html/v4.13/dev-tools/kasan.html

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Memory safety bugs

These tools insert compiler instrumentation for each memory operation to help detect a wide
range of memory safety bugs. However, this adds significant overheads to performance, code size,
and memory usage.

MTE provides developers with an effective and easy-to-use tool that detects memory bugs, with a
low impact on both performance and memory footprint.

2.1 Common memory safety bugs
Memory safety issues fall into two categories: spatial and temporal.

Spatial safety includes buffer-overflow vulnerabilities. A buffer overflow, or buffer overrun, occurs
when more data is put into a fixed-length buffer than the buffer can handle, causing data to
overflow into adjacent storage. We see this type of issue in applications written in languages that
allow pointer manipulation, such as C and C++. The programmer must ensure that pointers stay
within the bounds of allocated objects.

The following example demonstrates a buffer overflow bug:

extern "C"
JNIEXPORT void JNICALL
Java_com_example_mte_1test_MainActivity_heapOutOfBoundsC(JNIEnv *env, jobject thiz)
 {
 char * volatile p = new char[16];
 p[16] = 42; // Trying to access a non-allocated array element.
 delete[] p;
 p[0] = 42; // Use-after-free error
}

Temporal memory safety issues are related to memory locations containing different data at
different times during program execution. When the application frees memory and then reallocates
it, the application can not assume that the original data is still in memory. A common situation is
when the program does the following:

1. Creates a pointer to some memory.

2. Frees the memory but retains the original pointer. This is called a dangling pointer.

3. Attempts to use the dangling pointer to access data.

This situation is called a use-after-free (UAF) bug. This causes undefined behavior. Also, there is a
risk of leaking information or for an attacker to take control of the application.

MTE detects the most common causes of memory bugs:

• Use-after-free

• Buffer overflow

• Double free

According to a Google security blog post, most Android vulnerabilities are caused by UAF and out-
of-bounds (OOB) reads and writes, as the following diagram shows:

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 34

https://security.googleblog.com/2019/05/queue-hardening-enhancements.html

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Memory safety bugs

Figure 2-2: Memory vulnerabilities by cause

OOB Write
OOB Read
UAF
Int Overflow
Other
Incorrect Crypto
Uninitialized

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

How does MTE work?

3. How does MTE work?
Arm developed MTE in collaboration with Google to detect memory safety bugs both in existing
codebases and in new code as it is written. MTE increases the memory safety of the large existing
ecosystem of code written in memory-unsafe languages such as C and C++.

MTE helps you find the following:

• Potential vulnerabilities before deployment, by increasing the effectiveness of testing and
fuzzing

• Vulnerabilities at scale after deployment

In Android 12 the kernel and user-space heap memory allocator can augment each allocation
with metadata. This metadata enables MTE to detect UAF and heap bugs. These are the most
common source of memory safety bugs in Android codebases. This usage model, called heap
tagging, means that only codepaths which need to allocate or free memory need to know about
MTE. Heap tagging can therefore be deployed in a backwards compatible way, with no source code
modifications required for most applications.

MTE also provides a usage model called stack tagging, where memory allocated on a
run-time stack is also tagged. This is a more invasive technique, however. It requires
re-compilation, and is not backwards compatible with older devices.

MTE uses an underlying lock and key model to access memory. At runtime, when memory is
allocated or freed, that region of memory is assigned a 4-bit memory tag, or lock, as part of the
memory address. Memory accesses using pointers to that address must use the same tag, or key, as
part of the requested address:

• If the lock and key match, then memory access is granted.

• If the lock and key do not match, then a memory access violation has occurred. A mismatch
between the lock tag in memory and the key tag in the address results in a tag check fault, and
an error is raised.

The following diagram shows how MTE works for several example memory accesses:

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 34

https://security.googleblog.com/2019/08/adopting-arm-memory-tagging-extension.html

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

How does MTE work?

Figure 3-1: MTE lock and key model

7

7

7

4

4

4

4

4

4

4

4

6

6

6

6

6

Memory Tag
(Lock)

Address Tag
(Key)

0x07...9010

0x9000

0x8000

0x04...8028

0x03...8028

0x06...8010

X

X

The memory accesses shown in this diagram proceed as follows:

• 0x07…9010

The key 0x07 matches the lock 0x07. Memory access succeeds.

• 0x04…8028

The key 0x04 matches the lock 0x04. Memory access succeeds.

• 0x03…8028

The key 0x03 does not match the lock 0x04. Tag check fault.

• 0x06…8010

The key 0x06 does not match the lock 0x04. Tag check fault.

The tag check mechanism means that infrequent, transient, or hard-to-test memory safety errors
are detected easily. You can configure tag check faults either to cause a synchronous exception, or
to be asynchronously reported.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

How does MTE work?

MTE causes some performance overhead, because tags must be fetched from and stored to
the memory system. This overhead is related to the size and lifetime of memory allocations and
whether tags and data are manipulated together or separately.

There are several ways that you can minimize this overhead:

• Write tags and initialize memory concurrently when implementing allocators.

• Avoid over-allocating address space that never has data written to it.

• Avoid excessive de-allocation and re-allocation.

• Avoid large fixed-size allocations on the stack.

For more information about minimizing the MTE overhead, see the Armv8.5-A Memory Tagging
Extension White Paper.

3.1 Example: buffer overflow
The following example shows how MTE detects a buffer overflow bug:

Figure 3-2: MTE detecting a buffer overflow bug

Tag: 7 Tag: 2 Tag: 4

char *ptr = new char[16]; // memory tagged with ID 2

ptr[17] = 1 // tag mismatch -> buffer overflow

X

The process is as follows:

1. Creating the new array pointer ptr allocates a region of memory for that array. This memory is
tagged with the ID 2, while the memory regions either side are tagged 7 and 4.

2. When a memory is accessed using the array pointer ptr, the pointer includes the tag associated
with that memory region: 2.

3. MTE checks that the tag used in the memory access matches the tag for the memory region.

In this example, the memory access overflows, attempting to access the 17th element in a 16-
element array. A memory access with tag 2 is attempting to access a region of memory with tag
4, which does not match.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 34

https://developer.arm.com/documentation/102925
https://developer.arm.com/documentation/102925

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

How does MTE work?

3.2 Example: use-after-free
The following example shows how MTE detects a use-after-free bug:

Figure 3-3: MTE detecting a use-after-free bug

Tag: 7 Tag: 1 Tag: 4

Tag: 7 Tag: 2 Tag: 4

char *ptr = new char[16]; // memory tagged with ID 2

delete [] ptr; // memory re-tagged on free with ID 1

ptr[10] = 1 // tag mismatch -> use-after-free
X

The process is as follows:

1. Creating the new array pointer ptr allocates a region of memory for that array. This memory is
tagged with the ID 2, while the memory regions either side are tagged 7 and 4.

2. On deleting the array pointer ptr, that region of memory is freed and re-tagged with ID 1.

3. When a memory access is made using the array pointer ptr, the pointer includes the tag
associated with the deleted pointer: 2.

4. MTE checks that the tag used in the memory access matches the tag for the memory region.

In this example, the memory access occurs after it has been freed. A memory access with tag 2
is attempting to access a region of memory with tag 1, which does not match.

3.3 MTE modes
You can use MTE in the following modes:

• Synchronous mode (SYNC)

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

How does MTE work?

In synchronous mode, a mismatch between the tag in the address and the tag in memory
causes a synchronous exception. This identifies the precise instruction and address that caused
the failure, at the cost of a slight performance impact.

SYNC mode prioritizes accuracy of bug detection over performance. It is most useful during
development, or as part of a continuous integration system. In these situations, the precise bug
detection capability is more important than the performance overhead.

• Asynchronous mode (ASYNC)

In asynchronous mode, when a tag mismatch occurs the processor continues execution until
the next kernel entry, such as a syscall or timer interrupt. At this point, it terminates the process
with SIGSEGV using code SEGV_MTEAERR. The processor does not record the faulting
address or memory access. ASYNC mode has a smaller impact on performance than SYNC
mode.

ASYNC mode is optimized for performance over accuracy of bug reports. The information
about where the bug occurred is less precise than SYNC mode. ASYNC mode provides a low-
overhead detection mechanism for memory safety bugs, and is useful for production systems
when performance is more important than detailed bug information.

• Asymmetric mode (ASYMM)

Newer devices support a mode called asymmetric (ASYMM) that combines the benefits of
SYNC and ASYNC modes. In asymmetric mode, read memory accesses are processed as
SYNC, while write memory accesses are processed as ASYNC. The performance of asymmetric
mode is typically very close to that of ASYNC mode. To identify whether your device supports
ASYMM mode, look for the presence of the string mte mte3 in /proc/cpuinfo.

Android OS does not give programmers a choice for using ASYMM mode. On compatible
devices, ASYNC mode is redefined to ASYMM. The implication for programmers is that ASYNC
mode may generate synchronous faults, that is SIGSEGV with code SEGV_MTESERR, instead
of asynchronous faults.

The main difference between modes is the impact on performance and the accuracy of the error
detection. Choosing between modes is a compromise between performance and information.

3.4 When to use SYNC and ASYNC MTE modes
If you use MTE only during development and testing, you might not cover all possible usage
scenarios. This means that some bugs may not be discovered. Therefore you should consider using
ASYNC mode in production for most critical processes.

The performance overhead of the ASYNC mode, when evaluated across tested workloads
and benchmarks, is in the region of 1-2 percent. This means that ASYNC mode is generally
acceptable even on production systems. ASYNC mode is recommended in production on well-
tested codebases where the density of memory safety bugs is known to be low. ASYNC mode also
defends against previously unknown, rarely occurring bugs and 0-day exploits.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

How does MTE work?

SYNC mode is recommended during development and testing, to help identify and fix memory
bugs. SYNC mode can also be useful in production systems when the target process represents
a vulnerable attack surface. For example, in critical system processes where security takes
precedence over runtime performance.

Also, systems can run in ASYNC mode until a bug is detected, then use runtime APIs to switch
execution to SYNC mode and obtain an accurate bug report. See MTE bug reports for more
information.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Enabling MTE in Android projects

4. Enabling MTE in Android projects
MTE is disabled by default. There are several different ways you can enable MTE for system
processes and applications. Enabling MTE is a process-wide property: enabling MTE applies to all
native heap allocations in a process.

4.1 Enabling MTE using the Android build system
As a process-wide property, MTE is controlled by the build-time setting of the main executable.
The following options change this setting for individual executables, or for entire subdirectories in
the source tree. The setting is ignored for libraries, and any target that is neither executable nor a
test.

1. To enable MTE in the Android blueprint file Android.bp for a particular project, use the
following settings.

To enable ASYNC mode:

sanitize: {
 memtag_heap: true,
}

To enable SYNC mode:

sanitize: {
 memtag_heap: true,
 diag: {
 memtag_heap: true,
 },
}

To enable MTE in the Android.mk file for a particular project:

MTE mode Setting

ASYNC LOCAL_SANITIZE := memtag_heap

SYNC LOCAL_SANITIZE := memtag_heap

LOCAL_SANITIZE_DIAG := memtag_heap

2. To enable MTE on a subdirectory in the source tree, use the following settings.

To enable MTE on a subdirectory in the source tree using the PRODUCT_MEMTAG_*
variables:

MTE mode Setting

ASYNC PRODUCT_MEMTAG_HEAP_ASYNC_INCLUDE_PATHS

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Enabling MTE in Android projects

MTE mode Setting

SYNC PRODUCT_MEMTAG_HEAP_SYNC_INCLUDE_PATHS

To enable MTE on a subdirectory in the source tree using the MEMTAG_HEAP_* variables:

MTE mode Setting

ASYNC MEMTAG_HEAP_ASYNC_INCLUDE_PATHS

SYNC MEMTAG_HEAP_SYNC_INCLUDE_PATHS

To enable MTE on a subdirectory in the source tree by specifying the exclude path of an
executable:

MTE mode Setting

ASYNC PRODUCT_MEMTAG_HEAP_EXCLUDE_PATHS

or

MEMTAG_HEAP_EXCLUDE_PATHS

SYNC PRODUCT_MEMTAG_HEAP_EXCLUDE_PATHS

or

MEMTAG_HEAP_EXCLUDE_PATHS

4.2 Enabling MTE using system properties
To override the build settings listed in Enabling MTE using the Android build system, set the
following system property:

arm64.memtag.process.<basename> = (off|sync|async)

Where basename stands for the base name of the executable.

For example, if your executable is /system/bin/myapp or /data/local/tmp/myapp, use
arm64.memtag.process.myapp.

This property is only read once, at process startup. Arm recommends using
this mechanism for rapid prototyping and experimentation with different MTE
modes. This property does not apply to Java applications. The MTE setting for
Java applications is based on the AndroidManifest.xml configuration. For Java
applications, see Enabling MTE for applications in the Android manifest. This
describes how to use the compatibility framework compat feature to change settings
using either the developer options or ADB commands.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Enabling MTE in Android projects

4.3 Enabling MTE using an environment variable
You can specify the MTE mode by defining the following environment variable:

MEMTAG_OPTIONS=(off|sync|async)

If both the MEMTAG_OPTIONS environment variable and the arm64.memtag.process.<basename>
system property are defined, the environment variable takes precedence.

Using the MEMTAG_OPTIONS environment variable to specify the MTE mode is only
supported for command-line applications.

4.4 Enabling MTE for applications in the Android manifest
To configure an application to use MTE, set the android:memtagMode attribute under the
<application> or <process> tag in the AndroidManifest.xml. If the android:memtagMode attribute
is not specified, then MTE is disabled.

android:memtagMode=(off|default|sync|async)

For example:

 <application
 android:allowBackup="true"
 android:dataExtractionRules="@xml/data_extraction_rules"
 android:fullBackupContent="@xml/backup_rules"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/Theme.MTE_test"
 tools:targetApi="31"
 android:memtagMode="sync"
 tools:ignore="MissingPrefix">
 </application>

When set on the <application> tag, the attribute affects all processes used by the application. The
attribute can be overridden for individual processes by setting the <process> tag.

For experimentation, compatibility changes can be used to set the default value of the
memtagMode attribute for applications that do not specify a value in the manifest, or specify
default. These compatibility changes are available in the global setting menu under System >
Advanced > Developer options > App Compatibility Changes. Setting NATIVE_MEMTAG_ASYNC or

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Enabling MTE in Android projects

NATIVE_MEMTAG_SYNC enables MTE for a particular application. Alternatively, you can use the am
compat command as follows:

$ adb shell am compat enable NATIVE_MEMTAG_[A]SYNC my.app.name

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

MTE bug reports

5. MTE bug reports
When MTE detects a memory bug, the application exits. After the application exits, you can access
a bug report. This bug report contains device logs, stack traces, and other diagnostic information to
help you find and fix memory bugs in your application.

You can access the bug report in the following ways:

• Using Developer Options on your Android device.

• Using Android Debug Bridge, adb, on your development machine.

5.1 Capture a bug report using Developer Options on your
Android device

To capture a bug report directly from your Android device, do the following:

1. Enable Developer Options on your Android device. For more information about how to do this,
see Android OS Documentation: Configure on-device developer options.

2. In Developer options, tap Take bug report.

3. Select the type of bug report you want and tap Report.

4. After a short period of time, a notification appears informing you that the bug report is ready.

5. To share the bug report, tap the notification.

The following image shows screen captures of this process taken from a device running an MTE-
enabled version of Android. The exact sequence of actions of this process varies depending on
your device.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 34

https://developer.android.com/studio/debug/dev-options

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

MTE bug reports

Figure 5-1: Accessing the bug report on a device

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

MTE bug reports

5.2 Capture a bug report using adb on your development
machine

To capture a bug report using Android Debug Bridge, adb, on your development machine, do the
following:

1. Run the following adb command from the console:

adb bugreport

The bug report is saved in the console prompt path as a zip file with a file name containing the
build ID and date, for example:

bugreport-PD2183-TP1A.220624.014-2023-03-09-11-48-36.zip

2. Unzip the bug report zip file.

The zip file contains several files. The bug report is the text file with the same name as the
folder:

bugreport-BUILD_ID-DATE.txt

5.3 Interpreting the bug report
The bug report contains diagnostic output for system services (dumpsys), error logs (dumpstate), and
system message logs (logcat). The system messages include stack traces when the device throws
an error and messages written from all applications with the Log class.

When running in SYNC mode, the Android allocator records stack traces for all allocations and
deallocations and uses them to produce the bug report.

The bug report includes an explanation of each memory error, such as use-after-free, or buffer-
overflow, and the stack traces of the relevant memory events. These reports provide more
contextual information and make bugs easier to trace and fix. On encountering a tag mismatch,
the processor aborts execution immediately and terminates the process with SIGSEGV, using code
SEGV_MTESERR, logging full information about the memory access and the faulting address. In
addition, the crash report shows the process ID, the thread ID, and the cause of the crash.

To find this information in the bug report, search for the text SEGV_MTESERR. This search takes you
to the initial block of the segmentation fault that describes the content of the CPU registers x0-x29
at the moment the SIGSEGV was received.

The following is an example of the information you can find in the bug report:

Softversion: PD2183C_A_13.1.6.4.W10.V000L1
Time: 2023-03-09 13:56:30

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

MTE bug reports

*** *** *** *** *** *** *** *** *** *** *** *** *** *** *** ***
Build fingerprint: 'vivo/PD2183/PD2183:13/TP1A.220624.014/compiler03081056:user/
release-keys'
Revision: '0'
ABI: 'arm64'
Timestamp: 2023-03-09 13:56:30.251141624+0000
Process uptime: 6s
Cmdline: com.example.mte_test
pid: 9477, tid: 9477, name: xample.mte_test >>> com.example.mte_test <<<
uid: 10237
tagged_addr_ctrl: 000000000007fff3 (PR_TAGGED_ADDR_ENABLE, PR_MTE_TCF_SYNC,
 mask 0xfffe)
pac_enabled_keys: 000000000000000f (PR_PAC_APIAKEY, PR_PAC_APIBKEY, PR_PAC_APDAKEY,
 PR_PAC_APDBKEY)
signal 11 (SIGSEGV), code 9 (SEGV_MTESERR), fault addr 0x08000072b1c2a500
x0 08000072b1c2a4f0 x1 0000007ff60668b0 x2 fffffffffffffff0 x3
 0000007ff6066ac0
x4 0000007ff6066b30 x5 0000000000000004 x6 0000000000000000 x7
 000000729a5e9c02
x8 08000072b1c2a4f0 x9 000000000000002a x10 0000000000010000 x11
 0000000000000001
x12 00000000b1c2a500 x13 00000075d317c518 x14 ffffffffffffffff x15
 00000000ebad6a89
x16 00000075d2f13dc0 x17 00000075d2e9cc60 x18 00000075d79a4000 x19
 0200007411a05380
x20 0000000000000000 x21 0000000000000000 x22 0000007285f7c322 x23
 000000000000106e
x24 000000729f800880 x25 0000007ff6066dd0 x26 0000000010380011 x27
 0000000000000004
x28 0000007ff6066cd0 x29 0000007ff6066cb0
lr 000000728644f428 sp 0000007ff6066c80 pc 000000728644f434 pst
 0000000060001000

In this example, we see the following line:

signal 11 (SIGSEGV), code 9 (SEGV_MTESERR), fault addr 0x08000072b1c2a500

This tells us that a SIGABRT signal was received, with code SEGV_MTESERR, caused by an access
to memory address 0x08000072b1c2a500.

Following this block, we see a backtrace that shows where in the code we were at the time of
crash, for example:

backtrace:
#00 pc 000000000000d384 /data/app/~~8QwzBMNBT6U1-xi0qH9OdQ==/com.example.mte_test-
AE8qJx9ASOlRNa8HmD3iJA==/lib/arm64/libmte_test.so
#01 pc 000000000021a354 /apex/com.android.art/lib64/libart.so
 (art_quick_generic_jni_trampoline+148) (BuildId: 2d8a73ff5c99d5a227b31111c86db3e6)
#02 pc 000000000020a2b0 /apex/com.android.art/lib64/libart.so (nterp_helper+4016)
 (BuildId: 2d8a73ff5c99d5a227b31111c86db3e6)
#03 pc 00000000006fa40a /data/app/~~8QwzBMNBT6U1-xi0qH9OdQ==/com.example.mte_test-
AE8qJx9ASOlRNa8HmD3iJA==/oat/arm64/base.vdex
And after a number of lines, we see a message pointing directly to the cause of the
 crash: use-after-free and the lines produced by the unwinder.
Note: multiple potential causes for this crash were detected, listing them in
 decreasing order of likelihood.
Cause: [MTE]: Use After Free, 42 bytes into a 128-byte allocation at 0x782d277bf0
deallocated by thread 10124:
 #00 pc 00000000000493a8 /apex/com.android.runtime/lib64/bionic/libc.so
 (scudo::Allocator<scudo::AndroidConfig,
 #01 pc 00000000000442b4 /apex/com.android.runtime/
lib64/bionic/libc.so (scudo::Allocator<scudo::AndroidConfig,
 &(scudo_malloc_postinit)>::deallocate(void*,

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

MTE bug reports

 #02 pc 000000000000d340 /data/app/~~8QwzBMNBT6U1-xi0qH9OdQ==/
com.example.mte_test-AE8qJx9ASOlRNa8HmD3iJA==/lib/arm64/libmte_test.so
 #03 pc 000000000021a354 /apex/com.android.art/lib64/libart.so
 (art_quick_generic_jni_trampoline+148) (BuildId: 2d8a73ff5c99d5a227b31111c86db3e6)

The backtrace provides information in columns, as follows:

1. Frame number.

2. PC value. PC values are relative to the location of the shared library rather than absolute
addresses.

3. Name of the mapped region. This is usually a shared library or executable, but might also be
JIT-compiled code

4. If symbols are available, the unwinder shows the symbol that the PC value corresponds to,
along with the offset into that symbol in bytes.

Several lines later, there is a message that describes the cause of the crash, Use After Free, and
shows the output from the unwinder:

Note: multiple potential causes for this crash were detected, listing them in
 decreasing order of likelihood.
Cause: [MTE]: Use After Free, 42 bytes into a 128-byte allocation at 0x782d277bf0
deallocated by thread 10124:
 #00 pc 00000000000493a8 /apex/com.android.runtime/lib64/bionic/libc.so
 (scudo::Allocator<scudo::AndroidConfig,
 #01 pc 00000000000442b4 /apex/com.android.runtime/
lib64/bionic/libc.so (scudo::Allocator<scudo::AndroidConfig,
 &(scudo_malloc_postinit)>::deallocate(void*,
 #02 pc 000000000000d340 /data/app/~~8QwzBMNBT6U1-xi0qH9OdQ==/
com.example.mte_test-AE8qJx9ASOlRNa8HmD3iJA==/lib/arm64/libmte_test.so
 #03 pc 000000000021a354 /apex/com.android.art/lib64/libart.so
 (art_quick_generic_jni_trampoline+148) (BuildId: 2d8a73ff5c99d5a227b31111c86db3e6)

For more information about how to interpret bug reports, see the following Android documentation
resources:

• Android OS Documentation: Diagnosing Native Crashes

• Android OS Documentation: Debugging Native Android Platform Code

5.4 Tombstones
When your application crashes, a basic crash dump is written to the Logcat window in Android
Studio. More detailed information is written to a tombstone file, located in the /data/tombstones/
directory. This tombstone file contains detailed data about the crashed process, including the
following:

• Stack traces for all the threads in the crashed process, including the thread that caught the
signal

• A full memory map

• A list of all open file descriptors

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 34

https://source.android.com/docs/core/tests/debug/native-crash
https://source.android.com/docs/core/tests/debug

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

MTE bug reports

At the crash event, the Logcat window in Android Studio shows information about the location of
the tombstone file. For example:

Tombstone written to: /data/tombstones/tombstone_07

To retrieve the tombstone file, use adb bugreport to capture the bug report as described in
Capture a bug report using Developer Options on your Android device. After unzipping the bug
report file, the tombstone files are in the folder /FS/data/tombstones/.

For more information about tombstone files, see Android OS Documentation: Crash dumps and
tombstones.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 34

https://source.android.com/docs/core/tests/debug#debuggerd
https://source.android.com/docs/core/tests/debug#debuggerd

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Debugging with Android Studio and MTE

6. Debugging with Android Studio and MTE
Android Studio lets you debug with MTE enabled to detect memory bugs in your applications.
When MTE detects a memory bug and exits the application, Android Studio signals the exact line
of code responsible for the error.

To use Android Studio with MTE enabled, do the following:

1. Enable MTE for your Android project. See Enabling MTE in Android projects for information
about the various ways you can do this.

2. Enable Developer Options on your Android device. For more information about how to do this,
see Android OS Documentation: Configure on-device developer options.

3. Enable either USB debugging or wireless debugging, depending how you connect your device
to Android Studio. See Android OS Documentation: Enable USB debugging on your device or
Android OS Documentation: Connect to a device over Wi-Fi for more information.

4. Connect your device and wait until the toolbar shows the device.

5. Click the Debug button to launch your application.

When the application encounters a memory bug, MTE causes the application to exit. Android
Studio debugger indicates the line of code responsible for the memory violation, as the
following figure shows:

Figure 6-1: Memory bug detected by MTE in Android Studio debugger

To test this feature, you can write a simple piece of code that implements a memory bug and link
the code to a button. For example:

extern "C"
JNIEXPORT void JNICALL
Java_com_example_mte_1test_MainActivity_useAfterFreeC(JNIEnv *env, jobject thiz) {
 // TODO: implement useAfterFreeC()
 char * volatile p = new char[10];
 delete[] p;
 p[5] = 42; //Trying to access an array element that no longer exists!
}

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 34

https://developer.android.com/studio/debug/dev-options
https://developer.android.com/studio/debug/dev-options#Enable-debugging
https://developer.android.com/tools/adb#connect-to-a-device-over-wi-fi

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Debugging with Android Studio and MTE

When you click the button that executes this code, the application exits and the debugger stops at
the following line of code:

delete[] p;

For more information about debugging applications with Android Studio on MTE devices, watch
the Introduction to Memory Tagging Extension video.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 34

https://youtu.be/Ja9pmZ2NqKE

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Integrating MTE with memory management systems

7. Integrating MTE with memory
management systems

Unity has created its own memory management system to optimize memory usage and minimize
the impact of memory handling on performance. This section describes Unity’s experience in
implementing MTE into their memory allocators.

The Unity memory management system implements a centralized memory manager that is used for
all user-space allocations. The memory manager uses several underlying types of allocators, which
are selected by category when allocating memory. When created at run-time initialization, these
allocators define a low-level backing allocator. The low-level backing allocator is usually backed by
paged virtual memory, but can be of any type such as standard C library malloc calls.

7.1 Adding memory tagging to existing memory
management code

The approach used by Unity consists of two parts:

1. MTE utility implementation is a namespace of utility functions. A low-level utility
implementation that performs memory tagging and related functionality. This can be used
outside the scope of memory allocation, for example when a developer wants to check
particular pieces of code in specific scenarios.

2. MTE allocator wrapper is an allocator wrapper that is used by the memory manager as a top-
level allocator. It inherits existing underlying allocators and uses the MTE utility implementation
to perform memory tagging related code before and after the corresponding base method is
called. Therefore each allocator it inherits is unaware of the memory tagging and no allocator-
specific code is needed in the existing allocators.

7.1.1 The MTE utility implementation

The MTE utility implementation is a collection of namespaced static methods which perform the
following functions:

• System initialization

◦ Initial setup, called once at startup

• Tagged pointers

◦ Filtering with and without tagged bits

◦ Extracting tag ID from pointer, which is useful for retagging pointers

• Memory addresses

◦ Checking whether an input address is tagged or a real address

◦ Examining the tag granule

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Integrating MTE with memory management systems

• Tags

◦ Tagging and untagging memory

• Memory copying

◦ Copying data to and from tagged memory when alignment is off.

All the utility methods are low-level static functions that have no memory allocator awareness.

Each platform can conditionally include a specific implementation. If MTE is disabled, all functions
are no-ops except for memory copying, which falls back to a standard memory copy.

Developers can use the utility functions to temporarily perform tests where a specific area of
memory can be tagged and tested. However, the main purpose of the MTE utility implementation
is to serve the allocator wrapper, so that it does not have to be aware of the specific MTE
implementation.

7.1.2 The MTE allocator wrapper class

At run-time initialization of the memory manager, an allocator checks whether it is MTE-compliant.
It does this by checking that it is using virtual paged memory for backing.

If an MTE target build is enabled and is compliant, the allocator is wrapped using the allocator
wrapper class. This is the least intrusive implementation because, with a few minor exceptions, it
does not require modifications to either the high (manager) or low (allocator) code.

The wrapper also checks if a particular allocation meets the requirements of tagged memory. That
is, the allocation must be aligned and have the size granularity stated by the utility class.

When the size is not aligned, an exception occurs. However, the base allocator is
designed to over-allocate enough memory for the requirement to be met, so the
memory can be tagged.

7.2 Functional tests
The allocator wrapper is tested like any other allocator, but with extra tests for granularity
requirements. Functional testing is performed using a fake allocator fixture to return specific results,
and ensuring the allocator behaves as expected.

The utility implementation is very low-level and performs basic tests to ensure its implementation
is working as expected. Additionally, a test using a signal handler to trap SEGV_MTE*ERR errors is
implemented to ensure the system is active and working.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Integrating MTE with memory management systems

7.3 Performance tests
The utility implementation has performance tests which include the following:

• Tagging and untagging memory regions, both small 64 byte blocks and larger 4k blocks. This
checks that there is no particular overhead except the actual tagging loop. These test the STG
and ST2G instructions.

• Reading address information. This tests the LDG instruction.

• Reading and writing to tagged memory. The results are then compared to non-MTE builds on
the same device.

7.4 Considerations and tips when implementing MTE
This section contains advice for anyone implementing MTE.

7.4.1 Overallocating vs untagged allocations

As described in The MTE allocator wrapper class above, Unity does not tag allocations that do not
meet the MTE tagging requirements. This means that there are allocations that will not be tagged
if the base allocator allocates on a size granularity less than the MTE granularity. This, with the
exception of the base allocator itself, performs over allocation, and the MTE tagging size fits within
the actual allocated memory as opposed to the requested size.

Another way of dealing with this would be to increase the size to meet the granulation size
requirement. However, this changes the memory footprint and layout of the original code where
there is no tagging. There are both advantages and disadvantages with each solution. Unity decided
to, at least initially, use the first approach and keep as close to the original memory footprint and
layout as possible.

7.4.2 MTE should be considered a complement, not a replacement of
existing tools

As stated in the previous section, there are situations where MTE does not catch faults.

MTE might not tag a specific allocation due to size restrictions, or if the second approach is chosen,
the memory footprint and layout can mask the issue.

However, MTE is extremely powerful to start with. Its primary benefit is being able to stop at
the instruction where the actual fault happens, as opposed to post-verifying when deallocating
memory for example.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Integrating MTE with memory management systems

7.4.3 Use ST2G when possible

Over 2.5x performance was measured when using ST2G.

Even though ST2G has a granule of 32 bytes, it needs only to align to 16 bytes,
which makes it easier to use than first anticipated.

7.4.4 Understand PROT_MTE

Ensure that virtual pages are protected using PROT_MTE and that they stay protected in your system
as expected. See documentation on how this works with regards to mprotect/advice so that
you are aware of conditions when protection is disabled. This may seem obvious but there are
loopholes relating to, for example, madvice that are easy to miss.

7.5 Alternative approaches for MTE implementation
The following approaches were also considered when implementing MTE, but fell short compared
to the chosen approach.

7.5.1 Memory manager implementation, high-level

This approach initially seemed to be the bets option because it would be the least intrusive
approach code-wise to the existing system. Current allocators need not be aware of memory
tagging, the actual MTE code would take place before and after any calls to the current allocators.

However, it quickly became complicated because the memory manager itself is quite extensive in
functionality and there was not any optimal way of differentiating between system-tagged memory
and user-space memory. Although this approach would have been possible, we started to look at
other alternatives.

7.5.2 Per allocator type implementation, low-level

This approach is best for performance because each allocator handles memory differently, which is
their reason for existing. Examples of optimizations are:

• Partial tagging on reallocation

• Disregarding untagging on deallocation under certain circumstances

However, this is the most intrusive approach and each allocator has to implement MTE on most
methods. In many cases tests would need to be modified. There is also a major maintenance cost
associated with any new allocators requiring code changes.

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 34

MTE User Guide for Android OS Document ID: 108035_0100_01_en
Version 1.0

Related information

8. Related information
Here are some resources related to material in this guide:

• Delivering enhanced security through Memory Tagging Extension

• Memory Tagging Extension White Paper

• Android OS Documentation: Arm Memory Tagging Extension

• Android OS Documentation: Diagnosing Native Crashes

• Android OS Documentation: Debugging Native Android Platform Code

Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 34

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/enhanced-security-through-mte
https://developer.arm.com/documentation/102925/
https://source.android.com/docs/security/test/memory-safety/arm-mte
https://source.android.com/docs/core/tests/debug/native-crash
https://source.android.com/docs/core/tests/debug

	MTE User Guide for Android OS
	Contents
	1. Introduction to the Memory Tagging Extension
	2. Memory safety bugs
	2.1 Common memory safety bugs

	3. How does MTE work?
	3.1 Example: buffer overflow
	3.2 Example: use-after-free
	3.3 MTE modes
	3.4 When to use SYNC and ASYNC MTE modes

	4. Enabling MTE in Android projects
	4.1 Enabling MTE using the Android build system
	4.2 Enabling MTE using system properties
	4.3 Enabling MTE using an environment variable
	4.4 Enabling MTE for applications in the Android manifest

	5. MTE bug reports
	5.1 Capture a bug report using Developer Options on your Android device
	5.2 Capture a bug report using adb on your development machine
	5.3 Interpreting the bug report
	5.4 Tombstones

	6. Debugging with Android Studio and MTE
	7. Integrating MTE with memory management systems
	7.1 Adding memory tagging to existing memory management code
	7.1.1 The MTE utility implementation
	7.1.2 The MTE allocator wrapper class

	7.2 Functional tests
	7.3 Performance tests
	7.4 Considerations and tips when implementing MTE
	7.4.1 Overallocating vs untagged allocations
	7.4.2 MTE should be considered a complement, not a replacement of existing tools
	7.4.3 Use ST2G when possible
	7.4.4 Understand PROT_MTE

	7.5 Alternative approaches for MTE implementation
	7.5.1 Memory manager implementation, high-level
	7.5.2 Per allocator type implementation, low-level

	8. Related information

