
Iris Python Debug Scripting
Version 1.0

User Guide

Non-Confidential
Copyright © 2018–2023 Arm Limited (or its affiliates).
All rights reserved.

Issue 09
101421_0100_09_en

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Iris Python Debug Scripting
User Guide

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue Date Confidentiality Change

0100-00 23 November 2018 Non-Confidential New document.

0100-01 5 September 2019 Non-Confidential Update for v11.8.

0100-02 12 March 2020 Non-Confidential Update for v11.10.

0100-03 22 September 2020 Non-Confidential Update for v11.12.

0100-04 6 October 2021 Non-Confidential Update for v11.16.

0100-05 16 February 2022 Non-Confidential Update for v11.17.

0100-06 15 June 2022 Non-Confidential Update for v11.18.

0100-07 14 September 2022 Non-Confidential Update for v11.19.

0100-08 7 December 2022 Non-Confidential Update for v11.20.

0100-09 22 March 2023 Non-Confidential Update for v11.21.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 45

https://www.arm.com/company/policies/trademarks

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 45

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Contents

Contents

1. Introduction.. 8
1.1 Conventions..8
1.2 Other information... 9
1.3 Useful resources..9

2. Getting started.. 11
2.1 Setting up the environment...11
2.2 Connecting to and running a model..11

3. Migrating from fm.debug to iris.debug...13
3.1 Changes when connecting to a model... 13
3.2 Changes to methods defined in Model.py and in Target.py...13

4. Upgrading MxScripts to Python... 15
4.1 Major differences between MxScript and Python..15
4.2 Model connection and configuration...16
4.3 Execution control..17
4.4 Breakpoints...18
4.5 Model resource access..19

5. API reference...20
5.1 class NetworkModel.. 20
5.2 class NetworkModelInitializer.. 21
5.3 class NetworkModelFactory...21
5.3.1 CreateNetworkFromCommand().. 22
5.3.2 CreateNetworkFromIsim()..22
5.3.3 CreateNetworkFromLibrary().. 22
5.3.4 CreateNetworkToHost()..23
5.4 class Model.. 23
5.4.1 get_cpus().. 23
5.4.2 get_target().. 24
5.4.3 get_target_info()... 24
5.4.4 get_targets().. 24

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Contents

5.4.5 release()..24
5.4.6 reset()..24
5.4.7 restore_state()...25
5.4.8 run().. 25
5.4.9 save_state()... 26
5.4.10 step().. 26
5.4.11 stop().. 27
5.5 class Target...27
5.5.1 add_bpt_mem()...28
5.5.2 add_bpt_prog()..28
5.5.3 add_bpt_reg().. 29
5.5.4 add_event_callback()... 29
5.5.5 clear_bpts()..30
5.5.6 disassemble()...30
5.5.7 get_disass_modes()..30
5.5.8 get_event_info()..31
5.5.9 get_execution_state().. 31
5.5.10 get_hit_breakpoints().. 31
5.5.11 get_instruction_count().. 31
5.5.12 get_pc()..32
5.5.13 get_register_info()..32
5.5.14 get_steps()...32
5.5.15 get_table_info().. 33
5.5.16 handle_semihost_io().. 33
5.5.17 has_register().. 33
5.5.18 has_table()...33
5.5.19 load_application()...34
5.5.20 read_memory()... 34
5.5.21 read_all_registers()...35
5.5.22 read_register().. 35
5.5.23 read_table()... 36
5.5.24 remove_event_callback()..36
5.5.25 remove_bpt().. 37
5.5.26 restore_state().. 37
5.5.27 save_state()...37
5.5.28 set_execution_state()..37

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Contents

5.5.29 set_steps()... 38
5.5.30 supports_tables()... 38
5.5.31 write_memory()..38
5.5.32 write_register()... 39
5.5.33 write_table()..40
5.5.34 Target properties...40
5.6 class EventCallbackManager.. 41
5.6.1 add_callback()... 41
5.6.2 get_evSrcId()..42
5.6.3 get_info()..42
5.6.4 remove_callback_evSrcId()... 42
5.6.5 remove_callback_func().. 42
5.7 class Breakpoint.. 43
5.7.1 delete()... 43
5.7.2 disable()..43
5.7.3 enable().. 43
5.7.4 wait()...43
5.7.5 Breakpoint properties...44
5.8 Exceptions.. 45

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Introduction

1. Introduction
This book describes the iris.debug Python package.

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Convention Use

italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system
failure or damage.

Requirements for the system. Not following these requirements might result in
system failure or damage.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 45

https://developer.arm.com/glossary

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Introduction

Requirements for the system. Not following these requirements will result in system
failure or damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm® website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

1.3 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 45

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/support/arm-glossary
http://developer.arm.com/documentation

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Introduction

Arm® product resources Document ID Confidentiality

Iris User Guide 101196 Non-Confidential

Model Debugger for Fast Models User Guide 100968 Non-Confidential

MxScript v1.3 for Fast Models Reference Manual DUI 0840 Non-Confidential

Python Debug Scripting for Fast Models Reference Manual DUI 0851 Non-Confidential

Non-Arm® resources Document ID Organization

Python™ - Python Software Foundation

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 45

https://developer.arm.com/documentation/101196/latest
https://developer.arm.com/documentation/100968/1121
https://developer.arm.com/documentation/dui0840/latest
https://developer.arm.com/documentation/dui0851/latest
https://www.python.org
http://www.adobe.com

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Getting started

2. Getting started
This chapter describes setting up Iris Python Debug Scripting and using it to run a model.

2.1 Setting up the environment
You first need to set up your environment before using the iris.debug Python module.

iris.debug requires an existing installation of Python 3.*. Python is available from https://
www.python.org/getit.

To use iris.debug, you first need to tell the Python interpreter where to find it. Add the directory
that contains iris.debug to the PYTHONPATH environment variable. For example, on Linux:

• sh:
export PYTHONPATH=$IRIS_HOME/Python:$PYTHONPATH

• tcsh:
setenv PYTHONPATH $IRIS_HOME/Python:$PYTHONPATH

This step is done for you by the Fast Models setup scripts for Linux.

On Windows:

set PYTHONPATH=%IRIS_HOME%\Python;%PYTHONPATH%

Alternatively, add the directory that contains iris.debug to the Python path from within your script,
before importing the module, as follows:

import sys, os
sys.path.append(os.path.join(os.environ[’IRIS_HOME’], ’Python’))
import iris.debug

2.2 Connecting to and running a model
This example shows how to connect to a model, load an application onto it, and run the model.

You can connect to a model by creating a NetworkModel instance, passing the IP address or
hostname, and port number.

• iris.debug only supports ISIM executables. It does not support models that have
been built as shared libraries. This is a change in behavior from the fm.debug
module which iris.debug replaces.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 45

https://www.python.org/getit
https://www.python.org/getit

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Getting started

• If you are connecting to a Fast Model, specify --iris-connect when launching
the model, to start the Iris server. For more information, see FVP command-line
options.

The model is composed of multiple targets which represent the components in the system. A
Target object can be obtained by calling Model.get_target(name) on an instantiated model,
passing it the name of the target. A convenience method Model.get_cpus() is also provided, which
returns a list of Target objects for all targets for which componentType == 'Core', or that have the
executesSoftware flag set.

This example assumes that the model has started an Iris server locally, listening to port 7100:

import iris.debug
model = iris.debug.NetworkModel("localhost",7100)
cpu = model.get_cpus()[0]
cpu.load_application("/path/to/application.axf")
model.run()

The code creates two variables:

model

A Model object which represents the entire simulated system. It is composed of various
targets including cores and memories. The model object can be used to access these targets
and to start, stop, and step the model.

cpu

A Target object, in this case the first CPU in the model. It can be used to read and write the
memory and registers of the core and to set and clear breakpoints.

For documentation of the operations that can be performed on models and targets, see 5.4 class
Model on page 23 and 5.5 class Target on page 27.

Some example scripts that demonstrate how to use iris.debug are located in
$PVLIB_HOME/Iris/Python/examples/.

Related information
Iris examples

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 45

https://developer.arm.com/documentation/100966/1121/Getting-Started-with-Fixed-Virtual-Platforms/FVP-command-line-options
https://developer.arm.com/documentation/100966/1121/Getting-Started-with-Fixed-Virtual-Platforms/FVP-command-line-options
https://developer.arm.com/documentation/101196/0100/Iris-examples

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Migrating from fm.debug to iris.debug

3. Migrating from fm.debug to iris.debug
fm.debug is a Python client interface to Fast Models that is implemented using CADI. It is
deprecated in Fast Models 11.10 and later. To continue using a Python client with Fast Models, you
must use the Iris Python client, iris.debug instead.

This chapter describes how to migrate from fm.debug to iris.debug.

3.1 Changes when connecting to a model
If you previously used fm.debug with a model that was implemented as a shared library, iris.debug
no longer supports this type of model.

About this task
With iris.debug, you must use an ISIM executable instead and follow these steps:

Procedure
1. Run the ISIM with the additional option --iris-connect to start the Iris server. For more

information, see FVP command-line options.
2. Use the Python client to connect to the model through the network, as follows:

import iris.debug
model = iris.debug.NetworkModel('localhost',<port_number>)

3.2 Changes to methods defined in Model.py and in
Target.py

iris.debug is designed to work in the same way as fm.debug. However, there are differences in how
some methods are called in iris.debug compared to fm.debug.

All Model and Target class methods defined in fm.debug, apart from those listed
here, are available in iris.debug and are unchanged.

save_state() and restore_state()
These methods are defined in Model.py and in Target.py. In fm.debug, the input argument
checkpoint_dir could either be a checkpoint directory or a stream object. In iris.debug, this
argument can only be a checkpoint directory, which means that it must be a string and not a
stream object.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 45

https://developer.arm.com/documentation/100966/1121/Getting-Started-with-Fixed-Virtual-Platforms/FVP-command-line-options

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Migrating from fm.debug to iris.debug

reset()

In the fm.debug implementation, this method is called from a Target object. iris.debug
implements this method in the Model class, which means that you can call model.reset() but
can no longer call target.reset().

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Upgrading MxScripts to Python

4. Upgrading MxScripts to Python
This chapter describes the major differences between the MxScript language and Python, and gives
the iris.debug equivalents to various MxScript functions for interacting with a model.

Arm deprecates MxScript in favor of Python Debug Scripting.

4.1 Major differences between MxScript and Python
The main differences are as follows:

• Each Python script that uses iris.debug must have the following line near the top:

from iris.debug import *

• In MxScript, comment lines begin with //, whereas in Python they begin with #.

• In Python, indentation, not curly braces, is used to represent scope. Therefore, your indentation
must be correct and consistent, and curly braces must not be used to represent scope.

• In Python, statements are not required to be delimited with semicolons. Instead, a new line is
sufficient.

• In Python, flow control statements, for example if, for, and while, end with a colon, and
the block of code that they apply to is indented. If necessary, an empty block can be created
using the pass statement. To check for multiple conditions, only one of which is true, the elif
statement can be used. For example:

if foo < 5:
 bar = 3
elif foo >= 17:
 bar += 2
else:
 bar = 7

• In Python, for loops always iterate over a list. To create a list of integers, the range function is
used. For example:

>>> range(3)
[0, 1, 2]

The following two loops are equivalent. This loop is written in MxScript:

for (int i = 0; i < 3; i++) {
 // do nothing
}

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Upgrading MxScripts to Python

This one is written in Python:

for i in range(3):
 pass

• while loops behave similarly to their MxScript equivalents. However, they use the Python
syntax rule of ending a flow control statement with a colon, and use indentation to represent
scope. For example:

while i > 1:
 i /= 2

• Python does not have an equivalent to the MxScript do … while loop.

• In Python, the logical operators and, or, and not are used instead of &&, ||, and !.

• In Python, variables are not explicitly typed, so the following examples are equivalent. This code
is written in MxScript:

int a = 5;
string b = "hello";

This is written in Python:

a = 5
b = "hello"

• Unlike MxScript, Python does not have a preprocessor. Instead, the import statement can be
used to access code from another file. This statement has the following forms:
import iris.debug

Loads the iris.debug module, and adds iris.debug to the current namespace.
from iris.debug import NetworkModel

Loads the iris.debug module and adds NetworkModel to the current namespace, without
making iris.debug or any of its other contents available.

from iris.debug import *

Adds the entire contents of the iris.debug module to the current namespace.

4.2 Model connection and configuration
MxScript has the concept of the current model, and the current target in that model. All functions
operate on the current model or target, and the selectTarget() function switches between
multiple targets.

In contrast, iris.debug uses an object-oriented design, in which objects represent models and
targets. These objects provide methods to interact with them. This design makes it much more
practical to work with multiple targets or models. An example of where this design is useful is
debugging a multi-processor system, where it is necessary to interact with multiple CPU targets.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Upgrading MxScripts to Python

The following table shows the MxScript functions that connect to and configure models, and their
iris.debug equivalent:

Table 4-1: Model connection and configuration functions

MxScript function iris.debug equivalent

connectToModel(port) model = NetworkModel(host, port)
Note:
This function does not select the target.

closeModel() model.release()

debugIsim(isim) Not implemented

debugSystemC(simulation) Not implemented

getParameter(name) target.parameters["name"]

setParameter(name, value) target.parameters["name"] = value

getTargetList(filename) model.get_target_info()

getTargetName() target.instance_name

selectTarget(name) Either of the following:

• target = model.get_target(name)

• cpus = model.get_cpus()

loadApp(filename) target.load_application(filename)

saveState(filename) Not implemented

restoreState(filename) Not implemented

saveSession(filename) Not implemented

openSession(filename) Not implemented

setStateFile(filename) Not implemented

4.3 Execution control
iris.debug is not a full debugger. Therefore, it does not implement higher-level functions, such as
those that require loading the source files or debug symbols that correspond to an application.

The following table shows the MxScript functions that control model execution, and their iris.debug
equivalent:

Table 4-2: Execution control functions

MxScript function iris.debug equivalent

run() Either of the following:

model.run()

This function blocks until the target stops.

model.run(blocking=False)

This function is nonblocking.

runUntil(<address>) Not implemented

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Upgrading MxScripts to Python

MxScript function iris.debug equivalent

runToLine(<file>, <line>) Not implemented

stop() model.stop()

getCurrentSourceFile() Not implemented

getCurrentSourceLine() Not implemented

getCurrentSourceColumn() Not implemented

hardReset() model.reset()

reset() model.reset()
target.load_application(<filename>)

pause() Not implemented

cont() Not implemented

getStopCond() Either of the following:

• target.get_hit_breakpoints()

• Return value of blocking model.run()

isSimStopped() not target.is_running

restart() model.reset()
target.load_application(<filename>)

goToMain() Not implemented

step() Not implemented

stepOver() Not implemented

stepOut() Not implemented

istep(<count>) model.step()

getInstCount() Not implemented

cycleStep(<cycles>) Not implemented

enableStepBack(<bool>) Not implemented

sleep(<seconds>) import time
time.sleep(<seconds>)

msleep(<milliseconds>) import time
time.sleep(<milliseconds * 1000>)

getCycleCount() Not implemented

4.4 Breakpoints
The following table shows the MxScript functions that relate to breakpoints and their iris.debug
equivalent:

Table 4-3: Breakpoints functions

MxScript function iris.debug equivalent

bpAdd(address) bp = target.add_bpt_prog(address)

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

Upgrading MxScripts to Python

MxScript function iris.debug equivalent

bpAdd(file, line) Not implemented

bpAddReg(reg_name) bp = target.add_bpt_reg(reg_name)

bpAddMem(address) bp = target.add_bpt_mem(address)

bpRemove(id) bp.delete()

bpRemoveAll() for bp in target.breakpoints.values():
 bp.delete()

bpEnable(id) bp.enable()

bpDisable(id) bp.disable()

bpEnableAll() for bp in target.breakpoints.values():
 bp.enable()

bpDisableAll() for bp in target.breakpoints.values():
 bp.disable()

bpList() target.breakpoints

bpSetTriggerType() Not implemented

bpSetIgnoreCount() Not implemented

bpSetCond() Not implemented

bpIsHit(id) bp.is_hit

4.5 Model resource access
The following table shows the MxScript functions that access model resources, and their iris.debug
equivalent:

Table 4-4: Resource access functions

MxScript function iris.debug equivalent

regWrite(name, value) target.write_register(name, value)

regRead(name) target.read_register(name)

memWrite(memspace, address, value) target.write_memory(address, value[, memspace])
If memspace is not specified, the current memory space is used.

memRead(memspace, address, count) target.read_memory(address, count[, memspace])
If memspace is not specified, the current memory space is used.

disassemble(address) target.disassemble(address)

memStoreToFile(…) with open("tempmem.bin", "wb") as f:
 mem = cpu.read_memory(0, count=1024)
 f.write(mem)

memLoadFromFile(…) with open("tempmem.bin", "rb") as f:
 mem = bytearray(f.read(1024))
 cpu.write_memory(0, mem)

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5. API reference
This chapter describes the public interface of iris.debug. Any members whose name starts with an
underscore are internal and have not been documented.

iris.debug does not support the fm.debug LibraryModel class, which is used to
access a CADI model.

An existing model can be connected to by creating a new NetworkModel, passing either the IP
address or hostname, and port number.

The model is comprised of multiple targets which represent the components in the system.

A Target object can be obtained by calling Model.get_target(name) on an instantiated model,
passing it the name of the target.

A convenience method Model.get_cpus() is also provided which returns a list of Target objects for
all targets for which componentType == 'Core' or have the executesSoftware flag set. For example:

>>> model = NetworkModel(host = 'localhost', port = 7100)
>>> cpus = model.get_cpus()
>>> cpus[0].read_register("CPSR")
>>> model.run()

5.1 class NetworkModel
iris.debug.NetworkModel(host='localhost', port=0, timeoutInMs=5000,

client_name='client.iris_debug', verbose=False)

An Iris model that is connected to an Iris server.

Parameters
host

Hostname or IP address of the computer running the model.

port

Port number that the model is listening on. If 0, it scans the port range 7100-7109 for Iris
servers and connects to the first one found.

timeoutInMs

Time limit in milliseconds for the connection to wait for a response from the server. By
default, 5000ms.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

client_name

Hierarchical name of the client instance.

verbose

If True, extra debugging information is printed.

5.2 class NetworkModelInitializer
class iris.NetworkModelInitializer(server_startup_command=None, host='localhost',

port=None, timeout_in_ms=1000, synchronous=False, verbose=False)

The NetworkModelInitializer class represents an established or pending connection between
an Iris model debugger, accessible through the class NetworkModel, and an Iris server which is
embedded either in an ISIM or in a simulation that uses an ISIM as a library.

Use the NetworkModelFactory class to create an instance of this class. After it is created, you can
use it in one of two ways:

• In the following example, network_model is an instance of NetworkModel. All resources are
automatically deallocated at the end of the with statement context:

with NetworkModelFactory.CreateNetworkToHost(host, port) as network_model:
 network_model.get_targets()

• In the following example, network_model is an instance of NetworkModel. Resources are not
automatically deallocatted so you need to handle exceptions and force deallocation manually:

network_model_initializer = NetworkModelFactory.CreateNetworkToHost(host, port)
network_model = network_model_initializer.start()
 try:
 network_model.get_targets()
 finally:
 network_model_initializer.close()

A full working example is provided in $PVLIB_HOME/Iris/Python/Examples/
DemoNetworkInitializer.py.

5.3 class NetworkModelFactory
class iris.NetworkModelFactory

Allows the creation of NetworkModelInitializers. It contains only class methods.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5.3.1 CreateNetworkFromCommand()

CreateNetworkFromCommand(command_line, timeout_in_ms=1000)

Create a network model initializer for an Iris server to be started using a command line.

Parameters
command_line

The command line to launch the Iris server.

timeout_in_ms

Timeout in milliseconds for the connection between the client and the Iris TCP server.

Related information
class NetworkModelInitializer on page 21

5.3.2 CreateNetworkFromIsim()

CreateNetworkFromIsim(isim_filename, parameters=None, timeout_in_ms=1000)

Create a network model initializer for an ISIM that is not yet running.

Parameters
isim_filename

Full path of the ISIM to launch.

parameters

Parameters to pass to the ISIM.

timeout_in_ms

Timeout in milliseconds for the connection between the client and the Iris TCP server.

Related information
class NetworkModelInitializer on page 21

5.3.3 CreateNetworkFromLibrary()

CreateNetworkFromLibrary(simulation_command, library_filename, parameters=None,

timeout_in_ms=1000)

Create a network model initializer for a simulation application that uses an ISIM as a library and is
not yet running.

Parameters
simulation_command

The command to launch the simulation application.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

library_filename

Full path to the library.

parameters

Parameters to pass to the simulation.

timeout_in_ms

Timeout in milliseconds for the connection between the client and the Iris TCP server.

Related information
class NetworkModelInitializer on page 21

5.3.4 CreateNetworkToHost()

CreateNetworkToHost(hostname, port, timeout_in_ms=1000)

Create a network model initializer for an Iris server that is already running and is accessible at the
given hostname and port.

Parameters
hostname

Hostname that the Iris server is running on.

port

Port number that the Iris server is listening on.

timeout_in_ms

Timeout in milliseconds for the connection between the client and the Iris server.

Related information
class NetworkModelInitializer on page 21

5.4 class Model
iris.debug.Model(client, verbose)

This class wraps an Iris model.

5.4.1 get_cpus()

get_cpus()

Return all targets that have executesSoftware set or have componentType = 'Core'.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5.4.2 get_target()

get_target(instance_name)

Obtain an interface to a target.

Parameters
instance_name

The instance name that corresponds to the target.

5.4.3 get_target_info()

get_target_info()

Return an iterator over named tuples that contain information about all of the target instances
contained in the model.

5.4.4 get_targets()

get_targets()

Generator function to iterate over all targets in the simulation.

5.4.5 release()

release(shutdown=False)

End the simulation and release the model.

Parameters
shutdown

If True, the simulation is shut down and any other scripts or debuggers must disconnect.

If False, a simulation might be kept alive after disconnection.

5.4.6 reset()

reset(allow_partial_reset=False)

Reset the simulation to exactly the same state it had after instantiation.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

Parameters
allow_partial_reset

If true, perform a partial simulation reset for simulations that do not support a full reset. This
might be because only the Fast Models components in a SystemC platform simulation can be
reset. By setting allow_partial_reset to True, you acknowledge that not all components will
be reset and accept the consequences.

For an ISIM model, which is built purely from Fast Models components, the whole platform
can be reset.

5.4.7 restore_state()

restore_state(stream_directory, restore_all=True)

Restore the state of the simulation. Returns True if all components are restored successfully.

Parameters
stream_directory

String that is treated as the name of the directory from which to restore the simulation state.

restore_all

If True, restore the state of the simulation and all targets in it that support checkpointing. If
False, only restore the simulation state. This parameter defaults to True.

Exceptions
NotImplementedError

If restore_all is False, and the simulation does not support checkpointing.

5.4.8 run()

run(blocking = True, timeout = None)

Start executing the model.

Parameters
blocking

If True, this call blocks until the model stops executing, typically due to a breakpoint.

If False, this call returns when the target starts executing.

timeout

If None, this call waits indefinitely for the target to enter the correct state.

If set to a float or int, this parameter gives the maximum number of seconds to wait.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

Exceptions
TimeoutError

The timeout expired.

TargetBusyError

The model is already running.

5.4.9 save_state()

save_state(stream_directory, save_all=True)

Save the state of the simulation. Returns True if all components are saved successfully.

Parameters
stream_directory

String that is treated as the name of the directory to which to save the simulation state.

save_all

If True, save the state of the simulation and all targets in it that support checkpointing. If
False, only save the simulation state. This parameter defaults to True.

Exceptions
NotImplementedError

save_all is False, and the simulation does not support checkpointing.

5.4.10 step()

step(count=1, timeout=None)

Step all cores in the system for count instructions each, blocking.

Cores are stepped individually and sequentially. The first core is stepped for count instructions.
When that completes, the second core is stepped for count instructions and so on. This is intrusive
debugging as it permutes the scheduling order of the cores and it generally lets more simulation
time pass than indicated by count. Also, the number of steps executed is independent of the
relative clock speeds of the CPUs.

Only cores that have get_execution_state()==True are processed by this function. Therefore it is
possible to select which cores should be stepped by calling set_execution_state() beforehand.

This is an exotic stepping function. Use core.set_steps() or model.run() for
normal non-intrusive stepping.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

Parameters
count

The number of processor instructions to execute.

timeout

If None, this call waits indefinitely for the target to enter the correct state.

If set to a float or int, this parameter gives the maximum number of seconds to wait.

Exceptions
TimeoutError

The timeout expired.

TargetBusyError

The model is running.

ValueError

No CPUs are present or not all CPUs support per-instance execution control.

5.4.11 stop()

stop(timeout = None)

Stop the model executing.

Silently returns if the model is already stopped.

Parameters
timeout

If None, this call waits indefinitely for the target to enter the correct state.

If set to a float or int, this parameter gives the maximum number of seconds to wait.

Exceptions
TimeoutError

The timeout expired.

5.5 class Target
iris.debug.Target(instInfo, model)

Wraps an Iris object, providing a simplified interface to common tasks.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

You can access memory, registers, and breakpoints using methods defined in this class, for example:

cpu.read_memory(0x1234, count=8)
cpu.write_register("Core.R5", 1000)
cpu.add_bpt_mem(0x1234, memory_space="Secure", on_read=False)
cpu.add_bpt_reg("Core.CPSR")

The breakpoint-related methods return Breakpoint objects, which allow you to enable, disable,
and delete the breakpoint. You can access the breakpoints that are set by using the dictionary
Target.breakpoints, which maps from breakpoint numbers to Breakpoint objects.

5.5.1 add_bpt_mem()

add_bpt_mem(address, memory_space=None, on_read=True, on_write=True, on_modify=None)

Set a new data breakpoint which is hit when the specified memory location is accessed.

Parameters
address

The address to set the breakpoint on.

memory_space

The name of the memory space that address is in. If None, the current memory space of the
core is used.

on_read

If True, the breakpoint is triggered when the memory location is read from.

on_write

If True, the breakpoint is triggered when the memory location is written to.

on_modify

Deprecated. If True, the breakpoint is triggered when the memory location is modified.

5.5.2 add_bpt_prog()

add_bpt_prog(address, memory_space=None)

Set a new code breakpoint which is hit when program execution reaches the specified memory
address.

Parameters
address

The address to set the breakpoint on.

memory_space

The name of the memory space that address is in. If None, the current memory space of the
core is used.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5.5.3 add_bpt_reg()

add_bpt_reg(reg_name, on_read=True, on_write=True, on_modify=None)

Set a new register breakpoint which is hit when the specified register is accessed.

Parameters
reg_name

The name of the register to set the breakpoint on. The name can be in any of the following
formats:

• "group.register"

• "group.register.field"

• "register"

• "register.field"

The last two forms can only be used if the register name is unambiguous.

on_read

If True, the breakpoint is triggered when the register is read from.

on_write

If True, the breakpoint is triggered when the register is written to.

on_modify

Deprecated. If True, the breakpoint is triggered when the register is modified.

5.5.4 add_event_callback()

add_event_callback(event_name, func, fields=None)

Add a callback function for the named event. This function is called when the event fires.

Parameters
event_name

The name of the event.

func

A callback to be called when the event fires.

fields

A list of event fields that the callback provides.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5.5.5 clear_bpts()

clear_bpts()

Clear all breakpoints.

5.5.6 disassemble()

disassemble(address, count=1, mode=None, memory_space=None)

Disassemble intructions.

If count=1 this method returns a 3-tuple of addr, opcode, disass, where:

addr is the address of the instruction.
opcode is a string containing the instruction opcode at that address.
disass is a string containing the disassembled representation of the instruction.

If count> 0, this method behaves like a generator function that yields one 3-tuple for each
disassembled instruction.

Parameters
address

Address to start disassembling from.

count

Number of instructions to disassemble. Default is 1. This method might yield fewer than
count results if an error occurs during disassembly.

mode

Disassembly mode to use. Must be either None, in which case the target's current mode is
used, or one of the values returned by get_disass_modes(). Default is None.

memory_space

Memory space for address. Must be the name of a valid memory space for this target or
None. If None, the current memory space is used. Default is None.

Exceptions
ValueError

The target does not support disassembly.

5.5.7 get_disass_modes()

get_disass_modes()

Return the disassembly modes for this Target.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5.5.8 get_event_info()

get_event_info(name=None)

Retrieve information about the event sources provided by this Target.

It is used in the following ways:

get_event_info(name)

Return the information for the named event and its fields.

get_event_info()

Act as a generator and yield information about all events.

Parameters
name

The name of the event to provide information for. If None, yields information about all
events.

5.5.9 get_execution_state()

get_execution_state()

Return True if execution state is enabled.

Exceptions
ValueError

It cannot get the execution state.

5.5.10 get_hit_breakpoints()

get_hit_breakpoints()

Return the list of breakpoints that were hit the last time the Target was running.

5.5.11 get_instruction_count()

get_instruction_count()

Return the current instruction count of the Target.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5.5.12 get_pc()

get_pc()

Return the current value of the program counter.

5.5.13 get_register_info()

get_register_info(name=None)

Retrieve information about the registers that are present in this Target.

It is used in the following ways:

get_register_info(name)

Return the information for the named register.

get_register_info()

Act as a generator and yield information about all registers.

Parameters
name

The name of the register to provide information for. If None, it yields information about
all registers. It follows the same rules as the name parameter of read_register() and
write_register().

5.5.14 get_steps()

get_steps(unit='instruction')

Return the remaining number of steps.

Parameters
unit

Steps unit. Must be either:

'instruction'
A step is one executed instruction. This is the default.

'cycle'
A step is one cycle.

Exceptions
ValueError

Cannot get the remaining steps.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5.5.15 get_table_info()

get_table_info(name=None)

Retrieve information about the tables that are present in this Target.

It is used in the following ways:

get_table_info(name)

Return the information for the named table and its columns.

get_table_info()

Act as a generator and yield information about all tables.

Parameters
name

The name of the table to provide information for. If None, yields information about all tables.

5.5.16 handle_semihost_io()

handle_semihost_io()

Request that semihosted input and output are handled for this Target by this Iris client.

5.5.17 has_register()

has_register(name)

Return True if the named register exists and has an unambiguous name, False otherwise.

Parameters
name

The name of the register. It follows the same rules as the name parameter of read_register()
and write_register().

5.5.18 has_table()

has_table(name)

Return True if the Target has the named table.

Parameters
name

The name of the table.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5.5.19 load_application()

load_application(filename, loadData=None, verbose=None, parameters=None)

Load an application to run on the model.

Parameters
filename

The filename of the application to load.

loadData

Deprecated.

If set to True, the target loads data, symbols, and code.

If set to False, the target does not reload the application code to its program memory. This
can be used, for example, to either:

• Forward information about applications that are loaded to a target by other platform
components.

• Change command-line parameters for an application that was loaded by a previous call.

verbose

Set this to True to allow the target to print verbose messages.

parameters

Deprecated.

A list of command-line parameters to pass to the application, or None.

5.5.20 read_memory()

read_memory(address, memory_space=None, size=1, count=1, do_side_effects=False)

Return a byte array of length size*count.

Parameters
address

Address to begin reading from.

memory_space

Name of the memory space to read or None, which reads the core's current memory space.

size

Size of the memory access unit in bytes. Must be one of 1, 2, 4, or 8.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

• Not all values are supported by all models.

• The data is always returned as bytes, so calling this function with size=4,
count=1 returns a byte array of length 4.

count

Number of units to read.

do_side_effects

Deprecated.

If True, the Target must perform any side-effects that are normally triggered by the read, for
example clear-on-read.

5.5.21 read_all_registers()

read_all_registers()

Read the current value of all registers. Returns a dictionary of register values keyed off register id.

Exceptions
ValueError

Failed to read a readable register.

5.5.22 read_register()

read_register(name=None, side_effects=False, rscId=None)

Read the current value of a register.

Parameters
name

The name of the register to read from. This can take the following forms:

• "group.register"

• "group.register.field"

• "register"

• "register.field"

If rscId is provided, name is ignored.

side_effects

Deprecated.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

rscId

Resource id of the register to read from. If this is provided, name is ignored.

Exceptions
ValueError

The register name does not exist, or the group name is omitted and there are multiple
registers in different groups with that name.

5.5.23 read_table()

read_table(name, index=None, count=1)

Read the specified rows from the named table. The rows are returned as a dictionary, in the form:

{index : {<colname> : <value>, …}, …}

Parameters
name

The name of the table to read from.

index

Row from which to start reading. Default is minIndex of the table.

count

Number of rows to read, starting from index. Default is 1.

Exceptions
ValueError

The table name does not exist, or count is less than 1.

5.5.24 remove_event_callback()

remove_event_callback(event_name_or_func)

Remove an event callback function that was previously added to this Target.

Parameters
event_name_or_func

Either the name of an event or a callable object that was previously added to this Target as
an event callback.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5.5.25 remove_bpt()

remove_bpt(bptId)

Delete a breakpoint.

Parameters
bptId

Breakpoint id of the breakpoint to delete.

Exceptions
ValueError

bptId does not exist, or the deletion failed.

5.5.26 restore_state()

restore_state(checkpoint_directory)

Restore the state of this Target from a directory.

Parameters
checkpoint_directory

Directory in which the target state was stored.

5.5.27 save_state()

save_state(checkpoint_directory)

Save the state of this Target to a directory.

Parameters
checkpoint_directory

Directory to which to save the target state.

5.5.28 set_execution_state()

set_execution_state(enable)

Set the execution state of this Target.

Parameters
enable

True to enable execution of instructions, false to disable it.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

Exceptions
ValueError

Cannot set the execution state.

5.5.29 set_steps()

set_steps(steps, unit='instruction')

Set the remaining number of steps.

Parameters
unit

Steps unit, either:

'instruction'
A step is one executed instruction. This is the default.

'cycle'
A step is one cycle.

Exceptions
ValueError

Cannot set the remaining number of steps.

5.5.30 supports_tables()

supports_tables()

Return True if the Target has any tables.

5.5.31 write_memory()

write_memory(address, data, memory_space=None, size=1, count=None,

do_side_effects=False)

Write a byte array of length size*count to memory.

Parameters
address

Address to begin writing to.

data

The data to write. If count is 1, this can be an integer. Otherwise it must be a byte array with
length >= size*count.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

memory_space

The memory space to write to. The default is None which reads the core's current memory
space.

size

Size of the memory access unit in bytes. Must be one of 1, 2, 4, or 8.

Not all values are supported by all models.

count

Number of units to write. If None, count is automatically calculated such that all data from
the array is written to the target.

do_side_effects

Deprecated.

If True, the target must perform any side-effects normally triggered by the write, for example
triggering an interrupt.

5.5.32 write_register()

write_register(name=False, value=None, side_effects=False, rscId=None)

Write a value to a register.

Parameters
name

The name of the register to write to. This can take the following forms:

• "group.register"

• "group.register.field"

• "register"

• "register.field"

If rscId is provided, name is ignored.

value

The value to write to the register.

side_effects

Deprecated.

rscId

Resource id of the register to write to. If this is provided, name is ignored.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

Exceptions
ValueError

Neither a register name nor a resource id were provided.

5.5.33 write_table()

write_table(name, table_records)

Write specified records to a table.

Parameters
name

The name of the table to write to.

table_records

A dictionary in the form:

{ index : rowdata, …}

where:

index

The value of the row index where rowdata is written.

rowdata

The cells in dictionary form:
{ <col name> : <value>, ... }

The table record can have a subset of the cells in the row to which a write should take place.

This parameter has the same format as the return value of read_table().

Exceptions
ValueError

The table does not exist.

5.5.34 Target properties

The Target class defines the following properties:

component_type

The type of a target component as a string.

description

The description of a target.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

disass_mode

The current disassembly mode for this target.

executes_software

True if the component supports executing instructions.

instance_name

The instance name of the target.

is_running

True if the target is currently running.

stdin

The target’s semihosting stdin.

stdout

The target’s semihosting stdout.

stderr

The target’s semihosting stderr.

target_name

The name of the target component.

5.6 class EventCallbackManager
class iris.debug.EventCallbackManager(client, target, verbose)

Manages user event callbacks for a particular target instance.

5.6.1 add_callback()

add_callback(evSrcId, func, fields=None)

Create an event stream for the specified event source which will call back func().

Parameters
evSrcId

Event source id of the event.

func

Name of the callback function for the event.

fields

List of string names of event source fields to receive in the callback function.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

Exceptions
ValueError

Unknown event source id, or unknown event field.

Exceptions.TargetError

Failed to add the event callback.

5.6.2 get_evSrcId()

get_evSrcId(name)

Get the event source id for the named event.

Parameters
name

Name of the event.

Exceptions
ValueError

The target does not support the named event.

5.6.3 get_info()

get_info()

Yield EventSourceInfo for all events that are supported by the target instance.

5.6.4 remove_callback_evSrcId()

remove_callback_evSrcId(evSrcId)

Remove a registered callback by event source id.

Parameters
evSrcId

The event source id for the callback function to remove.

5.6.5 remove_callback_func()

remove_callback_func(func_to_remove)

Remove a registered callback function.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

Parameters
func_to_remove

Callback function to remove.

Exceptions
ValueError

No event stream is registered with this callback function.

5.7 class Breakpoint
class iris.debug.Breakpoint(target, bpt_info)

Provides a high level interface to a breakpoint in an Iris target.

5.7.1 delete()

delete()

Remove the breakpoint from the target.

5.7.2 disable()

disable()

Disable the breakpoint if the model supports it.

5.7.3 enable()

enable()

Enable the breakpoint if the model supports it.

5.7.4 wait()

wait(timeout=None)

Block until the breakpoint is triggered or the timeout expires.

Return True if the breakpoint was triggered, False otherwise.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5.7.5 Breakpoint properties

The Breakpoint class defines the following properties:

address

The memory address at which this breakpoint is set. Only valid for code and data
breakpoints.

bpt_type

The name of the breakpoint type. Valid values are:

Program Code breakpoint.
Memory Data breakpoint.
Register Register breakpoint.

enabled

True if the breakpoint is currently enabled.

is_hit

True if the breakpoint was hit the last time the target was running.

memory_space

The name of the memory space in which this breakpoint is set.

Only valid for code and data breakpoints.

number

Identification number of this breakpoint.

This number is the same as the key in the Target.breakpoints dictionary.

If the number is non-negative, it is equal to the bptId and the breakpoint is enabled. If the
number is negative, the breakpoint is disabled.

This number is only valid until the breakpoint is deleted, and breakpoint numbers can be
reused and modified.

on_modify

Deprecated. True if this breakpoint is triggered on modify. Only valid for register and memory
breakpoints.

on_read

True if this breakpoint is triggered by reads. Only valid for register and memory breakpoints.

on_write

True if this breakpoint is triggered by writes. Only valid for register and memory breakpoints.

register

The name of the register that this breakpoint is set on. Only valid for register breakpoints.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 45

Iris Python Debug Scripting User Guide Document ID: 101421_0100_09_en
Version 1.0

API reference

5.8 Exceptions
iris.debug defines the following exception classes:

iris.debug.SecurityError

Method failed because an access was denied.

This could be caused by, for example, writing to a read-only register or reading memory with
restricted access.

iris.debug.SimulationEndedError

Attempted to call a method on a simulation that has ended.

iris.debug.TargetBusyError

The call could not be completed because the target is busy.

Registers and memories, for example, might not be writable while the target is executing
application code.

The debugger can either wait for the target to reach a stable state or enforce a stable state
by, for example, stopping a running target. The debugger can then repeat the original call
when the target has reached a stable state.

iris.debug.TargetError

An error occurred while accessing the target.

iris.debug.TimeoutError

Timeout expired while waiting for a target to enter the new state.

Copyright © 2018–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 45

	Iris Python Debug Scripting User Guide
	Contents
	1. Introduction
	1.1 Conventions
	1.2 Other information
	1.3 Useful resources

	2. Getting started
	2.1 Setting up the environment
	2.2 Connecting to and running a model

	3. Migrating from fm.debug to iris.debug
	3.1 Changes when connecting to a model
	3.2 Changes to methods defined in Model.py and in Target.py

	4. Upgrading MxScripts to Python
	4.1 Major differences between MxScript and Python
	4.2 Model connection and configuration
	4.3 Execution control
	4.4 Breakpoints
	4.5 Model resource access

	5. API reference
	5.1 class NetworkModel
	5.2 class NetworkModelInitializer
	5.3 class NetworkModelFactory
	5.3.1 CreateNetworkFromCommand()
	5.3.2 CreateNetworkFromIsim()
	5.3.3 CreateNetworkFromLibrary()
	5.3.4 CreateNetworkToHost()

	5.4 class Model
	5.4.1 get_cpus()
	5.4.2 get_target()
	5.4.3 get_target_info()
	5.4.4 get_targets()
	5.4.5 release()
	5.4.6 reset()
	5.4.7 restore_state()
	5.4.8 run()
	5.4.9 save_state()
	5.4.10 step()
	5.4.11 stop()

	5.5 class Target
	5.5.1 add_bpt_mem()
	5.5.2 add_bpt_prog()
	5.5.3 add_bpt_reg()
	5.5.4 add_event_callback()
	5.5.5 clear_bpts()
	5.5.6 disassemble()
	5.5.7 get_disass_modes()
	5.5.8 get_event_info()
	5.5.9 get_execution_state()
	5.5.10 get_hit_breakpoints()
	5.5.11 get_instruction_count()
	5.5.12 get_pc()
	5.5.13 get_register_info()
	5.5.14 get_steps()
	5.5.15 get_table_info()
	5.5.16 handle_semihost_io()
	5.5.17 has_register()
	5.5.18 has_table()
	5.5.19 load_application()
	5.5.20 read_memory()
	5.5.21 read_all_registers()
	5.5.22 read_register()
	5.5.23 read_table()
	5.5.24 remove_event_callback()
	5.5.25 remove_bpt()
	5.5.26 restore_state()
	5.5.27 save_state()
	5.5.28 set_execution_state()
	5.5.29 set_steps()
	5.5.30 supports_tables()
	5.5.31 write_memory()
	5.5.32 write_register()
	5.5.33 write_table()
	5.5.34 Target properties

	5.6 class EventCallbackManager
	5.6.1 add_callback()
	5.6.2 get_evSrcId()
	5.6.3 get_info()
	5.6.4 remove_callback_evSrcId()
	5.6.5 remove_callback_func()

	5.7 class Breakpoint
	5.7.1 delete()
	5.7.2 disable()
	5.7.3 enable()
	5.7.4 wait()
	5.7.5 Breakpoint properties

	5.8 Exceptions

