

Arm® Cortex®-A55

Revision: r2p0

Software Optimization Guide
Non-Confidential Issue 4.0
Copyright © 2017-2018, 2022 Arm Limited (or its
affiliates).
All rights reserved.

ARM-EPM-128372

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

1 Introduction

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 2 of 48

Arm® Cortex®-A55

Software Optimization Guide

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1.0 30 June 2017 Confidential First release

2.0 26 January 2018 Non-Confidential Editorial changes and change in confidentiality
status

3.0 30 November 2018 Non-Confidential Editorial and technical changes in:

• Pipeline overview

• Instructions with out-of-order completion

• Branch instructions

• Atomic instructions

• Advanced SIMD integer instructions

4.0 31 August 2022 Non-Confidential Second release for r2p0

Editorial changes in:

• Load instructions

• Advanced SIMD integer instructions

• Advanced SIMD floating-point instructions

• Advanced SIMD miscellaneous instructions

Technical changes in:

• Floating-point miscellaneous instructions

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, has undertaken no analysis to identify or understand the scope and content of,
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

1 Introduction

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 3 of 48

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of
the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
https://www.arm.com/company/policies/trademarks.

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on Arm® Cortex®-A55,
create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/documentation-
feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be
offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future issue of this
document. To report offensive language in this document, email terms@arm.com.

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com/
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

1 Introduction

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 4 of 48

Contents

1. Introduction ... 6

1.1. Product revision status ... 6

1.2. Intended audience .. 6

1.3. Scope ... 6

1.4. Conventions .. 6

1.4.1. Glossary .. 6

1.4.2. Terms and abbreviations .. 7

1.4.3. Typographical conventions ... 7

1.5. Useful resources ... 8

2. Overview ... 9

3. Pipeline .. 10

3.1. Pipeline overview ... 10

3.1.1. Forwarding paths .. 11

3.2. Dual-issue .. 11

3.3. Load/store and address generation ... 13

3.4. Integer divide and multiply-accumulate units .. 14

3.5. Floating-point and NEON instructions ... 15

3.5.1. Instructions with out-of-order completion .. 15

3.5.2. Cryptographic instructions ... 16

4. Instruction characteristics ... 17

4.1. Instruction tables .. 17

4.2. Branch instructions .. 17

4.3. Arithmetic and logical instructions ... 18

4.4. Move and shift instructions ... 18

4.5. Divide and multiply instructions.. 19

4.6. Saturating and parallel arithmetic instructions ... 20

4.7. Miscellaneous Data-processing instructions .. 21

4.8. Load instructions .. 21

4.9. Store instructions ... 25

4.10. Atomic instructions .. 26

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

1 Introduction

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 5 of 48

4.11. Floating-point data processing instructions .. 28

4.12. Floating-point miscellaneous instructions ... 29

4.13. Floating-point load instructions .. 30

4.14. Floating-point store instructions .. 31

4.15. Advanced SIMD integer instructions ... 32

4.16. Advanced SIMD floating-point instructions.. 36

4.17. Advanced SIMD miscellaneous instructions ... 37

4.18. Advanced SIMD load instructions .. 39

4.19. Advanced SIMD store instructions... 41

4.20. Cryptographic Extension ... 43

4.21. CRC .. 44

5. General .. 45

5.1. Support for three outstanding loads .. 45

5.2. Automatic hardware-based prefetch .. 45

5.3. Software load prefetch performance .. 45

5.4. Non-temporal loads ... 46

5.5. Cache line size .. 46

5.6. Atomics ... 46

5.7. Similar instruction performance .. 46

5.8. MemCopy performance ... 46

5.9. Conditional execution ... 48

5.10. A64 low latency pointer forwarding .. 48

5.11. Flag-transfer cost .. 48

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

1 Introduction

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 6 of 48

1. Introduction

1.1. Product revision status

The rxpy identifier indicates the revision status of the product described in this book, for example, r1p2,
where:

rx identifies the major revision of the product, for example, r1.

py identifies the minor revision or modification status of the product, for example, p2.

1.2. Intended audience

This document is for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses an Arm core.

1.3. Scope

This document describes aspects of the Cortex-A55 core micro-architecture that influence software
performance. Micro-architectural detail is limited to that which is useful for software optimization.

Documentation extends only to software visible behavior of the Cortex-A55 core and not to the hardware
rationale behind the behavior.

1.4. Conventions

The following subsections describe conventions used in Arm documents.

1.4.1. Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those terms.
The Arm Glossary does not contain terms that are industry standard unless the Arm meaning differs from
the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

https://developer.arm.com/glossary

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

1 Introduction

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 7 of 48

1.4.2. Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

AGU Address Generation Unit

ALU Arithmetic and Logical Unit

ASIMD Advanced SIMD

DIV Divide

MAC Multiply-Accumulate

SQRT Square Root

T32 AArch32 Thumb® instruction set

FP Floating-point

1.4.3. Typographical conventions

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Signal names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and
source code.

monospace bold Language keywords when used outside example code.

monospace

underline
A permitted abbreviation for a command or option. You can enter the underlined text
instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or
damage.

Requirements for the system. Not following these requirements might result in system
failure or damage.

Requirements for the system. Not following these requirements will result in system failure
or damage.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

1 Introduction

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 8 of 48

Convention Use

An important piece of information that needs your attention.

A useful tip that might make it easier, better, or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.5. Useful resources

This document contains information that is specific to this product. See the following resources for other
relevant information.

• Arm Non-Confidential documents are available on developer.arm.com/documentation. Each document
link in the tables below provides direct access to the online version of the document.

• Arm Confidential documents are available to licensees only through the product package.

Arm products Document ID Confidentiality

Arm® Cortex®-A55 Core Technical Reference Manual 100442 Non-Confidential

Arm architecture and specifications Document ID Confidentiality

Arm® Architecture Reference Manual for A-profile architecture DDI 0487 Non-Confidential

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot guarantee the quality of its
documents when used with any other PDF reader.
Adobe PDF reader products can be downloaded at http://www.adobe.com.

https://developer.arm.com/documentation
https://developer.arm.com/documentation/100442/latest/
https://developer.arm.com/documentation/ddi0487/latest/
http://www.adobe.com/

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

2 Overview

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 9 of 48

2. Overview
The Cortex-A55 core is a mid-range, low-power core that implements the Armv8-A architecture with
support for the Armv8.1-A extension, the Armv8.2-A extension, the RAS extension, the Load acquire
(LDAPR) instructions introduced in the Armv8.3-A extension, and the Dot Product instructions introduced
in the Armv8.4-A extension.

All pipelines within the Cortex-A55 core have been designed to be optimal with both the AArch32 and
AArch64 instruction sets. There is no bias towards one or other instruction set.

This document describes elements of the Cortex-A55 micro-architecture that influence software
performance so that software and compilers can be optimized accordingly.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0
3 Pipeline

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 10 of 48

3. Pipeline

3.1. Pipeline overview

The Cortex-A55 pipeline is 8-stages deep for integer instructions and 10-stages deep for floating-point (FP)
and Advanced SIMD (ASIMD) instructions.

The Advanced SIMD architecture, its associated implementations, and supporting software, are also
referred to as NEON™ technology.

The following figure shows the structure of the datapath.

de

decoders

integer
register

file

iss ex1 / f1 ex2 / f2 wr / f3 ret / f4 f5

branch

 ALU0shift

 ALU1shift

MACaccumulatemultiply

ALU

ALU

DIVdividedivide

load

load
AGU

align &
extend

data
cache
output

store

store
AGU

NEON-FP
register

file

MAC & DIV/SQRT

ALU

b
ra

n
ch

 p
re

d
ic

ti
o

n

in
st

ru
ct

io
n

 c
ac

h
e

o
u

tp
u

t

in
st

ru
ct

io
n

 c
ac

h
e

ad
d

re
ss

Figure 1 Cortex-A55 pipeline

The pipeline stages in the main datapath are iss, ex1, ex2, wr, and ret.

The pipeline stages in the NEON-FP datapath are f1, f2, f3, f4, and f5.

Integer instructions are issued in-order from the iss (issue) pipeline stage and complete in the wr (writeback)
pipeline stage.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0
3 Pipeline

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 11 of 48

Floating-point or NEON instructions read their operands in the f1 pipeline stage and normally complete in
the f5 pipeline stage.

Pipeline stages cannot be skipped. In the case of the branch and store pipelines there are still pipeline
stages for ex1 and ex2 to ensure that instructions using those pipelines complete in-order.

3.1.1. Forwarding paths

Forwarding paths are implemented between almost all integer pipeline stages where operands can be
consumed.

For example:

• The Arithmetic and Logical Unit (ALU) pipeline can forward results from the end of ex1 and ex2 to earlier
stages of both ALU pipelines, and to the iss stage of the Divide (DIV) and Multiply-Accumulate (MAC)
pipelines and the load/store Address Generation Units (AGUs). There is also a dedicated forwarding path
from the ex1 stage of the ALU0 to the ex1 stage of the ALU1 and from the ex2 stage of the ALU0 to the
ex2 stage of the store pipeline.

• The DIV pipeline can only accept operands in the iss stage and will only forward results from the wr
stage.

• The MAC pipeline can only accept multiply operands in the iss stage and the accumulate operand in the
ex2 stage. There is a dedicated forwarding path from the wr stage to the ex2 stage for accumulator
forwarding within the MAC pipeline. Multiply and MAC results can be forwarded from the wr stage.

• Load-Store instructions require their address operands at the iss stage. There is a dedicated forwarding
path to forward the address result back to the AGU base operand. There is also a dedicated forwarding
path to support pointer-chasing of a load data at wr to AGU base operand at ex1.

• With the exception of system register read results, all integer results can be forwarded from the wr
stage.

Forwarding does not contain bubbles so if a result can be forwarded from the end of the ex1 stage it can
also be forwarded from the ex2 and wr stages. Similarly, if the latest a result can be consumed in ex2, it can
also be consumed in ex1 or iss if the result is available earlier.

Forwarding in the FP-NEON pipelines is more complex and dependent on whether the instruction is
passing through the MAC & DIV/SQRT pipeline or the ALU pipeline.

3.2. Dual-issue

The Cortex-A55 core dual-issues under most circumstances. An outline of the rules required to achieve
dual-issue are described in the following two tables. In these tables instruction-0 is the instruction that
would otherwise be single-issued (also known as the older instruction) and instruction-1 (also known as the
younger instruction) can only dual-issue if instruction-0 also supports dual-issue.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0
3 Pipeline

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 12 of 48

Instruction groups Instructions Notes

Data-processing All integer data-processing instructions (including flag setting
instructions) can be dual issued except:

• Instructions that want to write to the
program counter.

• Special cases detailed in sections 4.3 - 4.7.

-

Load/store All load/store instructions can be dual issued except:

• Instructions that want to write to the program counter.

• Load/store multiple instructions.

• 32-bit load double/pair instructions.

• Atomic compare swap pair.

• Special cases detailed in sections 4.8 - 4.10.

-

Floating-point All floating-point instructions can be dual issued except:

• All load/store multiple instructions.

• All load/store double instructions.

• VMRS/VMSR instructions.

• Special cases detailed in sections 4.11 - 4.14.

-

Advanced SIMD All Advanced SIMD instructions can be dual issued except:

• Load/store instructions of more than one cycle.

• Certain multi-cycle data-processing instructions.

• Special cases detailed in sections 4.15 - 4.19.

-

Branches Most branches can be dual-issued from this position except
indirect branches.

-

Miscellaneous Control instructions cannot be dual issued. These include
MRC/MCR, MRS/MSR, WFI, WFE, CPS, and barriers. In particular, IT
cannot be dual issued from this position.

-

Table 1 Instruction-0 dual issue conditions

Instruction groups Instructions Notes

Data-processing All data-processing instructions (including flag setting
instructions) can be dual-issued except:

• Instructions that want to write to the program
counter.

• Divide instructions.

• Special cases detailed in sections 4.3 - 4.7.

Flag setting and Non-
flag setting supported

Load/store All load/store instructions can be dual issued except:

• Instructions that want to write to the program
counter.

• Load/store multiple instructions.

• Load double/pair instructions.

• Special cases detailed in sections 4.8 - 4.10.

Providing there is not a
structural hazard (loads
cannot be dual issued
with loads, and stores
cannot be dual issued
with stores)

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0
3 Pipeline

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 13 of 48

Instruction groups Instructions Notes

Floating-point Most floating-point instructions can be dual-issued from
this position except:

• Special cases detailed in sections 4.11 - 4.14.

-

Advanced SIMD Most data-processing Advanced SIMD instructions can
be dual-issued from this position except:

• Special cases detailed in sections 4.15 - 4.19.

-

Branches Most branches can be dual-issued from this position
except compare and branch instructions.

Providing there is not a
structural hazard
(branches cannot be dual
issued with branches)

Conditional Conditional (flag-dependent) instructions can be dual
issued with a flag setting instruction-0 except:

• Instructions that execute an RRX operation.

• Arithmetic with carry instructions.

• Instruction-0 is MULS/MLAS.

Instruction-0 is a NEON instruction.

-

Miscellaneous IT, Architectural NOP. -

Table 2 Instruction-1 dual issue conditions

3.3. Load/store and address generation

The Cortex-A55 load/store pipeline supports reads of up to 64 bits wide and writes of up to 128 bits wide.
Providing the memory address is aligned, this allows instructions such as A32/T32 LDRD, STRD and A64
STP to be issued in a single cycle and occupy only one stage as the instruction passes through the pipeline.
STM instructions in A32/T32 can only consume a maximum of 64 bits of the store pipeline and not the full
128-bit width.

The alignment requirements for load/store instructions to avoid a performance penalty are:

• 8-bit loads: Never a penalty cycle.

• 16-bit, 32-bit loads: Address must not cross a 64-bit boundary.

• 64-bit, 128-bit loads: Address must be 64-bit aligned.

• 8-bit stores: Never a penalty cycle.

• 16-bit, 32-bit, 64-bit stores: Address must not cross a 128-bit boundary.

• 128-bit store: Address must be 128-bit aligned.

If the memory address is not aligned, then providing the instruction passes its alignment checks a penalty
cycle is incurred. If the next immediate cycle is a load or store operation, it will take a penalty cycle even if its
access is aligned. According to this:

• For the 64-bit LDP instruction which splits into two load operations, it will take 2 cycles penalty if it is
not 64-bit aligned.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0
3 Pipeline

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 14 of 48

• LDM/STM instructions that are 32-bit aligned, but not 64-bit aligned can take one more cycle if the
number of registers are less than three or two more cycles otherwise to complete than LDM/STM
instructions that are 64-bit aligned. For example, an LDM of 8-registers will take four cycles to complete
if the address is 64-bit aligned and six cycles if the address is not 64-bit aligned.

The load-use latency from the data of a load instruction to the ALU of a dependent datapath instruction is
two cycles. This means that in a back-to-back LDR-ADD sequence the ADD instruction would stall for one
cycle.

The first stage (ex1) of both the load and store pipeline contains an AGU. To lower the latency on pointer
chasing operations to 2-cycle, load data from a limited set of load instructions can be forwarded from the
beginning of the wr pipeline stage to either the load or store AGU base operand. In general, this is limited to
load instructions that do not require sign/zero extension, but more detail is provided in the following table.

Load instruction Limitation

LDR & LDRT/LDTR (all
variants)

32-bit aligned addresses only or 64-bit aligned addresses if 64-bit load (little
endian)

LDRD/LDP (all variants) Only the first register of the pair if 32-bit load or the second register of the pair
if 64-bit load (little endian)

LDM (all variants) Only the first register of the last transfer (little endian)

Table 3 AGU pointer chasing

Load instructions that do not have a low-latency path in to the AGUs for pointer chasing incur an extra cycle
penalty.

Finally, while the Cortex-A55 AGUs can calculate the address of all A64 and T32 load/store instructions in a
single cycle, the performance on some rarely used A32 load/store instructions is compromised. Namely,
A32 instructions that require the offset register to be subtracted from the base register to calculate the
address or require the offset register to be shifted by a value other than 0, 1, 2, or 3 (as supported by T32)
take a two-cycle penalty while the offset operand is formatted. Since these instructions are rare, it is
unlikely that any performance impact will be noticed.

3.4. Integer divide and multiply-accumulate units

The Cortex-A55 core contains an integer divide unit for executing the UDIV and SDIV instructions. Integer
divide instructions are serializing and do not allow younger instructions to retire underneath to ensure that
the integer divide results is retired in-order. The divide iteration will terminate as soon as the result has
been calculated.

The MAC unit in the Cortex-A55 core can sustain one 32-bit x 32-bit multiply or MAC operation per-cycle.
There is a dedicated forwarding path in the accumulate portion of the unit that allows the result of one
MAC operation to be used as the accumulate operand of a following MAC operation with no interlock.

Flag setting multiply operations do not take any longer than non-flag setting multiply operations. However,
if there is a flag setting MUL immediately ahead of a conditional instruction then a single interlock cycle is
forced to ensure that there is a cycle to move the flags from the multiply pipeline to the flag testing logic.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0
3 Pipeline

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 15 of 48

The latency for integer divide and multiply instructions are:

• In AArch32:

 All multiplies take one cycle, but the UMAAL instruction takes two cycles due to the extra
accumulation.

 Divides take up to 12 cycles.

• In AArch64:

 32-bit multiplies take one cycle.

 64-bit multiplies take two or three cycles, depending on whether both operands contain ‘1’s in their
top 32 bits.

 SMULH/UMULH takes four cycles.

 32-bit divides take up to 12 cycles.

 64-bit divides take up to 20 cycles.

3.5. Floating-point and NEON instructions

3.5.1. Instructions with out-of-order completion

While the Cortex-A55 core only issues instructions in-order, due to the number of cycles required to
complete more complex floating-point and NEON instructions, out-of-order retire is allowed on the
instructions described in this section. The nature of the Cortex-A55 microarchitecture is such that NEON
and floating-point instructions of the same type have the same timing characteristics.

The out-of-order instructions are detailed in the following table.

Instructions

(FP or NEON)

FP/ASIMD

(half-precision)

FP/ASIMD

(single-precision)

FP/ASIMD

(double-precision)

Hazard Latency Hazard Latency Hazard Latency

VDIV/FDIV 5P

ac 8P

c 10P

ac 13P

c 19P

ac 22P

ac

VSQRT/FSQRT 5P

ac 8P

c 9P

ac 12P

c 19P

ac 22P

ac

VMLA/VNMLA, VMLS/VNMLS,
VRECPS, VRSQRTS

1 8 (4P

b
P) 1 8 (4P

b
P) 1 8 (4P

b
P)

VFMA/FMADD,
VFNMA/FNMADD,
VFMS/FMSUB,
VFNMS/FNMSUB

1 4 1 4 1 4

Table 4 Out-of-order FP/NEON instruction characteristics

The following information describes how to decode the information in the table:

• Hazard (structural): The number of cycles that the datapath resource is unavailable to another
instruction that wants to use it. For example:

▪ A VDIV instruction after a VSQRT instruction must wait for the datapath resource to free up.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0
3 Pipeline

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 16 of 48

▪ A VMLA instruction after a VSQRT instruction is not blocked, as VMLA does not use the divide or
square-root resource.

▪ A VSQRT after a VMLA would be able to issue immediately, provided there was no previous op
using the divide or square-root resource, as a value of 1-cycle indicates that the resource will
not block and supports single cycle back-to-back operation.

 a Indicates the hazard is applicable to instructions that wish to use the divide or square-root
resource.

• Latency: The number of cycles between when the operands are required, and the result is available for
forwarding.

 b Indicates the number of cycles between multiply-accumulate instructions if the only dependency
is the accumulate operand. In other words, the accumulate forwarding latency.

• c Indicates that the number quoted is for normal inputs. Each denormal input operand adds an
additional hazard and latency cycle.

3.5.2. Cryptographic instructions

All cryptographic instructions issue in a single cycle. To optimize the AES algorithm, dependent pairs of
AES/AESMC or AESD/AESIMC can be dual-issued, if they meet the following template:

AESE Vn, _

AESMC Vn, Vn

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 17 of 48

4. Instruction characteristics

4.1. Instruction tables

This chapter describes high-level performance characteristics for most Armv8-A A32, T32, and A64
instructions. A series of tables summarize the effective execution latency and throughput (instruction
bandwidth per cycle), pipelines utilized, and special behaviors associated with each group of instructions.
Dual-issue corresponds to the execution pipelines described in chapter 3.

In the following tables:

• Exec latency, unless otherwise specified, is defined as the minimum latency seen by an operation
dependent on an instruction in the described group.

• Execution throughput is defined as the maximum throughput (in instructions per cycle) of the specified
instruction group that can be achieved in the entirety of the Cortex-A55 microarchitecture.

• Dual-issue is interpreted as:

 00 not dual-issuable.

 01 dual-issuable from slot 0.

 10 dual-issuable from slot 1.

 11 dual-issuable from both slots.

4.2. Branch instructions
Instruction group AArch32 instructions Exec

latency
Execution
throughput

Dual-issue Notes

Branch, immed B 1 1 11 -

Branch, register BX 1 1 10 -

Branch and link, immed BL, BLX 1 1 11 -

Branch and link, register BLX 1 1 10 -

Compare and branch CBZ, CBNZ 1 1 01 -

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

Branch, immed B 1 1 11 -

Branch, register BR, RET 1 1 10 -

Branch and link, immed BL 1 1 11 -

Branch and link, register BLR 1 1 10 -

Compare and branch CBZ, CBNZ, TBZ, TBNZ 1 1 11 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 18 of 48

4.3. Arithmetic and logical instructions
Instruction group AArch32 instructions Exec

latency
Execution
throughput

Dual-issue Notes

ALU, basic, include flag
setting

ADD{S}, ADC{S}, ADR,
AND{S}, BIC{S}, CMN,
CMP, EOR{S}, ORN{S},
ORR{S}, RSB{S}, RSC{S},
SUB{S}, SBC{S}, TEQ, TST

1 2 11 -

ALU, shift by immed (same as above) 2 2 11 -

ALU, shift by register (same as above) 2 1 11 -

ALU, branch forms - 8 1/8 00 1

Notes:

1. Branch form of ALU instructions always causes a flush when retired.

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

ALU, basic, include flag
setting

ADD{S}, ADC{S}, AND{S},
BIC{S}, EON, EOR, ORN,
ORR, SUB{S}, SBC{S}

1 2 11 -

ALU, extend and/or shift ADD{S}, AND{S}, BIC{S},
EON, EOR, ORN, ORR,
SUB{S}

2 2 11 -

ALU, Conditional compare CCMN, CCMP 1 2 11 -

ALU, Conditional select CSEL, CSINC, CSINV, CSNEG 1 2 11 -

4.4. Move and shift instructions
Instruction group AArch32 instructions Exec

latency
Execution
throughput

Dual-issue Notes

Move, basic MOV{S}, MOVW, MOVT,
MVN{S}

1 2 11 -

Move, shift by immed ASR{S}, LSL{S}, LSR{S},
ROR{S}, RRX{S}

1 2 11 -

MVN, shift by immed MVN{S} 2 2 11 -

Move, shift by register ASR{S}, LSL{S}, LSR{S},
ROR{S}

1 1 11 -

MVN, shift by register MVN 2 1 11 -

(Move, branch forms) - 8 1/8 00 1

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 19 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

Address generation ADR, ADRP 1 2 11 -

Move immed MOVN, MOVK, MOVZ 1 2 11 -

Variable shift ASRV, LSLV, LSRV, RORV 1 1 11 -

Notes:

1. Branch form of ALU instructions always causes a flush when retired.

4.5. Divide and multiply instructions
Instruction group AArch32 instructions Exec latency Execution throughput Dual-issue Notes

Divide SDIV, UDIV 3 - 12 (11) 1/12 (11) - 1/3 01 1

Multiply MUL{S}, SMULBB,
SMULBT, SMULTB,
SMULTT, SMULWB,
SMULWT, SMMUL{R},
SMUAD{X}, SMUSD{X}

3 1 11 -

Multiply
accumulate

MLA, MLS, SMLABB,
SMLABT, SMLATB,
SMLATT, SMLAWB,
SMLAWT, SMLAD{X},
SMLSD{X}, SMMLA{R},
SMMLS{R}

3 (1) 1 11 2

Multiply
accumulate long

SMLAL, SMLALBB,
SMLALBT, SMLALTB,
SMLALTT, SMLALD{X},
SMLSLD{X}, UMLAL

3 (1) 1 00 2

Multiply
Accumulate
Accumulate Long

UMAAL 4 (2) 1/2 01 2

Multiply long SMULL, UMULL 3 1 11 -

Instruction group AArch64 instructions Exec latency Execution throughput Dual-issue Notes

Divide, W-form SDIV, UDIV 3 - 12 (11) 1/12 (11) - 1/3 01 1

Divide, X-form SDIV, UDIV 3 - 20 (19) 1/20 (19) - 1/3 01 1

Multiply
accumulate (32-
bit)

MADD, MSUB 3 (1) 1 11 2

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 20 of 48

Instruction group AArch64 instructions Exec latency Execution throughput Dual-issue Notes

Multiply
accumulate (64-
bit)

MADD, MSUB 4-5 (2-3) 1/3 – 1/2 11 2

Multiply
accumulate long

SMADDL, SMSUBL,
UMADDL, UMSUBL

3 (1) 1 11 2

Multiply high SMULH, UMULH 6 1/3 11 -

Notes:

1. Integer divides are performed using an iterative algorithm and block any subsequent divide operations until complete. Early

termination is possible, depending upon the data values. Signed division takes one more cycle than unsigned division for non-

zero division.

2. There is a dedicated forwarding path in the accumulate portion of the unit that allows the result of one MAC operation to be

used as the accumulate operand of a following MAC operation with no interlock.

4.6. Saturating and parallel arithmetic instructions
Instruction group AArch32 instructions Exec latency Execution throughput Dual-issue Notes

Parallel arith SADD16, SADD8,
SSUB16, SSUB8,
UADD16, UADD8,
USUB16, USUB8

1 2 11 -

Parallel arith with
exchange

SASX, SSAX, UASX,
USAX

1 2 11 -

Parallel halving
arith

SHADD16, SHADD8,
SHSUB16, SHSUB8,
UHADD16, UHADD8,
UHSUB16, UHSUB8

1 2 11 -

Parallel halving
arith with
exchange

SHASX, SHSAX,
UHASX, UHSAX

1 2 11 -

Parallel saturating
arith

QADD16, QADD8,
QSUB16, QSUB8,
UQADD16, UQADD8,
UQSUB16, UQSUB8

2 2 11 -

Parallel saturating
arith with
exchange

QASX, QSAX, UQASX,
UQSAX

2 2 11 -

Saturate, basic SSAT, SSAT16, USAT,
USAT16

1 2 11 -

Saturate, LSL by
immed or ASR

SSAT, USAT 2 2 11 -

Saturating arith QADD, QSUB 2 2 11 -

Saturating
doubling arith

QDADD, QDSUB 3 2 11 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 21 of 48

4.7. Miscellaneous Data-processing instructions

Instruction group AArch32 instructions Exec
latency

Execution
throughput

Dual-issue Notes

Bit field extract SBFX, UBFX 2 2 11 -

Bit field insert/clear BFI, BFC 2 2 11 -

Count leading zeros CLZ 1 2 11 -

Pack halfword PKH 2 2 11 -

Reverse bits RBIT 2 2 11 -

Reverse bytes REV, REV16, REVSH 1 2 11 -

Select bytes, unconditional SEL 1 2 01 -

Sign/zero extend SXTB, SXTH, UXTB, UXTH,
SXTB16, UXTB16

1 2 11 -

Sign/zero extend and add SXTAB, SXTAH,UXTAB, UXTAH,
SXTAB16, UXTAB16

2 1 11 -

Sum of absolute
differences

USAD8, USADA8 3 1 11 -

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

Bitfield extract EXTR 2 2 11 -

Sign/zero extend SXTB, UXTB 1 2 11 -

Bitfield move, basic SBFM, UBFM 2 2 11 -

Bitfield move, insert BFM 2 2 11 -

Count leading CLS, CLZ 1 2 11 -

Reverse bits RBIT 2 2 11 -

Reverse bytes REV, REV16, REVSH 1 2 11 -

4.8. Load instructions
• The latencies shown assume the memory access hits in the Level 1 (L1) data cache.

• Latencies correspond to “correctly” aligned accesses. There is one cycle penalty for unaligned loads that
cross a 64-bit boundary.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 22 of 48

Instruction group AArch32
instructions

Exec latency Execution
throughput

Dual-issue Notes

Load, immed offset LDR{T},
LDRB{T},
LDRH{T},
LDRSB{T},
LDRSH{T},
LDRD

3 (2) 1 11 1, 3

Load, register offset, plus,
unscaled

LDR, LDRB,
LDRH,
LDRSB,
LDRSH, LDRD

3 (2) 1 11 1, 3

Load, register offset, plus,
LSL imm < 4

LDR, LDRB 3 (2) 1 11 1

Load, register offset, plus,
others

LDR, LDRB 5 (4) 1/3 01 1

Load, register offset, minus LDR, LDRB,
LDRH,
LDRSB,
LDRSH, LDRD

5 (4) 1/3 01 1

Load, immed pre-indexed LDR, LDRB,
LDRH,
LDRSB,
LDRSH, LDRD

3 (2), 1 1 11 1, 2, 3

Load, register pre-indexed,
plus, unscaled

LDR, LDRB,
LDRH,
LDRSB,
LDRSH, LDRD

3 (2), 1 1 11 1, 2, 3

Load, register pre-indexed,
plus, LSL imm < 4

LDR, LDRB 3 (2), 1 1 11 1, 2

Load, register pre-indexed,
plus, others

LDR, LDRB 5 (4), 3 1/3 01 1, 2

Load, register pre-indexed,
minus

LDR, LDRB,
LDRH,
LDRSB,
LDRSH, LDRD

5 (4), 3 1/3 01 1, 2, 3

Load, immed post-indexed LDR{T},
LDRB{T},
LDRH{T},
LDRSB{T},
LDRSH{T},
LDRD

3 (2), 1 1 11 1, 2, 3

Load, register post-indexed,
unscaled

LDR{T},
LDRB{T},
LDRH{T},
LDRSB{T},
LDRSH{T},
LDRD

3 (2), 1 1 11 1, 2, 3

Load, register post-indexed,
scaled

LDR{T},
LDRB{T}

3 (2), 1 1 11 1, 2

Preload, immed PLD, PLDW,
PLI

1 1 11 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 23 of 48

Instruction group AArch32
instructions

Exec latency Execution
throughput

Dual-issue Notes

Preload, register offset, plus,
unscaled or LSL imm < 4

PLD, PLDW,
PLI

1 1 11 -

Preload, register offset, plus,
others

PLD, PLDW,
PLI

3 1/3 01 -

Preload, register offset,
minus

PLD, PLDW,
PLI

3 1/3 01 -

Load acquire LDA, LDAB,
LDAH

3 (2) 1 01 1

Load acquire exclusive LDAEX,
LDAEXB,
LDAEXH

3 (2) 1 01 1

Load acquire exclusive,
doubleword

LDAEXD 3 (2) 1 00 1

Load multiple, no writeback LDMIA,
LDMIB,
LDMDA,
LDMDB

3 (2) + N -1 1/N 00 1, 4

Load multiple, writeback LDMIA,
LDMIB,
LDMDA,
LDMDB, POP

3 (2) + N -1, N 1/N 00 1, 2, 4

Load multiple, branch forms LDMIA,
LDMIB,
LDMDA,
LDMDB, POP

8 + N-1 1/(8+N-1) 00 5

Load, branch forms with
addressing mode as register
offset, pre-indexed, minus or
plus scaled and not LSL imm
< 4

- 10 1/10 00 5

(Load, branch forms) - 8 1/8 00 5

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 24 of 48

Instruction group AArch64 instructions Exec latency Execution
throughput

Dual-issue Notes

Load register, literal LDR, LDRSW 3 (2) 1 11 1

Load register, unscaled
immed

LDUR, LDURB, LDURH,
LDURSB, LDURSH,
LDURSW

3 (2) 1 11 1

Load register, immed,
pre/post-indexed

LDR, LDRB, LDRH,
LDRSB, LDRSH, LDRSW

3 (2), 1 1 11 1, 2

Load register, immed
unprivileged

LDTR, LDTRB, LDTRH,
LDTRSB, LDTRSH,
LDTRSW

3 (2) 1 11 1

Load register, unsigned
immed

LDR, LDRB, LDRH,
LDRSB, LDRSH, LDRSW

3 (2) 1 11 1

Load register, register offset LDR, LDRB, LDRH,
LDRSB, LDRSH, LDRSW

3 (2) 1 11 1

Preload PRFM 1 1 11 -

Load acquire LDAR, LDARB, LDARH,
LDLAR,

LDLARB, LDLARH

3 (2) 1 01 1

Load acquire exclusive LDAXR, LDAXRB,
LDAXRH

3 (2) 1 01 1

Load acquire exclusive, pair LDAXP 3(2) 1 00 1

Load pair, W-form, immed
offset, normal

LDP, LDNP 3 (2) 1 00 1

Load pair, X-form, immed
offset, normal

LDP, LDNP 4 (3) 1/2 01 1

Load pair, signed words LDPSW 3

1 00 -

Load pair, W-form, immed
pre/post-index, normal

LDP 3 (2), 1 1 00 1, 2

Load pair, X-form, immed
pre/post-index, normal

LDP 4 (3), 2 1/2 00 1, 2

Notes:

1. A fast forward path from load data to address (pointer chasing) can be activated in some cases (short latency show in

parentheses). See section 3.3.

2. Base register updates are typically completed in parallel with the load operation and with shorter latency (update latency

shown after the comma).

3. LDRD is only single issued.

4. For load multiple instructions, N=floor((num_regs+1)/2).

5. Branch form of the load instructions always causes a flush when retired.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 25 of 48

4.9. Store instructions

The following table describes performance characteristics for standard store instructions. Stores may issue
to L1 at iss once their address operands are available and do not need to wait for data operands (which are
required at wr). Once executed, stores are buffered and committed in the background.

Instruction group AArch32 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

Store, immed offset STR{T}, STRB{T},
STRD, STRH{T}

1 1 11 -

Store, register offset, plus,
unscaled

STR, STRB, STRD,
STRH

1 1 11 1

Store, register offset, minus STR, STRB, STRD,
STRH

3 1/3 01 1

Store, register offset, plus, LSL
imm < 4

STR, STRB 1 1 11 -

Store, register offset, plus, other STR, STRB 3 1/3 01 -

Store, immed pre-indexed STR, STRB, STRD,
STRH

1 1 11 -

Store, register pre-indexed, plus,
unscaled

STR, STRB, STRD,
STRH

1 1 11 1

Store, register pre-indexed,
minus

STR, STRB, STRD,
STRH

3 1/3 01 1

Store, register pre-indexed, plus,
LSL imm < 4

STR, STRB 1 1 11 -

Store, register pre-indexed, plus,
other

STR, STRB 3 1/3 01 -

Store, immed post-indexed STR{T}, STRB{T},
STRH{T}

1 1 11 -

Store dual, register post-indexed STRD 1 1 00 -

Store, register post-indexed STR{T}, STRB{T},
STRH

1 1 11 -

Store release STL, STLB, STLH 2 1/2 01 -

Store release exclusive STLEX, STLEXB,
STLEXH, STLEXD

4 1/2 01 -

Store multiple STMIA, STMIB,
STMDA, STMDB

N 1/N 11 2

(Store, writeback form) - (1/T) Same as
before

- 3

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 26 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

Store register, unscaled immed STUR, STURB, STURH 1 1 11 -

Store register, immed pre/post-
index

STR, STRB, STRH 1 1 11 -

Store register, immed
unprivileged

STTR, STTRB, STTRH 1 1 11 -

Store register, unsigned immed STR, STRB, STRH 1 1 11 -

Store register, register offset STR, STRB, STRH 1 1 11 -

Store release STLR, STLRB, STLRH,
STLLR, STLLRB,
STLLRH

2 1/2 01 -

Store release exclusive STLXR, STLXRB,
STLXRH, STLXP

4 1/2 01 -

Store pair, immed, all addressing
modes

STP, STNP 1 1 11 -

(Store, writeback form) - (1/T) Same as
before

 3

Notes:

1. STRD (register) is only single-issued.

2. For store multiple instructions, N=floor((num_regs+1)/2).

3. Writeback forms of store instructions require an extra operation to update the base address. This update is typically

performed in parallel with the store operation (update latency shown in parentheses).

4.10. Atomic instructions
Instruction group AArch64 instructions Exec

latency
Execution
throughput

Dual-issue Notes

LD<OP>, without
release semantics

LDADD{A}, LDADD{A}B, LDADD{A}H,
LDCLR{A}, LDCLR{A}B, LDCLR{A}H,
LDEOR{A}, LDEOR{A}B, LDEOR{A}H,
LDSET{A}, LDSET{A}B, LDSET{A}H,
LDSMAX{A}, LDSMAX{A}B,
LDSMAX{A}H, LDSMIN{A},
LDSMIN{A}B, LDSMIN{A}H,
LDUMAX{A}, LDUMAX{A}B,
LDUMAX{A}H, LDUMIN{A},
LDUMIN{A}B, LDUMIN{A}H

2 1/2 01 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 27 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

LD<OP>, with
release semantics

LDADDL, LDADDLB, LDADDLH,
LDCLRL, LDCLRLB, LDCLRLH,
LDEORL, LDEORLB, LDEORLH,
LDSETL, LDSETLB, LDSETLH,
LDSMAXL, LDSMAXLB, LDSMAXLH,
LDSMINL, LDSMINLB, LDSMINLH,
LDUMAXL, LDUMAXLB, LDUMAXLH,
LDUMINL, LDUMINLB, LDUMINLH,
LDADDAL, LDADDALB, LDADDALH,
LDCLRAL, LDCLRALB, LDCLRALH,
LDEORAL, LDEORALB, LDEORALH,
LDSETAL, LDSETALB, LDSETALH,
LDSMAXAL, LDSMAXALB, LDSMAXALH,
LDSMINAL, LDSMINALB, LDSMINALH,
LDUMAXAL, LDUMAXALB, LDUMAXALH,
LDUMINAL, LDUMINALB, LDUMINALH

3 1/3 01 -

ST<OP>, without
release semantics

STADD{A}, STADD{A}B, STADD{A}H,
STCLR{A}, STCLR{A}B, STCLR{A}H,
STEOR{A}, STEOR{A}B, STEOR{A}H,
STSET{A}, STSET{A}B, STSET{A}H,
STSMAX{A}, STSMAX{A}B,
STSMAX{A}H, STSMIN{A},
STSMIN{A}B, STSMIN{A}H,
STUMAX{A}, STUMAX{A}B,
STUMAX{A}H, STUMIN{A},
STUMIN{A}B, STUMIN{A}H

1 1 01 -

ST<OP>, with
release semantics

STADDL, STADDLB, STADDLH,
STCLRL, STCLRLB, STCLRLH,
STEORL, STEORLB, STEORLH,
STSETL, STSETLB, STSETLH,
STSMAXL, STSMAXLB, STSMAXLH,
STSMINL, STSMINLB, STSMINLH,
STUMAXL, STUMAXLB, STUMAXLH,
STUMINL, STUMINLB, STUMINLH,
STADDAL, STADDALB, STADDALH,
STCLRAL, STCLRALB, STCLRALH,
STEORAL, STEORALB, STEORALH,
STSETAL, STSETALB, STSETALH,
STSMAXAL, STSMAXALB, STSMAXALH,
STSMINAL, STSMINALB, STSMINALH,
STUMAXAL, STUMAXALB, STUMAXALH,
STUMINAL, STUMINALB, STUMINALH

2 1/2 01 -

Compare and swap,
without release
semantics

CAS{A}, CAS{A}B, CAS{A}H 4 1/4 01 -

Compare and swap,
with release
semantics

CASL, CASLB, CASLH, CASAL,
CASALB, CASALH

3 1/3 01 -

Compare and swap,
pair, without release
semantics

CASP{A} 5 1/5 00 -

Compare and swap,
pair, with release
semantics

CASPL, CASPAL 4 1/4 00 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 28 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

Swap, without
release semantics

SWP{A}, SWP{A}B, SWP{A}H 2 1/2 01 -

Swap, with release
semantics

SWPL, SWPLB, SWPLH, SWPAL,
SWPALB, SWPALH

3 1/3 01 -

4.11. Floating-point data processing instructions
Instruction group AArch32 instructions Exec

latency
Execution
throughput

Dual-issue Notes

FP absolute value VABS 4 2 11 -

FP arith VADD, VSUB 4 2 11 -

FP compare VCMP, VCMPE 1 1 11 1

FP compare and write flags VCMP,VCMPE followed by
VMRS APSR_nzcv, FPSCR

2 1 11 2

FP convert VCVT{R}, VCVTB, VCVTT,
VCVTA, VCVTM, VCVTN,
VCVTP

4 2 11 -

FP round to integral VRINTA, VRINTM, VRINTN,
VRINTP, VRINTR, VRINTX,
VRINTZ

4 2 11 -

FP divide, H-form VDIV 8 1/5 01 3

FP divide, S-form VDIV 13 1/10 01 3

FP divide, D-form VDIV 22 1/19 01 3

FP max/min VMAXNM, VMINNM 4 2 11 -

FP multiply VMUL, VNMUL 4 2 11 -

FP multiply accumulate VMLA, VMLS, VNMLA, VNMLS 8 (4) 2 11 3

FP multiply accumulate VFMA VFNMA VFMS VFNMS 4 2 11 3

FP negate VNEG 4 2 11 -

FP select VSELEQ, VSELGE, VSELGT,
VSELVS

2 2 01 -

FP square root, H-form VSQRT 8 1/5 01 3

FP square root, S-form VSQRT 12 1/9 01 3

FP square root, D-form VSQRT 22 1/19 01 3

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

FP absolute value FABS 4 2 11 -

FP arithmetic FADD, FSUB 4 2 11 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 29 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

FP compare FCCMP{E}, FCMP{E} 1 1 11 -

FP divide, H-form FDIV 8 1/5 01 3

FP divide, S-form FDIV 13 1/10 01 3

FP divide, D-form FDIV 22 1/19 01 3

FP min/max FMIN, FMINNM, FMAX,
FMAXNM

4 2 11 -

FP multiply FMUL, FNMUL 4 2 11 -

FP multiply accumulate FMADD, FMSUB, FNMADD,
FNMSUB

4 2 11 -

FP negate FNEG 4 2 11 -

FP round to integral FRINTA, FRINTI, FRINTM,
FRINTN, FRINTP, FRINTX,
FRINTZ

4 2 11 -

FP select FCSEL 2 1 01 -

FP square root, H-form FSQRT 8 1/5 01 3

FP square root, S-form FSQRT 12 1/9 01 3

FP square root, D-form FSQRT 22 1/19 01 3

Notes:

1. The latency corresponds to FPSCR flags forward to a VMRS APSR_nzcv, FPSCR instruction.

2. The latency corresponds to the sequence FCMP, VMRS APSR_nzcv, FPSCR to a conditional instruction.

3. Refer to section 3.5.1 for details.

4.12. Floating-point miscellaneous instructions
Instruction group AArch32

instructions
Exec
latency

Execution
throughput

Dual-issue Notes

FP move, immed VMOV 1 2 11 -

FP move, register VMOV 1 2 11 -

FP transfer, single to core VMOV 1 2 11 1

FP transfer, two singles to core VMOV 2 1 01 1

FP transfer, double/half to core VMOV 2 2 11 1

FP transfer, core to half/single/double VMOV 2 2 11 1

FP transfer, core to two singles VMOV 2 1 01 1

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 30 of 48

Instruction group AArch64
instructions

Exec
latency

Execution
throughput

Dual-issue Notes

FP convert, from vec to vec reg FCVT 4 2 11 -

FP convert, from vec to vec reg FCVTXN 4 1 01 -

FP convert, from gen to vec reg SCVTF, UCVTF 5 2 11 -

FP convert, from vec to gen reg FCVTAS,
FCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS,
FCVTPU,
FCVTZS,
FCVTZU

3 2 11 1

FP move, immed FMOV 1 2 11 -

FP move, register FMOV 1 2 11 -

FP transfer, from gen to half/double/single FMOV 2 2 11 1

FP transfer, from double/single to gen reg FMOV 1 2 11 1

FP transfer, from half to gen reg FMOV 2 2 11 1

Notes:

1. Latency number refers to the worst-case latency from the result to a dependent instruction.

4.13. Floating-point load instructions

FP load data is available for forwarding from f4. The latency numbers shown indicate the worst-case load-
use latency from the load data to a dependent instruction. Latencies assume the memory access hits in the
L1 data cache. Latencies also assume that 64-bit element loads are aligned to 64-bit. If this is not the case,
one extra cycle is required.

Instruction group AArch32 instructions Exec latency Execution
throughput

Dual-issue Notes

FP load, register VLDR 3 1 11 -

FP load multiple VLDMIA, VLDMDB, VPOP 3 + N - 1 1/N 00 1

FP load multiple,
writeback

VLDMIA, VLDMDB, VPOP 3 + N -1, N 1/N 00 1,2

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

Load vector reg, literal, S/D-form LDR 3 1 11 -

Load vector reg, literal, Q-form LDR 4 1/2 01 -

Load vector reg, unscaled immed, B/H-form LDUR 3 1 01 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 31 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

Load vector reg, unscaled immed, S/D-form LDUR 3 1 11 -

Load vector reg, unscaled immed, Q-form LDUR 4 1/2 01 -

Load vector reg, immed pre/post-index, B/H-
form

LDR 3, 1 1 01 2

Load vector reg, immed pre/post-index, S/D-
form

LDR 3, 1 1 11 2

Load vector reg, immed pre/post-index, Q-
form

LDR 4, 2 1/2 01 2

Load vector reg, unsigned immed / register
offset, B/H-form

LDR 3 1 01 -

Load vector reg, unsigned immed / register
offset, S/D-form

LDR 3 1 11 -

Load vector reg, unsigned immed / register
offset, Q-form

LDR 4 1/2 01 -

Load vector pair, immed offset, S-form LDP, LDNP 3 1 01 -

Load vector pair, immed offset, D-form LDP, LDNP 4 1/2 01 -

Load vector pair, immed offset, Q-form LDP, LDNP 6 1/4 01 -

Load vector pair, immed pre/post-index, S-
form

LDP, LDNP 3, 1 1 01 2

Load vector pair, immed pre/post-index, D-
form

LDP, LDNP 4, 2 1/2 01 2

Load vector pair, immed pre/post-index, Q-
form

LDP, LDNP 6, 4 1/4 01 2

Notes:

1. For FP load multiple instructions:

• N=num_regs for double-precision registers.

• N=floor((num_regs+1)/2) for single-precision registers.

2. Writeback forms of load instructions require an extra operation to update the base address. This update is typically performed

in parallel with or prior to the load operation (update latency shown after the comma).

4.14. Floating-point store instructions

Stores may issue to L1 at iss once their address operands are available and do not need to wait for data
operands (which are required at f2). Once executed, stores are buffered and committed in the background.

Instruction group AArch32 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

FP store, immed offset VSTR 1 1 11 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 32 of 48

Instruction group AArch32 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

FP store multiple VSTMIA, VSTMDB, VPUSH N 1/N 00 1

(FP store, writeback form) - (1/T) Same as
before

- 2

Instruction group AArch64 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

Store vector reg, unscaled
immed

STUR 1 1 11 -

Store vector reg, immed STR 1 1 11 -

Store vector reg, register offset STR 1 1 11 -

Store vector pair, immed, S/D-
form

STP 1 1 11 -

Store vector pair, immed, Q-
form

STP 2 1/2 01 -

(FP store, writeback form) - (1/T) Same as
before

 2

Notes:

1. For single-precision store multiple instructions, N=floor((num_regs+1)/2).

For double-precision store multiple instructions, N=(num_regs).

2. Writeback forms of store instructions require an extra operation to update the base address. This update is typically

performed in parallel with or prior to the store operation (address update latency shown in the parentheses).

4.15. Advanced SIMD integer instructions
Instruction group AArch32 instructions Exec

latency
Execution
throughput

Dual-issue Notes

ASIMD absolute diff VABD 3 2 11 1

ASIMD absolute diff accum VABA, VABAL 4 1/2 01 -

ASIMD absolute diff long VABDL 3 1 01 -

ASIMD arith VADD, VHADD, VNEG,
VSUB, VHSUB,
VRHADD

2 2 11 1

ASIMD arith VADDL, VADDW,
VSUBL, VSUBW,
VPADDL, VADDHN ,
VSUBHN

3 1 01 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 33 of 48

Instruction group AArch32 instructions Exec
latency

Execution
throughput

Dual-issue Notes

ASIMD arith VABS, VQADD,
VQNEG, VQSUB,
VPADD

3 2 11 1

ASIMD arith VQABS 4 2 11 1

ASIMD arith VRADDHN, VRSUBHN 4 1/2 01 -

ASIMD compare VCEQ, VCGE, VCGT,
VCLE, VTST

2 2 11 1

ASIMD logical VAND, VBIC, VMVN,
VORR, VORN, VEOR

1 2 11 1

ASIMD max/min VMAX, VMIN, VPMAX,
VPMIN

2 2 11 1

ASIMD multiply VMUL, VQDMULH,
VQRDMULH

4 2 11 1

ASIMD multiply, by scalar VMUL, VQDMULH,
VQRDMULH

4 1 01 -

ASIMD multiply accumulate VMLA, VMLS 4 (1) 2 11 1, 2

ASIMD multiply accumulate, by scalar VMLA, VMLS 4 (1) 1 01 2

ASIMD multiply accumulate high half VQRDMLAH, VQRDMLSH 4 1 01 -

ASIMD multiply accumulate long VQDMLAL, VQDMLSL 4 1 01 -

ASIMD multiply accumulate long VMLAL, VMLSL 4 (1) 1 01 2

ASIMD dot product VUDOT, VSDOT 4 (1) 2 11 1, 3

ASIMD dot product, by scalar VUDOT, VSDOT 4 (1) 1 01 3

ASIMD multiply long, integer VMULL, VQDMULL 4 1 01 -

ASIMD multiply long, polynomial VMULL.P8 3 1 01 -

ASIMD pairwise add and accumulate VPADAL 4 1/2 01 -

ASIMD shift accumulate VSRA, VRSRA 3 2 11 1

ASIMD shift by immed VMOVL, VSHLL 2 1 01 -

ASIMD shift by immed VSHL, VSHR, VSHRN 2 2 11 1

ASIMD shift by immed VQRSHRN, VQRSHRUN,
VQSHL{U}, VQSHRN,
VQSHRUN

4 2 11 1

ASIMD shift by immed VRSHR, VRSHRN 3 2 11 1

ASIMD shift by immed and insert,
basic

VSLI, VSRI 2 2 11 1

ASIMD shift by register VSHL 2 2 11 1

ASIMD shift by register VRSHL 3 2 11 1

ASIMD shift by register VQRSHL, VQSHL 4 2 11 1

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 34 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

ASIMD absolute diff SABD, UABD 3 2 11 1

ASIMD absolute diff accum SABA, UABA,
SABAL(2), UABAL(2)

4 1/2 01 -

ASIMD absolute diff long SABDL, UABDL 3 1 01 -

ASIMD arith ADD, SUB, NEG,
SHADD, UHADD,
SHSUB, UHSUB,
SRHADD, URHADD

2 2 11 1

ASIMD arith ABS, ADDP, SADDLP,
UADDLP, SQADD,
UQADD, SQNEG,
SQSUB, UQSUB,
SUQADD, USQADD

3 2 11 1

ASIMD arith SADDL(2),
UADDL(2),
SADDW(2),
UADDW(2),
SSUBL(2),
USUBL(2),
SSUBW(2),
USUBW(2),
ADDHN(2),
SUBHN(2),

3 1 01 -

ASIMD arith SQABS 4 2 11 1

ASIMD arith RADDHN(2),
RSUBHN(2)

4 1/2 01 -

ASIMD arith, reduce ADDV, SADDLV,
UADDLV

3 1 01 -

ASIMD compare CMEQ, CMGE, CMGT,
CMHI, CMHS, CMLE,
CMLT

2 2 11 1

ASIMD compare CMTST 3 2 11 1

ASIMD logical AND, BIC, EOR,
MVN, ORN, ORR

1 2 11 1

ASIMD logical MOV 2 2 11 1

ASIMD max/min, basic SMAX, SMAXP, SMIN,
SMINP, UMAX,
UMAXP, UMIN, UMINP

2 2 11 1

ASIMD max/min, reduce SMAXV, SMINV,
UMAXV, UMINV

4 1 01 -

ASIMD multiply MUL, SQDMULH,
SQRDMULH

4 2 11 1

ASIMD multiply, by element MUL, SQDMULH,
SQRDMULH

4 1 01 -

ASIMD multiply PMUL 3 2 11 1

ASIMD multiply accumulate MLA, MLS 4 (1) 2 11 1,2

ASIMD multiply accumulate, by
element

MLA, MLS 4 (1) 1 01 2

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 35 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

ASIMD multiply accumulate high half SQRDMLAH, SQRDMLSH 4 1 01 -

ASIMD multiply accumulate long SMLAL(2),
SMLSL(2),
UMLAL(2), UMLSL(2)

4 (1) 1 01 2

ASIMD multiply accumulate long SQDMLAL(2),
SQDMLSL(2)

4 1 01 -

ASIMD dot product UDOT, SDOT 4 (1) 2 11 1,3

ASIMD dot product, by scalar UDOT, SDOT 4 (1) 1 01 3

ASIMD multiply long SMULL(2),
UMULL(2),
SQDMULL(2)

4 1 01 -

ASIMD polynomial (8x8) multiply
long

PMULL.8B,
PMULL2.16B

3 1 01 4

ASIMD pairwise add and accumulate SADALP, UADALP 4 1/2 01 -

ASIMD shift accumulate SRA, USRA 3 2 11 1

ASIMD shift accumulate SRSRA, URSRA 4 1/2 01 -

ASIMD shift by immed SHL, SHRN(2), SLI,
SRI, SSHR, USHR

2 2 11 -

ASIMD shift by immed and insert SLI, SRI 2 2 11 1

ASIMD shift by immed SHLL(2), SSHLL(2),
USHLL(2), SXTL(2),
UXTL(2)

2 1 01 -

ASIMD shift by immed RSHRN(2), SRSHR,
URSHR, SQSHRN(2),
UQSHRN(2)

3 2 11 1

ASIMD shift by immed SQSHL{U}, UQSHL,
SQRSHRN(2),
UQRSHRN(2),
SQRSHRUN(2),
SQSHRUN(2)

4 2 11 1

ASIMD shift by register SSHL, USHL 2 2 11 1

ASIMD shift by register SRSHL, URSHL 3 2 11 1

ASIMD shift by register SQSHL, UQSHL,
SQRSHL, UQRSHL

4 2 11 1

Notes:

1. If the instruction has Q-form, the Q-form of the instruction can only be dual issued as instruction 0 and execution throughput is

1.

2. Multiply-accumulate pipelines support forwarding of accumulate operands from similar instructions, allowing a typical

sequence of integer multiply-accumulate instructions to issue every cycle (accumulate latency shown in parentheses).

3. Multiply-accumulate pipelines support forwarding of accumulate operands between Dot Product instructions, allowing a

sequence of Dot Product instructions to issue every cycle (accumulate latency shown in parentheses).

4. This category includes instructions of the form “PMULL Vd.8H, Vn.8B, Vm.8B” and “PMULL2 Vd.8H, Vn.16B, Vm.16B”.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 36 of 48

4.16. Advanced SIMD floating-point instructions
Instruction group AArch32 instructions Exec

latency
Execution
throughput

Dual-issue Notes

ASIMD FP arith VABS, VABD, VADD,
VPADD, VSUB

4 2 11 1

ASIMD FP compare VACGE, VACGT,
VACLE, VACLT,
VCEQ, VCGE, VCGT,
VCLE, VCLT

2 2 11 1

ASIMD FP convert, integer VCVT, VCVTA,
VCVTM, VCVTN,
VCVTP

4 2 11 1

ASIMD FP convert, fixed VCVT 4 2 11 1

ASIMD FP convert, half-precision VCVT 4 1 01

ASIMD FP max/min VMAX, VMIN, VPMAX,
VPMIN, VMAXNM,
VMINNM

4 2 11 1

ASIMD FP multiply VMUL 4 2 11 1

ASIMD FP multiply, by scalar VMUL 4 1 01

ASIMD FP multiply accumulate VMLA, VMLS 8 (4) 2 11 1,2

ASIMD FP multiply accumulate, by
scalar

VMLA, VMLS 8 (4) 1 01 1,2

ASIMD FP multiply accumulate VFMA, VFMS 4 2 11 1,2

ASIMD FP negate VNEG 4 2 11 1

ASIMD FP round to integral VRINTA, VRINTM,
VRINTN, VRINTP,
VRINTX, VRINTZ

4 2 11 1

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

ASIMD FP arith FABS, FABD,
FADD, FSUB,
FADDP

4 2 11 1

ASIMD FP compare FACGE, FACGT,
FCMEQ, FCMGE,
FCMGT, FCMLE,
FCMLT

2 2 11 1

ASIMD FP convert, long FCVTL(2) 4 1 01 -

ASIMD FP convert, narrow FCVTN(2),
FCVTXN(2)

4 1 01 -

ASIMD FP convert, other FCVTAS, VCVTAU,
FCVTMS, FCVTMU,
FCVTNS, FCVTNU,
FCVTPS, FCVTPU,
FCVTZS, FCVTZU,
SCVTF, UCVTF

4 2 11 1

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 37 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

ASIMD FP divide, H-form FDIV 8 1/5 01 2

ASIMD FP divide, S-form FDIV 13 1/10 01 2

ASIMD FP divide, D-form FDIV 22 1/19 01 2

ASIMD FP max/min, normal FMAX, FMAXNM,
FMIN, FMINNM

4 2 11 1

ASIMD FP max/min, pairwise FMAXP, FMAXNMP,
FMINP, FMINNMP

4 2 11 1

ASIMD FP max/min, reduce FMAXV, FMAXNMV,
FMINV, FMINNMV

4 1 01 -

ASIMD FP multiply FMUL, FMULX 4 2 11 1

ASIMD FP multiply, by element FMUL, FMULX 4 1 01

ASIMD FP multiply accumulate FMLA, FMLS 4 2 11 1,2

ASIMD FP multiply accumulate, by
element

FMLA, FMLS 4 1 01 -

ASIMD FP negate FNEG 4 2 11 1

ASIMD FP round FRINTA, FRINTI,
FRINTM, FRINTN,
FRINTP, FRINTX,
FRINTZ

4 2 11 1

Notes:

1. If the instruction has Q-form, the Q-form of the instruction can only be dual issued as instruction 0 and execution throughput is

1.

2. Refer to section 3.5.1 for more details.

4.17. Advanced SIMD miscellaneous instructions
Instruction group AArch32 instructions Exec

latency
Execution
throughput

Dual-issue Notes

ASIMD bitwise insert VBIF, VBIT, VBSL 2 2 11 1

ASIMD count VCLZ, VCNT 2 2 11 1

ASIMD count VCLS 3 2 11 1

ASIMD duplicate, core reg VDUP 3 2 11 3

ASIMD duplicate, scalar VDUP 2 2 11 1

ASIMD extract VEXT 2 2 11 1

ASIMD move, immed VMOV 1 2 11 1

ASIMD move, register VMOV 1 2 11 1

ASIMD move, narrowing VMOVN 2 2 11 -

ASIMD move, extract/insert VMOVX, VINS 2 2 11 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 38 of 48

Instruction group AArch32 instructions Exec
latency

Execution
throughput

Dual-issue Notes

ASIMD move, saturating VQMOVN, VQMOVUN 4 2 11 -

ASIMD reciprocal estimate VRECPE, VRSQRTE 4 2 11 1

ASIMD reciprocal step VRECPS, VRSQRTS 8 (4) 2 11 1,2

ASIMD reverse VREV16, VREV32,
VREV64

2 2 11 1

ASIMD swap, D-form VSWP 2 1 01 -

ASIMD swap, Q-form VSWP 2 1/2 01 -

ASIMD table lookup, 1/2 reg VTBL, VTBX 2 1 01 -

ASIMD table lookup, 3/4 reg VTBL, VTBX 3 1/2 01 -

ASIMD transfer, scalar to core reg VMOV 3 2 11 3

ASIMD transfer, core reg to scalar VMOV 2 2 11 3

ASIMD transpose VTRN 3 1/2 01 -

ASIMD unzip VUZP 3 1/2 01 -

ASIMD zip, D-form VZIP 2 1 01 -

ASIMD zip, Q-form VZIP 3 1/2 01 -

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

ASIMD bit reverse RBIT 2 2 11 1

ASIMD bitwise insert BIF, BIT, BSL 2 2 11 1

ASIMD count CLZ, CNT 2 2 11 1

ASIMD count CLS 3 2 11 1

ASIMD duplicate, gen reg DUP 3 2 11 3

ASIMD duplicate, element DUP 2 2 11 1

ASIMD extract EXT 2 2 11 1

ASIMD extract narrow XTN 2 2 11 -

ASIMD extract narrow, saturating SQXTN(2), SQXTUN(2),
UQXTN(2)

4 2 11 -

ASIMD insert, element to element INS 2 2 11 -

ASIMD move, integer immed MOVI 1 2 11 1

ASIMD move, FP immed FMOV 1 2 11 -

ASIMD reciprocal estimate FRECPE, FRECPX,
FRSQRTE, URECPE,
URSQRTE

4 2 11 1

ASIMD reciprocal step FRECPS, FRSQRTS 4 2 11 1

ASIMD reverse REV16, REV32, REV64 2 2 11 1

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 39 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

ASIMD table lookup TBL 2+N-1 1/N 01 2

ASIMD table lookup TBX 2+N 1/(N+1) 01 2

ASIMD transfer, element to gen
reg

SMOV, UMOV 2 2 11 -

ASIMD transfer, gen reg to
element

INS 2 2 11 3

ASIMD transpose, 64-bit (.2D) TRN1, TRN2 2 1 01 -

ASIMD transpose, other TRN1, TRN2 2 2 11 1

ASIMD unzip/zip UZP1, UZP2, ZIP1,
ZIP2

2 2 11 1

Notes:

1. If the instruction has Q-form, the Q-form of the instruction can only be dual issued as instruction 0 and execution throughput is

1.

2. For table branches (TBL and TBX), N denotes the number of registers in the table.

3. Latency number refers to the worst-case latency from the result to a dependent instruction.

4.18. Advanced SIMD load instructions

Advanced SIMD load data is available for forwarding from f4. The latency numbers shown indicate the
worst-case load-use latency from the load data to a dependent instruction. The latencies shown assume the
memory access hits in the L1 data cache.

Instruction group AArch32 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

ASIMD load, 1 element, multiple, 1 reg VLD1 3 1 11 -

ASIMD load, 1 element, multiple, 2 reg VLD1 4 1/2 01 -

ASIMD load, 1 element, multiple, 3 reg VLD1 5 1/3 01 -

ASIMD load, 1 element, multiple, 4 reg VLD1 6 1/4 01 -

ASIMD load, 1 element, one lane VLD1 3 1 01 -

ASIMD load, 1 element, all lanes VLD1 3 1 01 -

ASIMD load, 2 element, multiple, 2 reg VLD2 4 1/2 01 -

ASIMD load, 2 element, multiple, 4 reg VLD2 6 1/4 01 -

ASIMD load, 2 element, one lane VLD2 3 1 01 -

ASIMD load, 2 element, all lanes VLD2 3 1 01 -

ASIMD load, 3 element, multiple, 3 reg, size
8/16

VLD3 6 1/4 01 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 40 of 48

Instruction group AArch32 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

ASIMD load, 3 element, multiple, 3 reg, size
32

VLD3 5 1/3 01 -

ASIMD load, 3 element, one lane VLD3 4 1/2 01 -

ASIMD load, 3 element, all lanes VLD3 4 1/2 01 -

ASIMD load, 4 element, multiple, 4 reg, size
8/16

VLD4 7 1/5 01 -

ASIMD load, 4 element, multiple, 4 reg, size
32

VLD4 6 1/4 01 -

ASIMD load, 4 element, one lane VLD4 4 1/2 01 -

ASIMD load, 4 element, all lanes VLD4 4 1/2 01 -

(ASIMD load, writeback form) - (1/T) Same as
before

01 1

Instruction group AArch64 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

ASIMD load, 1 element, multiple, 1 reg, D-
form

LD1 3 1 11 -

ASIMD load, 1 element, multiple, 1 reg, Q-
form

LD1 4 1/2 01 -

ASIMD load, 1 element, multiple, 2 reg, D-
form

LD1 4 1/2 01 -

ASIMD load, 1 element, multiple, 2 reg, Q-
form

LD1 6 1/4 01 -

ASIMD load, 1 element, multiple, 3 reg, D-
form

LD1 5 1/3 01 -

ASIMD load, 1 element, multiple, 3 reg, Q-
form

LD1 8 1/6 01 -

ASIMD load, 1 element, multiple, 4 reg, D-
form

LD1 6 1/4 01 -

ASIMD load, 1 element, multiple, 4 reg, Q-
form

LD1 10 1/8 01 -

ASIMD load, 1 element, one lane LD1 3 1 01 -

ASIMD load, 1 element, all lanes LD1R 3 1 01 -

ASIMD load, 2 element, multiple, D-form LD2 4 1/2 01 -

ASIMD load, 2 element, multiple, Q-form LD2 6 1/4 01 -

ASIMD load, 2 element, one lane, B/H/S LD2 3 1 01 -

ASIMD load, 2 element, one lane, D LD2 4 1/2 01 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 41 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

ASIMD load, 2 element, all lanes, B/H/S LD2R 3 1 01 -

ASIMD load, 2 element, all lanes, D LD2R 4 1/2 01 -

ASIMD load, 3 element, multiple, D-form,
B/H

LD3 6 1/4 01 -

ASIMD load, 3 element, multiple, Q-form,
B/H

LD3 9 1/7 01 -

ASIMD load, 3 element, multiple, D-form, S LD3 5 1/3 01 -

ASIMD load, 3 element, multiple, Q-form,
S/D

LD3 8 1/6 01 -

ASIMD load, 3 element, one lane, B/H/S LD3 4 1/2 01 -

ASIMD load, 3 element, one lane, D LD3 5 1/3 01 -

ASIMD load, 3 element, all lanes, B/H/S LD3R 4 1/2 01 -

ASIMD load, 3 element, all lanes, D LD3R 5 1/3 01 -

ASIMD load, 4 element, multiple, D-form,
B/H

LD4 7 1/5 01 -

ASIMD load, 4 element, multiple, Q-form,
B/H

LD4 11 1/9 01 -

ASIMD load, 4 element, multiple, D-form, S LD4 6 1/4 01 -

ASIMD load, 4 element, multiple, Q-form,
S/D

LD4 10 1/8 01 -

ASIMD load, 4 element, one lane, B/H/S LD4 4 1/2 01 -

ASIMD load, 4 element, one lane, D LD4 6 1/4 01 -

ASIMD load, 4 element, all lanes, B/H/S LD4R 4 1/2 01 -

ASIMD load, 4 element, all lanes, D LD4R 6 1/4 01 -

(ASIMD load, writeback form) - (1/T) Same as
before

01 1

Notes:

1. Base register updates are typically completed in parallel with the load operation and with shorter latency.

4.19. Advanced SIMD store instructions

Store instructions may issue once their address operands are available and do not need to wait for data
operands. Once executed, stores are buffered and committed in the background.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 42 of 48

Instruction group AArch32 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

ASIMD store, 1 element, multiple, 1 reg VST1 1 1 11 -

ASIMD store, 1 element, multiple, 2 reg VST1 1 1 01 -

ASIMD store, 1 element, multiple, 3 reg VST1 2 1/2 01 -

ASIMD store, 1 element, multiple, 4 reg VST1 2 1/2 01 -

ASIMD store, 1 element, one lane VST1 1 1 01 -

ASIMD store, 2 element, multiple, 2 reg VST2 1 1 01 -

ASIMD store, 2 element, multiple, 4 reg VST2 2 1/2 01 -

ASIMD store, 2 element, one lane VST2 1 1 01 -

ASIMD store, 3 element, multiple, 3 reg VST3 3 1/3 01 -

ASIMD store, 3 element, one lane VST3 2 1/2 01 -

ASIMD store, 4 element, multiple, 4 reg VST4 3 1/3 01 -

ASIMD store, 4 element, one lane VST4 2 1/2 01 -

(ASIMD store, writeback form) - (1/T) Same as
before

- 1

Instruction group AArch64 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

ASIMD store, 1 element, multiple, 1 reg ST1 1 1 11 -

ASIMD store, 1 element, multiple, 2 reg, D-
form

ST1 1 1 01 -

ASIMD store, 1 element, multiple, 2 reg, Q-
form

ST1 2 1/2 01 -

ASIMD store, 1 element, multiple, 3 reg, D-
form

ST1 2 1/2 01 -

ASIMD store, 1 element, multiple, 3 reg, Q-
form

ST1 3 1/3 01 -

ASIMD store, 1 element, multiple, 4 reg, D-
form

ST1 2 1/2 01 -

ASIMD store, 1 element, multiple, 4 reg, Q-
form

ST1 4 1/4 01 -

ASIMD store, 1 element, one lane ST1 1 1 01 -

ASIMD store, 2 element, multiple, D-form ST2 1 1 01 -

ASIMD store, 2 element, multiple, Q-form ST2 2 1/2 01 -

ASIMD store, 2 element, one lane, B/H/S ST2 1 1 01 -

ASIMD store, 2 element, one lane, D ST2 2 1/2 01 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 43 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput
(T)

Dual-issue Notes

ASIMD store, 3 element, multiple, B/H/S ST3 3 1/3 01 -

ASIMD store, 3 element, multiple, D ST3 3 1/3 01 -

ASIMD store, 3 element, one lane ST3 2 1/2 01 -

ASIMD store, 4 element, multiple, D-form,
B/H/S

ST4 3 1/3 01 -

ASIMD store, 4 element, multiple, Q-form,
B/H/S

ST4 5 1/5 01 -

ASIMD store, 4 element, multiple, Q-form,
D

ST4 4 1/4 01 -

ASIMD store, 4 element, one lane, B/H ST4 2 1/2 01 -

(ASIMD store, writeback form) - (1/T) Same as
before

- 1

Notes:

1. Writeback forms of store instructions require an extra operation to update the base address. This update is typically

performed in parallel with the store operation (update latency shown in parentheses).

4.20. Cryptographic Extension
Instruction group AArch32 instructions Exec

latency
Execution
throughput

Dual-issue Notes

Crypto AES ops AESD, AESE 2 1 01 1

Crypto AES ops AESIMC, AESMC 2 1 11 -

Crypto polynomial (64x64) multiply
long

VMULL.P64 2 1 01 -

Crypto SHA1 xor ops SHA1SU0 2 1 01 -

Crypto SHA1 fast ops SHA1H, SHA1SU1 2 1 01 -

Crypto SHA1 slow ops SHA1C, SHA1M,
SHA1P

4 1 01 -

Crypto SHA256 fast ops SHA256SU0 3 1 01 -

Crypto SHA256 slow ops SHA256H, SHA256H2,
SHA256SU1

4 1 01 -

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

Crypto AES ops AESD, AESE 2 1 01 1

Crypto AES ops AESIMC, AESMC 2 1 11 -

Crypto polynomial (64x64) multiply
long PMULL(2)

2 1 01 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

4 Instruction characteristics

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 44 of 48

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

Crypto SHA1 xor ops SHA1SU0 2 1 01 -

Crypto SHA1 schedule acceleration
ops SHA1H, SHA1SU1

2 1 01 -

Crypto SHA1 hash acceleration ops SHA1C, SHA1M,
SHA1P 4 1 01 -

Crypto SHA256 schedule
acceleration op SHA256SU0

3 1 01 -

Crypto SHA256 schedule
acceleration op SHA256SU1

4 1 01 -

Crypto SHA256 hash acceleration
ops SHA256H, SHA256H2

4 1 01 -

Notes:

1. Adjacent AESE/AESMC instruction pairs and adjacent AESD/AESIMC instruction pairs can be dual-issued together.

4.21. CRC
Instruction group AArch32 instructions Exec

latency
Execution
throughput

Dual-issue Notes

CRC checksum ops CRC32B, CRC32H, CRC32CB,
CRC32CH

2 2 11 -

CRC checksum ops CRC32W, CRC32CW 1 2 11 -

Instruction group AArch64 instructions Exec
latency

Execution
throughput

Dual-issue Notes

CRC checksum ops CRC32B, CRC32H, CRC32CB,
CRC32CH, CRC32X, CRC32CX

2 2 11 -

CRC checksum ops CRC32W, CRC32CW 1 2 11 -

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0
5 General

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 45 of 48

5. General
This section covers aspects of the micro-architecture which are not related to the pipeline or branch
prediction, but will improve performance if the software is optimized accordingly.

5.1. Support for three outstanding loads

While the Cortex-A55 core does not support any instruction reordering at issue or hit-under-miss, it can
support three outstanding data cache misses. Providing that three load instructions are within four pipeline
stages of each other, if the first load misses the data cache the second and third can also lookup and, if they
both miss, generate a request to the Level 2 (L2) cache or main memory.

5.2. Automatic hardware-based prefetch

The Cortex-A55 core has a data prefetch mechanism that looks for cache line fetches with regular patterns
and automatically starts prefetching ahead. Prefetches will end once the pattern is broken, a DSB is
executed, or a WFI or WFE is executed.

For read streams the prefetcher is based on virtual addresses and so can cross page boundaries provided
that the new page is still cacheable and has read permission. Write streams are based on physical address
and so cannot cross page boundaries, however if full cache line writes are being performed then the
prefetcher will not activate and write streaming mode will be used instead.

The Cortex-A55 core is capable of tracking multiple streams in parallel.

For some types of pattern, once the prefetcher is confident in the stream it can start progressively
increasing the prefetch distance ahead of the current accesses, and these accesses will start to allocate to
the Level 3 (L3) cache rather than L1. This allows better utilization of the larger resources available at L3,
and also reduces the amount of pollution of the L1 cache if the stream ends or is incorrectly predicted. If the
prefetching to L3 was accurate then the line will be removed from L3 and allocated to L1 when the stream
reaches that address.

5.3. Software load prefetch performance

The Cortex-A55 core supports all load prefetching instructions (such as PLD and PLI). When executed
load prefetches are non-blocking so they do not stall while the data is being fetched:

• Data fetched due to a PLD is placed in the L1 data cache.

• Data fetched by a PLI is placed in the L2 cache.

• Data fetched by a PRFM instruction is placed in the cache level encoded in the instruction.

On the Cortex-A55 core it is not advisable to use explicit load prefetch instructions if the access pattern
falls within the capabilities of the hardware based prefetcher since load prefetch instructions consume an
issue slot.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0
5 General

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 46 of 48

5.4. Non-temporal loads

The Cortex-A55 core supports the Non-temporal load and store instructions in the AArch64 instruction
set. Non-temporal loads will allocate the line to the L1 cache as normal, but when the line is evicted from L1
if it is clean it will be discarded rather than allocating to L2. Non-temporal store instructions will update the
cache if they hit, but will not cause an L1 allocation if they miss. They will allocate in L2 cache.

Any memory pages marked as transient in the page tables will behave as if all accesses to that page were
Non-temporal.

5.5. Cache line size

All caches in the Cortex-A55 core implement a 64-byte cache line.

5.6. Atomics

The Cortex-A55 core supports the atomic instructions added in Armv8.1-A of the Arm architecture. For
atomics to cacheable memory, they can be performed as either near atomics or far atomics, depending on
where the cache line containing the data resides. If the atomic hits in the L1 data cache in a unique state
then it will be performed as a near atomic in the L1 memory system. If the atomic operation misses in the L1
cache, or the line is shared with another core then the atomic is sent as a far atomic out to the L3 cache. If
the operation misses everywhere within the cluster, and the system interconnect supports far atomics, then
the atomic will be passed on to the interconnect to perform the operation. If the operation hits anywhere
inside the cluster, or the interconnect does not support atomics, then the L3 memory system will perform
the atomic operation and allocated the line into the L3 cache if it is not already there. Therefore if software
wants to ensure the atomic is performed as a near atomic then it should precede the atomic instruction with
a PLDW or PRFM PSTL1KEEP instruction.

5.7. Similar instruction performance

Some instructions in the Armv8-A architecture can have similar or identical behavior as other instructions
in the ISA. For example, an LDM of two registers is functionally the same as an LDRD. In the Cortex-A55
core, from an instruction timing perspective, there are no known cases where two similar instructions with
the same result behave differently.

5.8. MemCopy performance

As the store pipeline width is 128 bits, the Cortex-A55 core will provide the highest performance if store
instructions are used that can utilize the full width of this interface. In A64 the STP instruction can
consume all 128 bits in a single-cycle and in A32/T32 only the VSTM instruction can consume all 128 bits in
a single-cycle and only if the address is 128-bits aligned.

As the load datapath width is 64 bits, all load instructions that read 64 bits of data take a single cycle to issue
if the address is 64-bit aligned and all load instructions that read 128-bits of data take two cycles to issue if
the address is 64-bit aligned. Load multiple instructions such as LDM and VLDM which architecturally
operate on 32-bit quantities can read 64-bits of data per-cycle providing the address is 64-bit aligned.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0
5 General

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 47 of 48

The Cortex-A55 core includes separate load and store pipelines, which allow it to execute a load and a store
instruction in the same cycle.

To achieve maximum throughput for memory copy (or similar loops):

• Unroll the loop to include multiple load and store operations for each iteration, minimizing the
overheads of looping.

• Use discrete, non-writeback forms of load and store instructions (such as LDRD and STRD), interleaving
them so that one load and one store operation can be performed each cycle. Avoid load-multiple/store-
multiple instruction encodings (such as LDM and STM), which lead to separated bursts of load and store
operations which might not allow concurrent use of both the load and store pipelines.

• Separate the load and corresponding store instruction by at least one other instruction to avoid
interlocks on the store source registers.

The following example shows a recommended instruction sequence for a long memory copy in the AArch64
state:

; x0 = destination pointer, aligned to 64 bytes
; x1 = source pointer, aligned to 64 bytes
; x2 = number of bytes to copy, multiple of 64 bytes

LDP x3, x4, [x1,#0x0]
LDP x5, x6, [x1,#0x10]
LDP x7, x8, [x1,#0x20]
LDP x9, x10,[x1,#0x30]
ADD x0, x0, #0x30
ADD x1, x1, #0x70

loop_start:
 STP x3, x4, [x0, #-0x30]
 SUBS x2, x2, #0x40
 LDP x3, x4, [x1, #-0x30]
 STP x5, x6, [x0, #-0x20]
 LDP x5, x6, [x1, #-0x20]
 STP x7, x8, [x0, #-0x10]
 LDP x7, x8, [x1, #-0x10]
 STP x9, x10, [x0], #0x40
 LDP x9, x10, [x1], #0x40
 B.NE loop_start

A recommended copy routine for the AArch32 state would look similar to the sequence above, but would
use the LDRD/STRD instructions.

Arm® Cortex®-A55 Software Optimization Guide ARM-EPM-128372
Issue 4.0

5 General

Copyright © 2017-2018, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 48 of 48

5.9. Conditional execution

With the exception of conditional MUL instructions (refer to section 3.4), conditional instructions have
the same performance as non-conditional instructions.

5.10. A64 low latency pointer forwarding

In the A64 instruction set the following pointer sequence is expected to be common to generate load-
store addresses:

 adrp x0, <const>
 ldrp x0, [x0, #lo12 <const>]

In the Cortex-A55 core there are dedicated forwarding paths that always allow this sequence to be
executed without incurring a dependency based stall.

5.11. Flag-transfer cost

Flag transfer from the floating-point flags to the integer flags takes a single cycle. This prevents dual-
issue of a VMRS instruction-0 with an integer flag testing instruction-1, but the integer flag testing
instruction can be issued in the next cycle.

	1. Introduction
	1.1. Product revision status
	1.2. Intended audience
	1.3. Scope
	1.4. Conventions
	1.4.1. Glossary
	1.4.2. Terms and abbreviations
	1.4.3. Typographical conventions

	1.5. Useful resources

	2. Overview
	3. Pipeline
	3.1. Pipeline overview
	3.1.1. Forwarding paths

	3.2. Dual-issue
	3.3. Load/store and address generation
	3.4. Integer divide and multiply-accumulate units
	3.5. Floating-point and NEON instructions
	3.5.1. Instructions with out-of-order completion
	3.5.2. Cryptographic instructions

	4. Instruction characteristics
	4.1. Instruction tables
	4.2. Branch instructions
	4.3. Arithmetic and logical instructions
	4.4. Move and shift instructions
	4.5. Divide and multiply instructions
	4.6. Saturating and parallel arithmetic instructions
	4.7. Miscellaneous Data-processing instructions
	4.8. Load instructions
	4.9. Store instructions
	4.10. Atomic instructions
	4.11. Floating-point data processing instructions
	4.12. Floating-point miscellaneous instructions
	4.13. Floating-point load instructions
	4.14. Floating-point store instructions
	4.15. Advanced SIMD integer instructions
	4.16. Advanced SIMD floating-point instructions
	4.17. Advanced SIMD miscellaneous instructions
	4.18. Advanced SIMD load instructions
	4.19. Advanced SIMD store instructions
	4.20. Cryptographic Extension
	4.21. CRC

	5. General
	5.1. Support for three outstanding loads
	5.2. Automatic hardware-based prefetch
	5.3. Software load prefetch performance
	5.4. Non-temporal loads
	5.5. Cache line size
	5.6. Atomics
	5.7. Similar instruction performance
	5.8. MemCopy performance
	5.9. Conditional execution
	5.10. A64 low latency pointer forwarding
	5.11. Flag-transfer cost

