

Arm® Cortex®-A715 Core

Revision: r1p3

Software Optimization Guide
Non-Confidential Issue 5.0

Copyright © 2021-2023 Arm Limited (or its affiliates).
All rights reserved.

PJDOC-466751330-556347

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 2 of 73

Arm® Cortex®-A715 Core

Software Optimization Guide

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1.0 30 April 2021 Confidential First limited access release for r0p0

2.1 30 September 2021 Confidential First early access release for r1p0

2.2 31 May 2022 Confidential First early access release for r1p1

3.0 28 June 2022 Non-Confidential Second early access release for r1p1

4.0 20 September 2022 Non-Confidential First release for r1p2

5.0 28 February 2023 Non-Confidential First release for r1p3

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, has undertaken no analysis to identify or understand the scope and content of,
patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of
the Agreement shall prevail.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 3 of 73

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
https://www.arm.com/company/policies/trademarks.

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language that can be
offensive. Arm strives to lead the industry and create change.

This document includes terms that can be offensive. We will replace these terms in a future issue of this
document. If you find offensive terms in this document, please email terms@arm.com.

https://www.arm.com/company/policies/trademarks
https://developer.arm.com/
mailto:terms@arm.com

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 4 of 73

Contents

1 Introduction ... 7

1.1 Product revision status ... 7

1.2 Intended audience ... 7

1.3 Scope ... 7

1.4 Conventions .. 7

1.4.1 Glossary ... 7

1.4.2 Terms and abbreviations ... 7

1.4.3 Typographical conventions .. 9

1.5 Useful resources .. 10

1.6 Feedback .. 11

1.6.1 Feedback on this product ... 11

1.6.2 Feedback on content ... 11

2 Overview .. 12

2.1 Pipeline overview.. 13

3 Instruction characteristics .. 15

3.1 Instruction tables .. 15

3.2 Legend for reading the utilized pipelines ... 15

3.3 Branch instructions .. 16

3.4 Arithmetic and logical instructions ... 17

3.5 Divide and multiply instructions ... 18

3.6 Pointer Authentication Instructions .. 19

3.7 Miscellaneous data-processing instructions ... 20

3.8 Load instructions ... 20

3.9 Store instructions ... 22

3.10 Tag Load Instructions .. 22

3.11 Tag Store instructions ... 23

3.12 FP data processing instructions ... 23

3.13 FP miscellaneous instructions .. 24

3.14 FP load instructions .. 25

3.15 FP store instructions .. 26

3.16 ASIMD integer instructions ... 27

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 5 of 73

3.17 ASIMD floating-point instructions ... 30

3.18 ASIMD BFloat16 (BF16) instructions ... 33

3.19 ASIMD miscellaneous instructions .. 34

3.20 ASIMD load instructions .. 36

3.21 ASIMD store instructions .. 38

3.22 Cryptography extensions .. 39

3.23 CRC .. 40

3.24 SVE Predicate instructions ... 41

3.25 SVE integer instructions... 42

3.26 SVE floating-point instructions .. 48

3.27 SVE BFloat16 (BF16) instructions .. 51

3.28 SVE Load instructions .. 51

3.29 SVE Store instructions .. 54

3.30 SVE Miscellaneous instructions ... 56

3.31 SVE Cryptographic instructions .. 57

4 Special considerations .. 58

4.1 Dispatch constraints ... 58

4.2 Optimizing general-purpose register spills and fills .. 58

4.3 Optimizing memory routines ... 59

4.4 Load/Store alignment ... 60

4.5 Store to Load Forwarding... 60

4.6 AES encryption/decryption ... 60

4.7 Region based fast forwarding .. 61

4.8 Branch instruction alignment ... 62

4.9 FPCR self-synchronization .. 62

4.10 Special register access ... 63

4.11 Instruction fusion ... 64

4.12 Zero Latency Instructions ... 65

4.13 Cache maintenance operation .. 65

4.14 Memory Tagging - Tagging Performance ... 66

4.15 Memory Tagging - Synchronous Mode .. 67

4.16 Complex ASIMD and SVE instructions .. 67

4.17 MOVPRFX fusion ... 68

Appendix A Revisions .. 72

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 6 of 73

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

1 Introduction

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 7 of 73

1 Introduction

1.1 Product revision status

The rxpy identifier indicates the revision status of the product described in this book, for example,
r1p2, where:

rx

 Identifies the major revision of the product, for example, r1.

py

 Identifies the minor revision or modification status of the product, for example, p2.

1.2 Intended audience

This document is for system designers, system integrators, and programmers who are designing or
programming a System-on-Chip (SoC) that uses an Arm core.

1.3 Scope

This document describes aspects of the Cortex-A715 core micro-architecture that influence
software performance. Micro-architectural detail is limited to that which is useful for software
optimization.

Documentation extends only to software visible behavior of the Cortex-A715 core and not to the
hardware rationale behind the behavior.

1.4 Conventions

The following subsections describe conventions used in Arm documents.

1.4.1 Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

1.4.2 Terms and abbreviations

This document uses the following terms and abbreviations.

https://developer.arm.com/glossary

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

1 Introduction

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 8 of 73

Term Meaning

ALU Arithmetic and Logical Unit

ASIMD Advanced SIMD

MOP Macro-OPeration

µOP Micro-OPeration

SQRT Square Root

FP Floating-point

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

1 Introduction

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 9 of 73

1.4.3 Typographical conventions

Convention Use

italic Introduces citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for
terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program
names, and source code.

monospace bold Denotes language keywords when used outside example code.

monospace

underline
Denotes a permitted abbreviation for a command or option. You can enter the underlined
text instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in
the Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC,
UNKNOWN, and UNPREDICTABLE.

This represents a recommendation which, if not followed, might lead to system failure or
damage.

This represents a requirement for the system that, if not followed, might result in system
failure or damage.

This represents a requirement for the system that, if not followed, will result in system
failure or damage.

This represents an important piece of information that needs your attention.

This represents a useful tip that might make it easier, better or faster to perform a task.

This is a reminder of something important that relates to the information you are reading.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

1 Introduction

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 10 of 73

1.5 Useful resources

This document contains information that is specific to this product. See the following documents for
other relevant information:

Table 1-1 Arm publications

Document name Document ID Licensee only

Arm® Architecture Reference Manual for A-profile
architecture

DDI0487 No

Arm® Cortex®-A715 Core Technical Reference
Manual

101590 No

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/101590/latest
https://developer.arm.com/documentation/101590/latest

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

1 Introduction

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 11 of 73

1.6 Feedback

Arm welcomes feedback on this product and its documentation.

1.6.1 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

1.6.2 Feedback on content

If you have comments on content, send an email to errata@arm.com and give:

• The title Arm® Cortex®-A715 Core Software Optimization Guide.

• The number PJDOC-466751330-556347.

• If applicable, the page number(s) to which your comments refer.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader and cannot guarantee the quality of
the represented document when used with any other PDF reader.

mailto:errata@arm.com?subject=Feedback%20on%20content

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

2 Overview

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 12 of 73

2 Overview
The Cortex-A715 core is a balanced-performance, low-power, and constrained area product that
implements the Armv9.0-A architecture. The Armv9.0-A architecture extends the architecture
defined in the Arm®v8-A architectures up to Arm®v8.5-A. It targets large screen compute
applications as well as smartphone applications.

The key features of Cortex-A715 core are:

• Implementation of the Armv9.0-A A64 instruction sets.

• AArch64 Execution state at all Exception levels, EL0 to EL3

• Memory Management Unit (MMU)

• 40-bit Physical Address (PA) and 48-bit Virtual Address (VA)

• Generic Interrupt Controller (GIC) CPU interface to connect to an external interrupt distributor

• Generic Timers interface that supports 64-bit count input from an external system counter

• Implementation of the Reliability, Availability, and Serviceability (RAS) Extension

• Implementation of the Scalable Vector Extension (SVE) with a 128-bit vector length and Scalable
Vector Extension 2 (SVE2)

• Integrated execution unit with Advanced Single Instruction Multiple Data (SIMD) and floating
point support

• Support for the optional Cryptographic Extension, which is licensed separately

• Activity Monitoring Unit (AMU)

• Separate L1 data and instruction caches

• Private, unified data and instruction L2 cache

• Optional error protection with parity or Error Correcting Code (ECC) allowing Single Error
Correction and Double Error Detection (SECDED) on L1 instruction and data caches, L2 cache
and L2 Translation Lookaside Buffer (TLB)

• Support for Memory System Resource Partitioning and Monitoring (MPAM)

• Armv9.0-A debug logic

• Performance Monitoring Unit (PMU)

• Embedded Trace Macrocell (ETM) with support for Embedded Trace Extension (ETE)

• Trace Buffer Extension (TRBE)

• Optional implementation of the Statistical Profiling Extension (SPE)

• Optional Embedded Logic Analyzer (ELA), ELA-600

This document describes elements of the Cortex-A715 core micro-architecture that influence
software performance so that software and compilers can be optimized accordingly.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

2 Overview

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 13 of 73

2.1 Pipeline overview

The following figure describes the high-level Cortex-A715 instruction processing pipeline.

Instructions are first fetched and then decoded into internal Macro-OPerations (MOPs).

From there, the MOPs proceed through register renaming and dispatch stages.

A MOP can be split into two Micro-OPerations (µOPs) further down the pipeline after the decode
stage. Once dispatched, µOPs wait for their operands and issue out-of-order to one of thirteen issue
pipelines.

Each issue pipeline can accept one µOP per cycle.

Figure 2-1 Cortex-A715 core pipeline

Fetch

Decode,

Rename,

Dispatch

Load/Store 1

Integer Single-Cycle 0

Integer Single-Cycle 1

Integer Single /Multi-Cycle 0

FP/ASIMD 0/Vector Store data 0

FP/ASIMD 1/Vector Store data 1

Load/Store 0

Is
su

e

IN ORDER OUT OF ORDER

Integer Single /Multi-Cycle 1

Branch 0

Branch 1

Integer Store data 0

Integer Store data 1

Load 2

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

2 Overview

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 14 of 73

The execution pipelines support different types of operations, as shown in the following table.

Table 2-1 Cortex-A715 core operations

Instruction
groups

Instructions

Branch 0/1 Branch µOPs

Integer Single-Cycle 0/1 Integer ALU µOPs

Integer Single/Multi-cycle
0/1

Integer shift-ALU, multiply, divide and CRC µOPs

Load/Store 0/1 Load, Store address generation and special memory µOPs

Load 2 Load µOPs

Integer Store data 0/1 Integer Store data µOPs

FP/ASIMD-0/Vector
Store data 0

ASIMD ALU, ASIMD misc, ASIMD integer multiply, FP convert, FP misc, FP add, FP multiply,
FP divide, FP sqrt, AES µOps, crypto µOPs, store data µOPs

FP/ASIMD-1/Vector
Store data 1

ASIMD ALU, ASIMD misc, FP misc, FP add, FP multiply, ASIMD shift µOPs, ASIMD reduction
µOPs, AES µOPs., store data µOPs

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 15 of 73

3 Instruction characteristics

3.1 Instruction tables

This chapter describes high-level performance characteristics for most Armv9-A instructions. A
series of tables summarize the effective execution latency and throughput (instruction bandwidth per
cycle), pipelines utilized, and special behaviors associated with each group of instructions. Utilized
pipelines correspond to the execution pipelines described in chapter 2.

In the tables below, Exec Latency is defined as the minimum latency seen by an operation dependent
on an instruction in the described group.

In the tables below, Execution Throughput is defined as the maximum throughput (in instructions per
cycle) of the specified instruction group that can be achieved in the entirety of the Cortex-A715 core
microarchitecture.

3.2 Legend for reading the utilized pipelines

Table 3-1 Cortex-A715 core pipeline names and symbols

Pipeline name Symbol used in tables

Branch 0/1 B

Integer single Cycle 0/1 S

Integer single Cycle 0/1 and single/multicycle 0/1 I

Integer single/multicycle 0/1 M

Integer multicycle 0 M0

Load/Store 01 L01

Load/Store 0/1 and Load 2 L

Integer Store data 0/1 ID

FP/ASIMD/Vector Store data 0/1 V

FP/ASIMD/Vector Store data 0 V0

FP/ASIMD/Vector Store data 1 V1

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 16 of 73

3.3 Branch instructions

Table 3-2 AArch64 Branch instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Branch, immed B 1 2 B -

Branch, register BR, RET 1 2 B -

Branch and link, immed BL 1 2 B, S -

Branch and link, register BLR 1 2 B, S -

Compare and branch CBZ, CBNZ, TBZ,
TBNZ

1 2 B -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 17 of 73

3.4 Arithmetic and logical instructions

Table 3-3 AArch64 Arithmetic and logical instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ALU, basic ADD, ADC, AND,
BIC, EON, EOR,
ORN, ORR, SUB,
SBC

1 4 I -

ALU, basic, flagset ADDS, ADCS,
ANDS, BICS,
SUBS, SBCS

1 4 I -

ALU, extend and shift ADD{S}, SUB{S} 2 2 M -

Arithmetic, LSL shift, shift <= 4 ADD, SUB 1 4 I -

Arithmetic, flagset, LSL shift,
shift <= 4

ADDS, SUBS 1 4 I -

Arithmetic, LSR/ASR/ROR shift
or LSL shift > 4

ADD{S}, SUB{S} 2 2 M -

Arithmetic, immediate to logical
address tag

ADDG, SUBG 1 4 I -

Conditional compare CCMN, CCMP 1 4 I -

Conditional select CSEL, CSINC,
CSINV, CSNEG

1 4 I -

Convert floating-point condition
flags

AXFLAG, XAFLAG 1 4 I -

Flag manipulation instructions SETF8, SETF16,
RMIF, CFINV

1 4 I -

Insert Random Tags IRG 2 2 M 1

Insert Tag Mask GMI 1 4 I -

Logical, shift, no flagset AND, BIC, EON,
EOR, ORN, ORR

1 4 I -

Logical, shift, flagset ANDS, BICS 2 2 M -

Subtract Pointer SUBP 1 4 I -

Subtract Pointer, flagset SUBPS 1 3 I -

Notes:

1.The latency is 2, throughput is 2 and utilized pipeline is M when GCR_EL1.RRND = 1. When GCR_EL1.RRND = 0, the
description is not valid, execution throughput and latency are degradated.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 18 of 73

3.5 Divide and multiply instructions

Table 3-4 AArch64 Divide and multiply instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Divide, W-form SDIV, UDIV 5 to 12 1/12 to 1/5 M0 1

Divide, X-form SDIV, UDIV 5 to 20 1/20 to 1/5 M0 1

Multiply accumulate, W-form MADD, MSUB 2(1) 1 M0 2, 3

Multiply accumulate, X-form MADD, MSUB 2(1) 1 M0 2, 3

Multiply accumulate long SMADDL,
SMSUBL,
UMADDL,
UMSUBL

2(1) 1 M0 2, 3

Multiply high SMULH, UMULH 3 2 M 2

Notes:

1. Integer divides are performed using an iterative algorithm and block any subsequent divide operations until complete.
Early termination is possible, depending upon the data values.

2. Multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a typical
sequence of multiply-accumulate µOPs to issue one every N cycles (accumulate latency N shown in parentheses).
Accumulator forwarding is not supported for consumers of 64 bit multiply high operations.

3. Multiply without accumulate when Ra is ZR (0'b11111), MUL, MNEG, SMULL, SMNEGL, UMULL and UMNEGL
instructions can be executed on utilized pipeline M with an execution throughput of 2.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 19 of 73

3.6 Pointer Authentication Instructions

Table 3-5 AArch64 pointer authentication instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Authenticate data address AUTDA, AUTDB,
AUTDZA,
AUTDZB

5 2 M

Authenticate instruction address AUTIA, AUTIB,
AUTIA1716,
AUTIB1716,
AUTIASP,
AUTIBSP,
AUTIAZ, AUTIBZ,
AUTIZA, AUTIZB

5 2 M 1

Branch and link, register, with
pointer authentication

BLRAA, BLRAAZ,
BLRAB, BLRABZ

6 2 M, B 1

Branch, register, with pointer
authentication

BRAA, BRAAZ,
BRAB, BRABZ

6 2 M, B 1

Branch, return, with pointer
authentication

RETA, RETB 6 2 M, B 1

Compute pointer authentication
code for data address

PACDA, PACDB,
PACDZA,
PACDZB

5 2 M 1

Compute pointer authentication
code, using generic key

PACGA 5 2 M 1

Compute pointer authentication
code for instruction address

PACIA, PACIB,
PACIA1716,
PACIB1716,
PACIASP,
PACIBSP,
PACIAZ, PACIBZ,
PACIZA, PACIZB

5 2 M 1

Load register, with pointer
authentication

LDRAA, LDRAB 9 2 M, L 1

Strip pointer authentication
code

XPACD, XPACI,
XPACLRI

2 2 M 1

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 20 of 73

3.7 Miscellaneous data-processing instructions

Table 3-6 AArch64 Miscellaneous data-processing instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Address generation ADR, ADRP 1 2 S -

Bitfield extract, one, two regs EXTR 1 4 I -

Bitfield move, basic SBFM, UBFM 1 4 I -

Bitfield move, insert BFM 1 4 I -

Count leading CLS, CLZ 1 4 I -

Move immed MOVN, MOVK,
MOVZ

1 4 I -

Reverse bits/bytes RBIT, REV,
REV16, REV32

1 4 I -

Variable shift ASRV, LSLV,
LSRV, RORV

1 4 I -

3.8 Load instructions
The latencies shown assume the memory access hits in the Level 1 Data Cache and represent the maximum latency to load

all the registers written by the instruction.

Table 3-7 AArch64 Load instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load register, literal LDR, LDRSW,
PRFM

5 2 L, S -

Load register, unscaled immed LDUR, LDURB,
LDURH, LDURSB,
LDURSH,
LDURSW,
PRFUM

4 3 L -

Load register, immed post-index LDR, LDRB,
LDRH, LDRSB,
LDRSH, LDRSW

4 3 L, I -

Load register, immed pre-index LDR, LDRB,
LDRH, LDRSB,
LDRSH, LDRSW

4 3 L, I 1

Load register, immed
unprivileged

LDTR, LDTRB,
LDTRH, LDTRSB,
LDTRSH,
LDTRSW

4 3 L -

Load register, unsigned immed LDR, LDRB,
LDRH, LDRSB,
LDRSH, LDRSW,
PRFM

4 3 L -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 21 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load register, register offset,
basic

LDR, LDRB,
LDRH, LDRSB,
LDRSH, LDRSW,
PRFM

4 3 L 2

Load register, register offset,
scale by 4/8

LDR, LDRSW,
PRFM

4 3 L 2

Load register, register offset,
scale by 2

LDRH, LDRSH 5 3 I, L 2

Load register, register offset,
extend

LDR, LDRB,
LDRH, LDRSB,
LDRSH, LDRSW,
PRFM

4 3 L 2

Load register, register offset,
extend, scale by 4/8

LDR, LDRSW,
PRFM

4 3 L 2

Load register, register offset,
extend, scale by 2

LDRH, LDRSH 5 3 I, L 2

Load pair, signed immed offset,
normal, W-form

LDP, LDNP 4 3 L -

Load pair, signed immed offset,
normal, X-form

LDP, LDNP 4 3/2 L -

Load pair, signed immed offset,
signed words

LDPSW 4 3/2 I, L -

Load pair, immed post-index or
immed pre-index, normal, W-
form

LDP 4 3 L, I -

Load pair, immed post-index or
immed pre-index, normal, X-form

LDP 4 3/2 L, I -

Load pair, immed post-index or
immed pre-index, signed words

LDPSW 4 3/2 I, L -

Notes:

1. Only Immed pre-index with write back use I pipes

2. Execution Latency is 5 and Utilized Pipelines are L, I when scale with aligned offset of 16 and 128 bits

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 22 of 73

3.9 Store instructions

The following table describes performance characteristics for standard store instructions. Stores
µOPs are split into address and data µOPs. Once executed, stores are buffered and committed in the
background.

Table 3-8 AArch64 Store instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store register, unscaled immed STUR, STURB,
STURH

1 2 L01, ID -

Store register, immed post-index STR, STRB, STRH 1 2 L01, ID, I -

Store register, immed pre-index STR, STRB, STRH 1 2 L01, ID, I -

Store register, immed
unprivileged

STTR, STTRB,
STTRH

1 2 L01, ID -

Store register, unsigned immed STR, STRB, STRH 1 2 L01, ID -

Store register, register offset,
basic

STR, STRB, STRH 1 2 L01, ID -

Store register, register offset,
scaled by 4/8

STR 1 2 L01, ID -

Store register, register offset,
scaled by 2

STRH 1 2 I, L01, ID -

Store register, register offset,
extend

STR, STRB, STRH 1 2 L01, ID -

Store register, register offset,
extend, scale by 4/8

STR 1 2 L01, ID -

Store register, register offset,
extend, scale by 2

STRH 1 2 I, L01, ID -

Store pair, immed offset STP, STNP 1 2 L01, ID -

Store pair, immed post-index STP 1 2 L01, ID, I -

Store pair, immed pre-index STP 1 2 L01, ID, I -

3.10 Tag Load Instructions

Table 3-9 AArch64 Tag load instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load allocation tag LDG 5 3 L, I -

Load multiple allocation tags LDGM 4 3 L -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 23 of 73

3.11 Tag Store instructions

Table 3-10 AArch64 Tag store instructions

Instruction Group AArch64

Instructions

Exec

Latency

Execution

Throughput

Utilized

Pipelines

Notes

Store allocation tags to one or

two granules, post-index

STG, ST2G 1 2 L01, ID, I -

Store allocation tags to one or

two granules, pre-index

STG, ST2G 1 2 L01, ID, I -

Store allocation tags to one or

two granules, signed offset

STG, ST2G 1 2 L01, ID -

Store allocation tag to one or

two granules, zeroing, post-

index

STZG, STZ2G 1 2 L01, ID, I -

Store Allocation Tag to one or

two granules, zeroing, pre-index

STZG, STZ2G 1 2 L01, ID, I -

Store allocation tag to two

granules, zeroing, signed offset

STZG, STZ2G 1 2 L01, ID -

Store allocation tag and reg pair

to memory, post-Index

STGP 1 2 L01, ID, I -

Store allocation tag and reg pair

to memory, pre-Index

STGP 1 2 L01, ID, I -

Store allocation tag and reg pair

to memory, signed offset

STGP 1 2 L01, ID -

Store multiple allocation tags STGM 1 2 L01, ID -

Store multiple allocation tags,

zeroing

STZGM 1 2 L01, ID -

3.12 FP data processing instructions

Table 3-11 AArch64 FP data processing instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP absolute value FABS, FABD 2 2 V -

FP arithmetic FADD, FSUB 2 2 V -

FP compare FCCMP{E},
FCMP{E}

2 2 V -

FP divide, H-form FDIV 7 2/7 V0 1

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 24 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP divide, S-form FDIV 7 to 10 2/9 to 2/7 V0 1

FP divide, D-form FDIV 7 to 15 1/7 to 2/7 V0 1

FP min/max FMIN, FMINNM,
FMAX, FMAXNM

2 2 V -

FP multiply FMUL, FNMUL 3 2 V 2

FP multiply accumulate FMADD, FMSUB,
FNMADD,
FNMSUB

4 (2) 2 V 3

FP negate FNEG 2 2 V -

FP round to integral FRINTA, FRINTI,
FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ,
FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z

3 1 V0 -

FP select FCSEL 2 2 V -

FP square root, H-form FSQRT 7 4/7 V0 1

FP square root, S-form FSQRT 7 to 9 1/2 to 4/7 V0 1

FP square root, D-form FSQRT 7 to 16 2/15 to 2/7 V0 1

Notes:

1. FP divide and square root operations are performed using an iterative algorithm and block subsequent similar operations
to the same pipeline until complete.

2. FP multiply-accumulate pipelines support late forwarding of the result from FP multiply µOPs to the accumulate operands
of an FP multiply-accumulate µOP. The latter can potentially be issued 1 cycle after the FP multiply µOP has been issued.

3. FP multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a typical
sequence of multiply-accumulate µOPs to issue one every N cycles (accumulate latency N shown in parentheses).

3.13 FP miscellaneous instructions

Table 3-12 AArch64 FP miscellaneous instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP convert, from gen to vec reg SCVTF, UCVTF 3 1 M0 -

FP convert, from vec to gen reg FCVTAS,
FCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS,
FCVTPU,
FCVTZS,
FCVTZU

4 1 V0 -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 25 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

FP convert, Javascript from vec
to gen reg

FJCVTZS 4 1 V0 -

FP convert, from vec to vec reg FCVT, FCVTXN 3 1 V0 -

FP move, immed FMOV 2 2 V 1

FP move, register FMOV 2 2 V 1

FP transfer, from gen to low half
of vec reg

FMOV 3 1 M0 -

FP transfer, from gen to high half
of vec reg

FMOV 5 1 M0, V -

FP transfer, from vec to gen reg FMOV 4 2 V -

Notes:

1. Particular FMOV #0 or Register to Register can be optimized in rename stage pipeline, execution latency and throughput
are then not representative.

3.14 FP load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache and represent the
maximum latency to load all the vector registers written by the instruction. Compared to standard
loads, an extra cycle is required to forward results to FP/ASIMD pipelines.

Table 3-13 AArch64 FP load instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load vector reg, literal, S/D/Q
forms

LDR 6 3 L -

Load vector reg, unscaled immed LDUR 6 3 L -

Load vector reg, immed post-
index

LDR 6 3 L, I -

Load vector reg, immed pre-
index

LDR 6 3 L, I -

Load vector reg, unsigned
immed

LDR 6 3 L -

Load vector reg, register offset,
basic

LDR 6 3 L -

Load vector reg, register offset,
scale, S/D-form

LDR 6 3 L -

Load vector reg, register offset,
scale, H/Q-form

LDR 7 3 I, L -

Load vector reg, register offset,
extend

LDR 6 3 L -

Load vector reg, register offset,
extend, scale, S/D-form

LDR 6 3 L -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 26 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load vector reg, register offset,
extend, scale, H/Q-form

LDR 7 3 I, L -

Load vector pair, immed offset,
S/D-form

LDP, LDNP 6 3 L -

Load vector pair, immed offset,
Q-form

LDP, LDNP 6 3/2 L -

Load vector pair, immed post-
index, S/D-form

LDP 6 3/2 I, L -

Load vector pair, immed post-
index, Q-form

LDP 6 3/2 L, I -

Load vector pair, immed pre-
index, S/D-form

LDP 6 3/2 I, L -

Load vector pair, immed pre-
index, Q-form

LDP 6 3/2 L, I -

3.15 FP store instructions

Stores MOPs are split into store address and store data µOPs. Once executed, stores are buffered
and committed in the background.

Table 3-14 AArch64 FP store instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store vector reg, unscaled
immed, B/H/S/D-form

STUR 3 2 L01, V -

Store vector reg, unscaled
immed, Q-form

STUR 3 2 L01, V -

Store vector reg, immed post-
index, B/H/S/D-form

STR 3 2 L01, V, I -

Store vector reg, immed post-
index, Q-form

STR 3 2 L01, V, I -

Store vector reg, immed pre-
index, B/H/S/D-form

STR 3 2 L01, V, I -

Store vector reg, immed pre-
index, Q-form

STR 3 2 L01, V, I -

Store vector reg, unsigned
immed, B/H/S/D-form

STR 3 2 L01, V -

Store vector reg, unsigned
immed, Q-form

STR 3 2 L01, V -

Store vector reg, register offset,
basic, B/H/S/D-form

STR 3 2 L01, V -

Store vector reg, register offset,
basic, Q-form

STR 3 2 L01, V -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 27 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store vector reg, register offset,
scale, H-form

STR 3 2 I, L01, V -

Store vector reg, register offset,
scale, S/D-form

STR 3 2 L01, V -

Store vector reg, register offset,
scale, Q-form

STR 3 2 I, L01, V -

Store vector reg, register offset,
extend, B/H/S/D-form

STR 3 2 L01, V -

Store vector reg, register offset,
extend, Q-form

STR 3 2 L01, V -

Store vector reg, register offset,
extend, scale, H-form

STR 3 2 I, L01, V -

Store vector reg, register offset,
extend, scale, S/D-form

STR 3 2 L01, V -

Store vector reg, register offset,
extend, scale, Q-form

STR 3 2 I, L01, V -

Store vector pair, immed offset,
S-form

STP, STNP 3 2 L01, V -

Store vector pair, immed offset,
D-form

STP, STNP 3 2 L01, V -

Store vector pair, immed offset,
Q-form

STP, STNP 3 2 L01, V -

Store vector pair, immed post-
index, S-form

STP 3 2 I, L01, V -

Store vector pair, immed post-
index, D-form

STP 3 2 I, L01, V -

Store vector pair, immed post-
index, Q-form

STP 3 2 I, L01, V -

Store vector pair, immed pre-
index, S-form

STP 3 2 I, L01, V -

Store vector pair, immed pre-
index, D-form

STP 3 2 I, L01, V -

Store vector pair, immed pre-
index, Q-form

STP 3 2 I, L01, V -

3.16 ASIMD integer instructions

Table 3-15 AArch64 ASIMD integer instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD absolute diff SABD, UABD 2 2 V -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 28 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD absolute diff accum SABA, UABA 4(1) 1 V1 2

ASIMD absolute diff accum long SABAL(2),
UABAL(2)

4(1) 1 V1 2

ASIMD absolute diff long SABDL(2),
UABDL(2)

2 2 V -

ASIMD arith, basic ABS, ADD, NEG,
SADDL(2),
SADDW(2),
SHADD, SHSUB,
SSUBL(2),
SSUBW(2), SUB,
UADDL(2),
UADDW(2),
UHADD, UHSUB,
USUBL(2),
USUBW(2)

2 2 V -

ASIMD arith, complex ADDHN(2),
RADDHN(2),
RSUBHN(2),
SQABS, SQADD,
SQNEG, SQSUB,
SRHADD,
SUBHN(2),
SUQADD,
UQADD, UQSUB,
URHADD,
USQADD

2 2 V -

ASIMD arith, pair-wise ADDP, SADDLP,
UADDLP

2 2 V -

ASIMD arith, reduce, 4H/4S ADDV, SADDLV,
UADDLV

3 1 V1 -

ASIMD arith, reduce, 8B/8H ADDV, SADDLV,
UADDLV

5 1 V1, V -

ASIMD arith, reduce, 16B ADDV, SADDLV,
UADDLV

6 1/2 V1 -

ASIMD compare CMEQ, CMGE,
CMGT, CMHI,
CMHS, CMLE,
CMLT, CMTST

2 2 V -

ASIMD dot product SDOT, UDOT 3 (1) 2 V 2

ASIMD dot product using signed
and unsigned integers

SUDOT, USDOT 3(1) 2 V 2

ASIMD logical AND, BIC, EOR,
MOV, MVN, NOT,
ORN, ORR

2 2 V -

ASIMD matrix multiply-
accumulate

SMMLA, UMMLA,
USMMLA

3(1) 2 V 2

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 29 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD max/min, basic and pair-
wise

SMAX, SMAXP,
SMIN, SMINP,
UMAX, UMAXP,
UMIN, UMINP

2 2 V -

ASIMD max/min, reduce, 4H/4S SMAXV, SMINV,
UMAXV, UMINV

3 1 V1 -

ASIMD max/min, reduce, 8B/8H SMAXV, SMINV,
UMAXV, UMINV

5 1 V1, V -

ASIMD max/min, reduce, 16B SMAXV, SMINV,
UMAXV, UMINV

6 1/2 V1 -

ASIMD multiply MUL, SQDMULH,
SQRDMULH

4 1 V0 -

ASIMD multiply accumulate MLA, MLS 4(1) 1 V0 1

ASIMD multiply accumulate high SQRDMLAH,
SQRDMLSH

4(2) 1 V0 1

ASIMD multiply accumulate long SMLAL(2),
SMLSL(2),
UMLAL(2),
UMLSL(2)

4(1) 1 V0 1

ASIMD multiply accumulate
saturating long

SQDMLAL(2),
SQDMLSL(2)

4(2) 1 V0 1

ASIMD multiply/multiply long
(8x8) polynomial, D-form

PMUL, PMULL(2) 3 1 V0 3

ASIMD multiply/multiply long
(8x8) polynomial, Q-form

PMUL, PMULL(2) 3 1 V0 3

ASIMD multiply long SMULL(2),
UMULL(2),
SQDMULL(2)

3 2 V -

ASIMD pairwise add and
accumulate long

SADALP,
UADALP

4(1) 1 V1 2

ASIMD shift accumulate SSRA, SRSRA,
USRA, URSRA

4(1) 1 V1 2

ASIMD shift by immed, basic SHL, SHLL(2),
SHRN(2),
SSHLL(2), SSHR,
SXTL(2),
USHLL(2), USHR,
UXTL(2)

2 1 V1 -

ASIMD shift by immed and
insert, basic

SLI, SRI 2 1 V1 -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 30 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD shift by immed, complex RSHRN(2),
SQRSHRN(2),
SQRSHRUN(2),
SQSHL{U},
SQSHRN(2),
SQSHRUN(2),
SRSHR,
UQRSHRN(2),
UQSHL,
UQSHRN(2),
URSHR

4 1 V1 -

ASIMD shift by register, basic SSHL, USHL 2 1 V1 -

ASIMD shift by register, complex SRSHL, SQRSHL,
SQSHL, URSHL,
UQRSHL, UQSHL

4 1 V1 -

Notes:

1. Multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a typical
sequence of integer multiply-accumulate µOPs to issue one every cycle or one every other cycle (accumulate latency shown
in parentheses).

2. Other accumulate pipelines also support late-forwarding of accumulate operands from similar µOPs, allowing a typical
sequence of such µOPs to issue one every cycle (accumulate latency shown in parentheses).

3. This category includes instructions of the form “PMULL Vd.8H, Vn.8B, Vm.8B” and “PMULL2 Vd.8H, Vn.16B, Vm.16B”.

3.17 ASIMD floating-point instructions

Table 3-16 AArch64 ASIMD floating-point instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD FP absolute
value/difference

FABS, FABD 2 2 V -

ASIMD FP arith, normal FADD, FSUB 2 2 V -

ASIMD FP compare FACGE, FACGT,
FCMEQ, FCMGE,
FCMGT, FCMLE,
FCMLT

2 2 V -

ASIMD FP complex add FCADD 3 2 V -

ASIMD FP complex multiply add FCMLA 4 2 V

ASIMD FP convert, long (F16 to
F32)

FCVTL(2) 4 1/2 V0 -

ASIMD FP convert, long (F32 to
F64)

FCVTL(2) 3 1 V0 -

ASIMD FP convert, narrow (F32
to F16)

FCVTN(2) 4 1/2 V0 -

ASIMD FP convert, narrow (F64
to F32)

FCVTN(2),
FCVTXN(2)

3 1 V0 -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 31 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD FP convert, other, D-
form F32 and Q-form F64

FCVTAS,
FCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS,
FCVTPU,
FCVTZS,
FCVTZU, SCVTF,
UCVTF

3 1 V0 -

ASIMD FP convert, other, D-
form F16 and Q-form F32

FCVTAS,
VCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS,
FCVTPU,
FCVTZS,
FCVTZU, SCVTF,
UCVTF

4 1/2 V0 -

ASIMD FP convert, other, Q-
form F16

FCVTAS,
VCVTAU,
FCVTMS,
FCVTMU,
FCVTNS,
FCVTNU,
FCVTPS,
FCVTPU,
FCVTZS,
FCVTZU, SCVTF,
UCVTF

6 1/4 V0 -

ASIMD FP divide, D-form, F16 FDIV 7 1/7 V0 3

ASIMD FP divide, D-form, F32 FDIV 7 to 10 2/9 to 2/7 V0 3

ASIMD FP divide, Q-form, F16 FDIV 10 to 13 1/13 to 1/10 V0 3

ASIMD FP divide, Q-form, F32 FDIV 7 to 10 1/9 to 1/7 V0 3

ASIMD FP divide, Q-form, F64 FDIV 7 to 15 1/14 to 1/7 V0 3

ASIMD FP max/min, normal FMAX, FMAXNM,
FMIN, FMINNM

2 2 V -

ASIMD FP arith, max/min,
pairwise

FADDP, FMAXP,
FMAXNMP,
FMINP,
FMINNMP

3 2 V -

ASIMD FP max/min, reduce, F32
and D-form F16

FMAXV,
FMAXNMV,
FMINV,
FMINNMV

4 1 V -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 32 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD FP max/min, reduce, Q-
form F16

FMAXV,
FMAXNMV,
FMINV,
FMINNMV

6

2/3

V -

ASIMD FP multiply FMUL, FMULX 3 2 V 2

ASIMD FP multiply accumulate FMLA, FMLS 4(2) 2 V 1

ASIMD FP multiply accumulate
long

FMLAL(2),
FMLSL(2)

4(2) 2 V 1

ASIMD FP negate FNEG 2 2 V -

ASIMD FP round, D-form F32
and Q-form F64

FRINTA, FRINTI,
FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ,

FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z

3 1 V0 -

ASIMD FP round, D-form F16
and Q-form F32

FRINTA, FRINTI,
FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ,
FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z

4 1/2 V0 -

ASIMD FP round, Q-form F16 FRINTA, FRINTI,
FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ,
FRINT32X,
FRINT64X,
FRINT32Z,
FRINT64Z

6 1/4 V0 -

ASIMD FP square root, D-form,
F16

FSQRT 7 1/7 V0 3

ASIMD FP square root, D-form,
F32

FSQRT 7 to 10 2/9 to 2/7 V0 3

ASIMD FP square root, Q-form,
F16

FSQRT 11 to 13 1/13 to 1/11 V0 3

ASIMD FP square root, Q-form,
F32

FSQRT 7 to 10 1/9 to 1/7 V0 3

ASIMD FP square root, Q-form,
F64

FSQRT 7 to 16 1/15 to 1/7 V0 3

Notes:

1. ASIMD multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a
typical sequence of floating-point multiply-accumulate µOPs to issue one every N cycles (accumulate latency N shown in
parentheses).

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 33 of 73

2. ASIMD multiply-accumulate pipelines support late forwarding of the result from ASIMD FP multiply µOPs to the
accumulate operands of an ASIMD FP multiply-accumulate µOP. The latter can potentially be issued 1 cycle after the
ASIMD FP multiply µOP has been issued.

3. ASIMD divide and square root operations are performed using an iterative algorithm and block subsequent similar
operations to the same pipeline until complete.

3.18 ASIMD BFloat16 (BF16) instructions

Table 3-17 AArch64 ASIMD BFloat (BF16) instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD convert, F32 to BF16 BFCVTN,
BFCVTN2

4 1/2 V0 -

ASIMD dot product BFDOT 4(2) 2 V 1

ASIMD matrix multiply
accumulate

BFMMLA 5(3) 2 V 1

ASIMD multiply accumulate long BFMLALB,
BFMLALT

4(2) 2 V 1

Scalar convert, F32 to BF16 BFCVT 3 1 V0 -

Notes:

1. ASIMD pipelines that execute these instructions support late-forwarding of accumulate operands from similar µOPs,
allowing a typical sequence of µOPs to issue one every N cycles (accumulate latency N shown in parentheses).

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 34 of 73

3.19 ASIMD miscellaneous instructions

Table 3-18 AArch64 ASIMD miscellaneous instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD bit reverse RBIT 2 2 V 2

ASIMD bitwise insert BIF, BIT, BSL 2 2 V

ASIMD count CLS, CLZ, CNT 2 2 V -

ASIMD duplicate, gen reg DUP 3 1 M0 -

ASIMD duplicate, element DUP 2 2 V 2

ASIMD extract EXT 2 2 V 2

ASIMD extract narrow XTN(2) 2 2 V

ASIMD extract narrow,
saturating

SQXTN(2),
SQXTUN(2),
UQXTN(2)

4 1 V1 -

ASIMD insert, element to
element

INS 2 2 V 2

ASIMD move, FP immed FMOV 2 2 V 1

ASIMD move, integer immed MOVI, MVNI 2 2 V -

ASIMD reciprocal and square
root estimate, D-form U32

URECPE,
URSQRTE

3 1 V0 -

ASIMD reciprocal and square
root estimate, Q-form U32

URECPE,
URSQRTE

4 1/2 V0 -

ASIMD reciprocal and square
root estimate, D-form F32 and
scalar forms

FRECPE,
FRSQRTE

3 1 V0 -

ASIMD reciprocal and square
root estimate, D-form F16 and
Q-form F32

FRECPE,
FRSQRTE

4 1/2 V0 -

ASIMD reciprocal and square
root estimate, Q-form F16

FRECPE,
FRSQRTE

6 1/4 V0 -

ASIMD reciprocal exponent FRECPX 3 1 V0

ASIMD reciprocal step FRECPS,
FRSQRTS

4 2 V -

ASIMD reverse REV16, REV32,
REV64

2 2 V 2

ASIMD table lookup, 1 or 2 table
regs

TBL 2 2 V 2

ASIMD table lookup, 3 table regs TBL 4 1 V 2

ASIMD table lookup, 4 table regs TBL 4 2/3 V 2

ASIMD table lookup extension, 1
table reg

TBX 2 2 V 2

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 35 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD table lookup extension, 2
table reg

TBX 4 1 V 2

ASIMD table lookup extension, 3
table reg

TBX 6 2/3 V 2

ASIMD table lookup extension, 4
table reg

TBX 6 1/2 V 2

ASIMD transfer, element to gen
reg

UMOV, SMOV 2 1 V -

ASIMD transfer, gen reg to
element

INS 5 1 M0, V

ASIMD transpose TRN1, TRN2 2 2 V 2

ASIMD unzip/zip UZP1, UZP2,
ZIP1, ZIP2

2 2 V 2

Notes:

1. Particular FMOV #0 or Register to Register can be optimized in rename stage pipeline, execution latency and throughput
are then not representative.

2 PERM instructions part of a particular region forwarding

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 36 of 73

3.20 ASIMD load instructions

 The latencies shown assume the memory access hits in the Level 1 Data Cache and represent the
maximum latency to load all the vector registers written by the instruction. Compared to standard
loads, an extra cycle is required to forward results to FP/ASIMD pipelines.

Table 3-19 AArch64 ASIMD load instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 1 element, multiple,
1 reg, D-form

LD1 6 3 L -

ASIMD load, 1 element, multiple,
1 reg, Q-form

LD1 6 3 L -

ASIMD load, 1 element, multiple,
2 reg, D-form

LD1 6 3/2 L -

ASIMD load, 1 element, multiple,
2 reg, Q-form

LD1 6 3/2 L -

ASIMD load, 1 element, multiple,
3 reg, D-form

LD1 6 1 L -

ASIMD load, 1 element, multiple,
3 reg, Q-form

LD1 6 1 L -

ASIMD load, 1 element, multiple,
4 reg, D-form

LD1 7 3/4 L -

ASIMD load, 1 element, multiple,
4 reg, Q-form

LD1 7 3/4 L -

ASIMD load, 1 element, one lane,
B/H/S

LD1 8 2 L, V -

ASIMD load, 1 element, one lane,
D

LD1 8 2 L, V -

ASIMD load, 1 element, all lanes,
D-form, B/H/S

LD1R 6 3 L -

ASIMD load, 1 element, all lanes,
D-form, D

LD1R 6 3 L -

ASIMD load, 1 element, all lanes,
Q-form

LD1R 6 3 L -

ASIMD load, 2 element, multiple,
D-form, B/H/S

LD2 8 2 L, V -

ASIMD load, 2 element, multiple,
Q-form, B/H/S

LD2 8 3/2 L, V -

ASIMD load, 2 element, multiple,
Q-form, D

LD2 8 3/2 L, V -

ASIMD load, 2 element, one lane,
B/H

LD2 8 2 L, V -

ASIMD load, 2 element, one lane,
S

LD2 8 2 L, V -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 37 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 2 element, one lane,
D

LD2 8 2 L, V -

ASIMD load, 2 element, all lanes,
D-form, B/H/S

LD2R 6 3/2 L -

ASIMD load, 2 element, all lanes,
D-form, D

LD2R 6 3/2 L -

ASIMD load, 2 element, all lanes,
Q-form

LD2R 6 3/2 L -

ASIMD load, 3 element, multiple,
D-form, B/H/S

LD3 8 2/3 L, V -

ASIMD load, 3 element, multiple,
Q-form, B/H/S

LD3 10 2/3 L, V -

ASIMD load, 3 element, multiple,
Q-form, D

LD3 10 2/3 L, V -

ASIMD load, 3 element, one lane,
B/H

LD3 8 2/3 L, V -

ASIMD load, 3 element, one lane,
S

LD3 8 2/3 L, V -

ASIMD load, 3 element, one lane,
D

LD3 8 2/3 L, V -

ASIMD load, 3 element, all lanes,
D-form, B/H/S

LD3R 6 1 L -

ASIMD load, 3 element, all lanes,
D-form, D

LD3R 6 1 L -

ASIMD load, 3 element, all lanes,
Q-form, B/H/S

LD3R 6 1 L -

ASIMD load, 3 element, all lanes,
Q-form, D

LD3R 6 1 L -

ASIMD load, 4 element, multiple,
D-form, B/H/S

LD4 8 1/2 L, V -

ASIMD load, 4 element, multiple,
Q-form, B/H/S

LD4 8 1/2 L, V -

ASIMD load, 4 element, multiple,
Q-form, D

LD4 8 1/2 L, V -

ASIMD load, 4 element, one lane,
B/H

LD4 8 1/2 L, V -

ASIMD load, 4 element, one lane,
S

LD4 8 1/2 L, V -

ASIMD load, 4 element, one lane,
D

LD4 8 1/2 L, V -

ASIMD load, 4 element, all lanes,
D-form, B/H/S

LD4R 8 2/3 L, V -

ASIMD load, 4 element, all lanes,
D-form, D

LD4R 8 1/2 L, V -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 38 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD load, 4 element, all lanes,
Q-form, B/H/S

LD4R 8 2/3 L, V -

ASIMD load, 4 element, all lanes,
Q-form, D

LD4R 8 1/2 L, V -

(ASIMD load, writeback form) - - - I 1

Notes:

1. Writeback forms of load instructions require an extra µOP to update the base address. This update is typically performed
in parallel with the load µOP.

3.21 ASIMD store instructions

Stores MOPs are split into store address and store data µOPs. Once executed, stores are buffered
and committed in the background.

Table 3-20 AArch64 ASIMD store instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD store, 1 element,
multiple, 1 reg, D-form

ST1 3 2 L01, V -

ASIMD store, 1 element,
multiple, 1 reg, Q-form

ST1 3 2 L01, V -

ASIMD store, 1 element,
multiple, 2 reg, D-form

ST1 3 2 L01, V -

ASIMD store, 1 element,
multiple, 2 reg, Q-form

ST1 3 2 L01, V -

ASIMD store, 1 element,
multiple, 3 reg, D-form

ST1 3 1 L01, V -

ASIMD store, 1 element,
multiple, 3 reg, Q-form

ST1 3 1 L01, V -

ASIMD store, 1 element,
multiple, 4 reg, D-form

ST1 3 1 L01, V -

ASIMD store, 1 element,
multiple, 4 reg, Q-form

ST1 3 1 L01, V -

ASIMD store, 1 element, one
lane, B/H/S

ST1 3 2 L01, V -

ASIMD store, 1 element, one
lane, D

ST1 3 2 L01, V -

ASIMD store, 2 element,
multiple, D-form, B/H/S

ST2 3 2 V, L01 -

ASIMD store, 2 element,
multiple, Q-form, B/H/S

ST2 3 2 V, L01 -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 39 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

ASIMD store, 2 element,
multiple, Q-form, D

ST2 3 2 V, L01 -

ASIMD store, 2 element, one
lane, B/H/S

ST2 3 2 V, L01 -

ASIMD store, 2 element, one
lane, D

ST2 3 2 V, L01 -

ASIMD store, 3 element,
multiple, D-form, B/H/S

ST3 5 1 V, L01 -

ASIMD store, 3 element,
multiple, Q-form, B/H/S

ST3 5 2/3 V, L01 -

ASIMD store, 3 element,
multiple, Q-form, D

ST3 3 2/3 V, L01 -

ASIMD store, 3 element, one
lane, B/H

ST3 3 1 V, L01 -

ASIMD store, 3 element, one
lane, S

ST3 3 1 V, L01 -

ASIMD store, 3 element, one
lane, D

ST3 3 1 V, L01 -

ASIMD store, 4 element,
multiple, D-form, B/H/S

ST4 5 1 V, L01 -

ASIMD store, 4 element,
multiple, Q-form, B/H/S

ST4 5 1/2 V, L01 -

ASIMD store, 4 element,
multiple, Q-form, D

ST4 3 1 V, L01 -

ASIMD store, 4 element, one
lane, B/H/S

ST4 3 1 V, L01 -

ASIMD store, 4 element, one
lane, D

ST4 3 1 V, L01 -

(ASIMD store, writeback form) - - - I 1

Notes:

1. Writeback forms of store instructions require an extra µOP to update the base address. This update is typically
performed in parallel with the store µOP (update latency shown in parentheses).

3.22 Cryptography extensions

Table 3-21 AArch64 Cryptography extensions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Crypto AES ops AESD, AESE,
AESIMC, AESMC

2 2 V -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 40 of 73

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Crypto polynomial (64x64)
multiply long

PMULL (2) 2 1 V0 -

Crypto SHA1 hash acceleration
op

SHA1H 2 1 V0 -

Crypto SHA1 hash acceleration
ops

SHA1C, SHA1M,
SHA1P

4 1 V0 -

Crypto SHA1 schedule
acceleration ops

SHA1SU0,
SHA1SU1

2 1 V0 -

Crypto SHA256 hash
acceleration ops

SHA256H,
SHA256H2

4 1 V0 -

Crypto SHA256 schedule
acceleration ops

SHA256SU0,
SHA256SU1

2 1 V0 -

Crypto SHA512 hash
acceleration ops

SHA512H,
SHA512H2,
SHA512SU0,
SHA512SU1

2 1 V0 -

Crypto SHA3 ops BCAX, EOR3,
RAX1, XAR

2 1 V0 -

Crypto SM3 ops SM3PARTW1,
SM3PARTW2SM
3SS1, SM3TT1A,
SM3TT1B,
SM3TT2A,
SM3TT2B

2 1 V0 -

Crypto SM4 ops SM4E, SM4EKEY 4 1 V0 -

Notes:

1. Adjacent AESE/AESMC instruction pairs and adjacent AESD/AESIMC instruction pairs will exhibit the performance
characteristics described in Section 4.6.

3.23 CRC

Table 3-22 AArch64 CRC

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

CRC checksum ops CRC32, CRC32C 2 1 M0 1

Notes:

1. CRC execution supports late forwarding of the result from a producer µOP to a consumer µOP. This results in a 1 cycle
reduction in latency as seen by the consumer.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 41 of 73

3.24 SVE Predicate instructions

Table 3-23 SVE Predicate Instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Loop control, based on predicate BRKA, BRKB 2 2 M 1

Loop control, based on predicate
and flag setting

BRKAS, BRKBS 2 2 M 1

Loop control, propagating BRKN, BRKPA,
BRKPB

2 2 M 1

Loop control, propagating and
flag setting

BRKNS, BRKPAS,
BRKPBS

2 2 M 1

Loop control, based on GPR WHILEGE,
WHILEGT,
WHILEHI,
WHILEHS,
WHILELE,
WHILELO,
WHILELS,
WHILELT,
WHILERW,
WHILEWR

2 2 M -

Loop terminate CTERMEQ,
CTERMNE

1 2 M -

Predicate counting scalar ADDPL, ADDVL,
CNTB, CNTH,
CNTW, CNTD,
DECB, DECH,
DECW, DECD,
INCB, INCH,
INCW, INCD,
RDVL, SQDECB,
SQDECH,
SQDECW,
SQDECD,
SQINCB,
SQINCH,
SQINCW,
SQINCD,
UQDECB,
UQDECH,
UQDECW,
UQDECD,
UQINCB,
UQINCH,
UQINCW,
UQINCD

1 4 I -

Predicate counting scalar,

ALL, {1,2,4}

INC, DEC 1 4 I

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 42 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Predicate counting scalar, active
predicate

CNTP, DECP,
INCP, SQDECP,
SQINCP,
UQDECP,
UQINCP

2 2 M -

Predicate counting vector, active
predicate

DECP, INCP,
SQDECP,
SQINCP,
UQDECP,
UQINCP

7 1 M, M0, V -

Predicate logical AND, BIC, EOR,
MOV, NAND,
NOR, NOT, ORN,
ORR

1 2 M

Predicate logical, flag setting ANDS, BICS,
EORS, MOV,
NANDS, NORS,
NOTS, ORNS,
ORRS

1 2 M

Predicate reverse REV 2 2 M -

Predicate select SEL 1 2 M -

Predicate set PFALSE, PTRUE 2 2 M 1

Predicate set/initialize, set flags PTRUES 2 2 M 1

Predicate find first/next PFIRST, PNEXT 2 2 M -

Predicate test PTEST 1 2 M -

Predicate transpose TRN1, TRN2 2 2 M -

Predicate unpack and widen PUNPKHI,
PUNPKLO

2 2 M -

Predicate zip/unzip ZIP1, ZIP2, UZP1,
UZP2

2 2 M -

Notes:

1. Operation leading to all, none element active are optimized in rename stage pipeline, execution latency and throughput
are then not representative.

3.25 SVE integer instructions

Table 3-24 SVE integer instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Arithmetic, absolute diff SABD, UABD 2 2 V -

Arithmetic, absolute diff accum SABA, UABA 4(1) 1 V1 1

Arithmetic, absolute diff accum
long

SABALB, SABALT,
UABALB,
UABALT

4(1) 1 V1 1

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 43 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Arithmetic, absolute diff long SABDLB,
SABDLT,
UABDLB,
UABDLT

2 2 V -

Arithmetic, basic ABS, ADD, ADR,
CNOT, NEG,
SADDLB,
SADDLBT,
SADDLT,
SADDWB,
SADDWT,
SHADD, SHSUB,
SHSUBR,
SSUBLB,
SSUBLBT,
SSUBLT,
SSUBLTB,
SSUBWB,
SSUBWT, SUB,
SUBHNB,
SUBHNT, SUBR,
UADDLB,
UADDLT,
UADDWB,
UADDWT,
UHADD, UHSUB,
UHSUBR,
USUBLB,
USUBLT,
USUBWB,
USUBWT

2 2 V -

Arithmetic, complex ADDHNB,
ADDHNT,
RADDHNB,
RADDHNT,
RSUBHNB,
RSUBHNT,
SQABS, SQADD,
SQNEG, SQSUB,
SQSUBR,
SRHADD,
SUQADD,
UQADD, UQSUB,
UQSUBR,
USQADD,
URHADD

2 2 V -

Arithmetic, large integer ADCLB, ADCLT,
SBCLB, SBCLT

2 2 V -

Arithmetic, pairwise add ADDP 2 2 V -

Arithmetic, pairwise add and
accum long

SADALP,
UADALP

4(1) 1 V1 1

Arithmetic, shift ASR, ASRR, LSL,
LSLR, LSR, LSRR

2 1 V1 -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 44 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Arithmetic, shift and accumulate SRSRA, SSRA,
URSRA, USRA

4(1) 1 V1 1

Arithmetic, shift by immediate SHRNB, SHRNT,
SSHLLB, SSHLLT,
USHLLB, USHLLT

2 1 V1 -

Arithmetic, shift by immediate
and insert

SLI, SRI 2 1 V1 -

Arithmetic, shift complex RSHRNB,
RSHRNT,
SQRSHL,
SQRSHLR,
SQRSHRNB,
SQRSHRNT,
SQRSHRUNB,
SQRSHRUNT,
SQSHL, SQSHLR,
SQSHLU,
SQSHRNB,
SQSHRNT,
SQSHRUNB,
SQSHRUNT,
UQRSHL,
UQRSHLR,
UQRSHRNB,
UQRSHRNT,
UQSHL, UQSHLR,
UQSHRNB,
UQSHRNT

4 1 V1 -

Arithmetic, shift right for divide ASRD 4 1 V1 -

Arithmetic, shift rounding SRSHL, SRSHLR,
SRSHR, URSHL,
URSHLR, URSHR

4 1 V1 -

Bit manipulation BDEP, BEXT,
BGRP

4 1/2 V0 -

Bitwise select BSL, BSL1N,
BSL2N, NBSL

2 2 V -

Count/reverse bits CLS, CLZ, CNT,
RBIT

2 2 V -

Broadcast logical bitmask
immediate to vector

DUPM, MOV 2 2 V -

Compare and set flags CMPEQ, CMPGE,
CMPGT, CMPHI,
CMPHS, CMPLE,
CMPLO, CMPLS,
CMPLT, CMPNE

2 2 V

Complex add CADD, SQCADD 2 2 V -

Complex dot product 8-bit
element

CDOT 3(1) 2 V 1

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 45 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Complex dot product 16-bit
element

CDOT 4(1) 1 V0 1

Complex multiply-add B, H, S
element size

CMLA 4(1) 1 V0 1

Complex multiply-add D
element size

CMLA 5(3) 1/2 V0 1

Conditional extract operations,
scalar form

CLASTA, CLASTB 9 1 M0, V -

Conditional extract operations,
SIMD&FP scalar and vector
forms

CLASTA, CLASTB,
COMPACT,
SPLICE

2 2 V -

Convert to floating point, 64b to
float or convert to double

SCVTF, UCVTF 3 1 V0 -

Convert to floating point, 32b to
single or half

SCVTF, UCVTF 4 1/2 V0 -

Convert to floating point, 16b to
half

SCVTF, UCVTF 6 1/4 V0 -

Copy, scalar CPY 5 1 M0, V

Copy, scalar SIMD&FP or imm CPY 2 2 V

Divides, 32 bit SDIV, SDIVR,
UDIV, UDIVR

7 to 12 1/11 to 1/7 V0 2

Divides, 64 bit SDIV, SDIVR,
UDIV, UDIVR

7 to 20 1/20 to 1/7 V0 2

Dot product, 8 bit SDOT, UDOT 3(1) 2 V 1

Dot product, 8 bit, using signed
and unsigned integers

SUDOT, USDOT 3(1) 2 V 1

Dot product, 16 bit SDOT, UDOT 4(1) 1 V0 1

Duplicate, immediate and
indexed form

DUP, MOV 2 2 V -

Duplicate, scalar form DUP, MOV 3 1 M0 -

Extend, sign or zero SXTB, SXTH,
SXTW, UXTB,
UXTH, UXTW

2 1 V1 -

Extract EXT 2 2 V -

Extract narrow saturating SQXTNB,
SQXTNT,
SQXTUNB,
SQXTUNT,
UQXTNB,
UQXTNT

4 1 V1 -

Extract/insert operation, SIMD
and FP scalar form

LASTA, LASTB,
INSR

2 2 V -

Extract/insert operation, scalar LASTA, LASTB,
INSR

6 2 V -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 46 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Histogram operations HISTCNT,
HISTSEG

2 2 V -

Horizontal operations, B, H, S
form, immediate operands only

INDEX 2 2 V -

Horizontal operations, B, H, S
form, scalar, immediate
operands)/ scalar operands only
/ immediate, scalar operands

INDEX 5 1 M0, V -

Horizontal operations, D form,
immediate operands only

INDEX 2 2 V -

Horizontal operations, D form,
scalar, immediate operands)/
scalar operands only /
immediate, scalar operands

INDEX 5 1 M0, V -

Logical AND, BIC, EON,
EOR, EORBT,
EORTB, MOV,
NOT, ORN, ORR

2 2 V -

Max/min, basic and pairwise SMAX, SMAXP,
SMIN, SMINP,
UMAX, UMAXP
UMIN, UMINP

2 2 V -

Matching operations MATCH,
NMATCH

2 2 V

Matrix multiply-accumulate SMMLA, UMMLA,
USMMLA

3(1) 2 V 1

Move prefix MOVPRFX 2 2 V -

Multiply, B, H, S element size MUL, SMULH,
UMULH

4 1 V0 -

Multiply, D element size MUL, SMULH,
UMULH

5 1/2 V0 -

Multiply long SMULLB,
SMULLT,
UMULLB,
UMULLT

4 1 V0 -

Multiply accumulate, B, H, S
element size

MLA, MLS 4(1) 1 V0 1

Multiply accumulate, D element
size

MLA, MLS, MAD,
MSB,

5(3) 1/2 V0 1

Multiply accumulate long SMLALB,
SMLALT,
SMLSLB, SMLSLT,
UMLALB,
UMLALT,
UMLSLB,
UMLSLT

4(1) 1 V0 1

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 47 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Multiply accumulate saturating
doubling long regular

SQDMLALB,
SQDMLALT,
SQDMLALBT,
SQDMLSLB,
SQDMLSLT,
SQDMLSLBT

4(2) 1 V0 3

Multiply saturating doubling
high, B, H, S element size

SQDMULH 4 1 V0 -

Multiply saturating doubling
high, D element size

SQDMULH 5 1/2 V0 -

Multiply saturating doubling
long

SQDMULLB,
SQDMULLT

4 1 V0 -

Multiply saturating rounding
doubling regular/complex
accumulate, B, H, S element size

SQRDMLAH,
SQRDMLSH,
SQRDCMLAH

4(2) 1 V0 3

Multiply saturating rounding
doubling regular/complex
accumulate, D element size

SQRDMLAH,
SQRDMLSH,
SQRDCMLAH

5(3) 1/2 V0 3

Multiply saturating rounding
doubling regular/complex, B, H,
S element size

SQRDMULH 4 1 V0 -

Multiply saturating rounding
doubling regular/complex, D
element size

SQRDMULH 5 1/2 V0 -

Multiply/multiply long, (8x8)
polynomial

PMUL, PMULLB,
PMULLT

2 1 V0 -

Predicate counting vector CNT, DECB,
DECH, DECW,
DECD, INCB,
INCH, INCW,
INCD, SQDECB,
SQDECH,
SQDECW,
SQDECD,
SQINCB,
SQINCH,
SQINCW,
SQINCD,
UQDECB,
UQDECH,
UQDECW,
UQDECD,
UQINCB,
UQINCH,
UQINCW,
UQINCD

2 2 V -

Reciprocal estimate for B URECPE,
URSQRTE

4 1 V0

Reciprocal estimate for H URECPE,
URSQRTE

6 1/2 V0

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 48 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Reduction, arithmetic, B form SADDV, UADDV,
SMAXV, SMINV,
UMAXV, UMINV

10 1/2 V, V1 4

Reduction, arithmetic, H form SADDV, UADDV,
SMAXV, SMINV,
UMAXV, UMINV

9 1 V, V1 4

Reduction, arithmetic, S form SADDV, UADDV,
SMAXV, SMINV,
UMAXV, UMINV

4 2 V -

Reduction, logical

ANDV, EORV,
ORV

6 1 V, V1 -

Reverse, vector REV, REVB,
REVH, REVW

2 2 V -

Select, vector form MOV, SEL 2 2 V -

Table lookup TBL 2 2 V -

Table lookup extension TBX 2 2 V -

Transpose, vector form TRN1, TRN2 2 2 V -

Unpack and extend SUNPKHI,
SUNPKLO,
UUNPKHI,
UUNPKLO

2 2 V -

Zip/unzip UZP1, UZP2,
ZIP1, ZIP2

2 2 V -

Notes:

1. SVE accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a typical sequence
of such µOPs to issue one every N cycles (accumulate latency N shown in parentheses).

2. SVE integer divide operations are performed using an iterative algorithm and block subsequent similar operations to the
same pipeline until complete.

3. Same as 2 except that for saturating instructions require an extra cycle of latency for late-forwarding accumulate
operands.

4. Signed Additions need 2 cycles more

3.26 SVE floating-point instructions

Table 3-25 SVE floating-point instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Floating point absolute
value/difference

FABD, FABS 2 2 V -

Floating point arithmetic FADD, FNEG,
FSUB, FSUBR

2 2 V -

Floating point associative add,
F16

FADDA 16 1/4 V -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 49 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Floating point associative add,
F32

FADDA 8 1/2 V -

Floating point associative add,
F64

FADDA 4 1 V -

Floating point compare FACGE, FACGT,
FACLE, FACLT,
FCMEQ, FCMGE,
FCMGT, FCMLE,
FCMLT, FCMNE,
FCMUO

2 2 V -

Floating point complex add FCADD 3 2 V -

Floating point complex multiply
add

FCMLA 4(2) 2 V 1

Floating point convert, long or
narrow (F16 to F32 or F32 to
F16)

FCVT, FCVTLT,
FCVTNT

4 1/2 V0 -

Floating point convert, long or
narrow (F16 to F64, F32 to F64,
F64 to F32 or F64 to F16)

FCVT, FCVTLT,
FCVTNT

3 1 V0 -

Floating point convert, round to
odd

FCVTX,

FCVTXNT

3 1 V0 -

Floating point base2 log, F16 FLOGB 6 1/4 V0

Floating point base2 log, F32 FLOGB 4 1/2 V0

Floating point base2 log, F64 FLOGB 3 1 V0

Floating point convert to integer,
F16

FCVTZS,
FCVTZU

6 1/4 V0 -

Floating point convert to integer,
F32

FCVTZS,
FCVTZU

4 1/2 V0 -

Floating point convert to integer,
F64

FCVTZS,
FCVTZU

3 1 V0 -

Floating point copy FCPY, FDUP,
FMOV

2 2 V -

Floating point divide, F16 FDIV, FDIVR 10 to 13 1/12 to 1/10 V0 2

Floating point divide, F32 FDIV, FDIVR 7 to 10 1/9 to 1/7 V0 2

Floating point divide, F64 FDIV, FDIVR 7 to 15 1/14 to 1/7 V0 2

Floating point arith, min/max
pairwise

FADDP, FMAXP,
FMAXNMP,
FMINP,
FMINNMP

3 2 V

Floating point min/max FMAX, DMIN,
FMAXNM,
FMINNM

2 2 V -

Floating point multiply FSCALE, FMUL,
FMULX

3 2 V -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 50 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Floating point multiply
accumulate

FMLA, FMLS,
FMAD, FMSB,
FNMAD, FNMLA,
FNMLS, FNMSB

4(2) 2 V 1

Floating point multiply add/sub
accumulate long

FMLALB,
FMLALT,
FMLSLB, FMLSLT

4(2) 2 V 1

Floating point reciprocal
estimate, F16

FRECPE,
FRECPX,
FRSQRTE

6 1/4 V0 -

Floating point reciprocal
estimate, F32

FRECPE,
FRECPX,
FRSQRTE

4 1/2 V0 -

Floating point reciprocal
estimate, F64

FRECPE,
FRECPX,
FRSQRTE

3 1 V0 -

Floating point reciprocal step FRECPS,
FRSQRTS

4 2 V -

Floating point reduction, F16 FADDV,
FMAXNMV,
FMAXV,
FMINNMV,
FMINV

6 2/3 V -

Floating point reduction, F32 FADDV,
FMAXNMV,
FMAXV,
FMINNMV,
FMINV

4 1 V -

Floating point reduction, F64 FADDV,
FMAXNMV,
FMAXV,
FMINNMV,
FMINV

2 2 V -

Floating point round to integral,
F16

FRINTA, FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ

6 1/4 V0 -

Floating point round to integral,
F32

FRINTA, FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ

4 1/2 V0 -

Floating point round to integral,
F64

FRINTA, FRINTM,
FRINTN, FRINTP,
FRINTX, FRINTZ

3 1 V0 -

Floating point square root, F16 FSQRT 10 to 13 1/12 to 1/10 V0 2

Floating point square root, F32 FSQRT 7 to 10 1/9 to 1/7 V0 2

Floating point square root F64 FSQRT 7 to 16 1/14 to 1/7 V0 2

Floating point trigonometric
exponentiation

FEXPA 2 2 V

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 51 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Floating point trigonometric
multiply add

FTMAD 4 2 V

Floating point trigonometric,
miscellaneous

FTSMUL, FTSSEL 3 2 V -

Notes:

1. SVE multiply-accumulate pipelines support late-forwarding of accumulate operands from similar µOPs, allowing a typical
sequence of floating-point multiply-accumulate µOPs to issue one every N cycles (accumulate latency N shown in
parentheses).

2. SVE divide and square root operations are performed using an iterative algorithm and block subsequent similar
operations to the same pipeline until complete.

3.27 SVE BFloat16 (BF16) instructions

Table 3-26 SVE Bfloat16 (BF16) instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Convert, F32 to BF16 BFCVT,
BFCVTNT

4 1/2 V0 -

Dot product BFDOT 4(2) 2 V 1

Matrix multiply accumulate BFMMLA 5(3) 2 V 1

Multiply accumulate long BFMLALB,
BFMLALT

4(2) 2 V 1

Notes:

1. SVE pipelines that execute these instructions support late-forwarding of accumulate operands from similar µOPs,
allowing a typical sequence of µOPs to issue one every N cycles (accumulate latency N shown in parentheses).

3.28 SVE Load instructions

The latencies shown assume the memory access hits in the Level 1 Data Cache and represent the
maximum latency to load all the vector registers written by the instruction.

Table 3-27 SVE Load instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Load vector LDR 6 3 L -

Load predicate LDR 7 2 L, M -

Contiguous load, scalar + imm LD1B, LD1D,
LD1H, LD1W,
LD1SB, LD1SH,
LD1SW,

6 3 L -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 52 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Contiguous load, scalar + scalar LD1B, LD1D,
LD1W, LD1SB,
LD1SH LD1SW

6 3 L -

Contiguous load, scalar + scalar LD1H 7 3 L, I

Contiguous load broadcast,
scalar + imm

LD1RB, LD1RH,
LD1RD, LD1RW,
LD1RSB,
LD1RSH,
LD1RSW,
LD1RQB,
LD1RQD,
LD1RQH,
LD1RQW

6 3 L -

Contiguous load broadcast,
scalar + scalar

LD1RQB,

LD1RQD,
LD1RQW

6 3 L -

Contiguous load broadcast,
scalar + scalar

LD1RQH 7 3 L, I

Non temporal load, scalar + imm LDNT1B,
LDNT1D,
LDNT1H,
LDNT1W

6 3 L -

Non temporal load, scalar +
scalar

LDNT1B,
LDNT1D,
LDNT1W

6 3 L -

Non temporal load, scalar +
scalar

LDNT1H 7 3 L, I

Non temporal gather load,
vector + scalar 32-bit element
size

LDNT1B,
LDNT1H,
LDNT1W,

LDNT1SB,

LDNT1SH

7 3/4 L -

Non temporal gather load,
vector + scalar 64-bit element
size

LDNT1B,
LDNT1D,
LDNT1H,
LDNT1W,
LDNT1SB,
LDNT1SH,
LDNT1SW

6 4/5 L -

Contiguous first faulting load,
scalar + scalar

LDFF1B,
LDFF1D,

LDFF1H,
LDFF1W,
LDFF1SB,
LDFF1SD,
LDFF1SH
LDFF1SW

6 3 L -

Contiguous first faulting load,
scalar + scalar

LDFF1H 7 3 L, I

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 53 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Contiguous non faulting load,
scalar + imm

LDNF1B,
LDNF1D,
LDNF1H,
LDNF1W,
LDNF1SB,
LDNF1SH,
LDNF1SW

6 3 L -

Contiguous Load two structures
to two vectors, scalar + imm

LD2B, LD2D,
LD2H, LD2W

8 2 V, L -

Contiguous Load two structures
to two vectors, scalar + scalar

LD2B, LD2D,
LD2H, LD2W

8 2 V, L

Contiguous Load two structures
to two vectors, scalar + scalar

LD2H 9 2 V, L, I

Contiguous Load three
structures to three vectors,
scalar + imm

LD3D 8 2/3 V, L -

Contiguous Load three
structures to three vectors,
scalar + imm

LD3B, LD3H,
LD3W

10 1/3 V, L

Contiguous Load three
structures to three vectors,
scalar + scalar

LD3D 9 2/3 V, L, I -

Contiguous Load three
structures to three vectors,
scalar + scalar

LD3B, LD3W 11 1/3 V, L, I -

Contiguous Load three
structures to three vectors,
scalar + scalar

LD3H 12 1/3 V, L, I -

Contiguous Load four structures
to four vectors, scalar + imm

LD4D 8 1/2 V, L -

Contiguous Load four structures
to four vectors, scalar + imm

LD4B, LD4H,
LD4W

12 2/5 V, L -

Contiguous Load four structures
to four vectors, scalar + scalar

LD4D 9 1/2 L, V, I -

Contiguous Load four structures
to four vectors, scalar + scalar

LD4B, LD4W 13 2/5 L, V, I -

Contiguous Load four structures
to four vectors, scalar + scalar

LD4H 14 2/5 L, V, I -

Gather load, vector + imm, 32-
bit element size

LD1B, LD1H,
LD1W, LD1SB,
LD1SH, LD1SW,
LDFF1B,
LDFF1H,
LDFF1W,
LDFF1SB,
LDFF1SH,
LDFF1SW

7 3/4 L -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 54 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Gather load, vector + imm, 64-
bit element size

LD1B, LD1D,
LD1H, LD1W,
LD1SB, LD1SH,
LD1SW, LDFF1B,
LDFF1D
LDFF1H,
LDFF1W,
LDFF1SB,
LDFF1SD,
LDFF1SH,
LDFF1SW

6 4/5 L -

Gather load, 32-bit scaled,
unscaled offset

LD1H, LD1SH,
LDFF1H,
LDFF1SH, LD1W,
LDFF1W,
LDFF1SW

7 3/4 L -

Gather load, 32-bit unpacked
unscaled offset, 64 bit scaled,
unscaled offset

LD1B, LD1SB,
LDFF1B,
LDFF1SB, LD1D,
LDFF1D, LD1H,
LD1SH, LDFF1H,
LDFF1SH, LD1W,
LD1SW,
LDFF1W,
LDFF1SW

6 4/5 L -

Gather load, 32-bit unscaled
offset

LD1B, LD1SB,
LDFF1B,
LDFF1SB

7 3/4 L

Gather load, 32-bit unpacked
unscaled offset, 64 bit unscaled
offset

LD1B, LD1SB,
LDFF1B,
LDFF1SB

6 4/5 L -

3.29 SVE Store instructions

Table 3-28 SVE Store instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Store from predicate reg STR 2 2 M, L01 -

Store from vector reg STR 3 2 L01, V -

Contiguous store, scalar + imm ST1B, ST1H,
ST1D, ST1W

3 2 L01, V -

Contiguous store, scalar + scalar ST1H 3 2 L01, I, V -

Contiguous store, scalar + scalar ST1B, ST1D,
ST1W

3 2 L01, V -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 55 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Contiguous store two structures
from two vectors, scalar + imm

ST2B, ST2H,
ST2D, ST2W

3 2 L01, V -

Contiguous store two structures
from two vectors, scalar + scalar

ST2H 3 2 L01, I, V -

Contiguous store two structures
from two vectors, scalar + scalar

ST2B, ST2D,
ST2W

3 2 L01, V -

Contiguous store three
structures from three vectors,
scalar + imm

ST3B, ST3D,
ST3H, ST3W

5 2/3 L01, V -

Contiguous store three
structures from three vectors,
scalar + imm

ST3D 4 2/3 L01, V

Contiguous store three
structures from three vectors,
scalar + scalar

ST3H 5 2/3 L01, I, V -

Contiguous store three
structures from three vectors,
scalar + scalar

ST3B, ST3W 5 2/3 L01, I, V -

Contiguous store three
structures from three vectors,
scalar + scalar

ST3D 4 2/3 L01, I, V

Contiguous store four
structures from four vectors,
scalar + imm

ST4B, ST4H,
ST4W

7 2/3 L01, V -

Contiguous store four
structures from four vectors,
scalar + imm

ST4D 4 1/2 L01, V

Contiguous store four
structures from four vectors,
scalar + scalar

ST4H 7 2/3 L01, I, V -

Contiguous store four
structures from four vectors,
scalar + scalar

ST4D 4 1/2 L01, I, V

Contiguous store four
structures from four vectors,
scalar + scalar

ST4B, ST4W 7 2/3 L01, I, V -

Non temporal store, scalar +
imm

STNT1B,
STNT1D,
STNT1H,
STNT1W

3 2 L01, V -

Non temporal store, scalar +
scalar

STNT1H 3 2 L01, I, V -

Non temporal store, scalar +
scalar

STNT1B,
STNT1D,
STNT1W

3 2 L01, V -

Scatter non temporal store,
vector + scalar 32-bit element
size

STNT1B,
STNT1H,
STNT1W

3 1 L01, V -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 56 of 73

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Scatter non temporal store,
vector + scalar 64-bit element
size

STNT1B,
STNT1D,
STNT1H,
STNT1W

3 2 L01, V -

Scatter store vector + imm 32-
bit element size

ST1B, ST1H,
ST1W

3 1 L01, V -

Scatter store vector + imm 64-
bit element size

ST1B, ST1D,
ST1H, ST1W

3 2 L01, V -

Scatter store, 32-bit scaled
offset

ST1H, ST1W 3 1 L01, V -

Scatter store, 32-bit unpacked
unscaled offset

ST1B, ST1D,
ST1H, ST1W

3 2 L01, V -

Scatter store, 32-bit unpacked
scaled offset

ST1D, ST1H,
ST1W

3 2 L01, V -

Scatter store, 32-bit unscaled
offset

ST1B, ST1H,
ST1W

3 1 L01, V -

Scatter store, 64-bit scaled
offset

ST1D, ST1H,
ST1W

3 2 L01, V -

Scatter store, 64-bit unscaled
offset

ST1B, ST1D,
ST1H, ST1W

3 2 L01, V -

3.30 SVE Miscellaneous instructions

Table 3-29 SVE miscellaneous instructions

Instruction Group SVE Instruction Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Read first fault register,
unpredicated

RDFFR 2 2 M -

Read first fault register,
predicated

RDFFR 2 2 M

Read first fault register and set
flags

RDFFRS 2 2 M

Set first fault register SETFFR - - - 1

Write to first fault register WRFFR 2 1 M0 -

Notes:

1. Operation are optimized in rename stage pipeline, execution latency and throughput are then not representative.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

3 Instruction characteristics

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 57 of 73

3.31 SVE Cryptographic instructions

Table 3-48 SVE cryptographic instructions

Instruction Group AArch64
Instructions

Exec
Latency

Execution
Throughput

Utilized
Pipelines

Notes

Crypto AES ops AESD, AESE,
AESIMC, AESMC

2 2 V -

Crypto SHA3 ops BCAX, EOR3,
RAX1, XAR

2 1 V0 -

Crypto SM4 ops SM4E, SM4EKEY 4 1 V0 -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 58 of 73

4 Special considerations

4.1 Dispatch constraints
Dispatch of µOPs from the in-order portion to the out-of-order portion of the microarchitecture includes several

constraints. It is important to consider these constraints during code generation to maximize the effective dispatch

bandwidth and subsequent execution bandwidth of Cortex-A715 core.

The dispatch stage can process up to 5 MOPs per cycle and dispatch up to 10 µOPs per cycle, with the following limitations

on the number of µOPs of each type that may be simultaneously dispatched.

Up to 4 µOPs utilizing the S or B pipelines

Up to 4 µOPs utilizing the M pipelines

Up to 2 µOPs utilizing the M0 pipelines

Up to 2 µOPs utilizing the V0 pipeline

Up to 2 µOPs utilizing the V1 pipeline

Up to 5 µOPs utilizing the L pipelines

In the event there are more µOPs available to be dispatched in a given cycle than can be supported by the constraints above,

µOPs will be dispatched in oldest to youngest age-order to the extent allowed by the above.

4.2 Optimizing general-purpose register spills and fills

Register transfers between general-purpose registers (GPR) and ASIMD registers (VPR) are lower
latency than reads and writes to the cache hierarchy, thus it is recommended that GPR registers be
filled/spilled to the VPR rather to memory, when possible.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 59 of 73

4.3 Optimizing memory routines
To achieve maximum throughput for memory copy (or similar loops), one should do the following.

Unroll the loop to include multiple load and store operations per iteration, minimizing the overheads of looping.

Align stores on 32B boundary wherever possible.

Use non-writeback forms of LDP and STP instructions interleaving them like shown in the example below:

Loop_start:

 SUBS x2,x2,#96

 LDP q3,q4,[x1,#0]

 STP q3,q4,[x0,#0]

 LDP q3,q4,[x1,#32]

 STP q3,q4,[x0,#32]

 LDP q3,q4,[x1,#64]

 STP q3,q4,[x0,#64]

 ADD x1,x1,#96

 ADD x0,x0,#96

 BGT Loop_start

If the memory locations being copied are non-cacheable, the non-temporal version of LDPQ (LDNPQ) should be used. STPQ

should still be used for the stores.

Similarly, it Is recommended to use LDPQ to achieve maximum throughput for memcmp (memory compare) loops that

compare cacheable memory. LDNPQ should be used for non-cacheable memory.

To achieve maximum throughput on memset, it is recommended that one do the following.

Unroll the loop to include multiple store operations per iteration, minimizing the overheads of looping.

Loop_start:

 STP q1,q3,[x0,#0]

 STP q1,q3,[x0,#0x20]

 STP q1,q3,[x0,#0x40]

 STP q1,q3,[x0,#0x60]

 ADD x0,x0,#0x80

 SUBS x2,x2,#0x80

 B.GT Loop_start

To achieve maximum performance on memset to zero, it is recommended that one use DC ZVA instead of STP. An optimal

routine might look something like the following.

Loop_start:

 SUBS x2,x2,#0x80

 DC ZVA,x0

 ADD x0,x0,#0x40

 DC ZVA,x0

 ADD x0,x0,#0x40

 B.GT Loop_start

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 60 of 73

4.4 Load/Store alignment
The Armv8-A architecture allows many types of load and store accesses to be arbitrarily aligned. The Cortex-A715 core

handles most unaligned accesses without performance penalties. However, there are cases which could reduce bandwidth

or incur additional latency, as described below.

• Load operations that cross a cache-line (64-byte) boundary.

• Quad-word load operations that are not 4B aligned.

• Store operations that cross a 32B boundary.

4.5 Store to Load Forwarding
The Hunter-core allows data to be forwarded from store instructions to a load instruction with the
restrictions mentioned below:

• Load start address should align with the start or middle address of the older store

• Loads of size greater than 8 bytes can get the data forwarded from a maximum of 2 stores. If
there are 2 stores, then each store should forward to either first or second half of the load

• Loads of size less than or equal to 4 bytes can get their data forwarded from only 1 store

4.6 AES encryption/decryption

Cortex-A715 core can issue two AESE/AESMC/AESD/AESIMC instruction every cycle (fully
pipelined) with an execution latency of two cycles. This means encryption or decryption for at least
four data chunks should be interleaved for maximum performance:

AESE data0, key_reg

AESMC data0, data0

AESE data1, key_reg

AESMC data1, data1

AESE data2, key_reg

AESMC data2, data2

AESE data3, key_reg

AESMC data3, data3

AESE data0, key_reg

AESMC data0, data0

...

Pairs of dependent AESE/AESMC and AESD/AESIMC instructions are higher performance when
they are adjacent in the program code and both instructions use the same destination register.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 61 of 73

4.7 Region based fast forwarding

The forwarding logic in the V pipelines is optimized to provide optimal latency for instructions which
are expected to commonly forward to one another.

This defined in the following table.

Table 4-1 Optimized INT forwarding regions

Region Instruction Types Notes

1 ASIMD/SVE integer ALU, ASIMD/SVE integer shift, ASIMD/scalar insert and move,
ASIMD/SVE integer abs/cmp/max/min, ASIMD/SVE AES, ASIMD/SVE polynomial
multiply and PERM instructions in part 3.19 see Note 2

1

2 ASIMD/SVE integer mul/mac 2

3 ASIMD/SVE Crypto, SHA1/SHA256 1

Table 4-2 Optimized FP forwarding regions

Region Instruction Types Notes

1 FP/ASIMD/SVE floating-point multiply, FP/ASIMD/SVE floating point multiply-
accumulate, FP/ASIMD/SVE compare, FP/ASIMD/SVE add/sub and PERM
instructions in part 3.19 see Note 2

1

2 ASIMD/SVE BFDOT and BFMMLA instructions

Notes:

1. ASIMD/SVE extract narrow, saturating instructions are excluded from this region.

2. ASIM/SVE INT multiply accumulate only fast forward to accumulation source

The following instructions are not part of any region:

• FP/ASIMD/SVE convert and rounding instructions that do not write to general purpose registers

• ASIMD/SVE integer reduction

In addition to the regions mentioned in the table above, all instructions in regions INT1 and FP1 can
fast forward to FP/ASIMD/SVE stores plus FP/ASIMD vector to integer register transfers, ASIMD
converts that write to general purpose registers and PERM instructions in part 3.19 see Note 2.

More special notes about the forwarding region in Table 4-1 Optimized INT forwarding regions:

• Complex shift by immediate/register and shift accumulate instructions cannot be producers (see
sections 3.16 and 3.25) in region INT1.

• Extract narrow, saturating instructions cannot be producers (see sections 3.19 and 3.25) in
region INT1.

• Absolute difference accumulate and pairwise add and accumulate instructions cannot be
producers (see sections 3.16 and 3.25) in region INT1.

More special notes about the forwarding region in Table 4-2 Optimized FP forwarding regions:

• Element sources (the non-vector operand in "by element" multiplies) used by ASIMD/SVE
floating-point multiply and multiply-accumulate operations cannot be consumers.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 62 of 73

• For floating-point producer-consumer pairs, the precision of the instructions should match
(single, double or half) in region FP1.

• Pair-wise floating-point instructions cannot be producers or consumers in region FP1.

It is not advisable to interleave instructions belonging to different regions. Also, certain instructions
can only be producers or consumers in a particular region but not both (see footnote for Table 4-1
Optimized INT forwarding regions and Table 4-2 Optimized FP forwarding regions). For example, the
code below interleaves producers and consumers from regions INT1 and INT2. This will result in an
additional latency of 1 cycle as seen by MUL.

INS v27[1], v20[1]- Region INT1 producer but not a region INT2 consumer

MUL v26, v27, v6 – Region INT2

These fast forwarding regions described in Table 4-1 Optimized INT forwarding regions and Table
4-2 Optimized FP forwarding regions are forming two clusters: cluster FP and cluster INT.
Intercluster communication requires one cycle penalty. For example, the code below

FADD v20.2s, v28.2s, v20.2s – Region FP1

ADD v27, v20, v20- Region INT1 producer but not a region FP1 consumer

4.8 Branch instruction alignment

Branch instruction and branch target instruction alignment and density can affect performance.

For best performance, prefer placing taken branches towards the end of an aligned 32-byte
instruction memory region and prefer to have branch target pointing toward the beginning of an
aligned 32-byte instruction.

Cortex-A715 core prediction is optimized to handle aligned 32-byte instruction region containing no
branches. For best performance and power efficiency, avoid diluting branches over aligned
instruction regions.

It is preferable to have an aligned 32-byte instruction region containing two branches, to having two
32-byte regions containing one branch each.

To avoid branch prediction limitation, avoid placing a branch as the last instruction of a 4MB aligned
instruction region of code.

4.9 FPCR self-synchronization

Programmers and compiler writers should note that writes to the FPCR register are self-
synchronizing, i.e. its effect on subsequent instructions can be relied upon without an intervening
context synchronizing operation.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 63 of 73

4.10 Special register access
The Cortex-A715 core performs register renaming for general purpose registers to enable speculative and out-of-order

instruction execution. But most special-purpose registers are not renamed. Instructions that read or write non-renamed

registers are subjected to one or more of the following additional execution constraints.

Non-Speculative Execution – Instructions may only execute non-speculatively.

In-Order Execution – Instructions must execute in-order with respect to other similar instructions or in some

cases all instructions.

Flush Side-Effects – Instructions trigger a flush side-effect after executing for synchronization.

The table below summarizes various special-purpose register read accesses and the associated execution constraints or

side-effects.

Table 4-3 Special-purpose register read accesses

Register Read Non-Speculative In-
Order

Flush Side-Effect Notes

CurrentEL No Yes No -

DAIF No Yes No -

DLR_EL0 No Yes No -

DSPSR_EL0 No Yes No -

ELR_* No Yes No -

FPCR No Yes No -

FPSR Yes Yes No 2

NZCV No No No 1

SP_* No No No 1

SPSel No Yes No -

SPSR_* No Yes No -

FFR No Yes No -

Notes:

1. The NZCV and SP registers are fully renamed.

2. FPSR/FPSCR reads must wait for all prior instructions that may update the status flags to execute and retire.

The table below summarizes various special-purpose register write accesses and the associated execution constraints or

side-effects.

Table 4-3 Special-purpose register write accesses

Register Write Non-Speculative In-
Order

Flush Side-Effect Notes

DAIF Yes Yes No -

DLR_EL0 Yes Yes No -

DSPSR_EL0 Yes Yes No -

ELR_* Yes Yes No -

FPCR Yes Yes Maybe 2

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 64 of 73

Register Write Non-Speculative In-
Order

Flush Side-Effect Notes

FPSR Yes Yes No 3

NZCV No No No 1

SP_* No No No 1

SPSel Yes Yes Yes -

SPSR_* Yes Yes No -

SETFFR No No No

WRFFR Yes Yes No

Notes:

1. The NZCV and SP registers are fully renamed.

2. If the FPCR write is predicted to change the control field values, it will introduce a barrier which prevents subsequent
instructions from executing. If the FPCR write is predicted to not change the control field values, it will execute without a
barrier but trigger a flush if the values change.

3. FPSR writes must stall at dispatch if another FPSR write is still pending.

4.11 Instruction fusion
Cortex-A715 core can accelerate certain instruction pairs in an operation called fusion. Specific instruction pairs that can be

fused are as follows:

AESE + AESMC (see Section 4.6 on AES Encryption/Decryption)

AESD + AESIMC (see Section 4.6 on AES Encryption/Decryption)

CMP/CMN (immediate) + B.cond

CMP/CMN (register Rn != ZR) + B.cond

TST (immediate) + B.cond

TST (register) + B.cond

BICS ZR (register) + B.cond

CMP (immediate) + CSEL

CMP (register) + CSEL

CMP (immediate) + CSET

CMP (register) + CSET

BTI + Integer DP/BR/BLR/RET/B uncond/CBZ/TBZ

SHL + SRI (both scalar or both vector)

FCMP + AXFLAG

MOVPRFX + supported SVE instruction

These instruction pairs must be adjacent to each other in program code. For CMP, CMN, TST fusion is allowed for shifted

and/or extended register forms. For CMP, CMN, TST and BICS, there are restrictions on immediate values for both

instructions of the pair for which fusion is supported. Other particular restrictions apply on instruction fusion.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 65 of 73

4.12 Zero Latency Instructions

A subset of register-to-register move operations, move immediate operations, predicates operations
are executed with zero latency. These instructions do not utilize the scheduling and execution
resources of the machine. These are as follows:

MOV Xd, #{12{1'b0},imm[3:0]}

MOV Xd, XZR

MOV Wd, #{12{1'b0},imm[3:0]}

MOV Wd, WZR

MOV Hd, WZR

MOV Hd, XZR

MOV Sd, WZR

MOV Dd, XZR

MOVI Dd, #0

MOVI Vd.2D, #0

MOV Wd, Wn

MOV Xd, Xn

FMOV Sd, Sn

FMOV Dd, Dn

MOV Vd, Vn (vector)

MOV Zd.D, Zn.D

PTRUE

PFALSE

SETFFR

The MOV Wd, Wn, MOV Xd, Xn and FMOV Sd, Sn, FMOV Dd, Dn, MOV Vd, Vn (vector), MOV Zd.D,
Zn.D instructions may not be executed with zero latency under certain conditions.

4.13 Cache maintenance operation

While using set way invalidation operations on L1 cache, it is recommended that software be written
to traverse the sets in the inner loop and ways in the outer loop.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 66 of 73

4.14 Memory Tagging - Tagging Performance
To achieve maximum throughput for tag-only, it is recommended that one do the following.

Unroll the loop to include multiple store operations per iteration, minimizing the overheads of looping. Use STGM (or

DCGVA) instruction as shown in the example below:

Loop_start:

SUBS x2,x2,#0x80

STGM x1,[x0]

ADD x0,x0,#0x40

STGM x1,[x0]

ADD x0,x0,#0x40

B.GT Loop_start

To achieve maximum throughput for tag and zeroing out data, it is recommended that one do the following.

Unroll the loop to include multiple store operations per iteration, minimizing the overheads of looping. Use STZGM (or

DCZGVA) instruction as shown in the example below:

Loop_start:

SUBS x2,x2,#0x80

STZGM x1,[x0]

ADD x0,x0,#0x40

STZGM x1,[x0]

ADD x0,x0,#0x40

B.GT Loop_start

To achieve maximum throughput for tag-loading, it is recommended that one do the following.

Unroll the loop to include multiple load operations per iteration, minimizing the overheads of looping. Use LDGM instruction

as shown in the example below:

Loop_start:

SUBS x2,x2,#0x80

LDGM x1,[x0]

ADD x0,x0,#0x40

LDGM x1,[x0]

ADD x0,x0,#0x40

B.GT Loop_start

Also, it is recommended to use STZGM (or DCZGVA) to set tag if data is not a concern.

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 67 of 73

4.15 Memory Tagging - Synchronous Mode

In synchronous tag checking mode, each store must complete a tag check before the next store can be
executed Thus, performance of stores in synchronous tag checking mode will be diminished.

It is recommended to use asynchronous mode for better performance.

4.16 Complex ASIMD and SVE instructions

The bandwidth of the following ASIMD and SVE instructions is limited by decode constraints and it is
advisable to avoid them when high performing code is desired.

ASIMD

LD4R, post-indexed addressing, element size = 64b.

LD4, single 4-element structure, post indexed addressing mode, element size = 64b.

LD4, multiple 4-element structures, quad form, element size less than 64b.

LD4, multiple 4-element structures, quad form, element size less than 64b, , post indexed addressing
mode.

ST4, multiple 4-element structures, quad form, element size less than 64b.

ST4, multiple 4-element structures, quad form, element size = 64b, post indexed addressing mode.

SVE

LD1H gather (scalar + vector addressing) where vector index register is the same as the destination
register and element size = 32. Addressing mode is 32b scaled or unscaled offset.

LD3[B/H] contiguous (scalar + scalar addressing).

LD4[B/H/W] contiguous (scalar + immediate addressing).

LD4[B/H/W] contiguous (scalar + scalar addressing).

LDFF1H gather (scalar + vector addressing) where vector index register is the same as the
destination register and element size = 32. Addressing mode is 32b scaled or unscaled offset.

ST3[B/H/W/D] contiguous (scalar + scalar addressing).

ST4[B/H/D/W] contiguous (scalar + scalar addressing).

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 68 of 73

4.17 MOVPRFX fusion

Under certain conditions, a mechanism called MOVPRFX fusion can be used to accelerate the
execution of an instruction pair that consists of an SVE MOVPRFX instruction immediately followed
in program order by an SVE integer, floating point or BF16 instruction. The list of SVE instructions
and the conditions under which this fusion can be applied is mentioned in the tables below.

Table 4-4 MOVPRFX unpredicated fusion

Instruction Group SVE Instruction Notes

Integer Instructions

Arithmetic, absolute difference SABD, UABD -

Arithmetic, absolute difference
accumulate

SABA, SABALB, SABALT, UABA, UABALB,
UABALT

-

Arithmetic, basic ABS, ADD, CNOT, NEG, SHADD, SHSUB,
SHSUBR, SUB, SUBR, UHADD, UHSUB,
UHSUBR

For ADD and SUB, only the
immediate and vector, predicated
forms are fusible.

Arithmetic, complex SQABS, SQADD, SQNEG, SQSUB, SQSUBR,
SRHADD, SUQADD, UQADD, UQSUB,
UQSUBR, URHADD, USQADD

For SQABS, SQSUB, UQADD and
UQSUB, only the immediate and
vector, predicated forms are
fusible.

Arithmetic, large integer ADCLB, ADCLT, SBCLB, SBCLT -

Arithmetic, shift ASR, ASRR, LSL, LSLR, LSR, LSRR For ASR, LSL and LSR, only the
immediate, predicated and vector
forms are fusible.

Arithmetic, shift and accumulate SRSRA, SSRA, URSRA, USRA -

Arithmetic, shift complex SQRSHL, SQRSHLR, SQSHL, SQSHLR,
UQRSHL, UQRSHLR, UQSHL, UQSHLR

-

Arithmetic, shift rounding SRSHL, SRSHLR, URSHL, URSHLR -

Bitwise select BSL, BSL1N, BSL2N, NBSL -

Count/reverse bits CLS, CLZ, CNT, RBIT -

Complex add CADD, SQCADD -

Complex dot product CDOT Only the vector form is fusible.

Complex multiply-add CMLA Only the vector form is fusible.

Conditional extract operations CLASTA, CLASTB Only the vector forms are fusible.

Convert to floating point SCVTF, UCVTF -

Copy CPY Only the SIMD&FP scalar and
immediate merging forms are
fusible

Divides SDIV, SDIVR, UDIV, UDIVR -

Dot product SDOT, UDOT, SUDOT, USDOT Only the vector form is fusible

Extend, sign or zero SXTB, SXTH, SXTW, UXTB, UXTH, UXTW -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 69 of 73

Instruction Group SVE Instruction Notes

Extract/insert operation INSR Only the SIMD&FP scalar form is
fusible

Logical AND, BIC, EON, EOR, EORBT, EORTB,
MOV, NOT, ORN, ORR

For AND, BIC, EOR and ORR, only
the immediate and vector,
predicated forms are fusible

Max/min, basic and pairwise SMAX, SMIN, UMAX, UMIN Only the immediate and vector,
predicated forms are fusible

Matrix multiply-accumulate SMMLA, UMMLA, USMMLA -

Multiply MUL, SMULH, UMULH For MUL, only the immediate and
vector, predicated forms are
fusible. For the others, only the
predicated form is fusible.

Multiply accumulate MLA, MLS, MAD, MSB For MLA, MLS only the vector
forms are fusible

Multiply accumulate long SMLALB, SMLALT, SMLSLB, SMLSLT,
UMLALB, UMLALT, UMLSLB, UMLSLT

Only the vector form is fusible

Multiply accumulate saturating
doubling long regular

SQDMLALB, SQDMLALT, SQDMLALBT,
SQDMLSLB, SQDMLSLT, SQDMLSLBT

For SQDMLALB, SQDMLALT,
SQDMLSLB, SQDMLSLT only the
vector forms are fusible

Multiply saturating rounding
doubling regular/complex
accumulate

SQRDMLAH, SQRDMLSH, SQRDCMLAH Only the vector form is fusible

Predicate counting, vector form DECH, DECW, DECD, INCH, INCW, INCD,
SQDECH, SQDECW, SQDECD, SQINCH,
SQINCW, SQINCD, UQDECH, UQDECW,
UQDECD, UQINCH, UQINCW, UQINCD

Only the vector form is fusible

Reciprocal estimate URECPE, URSQRTE -

Reverse, vector REVB, REVH, REVW -

Floating point Instructions

Floating point absolute
value/difference

FABD, FABS -

Floating point arithmetic FADD, FNEG, FSUB, FSUBR For FADD, FSUB, FSUBR only the
immediate and vector, predicated
forms are fusible.

Floating point complex add FCADD -

Floating point complex multiply
add

FCMLA Only the vector form is fusible

Floating point convert FCVT, FCVTX -

Floating point base2 log FLOGB -

Floating point convert to integer FCVTZS, FCVTZU -

Floating point copy FCPY, FMOV Only the predicated form is fusible

Floating point divide FDIV, FDIVR -

Floating point min/max FMAX, FMIN, FMAXNM, FMINNM -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 70 of 73

Instruction Group SVE Instruction Notes

Floating point multiply FSCALE, FMUL, FMULX For FMUL, only the immediate and
vector, predicated forms are
fusible

Floating point multiply
accumulate

FMLA, FMLS, FMAD, FMSB, FNMAD,
FNMLA, FNMLS, FNMSB

For FMLA, FMLS only the vector
forms are fusible

Floating point multiply add/sub
accumulate long

FMLALB, FMLALT, FMLSLB, FMLSLT Only the vector form is fusible

Floating point reciprocal
estimate

FRECPX -

Floating point round to integral FRINTA, FRINTI, FRINTM, FRINTN, FRINTP,
FRINTX, FRINTZ

-

Floating point square root FSQRT -

Floating point trigonometric
multiply add

FTMAD -

BF16 Instructions

Dot product BFDOT Only the vector form is fusible

Matrix multiply accumulate BFMMLA -

Multiply accumulate long BFMLALB, BFMLALT Only the vector form is fusible

Scalar convert, F32 to BF16 BFCVT -

Cryptographic Instructions

Crypto SHA3 ops BCAX, EOR3, XAR -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 71 of 73

Table 4-5 MOVPRFX predicated fusion

Instruction Group SVE Instruction Notes

Integer Instructions

Arithmetic, absolute difference SABD, UABD -

Arithmetic, basic ABS, ADD, CNOT, NEG, SHADD, SHSUB,
SHSUBR, SUB, SUBR, UHADD, UHSUB,
UHSUBR

For ADD and SUB, only the vector,
predicated form is fusible.

Arithmetic, complex SQABS, SQADD, SQNEG, SQSUB, SQSUBR,
SRHADD, SUQADD, UQADD, UQSUB,
UQSUBR, URHADD, USQADD

For SQABS, SQSUB, UQADD and
UQSUB, only the vector,
predicated form is fusible.

Arithmetic, shift ASR, ASRR, LSL, LSLR, LSR, LSRR For ASR, LSL and LSR, only the
predicated and vector forms are
fusible.

Count/reverse bits CLS, CLZ, CNT, RBIT -

Divides SDIV, SDIVR, UDIV, UDIVR -

Extend, sign or zero SXTB, SXTH, SXTW, UXTB, UXTH, UXTW -

Logical AND, BIC, EOR, NOT, ORR For AND, BIC, EOR and ORR, only
the vector, predicated form is
fusible

Max/min, basic and pairwise SMAX, SMIN, UMAX, UMIN Only the vector form is fusible

Multiply MUL, SMULH, UMULH For MUL, only the vector,
predicated form is fusible. For the
others, only the predicated form is
fusible.

Reverse, vector REVB, REVH, REVW -

Floating point Instructions

Floating point absolute
value/difference

FABD, FABS -

Floating point arithmetic FADD, FNEG, FSUB, FSUBR For FADD, FSUB, FSUBR only the
immediate and vector, predicated
forms are fusible.

Floating point complex add FCADD -

Floating point divide FDIV, FDIVR -

Floating point min/max FMAX, FMIN, FMAXNM, FMINNM -

Floating point multiply FMUL, FMULX For FMUL, only the vector,
predicated form is fusible

Floating point multiply
accumulate

FMLA, FMLS, FMAD, FMSB, FNMAD,
FNMLA, FNMLS, FNMSB

For FMLA, FMLS only the vector
forms are fusible

Floating point multiply add/sub
accumulate long

FMLALB, FMLALT, FMLSLB, FMLSLT Only the vector form is fusible

Floating point square root FSQRT -

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 72 of 73

Appendix A Revisions
This appendix describes the technical changes between released issues of this document.

Table A-1: Issue 1.0

Change Location Affects

First Confidential limited access release for r0p0 - r0p0

Table A-2: Differences between issue 1.0 and issue 2.1

Change Location Affects

First Confidential early access release for r1p0 - r1p0

Updated Table 4-1 Optimized INT forwarding regions Region based fast forwarding r1p0

Editorial changes Appendix A r1p0

Table A-3: Differences between issue 2.1 and issue 2.2

Change Location Affects

First early access release for r1p1 - r1p1

Editorial changes Throughout document r1p1

Store to Load Forwarding add, MOVPRFX Fusion add, and

Reduction Instructions latencies and bandwidth fixes
- Store to Load Forwarding

- MOVPRFX fusion - ASIMD
integer instructions

- SVE integer instructions

r1p1

Table A-4: Differences between issue 2.2 and issue 3.0

Change Location Affects

Second early access release for r1p1 - r1p1

Updated product name Throughout the document r1p1

Table A-5: Differences between issue 3.0 and issue 4.0

Change Location Affects

First release for r1p2 - r1p2

Updated revision value - r1p2

Arm® Cortex®-A715 Core Software Optimization Guide PJDOC-466751330-556347
Issue 5.0

4 Special considerations

Copyright © 2021-2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 73 of 73

Table A-6: Differences between issue 4.0 and issue 5.0

Change Location Affects

First release for r1p3 - r1p3

Updated revision value - r1p3

Updated ‘Additional reading’ section title to ‘Useful resources’ Useful resources r1p3

	1 Introduction
	1.1 Product revision status
	1.2 Intended audience
	1.3 Scope
	1.4 Conventions
	1.4.1 Glossary
	1.4.2 Terms and abbreviations
	1.4.3 Typographical conventions

	1.5 Useful resources
	1.6 Feedback
	1.6.1 Feedback on this product
	1.6.2 Feedback on content

	2 Overview
	2.1 Pipeline overview

	3 Instruction characteristics
	3.1 Instruction tables
	3.2 Legend for reading the utilized pipelines
	3.3 Branch instructions
	3.4 Arithmetic and logical instructions
	3.5 Divide and multiply instructions
	3.6 Pointer Authentication Instructions
	3.7 Miscellaneous data-processing instructions
	3.8 Load instructions
	3.9 Store instructions
	3.10 Tag Load Instructions
	3.11 Tag Store instructions
	3.12 FP data processing instructions
	3.13 FP miscellaneous instructions
	3.14 FP load instructions
	3.15 FP store instructions
	3.16 ASIMD integer instructions
	3.17 ASIMD floating-point instructions
	3.18 ASIMD BFloat16 (BF16) instructions
	3.19 ASIMD miscellaneous instructions
	3.20 ASIMD load instructions
	3.21 ASIMD store instructions
	3.22 Cryptography extensions
	3.23 CRC
	3.24 SVE Predicate instructions
	3.25 SVE integer instructions
	3.26 SVE floating-point instructions
	3.27 SVE BFloat16 (BF16) instructions
	3.28 SVE Load instructions
	3.29 SVE Store instructions
	3.30 SVE Miscellaneous instructions
	3.31 SVE Cryptographic instructions

	4 Special considerations
	4.1 Dispatch constraints
	4.2 Optimizing general-purpose register spills and fills
	4.3 Optimizing memory routines
	4.4 Load/Store alignment
	4.5 Store to Load Forwarding
	4.6 AES encryption/decryption
	4.7 Region based fast forwarding
	4.8 Branch instruction alignment
	4.9 FPCR self-synchronization
	4.10 Special register access
	4.11 Instruction fusion
	4.12 Zero Latency Instructions
	4.13 Cache maintenance operation
	4.14 Memory Tagging - Tagging Performance
	4.15 Memory Tagging - Synchronous Mode
	4.16 Complex ASIMD and SVE instructions
	4.17 MOVPRFX fusion

	Appendix A Revisions

