arm , ,
Using the PMU and the Event Counters in DS-5

Version 1.0

Non-Confidential Issue 02

Copyright © 2020 Arm Limited (or its affiliates). 102601_0100_02_en
All rights reserved.

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0

Using the PMU and the Event Counters in DS-5

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history
Issue Date Confidentiality Change

0100-02 1 January 2020 Non-Confidential First version

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR

ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 2 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm'’s trademark usage guidelines at https:/www.arm.com/company/policies/trademarks.
Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NU.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https:/support.developer.arm.com

To provide feedback on the document, fill the following survey: https:/developer.arm.com/
documentation-feedback-survey.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 3 of 18

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 4 of 18

mailto:terms@arm.com

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0

Contents
Contents
1. Using the PMU and the Event Counters in DS-5...... et resreresseesseessesesesessesensens 6
2. BACKEBIOUNC.......cvereeereeeeretereeeereseseessesesesesssesssessssssssssessssssnsesesssssssesesssssssssesessssnsssesessssnsesesenssssssessssnsnssns 7
3. The PMU architecture and @VENTS.........reeeeeteeeeeeetree et se s sssssse e e st sss e s st esssessnsssssens 8
4. Using DS-5 in conjunction With eVeNt COUNLEIS..........cceieeeerieereeteerteeeteresteeeeeesteessesesaesessesessesessesens 9
5. Setting up and using the EVENT COUNTETS....... ettt ettt sa s saesesaeseeenen 12
6. WOTKEA EXAMPI....eeieeereeeteeetceeteeietetetereteeseeseesesese et esessesessesessesessesessesessesessasessssessasessasessasesessesensane 14
7. SUIMIMIAIY ...ccueereereereererteseeeeseesesessessessessesessesessessessssessassessessessessssassessessessessesensensensessessesessessensessessessssensensensenes 17
8. FUITNEE FEATING....eeveeerereteeeteeteecte ettt sesesse e stessssesessesessesassesesassesesessesessasessasessrsesensesarsesenseserssen 18

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 5 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Using the PMU and the Event Counters in DS-5

1. Using the PMU and the Event Counters
in DS-5

This tutorial details how to use the Performance Monitoring Unit (PMU) and the Event Counters

in Arm DS-5 Development Studio. They can provide valuable information regarding system events,
that could prove useful when assessing the performance and resource efficiency of your system. By
the end of this tutorial you should be able to implement event counters in your code and interpret
their results.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 6 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Background

2. Background

The PMU architecture uses event numbers to identify events. These numbers are used to configure
the counters so that each one only monitors a single event at a time. The PMU and event counters
are part of the Performance Monitors Extension, making them optional features for Armv7/-A/
Armv7/-R/Armv8-A implementations. With this in mind, you should check the Technical Reference
Manual for your processor before continuing.

There are a number of advantages to using event counters; they provide highly accurate
information and are a non-invasive debug feature with minimal impact on performance.

There are several situations where the developer might benefit from the use of event counters.
Here are some examples:

e The counters can provide the total number of clock cycles and the number of instructions
executed, from which a cycles per instruction figure can be derived. This can be a good
indicator of the core’s efficiency in a particular section of code.

e The counters can provide the total number of L1 D/I-Cache refills and L1 D/I-Cache accesses,
which can be used to determine the ratio of L1 D/I-Cache misses to L1 D/I-Cache accesses.
This provides an indication of how efficiently the cache is being used and can potentially
explain excessive data accesses to the external memory system that are slowing down your
program.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 7 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
The PMU architecture and events

3. The PMU architecture and events

While the PMU architecture defines a set of common events, each implementation can also define
its own specific events. It is therefore essential that you consult your implementation’s Technical
Reference Manual.

The counters are configured using the event numbers defined by the PMU architecture and specific
implementation, and can each monitor any of the available events. It is important to note that there
is an additional cycle counter that is not configurable and can only monitor cycles.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 8 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Using DS-5 in conjunction with event counters

4. Using DS-5 in conjunction with event
counters

DS-5 and event counters are a powerful combination, allowing you to step through code, set
breakpoints, and access the value of any counter when the target is stopped. Using these tools

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 9 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Using DS-5 in conjunction with event counters

together you can monitor events for any particular section of code, aiding in the optimization
process by detecting potential inefficiencies.

Figure 4-1: PMU registers view.

(9= Variables ©g Breakpoints s Registers 52 2% Expressions f{) Functions = O
=

®
<}~==E> Linked: PMU_COUNTERS_TUTORIAL_EXAMPLE -

Mame | Value |Size|ﬁkccess|
(= Core 50 of 50 registers
== CP15 15 of 235 registers
= (= PMU 15 of 15 registers
= @ PMCR Bx418F3881 32 R/W
— @ IMP ARM Ltd~> & R/W
— @ IDCODE Cortex_AlS~ & R/W
—@ N 6w 5 R/W
— @ _DP Disabled= 1 RAW
— @ X Disabled= 1 RAW
—a@ D PMCCNTR_counts_every_clock_cycle™ 1 R/W
—@ C gw 1 BW
—@ P gw 1 RW
— @ E Enabled= 1 R/W
F @ PMCMNTEMSET ex8opBEEBF 32 R/W
@ PMCMNTEMCLE exsepeeeer 32 R/W
@ PMOVSR expepeeeea 32 R/W
— @ PMSWINC write only 32 Wo
=+ @ PMSELR expeaeeeel 32 RAW
@ PMCEIDD @x3FFF@F3F 32 RO
— @ PMCEIDL axeaaaeeee 32 RO
— @ PMCCNTR BxPERRAASE 32 R/W
= @& PMXEVTYPER exeepeeel3 32 R/W
@ P Disabled= 1 R/W
e U Disabled= 1 RAW
@ MNSK Disabled>™ 1 R/W
@ MNsU Dizabled> 1 R/W
@ MSH Dizabled= 1 R/W
Data_memory _access m
= PMXEVCNTR > 25 .
& PMUSERENR. exoopeeeel 32 R/W
& PMINTEMSET expepeeeea 32 R/W
@ PMINTEMCLR exeepeesea 32 R/W
@ PMOVSSET exeopeeeRR 32 R/W

Add a register to the view. Browse...

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 10 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Using DS-5 in conjunction with event counters

The PMU registers aren't available by default, to add them click on Browse, expand
CP15, select PMU and click OK.

It should also be noted that halting the processor and entering debug mode is an invasive process
that can affect the counter values. It is therefore recommended that you do not halt the processor
if high precision is required.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 11 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Setting up and using the event counters

5. Setting up and using the event counters

This section outlines the steps required to setup and use the event counters on a Cortex-
A15 (Armv7-A). The steps for Armv8-A processors are similar, though may be subject to small
variations.

You can choose not to activate the cycle counter (steps marked as optional). This will not affect the
event counters since they are independent from the cycle counter. If you do not need a readout

of the number of cycles, then you can leave the counter off, which will reduce the performance
impact of the PMU on your system.

1. (Not essential) Enabling PMU user access - in the Performance Monitors User Enable Register
(PMUSERENR), set the EN,bit[O] to 1.

Enabling the PMU - in the Performance Monitors Control Register (PMCR), set the E,bit[0] to 1.
Configuring an event counter

a. Inthe Performance Monitors Event Counter Selection Register (PMSELR), write the counter
number (0-5) to the SEL,bits[4:0] you wish to configure.

b. In the Performance Monitors Event Type Select Register (PMXEVTYPER), write the event
number (from the event list) to evtCount,bits[7:0], in order to select the event being
monitored by the counter.

4. Enabling a configured event counter - in the Performance Monitors Count Enable Set Register
(PMCNTENSET), set Px,bit[x] (where x corresponds to the counter to be enabled 0-5) to 1.

5. (Optional) Enabling the cycle counter (CCNT) - in the Performance Monitors Count Enable Set
Register (PMCNTENSET), set the C,bit[31] to 1.

6. (Optional) Resetting the cycle counter (CCNT) - in the Performance Monitors Control Register
(PMCR), set the C,bit[2] to 1.

7. Resetting the event counters - in the Performance Monitors Control Register (PMCR), set the
Pbit[1] to 1. The counters are now configured and will monitor events of interest as execution
continues.

8. (Optional) Disabling the cycle counter (CCNT) - in the Performance Monitors Count Enable
Clear Register (PMCNTENCLR), set the C,bit[31] to 1.

9. Disabling an event counter - in the Performance Monitors Count Enable Clear Register
(PMCNTENCLR), set Px,bit[x] (where x corresponds to the counter to be disabled 0-5) to 1.

10. Reading the value of an event counter

a. Inthe Performance Monitors Event Counter Selection Register (PMSELR), write the counter
number (0-5) to the SEL,bits[4:0] you wish to read.

b. The value of the selected counter is stored in the Performance Monitors Selected Event
Count Register (PMXEVCNTR).

11. (Optional) Reading the value of the cycle counter (CCNT) - the value of the cycle counter is
stored in the Performance Monitors Cycle Count Register (PMCCNTR). Source code performing
this operation can be found in this downloadable project that you can import to DS-5. Please
import this as you will need it for the next part of this tutorial.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 12 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Setting up and using the event counters

Source code performing this operation can be found in this downloadable project that you can
import to DS-5. Please import this as you will need it for the next part of this tutorial.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 13 of 18

https://developer.arm.com/-/media/developer/products/software-tools/ds-5-development-studio/resources/using-the-pmu-event-counters-in-ds-5/pmu_counters_tutorial_example.zip

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Worked example

6. Worked example

The following chapter describes a worked example.

This example is written for the Cortex-A15 (Armv7-A), and runs on a CoreTile
Express A15x2-A7x3 (TC2) on the Versatile Express platform. Arm DS-5
Development Studio 5.21.1 was used for testing.

This example demonstrates setting up the event counters as described above. The counters will
be used to measure the performance of a particular section of code, allowing for a comparison
between its performance both before and after optimization.

This program creates and populates two matrices, adds them together, then stores the result to a
third matrix. The addition can be performed in two different ways:

e add matrix in C unoptimized() uses two Cloops to perform the addition one element at a
time

e add matrix _in ASM optimized() is written in Arm assembler and adds four elements at a time
using vector operations (NEON instructions) In theory the second approach should be more
efficient, the counters can be used to prove this.

1. Inmain() seta breakpoint on the function start counters () (see image below) and use F8 to
run to it.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 14 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Worked example

Figure 6-1: Breakpoint on the function start_counters ()

) Matrix_c.c 52 = O

13 int matl[HEIGHT][WIDTH];
14 int mat2[HEIGHT][WIDTH];
15 int mat3[HEIGHT][WIDTH];

17 int number_of_elements=WIDTH*HEIGHT;
18 int *memory_ location_matl, *memory location_mat2, *memory location_mat3;

2@ extern void start_counters(void);
21 extern void stop_counters(void);
22 extern int read_pmn(int counternb);
23 extern int read_ccnt(void);

25 extern void add_matrix_in_ASM optimized(int number_of_elements, int *pa, int *pb, int *pc);
26

27# int fill_matrix(int matnb)[]

52

S3# int add_matrix_in_C_unoptimized(int matlnb, int mat2nb)[]

68

59- int main()

float inst,cycl,cycl_inst;

memory_location_matl-&matl[@][@]; //Peinter to the first element of the array holding matrix 1
memory_location_mat2-&mat2[@][@]; //Pointer to the first element of the array holding matrix 2
memory_location_mat3=8&mat3[@][@]; //Pointer to the first element of the array holding matrix 3 (result storage matrix)

fill matrix(1); //Fill matrix 1 with random numbers
fi11 matrix(2); //Fill matrix 2 with random numbers

m

start counters(); //Configure and Start the counters

add_matrix_in_C_unoptimized(1,2);
/fadd_matrix_in_ASM_optimized(number_of_elements, memory_location_matl, memory location_mat2, memory location_mat3);

stop_counters(); //Stop the counters
printf("\nPerfoermance monitor results\n\n");

printf("Instructions Executed = ¥u\n", read_pmn(@));
printf("Cycle Count (CCNT) = Hu\n", read_ccnt());

printf("Data Accesses = ¥u\n", read_pmn(1));
printf(“Data Reads = %u\n", read_pmn(2));
printf(“Data Writes = ¥u\n”, read_pmn(3));

inst=read_pmn(@);

cycl=read ccnt();

cycl_inst=cycl/inst;

printf("Average cycles per instruction = ¥f\n",cycl_inst);

return 2;

F S0 NO WA WM QUOUONOU R W R ® W00 W R WS

F 3

2. Use F5to step into start_counters () and note how the event counters are being initialized as
described earlier.

3. Use F5 to step into the subsequently called functions and notice how the program uses
assembly to modify the Performance Monitors Extension’s registers.

4. Once you have reached add matrix in C unoptimized(1l,2) note how the start counters()
and stop_counters () functions are located around it. The counters will only measure the
performance of this block of code.

Set a breakpoint on stop counters () and use F8 to run to it.
Use F5 to step into stop_counters (); at this stage the event counters are being stopped.

Use F5 to step into the subsequently called functions and note how the program uses
assembler to modify the Performance Monitors Extension’s registers.

8. When the stop counters () function has completed, use F8 to finish the program. Disconnect
from the target.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 15 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Worked example

9. As mentioned earlier halting the core is invasive and leads to imprecise counter values. So,
remove all breakpoints, connect to the target and use F8 to run the code without stepping.

10. Observe the output in the App Console, you should get something similar to below:

Performance monitor results

Instructions Executed = 190730

Cycle Count (CCNT) = 122772

Data Accesses = 60006

Data Reads = 50003

Data Writes = 10003

Average cycles per instruction = 0.643695

11. Now go to main () and comment out the call to add matrix_in C unoptimized() and
uncomment the call to add matrix_in AsSM optimized (). It should look like this:

Figure 6-2: add matrix_in ASM optimized () function with comment removed

start_counters(); //Configure and Start the counters

//add_matrix_in_C_unoptimized(1,2);
add_matrix_in_ASM optimized(number_of_elements, memory_location_matl, memory_ location_mat2, memory_location_mat3);

stop_counters(); //Stop the counters

12. Rebuild the program and remove all breakpoints.

13. Connect to the target and use F8 to run the code without stepping. Note the output in the App
Console, it should look something like this:

Performance monitor results

Instructions Executed = 22529

Cycle Count (CCNT) = 54710

Data Accesses = 10791

Data Reads = 5339

Data Writes = 5452

Average cycles per instruction = 2.428426

We can observe that the optimized version requires six times less data accesses to process the
same amount of data, and processes that data in half the cycles.

The use of event counters has confirmed that the optimized version of the matrix adding algorithm
performs better than the unoptimized version, as expected.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 16 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Summary

7. Summary

This tutorial has introduced the concept of event counters in Armv7-A, Armv7-R and Armv8-A,
and how they can be used in conjunction with DS-5 in order to monitor certain aspects of system
performance. The tutorial outlines the steps required to configure these timers, and a real-world
example has been used to show how they can be useful when optimizing and testing code.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 17 of 18

Using the PMU and the Event Counters in DS-5 Document ID: 102601 0100 02 en
Version 1.0
Further reading

8. Further reading

A detailed list of the common PMU events and their explanations can be found in the Architecture
Reference Manual.

In this example vectorization was performed manually through the use of NEON instructions in
Arm assembler, but it can be performed automatically using compiler options such as the Arm
Compiler's —vectorize option, further information can be found in your compiler's documentation.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 18 of 18

https://developer.arm.com/documentation#sort=relevancy
https://developer.arm.com/documentation#sort=relevancy

	Using the PMU and the Event Counters in DS-5
	Contents
	1. Using the PMU and the Event Counters in DS-5
	2. Background
	3. The PMU architecture and events
	4. Using DS-5 in conjunction with event counters
	5. Setting up and using the event counters
	6. Worked example
	7. Summary
	8. Further reading

