
Morello Instruction Emulator User Guide

Non-confidential
Copyright © 2020 – 2023 Arm Limited (or its affiliates).
All rights reserved.

Issue
102270 0.7

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

Morello Instruction Emulator User Guide
Document ID: 102270
Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.

Release Information
Document History

Issue Date Confidentiality Change
0.1 October 2020 Non-Confidential Initial version

Morello IE release 1.0.
0.2 February 2021 Non-Confidential Clarification of known issues and limitations.New command line options.Updates of instruction and memory tracer.New tools: debugger and cache model.

Morello IE release 1.1.
0.3 July 2021 Non-Confidential Added description of new features.Updated known issue and limitations.Code examples now use Musl C library.

Morello IE release 1.2.
0.4 January 2022 Non-Confidential Updated command line options and debugger commands.Updated Morello LLVM build instructions.

Morello IE release 1.4.
0.5 July 2022 Non-Confidential Updated command line options ad debugger commands.Deprecated some command line options.Updated description of the installation procedure.Updated Emulator launcher binary usage.Removed description of the C library emulation layer.

Morello IE release 2.0.
0.6 October 2022 Non-Confidential Added new debugger commands.Added description of the new remote mode for debugger.Added new command line options for remote debugger mode.Added description of the new experimental remote debugger clients.

Morello IE release 2.1.
0.7 February 2023 Non-Confidential Added new command line options for PCuABI emulation.Updated information about types of supported workloads.Updated debugger commands.Updated system requirements.

Morello IE release 2.2.

Proprietary Notice
License

Non-Confidential Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document
may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means
without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights
is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information
for the purposes of determining whether implementations infringe any third party patents.
THIS DOCUMENT IS PROVIDED “AS IS”. ARMPROVIDESNOREPRESENTATIONS ANDNOWARRANTIES, EXPRESS, IMPLIEDOR STATUTORY,

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 2 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT
OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation
with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other
rights.
This document may include technical inaccuracies or typographical errors.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION
ANYDIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSEDANDREGARDLESSOF THE
THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document
complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly,
in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.
This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of
this document and any translation, the terms of the English version of the Agreement shall prevail.
The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its affiliates) in the US and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.
Copyright © 2020 - 2023 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.
LES-PRE-20349 version 21.0
Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the
terms of the agreement entered into by Arm and the party that Arm delivered this document to.
Unrestricted Access is an Arm internal classification.
Product Status

The information in this document is for a Beta product, that is a product under development.
Web Address

https://www.arm.com

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 3 of 28

https://www.arm.com/company/policies/trademarks
https://www.arm.com

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

Contents
1 Introduction 5

1.1 Product revision status . 5
1.2 Intended audience . 5
1.3 System requirements . 5
1.4 Installation . 5
1.5 Related information . 6

2 Overview 7

2.1 General description . 7
2.2 Components . 7
2.3 Command line options . 8
2.4 Inline control instructions . 14
2.5 Limitations and known issues . 14

3 Advanced topics 16

3.1 Building Morello applications . 16
3.2 Capability faults . 19
3.3 Instruction and memory trace . 20
3.4 Interactive debugger . 21
3.5 Remote debugger . 24
3.6 Statistics and cache model . 26

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 4 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

1 Introduction

1.1 Product revision status

Morello Instruction Emulator version: 2.2.

1.2 Intended audience

Morello Instruction Emulator (Morello IE) is a tool for software developers and researcherswhowish to experimentwith theMorello
architecture. It allows you to run userspace Morello applications on AArch64 Linux systems in a non-Morello environment. It also
includes runtime instrumentation that can collect information about events and counters related to Morello. In addition, it includes
an interactive debugger to help with running Morello applications.
The emulator can be used for:

• Experiments with Morello userspace applications on non-Morello AArch64 Linux systems.
• Evaluate compartmentalisation solutions and experiment with the Linux system call ABI.
• Test, debug and trace existing software being ported to Morello.
• Trace-based performance analysis and cache modelling for Morello applications.

Important: Morello IE is an experimental tool. Do not use the Morello IE to run applications in a production environment.

1.3 System requirements

Morello IE is released in pre-built binary form and requires the following:
• Arm®v8.2 64-bit hardware recommended. The minimum required architecture is Arm®v8.0.
• Existing userspace GNU/Linux environment (for example, Debian 10 or Ubuntu 18.04).
• The host system must have Glibc 2.28 or above.
• Installation script requires bash , tar and more tools.
• Remote Python-based client for the debugger requires either Python 2.7 or Python 3.6 or above.
• Experimental web-based client for the debugger requires up-to-date version of either Mozilla Firefox or a Chromium-based

browser.
Morello IE runs on Arm®v8.0 hardware in a 64-bit userspace Linux environment. However, it does not provide emulation for all
the features of Arm®v8.2 architecture, on which the Morello architecture is based. Therefore, if a workload uses some of these
features, Morello IE might not run it correctly.

1.4 Installation

The Morello IE installer is a shell script morelloie-${VERSION}.tgz.sh that you should execute in a Bash shell in order to install
the tool. The shell script will guide you through EULA acceptance, allow you to choose the installation directory and unpack the
contents of the distribution bundle to it. The script supports the following command line options:

• --prefix=<path> – this option provides a way to override the path to the installation directory.
• --i-agree-to-the-contained-eula – this option supports unattended installation process and allows accepting EULA via a

command line option.

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 5 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

To use the emulator launcher, you may add the path to the bin directory of the installation root to your PATH environment variable.
The installation is self-consistent and portable. For example:
$ bash morelloie-${VERSION}.tgz.sh [--prefix=/path/to/installation/directory]

...

$ export PATH=${PATH}:/path/to/installation/directory/bin

$ morelloie --version

Morello architecture is backwards compatible with AArch64, and you can run an AArch64 application with the emulator. For
example, to check that your installation is successful, run the following command:
$ morelloie -- uname -m

This command runs uname -m in the emulator, and displays aarch64 .
The installation directory includes:

• bin directory with launcher binary and remote debugger client.
• lib directory with instrumentation clients.
• license_terms directory with licence information.
• README a short readme file with a brief description recent changes and links to related resources.

1.5 Related information

This document contains information that is specific to this product. See the following documents for other related information:

Reference Document name Document ID
[Morello IE]1 This document 102270
[Morello ISA]2 Morello Prototype Architecture Specification DDI0606
[Morello AAPCS]3 Morello extensions to PCS for the Arm 64-bit Architecture 102205
[Morello AAELF]4 Morello extensions to ELF for the Arm 64-bit Architecture 102272
[CHERI]5 CHERI C/C++ Programming Guide —
[Linux Toolchain]6 Guide for Morello LLVM toolchain and Musl libc for Linux —
[PCuABI kernel-user spec]7 Morello pure capability kernel user Linux ABI specification —

1 https://developer.arm.com/documentation/102270/latest
2 https://developer.arm.com/documentation/ddi0606/latest
3 https://github.com/ARM-software/abi-aa/blob/main/aapcs64-morello/aapcs64-morello.rst
4 https://github.com/ARM-software/abi-aa/blob/main/aaelf64-morello/aaelf64-morello.rst
5 https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
6 https://git.morello-project.org/morello/musl-libc/-/blob/morello/master/README.rst
7 https://git.morello-project.org/morello/kernel/linux/-/wikis/Morello-pure-capability-kernel-user-Linux-ABI-specification

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 6 of 28

https://developer.arm.com/documentation/102270/latest
https://developer.arm.com/documentation/ddi0606/latest
https://github.com/ARM-software/abi-aa/blob/main/aapcs64-morello/aapcs64-morello.rst
https://github.com/ARM-software/abi-aa/blob/main/aaelf64-morello/aaelf64-morello.rst
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://git.morello-project.org/morello/musl-libc/-/blob/morello/master/README.rst
https://git.morello-project.org/morello/kernel/linux/-/wikis/Morello-pure-capability-kernel-user-Linux-ABI-specification

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

2 Overview

2.1 General description

Morello Instruction Emulator (Morello IE) is a dynamic binary translation tool. It is based on the runtime translation of each Morello
instruction into a series of AArch64 instructions using DynamoRIO8 instrumentation framework. The emulator maintains a con-
sistent emulated CPU state as well as emulated memory tags. It also provides a layer of compatibility between Morello user space
applications and non-Morello system.
Morello IE can execute both hybrid and purecap Morello applications. Staring with release 2.0, you must link an application to a
Morello-aware C library. For example, you can use port of the Musl C library to Morello9. The C library your application is using
should target PCuABI kernel-user interface as outlined in the Morello pure capability kernel user Linux ABI specification10.
Morello IE implements the Morello ISA of version PROTO_REL_04.

2.2 Components

Morello IE includes the following components:
• Emulator – implements emulation of Morello architecture.
• Debugger – provides debugging capabilities with access to the emulated CPU state and memory capability tags.
• Instruction and memory tracer, cache model and statistics counter.
• Morello IE launcher – this application is used to load all required instrumentation and run the payload.

Emulator

Morello IE implements Morello instructions by replacing them with AArch64 code which can execute natively. The imple-
mentation relies on the emulated CPU state that is maintained by the emulator for each process thread. This state synchro-
nizes with real execution context, including the values of hardware registers and capabilities in memory. The emulator is
implemented in the instrumentation client libmie.so .

Debugger

The interactive debugger gives access to the emulated state and runtime information for every executed instruction. It sup-
ports basic commands such as printing the emulated CPU state and individual registers, working with PC-based breakpoints,
and identifying location of the current execution point (for example, printing backtrace). The debugger provides access to
data maintained by the emulator that is not available by means of lldb or gdb . See Interactive debugger (page 21) for more
information. Since release 2.0 the debugger is implemented as a separate instrumentation client libdbg.so .

Tracer

Instruction and memory access tracer is implemented as a separate instrumentation client libtracer.so . You can use
this client independently of the instruction emulation client. For example, you can use it to analyze non-Morello AArch64
applications to compare the results to the Morello version of the same application. It allows you to capture runtime trace of
executed instructions and accesses to memory. You can configure the tracing scope to capture either the entire application
execution flow, or a particular region(s) of interest.
The tracer instrumentation client also includes a module for collecting various architectural statistics at runtime, including
counters specific for Morello, and also data related to CPU cache modelling based on DynamoRIO’s drcachesim tool. Statis-

8 https://dynamorio.org/
9 https://git.morello-project.org/morello/musl-libc/

10 https://git.morello-project.org/morello/kernel/linux/-/wikis/Morello-pure-capability-kernel-user-Linux-ABI-specification

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 7 of 28

https://dynamorio.org/
https://git.morello-project.org/morello/musl-libc/
https://git.morello-project.org/morello/kernel/linux/-/wikis/Morello-pure-capability-kernel-user-Linux-ABI-specification

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

tics and cache modelling data can be scoped in the same way as instruction and memory traces (see Command line options
(page 8) for more details).

Launcher

Running Morello applications with instrumentation requires an additional launcher binary. The morelloie binary loads
emulation and tracer clients, and exposes application execution to the dynamic binary translation instrumentation.
You can also use this binary to load additional instrumentation client libraries. For example, this could be useful when you
use a custom DynamoRIO instrumentation client along with the Morello emulation client.

2.3 Command line options

This section gives an overview of all the command line options supported by Morello Instruction Emulator. The command line
template is:
$ morelloie [options] -- application [application argument(s)]

The double-hyphen -- acts as a separator. Specify options for morelloie before the -- separator and the arguments for your
application after the -- separator.
Morello IE supports boolean (no value required), integer, and string types of command line options. It also supports program counter
(PC) values that you can specify in several ways.
In general, you can invert any boolean option by adding -no directly in front of the option name. For example, use -no-enable-foo

to invert option -enable-foo . For options that have a value, separate the option name and the value with a single space.
Some options take a PC address <pc> as a value. This can be specified in several formats. It can be a hexadecimal literal (without
the 0x prefix since decimal integers are not supported as PC address values). For example, -break 200200 . It can also take a form
of <symbol> or <symbol>+<offset> , where <symbol> is the name of a symbol in the binary which start address is used as a value
for the option and <offset> is an optional unsigned decimal offset in bytes added to the start of the symbol address. For example,
-fr main -to main+128 .
Options related to memory sizes accept values as decimal integers and are measured in bytes. For example, -l1-d-size 1024 means
size of 1024 bytes (1 KiB).

Options to control instrumentation

-v

Print verbose output from the launcher. The output is directed to stderr .
Default: verbose output is suppressed.

-f

Use the fork syscall instead of execve to launch the process.
Default: the execve syscall is used to start new process.

-fsz <n>

Specify maximum fragment size for instrumentation. This option limits the number of application instructions included in a
single instrumented block of code, and sets the max_bb_instrs option of DynamoRIO. Increasing this value might improve

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 8 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

the performance of instrumentation, but might also result in exceeding internal code cache limits in DynamoRIO.
-Dr,<option> [<value>]

Supply raw option for DynamoRIO. This option can be used multiple times to provide several options that are relayed to
DynamoRIO. The -fsz <n> option is a shortcut for the -Dr,max_bb_instrs <n> option.

-no-mie

Disable use ofMorello emulation client. This option can be helpful when only the tracer client needs to be used for analysing
non-Morello applications.
Default: Morello emulation client is enabled by default.

-c <lib> [params]

Load custom DynamoRIO instrumentation client from library <lib> with optional parameters. This option should be used
after all other launcher options and can be repeated multiple times (to load several clients). The -c option starts command
line for each instrumentation client and must be followed by the path to the client’s library and optionally by the arguments
intended for this client. All options between the -c option and either the next -c option or the double hyphen delimiter --

are part of the command line for the corresponding client library. One or more instrumentation clients can be used together.
Everything after the -- delimiter forms the command line to start the process of the application.

Common client options

-verbose

Show extra diagnostic messages.
Default: verbose output is suppressed.

-debug

Enable debug support in all loaded clients. This option is automatically implied when using one of the the debugger client
is loaded. This option must be used to enable tracking of instruction markers for the debugger (see Marker for debugger
(page 14)).
You can use this option to enter the debug mode on a capability fault.
Default: support for debugging is disabled by default.

Options for Morello emulation client

-strace

Show verbose information about system calls. This option works similar to the strace commandwith additional information
about emulated aspects of system call errors. Added in Morello IE 2.2.

-stack-limit <value>

Size of stack for main thread of the application that is used for setting bounds for the initial value of the CSP register. Added
in Morello IE 2.2.
Default: size defined by the current system limit RLIMIT_STACK .

-no-strict-a64-store

Disable tracking of tags for capabilities inmemory during AArch64 stores. This stops invalidation ofmemory tags by AArch64
(non-Morello) store operations but also increases the speed of emulation.
Default: tracking of tags is enabled.

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 9 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

-no-strict-c64-mem

Disable checking all memory operations in purecap (C64) mode. This option ignores capability faults that would be generated
by AArch64 (non-Morello) instructions but also increases the speed of emulation.
Default: all memory operations checking is enabled.

-no-strict-pcc

Disable PCC tag and permissions checking that normally happens at instruction fetch. Added in Morello IE 1.2.
Default: PCC permissions and bounds checking is enabled.

-no-strict-cap

Combine all three -no-strict-a64-store , -no-strict-c64-mem , and -no-strict-pcc . Added in Morello IE 2.0.
Default: all capability checks are enabled.

-no-signal

Do not emit OS signal on a capability fault. By default, every capability fault will result in a signal delivered to the application
(see Capability faults (page 19)). This option can be used to override this behaviour. Added in Morello IE 1.2.
Default: signals are emitted for every capability fault.

-DDCBO

-PCCBO

-ADRDPB

-no-SBL

These options control the initial values of the control bits in the CCTRL_EL0 emulated control register: bits DDCBO , PCCBO ,
ADRDPB are unset (have value 0) by default, bit SBL is set (has value 1) by default. Added in Morello IE 1.3.

Options for debugger

-break <pc>

-break <symbol>[+<offset>]

-break <pc-expression-1>,<pc-expression-2>,...

Pauses execution immediately before executing the instruction at the given <pc> address and enters debug mode. Only
a single instance of this option can be used on a command line but this option can accept comma-separated list of PC
expressions. Added in Morello IE 1.3.
Default: unset. Type: PC (accepts hexadecimal value of symbol names with optional offsets).

-debug-mode local

-debug-mode remote

Select mode for debugger input. When the standard input is used for debugger commands, the default mode is ‘’local”. Use
the remote mode to enable HTTP endpoint for debugger commands. See (see Remote debugger (page 24) for more details
about the usage of the remote debugger client). Added in Morello IE 2.1.
Default: local .

-debug-host <hostname>

-debug-host <IP-address>

Allows you to choose the hostname or IP address for the HTTP endpoint binding for the remote debugger mode. This option

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 10 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

only has effect when you use the remote debugger. Added in Morello IE 2.1.
Default: 127.0.0.1 .

-debug-port <port>

Allows you to choose the port number for the HTTP endpoint binding for the remote debugger mode. This option only has
effect when the remote debugger mode is used. Added in Morello IE 2.1.
Default: 3450 .

Options to control tracer instrumentation client

-instr

Enable instruction trace.
Default: instruction tracing is disabled.

-mem

Enable memory access trace.
Default: memory tracing is disabled.

-trace

Enable trace (instructions and memory), equivalent to using -instr -mem together.
Default: tracing is disabled.

-stat

Enable collection of architectural statistics.
Default: collection of architectural statistics is disabled.

-cache

Enable cache model and collecting associated data.
Default: cache model is not used.

-format csv

-format simple

Format for micro-architectural statistics and cache model results. Added in Morello IE 1.2.
Default: simple .

-tid

Show thread id in the instruction and memory traces. Added in Morello IE 1.4.
Default: false .

-no-stat-merge

Do not merge statistics from all threads. By default, statistics for all process threads are merged when displaying the results.
Use this option to show statistics for each thread separately. Added in Morello IE 2.0.
Default: true .

-stat-breakdown

Show statistics breakdown by mode of execution (C64 and A64) and ISA (Morello or AArch64). Added in Morello IE 2.0.
Default: false .

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 11 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

Options to control scope of tracing

-trace-symbol <symbol>

A symbol (function) name for the default tracing scope. Tracing will start once the execution enters this function and will
stop at the return from this function.
Default: main .

Note: The following sets of options are mutually exclusive.

-all

Trace all instructions that execute, this includes instructions that execute outside of the function selected by the -trace-

symbol option.
-roi

Trace only instructions from the region(s) of interest which are defined by the tracer marker instructions (see Markers for
tracing (page 14)).

-fr <pc1>

-to <pc2>

Define the tracing region of interest with addresses <pc1> and <pc1> . You must supply these two options together.
Default: unset. Type: PC (accepts hexadecimal value of symbol names with optional offsets).

Options for cache model

-l1-d-size

L1 data cache size (in bytes), size must be power of two and multiple of the cache line size.
Default: 65536 bytes. Type: integer (accepts integer decimal values).

-l1-i-size

L1 instruction cache size (in bytes), size must be power of two and multiple of the cache line size.
Default: 65536 bytes. Type: integer (accepts integer decimal values).

-l2-size

L2 cache size (in bytes), size must be power of two and multiple of the cache line size.
Default: 1048576 bytes. Type: integer (accepts integer decimal values).

-l3-size

L3 cache size (in bytes), size must be power of two and multiple of the cache line size. Added in Morello IE 1.3.
Default: 8388608 bytes. Type: integer (accepts integer decimal values).

-cache-line-size

Cache line size (bytes), and size must be power of two.
Default: 64 bytes. Type: integer (accepts integer decimal values).

-l1-d-ways

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 12 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

L1 data cache associativity (number of ways), must be power of two.
Default: 4. Type: integer (accepts integer decimal values).

-l1-i-ways

L1 instruction cache associativity (number of ways), must be power of two.
Default: 4. Type: integer (accepts integer decimal values).

-l2-ways

L2 cache associativity (number of ways), must be power of two.
Default: 8. Type: integer (accepts integer decimal values).

-l3-ways

L3 cache associativity (number of ways), must be power of two. Added in Morello IE 1.3.
Default: 8. Type: integer (accepts integer decimal values).

-cache-prefetcher nextline

-cache-prefetcher none

Hardware data prefetcher policy: nextline or none . Added in Morello IE 1.2.
Default: none .

-cache-rep-policy LRU

-cache-rep-policy LFU

-cache-rep-policy FIFO

Cache replacement policy (LRU – least recently used, LFU least frequently used, FIFO – first in first out). Added in Morello
IE 1.2.
Default: LRU .

-cache-show-params

Show cache model parameters in the results. Added in Morello IE 2.0.
Default: cache model parameters are not included in the results by default.

Miscellaneous options

-help

Display command line options for the instrumentation clients.
-h

Display command line options for the launcher executable.
-version

Display version information and exit.

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 13 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

2.4 Inline control instructions

Morello IE supports special marker instructions that you can embed in the source code applications. The following section describes
the macros you can use to control the tracing scope or to introduce breakpoints for the built-in debugger.

Markers for tracing

You can use the following macros to embed start and stop tracing markers. Every time the execution reaches these instructions,
tracing is enabled or disabled. To use these markers, specify the -roi option. Without this option, marker instructions have no
effect. For example:
morelloie -roi -- ./app

You can define macros for the tracer instructions as shown below:
/* Start tracing */

#define __START_TRACE() asm volatile ("hint #0b1000000")

/* Stop tracing */

#define __STOP_TRACE() asm volatile ("hint #0b1000001")

The instructions that result from this code are valid AArch64 instruction equivalents of NOP and do not affect the functionality of
the application.

Marker for debugger

When you enable debug mode, you can use the following macro to insert a breakpoint which the Morello emulation client will
recognize. Use the -debug option to enable this mode.
/* Put breakpoint */

#define __MIE_DEBUG() asm volatile ("hint #0b1000100")

The instructions that result from this code are valid AArch64 equivalents of NOP and do not affect the functionality of the applica-
tion.

2.5 Limitations and known issues

Morello IE can run both purecap and hybrid Morello userspace applications on non-Morello AArch64 Linux systems. However, pay
attention to the following exceptions and limitations.

PCuABI kernel-user interface emulation

Starting with version 2.2, Morello IE emulates PCuABI kernel-user interface. The implementation covers system calls, signal han-
dlers, and initial process environment. However, the following system calls are not fully supported in version 2.2:

• bpf

• clone3

• get_robust_list , set_robust_list (not fully implemented)
• init_module

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 14 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

• kexec system calls (out of scope of userspace emulation)
• migrate_pages and move_pages (not fully implemented)
• perf and ptrace system calls
• process_vm_readv and process_vm_writev

• quotactl and quotactl_fd

• recvmsg and msgctl

• remap_file_pages

These types of system calls might or might not work and the PCuABI aspects of them might not yet be fully implemented.

Tracing stripped binaries

By default, in stripped applications the entire execution flow is traced. The -trace-symbol option will not have any effect and
tracing will fallback to the configuration initialised by the -all option.

Multi-threaded applications

Support for multi-threaded applications based on pthread might be unreliable. Most of the use cases should work (subject to
correct implementation in your C library). However, cases like thread cancellation points might not run consistently.

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 15 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

3 Advanced topics

3.1 Building Morello applications

You can use the Morello LLVM toolchain to build Morello applications. See [Morello LLVM] for more details about using the
toolchain. This section shows some examples of building and running such applications. The following examples use Musl C library
for linking purecap Morello applications (both non-Morello and Morello11 versions of this library can be used).
In the examples below, the ${MUSL} variable refers to the installation directory of the Musl C library. The ${MORELLO} variable
refers to the installation folder of the Morello LLVM toolchain.

Note: The Morello LLVM toolchain can be built from source for AArch64 Linux host systems. Use the sources from https://git.
morello-project.org/morello/llvm-project-releases and the commands described in [Linux Toolchain].

The current version of the emulator 2.2 can execute:
• statically and dynamically linked purecap Morello applications,
• statically and dynamically linked hybrid Morello applications,
• statically and dynamically linked AArch64 applications.

Note: See the [Morello AAPCS] for more details about the different types of Morello applications (purecap and hybrid) and their
execution modes (A64 and C64).

Running an application under Morello IE generates normal application output to stderr and stdout , while the output of the
emulator itself always redirects to stderr .

Build and run a simple application

In the following examples, the command clang refers to the C compiler from Morello LLVM toolchain.
The following example shows the simplest hello world example for a purecap Morello application:
// hello.c

#include <stdio.h>

int main() {

printf("hello Morello\n");

return 0;

}

To compile and link the hello world example, use the following command:
$ clang --target=aarch64-linux-musl_purecap -march=morello+c64 \

--sysroot ${MUSL}/include hello.c -o hello --static

If the host system does not support Arm®v8.2 instructions, use -march=armv8-a+c64 instead of -march=morello+c64 . This in-
11 https://git.morello-project.org/morello/musl-libc

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 16 of 28

https://git.morello-project.org/morello/musl-libc
https://git.morello-project.org/morello/llvm-project-releases
https://git.morello-project.org/morello/llvm-project-releases

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

structs the compiler to emit only Arm®v8.0 code. This should not affect Morello functionality, however wherever possible Arm
recommends that you use -march=morello+c64 .
To run this example, use:
$ morelloie -- ./hello

When targeting purecap (C64) applications, to enable Morello support, provide the options:
• -march=morello+c64 and -mabi=purecap for compilation;
• -Wl,--morello-c64-plt for linking.

For hybrid (A64) execution, to enable Morello support, specify the options:
• -march=morello for compilation;
• -Wl,--morello-c64-plt for linking.

To link to the Morello application binary, use the LLVM linker from the Morello toolchain providing -fuse-ld=lld to invoke LLVM
linker. To indicate that the binary must be statically linked, use the -static option.
Finally, use –target=aarch64-linux-musl_purecap and -march=morello+c64 to instruct the compiler that we are doing cross-
compilation to a purecap Morello target.

Stack corruption example

This example demonstrates a deliberate capability fault that results from out of bounds access to memory protected by a capability.
Out of bounds writes to memory, allocated on stack, can modify content that is referenced by another variable. This process is
also known as stack corruption. The following example demonstrates how a Morello application behaves when stack corruption is
about to happen.
// stack.c

void fun(int *data) {

data[3] = 3; // <--- access outside object bounds

}

int main() {

int x = 0;

int data[3] = {0, 1, 2};

fun(data);

return data[0] + x;

}

Try running this example using Morello IE:
$ morelloie -- ./stack

21260c: simulated capability fault in thread 83534:

Out of bounds access to 4 bytes: [0000 ... 9d98)

Faulty capability: 0x1:dc104000:5d989d8c:0000ffff:fa0b9d98

tag: true

value: 0x00000fffffa0b9d98

base: 0x00000fffffa0b9d8c

limit: 0x00000fffffa0b9d98

...

Segmentation fault (core dumped)

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 17 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

Out of bounds access example

The following example shows the behavior of aMorello applicationwhen an out of bounds access occurs for a dynamically allocated
block of memory that is protected by a capability.
// heap.c

#include <stdlib.h>

int main() {

int *data = (int *)malloc(sizeof(int) * 3);

int x = data[3]; // <--- reading outside of bounds

return x;

}

To run the example in Morello IE:
$ morelloie -- ./heap

212684: simulated capability fault in thread 83793:

Out of bounds access to 4 bytes: [0000 ... 00cc)

Faulty capability: 0x1:dc1f4000:40cc00c0:0000fffd:822100cc

tag: true

value: 0x00000fffd822100cc

base: 0x00000fffd822100c0

limit: 0x00000fffd822100cc

...

Segmentation fault (core dumped)

Build and run hybrid Morello application

You can define capabilities explicitly in a hybrid Morello application. To do this, wrap a pointer into a capability to enable Morello
to protect the memory access. For example:
// hybrid.c

#include <stdlib.h>

int main() {

int* __capability cap = (__cheri_tocap int* __capability)malloc(3 * sizeof(int));

asm volatile ("hint #0b1000000"); // start tracing

int x = cap[3]; // <--- reading outside of bounds

asm volatile ("hint #0b1000001"); // end tracing

free((__cheri_fromcap void *)cap);

return x;

}

To build this into a hybrid Morello application, run the following commands:
$ clang -march=morello -fuse-ld=lld hybrid.c -o hybrid

Try running the example with the -instr or -trace options together with -roi option. This enables instruction tracing for the
region of interest. For example:
$ morelloie -trace -roi -- ./hybrid

M 1 21080c (A64) c24007e0 ldr c0, [csp, #16]

(continues on next page)

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 18 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

(continued from previous page)
M 21080c (A64) MR16 0000ffffffffe760 --> 0000000000250010 ffffc000401c0010

M 21080c (A64) CR01 0000ffffffffe760 --> 1

M 2 210810 (A64) e280c408 ldur w8, [x0, #12]

210810: simulated capability fault in thread 98325:

Out of bounds access to 4 bytes: [0000 ... 001c)

Faulty capability: 0x1:ffffc000:401c0010:00000000:0025001c

tag: true

value: 0x0000000000025001c

base: 0x00000000000250010

limit: 0x0000000000025001c

...

Segmentation fault (core dumped)

Note: In the example above, the hybrid Morello application is linked to the default system C library.

3.2 Capability faults

If a capability fault occurs during execution, the emulator prints:
• Information about the fault.
• The PC value where the fault occurred and thread ID.
• Details about the faulty capability.

By default, Morello IE terminates the application with an appropriate OS signal. To locate the instruction that caused the fault,
use the reported PC value. To disassemble the binary use the Morello toolchain llvm-objdump tool. Alternatively, you can use the
built-in Morello IE debugger.
You can suppress signals sent to the application with the -no-signal option.
The following table shows which signals are emulated for each type of capability faults:

Fault Signal
Capability tag not set SIGSEGV
Capability is sealed SIGSEGV
Incorrect capability permission SIGSEGV
Access out of capability bounds SIGSEGV
Anything else SIGSEGV

Note: All emulated capability faults result in the same signal SIGSEGV .

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 19 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

3.3 Instruction and memory trace

The tracer instrumentation client included in Morello IE allows you to generate runtime traces with information about executed
instructions and memory accesses. To enable tracing, add the -trace option. For memory only trace, provide the -mem option,
and for instruction trace only, provide the -instr option.
By default, code that is invoked directly or indirectly from the function specified by the -trace-symbol option (main by default) is
traced when tracing is switched on. In the case of a stripped binary, the entire application code is traced.

Important: To ensure correct execution, code inside a region defined by load-exclusive and store-exclusive instructions, is not
instrumented and is not traced.

To change the scope of tracing, use one of the following mutually-exclusive options:
• To force tracing of all application code, use the -all option.
• To enable use of tracer marker instructions (see Markers for tracing (page 14)), use the -roi option.
• To trace only code executed from the instruction at address <pc1> to the instruction at address <pc2> (inclusive), use a pair

of options -fr <pc1> -to <pc2> .
• To trace code called directly or transitively from a given function, use -trace-symbol <fun> option.

Every instruction is displayed with the following information:
• a type (M for Morello instruction and A for A64 instruction),
• a sequential number,
• thread ID (when -tid option is used),
• an address (PC),
• a mode of execution (A64 or C64),
• 32-bit encoding value,
• opcode,
• instruction operands.

The emulator prints the instruction trace entry before it executes the instruction. When an error occurs, if you have correctly
configured the scope of tracing, the last instruction in the trace is the faulty instruction.
For memory accesses, additional information is provided when memory tracing is enabled:

• MW for memory write or MR for memory read.
• Transfer size in bytes: for example, MW32 means write of 32 bytes and MR04 means read of 4 bytes.
• Address used for memory access (64-bit value).
• Data which is loaded or stored.
• For loading and storing capabilities, tags are also shown in binary format. For example, CW02 with data 10 means that 2

tags have been written, one tag is 1 and the other tag is 0 .
A memory trace entry always follows the corresponding instruction trace entry. When an instruction fails to execute, a memory
trace entry is not shown.
When running multi-threaded applications, it might be useful to add thread id to the instruction or memory trace to help filter
traces originating from different threads. To do this, use -tid option. For example,

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 20 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

morelloie -tid -trace -- ./app

3.4 Interactive debugger

Morello IE includes a simple interactive debugger that provides access to emulated state and runtime context of the executed
application.

Entering debug mode

To use the interactive debugger, the Morello emulation client must be in debug mode. There are several ways to do this.
You can insert a breakpoint from the command line. Add the -break <pc> option with the value of the PC address at which the
breakpoint must be inserted. For example:
$ morelloie -break 2342d4 -- ./app

$ morelloie -break main+16 -- ./app

See Command line options (page 8) for more information about accepted values.
During runtime instrumentation Morello IE inserts code to pause the execution and to enter debug mode. Debug mode allows you
to submit commands to request information about the current execution context. When execution is about to reach an instruction
at given address, the application stops and waits for further user commands. If present, other execution threads also suspend.
You can also use breakpoint marker instructions in your source code using this macro (seeMarker for debugger (page 14) for details).
/* Put breakpoint */

#define __MIE_DEBUG() asm volatile ("hint #0b1000100")

During runtime instrumentation, for every such instruction, Morello IE inserts code to pause the execution and to enter debug
mode. To enable this, you must use the -debug option.

Note: The -debug option is implied when -break <pc> options are used.

Debugger commands

This section describes debugger commands. In the following commands and examples:
• The <pc> placeholder refers to a PC address in form of a hexadecimal literal with or without 0x prefix. This can also be a

function name with an optional unsigned integer offset, for example main+64 .
• The <addr> placeholder refers to a memory address in form of a hexadecimal literal with or without 0x prefix. You can

specify this as the value of the a register with optional signed integer offset, for example csp-32 or x0+8 .
• The <reg> placeholder is a register name, for example X29 or CSP .
• The <sz> placeholder is the number of bytes to read from memory (a decimal integer literal).
• The <type> placeholder is a type name for loading data from memory, for example float or uint64 .

These are the commands available in debugger.
m, h, help

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 21 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

Print help message.
q, quit, exit

Terminate application and exit.
r, run

Run the process until the next breakpoint or until the process exits or a fault occurs.
s, n, next, step

Step to the next instruction (step in).
finish

Run until exit from current function (step out). The application will run until the execution reaches the current link register
address.

until <pc>

Set new breakpoint address to <pc> and run until it.
bt, backtrace

Show backtrace (last call shown first).
w, where

Show information about current and previous PC addresses.
info cpu, cpu

cpu emulated, cpu hardware

Print CPU state (emulated or hardware registers).
info modules

Print information about loaded modules (executable and shared objects if any).
info fun [<pattern>]

Print information about functions and their addresses. This can be filtered using optional wildcard pattern.
info threads

Print information about application threads.
p <reg>, print <reg>

Print current value of a register: XSP , CSP , LR , CLR , PCC , DDC , X0 to X30 , C0 to C30 , etc.
mem <sz> <addr>

Read <sz> bytes from memory address <addr> (maximum 1024 bytes can be read). You can also specify the address as the
current value of a register (for example, mem 16 csp will attempt to load 16 bytes from the top of the current stack). You can
use an optional signed offset with the register value, for example mem 16 csp+32 .

mem <type> <addr>

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 22 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

Read data of type <type> from memory address <addr> . Supported types are: float , double , int64 , uint64 , int32 ,
uint32 , int16 , uint16 , int8 , uint8 . The output is formatted according to the specified type.

frame [n]

Show current (or, if specified, n-th) stack frame (n is 0 -based) as a sequence of capabilities displaying the capability metadata
for all valid capabilities in this memory region. If you omit number n of the stack frame, the current (lowest) stack frame
displays.

view <addr> <addr>

Show the memory region between two specified addresses as a sequence of capabilities displaying capability metadata for
all valid capabilities in this memory region.

cstr <sz> <addr>

Read <sz> chars from memory address <addr> as string. The string is printed up to the first null character.
tag <addr>

Read memory tag for memory address <addr> .
cap <addr>

Display capability that can be loaded from address <addr> .
br l, br list, breakpoint list

List existing breakpoints (their PC addresses and functions containing them).
br set <pc>, br add <pc>, breakpoint set <pc>, breakpoint add <pc>

Create a new breakpoint at <pc> .
br del <pc>, br remove <pc>, br delete <pc>, breakpoint del <pc>

Delete existing breakpoint at <pc> .
br c, br clear, breakpoint clear

Delete all breakpoints.
set

Show current settings for debugger.
set th on|off

Toggle showing thread ID on / off.
set mod on|off

Toggle showing module name on / off.
d, disassemble

d, disassemble <pc>

d, disassemble <pc> <length>

Disassemble at the current or given PC address showing at most <length> instructions above and below the chosen PC
address.

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 23 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

Morello IE maintains emulated capability registers and synchronizes them with real hardware registers. The debugger supports ob-
serving hardware registers independently to help identify any errors in the synchronization that could potentially affect correctness
of workload execution.

3.5 Remote debugger

Morello IE can be configured to run in the remote debugging mode in which the input and output from the application and from
the debugger are decoupled. This allows for more convenient debugging when the application requires user interaction. In this
mode, the Morello IE starts HTTP endpoint using configurable hostname and port number. This endpoint provides API that can be
used in interact with the debugger.

Remote debugger HTTP API

When using the remote debugger mode, the Morello IE provides the following HTTP endpoints:
GET /morelloie/command?cmd=${command}

Submit a debugger command (must be URL-encoded). The reply includes a numerical response ID that can be used to obtain the
result for this command from the debugger. Synchronous, connection is blocked until the debugger has accepted the command.

Description Sends a command to the debugger and returns a message ID.
Method GET
Encoding ASCII / UTF-8
Content Type text/plain
Responses Code Reason

200 Command sent to Debugger and response ID returned
205 The command was recognised as an exit command and the debugger will exit
400 Missing of malformed cmd parameter

Body Text - Message ID stored in debugger

GET /morelloie/response?id=${id}

Obtains a debugger response for the given request ID. This is synchronous and blocks until the debugger generates the message.

Description Retrieves a message from the debugger if one exists.
Method GET
Encoding ASCII / UTF-8
Content Type text/plain
Responses Code Reason

200 Message returned successfully
400 Missing of malformed id parameter

Body Text - The message text for the supplied request ID.

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 24 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

GET /morelloie

Returns a web page with a simple client for the remote debugger (see Remote debugger client (web-based) (page 25) for more
information).

Remote debugger client (Python-based)

The Morello IE provides a Python-based client for interacting with the remote debugger HTTP API. The client script debugger-

client is located in the bin directory. It is a simple wrapper around the HTTP API. It supports the following command line options:

-h, --help

Show this help message and exit.
--host <hostname>

Remote debugger hostname or IP address (default: 127.0.0.1).
--port <port>

Remote debugger port number (default: 3450).
--timeout <seconds>

Timeout in seconds (default: 10).
Once connected, this client offers the debugger prompt that accepts all the usual debugger commands (see Debugger commands
(page 21) for details).
To exit the client, use either Ctrl+C or Ctrl+D shortcuts. To stop the debugger and exit, use the usual exit debugger command.
You can also use this client programmatically. For example:
client = DbgClient('127.0.0.1', 3450)

client.wait_for_server()

client.send('info cpu')

Remote debugger client (web-based)

The web-based client for the remote debugger is an experimental tool. You can use this tool to debug Morello applications that
are executed by the Morello IE. It provides command prompt for the usual debugger commands as well as automatically updated
views into registers, callstack, threads and disassembly for the current PC address.
If you start Morello IE in debug mode and use the remote debugger mode, the web-based client’s access URL will display in the
output.

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 25 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

3.6 Statistics and cache model

The results collected by statistics and cache model modules are printed to stderr . By default, the simple format is used. In
addition it also supports -format csv option for machine-readable output.

Statistics

The tracer instrumentation client included in the Morello IE can collect runtime information about executed instructions and mem-
ory accesses including Morello-specific data such as memory tag operations. These metrics are collected:

Metric Description
Instr count total Total number of executed instructions
Instr count SVC Number of executed SVC instructions (number of syscalls)
Instr count LDR Number of executed LDR instructions
Instr count STR Number of executed STR instructions
Instr count LDP Number of executed LDP instructions (loads of pairs).
Instr count STP Number of executed STP instructions (stores of pairs).
CTI direct Number of executed direct branch control transfer instructions (target is part of the encoding)
CTI indirect total Number of executed indirect branch control transfer instructions (target is a register)
CTI indirect capability Number of executed indirect branch control transfer instructions with capability targets
CTI conditional Number of executed conditional control transfer instructions
CTI with link Number of executed conditional control transfer instructions with link (number of function calls)
Loads N bytes Number of loads of N bytes (N can be 1, 2, 4, 8, 16 and 32)
Capability loads Number of load capability instructions
Capability pair loads Number of load capability pair instructions
Stores N bytes Number of stores of N bytes (N can be 1, 2, 4, 8, 16 and 32)
Capability stores Number of store capability instructions
Capability pair stores Number of store capability pair instructions
Loaded bytes Total amount of loaded data in bytes
Loads count total Total number of load operations (memory reads)
Stored bytes Total amount of stored data in bytes
Stores count total Total number of store operations (memory writes)

In addition, you can use the statistics gathering module to analyse non-Morello AArch64 applications. When you execute AArch64
applications, use the -no-mie option to disable emulation of Morello code.

Note: The options controlling the scope of tracing, such as -roi or -c64 , also control the scope of gathering of statistics (see
Command line options (page 8) for more details).

You can collect statistics separately for each thread. To do this, use the -no-stat-merge option. If necessary, all counters can be
broken down by mode of execution (C64 and A64) and ISA (Morello or AArch64). To do this, use the -stat-breakdown option.

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 26 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

Cache model

The cache model included in Morello IE is part of the tracer instrumentation client. It can be used to collect memory accesses and
gather data related to use of CPU cache. The cache model is based on the drcachesim tool from DynamoRIO. It has three levels
of cache with independent instruction and data cache at level 1. You can adjust the size of each cache, the size of cache lines, and
associativity of all caches with command line options. For example:
morelloie -cache -l1-i-size 1024 -l1-d-size $((32*1024)) -l2-size $((128*1024)) -- ./app

This example sets the L1 instruction cache size to 1 KiB, L1 data cache size to 32 KiB and L2 cache size to 128 KiB (see the
description of cache model options in Command line options (page 8) for all the options controlling cache model).
The data returned from the cachemodel includes information such as number of hits andmisses, hit andmiss rates, and the number
of executed instructions. When runningMorello applications, both AArch64 andMorello instructions andmemory access are taken
into account.
You can also use the cache model to analyse non-Morello AArch64 applications. Use the -no-mie option to disable emulation of
Morello code when executing AArch64 applications.

Note: The options controlling the scope of tracing, such as -roi or -c64 , also control the scope of collection of memory references
submitted to the cache model (see Command line options (page 8) for more details).

You can configure the following cache model parameters:

Parameter Default Description
CPU cores 1 Number of CPU cores
Cache line size 64 Size of cache line in bytes
HW prefetcher nextline Hardware prefetcher (available options: none and nextline)
Cache replace policy LRU Cache replace policy: LRU , LFU or FIFO

L1D size 65536 Size of L1 data cache in bytes
L1D associativity 4 Number of ways in L1 data cache
LID size 65536 Size of L1 instruction cache in bytes
LID associativity 4 Number of ways in L1 instruction cache
L2 size 1048576 Size of L2 unified cache in bytes
L2 associativity 8 Number of ways in L2 unified cache
L3 size 8388608 Size of L3 unified cache in bytes
L3 associativity 8 Number of ways in L3 unified cache

The cache model collects the following metrics:

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 27 of 28

Morello Instruction Emulator User GuideRelease: 2.2 Document ID 102270Issue: 0.7

Metric Description
L1D hits Number of hits in L1 data cache
L1D misses Number of misses in L1 data cache
L1D compulsory misses Number of compulsory misses in L1 data cache
L1D child hits Number of child hits in L1 data cache
L1D prefetch hits Number of hits due to use of HW prefetcher in L1 data cache
L1D prefetch misses Number of misses due to use of HW prefetcher in L1 data cache
L1D hits Number of hits in L1 instruction cache
L1D misses Number of misses in L1 instruction cache
L1D compulsory misses Number of compulsory misses in L1 instruction cache
L1D child hits Number of child hits in L1 instruction cache
L1D prefetch hits Number of hits due to use of HW prefetcher in L1 instruction cache
L1D prefetch misses Number of misses due to use of HW prefetcher in L1 instruction cache
L2 hits Number of hits in L2 unified cache
L2 misses Number of misses in L2 unified cache
L2 compulsory misses Number of compulsory misses in L2 unified cache
L2 child hits Number of child hits in L2 unified cache
L2 prefetch hits Number of hits due to use of HW prefetcher in L2 unified cache
L2 prefetch misses Number of misses due to use of HW prefetcher in L2 unified cache
L3 hits Number of hits in L3 unified cache
L3 misses Number of misses in L3 unified cache
L3 compulsory misses Number of compulsory misses in L3 unified cache
L3 child hits Number of child hits in L3 unified cache
L3 prefetch hits Number of hits due to use of HW prefetcher in L3 unified cache
L3 prefetch misses Number of misses due to use of HW prefetcher in L3 unified cache
L1D miss rate Percentage of misses per total number of memory operations for L1 data cache
L1I miss rate Percentage of misses per total number of memory operations for L1 instruction cache
L2 miss rate Percentage of misses per total number of memory operations for L2 unified cache
L3 miss rate Percentage of misses per total number of memory operations for L3 unified cache
Total instructions Total instructions calculated as number L1I hits plus L1I misses

Copyright © 2020 – 2023 Arm Limited (or its affiliates). All rights reserved.Non-confidential 28 of 28

	Introduction
	Product revision status
	Intended audience
	System requirements
	Installation
	Related information

	Overview
	General description
	Components
	Command line options
	Options to control instrumentation
	Common client options
	Options for Morello emulation client
	Options for debugger
	Options to control tracer instrumentation client
	Options to control scope of tracing
	Options for cache model
	Miscellaneous options

	Inline control instructions
	Markers for tracing
	Marker for debugger

	Limitations and known issues
	PCuABI kernel-user interface emulation
	Tracing stripped binaries
	Multi-threaded applications

	Advanced topics
	Building Morello applications
	Build and run a simple application
	Stack corruption example
	Out of bounds access example
	Build and run hybrid Morello application

	Capability faults
	Instruction and memory trace
	Interactive debugger
	Entering debug mode
	Debugger commands

	Remote debugger
	Remote debugger HTTP API
	Remote debugger client (Python-based)
	Remote debugger client (web-based)

	Statistics and cache model
	Statistics
	Cache model

