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1. Mali-G715 performance counters
This guide explains the Mali performance counters found in the Arm Streamline profiling template
for the Mali-G715 GPU, which is part of the Valhall architecture family.

The counter template in Streamline follows a step-by-step analysis workflow. Analysis starts with
high-level workload triage, measuring the CPU, GPU, and memory bandwidth usage. A detailed
analysis of the application rendering workload then reviews how efficiently the available hardware
resources are used by the application.

For each counter in the template, this guide documents the meaning of the counter and provides
the Streamline variable name or expression associated with it. The Streamline template only shows
a subset of the available performance counters. However, it covers the most common types of
GPU performance analysis.

This guide contains the following sections:

• CPU performance: analyze the overall usage of the CPU by observing the activity on the CPU
clusters and cores in the system.

• GPU activity: analyze the overall usage of the GPU by observing the activity on the GPU
processing queues, and the workload split between non-fragment and fragment processing.

• Content behavior: analyze content efficiency by observing the number of vertices being
processed, the number of primitives being culled, and the number of pixels being processed.

• Shader core data path: analyze the Mali shader core workload scheduling, and data path
throughput.

• Shader core functional units: analyze the overall usage of the shader core. Observe the
effectiveness of fragment depth and stencil testing, the number of threads spawned for
shading, and the relative loading of the programmable core processing pipelines.

• Shader core varying unit: analyze performance of the varying interpolation unit, and how the
unit is being used by the shader programs that are running. Use this data to find optimization
opportunities for content identified as varying-bound in the shader core functional units
section.

• Shader core texture unit: analyze performance of the texture filtering unit, and how the unit
is being used by the shader programs that are running. Use this data to find optimization
opportunities for content identified as texture-bound in the shader core functional units
section.

• Shader core load/store unit: analyze performance of the load/store unit, and how the unit
is being used by the shader programs that are running. Use this data to find optimization
opportunities for content identified as load-store-bound in the shader core functional units
section.

• Shader core ray tracing unit: analyze performance of the ray tracing unit, and how the unit
is being used by the shader ray traversals that are running. Use this data to find optimization
opportunities for content identified as ray-tracing-bound in the shader core functional units
section.
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• Shader core memory traffic: analyze the breakdown of the memory traffic between the shader
core and the L2 cache, and the shader core and the external memory system. Use this data to
find which type of workload is causing GPU memory accesses, helping you to determine where
to apply optimizations.

• GPU configuration: these utility counters expose the GPU configuration of the platform,
allowing Streamline to create expressions based on the specific configuration of the connected
device.
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2. CPU performance
High CPU load or poor scheduling of workloads can cause many graphics performance issues. The
first part of the analysis template looks at the CPU workloads, allowing you to identify regions
where CPU performance impacts the overall application performance.

The default view for the CPU charts shows the activity of each cluster of CPUs. To see individual
CPUs, expand the chart group to show individual cores present inside each cluster.

2.1 CPU activity
CPU activity charts show the usage of each processor cluster, displaying the percentage of each
time slice that the CPUs in the cluster were running. This percentage allows you to assess how
busy the CPUs were. Note that this metric is only a time-based measure and does not factor in the
CPU frequency that was used.

For CPU-bound applications, it is common for a single thread to run all the time and become the
bottleneck for overall application performance. The thread activity panel below the counter charts
shows when each application thread was running. Selecting one or more threads in this view filters
the CPU activity and counter charts to show the load attributed to the selected threads.

For scheduling-bound applications, it is common for both CPU and GPU to go idle due to poor
synchronization. The CPU goes idle when it is waiting for the GPU to complete work. The GPU
goes idle when waiting for the CPU to submit new work. To identify scheduled bound applications
in this view, look for activity that is oscillating between the impacted CPU thread and the Mali
GPU.

$CPUActivityUser.Cluster[0..N]

2.2 CPU cycles
The CPU cycle charts show the activity of each processor cluster, presented as the number of
processor clock cycles used. Using this data with the CPU activity information can indicate the CPU
operating frequency.

$CyclesCPUCycles.Cluster[0..N]
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3. GPU activity
The workloads running on this Mali GPU are coordinated by the Command Stream Front-end (CSF).
The front-end schedules command streams submitted by the driver on to three hardware work
queues, called iterators. Iterators dispatch processing tasks to the shader cores and tiling unit.
There are three iterators, one for general-purpose compute shading, one for vertex shading and
tiling, and one for fragment shading.

The CSF runs asynchronously to the CPU. If sufficient work is available, the three iterator queues
can run in parallel to each other.

The following diagram shows the processing pipeline data paths through the GPU for different
kinds of workload. It also shows the performance counters available for each data path or major
block in the hierarchy.

Figure 3-1: Valhall CSF GPU top-level
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The “active” counters show that a data path or hardware unit processed some workload, but do
not necessarily indicate that it was fully utilized. For example, the Fragment iterator queued counter
increments every cycle where there is any fragment workload queued to run anywhere in the GPU.

Some counters are common to multiple data paths. For example, both non-fragment and fragment
shader programs run on the same unified shader core. If these different workload types are
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overlapping in the same counter sample, then shader core counter data includes contributions from
both.

The following swim lane diagram shows how the top-level GPU counters increment for overlapping
render passes.

Figure 3-2: Valhall CSF GPU top-level timeline
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This diagram shows two render passes per frame, shown in different shades of blue. Each render
pass consists of a single piece of non-fragment work that must be executed before its fragment
shading can start. An interrupt is raised back to the CPU at the end of each piece of work on each
queue. The GPU active cycles counter increments whenever any queue contains work.

3.1 GPU usage
GPU usage counters monitor the overall load on the GPU by measuring the workload submitted
to the front-end queues. These counters can indicate the dominant workload type submitted by
the application, which is a good target for optimization. They can also indicate the effectiveness of
workload scheduling at keeping the hardware queues running in parallel.
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3.1.1 GPU active cycles

This counter increments every clock cycle where the GPU has any pending workload present
in one of its processing queues. It shows the overall GPU processing load requested by the
application.

This counter increments when any workload is present in any processing queue, even if the GPU
is stalled waiting for external memory. These cycles are counted as active time even though no
progress is being made.

$MaliGPUCyclesGPUActive

3.1.2 MCU active cycles

This counter increments every clock cycle where the GPU command stream microcontroller is
executing. Cycles waiting for interrupts or events are not counted.

$MaliGPUCyclesMCUActive

3.1.3 Vertex iterator issue cycles

This expression increments every clock cycle that the command stream vertex iterator has at least
one task issued for processing.

$MaliGPUCyclesVertexQueued - $MaliGPUCyclesVertexEndpointStall

3.1.4 Fragment iterator issue cycles

This expression increments every clock cycle that the command stream fragment iterator has at
least one task issued for processing.

$MaliGPUCyclesFragmentQueued - $MaliGPUCyclesFragmentEndpointStall

3.1.5 Compute iterator issue cycles

This expression increments every clock cycle that the command stream compute iterator has at
least one task issued for processing.

$MaliGPUCyclesComputeQueued - $MaliGPUCyclesComputeEndpointStall
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3.1.6 GPU interrupt pending cycles

This counter increments every cycle that the GPU has an interrupt pending and is waiting for the
CPU to process it.

Cycles with a pending interrupt do not necessarily indicate lost performance because the GPU
can process other queued work in parallel. However, if GPU interrupt pending cycles are a high
percentage of GPU active cycles, an underlying problem might be preventing the CPU from
efficiently handling interrupts. This problem is normally a system integration issue, which an
application developer cannot work around.

$MaliGPUCyclesGPUInterruptActive

3.2 GPU utilization
GPU utilization counters provide an alternative view of the data path activity cycles, normalizing
the queue usage against the total GPU active cycle count. These metrics provide a clearer view of
breakdown by workload type, and the effectiveness of queue scheduling.

For GPU-bound content that is achieving good parallelism, one of the queues is close to 100%
utilization, with the other running in parallel to it. Prioritize the most heavily loaded queue for
content optimization, as it is the critical path workload.

If the GPU is always busy, but the queues are running serially for all or part of the frame,
application API usage might prevent parallel processing. Serial processing reduces the achievable
performance. It can be caused by:

• The application blocking and waiting for GPU activity to complete, for example, by waiting on a
query object result which is not yet available. This can cause one or more of the queues to run
out of work to process.

• The application using conservative Vulkan pipeline barriers. For example, submitting using a
STAGE_TOP_OF_PIPE destination when a STAGE_FRAGMENT_SHADER destination would have been
sufficient.

• The application submitting rendering workloads that have data dependencies across the queues
which prevent parallel execution. For example, a fragment-compute-fragment data flow might
mean no processing occurs in the fragment queue while the compute shader is running, if no
non-dependent work is available.

Mobile systems improve energy efficiency by using Dynamic Voltage and Frequency Scaling
(DVFS) to reduce voltage and clock frequency for light workloads. When seeing a workload with
high percentage utilization, check the GPU active cycles counter to confirm the frequency. If the
workload is light, a highly utilized GPU can run at a low clock frequency.
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3.2.1 Microcontroller utilization

This expression defines the microcontroller utilization compared against the GPU active cycles.
High microcontroller load can be indicative of content using many emulated commands, such as
API command stream synchronization primitives.

max(min(($MaliGPUCyclesMCUActive / $MaliGPUCyclesGPUActive) * 100, 100), 0)

3.2.2 Vertex iterator utilization

This expression defines the vertex iterator utilization compared against the GPU active cycles. For
GPU bound content, it is expected that the GPU iterators process work in parallel. The dominant
iterator should be close to 100% utilized. If no iterator is dominant, but the GPU is fully utilized,
then a serialization or dependency problem might be preventing iterator overlap.

max(min((($MaliGPUCyclesVertexQueued - $MaliGPUCyclesVertexEndpointStall) /
 $MaliGPUCyclesGPUActive) * 100, 100), 0)

3.2.3 Fragment iterator utilization

This expression defines the fragment iterator utilization compared against the GPU active cycles.
For GPU bound content, it is expected that the GPU iterators process work in parallel. The
dominant iterator should be close to 100% utilized. If no iterator is dominant, but the GPU is fully
utilized, then a serialization or dependency problem might be preventing iterator overlap.

max(min((($MaliGPUCyclesFragmentQueued - $MaliGPUCyclesFragmentEndpointStall) /
 $MaliGPUCyclesGPUActive) * 100, 100), 0)

3.2.4 Compute iterator utilization

This expression defines the compute iterator utilization compared against the GPU active cycles.
For GPU bound content, it is expected that the GPU iterators process work in parallel. The
dominant iterator should be close to 100% utilized. If no iterator is dominant, but the GPU is fully
utilized, then a serialization or dependency problem might be preventing iterator overlap.

max(min((($MaliGPUCyclesComputeQueued - $MaliGPUCyclesComputeEndpointStall) /
 $MaliGPUCyclesGPUActive) * 100, 100), 0)

3.2.5 Interrupt pending utilization

This expression defines the IRQ pending utilization compared against the GPU active cycles. In
a well-functioning system, this expression is ideally less than 2% of the total cycles. If the value
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is much higher than 2%, a system issue might be preventing the CPU from efficiently handling
interrupts.

max(min(($MaliGPUCyclesGPUInterruptActive / $MaliGPUCyclesGPUActive) * 100, 100), 0)

3.3 External memory bandwidth
The external memory bandwidth counters show the total memory bandwidth between the
GPU and the downstream memory system. Accessing external DRAM is one of the most
energy-intensive operations that the GPU can perform, so reducing memory bandwidth is a key
optimization goal.

These performance counters measure the memory accesses that are external to the GPU. If there
are layers of system cache between the GPU and external DRAM, these accesses might not be
external to the system-on-a-chip.

Figure 3-3: Valhall GPU memory system
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Memory accesses to external DRAM are very power intensive. A good guideline is that external
DRAM access costs between 80mW and 100mW per GB/s of bandwidth used. Assuming a typical
650mW power budget for DRAM access, an application can only sustainably use a total of 100MB
per frame at 60FPS. Optimizations that help to minimize GPU memory bandwidth are a high
priority for mobile application development.
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3.3.1 Output external read bytes

This expression defines the total output read bandwidth for the GPU.

$MaliExternalBusBeatsReadBeat * ($MaliConstantsBusWidthBits / 8)

3.3.2 Output external write bytes

This expression defines the total output write bandwidth for the GPU.

$MaliExternalBusBeatsWriteBeat * ($MaliConstantsBusWidthBits / 8)

3.4 External memory stalls
The external memory stall rate counters measure the back-pressure seen by the GPU when it is
attempting to make external memory accesses.

A high stall rate is indicative of content which is requesting more data than the downstream
memory system can provide. To optimize the workload, try to reduce memory bandwidth.

3.4.1 Output external read stall rate

This expression defines the percentage of GPU cycles with a memory stall on an external read
transaction.

Stall rates can be reduced by reducing the size of data resources, such as textures or models.

max(min(($MaliExternalBusStallsReadStallCycles / ($MaliConstantsL2SliceCount *
 $MaliGPUCyclesGPUActive)) * 100, 100), 0)

3.4.2 Output external write stall rate

This expression defines the percentage of GPU cycles with a memory stall on an external write
transaction.

Stall rates can be reduced by reducing geometry complexity, or the size of framebuffers in memory.

max(min(($MaliExternalBusStallsWriteStallCycles / ($MaliConstantsL2SliceCount *
 $MaliGPUCyclesGPUActive)) * 100, 100), 0)
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3.5 External memory read latency
The external memory read latency counters present a histogram of access latencies. This metric
shows how many GPU cycles it takes to fetch data from the downstream memory system, which is
either system cache or external DRAM.

High latency accesses can reduce performance, and are normally an indication that the application
is requesting more data than the memory system can provide. To optimize the workload, try to
reduce memory bandwidth.

3.5.1 Output external read latency 0-127 cycles

This counter increments for every data beat that is returned between 0 and 127 cycles after the
read transaction started. This is considered a fast access response speed.

$MaliExternalBusReadLatency0127Cycles

3.5.2 Output external read latency 128-191 cycles

This counter increments for every data beat that is returned between 128 and 191 cycles after the
read transaction started. This is considered a normal access response speed.

$MaliExternalBusReadLatency128191Cycles

3.5.3 Output external read latency 192-255 cycles

This counter increments for every data beat that is returned between 192 and 255 cycles after the
read transaction started. This is considered a normal access response speed.

$MaliExternalBusReadLatency192255Cycles

3.5.4 Output external read latency 256-319 cycles

This counter increments for every data beat that is returned between 256 and 319 cycles after the
read transaction started. This is considered a slow access response speed.

$MaliExternalBusReadLatency256319Cycles
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3.5.5 Output external read latency 320-383 cycles

This counter increments for every data beat that is returned between 320 and 383 cycles after the
read transaction started. This is considered a slow access response speed.

$MaliExternalBusReadLatency320383Cycles

3.5.6 Output external read latency 384+ cycles

This expression increments for every read beat that is returned at least 384 cycles after the
transaction started. This is considered a very slow access response speed.

$MaliExternalBusBeatsReadBeat - $MaliExternalBusReadLatency0127Cycles -
 $MaliExternalBusReadLatency128191Cycles - $MaliExternalBusReadLatency192255Cycles -
 $MaliExternalBusReadLatency256319Cycles - $MaliExternalBusReadLatency320383Cycles
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4. Content behavior
Optimal rendering performance requires both efficient content, and efficient handling of that
content by the GPU. The content behavior metrics help you to supply the GPU with efficiently
structured content.

Slow rendering performance has three common causes:

• Content which is efficiently written, but doing too much processing given the capabilities of the
target device.

• Content which is inefficiently written, with redundancy in the workload submitted for
rendering.

• Application API usage which triggers high workload, or causes idle bubbles, due to GPU-
specific or driver-specific behaviors.

This section of the Streamline template aims to focus on the first two of these causes. It looks at
the size and efficiency of the submitted workload.

4.1 Geometry usage
The vertex stream is the first application input processed by the GPU rendering pipeline. These
counters monitor the amount of geometry being processed, and how much is discarded due to
culling.

Geometry is one of the most expensive inputs to the GPU, as vertices typically need 32-64 bytes
of input data and data access is expensive. To avoid dense geometry appearing on-screen, use
simpler meshes when objects are further away from the camera. You can use compressed normal
maps as an efficient alternative to high geometric detail.

4.1.1 Total input primitives

This expression defines the total number of input primitives to the rendering process.

$MaliPrimitiveCullingFacingTestCulledPrimitives +
 $MaliPrimitiveCullingFrustumTestCulledPrimitives +
 $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives

4.1.2 Culled primitives

This expression defines the number of primitives that were culled during the rendering process, for
any reason.

For 3D content, it is expected that approximately 50% of the primitives are culled due to the facing
test. If a significantly higher percentage is culled, then the GPU performance is being lost shading
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objects which are not visible. In this scenario, review the efficiency of CPU-side culling techniques
and check for overly large batch sizes.

$MaliPrimitiveCullingFacingTestCulledPrimitives +
 $MaliPrimitiveCullingFrustumTestCulledPrimitives +
 $MaliPrimitiveCullingSampleTestCulledPrimitives

4.1.3 Visible primitives

This counter increments for every visible primitive that survives all culling stages.

Visible means only that the primitive is front-facing and inside the visible clip volume. If it is
occluded by other primitives closer to the camera, the primitive might produce no visible output.

Application software techniques, such as portal culling, can often be used to efficiently cull
occluded objects inside the frustum. This can reduce the amount of redundant vertex processing
that the GPU has to do.

$MaliPrimitiveCullingVisiblePrimitives

4.2 Geometry culling
The GPU must compute positions of primitives before they can enter the culling stages. Culled
geometry can have a significant processing and bandwidth cost, even though it contributes no
useful visual output. These counters help to identify the reasons why primitives are culled, allowing
you to correctly target optimizations at the area causing problems.

The Mali culling pipeline executes in the order shown in the following diagram. The counters for
this pipeline show the percentage of the primitives entering a stage that are culled by it. Because
these percentages are relative to the per-stage input, not the total geometry input, they do not add
up to 100%.

Figure 4-1: Valhall GPU culling pipeline
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4.2.1 Visible primitives rate

This expression defines the percentage of primitives that are visible after culling.

For 3D content, it is typically expected that 50% of primitives are visible, due to the use of back-
face culling. Significantly lower visibility rates can indicate missing optimizations.

max(min(($MaliPrimitiveCullingVisiblePrimitives /
 ($MaliPrimitiveCullingFacingTestCulledPrimitives +
 $MaliPrimitiveCullingFrustumTestCulledPrimitives +
 $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives)) * 100, 100), 0)

4.2.2 Facing plane test cull rate

This expression defines the percentage of primitives entering the facing test that are culled by it.
Back-facing triangles that are inside the frustum are culled by this stage.

It is expected that approximately 50% of primitives are culled at this stage, as we would expect
approximately half of the triangles to be back-facing. If you see a significantly lower percentage
than this, check that the facing test is properly enabled.

max(min(($MaliPrimitiveCullingFacingTestCulledPrimitives /
 ($MaliPrimitiveCullingFacingTestCulledPrimitives +
 $MaliPrimitiveCullingFrustumTestCulledPrimitives +
 $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives)) * 100, 100), 0)

4.2.3 Frustum test cull rate

This expression defines the percentage of primitives entering the frustum test that are culled by it.
Primitives that are outside of the view frustum are culled by this stage.

If a significant percentage of triangles are culled by this test we recommend reviewing application
culling and batching. Test draw call bounding boxes against the frustum to cull draws that are
completely out-of-frustum. Reduce the size of static batches to reduce the bounding volume of
each batch, enabling better culling..

max(min(($MaliPrimitiveCullingFrustumTestCulledPrimitives /
 ($MaliPrimitiveCullingFacingTestCulledPrimitives +
 $MaliPrimitiveCullingFrustumTestCulledPrimitives +
 $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives)) * 100, 100), 0)
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4.2.4 Sample test cull rate

This expression defines the percentage of primitives entering the sample coverage test that are
culled by it. This stage culls primitives that are so small that they hit no rasterizer sample points.

If a significant number of triangles are culled at this stage, the application is using geometry meshes
that are too complex. Aim to keep triangle screen area above 10 pixels. Use schemes such as mesh
level-of-detail to select simplified meshes as objects move further away from the camera.

max(min(($MaliPrimitiveCullingSampleTestCulledPrimitives /
 (($MaliPrimitiveCullingFacingTestCulledPrimitives
 + $MaliPrimitiveCullingFrustumTestCulledPrimitives
 + $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives) -
 $MaliPrimitiveCullingFacingTestCulledPrimitives -
 $MaliPrimitiveCullingFrustumTestCulledPrimitives)) * 100, 100), 0)

4.3 Vertex shading
This GPU uses an optimized vertex processing pipeline. In this pipeline, the vertex position is
computed before culling. The remaining varyings for any visible vertices are computed after culling.
To determine mesh encoding efficiency, use the performance counters to measure the average
number of position threads and varying threads per primitive.

Figure 4-2: Valhall GPU tiling pipeline
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This pipeline uses a post-transform vertex cache, which contains the positions of recently shaded
vertices, to avoid reshading vertices that are common to multiple primitives. Poor temporal locality
of index reuse can result in a vertex being shaded multiple times, because it is evicted from the
cache before it is reused.
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This pipeline submits shading requests in groups of 4 contiguous index values. Unused index
locations might be shaded if they are near used index locations. Reduce redundant shading by
ensuring that every index between the minimum and maximum index is used.

4.3.1 Position shader thread invocations

This expression defines the number of position shader thread invocations.

$MaliTilerShadingRequestsPositionShadingRequests * 4

4.3.2 Varying shader thread invocations

This expression defines the number of varying shader thread invocations.

$MaliTilerShadingRequestsVaryingShadingRequests * 4

Normalized versions of these counters show the amount of shading per primitive, which gives a
direct measure of mesh encoding efficiency.

4.3.3 Position threads per input primitive

This expression defines the number of position shader threads per input primitive. Minimize this
number by reusing vertices for nearby primitives, improving temporal locality of index reuse, and
avoiding unused values in the active index range.

Efficient meshes with a good vertex reuse have average less than 1.5 vertices shaded per triangle,
as vertex computation is shared by multiple primitives.

Inefficient meshes with no vertex reuse shade at least 3 vertices per triangle. They can require
more if indices are reshaded or if redundant indices are shaded.

($MaliTilerShadingRequestsPositionShadingRequests *
 4) / ($MaliPrimitiveCullingFacingTestCulledPrimitives
 + $MaliPrimitiveCullingFrustumTestCulledPrimitives
 + $MaliPrimitiveCullingSampleTestCulledPrimitives +
 $MaliPrimitiveCullingVisiblePrimitives)
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4.3.4 Varying threads per input primitive

This expression defines the number of varying shader invocations per visible primitive. Minimize
this number by reusing vertices for nearby primitives, improving temporal locality of index reuse,
and avoiding unused values in the active index range.

Efficient meshes with a good vertex reuse have average less than 1.5 vertices shaded per triangle,
as vertex computation is shared by multiple primitives.

Inefficient meshes with no vertex reuse shade at least 3 vertices per visible triangle. They can
require more if indices are reshaded or if redundant indices are shaded.

($MaliTilerShadingRequestsVaryingShadingRequests * 4) /
 $MaliPrimitiveCullingVisiblePrimitives

4.4 Fragment overview
Fragment overview counters look at the requested pixel processing workload. These counters can
show the total number of output pixels shaded, the average number of cycles spent per pixel, and
the average overdraw factor.

It is a useful exercise to set a cycle budget for an application, measured in terms of cycles per pixel.
Compute the maximum cycle budget using this equation:

  shaderCyclesPerSecond = MaliCoreCount MaliFrequency
  pixelsPerSecond = Screen_Resolution * Target_FPS
  // Maximum cycle budget assuming perfect execution
  maxBudget = shaderCyclesPerSecond / pixelsPerSecond
  // Real-world cycle budget assuming 85% utilization
  realBudget = 0.85 * maxBudget

Setting a cycle budget helps manage expectations of what is possible. For example, consider a
mass-market device with a 3 core Mali GPU running at 500MHz. At 1080p60 this device has a
cycle budget of just 10 cycles per pixel. This budget must cover all processing costs, including
vertex shading and fragment shading. If you want to achieve the best graphics fidelity, you must
ensure you spend each cycle wisely.
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4.4.1 Pixels

This expression defines the total number of pixels that are shaded by the GPU, including on-screen
and off-screen render passes.

This measure can be a slight overestimate because it assumes all pixels in each active 32x32 pixel
region are shaded. If the rendered region does not align with 32 pixel aligned boundaries, then this
metric includes pixels that are not actually fragment shaded.

$MaliGPUTasksFragmentTasks * 1024

4.4.2 Cycles per pixel

This expression defines the average number of GPU cycles being spent per pixel rendered,
including any vertex shading cost.

It can be a useful exercise to set a cycle budget for each render pass in your game, based on your
target resolution and frame rate. Rendering 1080p at 60 FPS is possible in a mass-market device,
but the number of cycles per pixel you have to work with can be small. Those cycles must be used
wisely to achieve a 60 FPS performance target.

$MaliGPUCyclesGPUActive / ($MaliGPUTasksFragmentTasks * 1024)

4.4.3 Fragments per pixel

This expression computes the number of fragments shaded per output pixel.

GPU processing cost per pixel accumulates with the layer count. High overdraw can build up to a
significant processing cost, especially when rendering to a high-resolution framebuffer. Minimize
overdraw by rendering opaque objects front-to-back and minimizing use of blended transparent
layers.

($MaliCoreThreadsFragmentThreads * $MaliConstantsShaderCoreCount) /
 ($MaliGPUTasksFragmentTasks * 1024)

4.5 Fragment depth and stencil testing
It is important that as many fragments as possible are early ZS (depth and stencil) tested before
shading. Removing redundant work at this stage is more efficient than testing and killing fragments
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later using late ZS. These counters monitor the number of early and late test and kill operations
performed.

To maximize the efficiency of early ZS testing, we recommend drawing opaque objects starting with
those closest to camera and then working further away. Render transparent objects from back-to-
front in a second pass.

4.5.1 Early ZS tested quad percentage

This expression defines the percentage of rasterized quads that were subjected to early depth and
stencil testing.

You achieve the best early test rates by ensuring depth testing is enabled, and avoiding fragment
shaders that write their depth value.

max(min(($MaliCoreQuadsEarlyZSTestedQuads / $MaliCoreQuadsRasterizedFineQuads) *
 100, 100), 0)

4.5.2 Early ZS updated quad percentage

This expression defines the percentage of rasterized quads that update the framebuffer during
early depth and stencil testing.

You achieve the best early update rates by enabling depth testing, and avoiding draw calls with
modifiable coverage or shader depth writes.

max(min(($MaliCoreQuadsEarlyZSUpdatedQuads / $MaliCoreQuadsRasterizedFineQuads) *
 100, 100), 0)

4.5.3 Early ZS killed quad percentage

This expression defines the percentage of rasterized quads that are killed by early depth and stencil
testing.

Quads killed at this stage are killed before shading, so a high percentage here is not generally a
performance problem. However, it can indicate an opportunity to use software culling techniques
such a portal culling to avoid sending occluded draw calls to the CPU.

max(min(($MaliCoreQuadsEarlyZSKilledQuads / $MaliCoreQuadsRasterizedFineQuads) *
 100, 100), 0)
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4.5.4 FPK killed quad percentage

This expression defines the percentage of rasterized quads that are killed by the Forward Pixel Kill
(FPK) hidden surface removal scheme.

Quads killed at this stage are killed before shading, so a high percentage here is not generally a
performance problem. However, it can indicate an opportunity to use software culling techniques
such a portal culling to avoid sending occluded draw calls to the CPU.

max(min((($MaliCoreQuadsRasterizedFineQuads - $MaliCoreQuadsEarlyZSKilledQuads -
 (($MaliCoreWarpsFragmentWarps * 16) / 4)) / $MaliCoreQuadsRasterizedFineQuads) *
 100, 100), 0)

4.5.5 Late ZS tested quad percentage

This expression defines the percentage of rasterized quads that are tested by late depth and stencil
testing.

A high percentage of fragments performing a late ZS update can cause slow performance, even if
fragments are not killed. This occurs because younger fragments cannot complete early ZS until all
older fragments at the same coordinate have completed their late ZS operations.

Shaders with mutable coverage, mutable depth, or side-effects on shared resources in memory, use
late ZS testing.

The driver also generates late ZS updates to preload a depth or stencil attachment at the start of a
render pass. This is needed if the render pass does not start from a cleared depth value.

max(min(($MaliCoreQuadsLateZSTestedQuads / $MaliCoreQuadsRasterizedFineQuads) * 100,
 100), 0)

4.5.6 Late ZS killed quad percentage

This expression defines the percentage of rasterized quads that are killed by late depth and stencil
testing. Quads killed by late ZS testing execute at least some of their fragment program before
being killed. A significant number of quads being killed at late ZS testing indicates a potential
overhead. Aim to minimize the number of quads using and being killed by late ZS testing.

Shaders with mutable coverage, mutable depth, or side-effects on shared resources in memory, use
late ZS testing.

The driver also generates late ZS updates to preload a depth or stencil attachment at the start of
a render pass. This is needed if the render pass does not start from a cleared depth value. These
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fragments show as a late ZS kill, as no shader execution is needed once the depth or stencil value
has been set.

max(min(($MaliCoreQuadsLateZSKilledQuads / $MaliCoreQuadsRasterizedFineQuads) * 100,
 100), 0)

4.6 Fragment shader execution rate
Applications can use sample-rate shading and variable-rate shading to increase or reduce the
number of fragment shader invocations per covered pixel. This counter measures the average
shading rate seen in the application.

4.6.1 Fragment shading rate

This equation defines the number of coarse quads generated per fine quad. Coarse quads cover
2x2 fragments. Fine quads cover 2x2 pixels.

The shading rate is higher than 1 if the application uses sample-rate shading when making a multi-
sampled render.

The shading rate is lower than 1 if the application uses variable-rate shading to reduce shading
rate.

$MaliCoreQuadsRasterizedCoarseQuads / $MaliCoreQuadsRasterizedFineQuads
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5. Shader core data path
Each shader core has two parallel data paths for issuing threads to the core, one for non-fragment
workloads and one for fragment workloads. These counters track the thread issue for each path,
and their relative scheduling.

Figure 5-1: Valhall GPU shader core

Polygon 
List Reader

Rasterizer

Early
ZS Test

Non-frag
Front-end FPK Buffer

Execution
Core

Blender

Tile RAM

Tile write

Transaction
Elimination

Framebuffer
Compression

Quads rasterized

Quads early-ZS tested Quads early-ZS updated

Non-fragment warps

Quads early-ZS killed

N
on

-f
ra

g 
ac

tiv
e

FPK buffer active

Fr
ag

m
en

t a
ct

iv
e

Quads FPK killed

Fragment warps

Full warps

Execution core active

Fragment tiles

Unchanged tiles killed

Tile write bytes

Partial quads rasterized

Quads early-ZS updated

5.1 Shader core workload
The warp counters count the number of shader warps issued for the two workload types. Each
warp contains 16 threads.
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5.1.1 Non-fragment warps

This counter increments for every created non-fragment warp. For this GPU, a warp contains 16
threads.

For compute shaders, to ensure full utilization of the warp capacity any compute work groups
should be a multiple of warp size.

$MaliCoreWarpsNonFragmentWarps

5.1.2 Fragment warps

This counter increments for every created fragment warp. For this GPU, a warp contains 16
threads.

Fragment warps are populated with fragment quads, where each quad corresponds to a
2x2 fragment region from a single triangle. Threads in a quad which correspond to a sample
point outside of the triangle still consumes shader resource, which makes small triangles
disproportionately expensive.

$MaliCoreWarpsFragmentWarps

5.2 Shader core throughput
The throughput metrics show the average number of cycles it takes to get a single thread shaded
by the shader core. Note that these metrics show average throughput, not average cost, so include
the impact of processing latency, memory latency, and any resource sharing inside the shader core.

5.2.1 Non-fragment cycles per thread

This expression defines the average number of shader core cycles per non-fragment thread.

Note that this measurement captures the average throughput, which might not be a direct measure
of processing cost for content that is sensitive to memory access latency. In addition, there is some
interference caused by non-fragment and fragment workloads running concurrently on the same
hardware. This expression is therefore indicative of cost, but does not reflect precise costing.

$MaliCoreCyclesNonFragmentActive / ($MaliCoreWarpsNonFragmentWarps * 16)
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5.2.2 Fragment cycles per thread

This expression defines the average number of shader core cycles per fragment thread. Note
that this measurement captures the average throughput, which might not be a direct measure of
processing cost for content which is sensitive to memory access latency. In addition, there is some
interference caused by different workload types running concurrently on the same hardware. This
expression is therefore indicative of cost, but does not reflect precise costing.

$MaliCoreCyclesFragmentActive / $MaliCoreThreadsFragmentThreads

5.3 Shader core data path utilization
The data path utilization counters show the total activity level of the major data paths in the shader
core. Identifying the dominant workload type helps to target optimizations. Identifying lack of
parallelism can confirm that there are scheduling problems.

5.3.1 Shader core usage

This expression defines the percentage usage of the shader core, relative to the top-level GPU
clock. This counter increments every shader core clock cycle when any of the shader core queues
contain work.

To improve energy efficiency, some systems clock the shader cores at a lower frequency than the
GPU top-level components. In these systems, the maximum achievable usage value is the clock
ratio between the GPU top-level clock and the shader clock. For example, a GPU with an 800MHz
top-level clock and a 400MHz shader clock can achieve a maximum usage of 50%.

max(min(($MaliCoreCyclesAnyActive / $MaliGPUCyclesGPUActive) * 100, 100), 0)

5.3.2 Non-fragment utilization

This expression defines the percentage utilization of the shader core non-fragment path. This
counter measures any cycle where a non-fragment workload is active in either the non-fragment
shader core front-end, or in the programmable core itself.

max(min(($MaliCoreCyclesNonFragmentActive / $MaliCoreCyclesAnyActive) * 100, 100),
 0)

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 56



Mali-G715 Performance Counters Reference Guide Document ID: 107776_0101_en
1.1

Shader core data path

5.3.3 Fragment utilization

This expression defines the percentage utilization of the shader core fragment path. This counter
measures any cycle where a fragment workload is active in either the fragment shader core front-
end, or in the programmable core itself.

max(min(($MaliCoreCyclesFragmentActive / $MaliCoreCyclesAnyActive) * 100, 100), 0)

5.3.4 Fragment FPK buffer utilization

This expression defines the percentage of cycles where the Forward Pixel Kill (FPK) quad buffer
contains at least one fragment quad. This buffer is located after early ZS but before the execution
core.

During fragment shading this counter should be close to 100%. This indicates that the fragment
front-end is able to keep up with the shader core shading rate. This counter commonly drops below
100% for three reasons:

• The running workload has many empty tiles with no geometry to render. This is common in
shadow maps, for any screen region with no shadow casters.

• The application consists of simple shaders but a high percentage of microtriangles. This causes
the shader core to complete fragments faster than they are rasterized, so the quad buffer starts
to drain.

• The application consists of layers which stall at early ZS due to a dependency on an earlier
fragment layer which is still in flight. This prevents new fragments entering the quad buffer, so
the quad buffer starts to drain.

max(min(($MaliCoreCyclesFragmentFPKBActive / $MaliCoreCyclesFragmentActive) * 100,
 100), 0)

5.3.5 Execution core utilization

This expression defines the percentage utilization of the programmable execution core, monitoring
any cycle where the shader core contains at least one warp. A low utilization here indicates lost
performance, because there are spare shader core cycles that are unused.

In some use cases an idle core is unavoidable. For example, a clear color tile that contains no
shaded geometry, or a shadow map that is resolved entirely using early ZS depth updates.

Improve execution core utilization by parallel processing of the non-fragment and fragment queues,
running overlapping workloads from multiple render passes. Also aim to keep the FPK buffer
utilization as high as possible, ensuring constant forward-pressure on fragment shading.

max(min(($MaliCoreCyclesExecutionCoreActive / $MaliCoreCyclesAnyActive) * 100, 100),
 0)
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6. Shader core functional units
A shader core consists of multiple parallel processing units that provide both programmable and
fixed-function operations. Performance counters can track utilization and workload type for all the
major processing units, allowing developers to find both bottlenecks and content inefficiencies to
optimize.

For shader-bound content, the functional unit with the highest loading is likely to be the
bottleneck. To improve performance you can reduce the number of operations of that type in the
shader. Alternatively, reduce the precision of the operations to use 16-bit types so that multiple
operations can be performed in parallel.

For thermally bound content, reducing the critical path load gives the biggest gain as it allows
use of a lower operating frequency. However, reducing load on any functional unit helps improve
energy efficiency.
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Figure 6-1: Valhall GPU execution core
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6.1 Functional unit utilization
Functional unit utilization counters provide normalized views of the functional unit activity inside
the shader core. The functional units run in parallel. To improve performance, target the most
heavily utilized functional unit for optimization. Although it might not help performance, reducing
the load of any unit improves energy efficiency.
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6.1.1 Arithmetic unit utilization

This expression estimates the percentage utilization of the arithmetic unit in the execution engine.

The most effective technique for reducing arithmetic load is reducing the complexity of your shader
programs. Increasing shader usage of 16-bit (mediump) variables can also help.

max(min((max($MaliCoreInstructionsCVTInstructions +
 $MaliCoreInstructionsSFUInstructions + (($MaliCoreInstructionsFMAInstructions -
 min($MaliCoreInstructionsFMAInstructions - ($MaliCoreInstructionsCVTInstructions
 + $MaliCoreInstructionsSFUInstructions), 0)) / 2),
 $MaliCoreInstructionsSFUInstructions * 4) / $MaliCoreCyclesExecutionCoreActive) *
 100, 100), 0)

6.1.2 Varying unit utilization

This expression defines the percentage utilization of the varying unit.

The most effective technique for reducing varying load is reducing the number of interpolated
values read by the fragment shading. Increasing shader usage of 16-bit (mediump) input variables
also helps, as they can be interpolated as twice the speed of 32-bit variables.

max(min(((($MaliCoreVaryingIssues32BitInterpolationSlots /
 4) + ($MaliCoreVaryingIssues16BitInterpolationSlots / 4)) /
 $MaliCoreCyclesExecutionCoreActive) * 100, 100), 0)

6.1.3 Texture unit utilization

This expression defines the percentage utilization of the texturing unit.

The most effective technique for reducing texturing unit load is reducing the number of texture
samples read by the fragment shader. Using simpler texture filters can reduce filtering cost. Using
32bpp color formats, and the ASTC decode mode extensions can reduce data access cost.

max(min(($MaliCoreTextureCyclesTexturingActive / $MaliCoreCyclesExecutionCoreActive)
 * 100, 100), 0)

6.1.4 Load/store unit utilization

This expression defines the percentage utilization of the load/store unit. The load/store unit is used
for general-purpose memory accesses. This includes vertex attribute access, buffer access, work
group shared memory access, and stack access. This unit also implements imageLoad/Store and
atomic access functionality.

For traditional graphics content the most significant contributor to load/store usage is vertex data.
Arm recommends simplifying mesh complexity, using fewer triangles, fewer vertices, and fewer
bytes per vertex.
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Shaders that spill to stack are also expensive, as any spilling is multiplied by the large number of
parallel threads that are running. You can use the Mali Offline Compiler to check your shaders for
spilling.

max(min((($MaliCoreLoadStoreCyclesFullReadCycles +
 $MaliCoreLoadStoreCyclesPartialReadCycles + $MaliCoreLoadStoreCyclesFullWriteCycles
 + $MaliCoreLoadStoreCyclesPartialWriteCycles +
 $MaliCoreLoadStoreCyclesAtomicAccessCycles) / $MaliCoreCyclesExecutionCoreActive) *
 100, 100), 0)

6.1.5 Ray tracing unit utilization

This expression defines the percentage utilization of the ray tracing unit.

The most effective technique for reducing ray tracing load is reducing the amount of geometry in
the acceleration structure, and ensuring that rays issued in each warp are coherent.

max(min((max($MaliRayTracingCyclesBoxTesterActive,
 $MaliRayTracingCyclesTriangleTesterActive) / $MaliCoreCyclesExecutionCoreActive) *
 100, 100), 0)

6.2 Shader program properties
Shader program property counters track multiple properties related to the running shader program
instruction execution. These can be used to identify sources of program inefficiency.

6.2.1 Narrow arithmetic percentage

This expression defines the percentage of arithmetic instructions that operate on 8/16-bit types.
These are more energy efficient, and require fewer registers for variable storage, than 32-bit
operations.

max(min(($MaliCoreInstructionsNarrowInstructions /
 ($MaliCoreInstructionsFMAInstructions + $MaliCoreInstructionsCVTInstructions +
 $MaliCoreInstructionsSFUInstructions)) * 100, 100), 0)

6.2.2 Warp divergence percentage

This expression defines the percentage of instructions that have control flow divergence across the
warp.

max(min(($MaliCoreInstructionsDivergedInstructions /
 ($MaliCoreInstructionsFMAInstructions + $MaliCoreInstructionsCVTInstructions +
 $MaliCoreInstructionsSFUInstructions)) * 100, 100), 0)
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6.2.3 All registers warp rate

This expression defines the percentage of warps that use more than 32 registers, requiring the full
register allocation of 64 registers. Warps that require more than 32 registers halve the peak thread
occupancy of the shader core. This can make shader performance more sensitive to cache misses
and memory stalls.

max(min(($MaliCoreWarpsAllRegisterWarps / ($MaliCoreWarpsNonFragmentWarps +
 $MaliCoreWarpsFragmentWarps)) * 100, 100), 0)

6.3 Shader workload properties
Shader program property counters track multiple properties related to the running shader program
instruction execution. They are used to identify shader execution behaviors that are sources of
program inefficiency.

6.3.1 Partial coverage rate

This expression defines the percentage of fragment quads that contain samples with no coverage.
A high percentage can indicate that the content has a high density of small triangles, which are
expensive to process. To avoid this, use mesh level-of-detail algorithms to select simpler meshes as
objects move further from the camera.

max(min(($MaliCoreQuadsPartialRasterizedFineQuads /
 $MaliCoreQuadsRasterizedFineQuads) * 100, 100), 0)

6.3.2 Fragment warp occupancy

This expression measures the thread occupancy of the fragment warps in percent. Threads are
counted as active if they are part of a coarse quad, even if they have no sample coverage.

max(min(($MaliCoreThreadsFragmentThreads / ($MaliCoreWarpsFragmentWarps * 16)) *
 100, 100), 0)

6.3.3 Full quad warp rate

This expression defines the percentage of warps that are fully populated with quads. If many warps
are not full then performance is reduced. Full warps are more likely if:

• Compute shaders have work groups that are a multiple of warp size.
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• Draw calls avoid high numbers of small primitives.

max(min(($MaliCoreWarpsFullQuadWarps / ($MaliCoreWarpsNonFragmentWarps +
 $MaliCoreWarpsFragmentWarps)) * 100, 100), 0)

6.3.4 Unchanged tile kill rate

This expression defines the percentage of tiles that are killed by the transaction elimination CRC
check because the content of a tile matches the content already stored in memory.

A high percentage of tile writes being killed indicates that a significant part of the framebuffer is
static from frame to frame. Consider using scissor rectangles to reduce the area that is redrawn.
To help manage the partial frame updates for window surfaces consider using the EGL extensions
such as:

• EGL_KHR_partial_update

• EGL_EXT_swap_buffers_with_damage

max(min(($MaliCoreTilesUnchangedTilesKilled / (4 * $MaliCoreTilesTiles)) * 100,
 100), 0)

6.3.5 Shader blend path percentage

This expression defines the percentage of fragments that use shader-based blending, rather than
the fixed-function blend path. This is caused by the application using color formats or advanced
blend equations which the fixed-function blend path does not support.

Vulkan shaders which use software blending do not show up in this data, as the blend is inlined in
to the main body of the shader program.

max(min((($MaliCoreInstructionsBlendShaderCalls * 4) / $MaliCoreWarpsFragmentWarps)
 * 100, 100), 0)
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7. Shader core varying unit
The varying unit counters monitor the varying interpolation in fragment shaders. If the shader core
utilization counters show that this unit is a bottleneck, these counters can indicate optimization
opportunities.

The interpolator has one or more 32-bit data paths per thread. Each data path can interpolate a
scalar 32-bit value or a vec2 16-bit value in a single cycle. We recommend using 16-bit (mediump)
varying inputs to fragment shaders whenever possible. We also recommend packing 16-bit values
into vec2 or vec4 values. For example, a single vec4 interpolates faster than a separate vec3 and
scalar float pair.

7.1 Varying unit usage
These counters show the usage of the varying interpolation unit, and the breakdown by data type
size.

7.1.1 Varying cycles

This expression defines the total number of cycles where the varying interpolator is active.

($MaliCoreVaryingIssues32BitInterpolationSlots / 4) +
 ($MaliCoreVaryingIssues16BitInterpolationSlots / 4)

7.1.2 16-bit interpolation cycles

This counter increments for every 16-bit interpolation cycle processed by the varying unit.

$MaliCoreVaryingIssues16BitInterpolationSlots / 4

7.1.3 32-bit interpolation cycles

This counter increments for every 32-bit interpolation cycle processed by the varying unit. 32-bit
interpolation is half the performance of 16-bit interpolation, so if content is varying bound consider
reducing precision of varying inputs to fragment shaders.

$MaliCoreVaryingIssues32BitInterpolationSlots / 4
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8. Shader core texture unit
The texture unit counters show use of all texture sampling and filtering in shaders. If the
shader core utilization counters show that this unit is a bottleneck, these counters can indicate
optimization opportunities.

8.1 Texture unit usage
These counters show the usage of the texturing unit, and the average number of cycles per
instruction. The performance of the texture unit in the shader core varies for different GPUs in the
Valhall family. For Mali-G715 the maximum performance (bilinear filtered samples) is 0.125 cycles
per sample.

8.1.1 Texture filtering cycles

This counter increments for every texture filtering issue cycle. This GPU can do 8 2D bilinear
texture samples per clock. More complex filtering operations are composed of multiple 2D bilinear
samples, and take proportionally more filtering time to complete. The costs per sampled quad are:

• 2D bilinear filtering takes half a cycle.

• 2D trilinear filtering takes one cycle.

• 3D bilinear filtering takes one cycle.

• 3D trilinear filtering takes two cycles.

Anisotropic filtering makes multiple filtered subsamples which are combined to make the final
output sample color. For a filter with MAX_ANISOTROPY of N, up to N times the cycles of the
base filter are required.

$MaliCoreTextureCyclesTexturingActive

8.1.2 Texture filtering cycles using 8x bilinear

This counter increments for every cycle where the filtering unit uses the 8x path to implement
nearest or bilinear filtering. This provides eight filtered samples per clock.

$MaliCoreTextureCycles8xBilinearFilteringActive
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8.1.3 Texture filtering cycles using 4x trilinear

This counter increments for every cycle where the filtering unit uses the 8x path to implement 4x
trilinear filtering. This provides four filtered samples per clock.

$MaliCoreTextureCycles4xTrilinearFilteringActive

8.1.4 Texture filtering cycles per instruction

This expression defines the average number of texture filtering cycles per instruction. For texture-
limited content that has a CPI higher than the optimal throughout of this core (8 samples per
cycle), consider using simpler texture filters. See Texture filtering cycles for details of the expected
performance for different types of operation.

$MaliCoreTextureCyclesTexturingActive / ($MaliCoreTextureQuadsTextureMessages * 2 *
 4)

8.2 Texture unit memory usage
These counters show the average number of bytes read from the L2 cache or external memory per
texture sample. If you are fetching more bytes per access than the size of the texture format, you
might be thrashing the cache. Consider using a narrower texture format data type, compression,
and mipmaps.

8.2.1 Texture bytes read from L2 per texture cycle

This expression defines the average number of bytes read from the L2 memory system by the
texture unit per filtering cycle. This metric indicates how effectively textures are being cached in
the L1 texture cache.

If more bytes are being requested per access than you would expect for the format you are using,
review your texture settings. We recommend:

• Enabling mipmaps for offline generated textures.

• Using ASTC or ETC compression for offline generated textures.

• Replacing runtime generated framebuffer and texture formats with a narrower format.

• Reducing use of imageLoad/Store in OpenGL ES and Vulkan, as they prevent use of
framebuffer compression.

• Reducing any use of negative LOD bias used for texture sharpening.

• Reducing the MAX_ANISOTROPY level for anisotropic filtering.

($MaliCoreL2ReadsTextureL2ReadBeats * 16) / $MaliCoreTextureCyclesTexturingActive
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8.2.2 Texture bytes read from external memory per texture cycle

This expression defines the average number of bytes read from the external memory system by the
texture unit per filtering cycle. This metric indicates how effectively textures are being cached in
the L2 cache.

If more bytes are being requested per access than you would expect for the format you are using,
review your texture settings. We recommend:

• Enabling mipmaps for offline generated textures.

• Using ASTC or ETC compression for offline generated textures.

• Replacing runtime generated framebuffer and texture formats with a narrower format.

• Reducing use of imageLoad/Store in OpenGL ES and Vulkan, as they prevent use of
framebuffer compression.

• Reducing any use of negative LOD bias used for texture sharpening.

• Reducing the MAX_ANISOTROPY level for anisotropic filtering.

($MaliCoreExternalReadsTextureExternalReadBeats * 16) /
 $MaliCoreTextureCyclesTexturingActive
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9. Shader core load/store unit
The load/store unit counters show the use of the general-purpose L1 data cache. This unit is used
for all shader data accesses except texturing and framebuffer write-back. This includes buffer,
image, shared storage, and stack access.

9.1 Load/store unit usage
The unit usage counters show the content behavior in the load/store unit. They show the number
of reads and writes being made, and whether those loads use the full width of the available data
path.

Make effective use of the load/store unit by making full-width accesses. We recommend shaders
use vector memory accesses, and ensure threads in the same warp access overlapping or
sequential addresses inside a single 64 byte range.

9.1.1 Load/store total issues

This expression defines the total number of load/store cache access cycles. This counter ignores
secondary effects such as cache misses, so provides the minimum possible cycle usage.

$MaliCoreLoadStoreCyclesFullReadCycles + $MaliCoreLoadStoreCyclesPartialReadCycles +
 $MaliCoreLoadStoreCyclesFullWriteCycles +
 $MaliCoreLoadStoreCyclesPartialWriteCycles +
 $MaliCoreLoadStoreCyclesAtomicAccessCycles

9.1.2 Load/store full read issues

This counter increments for every full-width load/store cache read.

$MaliCoreLoadStoreCyclesFullReadCycles

9.1.3 Load/store partial read issues

This counter increments for every partial-width load/store cache read. Partial data accesses do not
make full use of the load/store cache capability. Merging short accesses together to make fewer
larger requests improves efficiency. To do this in shader code:

• Use vector data loads.

• Avoid padding in strided data accesses.
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• Write compute shaders so that adjacent threads in a warp access adjacent addresses in
memory.

$MaliCoreLoadStoreCyclesPartialReadCycles

9.1.4 Load/store full write issues

This counter increments for every full-width load/store cache write.

$MaliCoreLoadStoreCyclesFullWriteCycles

9.1.5 Load/store partial write issues

This counter increments for every partial-width load/store cache write. Partial data accesses do not
make full use of the load/store cache capability. Merging short accesses together to make fewer
larger requests improves efficiency. To do this in shader code:

• Use vector data loads.

• Avoid padding in strided data accesses.

• Write compute shaders so that adjacent threads in a warp access adjacent addresses in
memory.

$MaliCoreLoadStoreCyclesPartialWriteCycles

9.1.6 Load/store atomic issues

This counter increments for every load/store atomic access. Atomic memory accesses are typically
multicycle operations per thread in the warp, so they are exceptionally expensive. Minimize the use
of atomics in performance critical code.

$MaliCoreLoadStoreCyclesAtomicAccessCycles

9.2 Load/store unit memory usage
The memory usage counters show the average number of bytes read or written to the L2 cache
per load/store read or write. Use these metrics to see how effectively your workloads are using the
L1 and L2 data caches.
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9.2.1 Load/store bytes read from L2 per access cycle

This expression defines the average number of bytes read from the L2 memory system by the load/
store unit per read cycle. This metric gives some idea how effectively data is being cached in the L1
load/store cache.

Review your access patterns if more bytes are being requested per access than you would expect
for the data format you are using.

($MaliCoreL2ReadsLoadStoreL2ReadBeats * 16) /
 ($MaliCoreLoadStoreCyclesFullReadCycles +
 $MaliCoreLoadStoreCyclesPartialReadCycles)

9.2.2 Load/store bytes read from external memory per access cycle

This expression defines the average number of bytes read from the external memory system by
the load/store unit per read cycle. This metric indicates how effectively data is being cached in the
L2 cache. If a high number of bytes are being requested per access for the buffer formats you are
using, review your data types and access patterns.

($MaliCoreExternalReadsLoadStoreExternalReadBeats
 * 16) / ($MaliCoreLoadStoreCyclesFullReadCycles +
 $MaliCoreLoadStoreCyclesPartialReadCycles)

9.2.3 Load/store bytes written to L2 per access cycle

This expression defines the average number of bytes written to the L2 memory system by the
load/store unit per write cycle.

(($MaliCoreWritesLoadStoreWriteBackWriteBeats +
 $MaliCoreWritesLoadStoreOtherWriteBeats) * 16) /
 ($MaliCoreLoadStoreCyclesFullWriteCycles +
 $MaliCoreLoadStoreCyclesPartialWriteCycles)
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10. Shader core ray tracing unit
Ray tracing unit counters show the shader use of the ray hit testing unit. This unit is used for all
bounding box and triangle hit testing during ray traversal.

10.1 Ray tracing unit usage
The unit usage counters show the processing load on the box test unit and the triangle test unit.
These units run in parallel, so the overall loading is the maximum of these two values.

10.1.1 Ray tracing box tester issue cycles

This counter increments for every cycle the ray tracing unit issues a box intersection operation. If
this counter is a high percentage of shader core active, then shader performance might be limited
by acceleration structure traversal.

Note that the main workload for ray tracing is traversing the acceleration structure so this counter
is expected to be high. If this is not the case, and a significant number of rays are being used, it
indicates that a bottleneck exists elsewhere.

$MaliRayTracingCyclesBoxTesterActive

10.1.2 Ray tracing triangle tester issue cycles

This counter increments for every cycle the ray tracing unit issues a triangle intersection operation.
If this counter is a high percentage of shader core active, then shader performance might be limited
by triangle testing.

Note that a good acceleration structure should cull most triangles so that rays do not need to
be tested against them. If this counter is high it might indicate an issue with either geometry
complexity or acceleration structure efficiency.

$MaliRayTracingCyclesTriangleTesterActive

10.2 Ray tracing unit workload type
The unit workload counters show the number of rays started, and the number of ray and box
intersection batches started. Testing a batch takes a variable number of cycles, depending on ray
divergence.
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10.2.1 Ray tracing rays started

The counter increments for every ray that is started and tested against the root node in the
acceleration structure.

$MaliRayTracingRaysStarted

10.2.2 Ray tracing box nodes tested

This counter increments for every acceleration structure bounding box tested. If this is high then
the ray tracing unit spent a lot of time traversing the acceleration structure. This can be caused by
high node counts, acceleration structure inefficiency, and ray divergence across a warp.

$MaliRayTracingBoxNodesTested

10.2.3 Ray tracing triangle batches tested

This counter increments for every triangle batch tested. If this is high then the ray tracing unit
spent a lot of time testing for intersection with triangles. This can be caused by high triangle
counts, acceleration structure inefficiency, and ray divergence across a warp.

$MaliRayTracingTriangleBatchesTested

10.3 Ray tracing box test coherency
The ray tracing unit tests a single warp against a single bounding box. Divergent rays that do not
require the current test are masked, reducing the efficiency of the walk. This histogram gives the
number of active lanes per warp per box batch.

Improve ray tracing performance by ensuring rays in each warp are coherent.

10.3.1 Ray tracing box nodes tested with 13-16 rays

This count increments for every acceleration structure box node tested when there are between 13
and 16 active rays in the warp.

$MaliRayTracingBoxTestUsageBoxNodesWith1316Rays
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10.3.2 Ray tracing box nodes tested with 9-12 rays

This count increments for every acceleration structure box node tested when there are between 9
and 12 active rays in the warp. A high percentage of tests with low warp occupancy can indicate an
issue with ray coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingBoxTestUsageBoxNodesWith912Rays

10.3.3 Ray tracing box nodes tested with 5-8 rays

This count increments for every acceleration structure box node tested when there are between 5
and 8 active rays in the warp. A high percentage of tests with low warp occupancy can indicate an
issue with ray coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingBoxTestUsageBoxNodesWith58Rays

10.3.4 Ray tracing box nodes tested with 1-4 rays

This count increments for every acceleration structure box node tested when there are between 1
and 4 active rays in the warp. A high percentage of tests with low warp occupancy can indicate an
issue with ray coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingBoxTestUsageBoxNodesWith14Rays

10.4 Ray tracing triangle test coherency
The ray tracing unit test a single warp against a single triangle. Divergent rays that do not require
the current triangle test are masked, reducing the efficiency of the walk. This histogram gives the
number of active rays per warp.

Improve ray tracing performance by ensuring rays in each warp are coherent.

10.4.1 Ray tracing triangle batches tested with 13-16 rays

This count increments for every triangle batch tested when there are between 13 and 16 active
rays in the warp.

$MaliRayTracingTriangleTestUsageTriangleBatchesWith1316Rays
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10.4.2 Ray tracing triangle batches tested with 9-12 rays

This count increments for every triangle batch tested when there are between 9 and 12 active rays
in the warp. A high percentage of tests with low warp occupancy can indicate an issue with ray
coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingTriangleTestUsageTriangleBatchesWith912Rays

10.4.3 Ray tracing triangle batches tested with 5-8 rays

This count increments for every triangle batch tested when there are between 5 and 8 active rays
in the warp. A high percentage of tests with low warp occupancy can indicate an issue with ray
coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingTriangleTestUsageTriangleBatchesWith58Rays

10.4.4 Ray tracing triangle batches tested with 1-4 rays

This count increments for every triangle batch tested when there are between 1 and 4 active rays
in the warp. A high percentage of tests with low warp occupancy can indicate an issue with ray
coherency. Try to group rays with similar origin, direction, and range together.

$MaliRayTracingTriangleTestUsageTriangleBatchesWith14Rays

10.5 Ray tracing unit workload properties
The ray tracing traversal can handle different types of traversal for opaque geometry, and
transparent geometry. These counters give information about the types of traversal being
encountered during ray tracing.

Improve ray tracing performance by minimizing the use of transparent geometry and using queries
that terminate on first hit.

10.5.1 Ray tracing opaque triangle hits

The counter increments for every ray intersection with an opaque triangle.

$MaliRayTracingIntersectionsOpaqueTriangleHits
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10.5.2 Ray tracing non-opaque triangle hits

The counter increments for every ray intersection with a non-opaque triangle. Non-opaque
triangles are more expensive to process than opaque triangles, so we recommend using opaque
triangles in acceleration structures.

$MaliRayTracingIntersectionsNonOpaqueTriangleHits

10.5.3 Ray tracing miss

The counter increments for every ray that misses and fails to intersect during a triangle intersection
test. Most triangles that a ray misses should be culled by the acceleration structure, so if this
number is high try increasing the acceleration structure quality. If this counter is high it might also
indicate a programming error such as using opaque triangles and requesting that opaque hits be
culled.

$MaliRayTracingIntersectionsRayMisses

10.5.4 Ray tracing first hit terminations

The counter increments for every ray that terminates on its first triangle hit. Rays that terminate on
first hit are more efficient to process.

$MaliRayTracingIntersectionsTerminationsOnFirstTriangleHit

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 56



Mali-G715 Performance Counters Reference Guide Document ID: 107776_0101_en
1.1

Shader core memory traffic

11. Shader core memory traffic
The shader core memory traffic counters show the total amount of memory access a shader core
makes to the L2 cache and external memory system. Use the data breakdown to identify the unit
making the accesses, and target that unit for optimization.

11.1 Read access from L2 cache
The L2 memory read counters show the shader core memory read traffic that is fetched from the
GPU L2 cache.

11.1.1 Front-end read bytes from L2 cache

This expression defines the total number of bytes read from the L2 memory system by the
fragment front-end unit.

$MaliCoreL2ReadsFragmentL2ReadBeats * 16

11.1.2 Load/store read bytes from L2 cache

This expression defines the total number of bytes read from the L2 memory system by the load/
store unit.

$MaliCoreL2ReadsLoadStoreL2ReadBeats * 16

11.1.3 Texture read bytes from L2 cache

This expression defines the total number of bytes read from the L2 memory system by the texture
unit.

$MaliCoreL2ReadsTextureL2ReadBeats * 16

11.2 Read access from external memory
The external memory read counters show the shader core memory read traffic that misses in the
GPU cache and that is fetched from the external memory system. This data is either fetched from a
layer of system cache external to the GPU, or from the main system DRAM.
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11.2.1 Front-end read bytes from external memory

This expression defines the total number of bytes read from the external memory system by the
fragment front-end unit.

$MaliCoreExternalReadsFragmentExternalReadBeats * 16

11.2.2 Load/store read bytes from external memory

This expression defines the total number of bytes read from the external memory system by the
load/store unit.

$MaliCoreExternalReadsLoadStoreExternalReadBeats * 16

11.2.3 Texture read bytes from external memory

This expression defines the total number of bytes read from the external memory system by the
texture unit.

$MaliCoreExternalReadsTextureExternalReadBeats * 16

11.3 Write access
The memory write counters show the shader core memory traffic that is written into the memory
system. These writes can be buffered by the GPU L2, or sent to external memory.

11.3.1 Load/store write bytes

This expression defines the total number of bytes written to the L2 memory system by the load/
store unit.

($MaliCoreWritesLoadStoreWriteBackWriteBeats +
 $MaliCoreWritesLoadStoreOtherWriteBeats) * 16

11.3.2 Tile buffer write bytes

This expression defines the total number of bytes written to the L2 memory system by the tile
buffer write-back unit.

$MaliCoreWritesTileBufferWriteBeats * 16

Copyright © 2022–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 56



Mali-G715 Performance Counters Reference Guide Document ID: 107776_0101_en
1.1

GPU configuration

12. GPU configuration
The GPU configuration counters show the hardware product configuration in the target device. For
example, showing the number of shader cores present in the design.

12.1 GPU configuration counters
The configuration counters are virtual counters that you can use to scale performance results
and create alternative data visualizations. For example, multiplying the per shader core workload
counter series by $MaliConstantsShaderCoreCount would give a GPU-wide total.

12.1.1 Shader core count

This configuration constant defines the number of shader cores in the design.

$MaliConstantsShaderCoreCount

12.1.2 L2 cache slice count

This configuration constant defines the number of L2 cache slices in the design.

$MaliConstantsL2SliceCount

12.1.3 External bus beat size

This configuration constant defines the number of bytes transferred per external bus beat.

($MaliConstantsBusWidthBits / 8)
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