

Application Note
Armv8.1-M Performance Monitoring User Guide

 Version 1.186
 Document ID: ARM051-799564642-251

Non-Confidential-Published

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 1

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this
document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any
form by any means without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any
intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the
information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR
FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation
with respect to, and has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this
document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not
exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is not
intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document at any time
and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement
covering this document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting
provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any
conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the
US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their
respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document History

Issue Date Confidentiality Change
A 20/07/2020 Non-Confidential First Release

http://www.arm.com/company/policies/trademarks

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 2

Contents

1 About this document ... 5
1.1. References .. 5

1.2. Terms and Abbreviations ... 5

1.3. Scope ... 6

Conventions and Feedback ... 6

Feedback on this product ... 7

Feedback on documentation ... 7

Other information ... 7

2 Introduction.. 8
2.1. Profiling Overview .. 8

2.2. Profiling Armv8-M systems ... 8

2.2.1 DWT profiling ... 8

2.2.2 ITM profiling ... 9

2.2.3 ETM profiling .. 9

2.2.4 SysTick timer .. 10

2.3. The PMU Profiling Feature introduced in the Armv8.1-M Architecture .. 10

2.3.1 Cycle counter and event counters .. 10

2.3.2 Counting cycles .. 10

2.3.3 Counting events ... 11

2.4 Performance Monitoring in other Arm Systems ... 11

2.4.1 Performance monitoring in A-profile and R-profile systems ... 11

2.4.2 Performance monitoring in Arm Neural Processing Units ... 11

2.4.3 Performance monitoring in Arm Graphics and Multimedia Processors ... 12

3 Tools Support for the Armv8.1-M PMU .. 13
3.1 PMU Tools Support Overview .. 13

3.2 Hardware Platform and Simulation Model Support for the PMU .. 13

3.3 CMSIS Programming API for the PMU .. 14

3.4 Debug Tool Support for the PMU ... 16

4 Armv8.1-M PMU Programmers’ Model .. 18
4.1 Armv8.1-M PMU Registers Overview ... 18

4.2 Armv8.1-M PMU Events Overview .. 21

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 3

4.1.1 Architectural vs microarchitectural events ... 21

4.1.2 Event types ... 21

4.3 Cortex-M55 Events .. 22

4.3.1 Architectural and microarchitectural events supported by Cortex-M55 .. 22

4.3.2 Implementation-defined events ... 22

4.3.3 Unsupported architectural and microarchitectural events ... 22

4.4 Event Usage Notes .. 23

4.4.1 Architectural, microarchitectural and implementation-defined event usage table ... 23

4.4.2 Level 1 cache events .. 38

4.4.3 TCM events ... 38

4.4.4 EPU events .. 38

4.4.5 ECC events .. 39

4.4.6 Denial-of-service events ... 39

4.4.7 Event bus bits .. 39

4.4.8 Other metrics derived from events ... 39

5 Configuring the PMU in an Armv8.1-M implementation or model .. 40
5.1 Cortex-M55 RTL Configuration .. 40

5.2 Cortex-M55 Cycle Model Configuration ... 40

5.3 Cortex-M55 FVP and Armv8.1-M Architecture Envelope Model Configuration .. 40

6 PMU accessibility and restrictions .. 41
6.1 Accessing the PMU Registers .. 41

6.2 Debug .. 41

6.3 Security ... 41

6.4 Low Power State ... 41

6.5 CPU Lockup .. 41

7 Using the PMU in your application .. 42
7.1 Checking whether your Device has a PMU ... 42

7.2 Enabling and disabling the PMU ... 42

7.3 Using the 32-bit Cycle Counter ... 42

7.4 Using 16-bit Event Counters ... 43

7.5 Manually incrementing a Counter in Software ... 44

7.6 Chaining Event Counters to create a 32-bit Counter .. 45

7.7 Handling Counter Overflow .. 46

7.7.1 Checking whether a Counter has overflowed .. 47

7.7.2 Clearing the overflow status .. 47

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 4

7.7.3 Generating an interrupt on a counter overflow ... 48

7.7.4 Checking which counter overflowed ... 49

7.7.5 Stop counting events on a counter overflow .. 51

7.7.6 Halting the processor on a counter overflow ... 51

7.7.7 Emitting trace on a counter overflow .. 51

7.7.8 Triggering an overflow after the core has executed code ‘N’ times .. 52

8 PMU Profiling Example ... 54
8.1 Traditional Loops vs Low Overhead Loops .. 54

8.2 Profiling the Assembly Example .. 54

8.3 Summary of Results .. 56

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 5

1 About this document
1.1. References

Reference Document number Author(s) Title
[1] ARM DDI 0553B Arm Arm®v8-M Architecture Reference Manual
[2] ARM DDI 0487F.a Arm Arm® Architecture Reference Manual Armv8, for Armv8-A

architecture profile
[3] ARM DDI 0568A.b Arm ARM Architecture Reference Manual Supplement

ARMv8, for the ARMv8-R AArch32 architecture profile
[4] ARM IHI 0022G Arm AMBA® AXI and ACE Protocol specification
[5] ARM IHI 0033B Arm Arm® AMBA® 5 AHB Protocol specification
[6] N/A Arm Whitepaper: Introduction to the Armv8.1-M Architecture

[7] 101051 Arm Arm® Cortex-M55 Processor Technical Reference Manual
(TRM)

[8] 101052 Arm Arm® Cortex-M55 Processor Integration and Implementation
Manual (IIM)

[9] Arm Arm® Cortex-M55 Processor Release Notes

[10] ARM DDI 0314H Arm CoreSight™ Components Technical Reference Manual

1.2. Terms and Abbreviations

This document uses the following terms and abbreviations.

Term Meaning

AHB Advanced High-performance Bus
API Application Programming Interface

AXI Master Advanced eXtensible Interface
CTI Cross Trigger Interface

CMSIS Cortex Microcontroller Software Interface Standard

CPU Central Processing Unit

DAP Debug Access Port
DFP Device Family Pack

DS (Arm) Development Studio

DSP Digital Signal Processing

DTCM Data TCM interface
DWT Data Watchpoint and Trace Unit

ECC Error Correcting Code

EDA Embedded Design Automation

ETM Embedded Trace Macrocell
FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 6

IIM Integration and Implementation Manual

ITCM Instruction TCM interface
ITM Instrumentation Trace Macrocell

LOB Low Overhead Branch

M-AXI Master AXI interface

MCU Microcontroller Unit
MDK (Keil) Microcontroller Development Kit

MPS Cortex-M Prototyping System

MVE M-Profile Vector Extension

NPU Neural Processing Unit

NVIC Nested Vectored Interrupt Controller

OS Operating System
P-AHB Peripheral AHB interface

PE Processing Element

PPB Private Peripheral Bus

PMU Performance Monitoring Unit
RTL Register Transfer Level

S-AHB Slave AHB interface
SoC System-on-Chip

SWV Serial Wire Viewer

TCM Tightly Coupled Memory

TRM Technical Reference Manual

1.3. Scope

This document describes how to use the PMU as defined by the Armv8.1-M Architecture.

Conventions and Feedback

The following describes the typographical conventions and how to give feedback:

Convention Meaning

monospace denotes text that can be entered at the keyboard, such as commands, file and program names, and source
code.

monospace denotes a permitted abbreviation for a command or option. The underlined text can be entered instead of
the full command or option name.

monospace italic denotes arguments to commands and functions where the argument is to be replaced by a specific value.

monospace bold denotes language keywords when used outside example code.

italic highlights important notes, introduces special terminology, denotes internal cross-references, and
citations.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 7

bold highlights interface elements, such as menu names. Also used for emphasis in descriptive lists, where
appropriate, and for Arm® processor signal names.

Feedback on this product

If you have any comments and suggestions about this product, contact your supplier and give:

Your name and company.

The serial number of the product.

Details of the release you are using.

Details of the platform you are using, such as the hardware platform, operating system type and version.

A small standalone sample of code that reproduces the problem.

A clear explanation of what you expected to happen, and what actually happened.

The commands you used, including any command-line options.

Sample output illustrating the problem.

The version string of the tools, including the version number and build numbers.

Feedback on documentation

If you have comments on the documentation, e-mail errata@arm.com. Give:

The title.

The number, [Document ID Value], [Issue].

If viewing online, the topic names to which your comments apply.

If viewing a PDF version of a document, the page numbers to which your comments apply.

A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm periodically provides updates and corrections to its documentation on the Arm Information Center, together with knowledge articles
and Frequently Asked Questions (FAQs).

Other information

Arm Developer, https://developer.arm.com

Arm Documentation, https://developer.arm.com/docs

Arm Support and Maintenance, http://www.arm.com/support/services/support-maintenance.php

Arm Glossary, https://developer.arm.com/support/arm-glossary

https://developer.arm.com/
http://www.arm.com/support/services/support-maintenance.php
https://developer.arm.com/support/arm-glossary

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 8

2 Introduction
2.1. Profiling Overview

There are several reasons why a user might want to profile their application. These reasons include:

• Identifying critical sections of code and bottlenecks
• Profile-guided optimization
• Call graph / call tree information
• Code coverage analysis
• Instrumentation trace capture
• Counting specific events
• Measuring exact cycle timing
• Benchmarking
• Verification, validation, and testing
• Checking how well different blocks of IP, such as caches, are being utilized
• Measuring latency in the system

The M-profile architecture provides different features to help users carry out such tasks, including the Performance Monitoring Unit
(PMU), introduced in the Mainline variant of the Armv8.1-M Architecture. This application note demonstrates a variety of use cases for
the PMU, as described in section 7 Using the PMU in your application and section 8 PMU Profiling Example.

2.2. Profiling Armv8-M systems

Prior to the Armv8.1-M PMU, the M-profile architecture provided the following profiling features:

• Data Watchpoint and Trace (DWT) profiling
• Instrumentation Trace Macrocell (ITM) profiling
• Embedded Trace Macrocell (ETM) profiling
• SysTick timer

2.2.1 DWT profiling

You can configure any implementation of the Armv8.0-M Mainline architecture, for example, the Cortex-M33 processor (or an
implementation of the Armv7-M architecture, for example, the Cortex-M7 processor), with a basic set of profiling counters. Provided that
both the DWT and the ITM are configured in such an implementation, the DWT will provide a Cycle Count Register and five performance
profiling counters (in addition to its watchpoint functionality):

• Cycle Count Register (DWT_CYCCNT) 1
• CPI Count Register (DWT_CPICNT)2
• Exception Overhead Count Register (DWT_EXCCNT)
• Sleep Count Register (DWT_SLEEPCNT)

1 PMU_CYCCNT is an alias of DWT_CYCCNT.
2 Counts additional cycles required to execute multicycle instructions and instruction fetch stalls.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 9

• LSU Count Register (DWT_LSUCNT)3
• Folded Instruction Count Register (DWT_FOLDCNT)

Debug tools and the application itself can use these counters for profiling.

2.2.2 ITM profiling

The ITM provides a mechanism for the application to carry out instrumentation trace or ‘printf debugging’. Software can write directly to
ITM stimulus registers to generate trace packets. These packets can also include timestamp information.

Figure 2-1 - Keil MDK Debug (printf) Viewer

The ITM requires a debugger to be connected to the system to retrieve and decode the information contained in the trace packets. As
described in the CoreSight Components Technical Reference Manual, the ITM and Serial Wire Output (SWO) can be used to form a Serial
Wire Viewer (SWV). Debug tools are capable of displaying instrumentation trace data packets transmitted via a SWV, like in Figure 2-1.

Although this type of instrumentation profiling or trace capture is not very intrusive compared with halting the system, it does require
some additional code to be added to the program, which could affect timing and measurements.

2.2.3 ETM profiling

An Armv8.0-M implementation with the Main Extension (or an Armv7-M implementation) can optionally include the ETM. The ETM
provides either:

• Instruction trace only.
• Instruction and data trace.

3 Increments on the additional cycles required to execute all load or store instructions.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 10

Similar to the ITM, the ETM generates trace packets with timestamp information for different operations that have executed on the M-
profile target system. Debug tools that support the ETM can retrieve, decode, and display the execution history of the application. When
debug information is present in the application, a debug tool can deduce further profiling information such as thread or function
execution time statistics, and code coverage. The Keil MDK Trace Data window is an example of such a debug tool, which is described in
more detail on the Keil website in the µVision User's Guide:

http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_tracedata.htm

2.2.4 SysTick timer

The System Timer Extension can be implemented in any M-profile implementation. The SysTick timer can be used in different ways. A
common use case is for SysTick to act as the heartbeat for an operating system so it can carry out tasks like regularly switching threads.
SysTick can also be used as a generic timer. Another SysTick use case is profiling code; its regular tick can be based on the processor
core’s clock frequency or an external reference clock, and its decrementing counter that can be read by software.

2.3. The PMU Profiling Feature introduced in the Armv8.1-M Architecture

In addition to existing M-profile profiling features described in section 2.2 Profiling Armv8-M systems, Armv8.1-M provides a Performance
Monitoring Extension that permits Armv8.1-M implementations with the Main Extension, like the Cortex-M55 processor, to be configured
with a Performance Monitoring Unit (PMU). The Armv8.1-M PMU provides a rich set of profiling resources and behaves in a similar way to
the PMU feature available in other architecture profiles such as Armv8-A.

As described in the Whitepaper, Introduction to the Armv8.1-M Architecture, the Armv8.1-M architecture is an enhancement to the
original Armv8-M architecture and brings many additional features, including an M-Profile Vector Extension (MVE) for signal processing
and machine learning applications, also known as Helium. New features like MVE, the Low Overhead Branch (LOB) Extension, and half-
precision floating-point instructions, can significantly improve the performance of applications running on an Armv8.1-M implementation
such as the Cortex-M55 processor.

An Armv8.1-M PMU includes counters for counting cycles and a wide range of other events while an application is running on the target
platform. The PMU counters can be read by software at runtime or when the processor is being debugged. These counters are a useful
and convenient resource for measuring the performance of an M-profile system, including the M-profile features added in Armv8.1-M.

Note
An implementation that does not include the Main Extension, does not support the Performance Monitoring Extension.

2.3.1 Cycle counter and event counters

The PMU provides two types of counters:

• A 32-bit Cycle Counter Register that is hard-wired to count CPU cycles. This register is an alias of the Cycle Counter Register in
the DWT (DWT_CYCCNT) and is always present in an Armv8.1-M implementation, like Cortex-M55, configured with the PMU.

• Up to 31 Event Counters. A minimum number of two Event Counters is permitted for an implementation that includes the PMU.
The Cortex-M55 processor includes eight Event Counters.

2.3.2 Counting cycles

There are two approaches for counting cycles with the PMU:

http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_tracedata.htm

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 11

• Use the dedicated 32-bit Cycle Counter Register (CYCCNT).

• Use a 16-bit Event Counter to count an event related to cycles. One such event is CPU_CYCLES, which like CYCCNT, increments
every CPU cycle. There are also other more specific events relating to cycle counting. For example, there are different events
that can be used to count certain stalls in the processor pipeline. Additionally, there is an event that counts bus cycles. It is also
possible to form a 32-bit cycle counter by chaining 16-bit counters together (see section 7.6 Chaining Event Counters to create a
32-bit Counter).

2.3.3 Counting events

Any 16-bit Event Counter can be used to count various general-purpose events. These events are described in more detail in section 4
Armv8.1-M PMU Programmers’ Model.

2.4 Performance Monitoring in other Arm Systems

Performance monitoring and profiling features are also supported in other Arm systems. This section provides a brief description of these
systems and their performance monitoring features, and how they might interact with an M-profile system.

2.4.1 Performance monitoring in A-profile and R-profile systems

Performance monitoring was originally added as a new feature to the Arm architecture in Armv7-A/R under the Performance Monitors
Extension. The most recent ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition provides a specification for PMUv1 and
PMUv2.

The Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile describes the latest version of the PMU specification,
PMUv3, and further information about the PMU relevant to Armv8-R architecture can be found in the ARM Architecture Reference
Manual Supplement ARMv8, for the ARMv8-R AArch32 architecture profile.

Some of the Armv8-M Performance Monitoring Extension is based on the A-Profile and R-Profile PMU specifications, but the Armv8-M
Performance Monitoring Extension specification is a standalone specification that does not belong to the PMUv3 specification.

M-profile implementations might be used in a larger SoC that includes A-profile or R-profile implementations. In such implementations,
separate programming APIs will need to be used for programming the respective PMUs.

The Arm Streamline Performance Analyzer tool can be programmed to generate a series of charts for visualizing information generated
by a A-profile and R-profile PMU counters. These charts can help with various aspects of Cortex-A and Cortex-R system profiling such as
checking the effectiveness of the caches and identifying how well the system bus is being utilized. This assistance helps programmers to
profile their code quicker and to get the best performance out of the Arm processors they are working with.

2.4.2 Performance monitoring in Arm Neural Processing Units

Arm Neural Processing Units (NPUs) can be combined with one or more other Arm processors specifically to target accelerating Machine
Learning (ML) code. For example, the Ethos-U55 NPU can be combined with the Cortex-M55 processor to accelerate ML code running
within area-constrained embedded and IoT devices.

Ethos-U55 has its own self-contained PMU with a maximum of four 32-bit event counters and one 48-bit cycle counter. This is a separate
IP block and has no interaction with an Armv8.1-M implementation’s PMU.

There is a separate API for programming the Ethos-U55 PMU, which works in a similar way to the CMSIS-Core API for Armv8.1-M and
Cortex-M55, however, the list of PMU events is very different.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 12

Configuring the Ethos-U55 PMU registers can be achieved from software running on Armv8.1-M implementation, or from a host
computer using Arm Mbed DAPLink or the Arm Streamline Performance Analyzer tool.

A typical use case for the Ethos-U55 PMU would be to measure the performance related to the AXI bus interface. For example, a user
might clear the PMU counters immediately before a network operation begins, and then read them again after the execution has
finished. The counters would be used to measure the performance and detected potential bottlenecks.

2.4.3 Performance monitoring in Arm Graphics and Multimedia Processors

Arm Mali GPUs implement a comprehensive range of performance counters for closely monitoring GPU activity whilst an application runs.

The Arm Streamline Performance Analyzer tool can be programmed to generate a series of charts for visualizing information generated
by a GPU’s performance counters. These charts can help with various aspects of GPU profiling such as identifying the cause of heavy
rendering loads or workload inefficiencies. This assistance helps GPU programmers to profile their code quicker and to get the best
performance out of the graphics processor they are working with.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 13

3 Tools Support for the Armv8.1-M PMU
3.1 PMU Tools Support Overview

There are two ways to use the PMU as a developer:

• Programming the PMU in C code using an Arm C compiler.
• Accessing the PMU using an Arm debugger.

Arm also offers several different Armv8.1-M and Cortex-M55 platforms and simulation models that support the PMU.

3.2 Hardware Platform and Simulation Model Support for the PMU

As of August 2020, the following platforms and simulation models support the Armv8.1-M PMU.

 Platform / Simulation Model Notes / URL

Fast Models and Fixed Virtual
Platforms (FVPs)

An FVP is a virtual development platform built with Arm Fast Models for software development without a
physical board.

An FVP can be used standalone from a command-line interface.

Some FVPs are packaged as part of software development tools like Arm Development Studio and Keil MDK.
These toolkits provide connection dialogs to allow the user to connect to the FVP through an IDE.

The Fast Models tool provides an environment to design and create custom virtual platforms, like FVPs, for early
software development.

The Fast Models tool provides different types of ready-made M-profile Fast Models that support the PMU:

• Armv8.1-M Architecture Fast Model available in Fast Models 11.6 and later

• Cortex-M55 CPU Fast Model available in Fast Models 11.10 and later.

https://developer.arm.com/tools-and-software/simulation-models/fast-models

There is also a Corstone-300 Ecosystem FVP available, which includes support for the PMU:

https://developer.arm.com/tools-and-software/open-source-software/arm-
platforms-software/arm-ecosystem-fvps

Note

FVPs support a limited number of PMU events and are not cycle accurate.

Cycle Models Cycle Models are 100% cycle accurate models of Arm IP for performance analysis and IP selection.

A Cortex-M55 Cycle Model is available at the Arm IP Exchange website:

https://developer.arm.com/tools-and-software/simulation-models/cycle-models
https://ipx.arm.com/models?type=Cortex-M55

RTL Simulators from Arm EDA
tool vendors

See the Release Note and Integration and Implementation information for your Armv8.1-M implementation for
further information on RTL simulator support. The Arm Cortex-M55 Release Note and Arm Cortex-M55

https://developer.arm.com/tools-and-software/simulation-models/cycle-models
https://developer.arm.com/tools-and-software/simulation-models/cycle-models
https://developer.arm.com/tools-and-software/simulation-models/cycle-models
https://ipx.arm.com/models?type=Cortex-M55

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 14

Processor Integration and Implementation Manual are confidential documents that are only available to
licensees.

Arm MPS3 FPGA Prototyping
Board

The Arm MPS3 platform provides a way to load pre-built Arm sub-system images into its FPGA. More
information about the Arm MPS3 platform is available at:

https://developer.arm.com/tools-and-software/development-boards/fpga-
prototyping-boards/mps3

An SSE-300 FPGA image is due to be released sometime in 2020. SSE-300 is a CoreLink subsystem that
includes a Cortex-M55 processor More information about SSE-300 is available at:

https://developer.arm.com/ip-products/subsystem/corelink-subsystem/corelink-
sse-300-subsystem

Third party platforms Arm works closely with its partners who license Arm technology. Arm partners who have licensed Armv8.1-M
technology, such as Cortex-M55, typically develop their own platforms. Such platforms might or might not be
publicly available.

Table 3-1 Hardware Platform and Simulation Support for the PMU

3.3 CMSIS Programming API for the PMU

The programmers’ model and system address map of the Armv8-M architecture (described in section 4 Armv8.1-M PMU Programmers’
Model) make it simple to program the PMU in software. To make things even easier for developers to work with the PMU, CMSIS-Core
provides ready-to-use PMU functions and macros written in C and described in Table 3-2 CMSIS-Core PMU Function Prototypes.

CMSIS-Core is part of the Cortex Microcontroller Software Interface Standard (CMSIS) and provides a standardized API for different
aspects of software development for the Cortex-M devices, including:

• Startup and initialization code templates.
• Processor core instruction intrinsics.
• Processor core peripheral functions and macros.
• Memory description files (scatter files / linker scripts).
• Device-specific system clock and peripheral macros and functions.

CMSIS-Core source code and documentation is available from the following CMSIS GitHub repository:

• https://github.com/ARM-software/CMSIS_5

The following CMSIS-Core C header files support the PMU:

• https://github.com/ARM-software/CMSIS_5/blob/develop/CMSIS/Core/Include/pmu_armv8.h

• https://github.com/ARM-software/CMSIS_5/blob/develop/CMSIS/Core/Include/core_armv81mml.h

• https://github.com/ARM-software/CMSIS_5/blob/develop/CMSIS/Core/Include/core_cm55.h

The following two macros must be set appropriately before using these headers to program the PMU:

• __PMU_PRESENT
• __PMU_NUM_EVENTCNT

These macros are defined by the CMSIS-Core device header file, which is normally provided by Arm microcontroller device vendors. The
device header file is typically available as part of a CMSIS Device Family Pack (DFP) that includes other files, such as the startup and

https://github.com/ARM-software/CMSIS_5
https://github.com/ARM-software/CMSIS_5/blob/develop/CMSIS/Core/Include/pmu_armv8.h
https://github.com/ARM-software/CMSIS_5/blob/develop/CMSIS/Core/Include/core_armv81mml.h
https://github.com/ARM-software/CMSIS_5/blob/develop/CMSIS/Core/Include/core_cm55.h

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 15

initialization code mentioned in the list above, enabling the user to develop a CMSIS-compliant embedded application. The DFP, which is
essentially an archive file, is created by the device vendor.

Arm also acts as a device vendor by providing some device headers and DFPs targeted at its models and platforms described in section
3.2 Hardware Platform and Simulation Model Support for the PMU. Two generic Armv8.1-M/Cortex-M55 CMSIS-Core device headers can
be found at:

• https://github.com/ARM-
software/CMSIS_5/blob/develop/Device/ARM/ARMv81MML/Include/ARMv81MML_DSP_DP_MVE_FP.h

• https://github.com/ARM-software/CMSIS_5/blob/develop/Device/ARM/ARMCM55/Include/ARMCM55.h

DFPs are supported by different embedded development tools such as Keil MDK and Arm DS. These packs/archives can be downloaded
from the following repository on the Arm website.

• https://developer.arm.com/tools-and-software/embedded/cmsis/cmsis-packs

Also, some IDEs provide an integrated ‘Pack Installer’ to make it even easier to download, install, and use, the DFPs and the CMSIS-Core
files contained within.

Description CMSIS-Core PMU function prototype

PMU enable and disable
functions.

__STATIC_INLINE void ARM_PMU_Enable(void);
__STATIC_INLINE void ARM_PMU_Disable(void);

PMU event type
configuration function

__STATIC_INLINE void ARM_PMU_Set_EVTYPER(uint32_t num, uint32_t type);

PMU counter reset functions
__STATIC_INLINE void ARM_PMU_CYCCNT_Reset(void);
__STATIC_INLINE void ARM_PMU_EVCNTR_ALL_Reset(void);

PMU counter enable and
disable functions

__STATIC_INLINE void ARM_PMU_CNTR_Enable(uint32_t mask);
__STATIC_INLINE void ARM_PMU_CNTR_Disable(uint32_t mask);

PMU functions for reading
counters.

__STATIC_INLINE uint32_t ARM_PMU_Get_CCNTR(void);
__STATIC_INLINE uint32_t ARM_PMU_Get_EVCNTR(uint32_t num);

PMU functions for checking
and clearing the overflow
status

__STATIC_INLINE uint32_t ARM_PMU_Get_CNTR_OVS(void);
__STATIC_INLINE void ARM_PMU_Set_CNTR_OVS(uint32_t mask);

PMU functions for enabling
and disabling an interrupt on
overflow

__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Enable(uint32_t mask);
__STATIC_INLINE void ARM_PMU_Set_CNTR_IRQ_Disable(uint32_t mask);

PMU function for manually
incrementing a counter in
software

__STATIC_INLINE void ARM_PMU_CNTR_Increment(uint32_t mask);

Table 3-2 CMSIS-Core PMU Function Prototypes

CMSIS-Core supports the following compilers:

• Arm Compiler 6.
• GNU Arm Embedded Toolchain.
• IAR C/C++ Compiler.

https://github.com/ARM-software/CMSIS_5/blob/develop/Device/ARM/ARMv81MML/Include/ARMv81MML_DSP_DP_MVE_FP.h
https://github.com/ARM-software/CMSIS_5/blob/develop/Device/ARM/ARMv81MML/Include/ARMv81MML_DSP_DP_MVE_FP.h
https://github.com/ARM-software/CMSIS_5/blob/develop/Device/ARM/ARMCM55/Include/ARMCM55.h
https://developer.arm.com/tools-and-software/embedded/cmsis/cmsis-packs

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 16

Arm Compiler 6 is available as part of the following products:

• Arm Development Studio (Arm DS).
• Keil Microcontroller Development Kit (Keil MDK).

3.4 Debug Tool Support for the PMU

Software development toolkits such as Arm DS and Keil MDK from Arm, as well as third-party tool vendor Arm debug solutions, provide
support for Armv8.1-M and Cortex-M55. These tools typically provide convenient ways to access the PMU registers through memory and
register windows.

Figure 3-1 Arm Development Studio Registers View

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 17

Also, the PMU can issue an event counter trace packet each time the lower 8 bits of a counter overflows. This only occurs when a counter
increments naturally and not when it is written to directly by software or using a debugger. Additionally, the PMU can serve as an event
source for the Cross Trigger Interface (CTI), which might be useful for debugging, tracing, and profiling, systems with multiple processors.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 18

4 Armv8.1-M PMU Programmers’ Model
4.1 Armv8.1-M PMU Registers Overview

Like other Armv8-M peripheral, system, and debug registers, the PMU registers are memory-mapped to the Private Peripheral Bus (PPB)
address space. The PMU registers are located in a 4KB debug component block within the System space of the PPB.

The Registers index section of the Armv8-M architecture provides a complete list of registers that can be implemented in an Armv8-M
implementation. This section shows that the block of system memory for the PMU registers begins at address 0xE0003000. The PMU
registers and their associated addresses are listed with links to more detailed register descriptions.

Address Register Description
0xE0003000

PMU_EVCNTRn Performance Monitoring Unit Event Counter Register

0xE000307C
PMU_CCNTR Performance Monitoring Unit Cycle Counter Register

0xE0003400
 PMU_EVTYPERn Performance Monitoring Unit Event Type and Filter Register

0xE000347C
PMU_CCFILTR Performance Monitoring Unit Cycle Counter Filter Register

0xE0003C00
PMU_CNTENSET Performance Monitoring Unit Count Enable Set Register

0xE0003C20
PMU_CNTENCLR Performance Monitoring Unit Count Enable Clear Register

0xE0003C40
PMU_INTENSET Performance Monitoring Unit Interrupt Enable Set Register

0xE0003C60
PMU_INTENCLR Performance Monitoring Unit Interrupt Enable Clear Register

0xE0003C80
PMU_OVSCLR Performance Monitoring Unit Overflow Flag Status Clear Register

0xE0003CA0
PMU_SWINC Performance Monitoring Unit Software Increment Register

0xE0003CC0
PMU_OVSSET Performance Monitoring Unit Overflow Flag Status Set Register

0xE0003E00
PMU_TYPE Performance Monitoring Unit Type Register

0xE0003E04
PMU_CTRL Performance Monitoring Unit Control Register

0xE0003FB8
PMU_AUTHSTATUS Performance Monitoring Unit Authentication Status Register

0xE0003FBC
PMU_DEVARCH Performance Monitoring Unit Device Architecture Register

0xE0003FCC
PMU_DEVTYPE Performance Monitoring Unit Device Type Register

0xE0003FD0
PMU_PIDR4 Performance Monitoring Unit Peripheral Identification Register 4

0xE0003FE0
PMU_PIDR0 Performance Monitoring Unit Peripheral Identification Register 0

0xE0003FE4
PMU_PIDR1 Performance Monitoring Unit Peripheral Identification Register 1

0xE0003FE8
PMU_PIDR2 Performance Monitoring Unit Peripheral Identification Register 2

0xE0003FEC
PMU_PIDR3 Performance Monitoring Unit Peripheral Identification Register 3

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 19

0xE0003FF0
PMU_CIDR0 Performance Monitoring Unit Component Identification Register 0

0xE0003FF4
PMU_CIDR1 Performance Monitoring Unit Component Identification Register 1

0xE0003FF8
PMU_CIDR2 Performance Monitoring Unit Component Identification Register 2

0xE0003FFC
PMU_CIDR3 Performance Monitoring Unit Component Identification Register 3

Table 4-1 PMU Registers and Address Mappings

The PMU Type Register, PMU_TYPE, helps software identify information about a device’s PMU configuration. For example, PMU_TYPE
can be read to find out the number of counters available in the PMU.

Another important register is the PMU Control Register, PMU_CTRL. PMU_CTRL can be used to enable/disable the PMU and reset the
PMU counters.

A PMU Event Type Register, PMU_EVTYPERn, can be programmed by software to determine which event a specific counter is monitoring.

The PMU Count Enable Set Register, PMU_CNTENSET, and PMU Count Enable Clear Register, PMU_CNTENCLR, can be used to enable and
disable individual event counters.

A PMU Event Counter Registers, PMU_EVCNTRn, can be read by software to determine the current count of an event associated with that
counter. There is also the PMU Cycle Count Register, PMU_CYCCNT, which is dedicated to counting cycles. These registers can be reset to
zero and can also be written to so that they have a starting value.

Some of the other PMU registers are covered throughout this document such as the Performance Monitoring Unit Software Increment
Register, PMU_SWINC, as well as registers related to overflow and interrupt generation.

The PMU counters count upwards. When a PMU counter overflows the action taken depends on how the PMU is configured. For
example, it can be configured to generate an interrupt upon an overflow. These use cases are described in more detail in section 7 Using
the PMU in your application.

Before using the PMU, software needs to ensure that trace is enabled via the Debug Exception Monitor Control Register, DEMCR.

Figure 4-1 shows a typical usage flow for configuring the PMU. Section 7 provides code examples on how to use the PMU in your
application.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 20

Start

Generate interrupt when
counter n overflows?

Configure
PMU_INTENSET so an
interrupt is generated

when counter n
overflows

Stop

Yes

Program
PMU_EVTYPERn to
monitor a specific

event for event
counter n.

Configure
PMU_CNTENSET to
enable counter n

Program PMU_CTRL
to reset Event

Counters

Configure
PMU_CNTENCLR to
disable counter n

Read
PMU_EVCNTRn for

current count

Execute code
sequence for

profiling/monitoring

Configure DEMCR to
enable trace

No

Configure
PMU_CTRL to

enable PMU and
start counting

Program PMU_EVCNTR
to initial counting value

Figure 4-1 PMU Configuration Example

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 21

4.2 Armv8.1-M PMU Events Overview

This section aims to provide any additional usage information about certain events, including information specific to Cortex-M55.

Furthermore, the CMSIS-Core header file pmu_armv8.h and relevant core_<cpu>.h header contain macros corresponding to each
supported event with some brief descriptions. These macros can be used by software, as shown in section 7 Using the PMU in your
application and section 8 PMU Profiling Example.

Currently, Armv8.1-M supports up to 131 different PMU events.

The section titled List of supported architectural and microarchitectural events in the Armv8-M Architecture Reference Manual
(DI0553B.k) provides a full list and descriptions of the supported events that can be counted.

Note

The number of supported events may change in future revisions of the architecture.

4.1.1 Architectural vs microarchitectural events

Information statement IFHHC from the Armv8-M Architecture Reference Manual states that events fall into two categories:

• Architectural events, which are the same across all implementations
• Microarchitectural events, which might vary across different implementations.

For example, the architectural event, EXC_TAKEN (Exception taken), can be used to count each time any implementation, such as Cortex-
M55, takes an exception. The behavior of this event would work the same on any other Armv8.1-M implementation.

Good examples of microarchitectural events are any events relating to caches or branch prediction, since these features may vary across
different implementations. For example, Cortex-M55 does not support branch prediction, but it is possible for another Armv8.1-M
implementation to support it. Also, even if features like these are supported in a particular implementation, they might not be
configured/enabled in the RTL or by software. Additionally, even, if such features are implemented, they may be configured differently.
For example, there are different RTL configuration options for the sizes of the caches in Cortex-M55.

There are 11 required architectural and microarchitectural events.

There are also some architectural and microarchitectural events that are not supported by Cortex-M55 (see section 4.3.3 Unsupported
architectural and microarchitectural events).

4.1.2 Event types

The 131 architectural and microarchitectural PMU events can be broadly put into the following event type categories:

• Instruction execution.
• Instruction speculation.
• Operation execution.
• Operation speculation.
• MVE instruction execution.
• MVE instruction speculation.
• External memory accesses.
• Tightly Coupled Memory (TCM) accesses.
• Cache behavior.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 22

• Branch prediction.
• Exceptions.
• Security state transitions.
• Pipeline stalls.
• Chaining counters.
• CPU Cycles.
• Debug and trace events.
• Software increment.
• Memory errors.

4.3 Cortex-M55 Events

4.3.1 Architectural and microarchitectural events supported by Cortex-M55

Cortex-M55 supports 82 out of the 131 architectural and microarchitectural events. A full list of events can be found in Table 4-2.

4.3.2 Implementation-defined events

The architecture allows an implementation to include extra events. The Cortex-M55 processor supports an additional 18 implementation-
specific PMU events related to the following:

• Error Correcting Code (ECC) in the TCM or Cache memories - events beginning with ECC_.
• No Write-Allocate mode - event prefixed with NWA (NWAMODE_ENTER and NWAMODE).
• S-AHB accesses - SAHB_ACCESS.
• P-AHB accesses - PAHB_ACCESS.
• M-AXI accesses - AXI_WRITE_ACCESS and AXI_READ_ACCESS.
• Data cache prefetching - PF_LINEFILL, PF_CANCEL and PF_DROP_LINEFILL.
• Internal watchdog - DOSTIMEOUT_DOUBLE and DOSTIMEOUT_TRIPLE.

4.3.3 Unsupported architectural and microarchitectural events

Some of the architectural and microarchitectural events are not supported by Cortex-M55. Cortex-M55 implements only a subset of the
µArch PMU events which reflect the simple inline, non-speculative nature of the processor pipeline. Events that are not supported fall
into the following categories:

• Branch prediction events.
• Level 2 cache events.
• Level 3 cache events.
• Instruction speculation events.
• Operation speculation events.
• Level 1 data cache allocate.
• Operation execution.
• All pipeline stall ‘slot’ events.
• Branch Future.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 23

4.4 Event Usage Notes

4.4.1 Architectural, microarchitectural and implementation-defined event usage table

This section focuses on all the architectural, microarchitectural and Cortex-M55-specifc events. Table 4-2 below provides a brief
description for all supported event categories along with some additional usage notes, including Cortex-M55-specific details, where
applicable. The table is intended to be used as a supplement to the information about events that already exists in the Armv8-M
Architecture Reference Manual.

Key for Table 4-2:

• Type: A = Arch, AR = Arch Required, I = IMPDEF, M = µArch, MR = µArch Required
• Bits: This column refers to the Cortex-M55 PMU Event Bus bits (see section 4.4.7 Event bus bits).

No. Type Name and Description Usage Notes Bits

0x0000 AR SW_INCR

Instruction architecturally executed, condition code
check pass, software increment

See section 7.5 Manually incrementing a Counter in
Software.

0

0x0001 M L1I_CACHE_REFILL

Attributable Level 1 instruction cache refill

See section 4.4.2 Level 1 cache events. 1

0x0003 MR L1D_CACHE_REFILL

Attributable Level 1 data cache refill

See section 4.4.2 Level 1 cache events. 2

0x0004 MR L1D_CACHE

Attributable Level 1 data cache access

See section 4.4.2 Level 1 cache events. 3

0x0006 A LD_RETIRED

Instruction architecturally executed, condition code
check pass, load

The architecture states:
Whether the preload instructions PLD, PLDW, and PLI,
count as memory-reading instructions is
IMPLEMENTATION DEFINED

On Cortex-M55:
- PLD and PLDW are both fully supported on Cortex-
M55. (PLDW requests a line-fill for a cache miss in a
Write-allocate region).
- PLI is not operationally supported and acts like a NOP.
PLI has no effect on LD_RETIRED.

4

0x0007 A ST_RETIRED

Instruction architecturally executed, condition code
check pass, store

 5

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 24

0x0008 AR INST_RETIRED

Instruction architecturally executed

 6

0x0009 A EXC_TAKEN

Exception taken

 7

0x000A A EXC_RETURN

Instruction architecturally executed, condition code
check pass, exception return

 8

0x000C A PC_WRITE_RETIRED

Instruction architecturally executed, condition code
check pass, software change of the PC

The architecture states:
 It is IMPLEMENTATION DEFINED whether the
counter increments for any or all of:
 • BKPT instructions.
 • An exception generated because an instruction is

UNDEFINED.
 • The exception-generating instructions, SVC, and UDF.

It is IMPLEMENTATION DEFINED whether an ISB is
counted as a software change of the PC.

On Cortex-M55:
PMU <x>_RETIRED events only count operations which
complete so they don’t include any cases where an
instruction is interrupted by an exception or debug event
(including BKPT). However, SVC is included in this
event as it functionally behaves like software-controlled
branch.

ISB is also counted as a PC write event.

9

0x000D A BR_IMMED_RETIRED

Instruction architecturally executed, immediate
branch

The architecture states:
If an ISB is counted as a software change of the PC
instruction, then it is IMPLEMENTATION DEFINED
whether an ISB is counted as an immediate branch
instruction.

On Cortex-M55:
This event only counts true immediate branches i.e. B
#imm, CB{N}Z #imm

10

0x000E A BR_RETURN_RETIRED

Instruction architecturally executed, condition code
check pass, procedure return

 11

0x000F A UNALIGNED_LDST_RETIRED

Instruction architecturally executed, condition code
check pass, unaligned load or store

 12

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 25

0x0010 A BR_MIS_PRED

Mispredicted or not predicted branch speculatively
executed

The architecture states:
If branches are decoded before the branch predictor, so
that the branch prediction logic dynamically predicts only
some branches, for example conditional and indirect
branches, then it is IMPLEMENTATION DEFINED
whether other branches are counted as predictable
branches.

On Cortex-M55 branch prediction isn’t supported and
therefore this event is not supported.

0x0011 MR CPU_CYCLES

Cycle

The Cortex-M55 processor has a four-stage pipeline.

Once the pipeline is full the Cortex-M55 is capable of
executing at least one instruction per cycle.

Some 16-bit instruction pairs can be dual-issued to
further improve how many instructions per cycle the
Cortex-M55 processor is capable of.

14

0x0012 M BR_PRED

Predictable branch speculatively executed

Unsupported on Cortex-M55.

0x0013 M MEM_ACCESS

Data memory access

 16

0x0014 M L1I_CACHE

Attributable Level 1 instruction cache access

See section 4.4.2 Level 1 cache events. 17

0x0015 M L1D_CACHE_WB

Attributable Level 1 data cache write-back

See section 4.4.2 Level 1 cache events. 18

0x0016 M L2D_CACHE

Attributable Level 2 data cache access

Unsupported on Cortex-M55.

0x0017 M L2D_CACHE_REFILL

Attributable Level 2 data cache refill

Unsupported on Cortex-M55.

0x0018 M L2D_CACHE_WB

Attributable Level 2 data cache write-back

Unsupported on Cortex-M55.

0x0019 M BUS_ACCESS

Attributable Bus access

The architecture states:
Whether bus accesses include operations that do use the
bus but that do not explicitly transfer data is
IMPLEMENTATION DEFINED.

The maximum increment in any given cycle is

19

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 26

IMPLEMENTATION DEFINED.

This event is triggered by any beat on M-AXI, P-AHB
and EPPB interfaces. These beats do not necessarily map
onto architectural load/store/instruction fetches, which
are not used, i.e. cache line entries, speculative
instruction fetches, etc.

0x001A M MEMORY_ERROR

Local memory error

See also sections 4.4.2 Level 1 cache events and 4.4.3
TCM events, and section 4.3.2 Implementation-defined
events.

20

0x001B M INST_SPEC

Operation speculatively executed

Unsupported on Cortex-M55.

0x001D M BUS_CYCLES

Bus cycle

 22

0x001E A CHAIN

For an odd numbered counter, increment when an
overflow occurs on the preceding even-numbered
counter on the same PE

See section 7.6 Chaining Event Counters to create a 32-
bit Counter.

23

0x001F M L1D_CACHE_ALLOCATE

Attributable Level 1 data cache allocation without
refill

See section 4.4.2 Level 1 cache events.

0x0020 M L2D_CACHE_ALLOCATE

Attributable Level 2 data cache allocation without
refill

Unsupported on Cortex-M55.

0x0021 AR BR_RETIRED

Instruction architecturally executed, branch

The architecture states:
It is IMPLEMENTATION DEFINED whether this
includes each of:
 – Unconditional direct branch instructions.
 – Exception-generating instructions.
 – Exception return instructions.
 – Context synchronization instructions.
 This event follows the same rules as the
PC_WRITE_RETIRED event (see above), apart from
conditional branch instructions where BR_RETIRED is
counted whether the instruction executes or not, i.e. for
B<c> #imm will result in a BR_RETIRED event but will
only result in a PC_WRITE_RETIRED event if the
conditional code <c> passes.

25

0x0022 MR BR_MIS_PRED_RETIRED

Cortex-M55 has single cycle branch latency, without a
requirement for branch prediction.

26

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 27

Instruction architecturally executed, mispredicted
branch

Therefore, on Cortex-M55, this event counts all retired
not-taken branches.

0x0023 MR STALL_FRONTEND

No operation issued because of the frontend

The architecture states:
The division between frontend and backend is
IMPLEMENTATION DEFINED.

On Cortex-M55:
If there are no instructions available from the fetch stage
of the processor pipeline (into the main decode/execution
stages), the processor considers the front-end of the
processor pipeline as being stalled.

A high number in STALL_FRONTEND might mean:

- The instruction cache is too small, or the program
access pattern does not cache well.
- Instruction access latency is high.

When running code that is accessed via the AXI
interface, latency on the AXI bus can occur due to cache
misses, which can in turn add stall cycles.

27

0x0024 MR STALL_BACKEND

No operation issued because of the backend

The architecture states:
The division between frontend and backend is
IMPLEMENTATION DEFINED.

On Cortex-M55:
If there is an instruction available from the fetch stage of
the pipeline but it cannot be accepted by the decode stage
of the processor pipeline, the processor considers the
back-end of the processor pipeline as being stalled.

This is likely caused by memory access wait states, but
could also be caused by multi-cycle operations in the
coprocessor interface.

When running code that is accessed via the AXI
interface, latency on the AXI bus can occur due to cache
misses, which can in turn add stall cycles.

28

0x0027 M L2I_CACHE

Attributable Level 2 instruction cache access

Unsupported on Cortex-M55.
Cortex-M55 cannot be configured with a Level 2 cache.

0x0028 M L2I_CACHE_REFILL

Attributable Level 2 instruction cache refill

Unsupported on Cortex-M55.
Cortex-M55 cannot be configured with a Level 2 cache.

0x0029 M L3D_CACHE_ALLOCATE

Attributable Level 3 data cache allocation without
refill

Unsupported on Cortex-M55.
Cortex-M55 cannot be configured with a Level 3 cache.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 28

0x002A M L3D_CACHE_REFILL

Attributable Level 3 data cache refill

Unsupported on Cortex-M55.
Cortex-M55 cannot be configured with a Level 3 cache.

0x002B M L3D_CACHE

Attributable Level 3 data cache access

Unsupported on Cortex-M55.
Cortex-M55 cannot be configured with a Level 3 cache.

0x002C M L3D_CACHE_WB

Attributable Level 3 data cache access write-back

Unsupported on Cortex-M55.
Cortex-M55 cannot be configured with a Level 3 cache.

0x0036 M LL_CACHE_RD

Last level data cache read

The last level cache on Cortex-M55 is the level 1 cache.
See section 4.3.2.

29

0x0037 M LL_CACHE_MISS_RD

Last level data cache read miss

The last level cache on Cortex-M55 is the level 1 cache.
See section 4.4.2 Level 1 cache events.

30

0x0039 M L1D_CACHE_MISS_RD

Level 1 data cache read miss

See section 4.4.2 Level 1 cache events. 31

0x003A M OP_COMPLETE

Operation retired

Unsupported on Cortex-M55.

0x003B M OP_SPEC

Operation speculated

Unsupported on Cortex-M55.

0x003C M STALL

No operation sent for execution

This general case stall event counts when there is no
instruction executing this cycle.
This could be due to STALL_FRONTEND or
STALL_BACKEND, or simply a register/memory
hazard.

34

0x003D M STALL_OP_BACKEND

No operation sent for execution on a slot because of
the backend

Unsupported on Cortex-M55.

0x003E M STALL_OP_FRONTEND

No operation sent for execution on a slot because of
the frontend

Unsupported on Cortex-M55.

0x003F M STALL_OP

No operation sent for execution on a slot

Unsupported on Cortex-M55.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 29

0x0040 M L1D_CACHE_RD

Level 1 data cache read

 38

0x0100 M LE_RETIRED

Loop end instruction architecturally executed, entry
registered in the LO_BRANCH_INFO cache

 39

0x0101 M LE_SPEC

Loop end instruction speculatively executed entry
registered in LO_BRANCH_INFO cache

Unsupported on Cortex-M55.

0x0104 M BF_RETIRED

Branch future instruction architecturally executed,
condition code check pass, and registers an entry in
the LO_BRANCH_INFO cache

Unsupported on Cortex-M55.

0x0105 M BF_SPEC

Branch future instruction speculatively executed,
condition code check and registers an entry in the
LO_BRANCH_INFO cache

Unsupported on Cortex-M55.

0x0108 M LE_CANCEL

LO_BRANCH_INFO cache containing a valid loop
entry cleared while not in the last iteration of the loop

 43

0x0109 M BF_CANCEL

LO_BRANCH_INFO cache containing a valid BF
entry cleared and associated branch not taken

Unsupported on Cortex-M55.

0x0114 A SE_CALL_S

Call to secure function, resulting in Security state
change

 45

0x0115 A SE_CALL_NS

Call to non-secure function, resulting in Security state
change

 46

0x0118 A DWT_CMPMATCH0

DWT comparator 0 match

See section 7.7.8 Triggering an overflow after the core
has executed code ‘N’ times.

47

0x0119 A DWT_CMPMATCH1

DWT comparator 1 match

See section 7.7.8 Triggering an overflow after the core
has executed code ‘N’ times.

48

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 30

0x011A A DWT_CMPMATCH2

DWT comparator 2 match

See section 7.7.8 Triggering an overflow after the core
has executed code ‘N’ times.

49

0x011B A DWT_CMPMATCH3

DWT comparator 3 match

See section 7.7.8 Triggering an overflow after the core
has executed code ‘N’ times.

50

0x0200 AR MVE_INST_RETIRED

MVE instruction architecturally executed

See section 4.4.4 EPU events. 51

0x0201 M MVE_INST_SPEC

MVE instruction speculatively executed

This event is unsupported on Cortex-M55.

0x0204 A MVE_FP_RETIRED

MVE floating-point instruction architecturally
executed

See section 4.4.4 EPU events. 53

0x0205 M MVE_FP_SPEC

MVE floating-point instruction speculatively
executed

This event is unsupported on Cortex-M55.

0x0208 A MVE_FP_HP_RETIRED

MVE half-precision floating-point instruction
architecturally executed

See section 4.4.4 EPU events. 55

0x0209 M MVE_FP_HP_SPEC

MVE half-precision floating-point instruction
speculatively executed

This event is unsupported on Cortex-M55.

0x020C A MVE_FP_SP_RETIRED

MVE single-precision floating-point instruction
architecturally executed

See section 4.4.4 EPU events. 57

0x020D M MVE_FP_SP_SPEC

MVE single-precision floating-point instruction
speculatively executed

This event is unsupported on Cortex-M55.

0x0214 A MVE_FP_MAC_RETIRED

MVE floating-point multiply or multiply-accumulate
instruction architecturally executed

See section 4.4.4 EPU events. 59

0x0215 M MVE_FP_MAC_SPEC

This event is unsupported on Cortex-M55.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 31

MVE floating-point multiply or multiply-accumulate
instruction speculatively executed

0x0224 A MVE_INT_RETIRED

MVE integer instruction architecturally executed

See section 4.4.4 EPU events. 61

0x0225 M MVE_INT_SPEC

MVE integer instruction speculatively executed

This event is unsupported on Cortex-M55.

0x0228 A MVE_INT_MAC_RETIRED

MVE integer multiply or multiply-accumulate
instruction architecturally executed

See section 4.4.4 EPU events. 63

0x0229 M MVE_INT_MAC_SPEC

MVE integer multiply or multiply-accumulate
instruction speculatively executed

This event is unsupported on Cortex-M55.

0x0238 AR MVE_LDST_RETIRED

MVE load or store instruction architecturally
executed

See section 4.4.4 EPU events. 65

0x0239 M MVE_LDST_SPEC

MVE load or store instruction speculatively executed

This event is unsupported on Cortex-M55.

0x023C A MVE_LD_RETIRED

MVE load instruction architecturally executed

See section 4.4.4 EPU events. 67

0x023D M MVE_LD_SPEC

MVE load instruction speculatively executed

This event is unsupported on Cortex-M55.

0x0240 A MVE_ST_RETIRED

MVE store instruction architecturally executed

See section 4.4.4 EPU events. 69

0x0241 M MVE_ST_SPEC

MVE store instruction speculatively executed

This event is unsupported on Cortex-M55.

0x0244 A MVE_LDST_CONTIG_RETIRED

MVE contiguous load or store instruction
architecturally executed

See section 4.4.4 EPU events. 71

0x0245 M MVE_LDST_CONTIG_SPEC

This event is unsupported on Cortex-M55.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 32

MVE contiguous load or store instruction
speculatively executed

0x0248 A MVE_LD_CONTIG_RETIRED

MVE contiguous load instruction architecturally
executed

See section 4.4.4 EPU events. 73

0x0249 M MVE_LD_CONTIG_SPEC

MVE contiguous load instruction speculatively
executed

This event is unsupported on Cortex-M55.

0x024C A MVE_ST_CONTIG_RETIRED

MVE contiguous store instruction architecturally
executed

See section 4.4.4 EPU events. 75

0x024D M MVE_ST_CONTIG_SPEC

MVE contiguous store instruction speculatively
executed

This event is unsupported on Cortex-M55.

0x0250 A MVE_LDST_NONCONTIG_RETIRED

MVE non-contiguous load or store instruction
architecturally executed

See section 4.4.4 EPU events. 77

0x0251 M MVE_LDST_NONCONTIG_SPEC

MVE non-contiguous load or store instruction
speculatively executed

This event is unsupported on Cortex-M55.

0x0254 A MVE_LD_NONCONTIG_RETIRED

MVE non-contiguous load instruction architecturally
executed

See section 4.4.4 EPU events. 79

0x0255 M MVE_LD_NONCONTIG_SPEC

MVE non-contiguous load instruction speculatively
executed

This event is unsupported on Cortex-M55.

0x0258 A MVE_ST_NONCONTIG_RETIRED

MVE non-contiguous store instruction architecturally
executed

See section 4.4.4 EPU events. 81

0x0259 M MVE_ST_NONCONTIG_SPEC

MVE non-contiguous store instruction speculatively
executed

This event is unsupported on Cortex-M55.

0x025C A MVE_LDST_MULTI_RETIRED

See section 4.4.4 EPU events. 83

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 33

MVE memory instruction targeting multiple registers
architecturally executed

0x025D M MVE_LDST_MULTI_SPEC

MVE memory instruction targeting multiple registers
speculatively executed

This event is unsupported on Cortex-M55.

0x0260 A MVE_LD_MULTI_RETIRED

MVE memory load instruction targeting multiple
registers architecturally executed

See section 4.4.4 EPU events. 85

0x0261 M MVE_LD_MULTI_SPEC

MVE memory load instruction targeting multiple
registers speculatively executed

This event is unsupported on Cortex-M55.

0x0264 A MVE_ST_MULTI_RETIRED

MVE memory store instruction targeting multiple
registers architecturally executed

See section 4.4.4 EPU events. 87

0x0265 M MVE_ST_MULTI_SPEC

MVE memory store instruction targeting multiple
registers speculatively executed

This event is unsupported on Cortex-M55.

0x028C A MVE_LDST_UNALIGNED_RETIRED

MVE unaligned memory load or store instruction
architecturally executed

See section 4.4.4 EPU events. 89

0x028D M MVE_LDST_UNALIGNED_SPEC

MVE unaligned memory load or store instruction
speculatively executed

This event is unsupported on Cortex-M55.

0x0290 A MVE_LD_UNALIGNED_RETIRED

MVE unaligned memory load instruction
architecturally executed

See section 4.4.4 EPU events. 91

0x0291 M MVE_LD_UNALIGNED_SPEC

MVE unaligned memory load instruction
speculatively executed

This event is unsupported on Cortex-M55.

0x0294 A MVE_ST_UNALIGNED_RETIRED

MVE unaligned store instruction architecturally
executed

See section 4.4.4 EPU events. 93

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 34

0x0295 M MVE_ST_UNALIGNED_SPEC

MVE unaligned store instruction speculatively
executed

This event is unsupported on Cortex-M55.

0x0298 A MVE_LDST_UNALIGNED_NONCONTIG_RETIR
ED

MVE unaligned noncontiguous load or store
instruction architecturally executed

See section 4.4.4 EPU events. 95

0x0299 M MVE_LDST_UNALIGNED_NONCONTIG_SPEC

MVE unaligned non-contiguous load or store
instruction speculatively executed

This event is unsupported on Cortex-M55.

0x02A0 A MVE_VREDUCE_RETIRED

MVE vector reduction instruction architecturally
executed

See section 4.4.4 EPU events. 97

0x02A1 M MVE_VREDUCE_SPEC

MVE vector reduction instruction speculatively
executed

This event is unsupported on Cortex-M55.

0x02A4 A MVE_VREDUCE_FP_RETIRED

MVE floating-point vector reduction instruction
architecturally executed

See section 4.4.4 EPU events. 99

0x02A5 M MVE_VREDUCE_FP_SPEC

MVE floating-point vector reduction instruction
speculatively executed

This event is unsupported on Cortex-M55.

0x02A8 A MVE_VREDUCE_INT_RETIRED

MVE integer vector reduction instruction
architecturally executed

See section 4.4.4 EPU events. 101

0x02A9 M MVE_VREDUCE_INT_SPEC

MVE integer vector reduction instruction
speculatively executed

This event is unsupported on Cortex-M55.

0x02B8 M MVE_PRED

Cycles where one or more predicated beats
architecturally executed

See section 4.4.4 EPU events.

The architecture states:
The ratio (BEATS_PER_TICK) / (4 * then offers an
approximate insight into the proportion of MVE
instructions affected by predication, where
BEATS_PER_TICK is an IMPLEMENTATION
DEFINED average number of beats, including from

102

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 35

distinct overlapping instructions, executed per
Architecture tick.

On Cortex-M55 MVE is implemented in a ‘two beats per
tick’ configuration. This event counts a cycle where any
MVE operation tick executes with any corresponding bits
of the predicate flags set to 0 and the instruction is VPT
compatible or supports tail predication.

0x02CC M MVE_STALL

Stall cycles caused by an MVE instruction

See section 4.4.4 EPU events. 103

0x02CD M MVE_STALL_RESOURCE

Stall cycles caused by an MVE instruction because of
resource conflicts

See section 4.4.4 EPU events. 104

0x02CE M MVE_STALL_RESOURCE_MEM

Stall cycles caused by an MVE instruction because of
memory resource conflicts

See section 4.4.4 EPU events. 105

0x02CF M MVE_STALL_RESOURCE_FP

Stall cycles caused by an MVE instruction because of
floating-point resource conflicts

See section 4.4.4 EPU events. 106

0x02D0 M MVE_STALL_RESOURCE_INT

Stall cycles caused by an MVE instruction because of
integer resource conflicts

See section 4.4.4 EPU events. 107

0x02D3 M MVE_STALL_BREAK

Stall cycles caused by an MVE chain break

See section 4.4.4 EPU events. 108

0x02D4 M MVE_STALL_DEPENDENCY

Stall cycles caused by MVE register dependency

See section 4.4.4 EPU events. 109

0x4007 M ITCM_ACCESS

Instruction TCM access

See section 4.4.3 TCM events. 110

0x4008 M DTCM_ACCESS

Data TCM access

See section 4.4.3 TCM events. 111

0x4010 M TRCEXTOUT0

ETM external output 0

 112

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 36

0x4011 M TRCEXTOUT1

ETM external output 1

 113

0x4012 M TRCEXTOUT2

ETM external output 2

 114

0x4013 M TRCEXTOUT3

ETM external output 3

 115

0x4018 M CTI_TRIGOUT4

Cross-trigger Interface output trigger 4

 116

0x4019 M CTI_TRIGOUT5

Cross-trigger Interface output trigger 5

 117

0x401A M CTI_TRIGOUT6

Cross-trigger Interface output trigger 6

 118

0x401B M CTI_TRIGOUT7

Cross-trigger Interface output trigger 7

 119

0xC000 I ECC_ERR

Any ECC error

See section 4.4.5 ECC events.
See also sections 4.4.2 Level 1 cache events and 4.4.3
TCM events.

120

0xC001 I ECC_ERR_FATAL

One or more multi-bit ECC errors detected

See section 4.4.5 ECC events.
See also sections 4.4.2 Level 1 cache events and 4.4.3
TCM events.

121

0xC010 I ECC_ERR_DCACHE

One or more ECC errors in the data cache

See section 4.4.5 ECC events.
See also section 4.4.2 Level 1 cache events.

122

0xC011 I ECC_ERR_ICACHE

One or more ECC errors in the instruction cache

See section 4.4.5 ECC events.
See also section 4.4.2 Level 1 cache events.

123

0xC012 I ECC_ERR_FATAL_DCACHE

One or more multi-bit ECC errors in the data cache

See section 4.4.5 ECC events.
See also section 4.4.2 Level 1 cache events.

124

0xC013 I ECC_ERR_FATAL_ICACHE

One or more multi-bit ECC errors in the instruction
cache

See section 4.4.5 ECC events.
See also section 4.4.2 Level 1 cache events.

125

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 37

0xC020 I ECC_ERR_DTCM

One or more ECC errors in the DTCM

See section 4.4.5 ECC events.
See also section 4.4.3 TCM events.

126

0xC021 I ECC_ERR_ITCM

One or more ECC errors in the ITCM

See section 4.4.5 ECC events.
See also section 4.4.3 TCM events.

127

0xC022 I ECC_ERR_FATAL_DTCM

One or more multi-bit ECC errors in the DTCM

See section 4.4.5 ECC events.
See also section 4.4.3 TCM events.

128

0xC023 I ECC_ERR_FATAL_ITCM

One or more multi-bit ECC errors in the ITCM

See section 4.4.5 ECC events.
See also section 4.4.3 TCM events.

129

0xC100 I PF_LINEFILL

The prefetcher starts a linefill

See section 4.4.2 Level 1 cache events. 130

0xC101 I PF_CANCEL

The prefetcher stops prefetching

See section 4.4.2 Level 1 cache events. 131

0xC102 I PF_DROP_LINEFILL

A linefill triggered by the prefetcher has been
dropped because of lack of buffering

See section 4.4.2 Level 1 cache events. 132

0xC200 I NWAMODE_ENTER

No-write allocate mode entry

See section 4.4.2 Level 1 cache events. 133

0xC201 I NWAMODE

Write-Allocate store is not allocated into the data
cache due to no-write-allocate mode

See section 4.4.2 Level 1 cache events. 134

0xC300 I SAHB_ACCESS

Read or write access on the S-AHB interface to the
TCM

 135

0xC301 I PAHB_ACCESS

Read or write access to the P-AHB write interface

 136

0xC302 I AXI_WRITE_ACCESS

Any beat access to M-AXI write interface

 137

0xC303 I AXI_READ_ACCESS

Any beat access to M-AXI read interface

 138

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 38

0xC400 I DOSTIMEOUT_DOUBLE

Denial of Service timeout has fired twice and caused
buffers to drain to allow forward progress

See section 4.4.6 Denial-of-service events. 140

0xC401 I DOSTIMEOUT_TRIPLE

Denial of Service timeout has fired three times and
blocked the LSU to force forward progress

See section 4.4.6 Denial-of-service events. 141

Table 4-2 PMU Event Usage

4.4.2 Level 1 cache events

The Cortex-M55 can be configured to include level 1 instruction and data caches:

• Level 1 instruction and data caches can be configured for different sizes.
• The level 1 instruction cache can be enabled using the CMSIS-Core function SCB_EnableICache().
• The level 1 data cache can be enabled using the CMSIS-Core function SCB_EnableDCache().
• The Cortex-M55 implementation-defined events, PF_LINEFILL, PF_CANCEL and PF_DROP_LINEFILL, refer to the level 1 data

cache prefetcher.

The Cortex-M55 also has a bit in its Auxiliary Control Register (ACTLR) to disable write allocation. Disabling write allocation is generally
worse for performance but can improve performance in some situations where allocating on writes is undesirable, such as executing the
C standard library memset() or whilst initializing memory before the main() program begins.

4.4.3 TCM events

The Cortex-M55 can be configured to include instruction and data Tightly Coupled Memories (TCMs):

• TCMs are implementation defined features of Cortex-M55 and are not described by the Armv8-M architecture.
• The instruction and data TCMs can be configured for different sizes.
• The instructions TCM can be configured to be enabled or disabled out-of-reset.
• The TCMs can also be enabled or disabled by software by writing to the Cortex-M55's ITCM Control Register and DTCM Control

Registers.

4.4.4 EPU events

The Extension Processing Unit (EPU) performs:

• Scalar floating-point operations.
• MVE operations.

The EPU is disabled at reset. Software can typically enable the EPU using code in the CMSIS-Core device header: system_<device>.c
file in the SystemInit() function. See section 3.3 CMSIS Programming API for the PMU for further information about CMSIS.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 39

4.4.5 ECC events

A Cortex-M55 can be optionally configured to enable Error Correcting Code (ECC) out of reset to allow the processor to check for memory
errors in its level 1 memories (caches and TCMs).

4.4.6 Denial-of-service events

The Denial-of-service events (DOSTIMEOUT_DOUBLE and DOSTIMEOUT_TRIPLE) record cases when the internal watchdog (affectionally
known as the ‘watchcat’) times-out due to a stream of requests taking up too much resource - usually a case where a continual stream of
load/store requests can potentially block an unrelated event from completing. These events can indicate software sequences which could
be inefficient for performance and power as they overconsume the bandwidth of the processor memory system.

4.4.7 Event bus bits

All events are exported to the external output signal EVENTBUS as a single cycle pulse allowing system level analysis of processor
performance.

4.4.8 Other metrics derived from events

It is possible to generate other metrics once the user has counts for certain events. For example:

Instructions per cycle (IPC)

IPC =
INST_RETIRED

CPU_CYCLES

The inverse, cycles per instructions, or CPI, is also commonly used.

MIPS (retired)

MIPSretired =
INST_RETIRED
𝑡𝑡elapsed × 106

Where 𝑡𝑡elapsed is the elapsed time, in seconds.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 40

5 Configuring the PMU in an Armv8.1-M
implementation or model
5.1 Cortex-M55 RTL Configuration

There is no specific RTL configuration parameter for the PMU in Cortex-M55. Provided that some level of debug is selected, the PMU will
be configured in a Cortex-M55 implementation. See the Arm Cortex-M55 Processor Integration and Implementation Manual - for further
information. The Arm Cortex-M55 Processor Integration and Implementation Manual is a confidential document that is only available to
licensees.

5.2 Cortex-M55 Cycle Model Configuration

The Cortex-M55 Cycle Model is 100% cycle accurate and based on the Cortex-M55 RTL. Therefore, the same configuration information
described in section 5.1 Cortex-M55 RTL Configuration applies to the Cortex-M55 Cycle Model.

5.3 Cortex-M55 FVP and Armv8.1-M Architecture Envelope Model Configuration

When working with a Fast Model Fixed Virtual Platform that supports the PMU, there are a couple of configuration parameters that need
to be set to ensure that the PMU is present:

Model Parameter Default Value Description

Armv8.1-M AEM
has_pmu 0

Set to 1 to ensure PMU is present.

num_pmu_counters
0x1F (31) Set according to the number of desired counters in the AEM

Cortex-M55 FVP

has_pmu 0
Set to 1 to ensure PMU is present.

num_pmu_counters
0x1F (31) Set according to the number of desired counters in the Cortex-M55 FVP.

Note that the default value is not valid for a Cortex-M55, so this value
should be changed to either 8 or 0 to match the RTL configuration
options.

Table 5-1 Cortex-M55 FVP and Armv8.1-M AEM PMU parameters

For example, when using cpu0 on the Cortex-M55 FVP, start the fast model with the following parameters to ensure the PMU is present
with eight counters:

FVP_MPS2_Cortex-M55.exe -c cpu0.has_pmu=1 -c cpu0.num_pmu_counters=8

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 41

6 PMU accessibility and restrictions
6.1 Accessing the PMU Registers

The PMU registers are only accessible to privileged code. Any unprivileged accesses generate a fault.

Arm recommends using CMSIS-Core PMU support code, which is written in C, to access the PMU registers. If accessing the PMU registers
in assembly language, please note that these registers are word accessible only. Halfword and byte accesses are UNPREDICTABLE.

6.2 Debug

The PMU counters do not increment when:

• The Processing Element (PE) is in Debug state.
• The PE is in Secure state and secure non-invasive debug is disabled.
• The PE is in Non-secure state and non-invasive debug is disabled.

The Armv8-M Architecture Reference Manual also lists some restrictions when the PMU is used at the same time as the Armv8.0-M DWT
Performance Monitors.

Also see section 6.3 Security.

6.3 Security

The PMU registers are not banked between Security states. This means that both secure privileged and non-secure privileged code can
access the PMU registers.

The PMU registers are accessible to accesses through unprivileged DAP requests when either DAUTHCTRL_S.UIDAPEN or
DAUTHCTRL_NS.UIDAPEN is set.

The PMU_CTRL.DP bit is an alias of the DWT_CTRL.CYCDISS bit, which is set to zero on a Cold reset. When PMU_CTRL.DP is zero, the PMU
cycle counter increments regardless of the Security state of the PE. Therefore, to ensure that the cycle counter does not count in Secure
state, set PMU_CTRL.DP (or DWT_CTRL.CYCDISS) to 1: This can be achieved with the following CMSIS-Core compliant code:

PMU->PMU_Ctrl |= PMU_CTRL_CYCCNT_DISABLE_Msk;

Also see section 6.2 Debug.

6.4 Low Power State

The PMU counters do not increment when:

• The PE is in low-power state the counters retain their previous value.

6.5 CPU Lockup

It is UNKNOWN whether the counters increment in lockup state.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 42

7 Using the PMU in your application
7.1 Checking whether your Device has a PMU

There are a few ways to find out whether the PMU is present in your device, and if so, how many PMU counters are available:

• Reading your device’s documentation
It is usually possible to find out whether the device you are working with includes a feature like the PMU by reading the device’s
documentation.

• Reading the CMSIS-Core device header
It should also be possible to find out whether the PMU is present by checking whether the CMSIS-Core macro
__PMU_PRESENT is set or not. The __PMU_NUM_EVENTCNT macro tells you how many event counters are implemented on
the device.

• Reading the PMU Type Register
If you are writing generic software for any Armv8.1-M-based device, or just want to be certain that the PMU is present or not,
you can either write some code or use a debugger to check the N field in the PMU Type Register. If this field returns a non-zero
number, this means that the PMU is implemented and shows how many counters are available for software to use.

Software can simply use the CMSIS-Core API for the PMU (in pmu_armv8.h) to find out the number of available counters, for
example:

uint32_t num_event_counters;
num_event_counters = ((PMU->PMU_Type) & PMU_TYPE_NUM_CNTS_Msk);

7.2 Enabling and disabling the PMU

On a Warm reset the PMU is disabled. Before software can begin enabling Event Counters, the PMU must be enabled. The following
CMSIS-Core function call can be used to enable the PMU:

/* Enable the PMU */
ARM_PMU_Enable();

The PMU can be disabled again with the following CMSIS-Core function call:

/* Disable the PMU */
ARM_PMU_Disable();

The user also needs to ensure that trace is enabled inside the processor in order to make use of the PMU. The following CMSIS-Core code
can be used as a global enable for the DWT, PMU, and ITM features:

/* Enable Trace */
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;

7.3 Using the 32-bit Cycle Counter

Using the Cycle Counter Register is very simple with the CMSIS-Core API. Below is an example of how to use the Cycle Counter Register:

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 43

/* Initialize variable for reading cycle count */
uint32_t cycle_count = 0;

/* Reset PMU Cycle Counter */
ARM_PMU_CYCCNT_Reset();

/* Enable PMU Cycle Counter */
ARM_PMU_CNTR_Enable(PMU_CNTENSET_CCNTR_ENABLE_Msk);

/* Add code you want to measure here */

/* Disable PMU Cycle Counter */
ARM_PMU_CNTR_Disable(PMU_CNTENSET_CCNTR_ENABLE_Msk);

/* Read PMU Cycle Counter */
cycle_count = ARM_PMU_Get_CCNTR();

A user might also find it useful to keep an incremental count, so that each time the code being measured is run, the program keeps track
of the overall combined count. For example:

/* Get incremental cycle count */
cycle_count = cycle_count + ARM_PMU_Get_CCNTR();

The PMU Cycle Counter is set to an unknown value on a Warm reset. Therefore, the Cycle Counter should be reset before it is used for
the first time. Whether the cycle counter needs resetting more than once will depend on the application. For example, reset the cycle
counter to measure the performance of a new segment of code.

Note: Some project development environments make use of the Cycle Counter Register for debug features. For example, Keil MDK uses
the Cycle Counter register for its Event Recorder and the States register:

http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_evr.htm
http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_cpuregs.htm

Therefore, using the CMSIS PMU API to modify the Cycle Counter Register may affect the usability of such debug features.

7.4 Using 16-bit Event Counters

Using the Event Counter Registers is very simple with the CMSIS-Core API. Below is an example of how to use configure, enable and use
two Event Counter registers. The two events that are counted in this example are the number of instructions retired and level 1 data
cache misses.

/* Initialize variables for counting instructions retired and L1 D-Cache misses */
uint32_t instructions_retired_count = 0;
uint32_t l1_dcache_miss_count = 0;

/*
 Configure Event Counter Register 0 to count instructions retired
 Configure Event Counter Register 1 to count L1 D-Cache misses
*/
ARM_PMU_Set_EVTYPER(0, ARM_PMU_INST_RETIRED);
ARM_PMU_Set_EVTYPER(1, ARM_PMU_L1D_CACHE_MISS_RD);

/* Reset PMU Event Counters */
ARM_PMU_EVCNTR_ALL_Reset();

/* Start incrementing Event Counter Registers 0 & 1 */
ARM_PMU_CNTR_Enable(PMU_CNTENSET_CNT0_ENABLE_Msk|PMU_CNTENSET_CNT1_ENABLE_Msk);

http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_evr.htm
http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_evr.htm
http://www.keil.com/support/man/docs/uv4/uv4_db_dbg_cpuregs.htm

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 44

/* Add code you want to measure here */

/* Stop incrementing Event Counter Registers 0 & 1 */
ARM_PMU_CNTR_Disable(PMU_CNTENSET_CNT0_ENABLE_Msk|PMU_CNTENSET_CNT1_ENABLE_Msk);

/* Get number of instructions retired and number of L1 D-Cache misses (on read) */
instructions_retired_count = ARM_PMU_Get_EVCNTR(0);
l1_dcache_miss_count = ARM_PMU_Get_EVCNTR(1);

Use cases will obviously vary. This example simply reads Event Counters 0 and 1 into the variables instructions_retired_count
and l1_dcache_miss_count. These variables should provide one-time-only counts relating to whatever code is added between
enabling and disabling the counters. There are a wide range of ways the user can go about analyzing these values. For example, the
values could be printed to a display or saved to a file on a storage device. The user could also add the variables to a Watch Window in a
debugger and configure the debugger to break program execution when they reach a certain data value range.

A user might also find it useful to keep an incremental count, so that each time the code being measured is run, the program keeps track
of the overall counts combined. For example:

/* Get incremental count of number of instructions retired */
instructions_retired_count = instructions_retired_count + ARM_PMU_Get_EVCNTR(0);

The PMU Event Counters are set to an unknown value on a Warm reset. Therefore, the user should reset the Event Counters before using
them for the first time. Whether the counters need resetting more than once, or disabling, will depend on the application. For example, it
might be desirable to reset the counters when a new thread becomes active. When reading multiple counter values, slightly more
accurate results might be observed by disabling the counters before reading their current value.

7.5 Manually incrementing a Counter in Software

One of the PMU events, SW_INCR (event number 0x0), works differently to the other event counters.

The description from the Armv8-M Architecture Reference Manual for SW_INCR says:

“The counter increments on writes to the PMU_SWINC register.”

Configuring and enabling an event counter so that it can be incremented by software can be achieved by using similar code as in section
7.4 Using 16-bit Event Counters. The ARM_PMU_CNTR_Increment() function can then be used to write to the relevant bit in the
Software Increment Register to increment the counter, before it’s read by software again sometime later. For example:

/* Initialize variable for reading software increment counter */
uint32_t sw_increment = 0;

/* Configure Event Counter Register 2 so it can be incremented by software */
ARM_PMU_Set_EVTYPER(2, ARM_PMU_SW_INCR);

/* Reset PMU Event Counters */
ARM_PMU_EVCNTR_ALL_Reset();

/* Enable Event Counter Register 2 */
ARM_PMU_CNTR_Enable(PMU_CNTENSET_CNT2_ENABLE_Msk);

/* Increment Event Counter Register 2 in software */
ARM_PMU_CNTR_Increment(PMU_SWINC_CNT2_Msk);

/* Read Event Counter Register 2 */
sw_increment = ARM_PMU_Get_EVCNTR(2);

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 45

The Armv8-M Architecture Reference Manual states:

“If the PE performs two Architecturally executed writes to the PMU_SWINC register without an intervening Context synchronization
event, then the counter is incremented twice.”

What this means is that a Context synchronization event, e.g., Instruction Synchronization Barrier (ISB), is not required between two
writes to the Software Increment Register to guarantee that the related Event Counter increments twice.

/* Increment Event Counter Register 2 twice */
ARM_PMU_CNTR_Increment(PMU_SWINC_CNT2_Msk);
// __ISB(); is not required
ARM_PMU_CNTR_Increment(PMU_SWINC_CNT2_Msk);

7.6 Chaining Event Counters to create a 32-bit Counter

The Event Counter registers have a 16-bit Counter field. This might be suitably wide enough for counting some events but might not be
wide enough for counting others that could potentially overflow one or more times.

To make it less likely that you need to handle a counter overflow, it is possible to chain an odd-numbered counter with a preceding even-
numbered counter to form a 32-bit counter. For example, software could chain together Event Counter 7 with Event Counter 6 to form a
32-bit counter. This also means that the system can be configured by software to have a mixture of 16-bit and 32-bit counters.

The example below shows how you can create another 32-bit cycle counter from two Event Counter registers

/*
 Initialize variables for:
 - lower 16 bits of cycle count
 - upper 16 bits of cycle count
 - cycle count (concatenated)
*/
uint32_t cycle_count_lower = 0;
uint32_t cycle_count_upper = 0;
uint32_t cycle_count_combined = 0;

/*
 Configure Event Counter Register 6 to count CPU Cycles
 Configure Event Counter Register 7 to chain together with Event Counter Register 6
*/
ARM_PMU_Set_EVTYPER(6, ARM_PMU_CPU_CYCLES);
ARM_PMU_Set_EVTYPER(7, ARM_PMU_CHAIN);

/* Reset PMU Event Counters */
ARM_PMU_EVCNTR_ALL_Reset();

/* Enable Event Counter Registers 6 & 7 */
ARM_PMU_CNTR_Enable(PMU_CNTENSET_CNT6_ENABLE_Msk);
ARM_PMU_CNTR_Enable(PMU_CNTENSET_CNT7_ENABLE_Msk);

/* Add code you want to measure here */

/* Read Event Counter Registers 6 & 7 */
cycle_count_lower = ARM_PMU_Get_EVCNTR(6);
cycle_count_high = ARM_PMU_Get_EVCNTR(7);

/* Concatenate Event Counter Registers 6 & 7 */

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 46

cycle_count_combined = (cycle_count_high << 16) | PMU_EVCNTR_CNT_Msk & cycle_count_lower);

If your device implements the DSP Extension you might notice that a compiler translates the above logical OR operation into a single
PKHBT instruction.

Note that there is a known issue in CMSIS v5.70 with PMU_EVCNTR_CNT_Msk. It should be set to 0xFFFFUL, but instead it is
incorrectly set to 16UL. Use one of the following workarounds to avoid this issue:

• Edit your copy of pmu_armv8.h and correct the macro.
• Avoid using the macro and instead use the constant 0xFFFFUL in your code.

This will issue will be fixed in future versions of CMSIS.

7.7 Handling Counter Overflow

It is possible for any of the counters (32-bit Cycle Counter, 16-bit Event Counters, or chained 16-bit Event Counters) to overflow. If a
counter has overflowed this is indicated in the PMU Overflow Flag Status Set Register (PMU_OVSSET). The Armv8-M Architecture
Reference Manual provides the following description of PMU_OVSSET:

Figure 7-1 Armv8-M Architecture Reference Manual Snapshot of PMU Overflow Status Set Register Bit Descriptions

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 47

7.7.1 Checking whether a Counter has overflowed

The following CMSIS-Core PMU code can be used to read PMU_OVSSET:

/* Initialize overflow status variable */
uint32_t pmu_overflow_status = 0;

/* Read PMU Overflow Set Register */
pmu_overflow_status = ARM_PMU_Get_CNTR_OVS();

A user might only be interested in whether a particular counter has overflowed. For example, to find out whether Event Counter 3 has
overflowed a user could mask all other overflow bits except bit 3 (the bit that corresponds to Event Counter 3):

/* Initialize Event Counter 3 overflow status variable */
uint32_t pmu_overflow_status_evcntr_3 = 0;

/* Clear value read from PMU_OVSSET, except bit 3 */
pmu_overflow_status_evcntr_3 = PMU_OVSSET_CNT3_STATUS_Msk & pmu_overflow_status;

/* Check if bit 3 was set */
if(pmu_overflow_status_evcntr_3)
{
 printf(“PMU Event Register 3 has overflowed.”);
}
else
{
 printf(“PMU Event Register 3 has not overflowed.”).
}

7.7.2 Clearing the overflow status

Since there is only a single overflow bit for each counter, software may want to clear the overflow status before the counter overflows a
second time, otherwise it might not be possible to determine how many times a counter has overflowed. The Armv8-M Architecture
Reference Manual provides the following description of PMU_OVSCLR:

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 48

Figure 7-2 Armv8-M Architecture Reference Manual Snapshot of PMU Overflow Status Clear Register Bit Descriptions

The following CMSIS-Core PMU code clears overflow status of Event Counter Register 3:

ARM_PMU_Set_CNTR_OVS(PMU_OVSCLR_CNT3_STATUS_Msk);

Depending on the application it also might be perfectly ok to clear all counter overflow status bits, rather than just one bit.

7.7.3 Generating an interrupt on a counter overflow

The user might want to know exactly when a counter has overflowed. The CMSIS-Core PMU support code can be used to enable and
disable interrupt generation when a given counter overflows. For example, the following code ensures that an interrupt is generated
when Event Counter 3 overflows:

ARM_PMU_Set_CNTR_IRQ_Enable(PMU_INTENSET_CNT3_ENABLE_Msk);

There’s also a corresponding ‘Disable counter overflow interrupt request’ function named ARM_PMU_Set_CNTR_IRQ_Disable().

Note: on a Cold reset, counter overflow interrupt requests are disabled.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 49

The interrupt associated with a PMU counter overflow is the DebugMonitor exception. Unlike Halting debug, the DebugMonitor
exception is traditionally used as a method of debugging without putting the core into Debug state. Instead the processor carries on
running, which is useful for debugging systems with hard real-time requirements when it is not a viable option to halt the processor’s
clock. Handling PMU counter overflows is a new usage model for the DebugMonitor exception in M-profile systems. The following code
enables Monitor debug:

/* Enable Monitor debug */

CoreDebug->DEMCR |= CoreDebug_DEMCR_MON_EN_Msk;

The System Handler Priority Register 3 (SHPR3) can be programmed by privileged software to program the priority of the DebugMonitor
exception. Therefore, in order to ensure that the DebugMonitor exception is taken, it is important to provide it with an appropriate
priority level.

Note: there are secure and non-secure versions of the DebugMonitor exception and SHPR3.

The user is responsible for writing the DebugMonitor exception handling routine. When the DebugMonitor exception is generated on a
counter overflow, the associated handler code could use a variable to count how many times a counter has overflowed, for example:

static uint32_t overflow_count;

void DebugMon_Handler(void)
{
 overflow_count++;
 return;
}

The current counter value can be concatenated with the overflow count variable (similar to concatenating chained counters in section 7.6
Chaining Event Counters to create a 32-bit Counter) to form a larger sized counter. Let’s say that event counter 3 is being used to count
the number of retired instructions. To form a larger 48-bit counter, an application could execute something similar to the following code:

/* Create 64-bit variable for storing 48-bit counter value */
Uint64_t count_combined;

/* Read Event Counter Register 3 */
instructions_retired_count = ARM_PMU_Get_EVCNTR(3);

/* Concatenate current value for Event Counter 3 with its overflow Count */
count_combined = (unsigned long long(overflow_count << 16)) |
 PMU_EVCNTR_CNT_Msk & instructions_retired_count);

7.7.4 Checking which counter overflowed

The above method works fine if the user is only working with one counter. However, the user might have enabled multiple counters, in
which case they would also need to have an overflow counter for each counter they are working with. Therefore, when working with
multiple counters that could overflow, the handler would need to carry out something similar to the following:

1. Check which counter overflowed.
2. Increment a 32-bit count variable associated with the counter that overflowed.
3. Clear the counter overflow status.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 50

These steps are simple to carry out if only a single counter has overflowed. The following example shows one way of handling this
scenario within the DebugMon_Handler() exception handling routine.

/* Create a word array for each counters' overflows count */
static uint32_t overflow_count[__PMU_NUM_EVENTCNT+1];

void DebugMon_Handler(void)
{
 /* Read PMU overflow status */
 uint32_t pmu_overflow_status = ARM_PMU_Get_CNTR_OVS();

 /* Clear overflow status */
 ARM_PMU_Set_CNTR_OVS(pmu_overflow_status);

 /* Count leading zeroes to find out which bit position was set */
 pmu_overflow_status = __CLZ(pmu_overflow_status);

 /* Calculate trailing zeroes: take away no. of leading zeroes from no. of reg bits */
 pmu_overflow_status = (32 - pmu_overflow_status)-1;

 /* Increment overflow count for counter that overflowed */
 overflow_count[pmu_overflow_status]++;

 return;
 }

This example uses the __PMU_NUM_EVENTCNT macro to create an array with an element for each event counter, plus the cycle
counter, that can be used to count how many times a counter has overflowed. A Cortex-M55 implementation that includes a PMU has
eight event counters, plus one cycle counter, so such an array in a piece of Cortex-M55 software would be nine words deep.

One further issue to consider is that more than one counter can potentially overflow at the same time, and therefore, multiple overflow
bits could be set. Although this might be an unlikely scenario, for accurate information on counter overflow the DebugMonitor handler
would need to carry out steps 1-3 again, but this time loop through each bit of the overflow status to check which bits are set. For
example:

/* Create a word array for each counters' overflows count */
static uint32_t overflow_count[__PMU_NUM_EVENTCNT+1];

void DebugMon_Handler(void)
{
 uint32_t temp;

 /* Read PMU overflow status */
 uint32_t pmu_overflow_status = ARM_PMU_Get_CNTR_OVS();

 /* Clear overflow status */
 ARM_PMU_Set_CNTR_OVS(pmu_overflow_status);

 while(pmu_overflow_status)
 {
 /* Count leading zeroes to find out the highest bit position set */
 temp = __CLZ(pmu_overflow_status);

 /* Calculate trailing zeroes: take away no. of leading zeroes from no. of reg bits */
 temp = (32 - temp)-1;

 /* Increment overflow count for counter that overflowed */
 overflow_count[temp]++;

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 51

 /* Clear highest overflow bit set */
 pmu_overflow_status &= ~(1UL << temp);
 }
 return;
}

Note: The PMU handler code itself could affect various counters. Therefore, it might be a good idea to temporarily disable the counter(s)
that caused the interrupt at the beginning of the handler routine and enable the counter(s) again before returning to the main
application.

7.7.5 Stop counting events on a counter overflow

The Freeze-on-overflow bit in the PMU Control Register can be set as follows to stop the PMU counting events once any counter
overflows:

PMU->CTRL |= PMU_CTRL_FRZ_ON_OV_Msk;

The user can check whether freeze-on-overflow support is available by reading the PMU Type Register. The following CMSIS-Core macros
can be used by software PMU_TYPE_FRZ_OV_SUPPORT_Pos and PMU_TYPE_FRZ_OV_SUPPORT_Pos.

Note: setting freeze-on-overflow will cause the chaining of event counters to stop working, because the overflow of the odd-numbered
counter freezes counting.

7.7.6 Halting the processor on a counter overflow

If the system supports debug, it is possible to halt the processor and put it into Debug state when a counter overflows. This can be
achieved in software or with a debugger (via a DAP interface) by ensuring that the following fields are set in the Debug Halting Control
and Status Register (DHCSR):

• C_PMOV (Halt on PMU overflow) field – bit [6].
• C_DEBUGEN - Debug enable control field, bit [0] - writes from software are ignored.

Note: when writing to the DHCSR, 0xA05F must be written to the DEBUGKEY field - bits [31:16] – otherwise the write will be ignored.

Software can set the C_PMOV field using the following code:

DCB->DHCSR = 0xA05F0040;

Note: software cannot write to C_DEBUGEN and can only read this bit to see whether Halting debug has been enabled by a debugger.

A debugger must write 0xA05F041 to set both C_PMOV and C_DEBUGEN in the DHSCR, to halt the core when a PMU counter
overflows.

7.7.7 Emitting trace on a counter overflow

The system can emit trace packets whenever any of the first eight counters overflows an 8-bit value. This is achieved by enabling the
trace-on-overflow bit in the PMU Control Register as follows:

PMU->CTRL |= PMU_CTRL_TRACE_ON_OV_Msk;

Note that the user can check whether trace-on-overflow support is available by reading the PMU Type Register. The following CMSIS-Core
macros can be used by software PMU_TYPE_TRACE_ON_OV_SUPPORT_Msk and PMU_TYPE_TRACE_ON_OV_SUPPORT_Msk.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 52

The Armv8-M Architecture Reference Manual describes the trace packet information as follows:

Figure 7-3 Armv8-M Architecture Reference Manual Snapshot of PMU Overflow Packet Description

Trace packet bits are assigned as follows:

• Byte 0 bits [7:0] Packet Header
• Byte 1 bits [7:0] OVn

Figure 7-2 Armv8-M Architecture Reference Manual Snapshot of PMU Overflow Packet

7.7.8 Triggering an overflow after the core has executed code ‘N’ times

The PMU can also be used in conjunction with the DWT to halt the processor after a code sequence of interest, such as a loop, has
executed a given number of iterations. The following sequence may be used to achieve this:

1. Decide how many times (N) you would like the loop (L) to execute before generating an overflow and initialize a 16-bit loop limit
variable. N is set to 10 in the example below.

2. Configure DWT comparator <n> to match an Instruction Address, for example, a location in memory at the end of a loop.
3. Configure PMU event counter <m> to count on DWT_CMPMATCH<n>.
4. Set PMU event counter <m> to -N.
5. Decide how to handle the overflow and take appropriate action (see previous sections 7.7.x).
6. Enable event counter <m>.
7. Execute loop (L).

After the instruction (loop) being watched executes ‘N’ times, an overflow will occur.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 53

This mechanism can also be used with chained event counters, as described in section 7.6 Chaining Event Counters to create a 32-bit
Counter to trigger an overflow of the even numbered counter.

The following example code shows how to achieve this scenario where N is set to 10:

/* 1) Initialize 16-bit loop counter */
int16_t N = 10;

/* 2) Configure DWT Comparator 0 to watch for a PC value of 0x2660 */
DWT->FUNCTION0 = 0x402; // Set DATAVSIZE bits [11:10] to 0b01
 // MATCH bits [3:0] to 0b10

DWT->COMP0 = 0x00002700; // Instruction Address, e.g., 0x2700 marks end of loop

/* 3) Configure PMU event counter 0 to count on DWT_CMPMATCH0 */
ARM_PMU_Set_EVTYPER(0, ARM_PMU_DWT_CMPMATCH0);

/* 4) Configure PMU Event Counter Register 0 to -N (0xFFF6) */
PMU->EVCNTR[0] = (uint16_t)-N)

/* 5) Generate an interrupt on a counter overflow */
ARM_PMU_Set_CNTR_IRQ_Enable(PMU_INTENSET_CNT0_ENABLE_Msk); // See section 7.7.3
 // for full details

/* 6) Enable Event Counter 0 */

ARM_PMU_CNTR_Enable(PMU_CNTENSET_CNT0_ENABLE_Msk);

/* 7) Execute code sequence of interest, e.g., loop L */

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 54

8 PMU Profiling Example
8.1 Traditional Loops vs Low Overhead Loops

The following example contains two simple string copy functions:

• A basic scalar example that uses a traditional counting down loop: strcpy_scalar().
• A basic scalar example that uses a low-overhead-loop, strcpy_scalar_lol().

The example is written in GNU assembly language syntax, which is supported by GCC and Arm Compiler 6.

/* strcpy.s */

 .section .text.strcpy.scalar, "ax"
 .type strcpy_scalar, %function
 .global strcpy_scalar

strcpy_scalar:
loopStart:
 LDRB R3, [R1], #1
 STRB R3, [R0], #1
 SUBS R2, R2, #1
 BNE loopStart
 BX LR

 .section .text.strcpy.scalar_lol, "ax"
 .type strcpy_scalar_lol, %function
 .global strcpy_scalar_lol

strcpy_scalar_lol:
 PUSH {R0,LR}
 WLS LR, R2, lolEnd /* While Loop Start */
lolStart:
 LDRB R3, [R1], #1
 STRB R3, [R0], #1
 LE LR, lolStart /* Loop End */
lolEnd:
 POP {R0,PC}

 .end

Both functions have been exported using the .global and .type keywords so that code from other source files may reference them.

8.2 Profiling the Assembly Example

The following C program can be used to profile the two assembly routines in section 8.1 Traditional Loops vs Low Overhead Loops.

The program uses the CMSIS device header file by including CMSIS_header_file and RTE_Components.h. The CMSIS device
header includes the Cortex-M55 processor core header file, which provides the user with access to the CMSIS PMU API. More
information about using CMSIS in an application can be found online:

• https://arm-software.github.io/CMSIS_5/Core/html/using_pg.html
• https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/using-cmsis-with-arm-compiler-

6-without-an-ide

https://arm-software.github.io/CMSIS_5/Core/html/using_pg.html
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/using-cmsis-with-arm-compiler-6-without-an-ide
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/using-cmsis-with-arm-compiler-6-without-an-ide

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 55

The printf() routines may need to be retargeted to the device that you’re working with.

/* main.c */

#include <stdio.h>
#include "RTE_Components.h" // include information about project configuration
#include CMSIS_device_header // include <device>.h file

#define LENGTH 127

extern void strcpy_scalar(int8_t*, int8_t*, uint32_t);
extern void strcpy_scalar_lol(int8_t*, int8_t*, uint32_t);

__attribute__((noinline)) void init_arrays(void);

static int8_t a[LENGTH];
static int8_t b[LENGTH];

__attribute__((noinline)) void init_arrays(void)
{
 int i;

 for (i=1; i<(LENGTH+1); i++)
 {
 a[i-1] = (int8_t)i;
 b[i-1] = (int8_t)i;
 }
}

int main(void)
{
 /* Reset count variables for cycle count and retired Loop End instructions */
 uint32_t cycle_count = 0;
 uint32_t le_retired_count = 0;

 /* Initialize character array */
 init_arrays();

 /* Enable Trace */
 CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;

 /* Enable Low Overhead Loops */
 SCB->CCR |= SCB_CCR_LOB_Msk;

 /* Configure Event Counter Register 0 to count retired Loop End instructions */
 ARM_PMU_Set_EVTYPER(0, ARM_PMU_LE_RETIRED);

 /* Reset Cycle Counter and Event Counters */
 ARM_PMU_CYCCNT_Reset();
 ARM_PMU_EVCNTR_ALL_Reset();

 /* Enable Cycle Counter and Event Counter Register 0 */
 ARM_PMU_CNTR_Enable(PMU_CNTENSET_CCNTR_ENABLE_Msk|PMU_CNTENSET_CNT0_ENABLE_Msk);

 /* Enable the PMU */
 ARM_PMU_Enable();

 /* Call traditional scalar strcpy */
 strcpy_scalar(a, b, LENGTH);

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 56

 /* Disable Cycle Counter and Event Counter Register 0 */
 ARM_PMU_CNTR_Disable(PMU_CNTENCLR_CCNTR_ENABLE_Msk|PMU_CNTENSET_CNT0_ENABLE_Msk);

 /* Read Cycle Counter and Event Counter Register 0 */
 cycle_count = cycle_count + ARM_PMU_Get_CCNTR();
 le_retired_count = le_retired_count + ARM_PMU_Get_EVCNTR(0);

 /* Print results */
 printf("Cycles for strcpy_scalar = %d\n"
 "Loop End instructions retired = %d\n",cycle_count, le_retired_count);

 /* Reset Cycle Counter and Event Counters again */
 ARM_PMU_EVCNTR_ALL_Reset();
 ARM_PMU_CYCCNT_Reset();

 /* Enable Cycle Counter and Event Counter Register 0 again */
 ARM_PMU_CNTR_Enable(PMU_CNTENCLR_CCNTR_ENABLE_Msk|PMU_CNTENSET_CNT0_ENABLE_Msk);

 /* Call scalar strcpy with low overhead loop */
 strcpy_scalar_lol(a, b, LENGTH);

 /* Disable Cycle Counter and Event Counter Register 0 again */
 ARM_PMU_CNTR_Disable(PMU_CNTENCLR_CCNTR_ENABLE_Msk|PMU_CNTENSET_CNT0_ENABLE_Msk);

 /* Reset count variables for cycle count and retired Loop End instructions */
 cycle_count = 0;
 le_retired_count = 0;

 /* Read Cycle Counter and Event Counter Register 0 again */
 cycle_count = cycle_count + ARM_PMU_Get_CCNTR();
 le_retired_count = le_retired_count + ARM_PMU_Get_EVCNTR(0);

 printf("Cycles for strcpy_scalar_lol = %d\n"
 "Loop End instructions retired = %d\n",cycle_count, le_retired_count);

 return 0;
}

Running this code on Cortex-M55 RTL where instructions and data are stored in TCMs prints something similar to the following:

Cycles for strcpy_scalar = 658
Loop End instructions retired = 0
Cycles for strcpy_scalar_lol = 285
Loop End instructions retired = 1

Running the same code on a Cortex-M55 FVP prints something similar to the following:

Cycles for strcpy_scalar = 530
Loop End instructions retired = 0
Cycles for strcpy_scalar_lol = 269
Loop End instructions retired = 1

8.3 Summary of Results

The results show that low overhead loops can significantly improve the performance of an application and sometimes more than double
the performance of small loop routines. This simple optimization only scratches the surface of the new and powerful Armv8.1-M
instruction set enhancements.

Armv8.1-M Performance Monitoring User Guide
Version 1.186

 Document ID: ARM051-799564642-251

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Confidentiality: Non-Confidential Page 57

The Fast Model results show that the FVP correctly counted the number of retired Loop End instructions, showing that it can provide a
quick and convenient way to run functionally accurate simulations. The cycle count information is approximate and is more aligned with
the total number of instructions retired, rather than the actual cycle count shown by an RTL simulator or hardware platform. A cycle
accurate model would be an alternative solution where accuracy is required.

