a r m Power Control System

Architecture

Document number DENO0050
Document quality EAC

Document version D

Document confidentiality Non-confidential

Copyright © 2023 Arm Limited or its affiliates. All rights reserved.

Power Control System Architecture

Release information

Date Version Changes

2023/Feb/06 D ¢ Release 2.1 Non-Confidential
2017/Sep/15 C * Release 2.0

2015/Dec/15 B e Release 1.0

2015/Jul/15 A * Beta

ii

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,
without limitation, any copyright) embodied in the document accompanying this Licence (“Document”). Arm licenses its
intellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying the
Document you indicate that you agree to be bound by the terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or
indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this
Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in the Document
owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;
(ii)) manufacture and have manufactured products which have been created under the licence granted in (i) above; and
(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is
not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual property
embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may make changes to the Document at any time and without
notice. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to identify or
understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT
PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR
OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT
LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN
ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM
OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS,
LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if
Licensee is in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon
giving written notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee
or by Arm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination
of this Licence, all terms shall survive except for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Any
termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shall
automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication or
disclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or any
portion thereof is not exported, directly or indirectly, in violation of such export laws.

This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between the
English version of this Licence and any translation, the terms of the English version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. iii
D Non-confidential

be the trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this
Licence, to use the Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website at
http://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.
Copyright © 2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-21585 version 4.0

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. iv
D Non-confidential

http://www.arm.com/company/policies/trademarks

Contents

Power Control System Architecture

Preface

Chapter 1
Chapter 2

Chapter 3

Chapter 4

DENO0050
D

Power Control System Architecture ii
Release information ii
Arm Non-Confidential Document Licence (“Licence”) iii
About this Specification ix
Intended Audience ix
Using this Specification X
Conventions L xi
Typographical conventions Xi
Numbers Xi
Pseudocode descriptions Xi
Assembler syntax descriptionso oL Xi
Additionalreading e e e Xii
Feedback Xiii
Feedback onthisbook Xiii
Background
Introduction
2.1 Scope and Limitations 16
Overview
3.1 Power Control Challenges 18
3.2 System Control Processor 19
3.2.1 Services 20
3.2.2 Trusted Operation 20
3.3 Power Management Software 21
3.3.1 Core Power Management. 22
3.3.2 Device Power Management 23
3.3.3 System Control Processor Firmware 24
3.34 Power Management Software Stack Examples 25
3.4 Power Control Framework 27

System Partitioning

4.1 Voltage Domains L 29
411 SystemlLogic 29

41.2 Always-OnLogic 30

41.3 ProcessorClusters 30

41.4 Graphics Processor e 30

41.5 Other Functions 30

4.1.6 SoC Partitioning Examples 31

4.2 Power Domains 32
421 PowerModes 32

422 Power Domain Choices 33

4.2.3 SystemLogic 34

4.2.4 Always-OnDomain 35

425 ProcessorClusters 37

42.6 CoreSightLogic 39
Copyright © 2023 Arm Limited or its affiliates. All rights reserved. \Y

Non-confidential

Contents

427 Graphics Processor 40
428 Display Processor 42
4.2.9 Other Functions 42
4210 Power Domain Hierarchy Requirements 43
4.2.11 SoC Partitioning Example oo 46
Chapter 5 Power States
5.1 Power States and Power Modes 48
51.1 PowerStates 48
51.2 PowerModes 48
51.3 Distinction of Power States from Power Modes 48
5.2 Power State Hierarchy 49
5.2.1 CorePower States 50
522 Cluster Power States 52
5.2.3 Device Power States o 54
524 SoCPowerStates 55
5.3 Coordination by System Control Processor 57
5.3.1 SoCPowerStates 57
5.3.2 Cluster Power States 57
Chapter 6 Power Control Framework
6.1 Power Control Framework Overview 59
6.1.1 Power Control Framework Low-Power Interfaces 59
6.1.2 Power Control Framework Infrastructure Components 60
6.2 Low-Power Interfaces L 61
6.2.1 Q-Channel 61
6.2.2 P-Channel 61
6.2.3 AXILPL. o 61
6.3 PowerModes e 62
6.4 System Control Processor 64
6.4.1 SCP Components 65
6.5 Power Management Infrastructure Components 69
6.5.1 Power Policy Unit 69
6.5.2 Clock Controller e 73
6.5.3 Low Power Distributor L 74
6.5.4 Low Power Combiner 74
6.5.5 P-Channel to Q-Channel Convertor 74
Chapter 7 System Power Control Integration
71 Clock Control Integration 76
7141 Clock GatingLevels 76
7.1.2 High-Level Clock Gating Methodology 79
713 High-Level Clock Domain Selection 80
71.4 Clock Gating Control Integration 82
7.2 Power Control Integration 89
7.21 Power Domain Wake Events 89
722 Hardware Abstraction with Power Policy Units 89
7.2.3 Distributed PPUs 91
724 SystemofSystems 92
7.2.5 Component Integration Layer 93
7.2.6 Voltage and Power-Gated Domain Clock Gating 94
7.2.7 Voltage and Power Domain Boundaries 96
7.2.8 Access Control 101
7.2.9 Isolation and Reset Control Considerations 103
7.3 Reset Control Integration 105
DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. vi

D Non-confidential

Contents
Contents

Chapter 8

Part A Glossary

DENO0050
D

8.1

8.2

8.3

7.3.1 ResetSignals 105
7.3.2 ResetHierarchy 107
7.3.3 Reset Management o 109
Component Design Considerations

General Low-Power Interface Guidelines 112
8.1.1 Low-Power Interface Implementation 112
8.1.2 Qutput Management 117
8.1.3 Interface Management L L 118
Component High-Level Clock Gating 126
8.2.1 Q-Channel Implementation 126
8.2.2 Clock Availability during Clock Control Q-Channel Quiescence 127
8.2.3 QACTIVE Behavior e 127
8.24 Q-Channel Handshake Behavior 130
8.2.5 Implementation Example: AXI Responder Interface 131
8.2.6 Unused Clock Control Q-Channels 132
8.2.7 Clock Control Q-Channel Naming Guidelines 133
Component Power Control 134
8.3.1 Low-Power Interface Selection 134
8.3.2 General Power Control Low-Power Interface Implementation 136
8.3.3 Power State Availability 137
8.3.4 Power Control Q-Channel Guidelines 138
8.3.5 Power Control P-Channel Guidelines 142
8.3.6 Power Control Low-Power Interface Naming Guidelines 149
Copyright © 2023 Arm Limited or its affiliates. All rights reserved. vii

Non-confidential

Preface

viii

About this Specification

This specification describes an approach to the Power Control System Architecture of SoC based on Arm
components. It defines version 2.1 of the Power Control System Architecture (PCSA).

This version contains significant updates due to the evolution of Arm components since Version 1.0. System
integration and component design guideline content is also updated.

Intended Audience

There are two intended audiences for this specification:
* System-on-Chip (SoC) architects and designers designing power managed SoCs based on Arm components.

* Component designers incorporating Arm low-power interfaces for clock and power control with the aim of
compatibility to the system integration principles outlined in this specification.

ix

Using this Specification

This specification is organized into the following chapters:

Chapter 1 Background

Read this for an introduction to this specification.

Chapter 2 Introduction

Read this for an introduction to the Power Control System Architecture (PCSA).

Chapter 3 Overview

Read this for an overviews of concepts used in PCSA.

Chapter 4 System Partitioning

Read this a description of partitioning a SoC based on Arm components into voltage and power domains.
Chapter 5 Power States

Read this for a description of how power states and power modes are defined in this specification.
Chapter 6 Power Control Framework

Read this for a description of the Power Control Framework (PCF) concepts and components.
Chapter 7 System Power Control Integration

Read this for information on system clock, power, and reset control integration.

Chapter 8 Component Design Considerations

Read this for a description of design considerations for components implementing Arm low-power interfaces.

Conventions

Typographical conventions

Numbers

The typographical conventions are:
italic
Introduces special terminology, and denotes citations.
bold
Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace
Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Glossary.
Red text

Indicates an open issue.
Blue text

Indicates a link. This can be

¢ A cross-reference to another location within the document
* A URL, for example http://developer.arm.com

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters, for

example OxFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This pseudocode
is written in a monospace font. The pseudocode language is described in the Arm Architecture Reference Manual.

Assembler syntax descriptions

This book contains numerous syntax descriptions for assembler instructions and for components of assembler

instructions. These are shown in a monospace font.

X1

http://developer.arm.com

Additional reading

This section lists publications by Arm and by third parties.
See Arm Developer (http://developer.arm.com) for access to Arm documentation.
[1]1 Arm® Server Base System Architecture. (ARM DEN 0029 F) Arm Ltd.

[2] ARM® Architecture Reference Manual, ARMvS for ARMvS-A architecture profile. (ARM DDI 0487 A.j) Arm
Ltd.

[3] ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition. (ARM DDI 0406 C) Arm Ltd.

[4] AMBA® Low Power Interface Specification, Arm Q-Channel and P-Channel Interfaces. (ARM THI 0068 C)
Arm Ltd.

[51 AMBA® AXI™ and ACE™ Protocol Specification. (ARM THI 0022 E) Arm Ltd.

[6] ARM® Power Policy Unit Architecture Specification. (ARM DEN 0051 E) Arm Ltd.

[7] Trusted Board Boot Requirements - CLIENT. (ARM DEN 0006 D) Arm Ltd.

[8]1 Arm® CoreLink PCK-600 Power Control Kit Technical Reference Manual. (101150_0003_00_en) Arm Ltd.
[9]1 ARM® Debug Interface Architecture Specification, ADIv6.0. (ARM THI 0074) Arm Ltd.

Xii

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

* The title (Power Control System Architecture).

¢ The number (DEN0050 D).

* The page numbers to which your comments apply.

* The rule identifiers to which your comments apply, if applicable.
* A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

xiii

Chapter 1
Background

DENO0050
D

Minimizing system power is a key requirement in a broad range of products from embedded microcontrollers,
through mobile application processors, to servers. Reduction in system power has many benefits including reduced
cost of ownership, increased battery life, and better management of thermal limits.

To be successful in these markets, SoC designers face increasingly complex power and thermal management
challenges.

From a technical standpoint, challenges arise from both the coordination of many components and their successful
integration. From a commercial perspective, these challenges must be solved within increasing time to market
pressure.

While high value can be placed on system specific differentiation, the availability of standardized methods to
facilitate integration and coordination of the power management for SoC components, especially those from third
party suppliers, is not contrary to that goal.

A framework approach to power control, using standard interfaces and infrastructure, can provide a simplified, less
error prone path to a more power efficient system with an improved time to market. This increases the time and
resource available for differentiating activities.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 14
Non-confidential

Chapter 2
Introduction

This document describes an approach for the Power Control System Architecture (PCSA) of SoCs based on Arm
components. It addresses challenges related to both coordination and integration of the system components.

The primary aim is to describe a standard framework for system power control integration that enables a simplified,
faster time-to-market path to comprehensive power management.

The framework is required, because the provision of intrinsically power efficient components alone is insufficient.
The components must participate in coordinated system level clock and power management, and the integration of
these components must be achieved in a timely fashion.

Guidance is also given for component designers implementing Arm low-power interfaces and seeking compatibility
with the system integration principles described in this specification.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 15
D Non-confidential

Chapter 2. Introduction
2.1. Scope and Limitations

2.1 Scope and Limitations

DENO0050
D

The descriptions in this specification are primarily at a logical implementation level. Physical implementation
details are beyond the scope of the document. In many cases the selection of a described approach, or method, is
independent of other choices and can be taken in isolation.

Arm component integration examples are intended to be broadly applicable to other similar Arm components.
However, there can be specific considerations for each component.

NOTE: The information in this document is intended to supplement the documentation that is provided with Arm
components. Exact integration requirements depend on the revisions of the components included in your system.
You must follow the instructions included with all Arm components in your system, and not rely solely on the
information provided in this document.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 16
Non-confidential

Chapter 3
Overview

This chapter gives an overview of concepts used in PCSA in the following sections:
¢ 3.1 Power Control Challenges
* 3.2 System Control Processor
* 3.3 Power Management Software

e 3.4 Power Control Framework

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved.
D Non-confidential

17

Chapter 3. Overview
3.1. Power Control Challenges

3.1 Power Control Challenges

DENO0050
D

Figure 3.1 shows a simplified SoC example. The example is illustrated in terms of high-level functions.

GIC _
8 - o O
sa |l ga |l 4 || 5
GPU e S o oo S
Processor Zo @ 0 & o S
2l aeg EQ || =
Cluster(s) o o =~ a
System Interconnect
Memory System Always
System Peripherals On

Figure 3.1: Example SoC system

The example is mobile centric but can be used to demonstrate power management challenges at a high-level in any
SoC configuration.

In addition to the primary functions that the example shows, including processors, communications functionality
and common system functions, there is an always-on area. This represents the power controller function that
remains active in SoC sleep states.

There are coordination challenges related to this power control function, as the complexity of power and thermal
management increases. These challenges arise because there are many elements to manage including clock and
voltage supplies, power regions, sensor inputs, events and so on.

While it is possible to implement the power controller functions in purely fixed function hardware, there are
significant disadvantages to that approach. Fixed function hardware support must be managed in a highly directed
manner under the control of the OS power management software (OSPM). An implication is that application
processor (AP) cores might be forced to remain active, or be woken, to perform low level functions when no
primary function is required.

A fixed function solution also has limited flexibility in terms of both platform specific adaptation and the capability
to address issues through workarounds.

An alternative approach is for the power controller function to be based around a processor, such as a microcontroller.
This can provide a system intelligence capability that is flexible, extensible and able to act autonomously in addition
to performing directed operations. In PCSA this capability is provided by the System Control Processor.

Another significant challenge is the integration of power management infrastructure across the SoC. This
infrastructure is pervasive and requires ensuring that all components participate in clock and power domain
management.

PCSA describes an approach to power control integration using standard infrastructure components, low-power
interfaces and associated methods. This approach is referred to as the Power Control Framework and is described
in Chapter 6 Power Control Framework.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 18
Non-confidential

Chapter 3. Overview
3.2. System Control Processor

3.2 System Control Processor

The SCP is a processor-based capability that provides a flexible and extensible platform for provision of power
management functions and services.

In a mobile system, the processor of the SCP is anticipated to be a Cortex™-M microcontroller, but other Arm
profile cores might be appropriate, depending on system requirements.

Figure 3.2 shows a concept level illustration of the SCP.

f)
s) »
................... o
o
Seriiiosiiiiioiiiiss '%
(OSPM) §
@

\. 4) J

J

asempareH
| 3remuwiii

arempieH

Figure 3.2: System Control Processor concept

In the upper part of Figure 3.2, the application processor (AP) software stack is shown as a requestor of SCP
services. Other agents in the system might also have the capability to directly generate requests for resources
that the SCP controls. Examples of such agents might be a modem subsystem in a mobile SoC or a management
function in a server SoC. The SCP reconciles requests from all agents, managing the availability of shared resources
and power-performance limits according to all constraints.

The central part of the figure reflects that the SCP is a processor-based system running dedicated firmware
controlling a set of hardware resources. Although not shown in the figure, the SCP has a minimum set of resources,
including local private memory, timers, interrupt control, and registers for system configuration, control and status.

The lower part of the figure shows a simplified set of SCP controlled hardware resources such as clock sources,
power domain gating, voltage supplies, and sensors.

The capabilities of an SCP implementation are dependent on the ability to access and control a set of resources
within the SoC in addition to a required base set of functions within the SCP. SCP hardware requirements are
further detailed in 6.4 System Control Processor.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 19
D Non-confidential

Chapter 3. Overview
3.2. System Control Processor

3.2.1 Services

The SCP provides the following primary services:

¢ OSPM directed operation: The SCP performs voltage supply changes, power control actions, and clock
source management under the direction of the OSPM. These services might also be used by other requesting
agents.

* Response to system events: The SCP responds to system events with appropriate power, clock, reset, and
system control actions. These actions include:

Timer events: The SCP has local timer resources that can be used for the triggering of system wakes
and any periodic actions such as monitoring.

Wake events: Responding to wake requests including GIC wake requests, caused by interrupts routed
to powered-off cores, and system access requests from other agents.

Debug access power control: Responding to requests from the debug access port and related controls,
including power management of the debug infrastructure.

Watchdog events and system recovery actions: On a local watchdog timeout, the SCP can execute a
reset and re-initialization sequence.

* System aware functions: The SCP can act autonomously and can perform functions such as the following:

The SCP can reconcile requests from OSPM and other agents for shared resources. For example, it can
control the path to main memory or entry to, and exit from, SoC sleep modes without requiring AP core
activity.

The SCP can take responsibility for monitoring sensors and measurement functions. Monitoring tasks
might include process and temperature sensor data harvesting and associated actions such as operating
point optimization and alarm conditions.

The role of the SCP in operating point selection can extend to overriding the OSPM direction, as
necessary, to ensure the electrical and thermal protection of the system.

* System initialization: The SCP takes responsibility for power-on reset system initialization tasks, from
power-on sequencing of the primary system and AP core power domains through to AP boot.

The SCP abstracts both tasks and details away from the OSPM, enabling increased use of AP core low-power states
and a simplified board support package (BSP) implementation. At the same time, platform specific differentiation,
fixes, and improvements can be implemented at firmware level by the silicon provider or OEM.

In a complex SoC, that is a system of systems, there can be several SCPs with distributed responsibility. In such a
system, it is anticipated that there is one lead SCP which can communicate with all others. The lead SCP takes
responsibility for management of all globally shared resources as well as initialization and other common tasks
while others have localized responsibilities.

3.2.2 Trusted Operation

DENO0050
D

While the SCP can have wide access to the system, its resources, including its memory and peripherals, are not
accessible to the rest of the system. In conjunction with an appropriate boot process the SCP can be an inherently
trusted entity.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 20
Non-confidential

Chapter 3. Overview
3.3. Power Management Software

3.3 Power Management Software

Figure 3.3 shows a simplified representation of the power management software stack. The figure illustrates the
relationship between the OS power management frameworks, components with capabilities to directly request
actions from SCP, and their relationship to the SCP firmware.

An important aspect is that all hardware power management actions are taken by the SCP on behalf of these
requestors.

Scheduler AP SW
| ~ .
o~ ,"-"‘ OSPM e e -
“‘ “\ Ja - : _____ : I
: U | Sel-Managed |)
AP Core Idle AP Core DVFS Device PM __ Devices)
yy L - _r -
v AP FW I
PSCI I
y |
(secure) (non-secure) —_—— e —— — _!
Y Y A ;
SCP Firmware
Hardware

Figure 3.3: Simplified power management software stack

This simplified representation of OS power management (OSPM) can be divided into two parts:
» Core power management.

* Device power management.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 21
D Non-confidential

Chapter 3. Overview
3.3. Power Management Software

3.3.1 Core Power Management

DENO0050
D

OSPM for AP cores can be broadly classified into idle management, and dynamic voltage and frequency scaling
(DVFS) frameworks. As shown in Figure 3.3, these frameworks are associated with the scheduling in the OS.
However, it should be noted that the association between the scheduler and the OSPM frameworks might only be a
loose coupling.

Idle Management

The general principle for idle management is that when no threads are scheduled onto an AP core, the OSPM
places that core into a clock gated, retention, or fully powered-off state. A powered-off core remains available to
the OS for scheduling and can be woken by interrupts.

An alternative technique, commonly known as hot-plug, might also be implemented. In this case, AP cores are
removed from the pool available to the OS for scheduling. With this technique, cores are powered-off and all
interrupts and software threads are migrated to other cores. This technique can be used either in proportion to
demand, or in cases where compute capacity must be limited due to power or thermal constraints.

A challenge for idle power management is that various operating systems, from various vendors, can be
simultaneously executing in an Arm system. It is then necessary to have a method of collaboratively performing
power control. For example, if the operating system that is managing power, running at one level of privilege,
wants to enter a state that powers-on or off a core, then operating systems at other levels of privilege need to
react to this request. Equally, if a core is woken from a power state by a wake-up event, it might be necessary for
operating systems running at different levels of privilege to perform actions, such as restoring state. The Power
State Coordination Interface (PSCI) specification provides an interface for this purpose.

The principle illustrated in Figure 3.3 is that the outcome of the arbitration in PSCI leads to a power state change
request to an SCP software interface. The SCP firmware acts on that message and manages all hardware level
details.

NOTE: Idle power states are generally selected by the OSPM. However, the AP firmware can modify this selection.
For simplicity, this document only refers to the OSPM when describing idle power state decisions made in the
entire AP software stack.

DVFS Management

DVES provides a mechanism for managing the power-performance envelope. From an energy-performance
perspective a wide range of OSPM policies are used to determine the required operating level. The objective
is to meet performance requirements when demanded, but otherwise minimize energy consumption. Thermal
management frameworks can impact the requested operating level by limiting the maximum performance allowed.

Figure 3.3 shows that DVFS requests, resulting from the interaction between the OSPM frameworks, are sent to
the SCP through a software interface. The SCP then manages the detail of the hardware actions, to change voltage
and frequency.

The SCP might also take a larger role in power and thermal optimization policy. This enables the path where OSPM
only provides high-level performance requests and the SCP evaluates all available techniques and considerations to
select an optimized performance point within the electrical and thermal constraints of the system.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 22
Non-confidential

Chapter 3. Overview
3.3. Power Management Software

3.3.2 Device Power Management

DENO0050
D

The power management of devices encompasses both device specific aspects, in drivers, and higher-level
frameworks.

At a high-level, devices can be said to have two types of behavior and capability:

* OS managed: In this case, a device is entirely dependent on the OSPM, and any driver, to ensure the
provision of system resources for its operation.

* Self-managed: Some devices will act as agents that make direct requests to the SCP for a subset of their
power management functions. In some cases, this can be all power management functions, and such devices
are described as fully self-managed. Partially self-managed devices directly request SCP for some functions
but rely on OSPM for the remainder.

Most devices in the system are typically OS managed. The degree of power management required varies depending
on the device.

Many basic peripherals are typically in parts of the system that are powered-on whenever the system is running.
Some of these peripherals might also be clocked by default and therefore require no explicit power or clock
management.

Other peripherals will require clocks to be enabled, and more complex devices can also require specific power
domains to be powered-on. When a power management action is needed, the driver software typically expresses
this dependency through an abstraction to the OSPM. The OSPM then requests the SCP to perform any actions to
satisfy these dependencies using the SCP software interface.

As shown in Figure 3.3 self-managed devices, depending on capability, might have an independent software
interface path from their own software stacks to directly request SCP actions.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 23
Non-confidential

Chapter 3. Overview
3.3. Power Management Software

3.3.3 System Control Processor Firmware

DENO0050
D

The SCP firmware is implementation specific. While an overview of anticipated capabilities is given in 3.2.1
Services, it is useful to define a set of minimum expected firmware services.

The definitions provided here are illustrative and are not exhaustive or limitative.
At a high-level, the SCP firmware services can be divided into two categories:

* OSPM directed: Services provided by a contract formed with the OSPM by an SCP software interface.
These services might also be used by other requesting agents.

» System services: Services provided by the SCP without OSPM direction.
The SCP software interface is expected to provide, at minimum, commands to support the following:
* Power states: Commands to request setting of core, cluster, device and SoC power states.

e DVFS: Commands to request changing the operating point of a DVFS capable domain to a desired
performance point.

* Voltage supply: Commands to request changing the level of platform power supplies outside of DVFS
domains.

* Clock supply: Commands to request the enabling and source frequency of platform clocks outside of DVFS
domains.

e Timer: Commands to request setting and cancelling of always-on wake-up timer events for a specific AP
core. These commands are only required in a platform without AP core visible always-on timers.

* Boot: Commands for boot time initialization. The requirement for these commands is dependent on the boot
process used.

Basic extensions to this minimal set of commands might include support for sensor management and queries for
capabilities and resource states. The ARM® System Control and Management Interface (SCMI) is a software
interface specification that provides an interface for this purpose for use by OSPM and other agents in the SoC.

A minimum set of system services that the SCP is expected to provide is as follows:

 System initialization: The SCP firmware must support system power-on reset initialization tasks. These
include the power-on sequencing of primary system and AP core power domains through to AP core boot.

* Events: The SCP firmware must respond to system events. Basic system events include Generic Interrupt
Controller (GIC) wake requests, local timer events, implementation defined always-on domain wake requests,
debug power requests and watchdog expiration.

* Consistency: The SCP must ensure that there are no races between requests, for example, ensuring power
domain dependencies are maintained despite the order and timing of the arrival of wake requests.

Basic extensions to this minimum set of services might include management of system time through SoC sleep
states, autonomous sensor monitoring functions and further support for ensuring the consistency of the system and
requested states.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 24
Non-confidential

Chapter 3. Overview
3.3. Power Management Software

3.3.4 Power Management Software Stack Examples

Mobile Systems

Figure 3.4 shows an example power management stack as might be implemented in a Linux based mobile device.

...

§ EAS e LD ?
: B 3 D Linux Kernel |

oot . y ey BT i
; H Y i
H i [PSICI] [Performance] [Sensors] OS agnostic i
[v - — v] standard FW :
E ower bomains SCMI i
1 SCP) §
S SoC i
| Hardware) ;

el SMC call =P Secure channel

----------- P Kemel API ===========pp Non-secure channel

e sysfs interface

Figure 3.4: Linux mobile: example power management software stack

In the Linux kernel, Energy Aware Scheduling (EAS) provides the core scheduling with tight links to core idle
and integrated frequency control. EAS is also linked to a thermal management solution using Intelligent Power
Allocation (IPA). Finally, both EAS and IPA have linkages to user space performance management interfaces.

An OS agnostic firmware layer includes an implementation of PSCI as outlined in Idle Management. SCMI
provides an interface for communication with the SCP firmware. It supports protocols for power and performance
control in addition to sensors, such as those for temperature measurements, used by IPA.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 25
D Non-confidential

@sec:overview_idle

Chapter 3. Overview
3.3. Power Management Software

Infrastructure Systems

Figure 3.5 shows an example power management stack as might be implemented in an infrastructure system, such

as a server.

Hot . Performance {EE)VVEFE&EE)]H@} Standard
AP Core Idle Add/Remove Device PM Management / Monitoring oS i
v v Y ACPI Industry
: mmmmmmmmataceeeeaees | standard
: LPI (D-States] ([CPPC] i Power Meters : W :
i [PSCI] i [Performance] [Sensors] ECapping} OS agnostic :
i ¥ v T | standard
i [Power Domains] SCMI Fw i
al Scp) g
: SoC :
i Hardware) :

e SMC call =P Secure channel

........... p- Kernel API ===========p Non-secure channel

Figure 3.5: Infrastructure system: example power management software stack

In infrastructure systems, particularly servers, a desirable property of the system is for the OS to be independent of
platform specific details. This enables the OS to be updated, and even changed, without modifying the platform
firmware. Similarly, this enables a new hardware platform to run an unmodified OS. The Advanced Configuration
and Power Interface (ACPI) is a standard interface, implemented in firmware, which enables such an abstraction.

ACPI provides a set of power management services, amongst others, to a compliant OSPM implementation. In
Figure 3.5 the following services are shown:

Low-Power Idle (LPI): LPI, introduced into ACPI 6.0, provides a method to define the local power states
for each node in a hierarchical processor topology. This affords flexibility, not offered by legacy C-states,
suited to the diversity of Arm system implementations.

Device states: ACPI supports a standardized device power state management abstraction.

Collaborative Processor Performance Control (CPPC): CPPC provides an interface for OSPM to express
a performance requirement, on an abstract scale, while the platform firmware makes a final decision on
the selected frequency and voltage based on all constraints. Means are provided for OSPM to determine
delivered performance.

Power meters: The ACPI power meters provide means for OSPM power monitoring and for the setting of
power capping limits. While, typically, these caps are determined by a management function this capability
can be used in some large-scale systems, for example high-performance computing.

An OS agnostic firmware layer includes an implementation of PSCI as outlined in Idle Management. An
implementation of SCMI spans this layer and the SCP firmware and supports protocols for power, performance
control, and power monitoring using the sensor protocol.

DENO0050
D

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 26
Non-confidential

@sec:overview_idle

Chapter 3. Overview
3.4. Power Control Framework

3.4 Power Control Framework

DENO0050
D

A primary aim of PCSA is to describe a standard approach for system power control integration of SoCs. A key
component of this approach is the power control framework. Figure 3.6 shows a high-level illustration of power
control framework concepts.

v v v
Power Policy Power Policy Power Policy
Unit Unit Unit
Voo LPI AAA 1 1
{4 l PCSM
. LPIs LPIs
LPI \ 4 4
CLK A —
LPI
Power Power
Domain Domain
LPI
CLK B — S
Power Domain

Figure 3.6: Power control framework concept

The power control framework is a collection of standard infrastructure components, interfaces, and associated
methods that can be used to build the infrastructure necessary for power management of a SoC.

Standard infrastructure components include power, clock, and interfacing components.

Local interfacing between the infrastructure components and functional components use Arm Q-Channel and
P-Channel low-power interfaces (LPI). Components without support for Arm LPI are managed using an integration
layer adaptation approach.

For power domain control, a power policy unit (PPU) is defined. The PPU is fixed function hardware supporting
a set of power policies programmed by the SCP through a software interface. The PPU interfaces with power
domain components, using LPI as needed, to ensure safe power mode transitions.

Each PPU is paired with a power control state machine (PCSM) that abstracts the PPUs power policies to
implementation technology specific power management, such as power switch and retention controls. This allows
the PPU to be re-used across multiple SoC implementations and technologies without modification.

The clock controller is targeted at components supporting high-level clock gating. This approach enables the clock
to be gated high in the clock tree when components are idle. High-level clock gating is supported by most Arm
components.

Other infrastructure components are also available that facilitate the control and combination of LPI from controllers
to devices.

For a detailed description of the power control framework, see Chapter 6 Power Control Framework.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 27
Non-confidential

Chapter 4
System Partitioning

DENO0050
D

This chapter describes partitioning of a SoC based on Arm components into voltage and power domains.

The choices described are not exhaustive and represent a subset of the possibilities. The intent is to describe the
significant factors and considerations for partitioning of a SoC based on Arm components into these domains as
well as critical relationships that must be maintained.

This chapter is divided into the following sections:
e 4.1 Voltage Domains
* 4.2 Power Domains

NOTE: In many SoC operation scenarios, dynamic power consumption is dominant and clocking strategy is
therefore critical. This topic is addressed in 7.1 Clock Control Integration, from a high-level clock gating and
implementation perspective. From a clock domain partitioning perspective, these considerations are implementation
specific.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 28
Non-confidential

Chapter 4. System Partitioning
4.1. Voltage Domains

4.1 Voltage Domains

A voltage domain is defined here as a collection of design elements supplied by a single voltage source. The
voltage supply to the domain might be scaled or removed for power or performance reasons.

In practice, a SoC can have many voltage supplies across logic domains, I/O and analog functions. In this document,
the scope is limited to discussing the primary supplies of logic domains. Where secondary supply considerations
exist for a logic domain, it is considered that these are physical implementation-specific details beyond the scope
of this document.

While a single logic voltage supply could be used for all the SoC, this is now rarely the case except in low
complexity solutions.

A primary motivation for additional voltage domains is to support DVFES for functional areas of the SoC. DVFS is
a fundamental technique for both energy and performance optimization. While initially used for AP cores, it is
increasingly being applied to other components of the SoC.

A second motivation can be to enable external supply switch-off, or reduction to non-functional state retention
levels, to some logic areas while maintaining an operational level supply to others. This approach can be used both
as complementary to and as a substitute for on-chip power gating.

From a cost perspective, the addition of voltage supplies can be significant since additional voltage regulators are
required, and extra effort and complexity are required in the SoC physical implementation. A consequence of these
factors is that the function size, or area, required to justify a voltage domain is significant. Therefore, the value of
the addition of each voltage domain must be carefully assessed against the performance and power requirements
for the design.

The following sub-sections outline options for the primary voltage domains of a system.

4.1.1 System Logic

DENO0050
D

A SoC will have some shared system logic functions typically composed of interconnect, memory system,
peripherals, and other shared infrastructure.

It is convenient to consider the voltage supply for these functions as the default supply for the SoC. The exact
functions contained within this voltage domain depend on the choices taken to support additional voltage domains
for each function. This supply is referred to here as Vgys.

SoC system logic DVFS is possible, but has challenges that must be addressed:

* Peripheral functions, such as timers and external interfaces, often have fixed frequency requirements which
cannot be scaled. This can be resolved by an implementation specific combination of timing constraints, to
ensure these functions can operate at the required frequency across all operating points, and resource activity
limitations to voltage scaling.

* Memory system scaling presents challenges from the perspectives of DDR PHY and memory timing settings.
Solutions to these problems are beyond the scope of this document.

There can also be a voltage domain partitioning of the system logic itself. An example of this could be separating
the memory system from the other system logic to enable scaling of both domains independently.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 29
Non-confidential

Chapter 4. System Partitioning
4.1. Voltage Domains

4.1.2 Always-On Logic

Always-on logic is required so the SoC can be woken from sleep states.

The supply to the always-on logic of the SoC is typically the main system logic supply (Vsys), described in 4.1.1
System Logic.

However, a second common strategy is the provision of a dedicated supply for this logic. This is one case where
the size of a voltage domain might be small.

Power domain strategies associated with this choice are described in 4.2.4 Always-On Domain.

4.1.3 Processor Clusters

Cortex-A profile processor clusters in most markets, and invariably in mobile SoCs, will have dedicated voltage
domains to enable DVFS.

In an Arm DynamIQ™ based big. LITTLE system a single cluster supports both core types. The cluster in these
systems is recommended to use a voltage supply independent of the big and LITTLE core supplies. This might be
the main logic supply (Vsys) or as part of a scaled memory system voltage supply.

In applications where DVFS is not required, or the cost is too high, then the processor cluster is in the Vgyg
domain.

In some applications, such as modems, Cortex-R profile processor clusters might also be given dedicated voltage
domains.

4.1.4 Graphics Processor

Graphics processing performance in mobile applications has grown significantly and is anticipated to continue.
GPU workloads represent throughput processing, with very high inherent parallelism, and are well suited to using
DVFS to adapt the performance and energy profile of a given hardware configuration to a frame level deadline.

These properties also enable adaptation to different requirements. Cost-centric designs can implement fewer cores
at higher frequency and voltage, while energy-performance-centric designs can implement more cores at lower
frequency and voltage.

Therefore, a dedicated voltage domain to enable GPU DVES is often implemented to enable these benefits.

In applications where DVES is not required, or the cost is considered to outweigh the benefit, then the GPU cluster
is in the Vgys domain.

4.1.5 Other Functions

DENO0050
D

Further voltage domain partitions are less common as the cost to benefit ratio and implementation feasibility
degrades.

One example might be an integrated modem, which is effectively a system within a system, as this is a function of
significant size. In this case, motivation can arise from the potential for scaling, according to mode or required
performance, and for independent powering when other functions have their voltage supply externally shut-off.

A second set of possibilities, for DVFS scaling reasons, could arise from other media processing functions, such as
video and display subsystems, or a domain dedicated to a large accelerator such as for imaging.

As in the previous cases, all functions that do not have dedicated domains are in the Vgys domain.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 30
Non-confidential

Chapter 4. System Partitioning
4.1. Voltage Domains

4.1.6 SoC Partitioning Examples

Figure 4.1 adapts the components of Figure 3.1 to provide a simplified voltage domain partitioning example of a
mobile system.

VBic VurTLe Vepu Vsvys Vmobp

______ I S S U

[a 1 I A | | p—)
! 1 \ 1 = = =), 1
| 1 \ 1 o (] o)) Ol !
big	- } ____ . e a2 allEalii	§
g o)l oru [H2 8	12 8(28]] 2
cores [iiHTILEN: > ofls ellg eli	=	
—J | Skl SN el alCelil_ i
_______________________________________ ! | S
(Cluster |

System Interconnect

(GIC |

System Control
Processor

System Peripherals

Figure 4.1: Voltage Domains: Mobile SoC example

This is a big. LITTLE system with voltage domains for independent DVFS of each of the big cores, the LITTLE
cores and the GPU. The big.LITTLE implementation uses Arm DynamIQ technology and the cluster uses the
system logic supply. An integrated modem also has an independent voltage domain.

A lower cost implementation might have a single voltage domain for the cores to support DVFS as a minimum
requirement, it might also be limited to a single core type. Additionally, a lower cost implementation might exclude
the modem and its related voltage domain.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 31
D Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

4.2 Power Domains

A power domain is defined here as a collection of design elements, within a voltage domain, that share common
power control. A voltage domain can be partitioned into one or more power domains.

Specifically, a power-gated domain is a power domain whose power can be removed by on-chip power switches. A
voltage domain can then be partitioned into one or more power-gated domains as well as an always-on (non-gated)
power domain.

The motivation for partitioning a voltage domain into several power domains is to facilitate techniques for static
leakage power mitigation. These include modes where power is removed, with loss of context, and low leakage
retention modes which keep some or all context.

The following subsections describe:
* The power modes that can be supported by a power domain.
* The choice of which power domains to implement in an Arm based SoC.

* Power domain partitioning requirements that must be respected. These include availability and power
ordering relationships between vital components in the system.

4.2.1 Power Modes

DENO0050
D

This section defines the modes that a power domain can have at a hardware level. The mapping of power domain
modes to a software power state view is described in Chapter 5 Power States.

ON

A power domain always supports an ON mode. This is the normal functional mode for the logic in the power
domain. If the power domain supports DVFS, this is applied while the power domain is in this mode. This mode
will normally also use clock gating and other techniques to reduce dynamic power consumption.

OFF

A power domain typically supports an OFF mode through the inclusion of on-chip power switches. The power
switches are used to remove the power supply when its function is not required.

OFF power modes are destructive of context. To use this mode, mechanisms must be provided to manage any
necessary context before entering OFF mode and at, or prior to, the resumption of execution after returning to ON
mode. These context management mechanisms might be implemented in software or hardware.

This means there can be a significant time and energy cost to using OFF mode. However, there are many
components that have negligible restore or reconfiguration requirements at power-on. Such components can then
be powered-off and on without this overhead.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 32
Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

Retention (RET)

Retention modes offer leakage power reduction without loss of state.

There are several possible RET mode implementations and use models. RET modes can be categorized by the
following criteria:

* Entry to and exit from the mode: This can be either hardware autonomous or software visible.
* Physical implementation: Full or partial state retention within the mode.

For a hardware autonomous RET mode, that is transparent to software, all state that is required to resume operations
on exit from the mode must be retained by the hardware. Other state can be discarded and so, while from a
functional perspective the mode provides apparent full retention, there can be partial state retention from an
implementation perspective.

For a software visible RET mode an explicit software decision is taken to choose the mode, and this means that
some context management might be handled by software at entry to and exit from the mode. An example of
this is when only specific RAM content will be retained while all other hardware state is discarded. From an
implementation perspective, these modes might require only partial retention capability.

A RET mode can be implemented using flip-flops that have a low leakage retention capability, using a secondary
un-switched power supply. The primary supply for the logic cells is power-gated in the mode using on-chip
switches. To gain the most power saving RAM cells that support leakage saving retention modes are also required.
In the absence of this capability, RAM cells must be maintained at the operational level while a component is in
RET mode.

NOTE: As previously outlined, manipulation of the external supply level can also achieve similar results for an
entire voltage domain. This approach typically suits only high-level control, with increased latency, and requires
the entire voltage domain to share a common retention strategy.

Since some, or even all, state is retained the time and energy cost of entering and exiting a RET mode is lower
than OFF mode. However, the power consumed in this mode is higher than in OFF mode and therefore there is a
trade-off in terms of opportunity to enter the mode and residency time within the mode.

Power Mode Transitions
When switching a power domain between power modes it is essential that the logic in the domain is in a safe state.
Components provide various mechanisms to achieve this and these must be integrated into the power control logic.

This document describes infrastructure components for this purpose in Chapter 6 Power Control Framework and
integration of these mechanisms in Chapter 7 System Power Control Integration.

4.2.2 Power Domain Choices

DENO0050
D

The fundamental aim of the power domain strategy is to minimize the powered-on area in each scenario.

From a practical perspective, implementation and control overhead constraints mean that a power-gated domain is
typically large with the content representative of significant functions.

When choosing power domains, it is important to consider end use cases to ensure the low-power modes of the
chosen domains can be used effectively. Although there can be many detailed use cases, they can normally be
reduced to broader classes of usage. From analysis, the opportunity to power-off functions that are not required for
significant periods of time can be determined.

Also, the power modes supported by a power domain need to be mapped to one of an explicit set of software power
states, or an autonomous mechanism supported by a component. Where the power state control is required to be
managed by software the viability of using an available framework or device driver should also be assessed.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 33
Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

4.2.3 System Logic

Many of the common system logic functions such as interconnect, memory system, peripherals, and other shared
infrastructure will be required during all activity outside of SoC sleep states. A typical SoC gathers these functions
into a single power-gated domain.

In a large scale SoC this can represent a significant area. The SoC architecture could be organized to partition this
area into further power domains. However, challenges arise from the pervasive nature of common paths through
interconnects and because many peripheral functions are too small for power domain implementation. Moreover,
attempts to map peripheral functions into larger groups aligned to broad usage classes might prove intractable.

However, where interconnect and peripheral functionality is specific to function blocks that have dedicated power
domains this should be integrated into those power domains instead of the system domain.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 34
D Non-confidential

Chapter 4. System Partitioning

4.2. Power Domains

4.2.4 Always-On Domain

The always-on power domain scope depends on the system specific sensitivity to leakage in SoC sleep states. In
cases of high sensitivity, the always-on domain might be limited to minimal wake logic. The wider scope of the
SCP core subsystem can be placed into a power-gated domain that is powered-off in the deepest SoC sleep states.

NOTE: When considering the sensitivity to always-on logic area the standby current consumed by power switches,
I/O ring circuits, and analog functions that remain powered is recommended to be part of that evaluation.

The minimal wake logic scope includes:

System wake-up timer and system counter.

Debug Access Port (DAP) logic.

Any required external wake event detection.

Any required detection for wake events from independent on-chip subsystems.

Power-on reset and initialization logic. If the SCP is in a separate power-gated domain, then the always-on
domain must include power-on control for the SCP domain which is responsive to all the above conditions.

Where sensitivity to always-on area and power is lower, the always-on domain can contain the entire SCP core
subsystem. As a minimum, the SCP core subsystem must support initialization of the system through to AP boot,

as well as transitions to and from SoC sleep states.

Always-on power domain strategies are then influenced by:

Minimal wake logic requirement.

System logic voltage and power domain strategy.

A corresponding set of options is illustrated in Figure 4.2:

DENO0050
D

Vsvs Vsvs
©) ®
\ \ \
System ge System g3
Logic SCPIg8 Logic ||>CP| |82
Vsys VAoN Vsys VAoON
@ T =@
\ \ \
System 92 System 92
Logic SCPlgg Logic SCPI |28

Figure 4.2: Always-on logic power domain strategies

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 35

Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

Taking each of these options in turn:

1. In this case, the system logic power domain has on-chip power switches supplied from Vgys. The sensitivity
to leakage of the always-on area is not enough to necessitate a dedicated wake logic power domain and the
SCP power domain is an un-gated power domain supplied from Vgys.

If there are no conflicting constraints, this arrangement is recommended due to its simplicity and lack of
dependence on additional supplies at platform level.

2. The sensitivity to leakage of the always-on area in this case is enough to necessitate a dedicated wake logic
power domain and this is arranged as an un-gated power domain supplied from Vgys. The system logic and
the SCP power domains have on-chip power switches supplied from Vgys. These two power-gated domains
might be merged into one if this meets the system requirements.

3. The entire SCP functionality is an un-gated power domain supplied from a separate always-on supply Vaon-
This arrangement can allow Vgys to be removed externally with the possibility that the system logic domain
on-chip power switches are obviated.

4. This option is, in practice, strategy 3 in combination with the power domain options of strategy 2.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 36
D Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

4.2.5 Processor Clusters

DENO0050
D

Cortex-A and Cortex-R profile processor clusters typically support a wide range of power domains and power
modes within those domains. Most multiprocessor products support both per-core and cluster logic power domains.
Some multiprocessor products also support a cluster level debug power domain.

Table 4.1 shows an example using Cortex-A profile products:

Table 4.1: Cortex-A profile power domain and modes example

Power Domain Supported Power Modes

Cortex-A75 Cortex-AS5

Each core Yes Yes ON, RET*, OFF
Advanced SIMD/FP pipeline in each core No Yes? ON, RET?%, OFF
Cluster LLC RAMs? Yes Yes ON, RET*®, OFF
Cluster logic Yes Yes ON, OFF
Debug domain No No N/A

@ Retention mode autonomously managed transparently to software

b On / Off modes follow core domain. Retention mode autonomously managed.

¢ Autonomous retention transparent to software at run time and explicit directed retention at power-off.

@ Qverall On / Off modes follow cluster logic domain. Additionally, Partial L3 cache power-off is supported when cluster logic is On.

Core Power Domains

The requirement for a processor core to be available to the system is highly dynamic even within a use case.

OSPM frameworks have a correspondent idle management capability which can select between the software visible
power states. Policy frameworks also exist for removing a core from the pool available to the OS and this can be
used, for example, in cases where compute capacity must be limited due to power or thermal constraints.

Additionally, where supported by the processor, autonomous software-transparent retention modes can be
implemented which reduce the leakage opportunistically during periods where a core is halted.

In both energy and power constrained use cases, particularly at high temperatures, core leakage power can be
significant and so the capability to manage this leakage is highly desirable.

Arm strongly recommends the implementation of per-core power domains in all applications that are sensitive to
leakage power.

Cluster Domain and Shared Cache RAMs
Multiprocessor products also typically support a top-level cluster logic power domain which is controlled together
with the shared cache RAM for on and off mode transitions. In addition:

* When the cluster logic is on, and remains operational, partial cache RAM power-off and autonomous RAM
retention modes might be supported.

* When the cluster logic is off, shared cache and SCU RAM retention modes might be supported.

Since the cluster availability requirement is also dynamic, it is strongly recommended to support power gating of
this area in all applications that are sensitive to leakage power.

The cluster domain would incorporate any integration logic, such as the appropriate portion of any domain bridges,
for functional and CoreSightTM use, and CoreSight infrastructure dedicated to the cluster.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 37
Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

DENO0050
D

Debug Domain

If a debug power domain is supported by the cluster, this contains the logic required to satisfy the architectural
requirements for debug through core power off.

If this is implemented as an independent power-gated domain, then only this domain needs be powered during a
debug connection when no cores are powered.

Since this domain is small, it is commonly merged into the cluster logic power domain.

In the case where the debug through core power off logic is part of the cluster power domain the cluster must be
powered during a debug connection.

In DynamlIQ-based cores this debug logic is placed in a separate module called the DebugBlock that can be placed
within or in a separate power domain to the cluster.

Processor Cluster Partitioning Examples

Figure 4.3 shows an example logical view for a MP4 processor cluster using a single voltage domain for all cores
and the cluster. Per-core, cluster and cluster level shared cache RAM power gating are supported.

The cluster and shared cache RAM power-gated domains share common control for on and off mode transitions.
The cache RAM can have additional control for retention support but must always be available for access when the
cluster is powered-on. Per-core power-gated domains are also implemented with the option of support for dynamic
retention.

The structure of the figure reflects the hierarchical power-on ordering requirements for the processor subsystem
from the voltage supply (Vap), available first, then power domain dependencies flowing downwards. Power-off
ordering is the reverse sequence.

Cache
|Cluster| | RAM I

A
Core0 Corel | Core2 I | Core3 I

PG = Power Gated Domain
(RET) = Retention

Figure 4.3: Processor power domains example 1 — logical view

For clarity Figure 4.4 shows that in the physical construction all on-chip power switches are implemented in
parallel and that the logical ordering is by control sequencing. In further examples this representation will be
omitted.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 38
Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

Vap

\ \ \ \ \ \
Cache

Core0Q || Corel || Core2 || Core3 || Cluster RAM

Figure 4.4: Processor power domains example 1 — physical view

Figure 4.5 shows an example logical view of a DynamIQ big. LITTLE cluster. Each of the big and LITTLE core
groups have independent voltage supplies and the cluster uses the system logic voltage supply (Vsys).

The cluster and shared cache RAM power-gated domains share common control for power mode transitions. The
shared cache RAM can have additional control for retention and partial power-down. However, at a minimum the
snoop filter RAM must be available for access when the cluster is powered-on. Per-core power-gated domains are
also implemented with the option of support for dynamic retention.

The structure of the figure reflects the hierarchical power-on ordering requirements for the processor subsystem
from the voltage supplies, available first, then power domain dependencies flowing downwards. Power-off ordering

is the reverse sequence.
| VBiG I | VuTTLE I

PG = Power Gated Domain
(RET) = Retention

Figure 4.5: Processor power domains example 2 — logical view

4.2.6 CoreSight Logic

Shared CoreSight infrastructure, except for Debug Access Ports which must be always-on, can have a dedicated
power-gated domain. This is anticipated to be within the system logic voltage domain.

If a dedicated power domain is not implemented this logic is in the system logic power domain.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 39
D Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

4.2.7 Graphics Processor

DENO0050
D

The descriptions in this section are intended to be generally applicable to Arm Mali™ GPU products. Specific
product documentation must always be consulted.

Arm Mali GPU products have an integrated power management capability. They contain a relative always-on
domain that must be powered before the GPU driver software can schedule any work. This domain contains
power-gated domain control support for each of the GPU cores and their top-level core group logic. This function,
known as the job manager (JM), dynamically powers-on resources as work is scheduled and powers-off resources
when work is completed.

From a high-level system power control and OSPM perspective, only the availability of the job manager power
domain needs to be considered.

Job Manager Power Domain

If the GPU does not have a dedicated voltage domain, the job manager can either be merged into a system power
domain or implemented as a dedicated power-gated domain.

If the GPU has a dedicated voltage domain, this logic must then be placed in a power domain within that voltage
domain.

When the job manager is implemented as a power domain within the GPU voltage domain it can be aggregated
with any other top-level integration logic such as the appropriate voltage domain portion of DVFS bridges and any
GPU dedicated interconnect functions.

This power domain can be implemented as a power-gated domain or be implemented as an un-gated power domain

reliant on external switch-off of the GPU voltage supply in SoC sleep states.

Core and Core Group Power Domains

The implementation of power-gated domains for the GPU cores and top-level core group logic is recommended
since these are significant sized function blocks that are used dynamically. Either individual core-group and
per-core power-gated domains or a single merged power domain can be implemented.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 40
Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

GPU Partitioning Examples

Figure 4.6 shows an example logical view for a MP4 GPU. The structure of the figure reflects the hierarchical
power ordering requirements not the physical implementation.

In this example, a dedicated voltage domain (Vgpy) is provided to support DVFS. The job manager domain is
an un-gated power domain in Vgpy and is available whenever the supply is powered. Core-group and per-core
power-gated domains are supported. The lighter color shading reflects that these domains are managed by the job
manager and are not system visible.

Un-Gated

|
|
|
|
|
l
Core Group i
|
i
Core0 Corel Core2 Core3 | |

|

PG = Power Gated Domain

Figure 4.6: GPU power domains example 1 — logical view

Figure 4.7 shows a second example logical view for a smaller MP2 GPU. In this case DVFS is not supported and
the GPU power domains are children of the system logic voltage domain (Vgys).

In this example, the job manager has been merged into the system logic domain containing shared resources
(SYSTOP). When SYSTOP is powered the job-manager is available. Core-group and per-core power gating are
supported. The lighter color shading again reflects that these domains are managed by the job manager and are not
system visible.

|
|
|
|
|
l
Core Group i
|
|
|
|
|
|
|

Figure 4.7: GPU power domains example 2 — logical view

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 41
D Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

4.2.8 Display Processor

The Arm Mali display processors supports multiple power-gated domains. For details consult specific product
documentation.

In all cases, the supported power-gated domains are externally managed.

4.2.9 Other Functions

For the remaining SoC functions the choice to implement power-gated domains is typically made as outlined earlier,
where a function or set of functions is used only in specific scenarios. Further partitioning within a function, into
processing cores for example, should be considered based on the utility and capability for dynamic dimensioning
of the system.

Typically, a significant function size is required to justify the saving of additional domains. However, some special
cases might be found to justify small domains. One example is an offload processor that can operate independently,
decoding audio for example, while the system logic is unavailable.

In a mobile SoC additional power-gated domains would be expected amongst media functions such imaging
processors, and other complex functions such as high speed I/O interfaces. High speed I/O interfaces are
one example that might also have requirements for ‘relative always-on” wake domains to support suspend and
wake-on-LAN like features.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 42
D Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

4.2.10 Power Domain Hierarchy Requirements

Several fundamental relationships between critical resources must be maintained in an Arm based SoC to provide
a functional system that can run a standard OS. This section provides high-level considerations for power domain
hierarchies to maintain these relationships.

The Server Base System Architecture (SBSA) [1] describes requirements that relate to power domain hierarchy in
terms of:

¢ System time provision compliant with the Generic Timer specification in the ARM Architecture Reference
Manual ARMvS [2] and ARM Architecture Reference Manual, ARMv7-A [3].

* Semantics for two wake-up methods:
— Interrupts from the Generic Interrupt Controller (GIC)
— Always-on domain wake events

* System memory availability

The SBSA also describes power state semantics consistent with these requirements. Power states are covered in
Chapter 5 Power States.

Figure 4.8 shows a power domain hierarchy similar that shown in SBSA which conforms to these requirements.
Other examples that conform to the requirements, that are not simply subsets, are possible.

T NS N T N T 3

1 1 1 1

| AP Lol AP |1y AP |1y AP ||

1| core | 1| core | 1| core | 1| core |

1 1 _ _
: 1 ! 1 ! (Timer) ! ! @@imen) | | ,——mm——— -
| PO ‘L_I' __“_____/' _____‘L_/l __“__-.__/' I
1

s et tniniei Sl inks ntuiintet ----~, 1| DMA

I 1 L -

! [lTnmer) cluster0 lTimer)]] ' [clusterl] J : Device

__-__ _______ .____', ‘_—.._- _______ .____', ‘_—_-_—_f

RO 20 S 2R \ 28 I [Ty T TTTTTTN TNy ~\I
! GIC J< .
EI 2 7y 1o :

1 i .

(Q' memory [system interconnect] Device | !
I - xS ——
ni system system peripherals | \
N e e e o o o o e e o ——— e o = 7

I/—________-___________-VV ________________________ ‘\
2, <
of er scpP wakedetect || extemal
<! | 1 wake-up
\ 7
g g S A g A g e S S -

o

{_)= power gated domain {

_ _): always on domain——p = interrupt ——»= wake-up signal

Figure 4.8: Example power domain hierarchy

In Figure 4.8 there are the following power domains:

* An always-on power domain (AON) containing the System Control Processor, a generic timer subsystem and
wake detection logic.

* A system logic domain (SYSTOP) containing the GIC and shared system logic functions including the access
path to system memory.

» Two processor clusters with per-core and cluster power-gated domains.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 43
D Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

DENO0050
D

* A DMA device that is OS managed. It is dependent on the availability of the GIC and system memory when
it is powered.

* An I/O device with self-managed capabilities that has a power-gated domain and an always-on domain. The
always-on domain can generate wake events to express resource requests to the SCP.

The following sections describe the requirements arising from the SBSA [1] as relevant to power domain partitioning.

Timer Subsystem

The SoC must include a generic timer subsystem in an always-on power domain. This enables the following
requirements to be satisfied:

 The system counter is required to provide a consistent incrementing view of time for the entire time the SoC
is powered-on.

¢ The system counter count value must be visible as an input for all AP core private timers whenever those
timers are on.

If the SoC supports sleep states where the GIC is powered-off, it is a requirement to be able to produce an always-on
power domain wake event on expiry of an always-on wake-up timer event. The SCP firmware must support waking
an AP core on this event. The interrupt is also sent to the GIC, at power-on, pending availability of the AP core.

Always-on power domain events that are also GIC SPI interrupts must be level sensitive, or regenerated accordingly,
to ensure the interrupt is observed by the GIC after it is powered-on.

Generic Interrupt Controller (GIC)

In GICv2 implementations all GIC logic is within a single power domain.

In GICv3 implementations, the GIC CPU interface must be incorporated in the AP core power domain while
the associated redistributor, distributor, and any interrupt translation service (ITS) support can be in other power
domains.

A redistributor might be implemented in the same, or a relatively always-on power domain to the AP core it is
associated with.

The GIC distributor must have a relatively always-on relationship to all AP cores. However, the distributor is not
required to be always-on and can be powered-off in SoC sleep states. In the example of

Figure 4.8 the GIC is a single power domain implementation placed in the system logic domain (SYSTOP).

When the GIC distributor is powered-off an AP core can only be woken by always-on domain wake events.

Core Timers

The local AP core timers are an important source of interrupts. However, the core timers might power-off, or be
reset, with the core.

If AP core timers can be powered-off, a wake-up timer must be available as an interrupt source to the GIC to allow
a wake-up signal to be sent to the SCP to power-on the core.

Unless all the local AP core timers are always-on, level O of SBSA only requires a system-specific timer for this
purpose. However, it is recommended that systems comply with at least level 1 of SBSA and, unless all local AP
core timers are always-on, implement a memory mapped generic timer mapped in non-secure address space for
this purpose.

In large scale systems, timer scalability might be addressed with AP core timers described as always-on in firmware
tables. AP firmware abstracts the always-on functionality according to the available timer hardware resources.
These resources might range, according to the scale of the system, from a single shared secure memory mapped
always-on timer, to a memory mapped always-on timer for each core.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 44
Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

DENO0050
D

Always-On Domain Wake Events
Always-on domain wake events are fundamental to the support of SoC sleep states where only the always-on logic
is powered.

A requirement has already been stated that the system must support an always-on power domain wake event on
expiry of an always-on wake-up timer.

Other always-on domain wake events are implementation defined. Common examples as illustrated in Figure 4.8:

* SoC external events: Off-chip events from sources such as cable detection, power buttons or wireless
subsystems.

¢ On-chip events from devices with self-managed capability: Complex subsystems such as high speed I/O
devices or integrated modems with their own always-on domain support.

SCP firmware must wake the required system resources in response to the supported events.

System Memory

Whenever a component that can initiate memory transactions is powered-on, the system memory must be available.

However, it should also be noted that system MMUs and the GICv3, required by higher SBSA levels, make use of
tables in memory. Therefore, when systems containing these components are in power states where at least one
SMMU or the GIC is on, system memory must be available.

The definition of available in this case is that the memory will respond to requests without requiring intervention
from software running on AP cores. Therefore, it is possible for the memory system to be powered-off when agents
that require its availability are active, provided those requests trigger a mechanism that allows the transaction to be
completed transparently.

In the example of Figure 4.8 the path to system memory is in the same power domain (SYSTOP) as the GIC and
therefore the system memory will be available when any AP core is powered-on.

However, components, such as the I/O device in the example of Figure 4.8, with the capability to generate
always-on domain wake events, might be powered when the SYSTOP domain is off. If such a component
generated a request when SYSTOP was powered-off a hardware component would be required to generate a wake
event to the SCP and stall the transaction until system memory was made available. The requirements for such a
component are detailed in 7.2.8 Access Control.

Power Ordering Requirements

The power ordering requirements of the example shown in Figure 4.8 can be summarised simply as:
* The always-on domain is available whenever the SoC is powered-on.
* The SYSTOP domain is relatively always-on to any processor cluster.
 Each processor cluster is relatively always-on to its cores.

e The SYSTOP domain is relatively always-on to OS managed devices. This class of device is represented in
Figure 4.8 by the DMA device.

* The I/O device in Figure 4.8 has self-managed capabilities. Its power-gated domain being powered-on is
only dependent on the prior availability of its always-on domain logic.

A relatively always-on relationship is typically preserved by powering on the domain lower in the hierarchy before
its dependent domains and powering off the domain only after dependent domains have been powered-off. For
example: SYSTOP must be powered-on before any processor cluster is powered-on and the reverse for power-off.

However, simultaneous powering of dependent domains is possible provided management of reset release and
low-power interface controls respects the logical ordering required.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 45
Non-confidential

Chapter 4. System Partitioning
4.2. Power Domains

4.2.11 SoC Partitioning Example

DENO0050
D

Figure 4.9 shows a high-end mobile SoC example as a summary for voltage and power domain partitioning.

VBic VurTLe Veru Vsys
(1 I s el s Heven B =N Heas e}
| | | |
! H ! :[Core]}.:[Core]}. L[Core],.L[Core],. 3:2:: S || o
| core |1} core |t I SRR I T gigll £ £)
I 1l I I[Core]:l[Core]: I[Core]: I[Core]: 3{_,:: 8 I 8 i
== === a Ty) —— S ==l &g M x|

e - ot~ | II 1
mcore |' |o'loli| B[] i
R C M Groun I [BHEH 2 B
1 1 roup = I 7)) || 1+ 1
! Cluster], Y ! >i3:| a ' E
[J =1 L—) L=
|"_ ______________________________________ -I I—:_‘ I‘-__:
| GIC][System Interconnect]:: Slilel
: HELHE P
: Memory System][System Peripherals]:: g :: : ()
et e e e e e 0=, (==

===\
|{ 1= power gated domain D= un-gated power domain

——

Figure 4.9: SoC voltage and power domain partitioning example

Figure 4.9 is simplified in terms of the range of functions illustrated but is representative in terms of choices that
might be made.

The imaging processor and audio power domains shown do not represent Arm components. These are included as
examples of components likely to have dedicated power-gated domains.

Although not shown, the core scheduler logic of the video processor is assumed to be contained within the power
domain shown to contain the GIC, memory system, system interconnect and system peripherals.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 46
Non-confidential

Chapter 5
Power States

This chapter defines power states and power modes and the relationship between them. It also describes the
definition and use of a power state hierarchy.

This chapter contains the following sections:
* 5.1 Power States and Power Modes
¢ 5.2 Power State Hierarchy

¢ 5.3 Coordination by System Control Processor

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 47
D Non-confidential

Chapter 5. Power States
5.1. Power States and Power Modes

5.1 Power States and Power Modes

5.1.1 Power States

A power state represents a software visible abstraction of available hardware power modes.

A power state is defined according to wake capability, loss of context and power consumption. The selection of a
power state by software is typically made using an idle residency prediction. This prediction is used to make a
state selection based on target residences, derived from energy break even times, for each available state. Wake
latency requirements, which must not be violated, might then limit the choice to a shallower state.

The power state selected by software sets constraints on which power modes can be selected.

5.1.2 Power Modes

A power mode represents the hardware power saving capabilities of a SoC function.

Although differentiated on hardware techniques power modes can be classified, similarly to power states, according
to wake capability, loss of context and power consumption. Also, similarly, selection of a specific power mode can
be according to residency targets and wake latency requirements.

However, not all hardware power modes are software visible. While use of these modes might be enabled or
disabled in software the transitions to and from them can be hardware autonomous.

Power modes are selected within the constraints of the current power state. This means that a shallower power
mode, with higher capabilities than the power state constraints require, can be selected, but a deeper power mode
must not be selected.

NOTE: Power modes related to leakage saving techniques were defined in 4.2.1 Power Modes. A component
within a power domain can also have power modes that are related to dynamic power reduction that might be
visible as power states to software.

5.1.3 Distinction of Power States from Power Modes

DENO0050
D

It is important to make a clear distinction between the power modes supported by the hardware and the power
state view of software. The primary reason for this distinction is that there is no direct mapping between these two
views.

In summary:
* Not all hardware power modes are software visible.

* Power modes are differentiated on hardware techniques whereas the considerations for defining a software
power state are wake capability and loss of context.

* A single power state can map to one or more power modes, with equivalent context and wake properties,
where power the modes are chosen autonomously by the power control system. Autonomous modes must
preserve the properties of the selected power state without a perceived impact to latency on exit from the
state.

* The power mode selected can be shallower than the power state constraints allow, but not deeper.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 48
Non-confidential

Chapter 5. Power States
5.2. Power State Hierarchy

5.2 Power State Hierarchy

DENO0050
D

Power states can be organized as a hierarchy of power state tables. Each power state table describes the power
states available at its level of hierarchy.

From a system level power control perspective, this hierarchy of power states is convenient as it enables all legal
combinations of power states and power modes to be represented with minimal redundancy.

Although there can be any number of levels in the power state table hierarchy, this document describes three
levels of hierarchy. These levels are necessary for effective power management and are described in the following
sections:

e 5.2.1 Core Power States

* 5.2.2 Cluster Power States
* 5.2.3 Device Power States
* 5.2.4 SoC Power States

Figure 5.1 shows an example power state hierarchy for a two-cluster system. Device power state tables are not
described in the illustration but, depending on the level of OS management, some devices might also have a
declared power state hierarchy.

Core0 Corel Core0 Corel Core2 Core3
RUN RUN RUN RUN RUN RUN
IDLE IDLE IDLE IDLE IDLE IDLE

SLEEP | SLEEP SLEEP | SLEEP | SLEEP | SLEEP

@) F

OFF | OFF

FF | OFF | OFF | OF

Cluster 0 Cluster 1
RUN RUN
SLEEP SLEEP
OFF OFF Devices
[| !
R
SoC
RUN
SLEEP
OFF
Figure 5.1: Power state hierarchy example
Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 49

Non-confidential

Chapter 5. Power States
5.2. Power State Hierarchy

5.2.1 Core Power States

DENO0050
D

The Server Base System Architecture [1] defines the following power state semantics for AP cores.

RUN

Core is powered-on and running code.

IDLE_STANDBY

The core is in WFI state. Full context is retained and no software state saving or restoration is required. Execution
automatically resumes after any interrupt or external debug request. Debug registers are externally accessible.

IDLE_RETENTION

The core is in WFI state. Full context is retained and no software state saving, or restoration is required. Execution
automatically resumes after any interrupt or external debug request. Debug registers are not externally accessible.

SLEEP

The core is powered-off, but hardware will wake the core autonomously, for example on receiving a wake-up
interrupt from the GIC. No context is retained so state must be explicitly saved. A woken core starts at the reset
vector, and then hardware specific software will restore state.

OFF

The core is powered-off and is not required to be woken by interrupts. The only way to wake the core is by
explicitly requesting it to be powered-on by the power controller, for example from system software running on
another core, or an external source such as a power-on reset. This state can be used when the system software
explicitly decides to remove the core from active service, giving the hardware opportunity for more aggressive
power saving. No core context is retained.

NOTE: The SLEEP and OFF power states might use the same power modes but are semantically different because
of the ability of the core in the SLEEP state to wake on receiving an interrupt.

Not all core power states will always be available. Their availability depends on the power modes that are supported
and implemented.

Relationship to GIC Architecture

The Arm GICv2 and GICv3 architectures define wake request mechanisms that are used to route interrupt requests
for powered-off cores to the power controller.

The GIC wake request mechanisms are architected to support software managed SLEEP and OFF states which do
not retain context and re-start through a reset. In this case interrupt forwarding to the core is disabled and the wake
request mechanism is routed to the power controller.

By comparison, the IDLE_STANDBY and IDLE_RETENTION states, that maintain the core context, resume
automatically on an interrupt. In this case interrupt forwarding to the core remains enabled during the state and the
wake request mechanism is not used. In these states, while there may be a software choice to enter the state, no
other software management is required.

Implementing core support for IDLE_STANDBY and IDLE_RETENTION states requires that logic for wake
sources is outside of the core power domain and remains active during these states. Wake source logic includes the
private timer as well as the detection of interrupts, events, snoop accesses and debug requests.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 50
Non-confidential

Chapter 5. Power States
5.2. Power State Hierarchy

DENO0050
D

Example Mapping of Core Power States to Modes

Table 5.1 uses the supported features of Cortex-A55 to provide an example mapping of AP core power states to

the available core power modes:

Table 5.1: Cortex-A55: mapping AP core power states to modes

Power State Power Mode Note
Core Advanced
SIMD / FP
RUN ON ON WFI or WFE
RET WFI or WFE, Advanced SIMD/FP retention
IDLE_STANDBY ON ON WFI or WFE
RET WFI or WFE, Advanced SIMD/FP retention
RET RET WFI or WFE, core retention
SLEEP Off, can be woken by interrupts
OFF OFF
OFF Off, cannot be woken by interrupts

NOTE: Cortex-AS5S5 does not implement support for the IDLE_RETENTION state semantic as the core will
respond to external access of debug registers in WFI or WFE.

The grouping of the supported power states to power modes is concerned with the properties of loss of context and

wake properties:

* The RUN power state represents any mode where the core is running. There are no context or wake
considerations. The HW can autonomously, transparent to software, enter and exit the Advanced-SIMD/FP
pipeline from a retention mode. The hardware implementation is intended to ensure there is no perceived

latency impact on execution time.

e The IDLE_STANDBY and IDLE_RETENTION states represent any mode where the core is in WFI or
WEE with no loss of context. Execution can resume directly from any wake event. The retention modes are
autonomous, and the hardware implementation is intended to ensure there is no latency impact perceived by

software because of this autonomous power mode selection.

» The SLEEP and OFF states represent the modes where the core has lost context. These states are differentiated
by their wake properties. Wake latency from these states is significantly higher.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 51
Non-confidential

Chapter 5. Power States
5.2. Power State Hierarchy

5.2.2 Cluster Power States

DENO0050
D

This document defines the following AP cluster power states.

RUN

The cluster is powered-on and can support any core moving to any power state.

SLEEP_RETENTION

The cluster is powered-off, but able to wake on receiving a wake capable interrupt. At least one core in the cluster
is in SLEEP, while other cores are in SLEEP or OFF.

The cluster shared cache content is retained.

Before a core in the cluster can move to a higher power state, the cluster must first move to RUN.

SLEEP

The cluster is powered-off, but able to wake on receiving a wake capable interrupt. At least one core in the cluster
is in SLEEP, while other cores are in SLEEP or OFF.

The cluster shared cache content is not retained.

Before a core in the cluster can move to a higher power state, the cluster must first move to RUN.

OFF

The cluster is powered-off and will not wake on receiving an interrupt. All cores in the cluster are in OFF.
The cluster shared cache content is not retained.

Before a core in the cluster can move to a higher power state, the cluster must first be moved to an appropriate
higher power state.

NOTE: SLEEP and OFF power states might use the same hardware power modes but are semantically different at
the system level because of the ability of the cluster in SLEEP to wake when a core in the cluster receives a wake
capable interrupt.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 52
Non-confidential

Chapter 5. Power States
5.2. Power State Hierarchy

DENO0050
D

Example mapping of Cluster Power States to Modes

Table 5.2 uses the supported features of the DynamIQ Shared Unit (DSU) processor cluster to provide an example

mapping of cluster power states to available power modes.

The example highlights the value of both the grouping of modes into power states and the hierarchical approach
where many core modes and states can be collapsed into few cluster level power states.

Table 5.2: DynamlQ Shared Unit: cluster power states mapping to modes

Cluster Power State Core Power State Power Mode Note
DSU L3 Cache
RAMs
RUN Any ON Full L3 cache.
RET Dynamic L3 RAM
ON retention.
OFF Partial L3 cache
power-off.
SLEEP_RETENTION All Cores in SLEEP or Cluster off. Cores can
OFF, with at least one in OFF RET wake from interrupts.
SLEEP
Static L3 retention.
SLEEP All Cores in SLEEP or OFF OFF Cluster off. Cores can
OFF, with at least one in wake from interrupts.
SLEEP
OFF All Cores in OFF OFF OFF Cluster off. Cores in this

cluster cannot wake from
interrupts.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

53

Chapter 5. Power States
5.2. Power State Hierarchy

5.2.3 Device Power States

DENO0050
D

The OSPM will have a mechanism to represent device dependencies that prevent the SoC from entering a sleep
state until those dependencies are resolved. This dependency management places devices at the same level in
power management hierarchy as processor clusters.

This document defines the following simple device power states.
RUN

Device is powered-on and can perform its operations. Driver specific actions might however be needed to enable
clocks and other capabilities.

OFF

Device is powered-off. The only way to wake the device is by explicitly requesting it to be powered-on. Typically,
the driver software will express this dependency through an abstraction to the OSPM. The OSPM can request the
SCP to perform any required actions.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 54
Non-confidential

Chapter 5. Power States
5.2. Power State Hierarchy

5.2.4 SoC Power States

DENO0050
D

The SoC power states used in this document are for illustration purposes only. The power states for the SoC might
have additional levels of hierarchy and will consider the power states of components not covered in this section.

This document defines the following SoC power states.

RUN

The SoC system is available and can support any processor cluster moving to any power state. Devices can also
move to any power state.

At least one AP core in the system is in RUN or SLEEP.

The GIC is on and system memory is available.

SLEEP

The SoC system is unavailable and can be powered-off, but always-on domain wake capabilities including the
system counter and wake-up timer remain powered-on. The SoC can self-wake using the wake-up timer. It can
also wake in response to any system specific always-on domain wake event.

At least one of the processor clusters must be in SLEEP, and remaining clusters must be in SLEEP or OFF. As the
GIC is powered-off, the only interrupts able to wake processors are always-on domain wake events.

OS managed devices are OFF.

Before a processor cluster or OS managed device can move to a higher power state, the system must first move to
RUN.

Self-managed devices, depending on their capabilities, can be in any power state. However, if system logic
resources are required an always-on domain wake event must be used to request these services. There must be
interlocks in place to guarantee safe behavior until the system has moved to RUN.

System memory is not available. Any required context is either migrated to off-chip memory or retained on-chip.
Any external DRAM holding system context must be retained, typically by placing the devices into a self-refresh
mode prior to entering the SLEEP state.

SLEEP states can be of varying depth according to power saving and increased entry and exit latency. The OSPM
selects the SLEEP state depth according to its latency requirements and any target residency prediction.

SLEEP states of varying depth are suggested to be named with an incrementing numeric suffix corresponding to
increasing wake latency, for example SLEEP0, SLEEP1 and so on.

DEEPSLEEP
The SoC is powered-off, including the system counter and wake-up timer. The system is unable to self-wake. It
can only wake in response to an external event, such as a power-on reset.

External DRAM memory is held in a retention state by implementation specific means.

OFF
The SoC is powered-off, including the system counter and wake-up timer. The system is unable to self-wake. It
can only wake in response to an external event, such as a power-on reset.

External DRAM memory is not retained. Hibernation of state to a non-volatile memory might be used but this is
beyond the scope of this document.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 55
Non-confidential

Chapter 5. Power States

5.2. Power Sta

te Hierarchy

Power State Mapping

Table 5.3 shows an example of how these power states might map to power domains in a system.

Table 5.3: SoC power states

SoC Power Processor 0S Power Mode System Memory Note
State Cluster Managed
States Device States
GIC Wakeup
timers,
system
counter
RUN Any Any ON ON Available AP cores able to run, can wake
up on any enabled interrupt. OS
managed devices operable.
SLEEP All clusters OFF OFF ON Not available. Only interrupts from wake-up
in SLEEP or Context is timer or other IMPLEMENTA-
OFF, with at migrated or TION DEFINED system events
least one in retained. DRAM including from self-managed
SLEEP self-refresh. devices, can cause a wake-up.
DEEPSLEEP All clusters OFF OFF OFF Not available. External wake-up only, for
in OFF DRAM example, power-on reset
self-refresh.
OFF All clusters OFF OFF OFF OFF External wake-up only, for
in OFF example, power-on reset
DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 56
D Non-confidential

Chapter 5. Power States
5.3. Coordination by System Control Processor

5.3 Coordination by System Control Processor

Not all power state requests will be acted on explicitly. In addition to HW autonomous power mode selection,
the SCP firmware can reconcile OSPM power state requests along with other requests or constraints, such as
from self-managed devices, in the process of power mode selection. In this case, the power mode selection is
coordinated by the SCP.

The following sections detail SCP coordination of SoC and cluster power states and related considerations for
managing these states.

5.3.1 SoC Power States

While the OSPM SoC SLEEP state selection is determined according to only its requirements, the SCP can select
the power mode by reconciling constraints from other agents.

For example, in a system where there are devices with self-managed capabilities the SCP can reconcile requests
from these devices and the OSPM SoC SLEEP state constraints to manage the availability of common resources,
such as the path to system memory.

To avoid creating a dependency that forces AP cores to be active during all self-managed device activity, the SCP
instead controls the entry to and exit from power modes during SLEEP states. Based on this reconciliation of
constraints, the SCP can also determine the depth of the power modes selected.

For example, SoC SLEEP state depths might align to different clocking modes. With a higher wake latency
constraint, the SCP might be switched to a low frequency clock, allowing a higher speed clock to be turned off. At
a lower wake latency constraint, this mode would not be used.

SoC SLEEP state management tasks, depending on the depth of the mode, include voltage supply management,
power control, clock supply, preservation of system time through clock changes, system configuration save and
restore, and arbitrating access to shared system resources. Some of these actions, configuring the memory system
for example, mean there are considerations in terms of the access SCP must have to the system to be able to
complete them.

The SoC OFF state is managed by the SCP, but the decision is anticipated to be taken directly by the OSPM and
might be done in contradiction to requests from self-managed devices. This OSPM decision is expected to override
any other requests.

The SCP might also autonomously place the system, or sub-components, into an OFF state as a protective measure
in an alarm condition such as thermal runaway.

5.3.2 Cluster Power States

DENO0050
D

While the OSPM might provide mechanisms to enable cluster power state selection, it might be better to implement
the coordination in the SCP since it has a more recent view of the system conditions. To do this requires the SCP
to track AP core power state constraints to determine when a cluster power mode transition can, or must, occur.

In preparation for a cluster power-off the SCP might enforce a period where no new cores can become active in
the cluster. This removes the risk of a core powering-on and creating a race condition in the cluster power-off
sequence, but depends on both hardware support and firmware design.

To be able to manage cluster power mode transitions, the SCP must be able to control any required shared cache
flushing process and control the presence of the cluster in system coherency. Some, but not all, Cortex-A profile
processors support an externally initiated shared cache flush which is hardware controlled and does not require a
core to be active.

SCP control of the clusters presence in system coherency might require access to control registers in the coherent
interconnect.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 57
Non-confidential

Chapter 6
Power Control Framework

The power control framework is a collection of standard infrastructure components, interfaces, and associated
methods which can be used to build the infrastructure necessary for power management of a SoC.

This chapter describes the primary framework components and low-power interfaces and is divided into the
following sections:

e 6.1 Power Control Framework Overview
* 6.2 Low-Power Interfaces

* 6.3 Power Modes

* 6.4 System Control Processor

* 6.5 Power Management Infrastructure Components

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 58
D Non-confidential

Chapter 6. Power Control Framework
6.1. Power Control Framework Overview

6.1 Power Control Framework Overview

Figure 6.1 shows a high-level illustration of the power control framework concept, including the primary

components and how they are interfaced.

1 y ¥

Power Policy Power Policy Power Policy
Unit Unit Unit

Voo LPI AAA
LPIs

l~ 1 PCSM

LPI

LPI

Power Power
LPI Domain Domain
LPI

CLK B —

Power Domain

Figure 6.1: Power control framework overview

6.1.1 Power Control Framework Low-Power Interfaces

The Low-Power Interfaces (LPI) described here are:
e 6.2.1 Q-Channel
* 6.2.2 P-Channel
* 6.2.3 AXILPI
— This interface is deprecated and is discussed only for use with legacy components.

The protocols for Q-Channel and P-Channel are described in detail in the Low-Power Interface Specification, ARM
Q-Channel and P-Channel Interfaces [4].

The protocol of the AXI LPI is described in detail in the AMBA® AXI™ and ACE™ Protocol Specification [5].
From a power control framework perspective, this interface is deprecated and only for use with legacy components
and only with the restrictions described in 6.2.3 AXI LPI.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 59
D Non-confidential

Chapter 6. Power Control Framework
6.1. Power Control Framework Overview

6.1.2 Power Control Framework Infrastructure Components

The power control framework infrastructure components described here are:

e 6.4 System Control Processor (SCP)

* 6.5.1 Power Policy Unit (PPU)

* 6.5.2 Clock Controller (CLK_CTRL)

e 6.5.3 Low Power Distributor (LPD)

e 6.5.4 Low Power Combiner (LPC)

¢ 6.5.5 P-Channel to Q-Channel Convertor (P2Q)

More details about integrating these components and related requirements for other components can be found in
System Power Control Integration.

The architecture of the Power Policy Unit (PPU) is described in detail in the ARM® Power Policy Unit Architecture
Specification [6].

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 60
D Non-confidential

Chapter 6. Power Control Framework
6.2. Low-Power Interfaces

6.2 Low-Power Interfaces

The Low-Power Interfaces (LPI) are controller to device interfaces used to guarantee the availability, and removal,
of a resource to the controlled component.

There are several LPI, each interface is complementary and should be selected as appropriate to the circumstances
in which they are used.

6.2.1 Q-Channel

Q-Channel has simple run-stop semantics which are ideal for clock control and simple power control. The
low-power mode entered can vary, but only according to a common configuration of both the component and the
controller before the mode is requested.

Full details of the Q-Channel protocol can be found in Low-Power Interface Specification, ARM Q-Channel and
P-Channel Interfaces [4].

6.2.2 P-Channel

P-Channel has a mode specification capability meaning that transitions to different modes can be specified on a
single interface. This makes it suitable for more complex power control with multiple modes and more complex
mode transitions.

Full details of the P-Channel protocol can be found in Low-Power Interface Specification, ARM Q-Channel and
P-Channel Interfaces [4].

6.2.3 AXILPI

DENO0050
D

AXI LPI is an interface supported by some legacy components and is not used on new components. Q-Channel is
backward compatible with AXI LPI within the restrictions detailed in 6.2.3 .

Full details of the AXI LPI protocol can be found in AMBA AXI and ACE Protocol Specification [5].

For details of the compatibility with Q-Channel see the Low-Power Interface Specification, ARM Q-Channel and
P-Channel Interfaces [4].

Restrictions on the use of AXI LPI

The AXI LPI specification has a denial mechanism that requires the level of the CACTIVE signal to be evaluated
when CSYSACK goes LOW, at the completion of a low-power request handshake. If at this point CACTIVE is
HIGH, the controller must maintain the supply of clock or power guaranteed by the interface.

Q-Channel is not backward compatible with the AXI LPI denial mechanism and controllers designed to the
Q-Channel specification cannot be used with AXI LPI components that are dependent on this specific behavior.

Arm CoreLink™-400 components with AXI LPI are not dependent on this denial mechanism and can be used
with controllers designed to the Q-Channel specification.

NOTE: While a Q-Channel controller can be used with an AXI LPI component that does not rely on the denial
mechanism, a controller designed for an AXI LPI component cannot be used with a Q-Channel component.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 61
Non-confidential

Chapter 6. Power Control Framework
6.3. Power Modes

6.3 Power Modes

Power modes cover the combinations of logic and RAM power states for a power domain and the associated clock,
reset and isolation control.

The PCSA defines a range of power modes, these are listed in Table 6.1.

Table 6.1: PCSA power modes

Logic RAM
Power Mode Short name Mode Mode Description

Debug Recovery DBG_RECOV ON ON Warm reset application with logic and memories on. This
Reset mode is used to enable reset of a component, while retaining
specific state for later debug analysis.

Warm Reset WARM_RST ON ON Warm reset application with logic and memories on.

On ON ON ON Logic on and any memory on. The component is functional.
Functional FUNC_RET ON RET Logic on with memories retained. The component is still
Retention functional.

Memory Off MEM_OFF ON OFF Logic on with memory off. The component is still
functional.

Full Retention FULL_RET RET RET Logic and memory in retention.
Logic Retention LOGIC_RET RET OFF Logic retention with memories off.
Emulated MEM_RET_EMU ON ON Logic on and memories on. This mode is used to emulate a

Memory memory retention condition without removing power.
Retention
Memory MEM_RET OFF RET Logic off with memories retained.
Retention
Emulated Off OFF_EMU ON ON Logic on and memories on. This mode is used to emulate a
power-off condition without removing power.
Off OFF OFF OFF Logic off and memories off.

The PCSA also defines the P-Channel PSTATE and PACTIVE bit values related to these power modes. These are
listed in Table 6.2.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 62
D Non-confidential

Chapter 6. Power Control Framework

6.3. Power Modes

DENO0050
D

Table 6.2: PCSA power mode PSTATE and PACTIVE usage

Power Mode PACTIVE bit PSTATE [3:0] Mode Priority
DBG_RECOV 10 0b1010 High
WARM_RST 9 0b1001
ON 8 0b1000
FUNC_RET 7 0b0111
MEM_OFF 6 0b0110
FULL_RET 5 0b0101
LOGIC_RET 4 0b0100
MEM_RET_EMU 3 0b0011
MEM_RET 2 0b0010
OFF_EMU 1 0b0001
OFF 0 0b0000 Low
Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 63

Non-confidential

Chapter 6. Power Control Framework
6.4. System Control Processor

6.4 System Control Processor

The system control processor (SCP) is a processor-based capability that provides a flexible and extensible platform
for provision of power management functions and services.

An overview of the SCP functions and services is given in 3.2 System Control Processor.

Figure 6.2 shows an example SCP hardware overview.

External Interrupt Inputs

Interrupt Controller

!

Processor
Core

k 2 k 2
IROMI IRAMI

1

Shared System Access

Private System Access «

Interconnect

AP Interfac

Primary

System Time Value <

System Counter

Messaging
Interface

Shared Peripherals

—-I Generic Timer(s) n

Secondary
System Counter

Watchdog

T

System Reset

System Control

Clock Distribution

)|
|
J
—-I System Control }
|
J

—b[Clock Control

PPUs) |}

Voltage
Regulator Control

Private Peripherals

System Control Processor

Power Control Interfaces

PMIC Interface

Figure 6.2: SCP example overview

NOTE: The exact structure of the SCP will depend upon the choice of processor and peripherals. This section
describes a generalized structure providing the capability required to support the functions and services described

in this document.

DENO0050
D

Non-confidential

Copyright © 2023 Arm Limited or its affiliates. All rights reserved.

64

Chapter 6. Power Control Framework
6.4. System Control Processor

6.4.1 SCP Components

DENO0050
D

This section describes the components of the SCP subsystem.

SCP Processor Core
The processor runs firmware that takes actions based upon requests, events and scheduled tasks.
SCP Processor Core Selection

The selection of the processor used in the SCP is dependent on the requirements of the system. A list is given
below of important items to consider:

* Processing Capacity: The SCP must have enough processing capacity to handle the tasks it is expected to
run, especially any tasks with real-time dependencies or where tasks might need to be handled concurrently.
Tasks that scale with AP core count, such as idle management and sensor monitoring, will typically dominate
utilization. AP core idle management is typically the most latency sensitive task load and the tail of the
latency distribution can be managed by the provision of enough performance to maintain an overall moderate
utilization. Selection criteria include the type of processor and the frequency at which it operates.

¢ Interrupt Types: Some processors have vectored interrupts that can ease the connection, handling, and
latency of interrupts, reducing or removing the need for software interaction to discover interrupt causes.

* Interrupt Priority and Latency: The intrinsic interrupt latency should be considered alongside other
interrupt features of the core. These can include hardware interrupt priority, interrupt nesting and tail chaining
between interrupt handlers, and hardware context switching between interrupt vectors. In the case of vectored
interrupts, the number of interrupt inputs available should also be considered. If this is too low and an
additional interrupt controller is required within the SCP this adds latency to the interrupt sequence in both
firmware and hardware

* Area and Power Consumption: The SCP will typically be always-on. Therefore, power consumption is an
important consideration. This is especially true for SLEEP states where the SoC might spend a considerable
amount of time.

* Debug and Trace: The ability to debug and profile the firmware is critical for development. Considerations
include the native debug and trace support of the SCP processor subsystem available when the SoC is in
SLEEP states and the integration into the broader CoreSight SoC debug and trace system.

* Trusted Operation: As the SCP controls sensitive parts of the SoC, security is a concern. The SCP runs
from private local memory and its firmware can be loaded through a trusted boot process allowing the SCP to
be inherently trusted. However, where the SCP needs to access other parts of the system, the security of this
and the components it accesses need to be considered.

For mobile systems, the SCP processor core might be an Arm Cortex-M microcontroller, for example a Cortex-M3.
Other systems might consider another Arm profile core such as a Cortex-R or Cortex-A. In all cases the choice is
dependent on the factors outlined above.

SCP Processor Core Memory
The processor has ROM for boot and RAM for storing firmware instructions and data. The ROM and RAM are

private to the SCP.

A possible implementation is that the ROM is used at boot to bring the system to a state where a host processor
can access the memory system and load, either directly or indirectly, the SCP firmware.

Trusted boot requirements for client systems are provided in the Trusted Board Boot Requirements — CLIENT [7]
specification.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 65
Non-confidential

Chapter 6. Power Control Framework
6.4. System Control Processor

DENO0050
D

The SCP firmware code and data spaces are entirely within its private RAM. The SCP can then operate while the
remainder of the SoC is off and system memory is unavailable. However, when available, the SCP can access
system memory and other parts of the system as required.

System Counters and Generic Timers

The system counters provide a common time reference for the SoC. Generic timers use the counter values to
produce interrupts and wake-up events. The primary system counter value is distributed to other system elements,
including application processors and debug infrastructure, to provide a consistent view of time.

The primary system counter resolution requires a clock source that, due to power consumption reasons, might be
turned off in SoC SLEEP states. The provision of a secondary constantly running low speed counter, typically
using a real-time clock source as its input, enables the required view of time to be preserved through SoC SLEEP
states. Generic timers using this counter are used to generate wake-up events in these states.

The SCP is responsible for managing the transfer of time between these system counters at entry to and exit
from SLEEP states to ensure a consistent view of time is presented to the system. This can be achieved with a
combination of hardware and firmware capability in the SCP.

For details on the ARMv7 Architecture System Counters and Generic Timers see the ARM Architecture Reference
Manual ARMv7-A and ARMv7-R edition [3].

For details on the ARMv8 Architecture System Counters and Generic Timers see the ARM Architecture Reference
Manual ARMVvS, for ARMVS-A architecture profile [2].

Watchdog

The SCP watchdog provides functionality to prevent system deadlocks. If the watchdog is not written to on a
regular basis by the SCP then the watchdog will produce an interrupt, and this will ultimately lead to a reset of the
system.

A syndrome register must be available to inform the SCP processor of the last reset cause so it can take appropriate
actions.

While the SCP provides this specific watchdog functionality, other system watchdogs might be managed by the AP
software. See the Server Base System Architecture (SBSA) [1] for specific requirements.

Voltage Regulator Control
The SCP manages voltage supplies for functions including post-boot switch-on, switch off and DVFS voltage level
changes.

The voltage supplies are typically provided by a separate power management IC. The voltage regulator control
component provides the interface for this function. The protocol of the interface is implementation specific
dependent on the choice of power management IC.

Clock Control
The SCP does not control run time dynamic gating of clocks at component activity level. This is managed by clock
controllers with hardware autonomous Q-Channel management.

The SCP manages clock source enabling, selection, and division. Clock sources might include off chip sources,
such as crystal oscillators, and on-chip sources such as PLLs. Each clock source will typically be able to be divided
to produce a multitude of frequencies for different components.

These settings might be static, set up once when a component is required or powered up, or changed at the request
of the component or related software, such as for AP or GPU DVFS.

For more details on dynamic clock gating see 6.5.2 Clock Controller and 7.1 Clock Control Integration.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 66
Non-confidential

Chapter 6. Power Control Framework
6.4. System Control Processor

System Control
The SCP can manage miscellaneous system control tasks. Where a specific responsiveness is not a constraint, this
can often be handled by register controlled outputs and interrupt inputs.

A simple application example is managing a four-phase request acknowledge handshake with a SoC component.
When hardware external to the SCP acts as the requestor, the request signal is connected to an interrupt line
conditioned to generate a pulse at each edge of the request. An input status register bit can also be used to determine
the level of the request. A control register bit driving an SCP output is used for the acknowledge signal. When the
roles are reversed so are the corresponding signal connections.

Figure 6.3 shows an example of this application where a SoC component acts as the requestor.
t1 2 3 t4 5 6 7 t8
Request /]
Acknowledge 7]
IRQ K» I\

SCP Actions Request High Actions

/

(. C

Request Low Actions J=——

Figure 6.3: System control handshake example

The inclusion of any system control registers and allocation of interrupts for this purpose is optional and depends
on system requirements.

Messaging Interface

To allow the communication of requests between the OSPM and the SCP messaging interface, through a software
interface such as SCMI, hardware support is required. While this can take several forms, the solution must be one
that is simple to describe generically to an OS. Schemes using shared memory mailboxes and doorbell interrupts
are typical and well suited to this purpose.

The messaging interface must be usable by any AP core in the system.

A typical embodiment is a simple piece of hardware that allows either entity to send and read messages and
generate interrupts to each other to indicate the availability of a message.

A typical OSPM to SCP communication method might be:
1. OSPM:

a. Stores a message in the mailbox memory.
b. Uses a doorbell register to generate an SCP interrupt.

2. SCP receives the interrupt then:

a. Reads the message from the mailbox memory.
b. Clears the doorbell interrupt.

3. SCP acts based on the message. SCP might also send a callback response, using the same operation but in
the opposite direction.

In a system with self-managed devices or subsystems capable of directly requesting SCP to take actions the
messaging capability would be required to be extended to allow communication between these agents and the SCP.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 67
D Non-confidential

Chapter 6. Power Control Framework
6.4. System Control Processor

DENO0050
D

Power Policy Units

Power Policy Units (PPU) are specialized hardware components used to abstract low level control of power
domains away from the SCP firmware. The SCP firmware makes only high-level power domain policy decisions
and programs them into the PPU.

The number and location of PPUs depends upon the topology of the design. A minimum of one PPU is located
within the always-on domain, to provide a first level of system wake capability.

Other PPUs can be distributed around the SoC as described in 7.2.3 Distributed PPUs.
See 6.5.1 Power Policy Unit for more details on the PPU.

See 7.2 Power Control Integration for more details on the integration of PPUs.

Sensor Control

The SCP is anticipated to be able to access on-chip process, voltage, and temperature sensor information either
through a dedicated peripheral, or using the SoC interconnect.

Additional Peripherals

Additional peripherals can be included which are private to the SCP. Typically, these are always-on domain
peripherals providing wake-up functionality.

Peripheral Access
In general, SCP peripherals are privately mapped for security reasons. Two important exceptions, mapped in both
SCP and AP address spaces, are identified in the example of Figure 6.2:

* Primary system counter: AP software must be able to access the system counter as a requirement of the
Generic Timer specification.

* Messaging Interface: Shared access is required to facilitate the messaging mechanism described in 6.4.1 .

For SCP peripherals that are outside of the always-on subsystem, such as distributed PPUs, the SCP might support a
physically private peripheral extension port or rely on shared interconnect resources. In case of shared interconnect,
the SoC integrator must consider security controls on access to these peripherals by other agents.

System Access
The SCP is anticipated to have access to the wider SoC resources, including peripherals and memory, using the
shared system interconnect.

Access to SoC resources allows the SCP to perform actions as part of power control sequences. This could include
configuration of components and save and restore functions. For example, the configuration of interconnect and
memory controller components.

Limiting this access, except where necessary, is not recommended as it restricts the tasks that the SCP can perform.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 68
Non-confidential

Chapter 6. Power Control Framework
6.5. Power Management Infrastructure Components

6.5 Power Management Infrastructure Components

6.5.1 Power Policy Unit

DENO0050
D

This section gives an overview of the Power Policy Unit (PPU). Complete details of the PPU can be found in the
ARM Power Policy Unit Architecture Specification [6].

The PPU is a standard component for abstracting software-controlled power domain policy down to low-level
hardware control signaling. In a typical arrangement, one PPU is used to control each power-gated domain.

The SCP firmware can program the power policy of a PPU. This policy can be either a static power mode, or a range
of modes that the PPU can transition between dynamically. This dynamic behavior is based on activity indicators
from component LPIs without the need for further SCP programming. This enables hardware autonomous modes,
such as dynamic retention, that can be entered and exited transparently to software. This provides responsive
power control enabling components to be in the lowest power state possible, while maintaining functionality, with
only policy level control from the SCP.

Figure 6.4 shows the PPU interfaces.

PCSM Interface

PCSM P-Channel

!

>E< Low Power .
Software | BUS Interface —— Power - Interfaces gg:‘l;:;
Interface interrupt «—— Policy Unit | 7= Clock, Resetand [yterface
|, Isolation Control

Figure 6.4: Power Policy Unit interfaces

The PPU interfaces are:

* Software Interface: A bus interface for programming, for example AMBA APB, and an interrupt that is
used by the SCP for PPU configuration and policy control.

¢ Power Control State Machine (PCSM) Interface: An LPI to communicate power state changes to the
PCSM that controls implementation and technology specific aspects of power control such as power switch
and memory retention control.

* Device Control Interface: Low-level control for components within the power domain. It includes:

— One or more LPI, depending on the needs of the components in the power domain.
— Device controls, including clock enables, resets, and isolation controls.

Figure 6.5 shows how these interfaces are connected.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 69
Non-confidential

Chapter 6. Power Control Framework
6.5. Power Management Infrastructure Components

DENO0050
D

Power Switch Control ‘T
PCSM Retention Control
A mmmmmmmssmsmsssmseadeaaaa =
Pfﬁ‘:w E i Power Gated Domain E
x _ Device Interface LPI P 1
SW IF >) Resets i i i
SCP Interrupt PPU Clock Enable ! Component E
< 1
1 1
Component [ciock] ! i
: Clock Gate [y [
' 1 1
s ' !
H | (.
i 1
H Isolation Enable ¢ £ y
. > Isolation i
v

Domain Outputs

Figure 6.5: PPU integration example

A power-gated domain can contain more than one component which means there can be multiple LPIs. Dependent
on the clock and reset domains of the components in the power domain there can also be multiple resets and clock
enables.

The dotted lines show control signal connections which are not normally present in the RTL but will be added as
part of a synthesis flow using UPF or similar means.

For more details on PPU integration see 7.2 Power Control Integration.

Power Control State Machine (PCSM)

Low level power control details such as power switch control or control signals for logic or RAM retention
can be technology and cell library specific. To avoid modification of the core PPU function it interfaces to an
implementation dependent power control state machine (PCSM) that controls these elements. This allows the PPU
to be a generic and re-usable standard component.

The power control state machine is controlled from the PPU with a P-Channel LPI interface. The PCSM converts
the P-Channel power mode requests to implementation dependent controls.

Reset Control

The PPU provides resets for the power domain. This ensures that the relevant resets are applied to maintain the
correct component state when entering and exiting power modes.

The PPU has multiple reset outputs that are used in different power modes dependent on the reset action required.

For example, there are separate resets for retention and non-retention components. When a domain is in a retention
mode, the retention registers must not be reset, since the retained state would be lost. However, non-retention
registers do need to be reset.

There can also be differences between warm and power-on resets. On a warm reset some state might be required to
be preserved, such as for debug or RAS purposes.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 70
Non-confidential

Chapter 6. Power Control Framework
6.5. Power Management Infrastructure Components

Clock Control
The PPU provides clock gating controls for the power domain. This ensures that clock inputs can be gated as
required to maintain safe and correct behavior when entering and exiting power modes.

The PPU provides multiple clock enables for use in different power modes. For example, when the off state of a
power domain is emulated for debug purposes. In this case, certain clocks need to remain enabled to allow debug
access to the component.

NOTE: The PPU controls the clocks to manage power mode requirements, not activity based high-level clock
gating. High-level clock gating is managed by a clock controller, for more details see 6.5.2 Clock Controller and
7.1 Clock Control Integration.

Isolation Control
The PPU provides isolation cell controls for the power domain. These controls are used to ensure that no floating
values are propagated when the domain is powered-off.

The PPU provides multiple isolation controls for use in different power modes. For example, when the off state of a
domain is emulated for debug purposes. In such a case, certain isolation cells might not be enabled to allow debug
access to a component while the remaining isolation cells are enabled corresponding to the functional behavior of
the domain.

PPU Policy Support
The PPU supports two power domain mode groups, power modes and operating modes.
Power Modes

The PPU supports all the PCSA defined power modes as specified in Table 6.1.

Not all PPUs are required to support all modes, so power mode support is design time configurable.
Operating Modes
Operating modes represent configurations of the standard power modes, or the power domain in general. The

meaning of each operating mode is specific to one or more components within the domain.

Operating mode transitions occur when in the ON power mode, however the operating mode can maintain context
in certain other power modes, for example, power modes with retention.

Some examples of uses for operating modes are:
* To enable multiple RAM configurations:

— For example, resizing caches while a component is active, to save leakage power by powering off some
RAM instances.

* Thread management within multi-thread processor cores.

— Ensures correct thread management as interrupts for a logically powered-off thread are only available to
the power control infrastructure outside of the processor.

» Configuration and access control management, for example, to enable save/restore operations.

Operating modes and the expected use models are specified in the ARM Power Policy Unit Architecture Specification

[6].

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 71
D Non-confidential

Chapter 6. Power Control Framework
6.5. Power Management Infrastructure Components

DENO0050
D

Emulated Power Modes

To enable components to be debugged through power-off the PPU supports emulated power modes.

When a power mode is emulated the PPU completes all the normal control sequences except for the communication
with the PCSM. This means, for example, that power switches are not turned off.

Some parts of the design can emulate power-off by asserting the appropriate resets causing a loss of state and
functionality. Other parts of the design are required for debug access, or contain debug state, so remain functional
with resets de-asserted. The PPU supports different resets to provide this capability.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 72
Non-confidential

Chapter 6. Power Control Framework
6.5. Power Management Infrastructure Components

6.5.2 Clock Controller

The clock controller is used to provide high-level clock gating for components in a clock domain that have either
Q-Channel LPI clock gating support, or AXI LPI clock gating support according to the restrictions outlined in
6.2.3.

NOTE: The use of AXI LPI is deprecated by the PCSA and must only be used for interfacing with legacy
components.

Figure 6.6 shows the clock controller interfaces.

Clock Gate Interface

Clock Enable
. . Hierarchical Power
Huérgrr:;:\:;al Control Q-Channel Clock < __, Component [Component
Interface Hierarchical Clock Controller PEENG Q-Channels Interface
Control Q-Channel

Figure 6.6: Clock controller interfaces

The clock controller interfaces are:
* Clock Gate Interface: This is a clock enable signal to control a clock gate.

* Component Interface: Consisting of one or more Q-Channel interfaces, depending on the needs of the
domain.

 Hierarchical Control Interface: This consists of a power control and clock control hierarchical Q-Channels
to allow control over the clock controller from higher level components.

The clock controller combines clock control LPIs from multiple components to manage a single clock domain. It
uses the LPIs to ensure all components are in a quiescent state before the clock is gated. It also ensures the clock is
running again before any component leaves the quiescent state.

The clock controller allows LPIs to be controlled asynchronously so that the synchronous clock enable from the
clock controller can be connected to a clock gate at the root of the clock tree. This high-level clock gating can
result in near zero dynamic power in idle scenarios.

This high-level clock gating control does not exclude any clock gating from being implemented inside components
at a finer granularity.

NOTE: The clock controller does not include the clock gate but provides an enable that must be used synchronously.

For more details on the clock controller function see the ARM CoreLink PCK-600 Power Control Kit Technical
Reference Manual [8].

For more details of clock controller integration see 7.1 Clock Control Integration.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 73
D Non-confidential

Chapter 6. Power Control Framework
6.5. Power Management Infrastructure Components

6.5.3 Low Power Distributor

A PPU or Clock Controller are typically required to communicate with many components within a clock or power
domain.

A Low Power Distributor (LPD) distributes a single Q-Channel or P-Channel to multiple channels.
It can either send all output channel requests simultaneously or sequence them one after another.

The LPD for both Q-Channel and P-Channel protocols is available as part of the CoreLink PCK-600 Power Control
Kit. For more information see the ARM CoreLink PCK-600 Power Control Kit Technical Reference Manual [8].

6.5.4 Low Power Combiner

Some components, such as protocol bridges between power domains, are required to be controlled from the
controllers of multiple power domains. To achieve this a Low Power Combiner (LPC) can be used to control a
Q-Channel component from multiple Q-Channel controllers.

The LPC requests component Q-Channel quiescence when any controller Q-Channel becomes quiescent. It
requests exit of component Q-Channel quiescence when all controller Q-Channels are non-quiescent. This allows,
for example, a power domain bridge to be made quiescent when any of its associated power domains are entering a
low power mode.

The LPC is available as part of the CoreLink PCK-600 Power Control Kit. For more information see the ARM
CoreLink PCK-600 Power Control Kit Technical Reference Manual [8].

6.5.5 P-Channel to Q-Channel Convertor

DENO0050
D

A P-Channel controller can also be required to control Q-Channel components within a power domain.

The P-Channel to Q-Channel Convertor (P2Q) converts a P-Channel request to a Q-Channel request. It is
configurable how the power modes map to either Q-Channel quiescent or running states.

The P2Q is available as part of the CoreLink PCK-600 Power Control Kit. For more information see the ARM
CoreLink PCK-600 Power Control Kit Technical Reference Manual [8].

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 74
Non-confidential

Chapter 7
System Power Control Integration

This chapter describes the system integration of power management features in the following sections:
e 7.1 Clock Control Integration.
e 7.2 Power Control Integration.

* 7.3 Reset Control Integration.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved.
D Non-confidential

75

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

7.1 Clock Control Integration

This section describes:
* Levels of clock gating.
* Clock gate placement to achieve maximum effect.
* Integration approaches to achieve effective and efficient clock gating implementation.

A clock tree is built of clock buffers that propagate the clock over the physical distance between the clock source
(a clock input or a PLL) and the clock endpoints (registers or RAMs). Additional buffers are added on branches of
the tree to balance the clock arrival time at each synchronous endpoint. This helps to achieve timing closure by
allowing the maximum time for logic propagation between synchronous elements.

Clock switching in the clock tree buffers consumes dynamic power regardless of whether any useful work is being
done at the endpoint. Therefore, to make a power efficient system it is required to gate the maximum amount of
the clock tree possible in addition to the endpoints.

Without high-level clock gating, clock tree power dominates dynamic power consumption in idle scenarios.

7.1.1 Clock Gating Levels

DENO0050
D

There can be multiple levels of clock gating within a system. This specification uses the following classification:
* Low-Level: Clock gates inserted automatically by synthesis tools.
¢ Mid-Level: Instantiated clock gating, typically synchronously controlled, within components.
» High-Level: Instantiated gating of entire clock domains.

These clock gating levels are all complementary and should be implemented regardless of the presence of other
levels within the structure. Each level has benefits with different levels of power saving and temporal granularity.

Figure 7.1 provides an illustration of these clock gating levels.

- T T ﬁl
[
| »D» CLK |
| Component | |
| |
| |
|
| I~ . |
| vl/ > -
| e == —4 ||
([
[I
Clock Clock | I I
Source Gate > | 11
ynchronous
[| Synch
Clock I______I I I
| Asynchronous | Enable en 1 I
[Clock | | | |
Enable I I
I | .| clock I | clock S I
7| Gate I' Gate r I I I
! I [Coniislc ottt/
l | mid Level Clock Gating ~ " " " " "~ o
[
| High Level Clock Gating Component | |
_______________________________ -

Figure 7.1: Clock gating hierarchy

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 76
Non-confidential

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

Low-level Clock Gating

Low-level clock gates are inserted by synthesis tools. They are placed directly in front of a group of flip-flops and
replace the enable functionality therefore saving both area and power.

Low-level gates are very granular. In the ideal case an endpoint with a low-level clock gate is gated whenever the
flip-flop is not being updated. However, they gate only the flip-flops and not the clock tree and additionally cannot
be placed on the entire design for reasons explained below.

The enables for these clock gates are inferred from the functional enables, expressed in the RTL, for the flip-flops.
A clock gate is inserted where a functional enable is shared by a minimum number of flip-flops. This minimum
number is set by the synthesis constraints and is typically based on the power-area break-even point of the
re-structuring.

Figure 7.2 and Figure 7.3 illustrate a standard flip-flop enable, using multiplexor feedback, and how this is
restructured by synthesis tools to add a clock gate for the flip-flops.

v
o]

D —»
EN4T T -

CLK

Sl
P

Figure 7.2: Standard flip-flop enable

]
D > > Q
EN —] >
Clock
CLK — Gate

Figure 7.3: Low-level clock gated flip-flop

However, some flip-flops do not have a low-level clock gate inserted by the synthesis tool because:
* No enable is present.
* The enable is not recognized by the synthesis tool.

— This can be due to the enable being too logically complex, or not structured in a way that the synthesis
tool can easily recognize.

 Enable terms might be too logically complex to create within a required timing window.

* The number of flip-flops controlled by an enable is less than the minimum threshold set by the synthesis
constraints.

Therefore, low-level clock gating, while very important, is not enough to produce a fully power efficient system
due to the lack of clock-gating coverage on sub-sets of flip-flops and most of the clock tree.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 77
D Non-confidential

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

DENO0050
D

Mid-level Clock Gating

These clock gates are instantiated by the designer in the RTL to gate complete blocks of logic that are idle during
periods of operation.

The enables are controlled by the surrounding logic and are typically enabled and disabled synchronously in a
single clock cycle to be transparent to functional operation. As these enables need to meet synchronous timing
requirements the clock gates are still placed low in the clock tree. This placement avoids skew between the logic
and the clock gate that shrinks the enable timing window.

While gating larger parts of the design, these mid-level clock gates do not gate large portions of the overall clock
tree. The exact amount of gating depends on the timing requirements of the design and the logical complexity of
the enables. Additional gating is required to make a fully power efficient system.

High-level Clock-Gating
These clock gates are inserted per-clock domain and are placed ideally at the root of the clock tree. This placement
results in near zero dynamic power when a clock domain is idle.

The clock latency between the clock root and the endpoints is typically greater than the timing window allowed for
a synchronous signal to propagate. Therefore, enable control signaling must be treated as asynchronous to the
clock endpoint.

This creates problems for dynamic clock gating due to the delay between:
* The device being idle, and the clock being gated.
* A request for the device to be active and the clock becoming available.

Consequently, there needs to be a method to provide guarantees associated with clock supply and removal to
ensure the correct operation of components. This is described in 7.1.2 High-Level Clock Gating Methodology.

Although this technique provides the maximum saving, the granularity with which it can be applied is much lower,
so it is important that it is used in combination with the other gating levels.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 78
Non-confidential

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

7.1.2 High-Level Clock Gating Methodology

DENO0050
D

This section describes a methodology for managing high-level clock gating using the Q-Channel low-power
interface to provide functional guarantees. Multiple components can be combined into a single clock domain with
a common high-level clock gate.

Figure 7.4 provides an example where a Cache Coherent Interconnect (CCI) and Network Interconnect (NIC)
share a common high-level clock gate:

ACE ACE
REQUESTOR REQUESTOR REQUESTOR REQUESTOR

P T Y L L L L LT

i Clock’'Domain

ACE

ACE

<

Responder

Copyright © 2023 Arm Limited or its affiliates. All rights reserved.

]
i
Cc i
T
L i
1

: Q-Channel

AN Q-Channel

CCI [] Q-Channel
"
1
1
| i

-

NIC i
]
1

AXI AXI

[
1
1
[}
1
[}
[}
L}
L]
1
I
L
L
L
1
1
1
[}
L}
L]
L}
L}
I
L
Ll
1
1
1
[}
>)
x 1
L}
)
I
L
> I 1
1
= 1 y
[}
[}
-

Responder Responder Responder

Clock
Controller

Clock
Gate

Clock

Figure 7.4: High-level clock gating for multiple interconnect components

Non-confidential

79

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

7.1.3 High-Level Clock Domain Selection

When implementing high-level clock gating it is recommended to partition clock domains at either asynchronous
boundaries or at other natural divergences in the clock tree such as a power domain boundary.

Figure 7.5 shows a simple example of components partitioned into two clock domains separated by an asynchronous
boundary.

Component

£,

Asynchronous
Bridge (Responder)

H v
]
Clock eibek ' Asynchronous
B D 1 Bridge (Requestor)
n
: 3
i
—D—:—b Component
:

1

—D—r" Component

Figure 7.5: Clock domains example

The two clock sources can be gated independently at their clock root. During active periods, any lower level clock
gating implemented within components provides complementary benefit.

This arrangement is most effective when all the components within a clock domain have similar high-level activity
requirements, such as a flow of bus transactions through them.

Conversely, if components are combined into a clock domain with highly mismatched activity requirements then
the effectiveness of the high-level clock gating is reduced. A trade-off exists between the number of clock domains
implemented, any latency introduced by additional asynchronous crossings, and the benefit from high-level clock
gating.

It is also possible to implement high-level clock gating for multiple synchronous clock domains with communication
between them. However, this creates non-common clock insertion paths that places pressure on clock tree balancing.
The consequences of are that:

* The high-level clock gate is placed lower in the tree to increase the common clock path.
— As shown by the red arrow in Figure 7.6.
— This reduces the effect on timing but reduces the effectiveness of the clock gating.
* The increased balancing effort leads to higher clock buffer power.
— This increases overall power when the paths are not clock gated.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 80
D Non-confidential

Chapter 7. System Power Control Integration
7.1. Clock Control Integration
— This increases the number of buffers on each path so increases overall power.

These circumstances also occur if a free-running clock domain has synchronous interfaces to a high-level clock
gated domain.

Figure 7.6 shows an example of the second case.

[} ¢
* 1 Clock DomainB
'
Clock " i
W o 1| Component !
1 1
frmmmmm e > I 1
Source synchronous interface
.- LB BB] LR B8 & N 2
' :
' 1
v 1
1
free-running clock 1 Clock’'Domain’ B :
o -

Figure 7.6: Clock insertion pressure

In Figure 7.6 the dotted arrow shows the pressure on clock gate placement caused by the difficulty of implementing
balanced clock paths for both the high-level clock gated and free-running clock domains because of the synchronous
interfacing between them.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 81
D Non-confidential

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

7.1.4 Clock Gating Control Integration
High-level clock gating is implemented using a clock controller component for each clock domain. The clock

controller supports clock gating for multiple components with one Q-Channel interface to each component.

This type of clock gating is supported by most Arm components. Most components use a Q-Channel. Some earlier
components use an AXI LPI, use of this interface with a Q-Channel clock controller is restricted. The restrictions
on the use of AXI LPI with a Q-Channel controller are detailed in 6.2.3 .

NOTE: The use of AXI LPI is deprecated by the PCSA and must only be used for interfacing with legacy
components.

The clock controller is described in 6.5.2 Clock Controller.

Component design considerations for Q-Channel clock gating are detailed in 8.2 Component High-Level Clock
Gating.

Clock Controller Connections

Figure 7.7 shows the clock gating arrangement for a single component within a clock domain.

o || Clock
Clock &

A
Clock
Enable

:

Clock _LPI
Controller

A A

1
:
Component i
:
L

1 Clock’'Domain

Figure 7.7: Clock gating with a single component

There can be many components within a clock domain. Each component can have a clock control Q-Channel.
These are combined and managed by the clock controller.

Figure 7.8 shows this clock gating arrangement for multiple components within a clock domain.

Clock B [>[>-[>—l
Clock R .
Enable [1
1 1
1 1
LPIx ;.
Clock > - Component i
< [
Controller :)
i i
i i
1
’ Component]
E :
] 1
[1
: i
~—| Component |
[
i i
1 1
1 1
! 1

Clock'Domain

Figure 7.8: Clock gating with multiple components

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 82
D Non-confidential

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

DENO0050
D

If a component has multiple clock domains it requires multiple clock control Q-Channels, one for each clock
domain.

Figure 7.9 shows an example of a clock gating arrangement including a component with multiple clock domains.
An example of this could be a component which has separate functional logic and bus interface clock domains that
can be gated independently. The high-level gated bus interface clock could be shared with many components, such
as an interconnect, while the functional clock might be dedicated to that component.

Clock iock i Clock Domain A 4
A Gate (1 :
[]
A M 1
Clock H 1
Enable e 1
v i
Clock _LPI I E
Controller ; Component ;
- - - --l
Pl [™A
Clock < 074 !
LPI ' 5
Controller | : '
! |}
Clock H 7 :
} Enable ~—> Component i
Clock Clock H 1
B - D D D 1 Clock Domain B E

-

Figure 7.9: Clock gating a component with multiple clock domains

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 83
Non-confidential

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

DENO0050
D

Clock Controller Placement

The aim is to place the clock controller at the root of the clock tree, using the free-running source clock as its input.
The clock controller provides a synchronous clock gate enable output. This synchronous enable control is required
so that the clock controller can ensure the clock availability guarantees of the Q-Channel protocol.

This placement of the clock controller means the Q-Channel interface between it and the components must be
treated asynchronously to allow for the clock tree insertion delay between them. The Q-Channel handshake with
the component provides a robust asynchronous interface to facilitate this.

Figure 7.10 shows an example with two components in one clock domain that can be used for discussion of
physical design constraints.

Clock

@ Clock

10
c:mk Enable Clock

s Controller

A A

0
(©)
3
©
(©)
=
(1)
=
=3
y 3
A\ 4
(@)
(©)
3
©
o
=
(1)
=
~

Figure 7.10: Clock gating constraints

To achieve the maximum benefit from high-level clock gating the following is recommended:

* The clock controller and the high-level clock gate clock input are placed in one clock endpoint balancing
group. This is marked as group 1 in Figure 7.10.

* The components of the clock domain are placed in a second clock endpoint balancing group. This is marked
as group 2 in Figure 7.10.

* The two groups are balanced separately.

» All LPI signals, between the two balancing groups, are treated as asynchronous in both directions.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 84
Non-confidential

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

DENO0050
D

Clock Domain Crossing

Clock domain crossing requires both synchronization of signals and careful management of clock speed differences.
For a commonly used protocol, such as a bus interface, a reusable domain bridge component that addresses these
problems, such as CoreLink ADB-400, will normally be used.

A domain bridge typically consists of:
* A responder interface that receives transactions and passes them over an asynchronous boundary interface.

* A requestor interface that receives the transactions from the asynchronous boundary interface, converts them
back to the appropriate protocol and re-transmits them to downstream components.

Figure 7.11 shows the clock control arrangement between clock domains connected with an asynchronous domain
bridge.

A 4

Component

I
I
1
1
| |
|}
Enable !
n
LPI i 4
|
1
| |
:
|]
]
|]
n

A

Clock

Controller |2 Domain Bridge

(Responder)

-

Clock ! 1 i
B . — :

i | Domain Bridge |

Enable ; (Requestor) :

_LPI E 3 1

Clock < ; E

Controller |2 ts| component | !

= E

E Clock’ Domain’ B E

Figure 7.11: Clock domain crossing with an asynchronous domain bridge

The asynchronous domain bridge might be split into two halves. When the domain bridge is used at a voltage
or power domain boundary one half can be placed in each domain. For more information see 7.2.7 Voltage and
Power Domain Boundaries.

To enable high-level clock gating there must be a wake-up signal, asserted when a transaction enters at one side of
the domain bridge, that forms a contribution to the QACTIVE at the opposite side of the bridge. The QACTIVE
signal is driven HIGH whenever one side of the bridge has a transaction pending for the other side of the bridge.

Figure 7.12 shows this arrangement for QACTIVE generation at one side of an asynchronous domain bridge.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 85
Non-confidential

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

DENO0050
D

Clock Domain A}

[
[]
: i
[1
i | Domain Bridge | i
i (Responder) '
Clock ~Q-Channel v/~ .
Controller 54 I e i
: 4 :
L} 1
n 1
I 1
L v et 3
Y, 4. AAIIIIAAYY, ‘:
]
_QACTIVE ! - .
" QREQn 1 b i
el ACCEPTN | / 9 ;
Controller |& DENY"E i
PR i— Domain Bridge | 4
; (Requestor) i
i i
[} 1
[}

Figure 7.12: QACTIVE generation between asynchronous domain bridge slices

An asynchronous domain bridge can be implemented with:
* QACTIVE-only clock control support, such as CoreLink ADB-400 up to release 2.
¢ A complete Q-Channel for each clock domain, such as CoreLink ADB-400 release 3.

A domain bridge implementing a full Q-Channel for clock control at each side supports high-level clock gating as
a standalone component without dependencies on other components.

In the case of a domain bridge with QACTIVE-only interfaces, the QACTIVE signals must not be used directly
for any clock control. High-level clock gating can only be supported if the domain bridge is connected directly to a
component with full Q-Channel clock gating support. The connected component is responsible for managing the
transaction flow according to the clock guarantees provided by the Q-Channel handshake.

In the case of a connected component not supporting Q-Channel based high-level clock gating then the clock at
that side of the bridge must be provided by the system whenever the bridge is required to be operable.

Figure 7.13 shows the detail of the connections in case of QACTIVE-only asynchronous domain bridge with
components supporting a full clock control Q-Channel at both sides.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 86
Non-confidential

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

Clock'Domain/A

i E
QREQn v i
7 1
_ QACCEPTn H .
Co‘ﬂfrf,',‘,e,j QDENY 7| Component | i
- 1
QACTIVE H '
i i
- 3 ;
|}
+ | Domain Bridge | i
Clock ! (Responder) A
1
A E A E

H v 1

¥ 1

1| Domain Bridge | i

H (Requestor) 1

H 1

1 1

; { ;

QACTIVE ! :

. 1

Clock QREQn v i
| controller|, oaccerTn : Component E
 QDENY ! i

< : i

: !

'Clock'Domain’B 1

Figure 7.13: Integration of QACTIVE-only asynchronous domain bridge

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 87
D Non-confidential

Chapter 7. System Power Control Integration
7.1. Clock Control Integration

DENO0050
D

Clock Domain Scope

In some cases, components without any explicit support can be incorporated into a high-level clock gated domain.
This can be achieved when a component only requires clock activity during periods when another component with
LPI clock gating support will guarantee clock supply is maintained.

Typically, these conditions are satisfied only when there is a dependency between the operation of the component
guaranteeing clock supply and the component reliant on that guarantee.

Figure 7.14 shows an example of this concept.

Requestor Requestor
- Clock A
NIC P
Clock
Y J + “|Controller

RAM | Businterface i
i (Clock Domain'A) +
I ol ol o o o w w
5 e o o o e 3 59 o "
i Functional Logic L_ Clock B
i (Clock Domain B) } %47 oc
VSV TI IV,
Peripheral Component

Figure 7.14: Clock domain scope example

In Figure 7.14 the NIC interconnect uses its LPI to guarantee clock supply whenever it has outstanding transactions
at its interfaces.

A clock domain, using clock A, contains the NIC, the RAM, and the bus interface portion of the peripheral
component. Neither the RAM nor the bus interface portion of the peripheral component provide LPI support for
clock gating.

A clock domain, using clock B, contains the functional logic portion of the peripheral component. Clock B might
be gated by an independent clock controller, but this is not considered further in this example.

If the RAM and the bus interface portion of the peripheral component only require a clock while bus transactions
are outstanding, then the clock controller can be used to gate clock A.

This technique can be applied, with careful analysis of topology dependencies and component clock requirements,
to interconnect components without LPI clock gating support downstream of components with LPI clock gating
support.

NOTE: In all cases a detailed analysis of the clocking requirements for each component must be carried out. For
the RAM component example this is likely to be straightforward. However, the peripheral component could, for
example, rely on bus interface clock activity for capturing status changes, such as interrupts, from its functional
logic and therefore would not be suitable.

7.1.4.1 Clock Controller Reset

The clock controller must be reset in one of the following conditions to ensure the Q-Channel protocol is maintained
between controller and components.

¢ All Q-Channels are in the Q_STOPPED state.
* The reset is also applied to it and all connected Q-Channel components at the same time.
— This ensures that any consequent protocol violation cannot be observed by the connected components.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 88
Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

7.2 Power Control Integration

The power mode of a component is controlled by the SCP using a PPU. As the PPU is in a different voltage or
power domain, and typically in a different clock domain, the power control interfaces must support asynchronous
operation. More information on the PPU can be found 6.5.1 Power Policy Unit and [6].

The Arm LPIs provide robust clock domain crossing semantics for asynchronous interfacing. The interface
handshake protocols provide guarantees to ensure components are in safe state for power mode transitions.

The clock control LPI and the power control LPI must be separate interfaces on a component. They are required to
be separate as they have independent control points.

Once an LPI request has been accepted by all controlled components in a power domain the PPU communicates
with the PCSM. The PCSM manages the physical changes of the domain such as power switches, retention controls
and voltage levels.

The following sections give an overview of how components are connected to create managed power domains.

7.2.1 Power Domain Wake Events

Signals from various parts of the system can be used as stimulus to wake a power domain. Such signals should be
level sensitive and stay asserted until the request is met or while the requirement is still applicable.

Due to the nature of these requests in most cases they are required to cross an asynchronous clock domain boundary
or a large physical distance. In these cases, it is impractical to balance the clock to ensure the signal is captured
correctly.

Additionally, when a SoC is in a low power state it is likely that clocks will be gated, and if the wake-up has a
transient nature, such as a pulse, it means that even if it acts as a stimulus to re-enable clocks it will be unlikely the
pulse will still be present when the receiver is ready to capture the signal.

Sources such as pulse-based interrupts therefore cannot be used as wake-up signals or must be conditioned so they
are level sensitive.

7.2.2 Hardware Abstraction with Power Policy Units

DENO0050
D

For the SCP firmware to directly manage many low-level signals would be time consuming and expensive in
terms of processor runtime, interrupt inputs and system control outputs. This might lead to the requirement to run
the SCP core at a higher frequency or to choose a higher performing core in a power sensitive area. It will also
adversely impact the response to power mode changes due to interrupt latency and conflicting processing tasks.

To manage this scenario the PCSA makes use of hardware abstraction by including power policy units (PPU). SCP
firmware makes a policy decision for the power domain based on the requirements of the system but delegates the
low-level management to a PPU. Each domain has its own PPU.

The PPU also introduces a level of autonomy where the hardware can enter and exit low-power modes without
needing to involve the SCP firmware.

This autonomous operation is especially important for power modes that require fast response times. An example
of this is logic or RAM retention states, where no state is lost, and the operation can save power and be transparent
to software. This must add minimal latency, so performance is not adversely affected. With the PPU programmed
for dynamic operation it can request entry and exit from allowed power states based on the PACTIVE status.

Figure 7.15 shows an example power-gated domain arrangement using a PPU to interface with the power domain
components.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 89
Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

DENO0050
D

Power Switch Control I

SWIF

SCP Interrupt PPU

I N

\ 4

Component

v

\ 4

Component

Component

Power Gated Domain

Figure 7.15: Power-gated domain control with a PPU

The PPU manages the physical changes of the domain such as power switches, retention state, and voltages levels

without needing to interrupt the SCP firmware.

The PPU software registers must be accessible to SCP firmware. The PPU must be placed in a power domain that

is relative always-on to the power domain it is controlling.

An overview of the PPU and its interfaces is given in 6.5.1 Power Policy Unit. Complete details of the PPU can be

found in the ARM Power Policy Unit Architecture Specification [6].
PPU placement is discussed further in 7.2.3 Distributed PPUs .

Copyright © 2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

90

Chapter 7. System Power Control Integration
7.2. Power Control Integration

7.2.3 Distributed PPUs

DENO0050
D

The placement of PPUs is an important consideration. The simplest approach is to place all the PPUs with the
SCP in the always-on domain. With all PPUs in one hierarchy, integration concerns such as address mapping,
interconnect, clocking and resetting are straightforward. However, there are several reasons why this might not be
the best choice.

Firstly, in a complex system there might be many component LPIs and it might not be desirable or practical to
connect large amounts of wires across the SoC to the always-on domain.

Secondly, to enable the PPU to react quickly, where fast entry to and exit from power modes is required, it is
advantageous to use a clock that is close to the power domain clock frequency. It is not desirable to route high
speed clocks to multiple subsystems to achieve this.

These concerns can be resolved by distributing the PPUs throughout the system placing them close to the power
domains they control. From a communication perspective, the distributed PPUs can then be programmed through
re-use of the existing SoC interconnect.

This placement means that the clock sources supplied to the power domain under control can be used locally to
maximize PPU responsiveness. Even though the PPU might use the same clock source as the component it is
controlling, as it is in a different power, or even voltage, domain the interface is still required to be treated as
asynchronous to minimize timing closure costs.

The distributed approach can also assist the encapsulation of functionality into subsystem building blocks, easing
the construction of large systems.

Figure 7.16 shows an example of this type of arrangement.

Always On Domain Power Domain Key
[H ===l Software Interface
1 H @) Low Power Interface (LPI)
Power i !
SCP . . =l=p| Component i
Policy Unit ' P '
H A ;

Power
Policy Unit

System Interconnect

'Y

A 4

Power
Policy Unit

o Component Component

Power Domain

Figure 7.16: Distributed PPU overview

This approach requires a hierarchical arrangement of power domains, such that the PPU for a domain must be
powered-on, and be accessible by the SCP, before further sub-domains can be powered-on. There must be a
minimum of one PPU in the always-on domain to power-on the first power-gated domain. However, more than one
PPU might be needed in the always-on domain depending on the power domain hierarchy of the system.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 91
Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

7.2.4 System of Systems

DENO0050
D

Some SoC subsystems might themselves be complex entities and there might be reasons for such a subsystem
to have its own local control processor (LCP). With some minor differences, the subsystem power management
structure reflects that of the SoC, therefore such an arrangement is called a system of systems.

Figure 7.17 shows an example of a system of systems.

Power Domain

Key
== Software Interface
== Low Power Interface (LPI)

Power Domain

Power Domain

Power
C
T Policy Unit v
Local Interconnect]-
i 2
Power - iAlways On Domain
Policy Unit Local Control o : ——

BIocesoon Policy Unit i ek Policy Unit
i
i
i

System Interconnect |

Power

") € C
Policy Unit ' p

Power Domain Power Domain

Figure 7.17: System of systems overview

The subsystem in Figure 7.17 has its own LCP. This approach can be applicable to both devices with self-managed
capabilities and as a method to scale the SCP capability by offloading local tasks into subsystems.

The LCP of the subsystem in Figure 7.17 is different from the SCP. It is relatively always-on to the power domains
it is controlling, therefore it can be powered-off when its sub-domains are powered off. To allow the LCP to be
powered off, it requires an LPI interface to a PPU in a relatively always-on domain. This PPU is controlled by the
SCP and might also control other entities within the same power domain level as the LCP, shown by the dashed
connections, or the quiescence of these components might be managed by the LCP with an additional PPU.

PPUs are used within the subsystem to control sub-domains.

Subsystems of this complexity will also typically require a messaging capability to facilitate firmware to firmware
communication between LCPs and the SCP. This capability is described in 6.4.1 .

This structure can reduce integration complexity if the subsystem is delivered pre-verified with existing firmware.
From a power control perspective only the top level LPI and any messaging capability needs to be integrated.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 92
Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

7.2.5 Component Integration Layer

DENO0050
D

Some components might have interfaces that do not directly match those of the PPU. In such cases an integration
layer approach can be used to adapt the interface between the PPU and the controlled components.

For example, this can be used to adapt a component without LPI support, or with additional power control signals

which need to be managed through power mode transitions.

Figure 7.18 shows miscellaneous signaling combined into an LPI in a component integration layer.

Misc.

LPI

PPU » CIL

F 3

Signals

Component

Power Gated Domain

-

Figure 7.18: Single component integration layer example

Copyright © 2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

93

Chapter 7. System Power Control Integration
7.2. Power Control Integration

7.2.6 Voltage and Power-Gated Domain Clock Gating

DENO0050
D

Before a domain can be powered-off or put into full retention it must be clock-gated externally. This prevents the
following:

* Parasitic switching in the domain causing current draw that can slow the power on process.
 Corruption of retention registers.

This is managed by the PPU and is separate from any dynamic high-level clock gating control.

For power modes where some part of the component is operational, such as FUNC_RET and MEM_OFF, the
external clock is still required so cannot be gated. Internal clock gating within the component is required for the
parts that are off or in retention.

The PPU is in a different clock domain to the power domain it is controlling. Therefore, the clock enable from the
PPU for the controlled power domain’s clocks are required to be synchronized to the clock being gated. There
might be several clock inputs to the controlled power domain, so the single clock enable from the PPU must be
synchronized separately for each clock gate.

Figure 7.19 shows and example of this arrangement.

PPU

h

1

¥ 1

! i

Clock _ Component |«
a 5 5

i !

Clock
Enable

Clock

Figure 7.19: Clock gating for voltage and power domains

Depending on the topology, the PPU clock gate might be combined with the clock gate used for dynamic high-level
clock gating, or it could be a separate clock gate. In either scenario the clock controller must be reset when the
domain is reset to prevent violations in the clock Q-Channel, see 7.1.4.1 Clock Controller Reset.

Figure 7.20 shows an example of this implementation where the power control and clock control clock gates are
separate. This is typically done when the clock controller is inside the power domain.

Al

Clock
Enable

Clock Clock Q-Channel
Controller|

Power Control LPI
Component |«

» PPU

Figure 7.20: Separate clock gates for high-Level clock gating and power control example

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 94
Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

Figure 7.21 shows an example of this implementation where the power control and clock control clock gates are
shared. The clock controller must be external to the power domain in this case.

> B e ———— ~
"]’D ! Power Gated Domain A
: s
H [Clock
Clock | | ' ClockQ-Channel ! Enable
> 1
Controller i Power Control LPI §
i Component |« +» PPU
Clock 1 H
Enable : :
! 1
H 1
¥ o 3
Clock ,lf;:::l

Figure 7.21: Shared clock gate for high-Level clock gating and power control example

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 95
D Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

7.2.7 \Voltage and Power Domain Boundaries

DENO0050
D

The crossings between voltage domains must be asynchronous. The crossings between power domains can be
synchronous or asynchronous.

The crossing of a voltage or asynchronous power domain boundary is achieved with the use of a domain bridge for
the required protocol.

For the boundary between voltage domains, or asynchronous power domains, the domain bridge is split, with one
half in each domain.

For the boundary between synchronous power domains, the domain bridge can be split, with one half in each
power domain, or the entire bridge can be within one power domain.

The following sections describe the crossing of these domains and the effect on the power control and high-level
clock control.

Voltage Domain and Asynchronous Power Domain Boundaries

When crossing between voltage domains, level shifters must be placed between the two domains to manage the
difference in voltage levels between the two voltage supplies. Closing timing across such a boundary is difficult
because of the considerable number of voltage-supply cross corners that need to be analyzed. Therefore, it is
treated as an asynchronous interface for all signals.

When crossing between asynchronous power domains, the crossing needs to be treated as an asynchronous interface
for all signals because of the asynchronous nature of the clocks in the two power domains.

A domain bridge used to cross between voltage or asynchronous power domains is split into separate requestor
and responder interface components. Each of these uses a separate asynchronous clock. These two components
are then instantiated either side of the domain boundary. This means the clock domains are constrained to their
respective domains and isolation and, in the case of voltage domains, level shifter cells can be added at an easily
identified hierarchy level.

Figure 7.22 shows an example of this structure for a voltage domain. An asynchronous power domain is the same,
but without the requirement for level-shifters.

]
y

Domain Bridge
(Responder)

1

1
1
1
1
]
]
1
1
1
1
1
1
1
1
1
1
]
Asynchronous H 4 H
Interface = Level Shifters & Isolation Fe
H
1
' v
1
1
]
]
1
1
1
1
1
1
1
1
1
1
]
1

Domain Bridge
(Requestor)

|
v

Figure 7.22: Voltage domain crossing domain bridge structure

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 96
Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

DENO0050
D

Figure 7.23 shows an example voltage, or asynchronous power domain crossing using a domain bridge with clock
and power control connections.

1 Voltage/Async Power Domain A e meommeeeem——— . E
i i Clock Domain A Clock
L : : Enable
| 1 A Q-Channel (e 7 LPI
i Clock e Component |« > o
- 1
i Controller e Q-Channel : E : LPI
' : 3 2
! Clock v . a]
! Enable v | Domain Bridge |~
i (Responder)
Clock A =[G
l Gats ' : T
: _____________________ 1
1 1
D o e o [
¥
i Isolation Cells / Level Shifters |
s
Voltage/Async Power Domain B RN A . E
Clock B foo) [>t Y

7| cate

Domain Bridge

)
)
i
lock .
Enable | i | (Requestor)
1
_Q-Channel ! #
:
)
)
)
I
1
1
1

Clock —
-Channel LPI
Controller -2 »| Component |+ » PPU
Clock Domain B Clock
1 Enable

Figure 7.23: Voltage or asynchronous-power domain boundary example

The connections in Figure 7.23 for the domain bridge power control assumes that domain B is RAON, therefore
domain A controls the domain bridge quiescent state as it will be the first to be powered-off and the last to be
powered-on. For more information see 7.2.7 Power Control for Domain Bridges.

When the domain bridge power control LPI is quiescent, any domain bridge component that is powered-on must
still respond to clock control Q-Channel requests. This is required because:

* The clock is required to be requested to complete subsequent power mode transition.

* The clock Q-Channel might be required to return to a quiescent state to ensure correct interfacing to system
components.

* Another component in the voltage or power-gated domain might require the clock and the clock controller
will handshake with all components in the domain.

In Figure 7.23 the domain bridge power control LPI is shown connected to the responder portion of the domain
bridge in the upstream power domain. The location in this example reflects its location on the CoreLink ADB-400.
However, the location of the LPI on the bridge is arbitrary. For more information see 7.2.7 Power Control for
Domain Bridges.

From a high-level clock control integration perspective, this example has no dependencies. The clock control
implementation is achieved with a simple combination of clock control Q-Channels from the components within
each domain.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 97
Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

Power Control for Domain Bridges

When the power, or reset, to the two sides of the domain bridge is managed independently there must be means to
ensure that the bridge is in a safe quiescent mode before either side is powered-off or reset. The domain bridge
must only exit from the quiescent mode once both sides are powered-on.

The first concern is the correct operation of the bridge itself, as the internal state is required to be managed such
that the bridge does not malfunction when only half of the bridge is reset or powered-off. Another concern is
access control of transactions attempting to enter the bridge.

The domain bridge is entered and exited from the quiescent mode with a single power control LPI. Where this LPI
is controlled from is dependent on the relationship between the two domains. This section will assume the domain
bridge power control LPI is a Q-Channel.

NOTE: Multiple power control LPIs on a domain-bridge are possible, but a detailed description is beyond the
scope of this document.

Domain Relationships
Where the domain bridge is controlled from depends upon the relationships between the domains it spans. The
possible relationships are as follows:
* Always-On (AON): One domain is always powered, whilst the other can power-off.
* Relatively Always-On (RAON): Both can power-off, but one always powers-off first, and powers-on last.
— An example of this is the system logic which is relatively always-on to a processor cluster.
* Independent: Both can power-off, and the order in which they power-on and off is not fixed.

— An example of this is a debug domain, whose state might depend upon if debug is enabled independent
of the state of other system components.

These domain relationships can also affect the required placement of isolations cells.
Domain Bridge Connections

For domains with an AON or RAON relationship, where one domain will always be powered-off before the other,
the domain bridge power control Q-Channel is controlled from the domain which powers-on last and powers-off
first.

Figure 7.24 shows the control of a domain bridge power control Q-Channel when the domains have a RAON
relationship. The level shifters (LS) are only required when this domain bridge spans a voltage domain boundary.

RAON
Domain

Related
Domain

v Q-Channel * v

Figure 7.24: Domain bridge control for a RAON domain

For domains with an independent relationship the domain bridge power control Q-Channel must be controlled by
the domain that powers-off first and powers-on last. However, as the domains are independent this could be either

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 98
D Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

DENO0050
D

domain. This means there needs to be a component outside of both the controlled domains that can manage the
bridge control requirements between the two domain PPUs. This component is a Low Power Combiner (LPC). For
more information see 6.5.4 Low Power Combiner.

Figure 7.25 shows the control of a domain bridge power control Q-Channel when the domains are independent.
The level shifters (LS) are only required when the domain bridge is crossing voltage domains.

Q-Channel

LPC ﬁ
v Q-Channel Q-Channel v

PPU PPU

Figure 7.25: Domain bridge control for independent domains

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 99
Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

Synchronous Power Domain Boundaries

Figure 7.26 shows an example arrangement where the clocks to two power domains are synchronous.

--

Power Gated Domain A ;

*
;
1 1
' -Channel H : ! Clock
: Clock %ﬁlock Domain E ; ool
i '| Controller : LA
i ; — PPU
i [DO
1 v - [
1 v . [
1 ! 1 [
1 : H
: i (O
H mmmmmmmmmmmmm—m————————— HALA/ A7 14777, 4=t
Clock—D— " i
: R
: :
L - P LU UL LIIILELEECLLLLLILL : -------------------- !-.-:
| i i i S~ % i
. i1 lsolationCells {77x | Clock
""""""""" H 1 -Ch | ¥ 7 1
_.D ;1] clock ﬁq — 12 P Enable
i ; LPI
P s oller i | component f—+—— PPU
i] [1 1
[1 . [
: A1/ 277700000047, d o
L}
; :

Figure 7.26: Synchronous power-gated domain boundary example

In this arrangement, the clock control for the two domains must be split. When one domain is powered-off it
will not be able to respond to a clock controller Q-Channel handshake. This split in the clock tree can impact the
overall effectiveness as only the non-common parts of the clock tree can be gated.

In Figure 7.26 the power domain clock gating strategy of Figure 7.20 is chosen. The clock controller is within the
domain as otherwise isolation application can result in a protocol violation on the Q-Channel.

The clock controller can be placed outside of the domain provided it is reset along with the power domain.
Alternatively, in this scenario the clock controller, see 6.5.2 Clock Controller, supports a hierarchical power
control Q-Channel that can be used to ensure the downstream Q-Channel is quiescent before the domain isolation
is asserted.

The clock controller also supports a hierarchical clock control Q-Channel that can be used to add an additional
clock controller to gate the clock at the root of the clock tree in addition to at the power domain boundaries.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 100
D Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

7.2.8 Access Control

DENO0050
D

It is desirable to allow part of the system to be in a non-functional powered-off or retention mode even though a
bus transaction might arrive from a part of the system that is powered-on. This type of capability is referred to in
this specification as access control.

Applications for access control include:

* To ensure a controlled power cycle for a resource, by ensuring all accesses to it are complete before power-off
and providing responses during power-off.

 To preserve the availability of a resource while allowing it to opportunistically enter a low-power mode. The
resource is woken automatically when an access is attempted.

* Preventing access to a resource from selected interfaces during post reset or run time configuration.

Each component with power or clock control capabilities must manage its interfaces correctly to provide access
control.

For the purposes of explanation, it is convenient to consider a standalone access control gate component. Figure
7.27 shows a simple example.

Requestor
Component

r N

y
Access Control
Gate

E Responder
! Component

Power Domain B

Figure 7.27: Access control example

In Figure 7.27 the access control gate component, when in a gated state, breaks the path between the requestor and
responder components. This allows the responder component in power domain B to be placed into an inaccessible
state in support of the access control applications previously outlined.

The power domain arrangement of Figure 7.27 shows the access control gate in the requester component power
domain. This location enables the generation of wake-up requests and any required sequential responses to the
requester component when the responder component power domain is off. In this case, all the access control gate
functionality is implemented in one place.

In some combinations of bus protocols and response models, isolation values alone can provide a static solution
for the required response. This allows the access control functionality to be implemented in the downstream power
domain. However, any wake-up logic must always be implemented in the upstream power domain.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 101
Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

DENO0050
D

Access control requires two capabilities. The first is capability to safely enter and exit the gated state. The second
capability is the response to the arrival of transactions during the gated state.

When the gate function is enabled, by either software control or a low-power interface request, the following
occurs:

* Any outstanding transactions are completed before entering the gated state. The safe handling of any
transactions arriving during the transition to gated state is protocol and implementation specific.

* Once in the gated state, transaction attempts are either stalled or receive a response from the access control
component according to the implemented response model.

* The access control component can be requested to exit the gated state at any time that the downstream
resources are available. After exiting the gated state, the access control component is transparent.

The following interface management response models are considered useful and are chosen according to the
application:

« Stall and wake: A transaction arriving at a gated access control component is initially stalled. A wake-up
signal is asserted indicating that the downstream power domain must be made available. Once available
the access control is un-gated and the transaction progresses as normal. This model is used to preserve the
availability of a resource while allowing it to opportunistically enter a low-power mode.

* Error: The access control component generates an error response to any arriving transaction. There is no
request to change any power domain mode. This might be used for debug purposes in case an access is
attempted in error.

* Accept and ignore: The transaction is accepted by the access control component, to prevent blocking the
interface, but is not forwarded and has no effect on any power domain mode. This might be used with some
types of broadcast, trace or monitoring traffic.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 102
Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

7.2.9 Isolation and Reset Control Considerations

DENO0050
D

When a component changes power mode isolation can be applied or removed, and resets can be asserted. Isolation
control and resets are controlled asynchronously. Therefore, component outputs need to be conditioned so any
potential asynchronous change does not affect functioning domains to which they communicate.

Isolation cells provide constant values on the outputs of powered-off or retained power domains to prevent
unknown values propagating to operating domains. The isolation control is applied asynchronously to remove
timing constraints on the control signal propagation.

Reset assertion is asynchronous to ensure all registers are correctly reset regardless of the availability of system
clocks.

To prevent outputs changing during reset and isolation assertion and release it is strongly recommended to apply
the following rule:

¢ Reset value = Idle value = Isolation value.

Care must be taken, especially with reset values, as an output might be driven by multiple registers through
combinatorial logic. In this case it must be ensured that all the outputs of source registers can be reset without
changing their individual outputs to ensure no glitches are produced in the downstream logic.

In some cases, the idle value might not be the same as the isolation and reset value due to domain retention. Care
must be taken to assess if an asynchronous change on such signals will cause issues in other domains. Such
effects can often be subtle, such as address signals used directly to decode to selects, or signals that might cause
metastability in downstream registers.

Only those signals that can affect system behavior need the considerations described below.

In all cases care should be taken as RTL simulation where isolation is not implemented can differ from real
behavior where isolation is implemented. Power aware simulations which consider these aspects are recommended.

Output Isolation and Retention

For retention modes, any difference in output and isolation values can be managed in two ways:
e Use of ‘clamp last’ isolation cells.
— This solution is only valid for isolation scenarios.

— These are special isolation cells that latch the value of an output and apply it as the isolation value. Such
cells might not be available in all technology libraries.

 Capture the output value externally to the domain before applying isolation or reset and release isolation or
reset before capturing the output value again.

— Such behavior can easily be controlled using an LPI driven by the appropriate PPU.

— This functionality is typically considered at the system level where the scope of power domains and the
effect of output signals is known.

NOTE: When a domain is in retention, isolation must be enabled. Although register values are retained, typically
register outputs are not driven, and any buffers between the register output and the domain boundary are still
powered-off.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 103
Non-confidential

Chapter 7. System Power Control Integration
7.2. Power Control Integration

DENO0050
D

Output Isolation and PACTIVE

When a component enters the FULL_RET, LOGIC_RET or MEM_RET power modes, the corresponding
PACTIVE bit for the power mode might be HIGH from the component but will be isolated LOW, as this is
the reset value.

In this case it is required for the system to maintain the required level outside of the power domain containing the
component, or there might be an incorrect indication to the power controller that the component no longer requires
this power mode as a minimum. This can be achieved using the techniques described above.

Similar considerations might apply for component specific operating mode PACTIVE outputs.

NOTE: The PACTIVE associated with the power mode might not be HIGH when the component enters the
associated power mode. The PPU might chose to request a transition to a power mode even though it was not
the component required minimum, this could be due either to the PPU programming or a contribution to the
PACTIVE from a source external to the component.

Component PACTIVE behavior during these power modes is discussed in 8.3.5 PACTIVE and Isolation.
Output Isolation and Non-default values

In the circumstance that an output idle value is not the same as the isolation value,
* Synchronize the isolation enable.
— This solution is only valid for isolation scenarios.

— This allows the timing path though the isolation enable to the endpoint register to be timed so it does not
cause any setup and hold issues.

— This scenario is non-optimal and should be avoided whenever possible as it places additional
requirements and constraints on aspects of the design.

 Capture the output value externally to the domain before applying isolation and release isolation before
capturing the output value again.

— Such behavior can be controlled using an LPI driven by the appropriate PPU.

— This functionality is typically considered at the system level where the scope of power domains and the
effect of output signals is known.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 104
Non-confidential

Chapter 7. System Power Control Integration
7.3. Reset Control Integration

7.3 Reset Control Integration

7.3.1 Reset Signals

DENO0050
D

There are two basic reset types that components might support.
* Cold reset: resets all logic in the component. Used as the power-on reset.

* Warm reset: resets most of the logic in the component. Typically, the extent of the reset is all functional
logic. The logic excluded from a warm reset will vary with the type of component, but typically functions
such as debug and RAS syndrome registers are excluded.

These reset types, when both present, are typically implemented as shown in Figure 7.28.

PORESETN (cold) —

P L L L L L L L LT L]

E Cold or Warm Reset E
- (functional logic) -
1
1
1

WARMRESETNn —

Figure 7.28: Cold and warm reset component implementation

In some cases, components will omit the internal combination of cold and warm reset signals and simply provide
reset signals for each logical partition. The cold and warm reset domain signals can be easily formed outside of the
component.

The reset domains of a SoC are largely aligned with the implemented power domain hierarchy. The component
reset signals are aggregated into cold and warm reset domain signals at the power domain level. In practice, many
components have reset signals per-clock domain, and these are aggregated into the power domain reset signals
with appropriate synchronization.

Component design guidelines associated with the use of resets and power control logic are given in Low-Power
Interface Logic Reset.

Most components have only cold reset signals, the remainder of this section outlines the reset signal requirements
for components and subsystems with specific reset requirements.

Application Processors
The ARMv8-A architecture supports cold and warm resets of a PE. A warm reset excludes reset of the integrated
debug logic that permits debugging across a reset of the PE logic.

The architecture provides means to request a PE warm reset using a reset management register. The required
reset request sequence guarantees that the core is quiescent, and generating no bus transactions, when the reset is
applied.

The external debug registers also provide a means to request a PE warm reset. It is implementation defined whether
a core is reset when requested by this means. However, if the core is reset there is no guarantee that it is quiescent.

The use of warm resets without a quiescence guarantee is described in Warm Resets.

The ARMvVS-A architecture also supports an external debug reset for debug domain logic. Reset requests for the
debug domain logic are described in CoreSight Subsystem.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 105
Non-confidential

@sec:cdc_lpi_logic_reset
@sec:cdc_lpi_logic_reset
@sec:spci_warm_resets
@sec:spci_coresight

Chapter 7. System Power Control Integration
7.3. Reset Control Integration

CoreSight Subsystem

Debug Reset Request describes how a debugger, using the Debug Port (DP), can request a warm reset of the debug
domain logic. The debug and trace logic components typically have only one reset signal and so this is asserted for
both cold and warm resets at system level.

Although the DP does not provide any control bits for requesting a system reset, the ARM Debug Interface
Architecture Specification, ADIv6.0 [9] describes that it is common for the physical interface to the debugger to
include a system reset pin, nSRST, that is used to initiate a full system reset.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 106
D Non-confidential

@sec:pwr_ctrl_flows_dbg_reset_req

Chapter 7. System Power Control Integration
7.3. Reset Control Integration

7.3.2 Reset Hierarchy

The PPU provides the following support for reset control.

* Reset signals: The PPU provides cold and warm reset output signals. The PPU also provides an additional
warm reset output signal for the management of power domains implementing partial retention.

* Power mode control: The reset signals are managed appropriately by the PPU hardware for each supported
power mode transition.

¢ Warm reset: The PPU supports a warm reset mode with support for both software and hardware initiated
warm resets.

Each PPU controls the reset domain signals for the power domain it manages. These resets can then be used to
build hierarchical reset control based on the logical power domain hierarchy.

Figure 7.29 shows a high-level reset hierarchy example.

*
E Debug Domain E ! AON
H g
1 . 1
1 L)
: Domain i E PPU B
i Components | : |
1 1
: P
o o s
yrommeennnees e |
! System Domain [
H to
1 - 1 1
: Domain Hl PPU ke i
' Components |t | H
i [i
1 1 L] 1
H [H
| rommmmmm————— - m—————————————— ' H
H :Cluster Domain [!
1 1 ' L] R 1
i Domain P Domain P SoC
i PPU] Components [Power On Reset
i Components [[
i H i
H [|
I L] 1
T L] 1
T L] 1
i i i
P PPU i :
T L] 1
T L] 1
P! Ve] [
HEY ! [H
1 1 L] 1
: P ¢
HEF g P] [
1 1« Domain : [1
1 1 L] 1
[l L : :
i Domain - i
i c PPU] H
1 omponents [!
i] [
HH [H
R Smmmsm————] A [
1 1 1 Domain 1 [[
[] L) 1]]
[] L) 1]]
[] L) 1]]
I - PPU i i
[] L) 1]]
[] L) 1] [
HEHRCE L PP PR ! | H H —» Warm Reset
: L ’ : E E = Power On Reset
i i 3 Key

Figure 7.29: High-level reset hierarchy example

The reset hierarchy has its root in the always-on domain. At a SoC power-on, or other full system reset such as
watchdog reset, the system reset is applied to the always-on domain, including any components and PPUs within
the always-on domain.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 107
D Non-confidential

Chapter 7. System Power Control Integration
7.3. Reset Control Integration

The reset of the PPUs in the always-on domain will also place any powered-on domains they control into a cold
reset state. This effect is hierarchical for powered-on domains through each level of PPU. On exit from system
reset the PPUs in the always-on domain will place the power domains under control into their default power mode,
managing resets accordingly. Typically, the default power mode for those power domains will be OFF.

As further domains in the power domain hierarchy are powered-on, any PPUs are released from reset and again the
controlled power domains will be placed into their default power modes.

Each powered-on PPU then continues to manage the reset signals of the power domain it controls according to the
programmed power management policy.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 108
D Non-confidential

Chapter 7. System Power Control Integration
7.3. Reset Control Integration

7.3.3 Reset Management

DENO0050
D

Power Mode Transitions

A critical requirement for entry into any power mode where the components of the domain become non-functional
is to ensure quiescence. All outstanding interactions with other power domains, such as bus transactions, must
have completed and the components must remain quiescent regardless of activity at their boundaries.

Where supported, the PPU device low-power interface can be used to ensure components are quiescent before
entering power modes that assert resets. For components without low-power interface support then software means,
or other system guarantees, are required to ensure the transition is safe.

Warm Resets

Warm resets without quiescence

As outlined in Application Processors, an application processor can request a safe self-warm reset with a guarantee
of prior quiescence. However, warm resets are also commonly used as part of debug or system recovery operations.
For example:

* A debugger can request a warm reset of the debug domain logic in attempt to re-connect with the target.

* A debugger can request a reset of a specific processor core.

* A management agent might request a warm reset of part of the system to attempt to recover RAS syndrome
information.

The usage of warm resets for these purposes is generally without any guarantee of quiescence for the affected
components. In the absence of specialized logic to isolate and mitigate the effect of incomplete transactions, these
resets can then lead to a system lock-up requiring a full system reset. As such, these applications of warm resets
have un-predictable outcomes and require careful management.

Unaligned reset domains

The required warm reset domain might not always align with power domain boundaries. This occurs when:

* The logic in the warm reset domain spans multiple power domains.
* The logic in the warm reset domain shares a power domain with other logic.

Debug infrastructure is one example where these cases can arise. Figure 7.30 shows an example arrangement
where debug logic exists in both a primary debug power domain as well as within a system power domain alongside
system components.

o

Debug Domain

— Power On Reset
Key

! i

H L)

H L)

: L)

! Debug P PPU
i Components [

: :

: i
e "

1 System Domain '

i Debug .

: Components —C T PPU
i System E

H Components '

E 1 ——p Warm Reset

Figure 7.30: Example of warm reset domain to power domain misalignment

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 109
Non-confidential

@sec:spci_app_proc

Chapter 7. System Power Control Integration
7.3. Reset Control Integration

The arrangement in Figure 7.30 provides power-on reset for the debug logic, across the power domains, independent
of their relative power sequencing. A warm reset of all available debug logic can be requested when the primary
debug power domain is powered-on.

Initiating Warm Resets

The warm reset of a power domain can be initiated either by programming WARM_RST as the PPU policy or,
with a P-Channel PPU, using a PACTIVE request. While many components only support cold reset signals, they
can be connected at the power domain level to the PPU warm reset signal that is asserted on both warm and cold
resets of the domain.

Where a specific warm reset domain is not required, the PPU WARM_RST power mode can be used to provide a
power-on reset without a power gating cycle. As outlined above, in this case the warm reset signal from the PPU is
used as the primary power-on reset signal.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 110
D Non-confidential

Chapter 8
Component Design Considerations

This chapter gives an overview of component design requirements and guidelines for integration within the power
control system architecture.

NOTE: Some content in this section corresponds to content within the Low-Power Interface Specification, ARM
Q-Channel and P-Channel Interfaces [4]. In such cases the content here is intended to accord to that specification
and provide complementary information.

This chapter is organized into the following sections:
* 8.1 General Low-Power Interface Guidelines
* 8.2 Component High-Level Clock Gating

* 8.3 Component Power Control

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 111
D Non-confidential

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

8.1 General Low-Power Interface Guidelines

This section provides general guidelines for components implementing Arm low-power interfaces for clock and
power control.

8.1.1 Low-Power Interface Implementation

Q-Channel Implementation

A component and its clock or power controller typically use asynchronous clocks. In clock control applications,
these clocks are from the same source, but due to significant phase differences the design considerations are
those required for an asynchronous interface. Figure 8.1 shows the required interface signal handling for an
asynchronous Q-Channel interface from a component perspective.

Component Input(s)

r— —>
CLKB —»p>
) Di1> QACTIVE
N
Internal
Signalling <« — QREQn
e <-_—|
> » QACCEPTn
»H>
— » » QDENY
»H>
Component
CLKA

Figure 8.1: Q-Channel interface implementation

The following guidance is provided to implementers for an asynchronous Q-Channel interface:

* Synchronize all signals at their destination before use. It is strongly recommended that components include
the synchronization elements for input signals. From a component perspective, this is shown for QREQn in
Figure 8.1.

NOTE: Consequences of implementing the synchronization externally to the component are detailed in Synchro-
nization of Input Signals.

* To ensure correct operation of the handshake interface QREQn, QACCEPTn and QDENY outputs must be
registered. This allows them to be captured correctly in the destination clock domain without any glitches
from combinational logic. This is shown for QACCEPTn and QDENY in Figure 8.1.

* The QACTIVE signal is driven either directly by a register, or by several registers whose contributions
are logically combined. In Figure 8.1 QACTIVE sources include a register in the controlled clock
domain, a register in another clock domain and component inputs which must also be registered at source.
Implementation recommendations are given in 8.1.1 .

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 112
D Non-confidential

@sec:cdc_guidelines_input_sync
@sec:cdc_guidelines_input_sync

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

¢ For a clock control Q-Channel it is strongly recommended that the component Q-Channel control logic is
implemented using only the controlled clock. This prevents another clock being required to complete any
requests.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 113
D Non-confidential

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

P-Channel Implementation

A component and its controller typically use asynchronous clocks. Figure 8.2 shows the required interface signal
handling for an asynchronous P-Channel interface from a component perspective.

Component Input(s)

(~ > D > » PACTIVE[y]
S ——
cikc L&
N > ,
> D » PACTIVE[X]
—_——]
clke 'L

Internal

. . <
Signalling < PSTATE[M-1:0]
< 1
H ‘1’

Bip
bt Semmmmeed 1o d
RESETn
< j: PREQ
1 < l—|
- > » PACCEPT
> » PDENY

Component

CLKA

Figure 8.2: P-Channel interface implementation

The following guidance is provided to those implementing an asynchronous P-Channel interface:

» Synchronize all signals, except for PSTATE, at their destination before use. It is strongly recommended that
components include the synchronization elements for input signals. From a component perspective, this is
shown for PREQ in Figure 8.2. Guidance for capturing PSTATE is given in 8.1.1 Capturing PSTATE.

NOTE: Consequences of implementing the synchronization externally to the component are detailed in Synchro-
nization of Input Signals.

* To ensure correct operation of the handshake interface PREQ, PACCEPT and PDENY outputs must be
registered. This allows them to be captured correctly in the destination clock domain without any glitches
from combinational logic This is shown for PACCEPT and PDENY in Figure 8.2.

» Each bit of the PACTIVE signal is driven either directly by a register, or by several registers whose
contributions are logically combined. In Figure 8.2 PACTIVE sources include a component input, register in
the interface clock domain, and registers in two other clock domains within the component. Implementation
recommendations are given in 8.1.1 .

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 114
D Non-confidential

@sec:cdc_guidelines_input_sync
@sec:cdc_guidelines_input_sync

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

Capturing PSTATE

To ensure the PSTATE value is received correctly by the component, its capture must be enabled at reset
de-assertion to ensure correct initialization or by a change on the synchronized PREQ signal.

It is strongly recommended that the PSTATE value is sampled on a change on the synchronized PREQ, not just
when PREQ is HIGH, as in the event of a denial PSTATE can change while PREQ is HIGH and therefore might
be captured incorrectly.

In addition, to meet the P-Channel protocol requirements for component reset and initialization specified in Low-
Power Interface Specification, ARM Q-Channel and P-Channel Interfaces the PSTATE value must be sampled
at reset de-assertion within a period, tj,;, defined in component clock cycles. Capturing PSTATE at reset exit
facilitates transition to a functional state for components where the P-Channel interface is unused.

To implement the sampling of PSTATE at reset de-assertion requires an enable term for the PSTATE capture
register that is set following the exit from reset and then cleared in the following clock cycles.

Figure 8.3 shows a simplified state machine indicating when PSTATE is captured. This state machine is not
intended to show a full description of the required P-Channel transitions but to illustrate when PSTATE should be
captured.

RESETn =0 State entered
at reset.

l RESETn=1

Wait x cycles
for PREQ to
synchronise.

Synchronized PREQ =0 Synchronized PREQ = 1

RST_CAPTURE

PREQ_CAPTURE

Capture Capture
PSTATE - PSTATE
o
&
Captured PSTATE != OFFl | Captured PSTATE = OFF o
el
&
c
(]
RST_TRANSITION S
c
Perform power mode @ Perform P-Channel
transition without a Wait until PREQ goes transition with
P-Channel handshake HIGH handshake then go to
then go to IDLE. IDLE

Figure 8.3: Principle of PSTATE sampling with pseudo state machine

In Figure 8.3, the orange boxes indicate that the component is still within the tinit period, the green boxes show
that this period has expired. The RST_WAIT state is optional, to prevent multiple transitions within the component
if this either takes a significant amount of time or effects component operation.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 115
D Non-confidential

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

DENO0050
D

Synchronization of Input Signals

It is strongly recommended that components include the synchronization elements for input signals. The
synchronizing elements are required to be captured in a dedicated design hierarchy. This aids identification
for two purposes:

* Replacement with specific cells in physical design.
* Replacement with a bypass functionality in case of a synchronous implementation.

In a component design context, this applies to the QREQn and PREQ inputs.
The rationale for the recommendation of internal synchronization is as follows:

* There is dependency between clock and power control LPI. A clock control Q-Channel wake-up is required
when the clock is not running but is required for the power control interface to transition.

— If synchronization is not included within the component, then synchronization is required to be added
externally.

— The implementation of external synchronization causes external logic to be required to allow the
unsynchronized external power control QREQn or PREQ to contribute to a clock control QACTIVE
path.

— Such dependencies are detailed in 8.2.3 QACTIVE Contribution from Power Control Low-Power
Interface.

* Requiring the external implementation of synchronizers places a burden on the integrator, risks include
omission of the synchronizers and inappropriate clocking and reset application of the synchronization.

QACTIVE and PACTIVE Contribution Combination

QACTIVE and PACTIVE signals are driven either directly by a component register, or by a component register
and component inputs whose contributions are logically combined. Arm strongly recommends that this combining
logic is limited, where possible, to logical OR gates.

Combining logic gates must be captured in a dedicated design hierarchy so the function can be identified and
preserved through synthesis and replaced with specific technology cells if required.

The preservation of function ensures that no alternative mapping is used that might cause glitches in the path. The
ability to identify the cells can also be useful for analysis purposes.

When using combining logic other than OR gates, the implications of changes on the inputs to this logic on
the QACTIVE or PACTIVE output signals must be carefully considered. Although the handshake protocol
guarantees functionally correct behavior regardless of changes on QACTIVE and PACTIVE, it is recommended
to implement the simplest possible logic to minimize the likelihood of introducing glitches at QACTIVE and
PACTIVE outputs.

One example of a circumstance requiring combining logic other than a logical OR is detailed in 8.2.3 QACTIVE
Contribution from Power Control Low-Power Interface.

Recommended LPI Feature Support

Arm strongly recommends that components support the function to deny requests.

The denial mechanism allows a component to respond in a timely fashion and continue operations without
interruption. This avoids, in a situation where the conditions at the component have changed and it is no longer
idle, a potentially indefinite acceptance delay or the latency overhead of the component accepting the request and
then returning to the previous state. From a controller perspective this avoids there being outstanding requests that
are no longer valid that might prevent it from making a more appropriate request or performing other actions.

A denial scenario typically arises when the component becomes active between the controller sampling a QAC-
TIVE or PACTIVE signal LOW and the arrival of a request at the component.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 116
Non-confidential

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

8.1.2 Output Management

DENO0050
D

When a component changes power mode, isolation can be applied or removed, and resets can be asserted and
deasserted. Isolation and reset control are typically asynchronous. Therefore, component outputs need to be
conditioned so any potential asynchronous change does not affect functioning domains to which they communicate.

To prevent outputs changing during under these conditions the component design must apply the following rule:
* Reset value = Idle value = Isolation Value.
— Limited exceptions can be applied for components in retention modes.

Care must be taken, especially with reset values, as an output might be driven by multiple registers through
combinatorial logic. If this is the case it must be ensured that all source registers can be reset without changing
their outputs to ensure no glitches are produced in the following logic.

In some cases, the idle value might not be the same as the isolation and reset value due to domain retention. Care
must be taken to assess if an asynchronous change on such signals will cause issues in other domains.

Any such outputs must be justified and documented so they can be managed at the system level. Strategies for
managing these at the system level are discussed in 7.2.9 Isolation and Reset Control Considerations.

If there are power domain boundaries contained within a component any non-idle values due to retention can be
managed by capturing the output value externally to the power domain but within the component before applying
isolation or reset and releasing isolation or reset before capturing the output value again. Such behavior can be
controlled using the component LPI interface.

In all cases care should be taken as RTL simulation can differ where isolation is not implemented. Power aware
simulations that consider these aspects are recommended.

NOTE: When a domain is in retention, isolation must be enabled. Although register values are retained,
typically register outputs are not driven, and any buffers between the register output and the domain boundary are
powered-off.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 117
Non-confidential

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

8.1.3 Interface Management

DENO0050
D

A non-functional LPI mode is a power mode where the component cannot actively respond to signals arriving at
its boundary. This is typically due to the component being in or being prepared to be put in a clock gated, full
retention, or off power mode.

When a component LPI enters a non-functional low-power mode it is not able to respond to protocol transactions
on its interfaces. All interfaces must be managed appropriately to ensure the system does not suffer a functional
failure. While there can be many interfaces, a primary area of concern is bus interfaces and the remainder of this
section is concerned with the management of these.

At entry to the low-power mode, the component must ensure that bus interfaces are in a quiescent state and then
safely suspend the protocol. New transactions can arrive at the component boundary but cannot be processed by
the component unless it is a state where they are guaranteed to complete correctly. This is not the case if the clock
or a required power mode is not guaranteed by the associated LPIL.

At exit from the low-power mode, the interface quiescence must be safely reversed before transactions are accepted.

During a low-power mode, it must be ensured that any control signals that could falsely initiate, or respond to, any
protocol behavior from active parts of the system, are set to safe levels. When in the low-power mode, several
possible response models to attempted bus transactions can be used. The following are the available response
models:

« Stall and wake: A transaction arriving is stalled. A wake-up signal is asserted indicating that the downstream
component must be made available (meaning the clock or power domain depending on the low-power mode).
Once available the bus is un-stalled and the transaction progresses as normal.

— This model is used to preserve the availability of a resource while allowing it to enter a low-power mode.

* Error: An error response is given to any arriving transaction. There is no request to change power mode as a
result of the transaction.

— This might be used for debug purposes in case an access is attempted in error.
— Protocols that can return errors without active responses are limited.

* Accept and ignore: Transactions are accepted to prevent blocking the interface, but no action is taken. There
is no request to change power mode as a result of the transaction

— This might be used with some types of broadcast, trace or monitoring traffic.

NOTE: An exception to this rule is the clock control Q-Channel. This must respond to requests to enter and exit a
quiescent state even when the power control LPI is in a non-functional mode. This allows a clock to be requested
to complete power control transitions.

Clock Control

In clock control applications, it is strongly recommended to use the stall and wake response.

In some limited scenarios where the protocol is broadcasting information to the component and this information is
not required while the component is clock gated an accept and ignore response might be appropriate.

As part of an accepted low-power interface request the component performs the entry sequence to ensure bus
interfaces are quiescent. On accepting the low-power interface request the clock might be gated. A component
should not rely on the clock being gated to operate correctly.

As the component is still powered-on in the clock gated state the component can use an input signal as a wake-up
to combinatorially drive the clock control QACTIVE. Once the clock control Q-Channel has returned to Q_RUN
the component can process transactions.

Examples of interface management for common protocols are described in the following sections.
High-level clock gating, including a specific AXI responder implementation example, is detailed in 8.2 Component

High-Level Clock Gating.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 118
Non-confidential

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

Power Control

In power control applications, all the response models are possible.

As part of an accepted low-power interface request the component performs the entry sequence to ensure bus
interfaces are quiescent. On accepting the low-power interface request power might be removed. A component
should not rely on the power being removed, reset being asserted, or isolation being applied to operate correctly.

Wake-up events must come from logic in a powered-on domain.

After power is restored and the low-power interface has transitioned the component to a functional power mode it
can process transactions.

Examples of interface management for common protocols are described in the following sections.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 119
D Non-confidential

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

AMBA APB Interface Management
To ensure the APB interface is in a safe state, before the component enters a non-functional mode on the LPI it
must manage transactions by using one of the following methods:

« Stall and wake: Stall transactions by setting PREADY LOW and PSLVERR LOW.

* Error: Provide error responses by setting PREADY HIGH and PSLVERR HIGH

* Accept and ignore: Provide zero data read/write ignored responses by setting PREADY HIGH, PSLVERR
LOW and PRDATA to 0x00000000.

— NOTE: In this case transactions will be lost.

For clock control a stall and wake response must be used. For power control the other cases can be considered, but
it is recommended to use stall and wake, allowing the component low power modes to be managed by the LPI
interface on SW access.

APB Management with Stall and Wake

When the LPI is in a non-functional state and an APB transaction is received then PWAKEUP going HIGH must
be used to combinatorially generate a HIGH level on a QACTIVE or relevant PACTIVE. This is used as a wake
request to bring the LPI to a functional state so the component can process the transaction. In circumstances where
PWAKEUP is not present then PSEL must be used for this purpose.

While the LPI is in a non-functional mode the APB transaction will move from the setup phase, where PSEL is
HIGH and PENABLE is LOW, to the access phase, where PSEL is HIGH and PENABLE is HIGH. Therefore,
component interface design must not depend upon seeing the setup phase to complete the transaction.

Figure 8.4 shows an example of the relationship between an APB interface and a Q-Channel for the stall and wake
scenario.

tl 2 t3 t4 t5 t6 tl t2 t3 t4 t5 t6 t7 t8

PWAKEUP /’F ‘ \\—
PSEL J ’ j /v\\
PENABLE F 5 j/’ \ U

PREADY <\

PSLVERR , / &
QACTIVE || / = A
QREQn %WK\ / \>// /

QACCEPTn ~\

I

QDENY

Q_RUN Q_REQUEST Q_STOPPED Q_STOPPED Q_EXIT Q_RUN

Figure 8.4: Q-Channel quiescence and stall and wake APB interface management

NOTE: The PWAKEUP is shown following PSEL, however PWAKEUP can occur before or coincident with
the PSEL. The QACTIVE will be driven HIGH whenever the PWAKEUP goes HIGH.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 120
D Non-confidential

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

APB Management with Error

Figure 8.5 shows an example of the relationship between the APB interface and a Q-Channel for the error response

scenario.
t1 2 t3 t4 5 6 tl 2 t3 4 t5 6 tl 2 t3 4 t5
PWAKEUP /[]—/N
PSEL []T“J
PENABLE J \
PREADY = /»XB
(1
PSLVERR \\ “ A 1 \\ ‘/»Sh
QACTIVE | | / /N il
QREQn ‘ﬁ\\/ {/ SW
QACCEPTn =\ \»[]7
QDENY
Q_RUN Q _REQUEST Q_STOPPED Q_STOPPED Q_STOPPED Q_EXIT Q_RUN

Figure 8.5: Q-Channel quiescence and error APB interface management

APB Management with Accept and Ignore

Figure 8.6 shows an example of the relationship between the APB and a Q-Channel for the accept and ignore
response scenario.

t 2 t3 t4 5 6 tl 2 t3 t4 5 6 tl 2 3 4 5
PWAKEUP /[]—/9“
PSEL R—“—/
PENABLE \.Z]—“
PREADY / /.[/\ | /v\\
PSLVERR %) 1‘
PRDATA ‘\ A o 0 0 X
QACTIVE ||) / /N ‘\
QREQn ﬁ ‘\ \ﬂ#
QACCEPTn R\ NI —
QDENY
Q RUN QREQUEST Q STOPPED Q_sTOPPED Q soppeD QExT QRN

Figure 8.6: Q-Channel quiescence and accept and ignore APB interface management

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 121
D Non-confidential

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

DENO0050
D

AMBA AXI and ACE Interface Management

To ensure the AXI interface is in a safe state before the component enters a non-functional mode on the LPT it
must manage transactions on the interface.

Where the component will be non-functional a stall and wake response must be used. This allows the component
low power modes to be managed by the LPI interface on SW access. For clock control this response must be used
in all cases.

The component can stall the interface by setting all *READY outputs LOW.

For power control if either the ‘error’ or ‘accept and ignore’ responses are required on AXI this must be provided
by an upstream component that can provide an active sequential response. It is not possible to provide these
responses with tied values. These responses could come from a separate access control gate within an upstream
power domain, managed by an LPI from the PPU controlling the downstream domain, or the upstream part of a
domain-bridge crossing the boundary of the two domains.

For ACE, it should be noted that WACK and RACK signals do not have any acceptance response. A component
needs to track that these signals have propagated either beyond its boundary, or to an internal termination point
before becoming quiescent.

AXI Management with Stall and Wake

When the LPI is in a non-functional state and an AXI transaction is received then AWAKEUP going HIGH must
be used to combinatorially generate a HIGH level on a QACTIVE or relevant PACTIVE. This is used as a wake
request to bring the LPI to a functional state so the component can process the transaction. In circumstances where
AWAKEUP is not present then an OR combination, using instantiated components, of AWVALID, ARVALID
and AWVALID inputs must be used for this purpose.

For entry to a quiescent state the component must track transactions. If a quiescent or low power request requiring
the AXI interface to be stalled is received and there are outstanding AXI transitions, then the request must be
denied. An AXI responder clock gating implementation example is detailed in 8.2 Component High-Level Clock
Gating.

Figure 8.7 shows an example of the relationship between an AXI Channel and a Q-Channel for the stall and wake
scenario.

t1 t2 t3 t4 t5 6 tl t2 t3 t4 t5 t6 t7 t8

AWAKEUP I |
*VALID J / />\\
-

*READY A\
oacTvE | [) S] —
QREQn ﬂ / \//
QACCEPTn ~—\\ \>//

QDENY

Q_RUN Q_REQUEST Q_STOPPED Q_STOPPED Q_EXIT Q_RUN

Figure 8.7: Q-Channel quiescence and stall and wake AXI interface management

NOTE: The AWAKEUP is shown following *VALID, however AWAKEUP can occur before or coincident with
the *VALID. The QACTIVE will be driven HIGH whenever the AWAKEUP goes HIGH.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 122
Non-confidential

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

AMBA AXI-Stream Interface Management
To ensure the AXI-Stream interface is in a safe state, before the component enters a non-functional mode on the
LPI it must manage transactions by using one of the following methods:

 Stall and wake: Stall transactions by setting TREADY LOW.

* Accept and ignore: Accept transaction with no effect by setting TREADY HIGH.

— NOTE: In this case transactions will be lost.

It is not possible to generate error responses on an AXI-Stream interface.
For clock control a stall and wake response must be used.
For power control the other cases can be considered, but it is recommended to use stall and wake, allowing the
component low power modes to be managed by the LPI interface on SW access.

AXI-Stream Management with Stall and Wake

When the LPI is in a non-functional state and an AXI-Stream transaction is received then TWAKEUP going
HIGH must be used to combinatorially generate a HIGH level on a QACTIVE or relevant PACTIVE. This is
used as a wake request to bring the LPI to a functional state so the component can process the transaction. In
circumstances where TWAKEUP is not present then TVALID must be used for this purpose.

Figure 8.8 shows an example of the relationship between an AXI-Stream interface and a Q-Channel for the stall
and wake scenario.

t1 t2 t3 t4 t5 6 tl t2 t3 t4 t5 t6 t7 8
TWAKEUP / A\
TVALID /) /A\
TREADY o\ /
QACTIVE \ | | <‘[/ \ | \\
I/

QREQn 4&“ / 1
QACCEPTN ~—\ /]

QDENY

Q_RUN Q_REQUEST Q_STOPPED Q_STOPPED Q_EXIT Q_RUN

Figure 8.8: Q-Channel quiescence and stall and wake AXI-Stream interface management

NOTE: The TWAKEUP is shown following TVALID, however TWAKEUP can occur before or coincident with
the TVALID. The QACTIVE will be driven HIGH whenever the TWAKEUP goes HIGH.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 123
D Non-confidential

DENO0050

D

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

AXI-Stream Management with Accept and Ignore

Figure 8.9 shows an example of the relationship between the AXI-Stream interface and a Q-Channel for the accept
and ignore response scenario.

t1 t2 t3 t4 t5 6 tl t2

t3 t4 t5 t1 t2 t3 t4 t5 t6
TWAKEUP /]—\\
TVALID J 1

TREADY »//\ /’\X
QACTIVE \|- \ J //,\ I

QREQn —‘b»\\—//‘ \’/ K»//'\/

QACCEPTn e\ \\, r
QDENY
Q RUN QREQUEST Q STOPPED Q sToppED Q sToppED Q Ex

Q_RUN

Figure 8.9: Q-Channel quiescence and accept and ignore AXI-Stream interface management

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 124
Non-confidential

Chapter 8. Component Design Considerations
8.1. General Low-Power Interface Guidelines

DENO0050
D

AMBA CHI Interface Management

To ensure the CHI interface is in a safe state before the component enters a non-functional mode on the LPI it must
manage transactions on the interface.

Where the component will be non-functional a stall and wake response must be used by the component. This
allows the component low power modes to be managed by the LPI interface on SW access. For clock control this
response must be used in all cases.

A component can stall transactions on a CHI bus by deactivating links using the LINKACTIVE protocol.
Completion of the LINKACTIVE deactivation also guarantees that the agents at either side of the link have safely
terminated any transactions.

For power control if either the error or ‘accept and ignore’ responses are required on an CHI interface this must be
provided by an upstream component that can provide an active sequential response. It is not possible to provide
these responses with tied values. These responses could come from a separate access control gate within an
upstream power domain, managed by an LPI from the PPU controlling the downstream domain, or the upstream
part of a domain-bridge crossing the boundary of the two domains.

CHI Management with Stall and Wake
When the LPI is in a non-functional state then RXSACTIVE going HIGH must be used to combinatorially

generate a HIGH level on a QACTIVE or relevant PACTIVE. This is used as a wake request to bring the LPI to a
functional state so the component can process open the LINKACTIVE* and process transactions.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 125
Non-confidential

Chapter 8. Component Design Considerations
8.2. Component High-Level Clock Gating

8.2 Component High-Level Clock Gating

This section describes implementation of high-level clock gating using Q-Channel low-power interfaces. Q-Channel
is always used for this function.

A component should also implement low-level and mid-level clock gating internally where appropriate. The
definitions used for levels of clock gating in this specification are given in 7.1.1 Clock Gating Levels.

8.2.1 Q-Channel Implementation

DENO0050
D

A component requires a clock control Q-Channel for each clock input. This allows the component to take part in
shared system level clock gating with other components in the same clock domain to gate the shared high-level
clock.

Each clock requires a separate Q-Channel interface so each clock can be gated separately, and the Q-Channels
combined with other components in the same clock domain. Figure 8.10 shows an example of a component with
multiple clock domains.

The clock control Q-Channels must be separate from any power control LPIs.

Requestor Requestor
< Clock A
NIC
| Q-Channel
Clock
Other »| Controller
Responders Q-Channel
- - Y e ———
1
Component Clock 1«

(Bus'Interface) i

o o o

1
5 Domain’A '
v

OOP277 5 2 B]
: i i

v 2 19 ook

l—] Clock B
Clock C : 8 8 P g g) !
' O35 -
H o0 PO = I = |
Clock Q-Channel H 3 g H g B Q-Channel Clock
< >l o) 1 v Q ™~
Controller E = E VS E Controller
1]
G, N7
¥ 1 (]
| 7 Smmmim—- ’
Component

Figure 8.10: Example of a component with multiple clock domains

A common example, as shown in Figure 8.10, is a separate bus interface clock. This can be gated with the
interconnect when there are no bus accesses, even when other clock domains within the component are required to
be active.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 126
Non-confidential

Chapter 8. Component Design Considerations
8.2. Component High-Level Clock Gating

8.2.2 Clock Availability during Clock Control Q-Channel Quiescence

The clock is guaranteed to be running whenever the clock control Q-Channel is not in the O_STOPPED state.

However, when the clock control Q-Channel is in the Q_STOPPED state the clock can still be running. There can
be several reasons for this, but one example is when another component managed by the same clock controller
denies a quiescence request and therefore the shared clock continues to run.

Therefore, a component must not assume the clock will be gated and use this as a mechanism to ensure a component
will not perform any operations. The behavior of the component in a quiescent state must be guaranteed by logical
means.

In addition, a component must not use internal clock gating alone to provide this function if it is possible that the
clock gates could be replaced by bypasses, as this replacement will remove the required functionality.

8.2.3 QACTIVE Behavior

DENO0050
D

QACTIVE is used for two purposes in clock control:

1. When HIGH: Indicates that the component requires a clock, regardless of the Q-Channel state. The supply of
the clock is subject to the guarantees provided by the Q-Channel handshake.

2. When LOW: Hints that the component might accept a clock control Q-Channel quiescence request.

QACTIVE at Reset

The clock control QACTIVE contribution from internal component state must be LOW at reset. This allows
the clock to be idle until component activity is required and prevents unnecessary clocks from running while a
component is held in reset.

Combinatorial contributions from external sources, such as from a bus interface access or a transition on a power
control LPI, can drive the QACTIVE HIGH while the component has its reset asserted to provide a wake function.

Contributions from a power control LPI are described in 8.2.3 QACTIVE Contribution from Power Control
Low-Power Interface.

QACTIVE Stimuli

QACTIVE stimuli is typically derived from the following:
* Internal logic state.
 External signaling.
 Other low-power control channels.
Some specific considerations are discussed in the following sections.

A transition of the clock control Q-Channel handshake must not set its own QACTIVE HIGH. The clock being
managed by the Q-Channel is guaranteed to be running when the Q-Channel transitions, so the QACTIVE is not
required to be HIGH for it to be requested. Setting it HIGH could cause the interface to exit quiescence, before it
becomes idle again, potentially causing the interface to oscillate between quiescent and actives states.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 127
Non-confidential

Chapter 8. Component Design Considerations
8.2. Component High-Level Clock Gating

DENO0050
D

QACTIVE Contribution from Internal State

Internal logic state contributions to a clock control QACTIVE can be numerous and are not restricted.

Typical examples can include the activity of a processing element, tracking of data transfer completion, including
waiting for responses from other components, and programmed settings.

QACTIVE Contribution for Clock Wake Up

To support QACTIVE assertion when a clock is not present there must be a QACTIVE contribution
combinatorially from either a component input or a signal from another clock domain within the component.

QACTIVE Contribution from Power Control Low-Power Interface

When the operation of a power control LPI is dependent on the supply of a Q-Channel controlled clock a
contribution to the clock control QACTIVE is required. This ensures the clock is supplied during power control
LPI handshake sequences.

A power control LPI request can arrive when the clock control Q-Channel is in Q_STOPPED. Since the clock is
required to progress the power mode LPI request a contribution to the clock control QACTIVE from the power
control LPI interface logic is required.

For P-Channel power control, the clock control QACTIVE contribution can be provided by including the power
control PREQ input signal, before any internal synchronization, along with the PACCEPT and PDENY as a
contribution to the clock control QACTIVE.

Figure 8.11 shows an example of a component with power control P-Channel and a clock control Q-Channel:

QREQN » Clock Functional Power >PACTIVE
QACCEPT« Control Logic Control —‘ PSTATE

QDENY + < " - PREQ
QACTIVE « <> 4

CLK —> <_'_C_ » PACCEPT
ei= =3
» PDENY
>

Figure 8.11: Example of P-Channel power control to clock control dependency

For a Q-Channel the wake-up condition can be provided by an XOR of the power control QREQn input signal,
before any internal synchronization, and the QACCEPTn output signal, then combined with the QDENY output.

This is an exception to the recommendation to limit QACTIVE combining to a logical OR where possible. In this
specific case, it is safe as the inputs to the XOR are guaranteed to change only one at a time.

Figure 8.12 shows an example of a component with power control Q-Channel and a clock control Q-Channel:

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 128
Non-confidential

Chapter 8. Component Design Considerations
8.2. Component High-Level Clock Gating

DENO0050
D

QREQn
QACCEPT «

QDENY «
QACTIVE «

Clock
Control

CLK —»

A

Functional
Logic

Power
Control » QACTIVE
< / i t | QREQn
i =l
4‘ p—
» QACCEPT
D
SH >
| » QDENY
D>

Figure 8.12: Example of Q-Channel power control to clock control dependency

QACTIVE Policy

QACTIVE should be driven LOW when the clock is not required by the component to provide the maximum

opportunity for clock gating.

It is recommended that the application of any hysteresis is implemented by the clock controller at the system level
as the required behavior is typically system specific and depends upon the combination of components within the

clock domain.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

129

Chapter 8. Component Design Considerations
8.2. Component High-Level Clock Gating

8.2.4 Q-Channel Handshake Behavior

DENO0050
D

Q-Channel Handshake at Reset

From a component perspective, the clock control Q-Channel will always exit reset in the Q_STOPPED state.
Component QACCEPTn and QDENY outputs must be reset LOW.

Any resynchronization elements in the component on the QREQn input must be reset LOW.

The component must assume the state of the QREQn input is LOW at reset exit until it is sampled HIGH.

A controller can set QREQn LOW or HIGH at reset exit. When QREQn is set HIGH, the interface is in Q_EXIT
state, but this will not be sampled by a component until its reset is released.

The reset state of the component should be equivalent to the quiescent state, with all required interface management
in place.

Q-Channel Quiescence Requests

A quiescence request on the clock control Q-Channel can be made to a component at any time regardless of the
state of the QACTIVE signal.

A component must only wait to accept a Q-Channel quiescence request when a response can be given within a
bounded time. The length of this bounded time is not limited and depends upon the actions required to accept the
request.

If a component cannot bound the time required until it will accept it should deny the request.

A clock control Q-Channel must always respond to requests to enter and exit a quiescent state, even when the
power control LPI is in a non-functional mode. This allows a clock to be requested to complete power control
transitions.

Actions required to enter quiescence
A component must ensure that when it accepts a request there will be no functional failure because of the clock
being disabled.
Therefore, before accepting a clock controller Q-Channel quiescence request a component must ensure:
 There is no internal activity requirement.

* All outputs and interfaces are managed as described in 8.1.2 Output Management and 8.1.3 Interface
Management.

— This includes internal interfaces where a clock domain boundary is internal to the component.

All required actions must be completed before an accept response is sent by setting QACCEPTn LOW. Once the
accept response is sent the capabilities of the previous power mode are not guaranteed.

Q-Channel Quiescence Exit

At exit from quiescence once a component has sampled QREQn HIGH, in the interface Q_EXIT state, it can
resume operations. It does not have to wait until it has accepted the request by setting QACCEPTn HIGH.

The controller cannot make another quiescence request until QACCEPTn is HIGH. The component can use this
to prevent another request until it has carried out any required initialization sequence. Alternatively, it can respond
immediately and deny any quiescence requests until it is idle.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 130
Non-confidential

Chapter 8. Component Design Considerations
8.2. Component High-Level Clock Gating

8.2.5 Implementation Example: AXI Responder Interface

Figure 8.13 shows a conceptual implementation of high-level clock gating support for a component with an AXI
responder interface.

AWAKEUP *VALID *READY
A
\ 4
Blocking en|<l\—
A
SR up
QACTIVE « ¢ ‘ ': L Outstanding
o : T =0 Counter
< A f down
‘resplonse'
QACCEPTN « < b
<
QDENY <« < M
<
= H
QREQn i B f—
> P> |
synchronizer
CLK

Figure 8.13: AXI responder interface high-level clock gating example

The implementation has four elements:
* A wake-up condition using external signaling as a QACTIVE contribution.
* Internal state tracking the clock activity requirement, once active, as a QACTIVE contribution.

* Interface management at the AXI responder interface to prevent transactions being accepted unless the clock
is guaranteed.

* Q-Channel handshake logic.
The clock activity is controlled according to the processing of AXI transactions.
The operation of the circuit can be described as follows:
1. From a clock stopped state (Q_STOPPED).
a. ARREADY, AWREADY and WREADY are blocked LOW. All VALID inputs are ignored.
b. QACTIVE goes HIGH when AWAKEUP is asserted HIGH.
2. The Q-Channel clock controller sets QREQn HIGH and guarantees the clock is running (Q_EXIT).
a. The READY outputs are un-blocked and VALID inputs are accepted. Transactions are now accepted.
b. The component sets QACCEPTn HIGH (Q_RUN).

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 131
D Non-confidential

Chapter 8. Component Design Considerations
8.2. Component High-Level Clock Gating

c. QACTIVE is maintained HIGH by an outstanding counter that remains active until all responses are
completed.

3. Accepted Quiescence: The controller sets QREQn LOW (Q_REQUEST).
a. This is according to controller policy specific criteria, for example when QACTIVE is LOW.

b. The clock is guaranteed until the component sets QACCEPTn LOW. It can continue to accept
transactions if any arrive. In this case, the behavior is to deny the quiescence request (see 4) rather than
delay acceptance indefinitely.

c. If all accepted outstanding transactions are completed, none are pending and VALID and READY
are blocked, then QACCEPTn is set LOW by the component (Q_STOPPED). The clock is no longer
guaranteed.

4. Denied Quiescence: The controller sets QREQn LOW (Q_REQUEST).
a. This is according to controller policy specific criteria, for example when QACTIVE is LOW.

b. If the component has returned to a busy state, for example if a transaction arrived after the controller
detected QACTIVE LOW, it sets QDENY HIGH (Q_DENY). The clock continues to run, and the
component remains functional.

¢. On sampling QDENY HIGH the controller must set QREQn HIGH (Q_CONTINUE).
d. On sampling QREQn HIGH the component sets QDENY LOW (Q_RUN).

8.2.6 Unused Clock Control Q-Channels

The component must operate correctly if the integrator chooses to not use a clock control Q-Channel. In this case,
the component can assume the clock will always be available. It becomes the responsibility of the integrator to
ensure the clock is managed correctly.

When the Q-Channel is unused the QREQn input must be tied HIGH.

For components with multiple clock control Q-Channels, if one channel is not used it must not limit the use of
other clock or power control LPIs. This allows the integrator to choose which clock domains implement high-level
clock gating.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 132
D Non-confidential

Chapter 8. Component Design Considerations
8.2. Component High-Level Clock Gating

8.2.7 Clock Control Q-Channel Naming Guidelines

DENO0050
D

It removes ambiguity and eases integration to give the clock control Q-Channels meaningful names according to
their function. Even when there is a single interface, naming can help prevent misuse of the interface.

Clock control Q-Channels are recommended to be prefixed with the name of the controlled clock, this avoids
ambiguity about the use of the Q-Channel and the clock to which it applies.

When sorted alphabetically, in simulation waves or lists, the Q-Channels will appear by function and next to the
clock they control. An alternative approach is to add the clock name as a post-fix.

Table 8.1 shows an example.

Table 8.1: Clock control Q-Channel naming convention example

Naming Convention ACLK Example

<clk>QACTIVE ACLKQACTIVE
<clk>QREQn ACLKQREQn
<clk>QACCEPTn ACLKQACCEPTn
<clk>QDENY ACLKQDENY
Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 133

Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

8.3 Component Power Control

This section describes implementation of power control using Q-Channel and P-Channel low-power interfaces.

8.3.1 Low-Power Interface Selection

Power Control can use a either Q-Channel or P-Channel low-power interface.

Q-Channel is recommended for components that have a single low-power mode as it has a simple run-stop semantic.
The low-power mode entered can vary, but only according to a common configuration of both the component and
the controller before quiescence is requested on the Q-Channel.

The advantage of using Q-Channel is the simpler interface that is easier to combine with other power control
Q-Channels.

P-Channel is recommended for components that have multiple power or operating modes. For example, a
component that can be put into retention and off. The P-Channel allows:

» The component to express varying levels of activity requirement to a power controller for entry into different
modes.

— For example, the conditions can be different for retention and off.

* The controller to express the required mode, allowing the component to take different actions, dependent on
the mode requested.

— For example, a core transition to retention manages interfaces and clocks but a transition to off adds the
requirement for caches to be flushed and in-cluster coherency to be managed.

* Transitions between multiple modes.
P-Channel is only selected if Q-Channel functionality is insufficient.
Therefore, a P-Channel should be selected if a component is required to do any of the following:
* Support multiple power or operating modes.
* Accept and deny on different conditions, depending on the mode requested.
* Transition between different modes without returning to a common functional mode.

Figure 8.14 shows the differences between P-Channel and Q-Channel sequences for transitioning to and from a
retention mode.

to tl t2 t3 t4 t5 t6 t7 t8
{(
PSTATE = ON FULL RET ON
U
PREQ N \\ .
U
PACCEPT l/P{)\TR\ . l
U
PDENY .
U
REQn I\
ACCEPTn
@ A § /
QDENY

Figure 8.14: Q-Channel and P-Channel entry to and exit from retention

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 134
D Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

Figure 8.15 shows the differences between P-Channel and Q-Channel sequences for transitioning from ON to
FUNC_RET then to FULL_RET.

0 t1 2 t3 t4 t5 t6 t7 t8 9 t10 t11 t12
PSTATE ON) FUNC_RET ff X FULL_RET
PREQ /] \ , i \
PACCEPT % . 1/77L&\\
PDENY i
Device State ON) :: FUNC_RET X FULL_RET

y i
ACCEPTn 4&‘\ ! Quiescent power :
Q § /; ' mode renegotiation !

QDENY |

Device State ON X FUNC_RET

—~

ON Y FULL_RET

Figure 8.15: Q-Channel and P-Channel transitions between multiple modes

The P-Channel can transition directly from FUNC_RET to FULL_RET. However, the Q-Channel must transition
back to ON, then renegotiate the quiescent power mode between the device and power controller, before the
re-entering quiescence. Therefore, the P-Channel is a more suitable choice in this scenario.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 135
D Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

8.3.2 General Power Control Low-Power Interface Implementation

DENO0050
D

A component must have a power control LPI for each of its power domains. This allows each component power
domain to be controlled separately and for each component power domain to be combined with other components
to form larger system power domains.

NOTE: With the PCSA supported power modes a single LPI can control a power domain with a single sub-domain
with a known relationship and whose boundary is entirely within the controlled domain. This sub-domain might be
memory or logic.

Power control LPIs must be separate from any clock control Q-Channels.

Power control LPIs are recommended to be responsive while their related clock control Q-Channel is in
Q_STOPPED but the clock is running. All other interfaces must be managed as described in 8.1.3 Interface
Management.

Low-Power Interface and Relationship to Power Domains

Depending on component structure, the low-power interface control logic can be implemented within either the
managed power domain itself or within a parent power domain when a component supports nested parent-child
power domain relationships.

Figure 8.16 shows a simple example with three power domains across two components:

T:
NoEnEEEeeaees b
1 [}
: H
i | Component 0 |« > PPU
: : LPI
1 1
i i
! Power Gated Domain !
grEmmmmmmmmmmmm———) T
i Power Gated E_J 7 PPU
i Domain 0 e R
. - P
grmm S m———_————— 1
i Power Gated 1 J D
i Domain 1 ::_ > Bey
. ’ LPI
Component 1

Figure 8.16: Simple power domain example

In Figure 8.16 component 0 is within one power domain and component 1 has two power domains. There is one
LPI for each power domain and in all cases the LPI control logic is contained within the power domain it controls.
In this arrangement each power domain can only make transitions between modes, with the corresponding LPI
responses, when logic capability is available.

Also, the components cannot create wake-up requests, using either QACTIVE or PACTIVE from modes without
logic in an operable state. The wake-up functionality must then be provided by the system. The wake-up request
at system level can be either from hardware signaling, for example as a QACTIVE or PACTIVE contribution
outside the component, or software programming of the PPU.

Transitions between different power modes without logic capability require intermediate transitions through an
operable mode. Finally, since some logic capability is required at minimum to respond to LPI requests this
arrangement is not suitable to support RAM only power domains.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 136
Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

Figure 8.17 shows an example component with a parent-child relationship between a primary power domain and
two secondary sub-domains.

(e y o mmmmmmmm——— s LPI
i Power Gated 1 i Power Gated 1 > PPU
' Domain 1 L] Domain 2 !
e L B e e S anta e L
o 3 = PPU |-
1 =
H 1
—i Power Gated Domain 0 1
h 1
i : 1« > PPU
H 1 3 LPI H
H 1 1 H
H A -
i Component

Figure 8.17: Parent-child power domain example

In Figure 8.17 power domain O acts as a parent domain with a first-on, last-off relationship to the child power
domains, power domain 1 and power domain 2. All LPI interface and control logic is in power domain O.

In this case, the device capabilities can include parent domain detection, and signaling, of wake conditions on
behalf of secondary power domains, using either QACTIVE or PACTIVE to cause a transition to a higher power
mode. This arrangement can be used in the absence of logic capability in a sub-domain, for example, a RAM only
power domain.

Low-Power Interface Logic Reset

For a power domain with a single reset signal the low-power interface logic must use this reset. This applies even
when the LPI logic is in another power domain, for example a parent domain in a component with primary and
secondary domains as shown in Figure 8.17.

The requirement for initialization at reset in the P-Channel protocol has specific considerations, as the support for
initialization is dependent on the reset used for the P-Channel logic.

Where a power domain has multiple resets the LPI logic is strongly recommended to use the power-on reset of the
domain. The use of other resets, for example warm resets which affect only parts of the power domain, for the LPI
logic is not recommended.

NOTE: Considerations for components with multiple resets and support for the power modes supported by the PPU
architecture, outlined in 6.5.1 Power Policy Unit, are given in ARM Power Policy Unit Architecture Specification

[6].

8.3.3 Power State Availability

DENO0050
D

While the capabilities of the current power mode are guaranteed, transitioning a component LPI to a lower power
mode does not guarantee removal of the capabilities of a higher power mode.

There can be many reasons for this, but one example is another component within the power domain can deny
a power mode transition therefore the controller will not take the actions associated with the power mode, for
example applying reset.

Therefore, a component must not use the power mode conditions, for example reset being asserted, power being
removed, or isolation being enabled, as a mechanism to ensure the component will operate correctly or be able to
correctly transition to another power mode. The correct operation of the component must be guaranteed by logical
means.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 137
Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

8.3.4 Power Control Q-Channel Guidelines

DENO0050
D

This section describes the implementation of power control using a Q-Channel.

A power control Q-Channel can only transition between a functional mode and a single low-power mode.

QACTIVE Behaviour

The power control QACTIVE signal is used for two purposes:

1. When HIGH: To indicate that the component is required to be active, regardless of the Q-Channel state. The
supply of power is subject to the guarantees provided by the Q-Channel handshake.

2. When LOW: To hint that the component might accept a Q-Channel quiescence request to enter a low-power
mode.

a. The exact low power mode entered is either fixed or negotiated by some implementation defined means
between the component and controller.
QACTIVE at Reset
The power control QACTIVE contribution from internal component state must be LOW at reset. This allows the
component to remain in a low power mode until required by the system.
The rationale for this recommendation includes:

» If QACTIVE is set HIGH at reset assertion, taking powering off as an example, then when reset is applied,
prior to power-off, QACTIVE would be HIGH indicating a requirement to exit the powered off state.

e If QACTIVE is set HIGH at reset assertion, then it is also required to be isolated HIGH for consistency of
reset and isolation values. The component then indicates a requirement to exit the O _STOPPED state when it
is isolated throughout power-off and retention modes.

Components that are required to power on immediately after reset must have system level stimulus to provide this
wake-up.

NOTE: Some components might be required to be powered-on by default at exit from a full system reset. The
default mode of a power domain can be configured in the Power Policy Unit, see ARM Power Policy Unit
Architecture Specification [6].

QACTIVE Stimuli

QACTIVE stimuli can be from several sources derived from the following:

* Internal logic state.
» External signaling.

Some specific considerations are discussed in the following sections.
QACTIVE Contribution from Internal State

Internal logic state contributions to a power control QACTIVE can be numerous and are not restricted. A critical
consideration in power control is the loss of context that can result because of a low-power mode.

In the case of modes without loss of context, for example full retention, the conditions for setting QACTIVE LOW
can depend only on internal hardware activity. Activity conditions can include the completion of a programmed
task or lack of active transactions in an interconnect component. The setting of QACTIVE LOW then enables an
opportunistic transition to the low-power mode.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 138
Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

DENO0050
D

Components that contain no software configuration or context, or that are expected to be reconfigured for each
new task, can support the opportunistic approach for all modes and are recommended to drive QACTIVE LOW
whenever possible.

The QACTIVE LOW assertion, using hardware activity conditions, can be according to an internal policy such
as a timeout period after operations have completed, or anticipation that re-programming of context is required
anyway for the next set of operations.

In the case of components that have software context or configuration the loss of context must be considered when
RAM or logic will be powered-off in the low-power mode. Although the QACTIVE LOW condition will depend
on similar activities to that described for retention modes it can consider, through register settings or machine state,
that any required software actions to manage context are completed or the loss of context is acceptable.

QACTIVE Contribution for Low-Power Mode Exit

If a component power domain is in a power mode in which it cannot generate or propagate signals, for example
powered-off, then wake signaling must come from outside the power domain. Although it can be possible in some
low-power modes, this limits the use of component inputs for wake-up contributions as compared to clock control.

In components with multiple power domains arranged in a parent-child relationship, then a sub-domain QACTIVE
wake-up contribution can be generated in the primary parent domain or even from another active sub-domain.
While this is outside the power domain under control it is within the component and a standard LPI with all
contributions included can be presented to the system.

QACTIVE contributions can be added at the system level between the component and the PPU. Examples include
level sensitive interrupts, wake requests, or indications that a another component has a transaction to progress.

Figure 8.18 shows an example of an external power control QACTIVE contribution.

Requestor
Component

A

A
Access Control
Gate

-

-bi i QACTIVE
> 7]

Responder

i | Component |, il

>

>
QREQNIQACCEPTN/
QDENY

Figure 8.18: Example of external QACTIVE contribution

In Figure 8.18 a QACTIVE signal, indicating stalled transactions, from power domain A is used as a power
control QACTIVE contribution between the component in power domain B and the PPU. The stalled transactions
can then cause automatic power-on of power domain B when it is off, and transactions are waiting.

In the absence of suitable signaling then the low-power mode exit will require software programming of the PPU
or equivalent.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 139
Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

DENO0050
D

Power Control Q-Channel Handshake

Q-Channel Handshake at Reset

From a component perspective, a power control Q-Channel will always exit reset in the Q_STOPPED state.
Component QACCEPTn and QDENY outputs must be reset LOW.

Any resynchronization in the component on the QREQn input must be reset LOW.
The component must assume the state of the QREQn input is LOW at reset exit.

A controller can set QREQn LOW or HIGH at reset exit. When QREQn is set HIGH, the interface is in Q_EXIT
state, but this will not be sampled by a component until its reset is released.

The reset state of the component should be equivalent to the quiescent state, with all required interface management
in place.

Q-Channel Quiescence Requests

A quiescence request on the power control Q-Channel can be made to a component at any time regardless of the
state of the QACTIVE signal.

A component must only wait to accept a Q-Channel quiescence request when a response can be given within a
reasonably bounded time. The length of this bounded time is not limited and depends upon the actions required to
accept the request, but can include transactions initiated by the component itself, such as cache flushes, required to
enter quiescence even if the response time to those transactions is not guaranteed. It should not include waiting for
a cessation of transactions from an external requestor but can include completing already accepted transactions
even if the response time to those transactions is not guaranteed.

Some components can be required to always complete a sequence and enter the low-power mode regardless of their
status. An example is a domain bridge that when requested to enter a quiescent state, prior to power-off, might
first block incoming transactions to prevent any new transactions, but then complete any outstanding transactions,
before accepting the quiescence request. This might take some time, depending on the traffic activity through the
domain bridge, but the desired response of the system is for the request to complete rather than be denied.

Actions Required to Enter a Low-Power Mode

A component must ensure that when it accepts a request there will be no functional failure because of the low-power

mode.

The requirements can change depending on the low-power mode which is requested but include ensuring:
 There is no internal activity requirement.

¢ All outputs and interfaces are managed as described in 8.1.2 Output Management and 8.1.3 Interface
Management.

— This includes internal interfaces where a power domain boundary is internal to the component.

All required actions must be completed before an accept response is sent by setting QACCEPTn LOW. Once the
accept response is sent the capabilities of the previous power mode are not guaranteed.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 140
Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

DENO0050
D

Q-Channel Quiescence Exit

At exit from the low power mode once a component has sampled QREQn HIGH, in the interface Q_EXIT state, it
can resume operations. It does not have to wait until it has accepted the request by setting QACCEPTn HIGH.

The controller cannot make another quiescence request until QACCEPTn is HIGH. The component can use this
to prevent another request until it has carried out any required initialization sequence. Alternatively, it can respond
immediately and deny any quiescence requests until it is idle.

Unused Power Control Q-Channel

The component must operate correctly if the integrator chooses to not use a power control Q-Channel. In this case,
the component can assume that the power will always be available. It becomes the responsibility of the integrator
to ensure the power domain is managed correctly.

When the Q-Channel is unused, QREQn must be tied HIGH.

For components with multiple power control Q-Channels, if one channel is not used it must not limit the use of
other clock or power control LPIs. This allows the integrator to choose which power domains they implement.

For instance, an integrator might not implement a supported sub-domain of a component while still implementing
a supported top-level power domain. In this case, the integrator can tie off the sub-domain LPI, while still using
the top-level power domain LPI to provide overall component power control.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 141
Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

8.3.5 Power Control P-Channel Guidelines

DENO0050
D

This section describes the implementation of power control using a P-Channel.

A P-Channel can switch between multiple low-power modes. These modes and allowed transitions are specified by
the component.

PSTATE and PACTIVE Usage
While the arrangement of PSTATE values and PACTIVE bits is not restricted by the Low-Power Interface
Specification, ARM Q-Channel and P-Channel Interfaces [4] the following sections in this document specify an

implementation to be followed to align to the PCSA and allow interoperability with other components and the
power control framework infrastructure.

Power Modes

The PCSA defines the PSTATE and PACTIVE bit values related to the defined power modes. Components must
use these values. These are listed in Table 6.1 and Table 6.2 and summarized below in Table 8.2.

Table 8.2: Recommended PSTATE and PACTIVE usage

Power Mode PACTIVE bit PSTATE [3:0] Mode Priority
DBG_RECOV 10 0b1010 High
WARM_RST 9 0b1001

ON 8 0b1000

FUNC_RET 7 0b0111

MEM_OFF 6 0b0110

FULL_RET 5 0b0101

LOGIC_RET 4 0b0100
MEM_RET_EMU 3 0b0011

MEM_RET 2 0b0010

OFF_EMU 1 0b0001

OFF 0 0b0000 Low

Typically, a component only implements a subset of the power modes. For unused power modes the component
must declare the unused PSTATE values as RESERVED and tie the corresponding PACTIVE outputs LOW, rather
than omit them.

PACTIVE bit 0, the indication for the OFF power-mode must be tied LOW in all cases. If all other PACTIVE
outputs are LOW, then OFF is the default minimum required power mode regardless of the setting of this bit
therefore setting it LOW simplifies component design and allows for a simpler isolation policy.

Operating Modes

Operating modes are component specific. In general, operating modes are intended to be used by more sophisticated
components, where the additional complexity to both component design and integration are justified.

For further information on operating modes see the ARM" Power Policy Unit Architecture Specification [6].

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 142
Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control
Any implementation of operating modes must maintain interoperability with the PPU specified operation.

Operating mode PACTIVE outputs are considered separate from power mode PACTIVE outputs, therefore there
is no requirement to set operating mode PACTIVE outputs LOW to facilitate the requirement for a power mode.

If operating modes are included there must be an operating mode for all power modes that have operating mode
context. This increases the compatibility between system components when placed together in a domain.

As an example, consider the power domain shown in Figure 8.19.

; '

; 3

P-Channel : component A E

; RAM|| i

PPU i i
| P-Channel : Component B E

RAM|] !

i

1

i

Power Gated Domain

Figure 8.19: Example power gated domain

Component A supports the ON, MEM_RET and OFF power modes and has three operating modes controlling the
portions of RAM that are powered on. The operating modes are No RAM, Half RAM and Full RAM.

Component B supports the ON, OFF and MEM_RET power modes without any operating modes.

Component A might not implement a MEM_RET power mode associated with the No RAM operating mode,
MEM_RET(No RAM), as there is no RAM powered on to be retained making this mode essentially the same as
OFF.

In this case, as shown in Figure 8.20, if component A is in ON(No RAM) and the PPU requests MEM_RET,
component A will deny the transition and therefore the domain cannot enter MEM_RET. In the case, the power
mode might still be useful for component B.

Component A Power Modes Component B Power Modes
) l
ON R ON ON ON
(No RAM) (Half RAM) (Full RAM)
{ T
Transition MEM_RET MEM_RET
Denied (Half RAM) (Full RAM) e ey
y y
OFF OFF

Figure 8.20: Example power transitions without a MEM_RET (No RAM) mode

If component A does implement MEM_RET(No RAM) then, as shown in Figure 8.21, if component A is in
ON(No RAM) and the PPU requests MEM_RET, component A will accept the transition and the domain can enter
MEM_RET.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 143
D Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

Component A Power Modes Component B Power Modes
1 l
ON ON ON
No RAM) [T (Haif RAM) [(Full RAM) O
MEM_RET MEM_RET MEM_RET
(No RAM) (Half RAM) (Full RAM) 2 LixEy
y.v
OFF OFF

Figure 8.21: Example power transitions with a MEM_RET (No RAM) mode

Mode Transitions

A component must support the transitions as described in the ARM Power Policy Unit Architecture Specification [6]
for the power modes it supports. It is not recommended to support additional power mode transitions not specified
in this document.

A component must accept a legal transition request to a power mode at, or higher than, the minimum required as
indicated on the PACTIVE bits.

Components must support transitions to the same mode they are already in. Accepting the transition with no
change in component function is typically all that is required.

Components with the MEM_RET power mode must support the transition from OFF to MEM_RET. This allows
for power control infrastructure to be powered-off while the component is in MEM_RET. The component can then
be returned to ON through an OFF to MEM_RET to ON sequence while maintaining RAM contents.

PACTIVE Policy

The power mode PACTIVE output bits are used to indicate component power mode requirements to the power
controller.

Each PACTIVE bit indicates the requirement for a power mode supported by the component. When HIGH it
indicates a requirement for the specified mode. When LOW it is a hint that the power mode is not required.
Multiple PACTIVE bits can be HIGH simultaneously and each bit can change independently.

The most significant PACTIVE bit that is set HIGH indicates the minimum power mode required by the component.
The relationship of PACTIVE bits to power modes is described in PSTATE and PACTIVE Usage.

The indication of the minimum required power mode on the PACTIVE bits is not required to be a power mode
that is a direct transition from the current power mode.

As the PACTIVE bits specify a minimum required power mode then:

* if the PACTIVE bits indicate a minimum requirement higher than the current component power mode, then
this is a requirement for the controller to move to the minimum requested power mode or a higher to progress
operations. Failure to respond to such a requirement could result in a deadlock.

« if the PACTIVE bits indicate a minimum requirement lower than the current component power mode, then
this is a hint for the controller that the component will accept a transition to this minimum requested power
mode or higher.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 144
D Non-confidential

@sec:cdc_pwr_ctrl_pstate_pactive_usage

Chapter 8. Component Design Considerations
8.3. Component Power Control

DENO0050
D

PACTIVE at Reset

PACTIVE outputs must be LOW at reset. The rationale for this includes:

» If aPACTIVE bit is set HIGH at reset assertion, then when reset is applied prior to power-off that PACTIVE
bit would then indicate a requirement to transition to that mode as a minimum power mode when it might not
be required.

» If a PACTIVE bit is set HIGH at reset assertion, then it would also be required to be isolated HIGH for
consistency of reset and isolation values. The component then indicates a requirement to transition to that
mode as a minimum power mode when the output is isolated in power-off and retention modes.

Components that are required to power on immediately after reset must have system level stimulus to provide this
wake-up.

NOTE: Some components might be required to be powered-on by default at exit from a full system reset. The
default mode of a power domain can be configured in the Power Policy Unit, see the ARM Power Policy Unit
Architecture Specification [6].

PACTIVE Stimulus

The stimulus for the PACTIVE bits typically comes from sources derived from the following:
* Internal logic.
» External signaling.

Some specifics are discussed in the following sections.
PACTIVE Contribution from Internal State

The considerations for PACTIVE bit contributions from internal component state are like those detailed for a
power control QACTIVE as detailed in 8.3.4 QACTIVE Contribution from Internal State.

Since multiple power modes are supported, and the requirements for each power mode can be different, the
contributions for each PACTIVE must be considered individually.

It is important to consider the priority of each mode at a given time to allow indication of the correct minimum
power mode. For example, when the conditions for entering a FULL_RET power mode are met, but the additional
conditions for entering an OFF power mode are also met. In this case the retention mode PACTIVE must be set
LOW to indicate that the minimum required power mode is OFF.

PACTIVE Contribution for Low-Power Mode Exit

The considerations for PACTIVE bit contributions for low-power mode exit from external signals are like those
detailed for a power control QACTIVE as detailed in 8.3.4 QACTIVE Contribution for Low-Power Mode Exit.

However, it is possible to use component internal or input signals as low power exit contributions to PACTIVE
outputs in modes where some component logic is still operational such as FUNC_RET and MEM_OFF.

PACTIVE and Isolation

PACTIVE outputs are generally exempt from component output management, even if they are to be isolated to a
different level the output level should be maintained when entering a power mode. This allows the external system
to capture the value and maintain it externally to capture the requirement for the power or operating mode before
isolation is enabled. Methods for capturing these values in the system is discussed in 7.2.9 Output Isolation and
PACTIVE.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 145
Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

DENO0050
D

P-Channel Handshake

P-Channel Handshake at Reset

From a component perspective, a P-Channel will always exit reset in the P_STABLE state, PACCEPT and PDENY
outputs must be reset LOW.

The component must assume the state of the PREQ input is LOW at reset exit, resynchronization of the PREQ in
the component must be reset LOW.

At reset a component must assume an implicit power mode of OFF, with the associated component functional state,
such as interface management. Any PSTATE initialization or subsequent P-Channel transition must be considered
a transition from OFF to the requested state with the same actions normally associated with this transition.

P-Channel Requests

A request on a P-Channel can be made to a component at any time regardless of the state of the PACTIVE signals.
When a request is made, the component should respond in a timely manner.

A component must only wait to accept a P-Channel quiescence request when a response can be given within a
reasonably bounded time. The length of this bounded time is not limited and depends upon the actions required to
accept the request, but can include transactions initiated by the component itself, such as cache flushes, required to
enter quiescence even if the response time to those transactions is not guaranteed. It should not include waiting for
a cessation of transactions from an external requestor but can include completing already accepted transactions
even if the response time to those transactions is not guaranteed.

Some components can be required to always complete a sequence and enter the low-power mode regardless of their
status. An example is a domain bridge that when requested to enter a quiescent state, prior to power-off, might
first block incoming transactions to prevent any new transactions, but then complete any outstanding transactions,
before accepting the quiescence request. This might take some time, depending on the traffic activity through the
domain bridge, but the desired response of the system is for the request to complete rather than be denied.

When moving to a higher power mode the capabilities of that mode are available as soon as the component samples
the PREQ input HIGH with the corresponding PSTATE value.

Therefore, the capabilities of this higher mode can be used before the P-Channel transition is completed. However,
the controller cannot make another request until the accept response handshake is completed and the interface
returns to the P_STABLE state. The component can use this to prevent another request until it has carried out
any required actions by delaying the handshake completion, from P_COMPLETE to P_STABLE, by keeping
PACCEPT HIGH until ready. This can prevent the verification overhead of having to support P-Channel denial
responses during this period.

Figure 8.22 shows an example of this usage.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 146
Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

t0 t1 t2 t3 t4 t5

RESETn

PSTATE State A (lower mode) X State B (higher mode)

PREQ I \
PACCEPT \'// /* \
PDENY <

<‘(Initialisation of new mode };
PPU Actions —(Pre-transition actions)

P_STABLE P_REQUEST P_ACCEPT P_COMPLETE P_STABLE

Figure 8.22: Component delayed completion on transition to higher mode

When moving to a lower power mode the reduced capabilities of that mode do not take effect until the P-Channel
transition is complete. From a component perspective, this is when it sets PACCEPT LOW to bring the P-Channel
back to the P_STABLE state.

Therefore, to ensure correct operation the component must complete any actions required to change mode before
accepting the request. It is recommended to do this before moving to the P_ACCEPT state, with PACCEPT HIGH,
rather than prior to setting PACCEPT LOW at the P_COMPLETE to P_STABLE transition. This allows the
component to attempt actions and if not successful, or other activity is required before these actions are complete,
then provide a denial response.

Figure 8.23 shows an example of this usage.

to t1 t2 t3 t4 t5 t6
RESETn
PSTATE State A (higher mode) X State B (lower mode)
PREQ [/>\\
PACCEPT)]l |\

eoeny / N /
o

Prepare: Accept or Deny?))

&% Post-Transition Actions)—

P_STABLE P_REQUEST P_ACCEPT P_COMPLETE P_STABLE

Figure 8.23: Component delayed acceptance on transition to lower mode

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 147
D Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

DENO0050
D

Denied Requests
The Low-Power Interface Specification, ARM Q-Channel and P-Channel Interface [4] requires a component to
specify which supported transitions might be conditionally denied.

In addition to denying requests when the internal conditions are inappropriate, components are strongly
recommended to deny requests when:

* The mode requested is not a legal mode of the component.
— PSTATE is an invalid value.

* A transition to the requested mode, from the current mode, is not supported.
While this is not required by the P-Channel protocol it prevents deadlock in the case of incorrect controller actions
and aids debug of these scenarios.
Actions Required to Enter a Low-Power Mode
A component must ensure that when it accepts a request there will be no functional failure because of the transition
to the target power mode.
The requirements can change depending on the power mode which is requested but include ensuring:

 There is no internal activity requirement.

* All outputs and interfaces are managed as described in 8.1.2 Output Management and 8.1.3 Interface
Management.

— This includes internal interfaces where a power domain boundary is internal to the component.

All required actions must be completed before the P-Channel transition is complete. It is recommended that all
actions are completed before PACCEPT is asserted HIGH to accept the transition. However, it must be done
before PACCEPT is set LOW to complete the P-Channel transition as from this point the capabilities of the
previous power mode are not guaranteed.

Additionally, for power modes where a part of the component is operational, but another part is off or in retention,
the clock is still required to operate parts of the component so cannot be gated externally. Therefore, internal clock
gating within the component is required for the parts that are off or in retention for the duration of the low power
mode. Examples of these power modes include FUNC_RET and MEM_OFF.

Unused P-Channel
To allow a P-Channel to be unused a component must support initialization into at least one functional mode

directly from reset. This is typically a functional mode where all features of the component are available.

An unused P-Channel has PREQ tied LOW and PSTATE tied to this initialization mode value, that must be
sampled by the component at reset exit as described in 8.1.1 Capturing PSTATE.

The modes that the component can enter at reset exit must be specified by the component.

For components with multiple P-Channels if one channel is tied off it must not limit the use of other power control
channels. This allows the integrator to choose which domains they will implement.

For instance, an integrator might not implement supported sub-domains of a component while still implementing a
supported top-level power domain. In this case, the integrator can tie off the sub-domain LPI while still using the
top-level power domain LPI to provide overall component power control.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 148
Non-confidential

Chapter 8. Component Design Considerations
8.3. Component Power Control

8.3.6 Power Control Low-Power Interface Naming Guidelines

Consistent and meaningful naming according to function eases integration and prevents misuse by identifying the
use, and associated domain, of the low-power interface. Additionally, by using prefixes, when sorted alphabetically,
in simulation waves or lists, the low-power interfaces will appear by domain. An alternative approach is to add the
clock name as a post-fix.

For a power control Q-Channel an initial PWR prefix on signals is recommended to ensure clear distinction from
clock control Q-Channels. Where there are multiple Q-Channels the PWR prefix is recommended to be appended
with the power domain name.

Table 8.3 shows an example for a component with a single power control channel.

Table 8.3: Power Control Q-Channel Naming Convention Example

Naming Convention Example
(PWR/<domain>)QACTIVE PWRQACTIVE
(PWR/<domain>)QREQn PWRQREQn
(PWR/<domain>)QACCEPTn PWRQACCEPTn
(PWR/<domain>)QDENY PWRQDENY

NOTE: When a Q-Channel is used for power control the use of a P signal prefix alone is strongly recommended to
be avoided. This is to prevent potential confusion with P-Channel naming.

For P-Channel where there is a single power control channel no prefix is required as the use for power control is
unambiguous. Where there are multiple P-Channel interfaces, the signal names are recommended to be prefixed
with the name of the domain they are controlling. An alternative approach is to add the clock name as a post-fix.

Table 8.4 shows an example for a component with multiple power control channels.

Table 8.4: Power Control P-Channel Naming Convention Example

Naming Convention Example
<domain>PACTIVE CPUPACTIVE
<domain>PREQ CPUPREQ
<domain>PACCEPT CPUPACCEPT
<domain>PDENY CPUPDENY

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 149

D Non-confidential

Part A
Glossary

ACP

ACPI

Accelerator Coherency Port. This is responder port on a processor which allows peripherals to access the system
though a processor’s shared cache, allowing them to be coherent with that processor. Accesses to this port can
cause allocations to the cache.

Advanced Configuration and Power Interface. http://www.uefi.org/acpi/specs

Always-On Domain

AON

AP

AP core

big.LITTLE

BSP

CcCl

CCN

A voltage or power domain which is always-on compared to all other power domains on the SoC.

Always-On (Domain).

Application processor.

A processor core in the system running within the application processor software stack.

big.LITTLE is an Arm heterogeneous multiprocessing technology. High-performance Arm cores are combined
with the most efficient Arm cores to deliver peak-performance, higher sustained throughput, and increased parallel
processing performance, at significantly lower average power.

Board Support Package. The board support package is platform specific support software which conforms to a
given operating system.

Cache Coherent Interconnect.

Cache Coherent Network.

Clock Domain

DAP

DDR

A collection of design elements supplied with a common clock source. Other clock domains which interact with
the domain might be synchronous, but with independent source activity control, or asynchronous.

Debug Access Port

Double Data Rate.

Domain Bridge

DRAM

DVFS

DENO0050
D

A component which passes a protocol transaction from one domain to another, this includes voltage, power, and
clock domains or a combination.

Dynamic Random-Access Memory.

Dynamic Voltage and Frequency Scaling

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 151
Non-confidential

GIC

GPU

HN

LPI

MMU

MP

OSPM

PHY

Generic Interrupt Controller.

Graphics Processing Unit.

Home Node.

Low-Power Interface.

Memory Management Unit. A component which performs virtual to physical address translations.

Multiprocessor or multiprocessing.

Operating System Power Management software.

Physical Interface. A specialized input-output interfacing component, typically with timing or data recovery
capabilities, such as for interfacing a SoC to DRAM or high-speed peripherals.

Power Domain

A collection of design elements within a voltage domain that share common power control. A voltage domain can
have one or more power domains.

Power-Gated Domain

PPI

PPU

RAON

RAS

A power domain whose power can be removed by on-chip power switches.

Private Peripheral Interrupt.

Power Policy Unit.

Relatively Always-On (Domain)

Reliability and Serviceability.

Relatively Always-On Domain

RN

SAM

SCMI

DENO0050
D

A voltage or power domain which is always-on relative to another domain. It might be powered-off but only once
the specified domain is off and must be on before the specified domain is powered-on.

Request Node.

System Address Map.

Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 152
Non-confidential

System Control and Management Interface.

SCP
System Control Processor. A processor-based capability that provides a flexible and extensible platform for
provision of power management functions and services.
SCuU
Snoop Control Unit.
SoC
System on Chip.
SPI
Shared Peripheral Interrupt.
UPF

Unified Power Format. The IEEE 1801 standard for expressing power intent to verification and implementation
flows.

Voltage Domain

A collection of design elements supplied by a single voltage source. The voltage supply to the domain might be
scaled or removed for power or performance reasons.

DENO0050 Copyright © 2023 Arm Limited or its affiliates. All rights reserved. 153
D Non-confidential

	Power Control System Architecture
	Release information
	Arm Non-Confidential Document Licence (``Licence'')

	Contents
	Preface
	About this Specification
	Intended Audience

	Using this Specification
	Conventions
	Typographical conventions
	Numbers
	Pseudocode descriptions
	Assembler syntax descriptions

	Additional reading
	Feedback
	Feedback on this book

	1 Background
	2 Introduction
	2.1 Scope and Limitations

	3 Overview
	3.1 Power Control Challenges
	3.2 System Control Processor
	3.2.1 Services
	3.2.2 Trusted Operation

	3.3 Power Management Software
	3.3.1 Core Power Management
	Idle Management
	DVFS Management

	3.3.2 Device Power Management
	3.3.3 System Control Processor Firmware
	3.3.4 Power Management Software Stack Examples
	Mobile Systems
	Infrastructure Systems

	3.4 Power Control Framework

	4 System Partitioning
	4.1 Voltage Domains
	4.1.1 System Logic
	4.1.2 Always-On Logic
	4.1.3 Processor Clusters
	4.1.4 Graphics Processor
	4.1.5 Other Functions
	4.1.6 SoC Partitioning Examples

	4.2 Power Domains
	4.2.1 Power Modes
	ON
	OFF
	Retention (RET)
	Power Mode Transitions

	4.2.2 Power Domain Choices
	4.2.3 System Logic
	4.2.4 Always-On Domain
	4.2.5 Processor Clusters
	Core Power Domains
	Cluster Domain and Shared Cache RAMs
	Debug Domain
	Processor Cluster Partitioning Examples

	4.2.6 CoreSight Logic
	4.2.7 Graphics Processor
	Job Manager Power Domain
	Core and Core Group Power Domains
	GPU Partitioning Examples

	4.2.8 Display Processor
	4.2.9 Other Functions
	4.2.10 Power Domain Hierarchy Requirements
	Timer Subsystem
	Generic Interrupt Controller (GIC)
	Core Timers
	Always-On Domain Wake Events
	System Memory
	Power Ordering Requirements

	4.2.11 SoC Partitioning Example

	5 Power States
	5.1 Power States and Power Modes
	5.1.1 Power States
	5.1.2 Power Modes
	5.1.3 Distinction of Power States from Power Modes

	5.2 Power State Hierarchy
	5.2.1 Core Power States
	RUN
	IDLE_STANDBY
	IDLE_RETENTION
	SLEEP
	OFF
	Relationship to GIC Architecture
	Example Mapping of Core Power States to Modes

	5.2.2 Cluster Power States
	RUN
	SLEEP_RETENTION
	SLEEP
	OFF
	Example mapping of Cluster Power States to Modes

	5.2.3 Device Power States
	RUN
	OFF

	5.2.4 SoC Power States
	RUN
	SLEEP
	DEEPSLEEP
	OFF
	Power State Mapping

	5.3 Coordination by System Control Processor
	5.3.1 SoC Power States
	5.3.2 Cluster Power States

	6 Power Control Framework
	6.1 Power Control Framework Overview
	6.1.1 Power Control Framework Low-Power Interfaces
	6.1.2 Power Control Framework Infrastructure Components

	6.2 Low-Power Interfaces
	6.2.1 Q-Channel
	6.2.2 P-Channel
	6.2.3 AXI LPI
	Restrictions on the use of AXI LPI

	6.3 Power Modes
	6.4 System Control Processor
	6.4.1 SCP Components
	SCP Processor Core
	SCP Processor Core Selection
	SCP Processor Core Memory

	System Counters and Generic Timers
	Watchdog
	Voltage Regulator Control
	Clock Control
	System Control
	Messaging Interface
	Power Policy Units
	Sensor Control
	Additional Peripherals
	Peripheral Access
	System Access

	6.5 Power Management Infrastructure Components
	6.5.1 Power Policy Unit
	Power Control State Machine (PCSM)
	Reset Control
	Clock Control
	Isolation Control
	PPU Policy Support
	Power Modes
	Operating Modes
	Emulated Power Modes

	6.5.2 Clock Controller
	6.5.3 Low Power Distributor
	6.5.4 Low Power Combiner
	6.5.5 P-Channel to Q-Channel Convertor

	7 System Power Control Integration
	7.1 Clock Control Integration
	7.1.1 Clock Gating Levels
	Low-level Clock Gating
	Mid-level Clock Gating
	High-level Clock-Gating

	7.1.2 High-Level Clock Gating Methodology
	7.1.3 High-Level Clock Domain Selection
	7.1.4 Clock Gating Control Integration
	Clock Controller Connections
	Clock Controller Placement
	Clock Domain Crossing
	Clock Domain Scope
	7.1.4.1 Clock Controller Reset

	7.2 Power Control Integration
	7.2.1 Power Domain Wake Events
	7.2.2 Hardware Abstraction with Power Policy Units
	7.2.3 Distributed PPUs
	7.2.4 System of Systems
	7.2.5 Component Integration Layer
	7.2.6 Voltage and Power-Gated Domain Clock Gating
	7.2.7 Voltage and Power Domain Boundaries
	Voltage Domain and Asynchronous Power Domain Boundaries
	Power Control for Domain Bridges
	Domain Relationships
	Domain Bridge Connections

	Synchronous Power Domain Boundaries

	7.2.8 Access Control
	7.2.9 Isolation and Reset Control Considerations
	Output Isolation and Retention
	Output Isolation and PACTIVE

	Output Isolation and Non-default values

	7.3 Reset Control Integration
	7.3.1 Reset Signals
	Application Processors
	CoreSight Subsystem

	7.3.2 Reset Hierarchy
	7.3.3 Reset Management
	Power Mode Transitions
	Warm Resets
	Warm resets without quiescence
	Unaligned reset domains
	Initiating Warm Resets

	8 Component Design Considerations
	8.1 General Low-Power Interface Guidelines
	8.1.1 Low-Power Interface Implementation
	Q-Channel Implementation
	P-Channel Implementation
	Capturing PSTATE

	Synchronization of Input Signals
	QACTIVE and PACTIVE Contribution Combination
	Recommended LPI Feature Support

	8.1.2 Output Management
	8.1.3 Interface Management
	Clock Control
	Power Control
	AMBA APB Interface Management
	APB Management with Stall and Wake
	APB Management with Error
	APB Management with Accept and Ignore

	AMBA AXI and ACE Interface Management
	AXI Management with Stall and Wake

	AMBA AXI-Stream Interface Management
	AXI-Stream Management with Stall and Wake
	AXI-Stream Management with Accept and Ignore

	AMBA CHI Interface Management
	CHI Management with Stall and Wake

	8.2 Component High-Level Clock Gating
	8.2.1 Q-Channel Implementation
	8.2.2 Clock Availability during Clock Control Q-Channel Quiescence
	8.2.3 QACTIVE Behavior
	QACTIVE at Reset
	QACTIVE Stimuli
	QACTIVE Contribution from Internal State
	QACTIVE Contribution for Clock Wake Up
	QACTIVE Contribution from Power Control Low-Power Interface

	QACTIVE Policy

	8.2.4 Q-Channel Handshake Behavior
	Q-Channel Handshake at Reset
	Q-Channel Quiescence Requests
	Actions required to enter quiescence

	Q-Channel Quiescence Exit

	8.2.5 Implementation Example: AXI Responder Interface
	8.2.6 Unused Clock Control Q-Channels
	8.2.7 Clock Control Q-Channel Naming Guidelines

	8.3 Component Power Control
	8.3.1 Low-Power Interface Selection
	8.3.2 General Power Control Low-Power Interface Implementation
	Low-Power Interface and Relationship to Power Domains
	Low-Power Interface Logic Reset

	8.3.3 Power State Availability
	8.3.4 Power Control Q-Channel Guidelines
	QACTIVE Behaviour
	QACTIVE at Reset

	QACTIVE Stimuli
	QACTIVE Contribution from Internal State
	QACTIVE Contribution for Low-Power Mode Exit

	Power Control Q-Channel Handshake
	Q-Channel Handshake at Reset
	Q-Channel Quiescence Requests
	Actions Required to Enter a Low-Power Mode
	Q-Channel Quiescence Exit
	Unused Power Control Q-Channel

	8.3.5 Power Control P-Channel Guidelines
	PSTATE and PACTIVE Usage
	Power Modes
	Operating Modes
	Mode Transitions

	PACTIVE Policy
	PACTIVE at Reset
	PACTIVE Stimulus
	PACTIVE Contribution from Internal State
	PACTIVE Contribution for Low-Power Mode Exit
	PACTIVE and Isolation

	P-Channel Handshake
	P-Channel Handshake at Reset
	P-Channel Requests
	Denied Requests
	Actions Required to Enter a Low-Power Mode
	Unused P-Channel

	8.3.6 Power Control Low-Power Interface Naming Guidelines

	A Glossary

