
Accessing memory-mapped peripherals
Version 1.0

Non-Confidential
Copyright © 2020 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
102618_0100_01_en

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Accessing memory-mapped peripherals

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 1 January 2020 Non-Confidential First release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 14

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 14

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 14

mailto:terms@arm.com

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Contents

Contents

1. Introduction.. 6

2. Basic concepts... 7

3. Arm recommendations.. 9

4. Alignment of registers...10

5. Mapping variables to specific addresses.. 12

6. Code efficiency... 14

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 14

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Introduction

1. Introduction
In most Arm embedded systems, peripherals are located at specific addresses in memory. It is often
convenient to map a C variable onto each register of a memory-mapped peripheral, and then use a
pointer to that variable to read and write the register. In your code, you must consider not only the
size and address of the register, but also its alignment in memory.

This tutorial assumes you have installed and licensed Arm DS-5 Development Studio. For more
information, see Getting Started with Arm DS-5 Development Studio.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 14

https://developer.arm.com/tools-and-software/embedded/legacy-tools/ds-5-development-studio/resources/tutorials/getting-started-with-ds-5-development-studio

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Basic concepts

2. Basic concepts
The basic concepts are:

• unsigned int for 32-bit registers.

• unsigned short for 16-bit registers.

• unsigned char for 8-bit registers.

The compiler generates the appropriate single load and store instructions, that is LDR and STR for
32-bit registers, LDRH and STRH for 16-bit registers, and LDB and STRB for 8-bit registers.

You should also ensure that the memory-mapped registers lie on appropriate address boundaries,
that is either all word-aligned, or aligned on their natural size boundaries. For example, 16-bit
registers must be aligned on half-word addresses. However, note that Arm recommends that all
registers, whatever their size, be aligned on word boundaries.

You can also use #define to simplify your code:

#define PORTBASE 0x40000000 /* Counter/Timer Base */
#define PortLoad ((volatile unsigned int *) PORTBASE) /* 32 bits */
#define PortValue ((volatile unsigned short *)(PORTBASE + 0x04)) /* 16 bits */
#define PortClear ((volatile unsigned char *)(PORTBASE + 0x08)) /* 8 bits */

void init_regs(void)
{
 unsigned int int_val;
 unsigned short short_val;
 unsigned char char_val;

 *PortLoad = (unsigned int) 0xF00FF00F;
 int_val = *PortLoad;

 *PortValue = (unsigned short) 0x0000;
 short_val = *PortValue;

 *PortClear = (unsigned char) 0x1F;
 char_val = *PortClear;
}

This results in the following (interleaved) code:

;;;5 void init_regs(void)
000000 e59f1024 LDR r1,|L1.44|
;;;6 {
;;;7 unsigned int int_val;
;;;8 unsigned short short_val;
;;;9 unsigned char char_val;
;;;10 *PortLoad = (unsigned int) 0xF00FF00F;
000004 e3a00101 MOV r0,#0x40000000
000008 e5801000 STR r1,[r0,#0]
;;;11 int_val = *PortLoad;
00000c e5901000 LDR r1,[r0,#0]
;;;12 *PortValue = (unsigned short) 0x0000;
000010 e3a01000 MOV r1,#0
000014 e1c010b4 STRH r1,[r0,#4]

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 14

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Basic concepts

;;;13 short_val = *PortValue;
000018 e1d010b4 LDRH r1,[r0,#4]
;;;14 *PortClear = (unsigned char) 0x1F;
00001c e3a0101f MOV r1,#0x1f
000020 e5c01008 STRB r1,[r0,#8]
;;;15 char_val = *PortClear;
000024 e5d00008 LDRB r0,[r0,#8]
;;;16 }
000028 e12fff1e BX lr

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 14

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Arm recommendations

3. Arm recommendations
Arm recommends word alignment of peripheral registers even if they are 16-bit or 8-bit
peripherals. In a little-endian system, the peripheral databus can connect directly to the least
significant bits of the Arm databus and there is no need to multiplex (or duplicate) the peripheral
databus onto high bits of the Arm databus. In a big-endian system, the peripheral databus can
connect directly to the most significant bits of the Arm databus and there is no need to multiplex
(or duplicate) the peripheral databus onto low bits of the Arm databus.

Arm’s AMBA APB bridge uses the above technique to simplify the bridge design. The result of this
is that only word-aligned addresses should be used (whether byte, halfword or word transfer), and
a read will read garbage on any bits which are not connected to the peripheral. So, if a 32-bit word
is read from a 16-bit peripheral, the top 16 bits of the register value must be cleared before use.

For example, to access some 16-bit peripheral registers on 16-bit alignment, you might write:

volatile unsigned short u16_IORegs[20];

This is fine providing your peripheral controller has the logic to route the peripheral databus to the
high part (D31..D16) of the Arm databus as well as the low part (D15..D0) depending upon which
address you are accessing. You should check if this multiplexing logic exists or not in your design
(the standard Arm APB bridge does not support this).

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 14

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Alignment of registers

4. Alignment of registers
If you wish to map 16-bit registers on 32-bit alignment as recommended, then you could use:

1. volatile unsigned short u16_IORegs[40];

This only allows access to even numbered registers. You need to double the register number.
For example, to access the fourth register you could use:

x = u16_IORegs[8];
u16_IORegs[8] = newval;

2. volatile unsigned int u32_IORegs[20];

The registers are accessed as 32-bit full-width. But a simple peripheral controller such as Arm’s
AMBA APB bridge will read garbage into the top bits of the Arm register from the signals that
are not connected to the peripheral (D31..D16 for a little-endian system). So, when such a
peripheral is read, it must be cast to to an unsigned short to get the compiler to discard the
upper 16 bits.

For example, to access register R4:

x = (unsigned short)u32_IORegs[4];
u32_IORegs[4] = newval;

3. Use a struct.

This allows descriptive names to be used and can accommodate different register widths.

Padding should be made explicit rather than relying on automatic padding added
by the compiler. For example:

struct PortRegs {
 unsigned short ctrlreg; /* offset 0 */
 unsigned short dummy1;
 unsigned short datareg; /* offset 4 */
 unsigned short dummy2;
 unsigned int data32reg; /* offset 8 */
} iospace;
x = iospace.ctrlreg;
iospace.ctrlreg = newval;

Peripheral locations must not be accessed using __packed structs (where
unaligned members are allowed and there is no internal padding), or using C
bitfields. This is because it is not possible to control the number and type of
memory access that is being performed by the compiler. The result is code
which is non-portable, has undesirable side-effects, and will not work as
intended. The recommended way of accessing peripherals is through explicit

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 14

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Alignment of registers

use of architecturally-defined types such as int, short, and char on their natural
alignment.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 14

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Mapping variables to specific addresses

5. Mapping variables to specific addresses
Memory mapped registers can be accessed from C in two ways:

• Forcing an array or struct variable to a specific address.

• Using a pointer to an array or struct.

Both methods generate efficient code, the choice of method is a matter of personal preference.

1. Forcing an array or struct variable to a specific address.

The array or struct variable should be declared it in a file on its own. When it is compiled, the
object code for this file will only contain data. This data can be placed at a specified address
using the Arm scatter-loading mechanism. This is the recommended method for placing all
AREAs at required locations in the memory map.

a. Create a C source file, for example, iovar.c which contains a declaration of the array or
struct variable:

volatile unsigned short u16_IORegs[20];

or

struct{
 volatile unsigned reg1;
 volatile unsigned reg2;
} mem_mapped_reg;

b. Create a scatter-loading description file (called scatter.txt) containing the following:

ALL 0x8000
{
 ALL 0x8000
 {
 * (+RO,+RW,+ZI)
 }
}
IO 0x40000000
{
 IO 0x40000000
 {
 iovar.o (+ZI)
 }
}

The scatter-loading description file must be specified at link time to the linker using the --
scatter scatter.txt command line option. This creates two different load regions in your
image: ALL and IO. The zero-initialised area from iovar.o (containing your array) goes into
the IO area located at 0x40000000. All code (RO) and data areas (RW and ZI) from other
object files go into the ALL region which starts at 0x8000.

If you have more than one set of memory mapped registers, you would need to define each
group of variables as a separate execution region (though they could all lie within a single

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 14

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Mapping variables to specific addresses

load region). To do this, each group of variables would need to be defined in a separate
module.

The benefit of using a scatter-loading description file is that all the (target-specific)
absolute addresses chosen for your devices, code and data are located in one file, making
maintenance easy. Furthermore, if you decide to change your memory map (for example, if
peripherals are moved), you do not need to rebuild your entire project. You only need to re-
link the existing objects.

Alternatively, it is possible to use the #pragma arm section pragma to place the data into a
specific section and then use scatter-loading to place that data at an explicit location.

2. Using a pointer to an array or struct.

struct PortRegs {
 unsigned short ctrlreg; /* offset 0 */
 unsigned short dummy1;
 unsigned short datareg; /* offset 4 */
 unsigned short dummy2;
 unsigned int data32reg; /* offset 8 */
};
volatile struct PortRegs *iospace = (struct PortRegs *)0x40000000;
x = iospace->ctrlreg;
iospace->ctrlreg = newval;

The pointer could be either local or global. If global, to avoid the base pointer being reloaded
after function calls, make iospace a constant pointer to the struct by changing its definition to:

volatile struct PortRegs * const iospace = (struct PortRegs *)0x40000000;

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 14

Accessing memory-mapped peripherals Document ID: 102618_0100_01_en
Version 1.0

Code efficiency

6. Code efficiency
The Arm compiler will normally use a base register plus the immediate offset field available in the
load or store instruction to compile struct member or specific array element access.

In the Arm instruction set, LDR and STR word and byte instructions have a 4KB range, but LDRH
and STRH instructions have a smaller immediate offset of 256 bytes. Equivalent 16-bit Thumb
instructions are much more restricted. LDR and STR have a range of 32 words, LDRH and STRH have
a range of 32 halfwords and LDRB and STRB have a range of 32 bytes. However, 32-bit Thumb
instructions offer a significant improvement. Hence, it is important to group related peripheral
registers near to each other if possible. The compiler will generally do a good job of minimising the
number of instructions required to access the array elements or structure members by using base
registers.

There is a choice between one big C struct or array for the whole I/O space and smaller per-
peripheral structs. There is little difference in terms of efficiency. A big struct might be a benefit
if you are using Arm code where a base pointer can have a 4KB range (for word and byte access)
and the entire I/O space is <4KB. But arguably it is more elegant to have one struct per peripheral.
Smaller per-peripheral structs are more maintainable.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 14

	Accessing memory-mapped peripherals
	Contents
	1. Introduction
	2. Basic concepts
	3. Arm recommendations
	4. Alignment of registers
	5. Mapping variables to specific addresses
	6. Code efficiency

