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Introduction

1. Introduction
In most Arm embedded systems, peripherals are located at specific addresses in memory. It is often
convenient to map a C variable onto each register of a memory-mapped peripheral, and then use a
pointer to that variable to read and write the register. In your code, you must consider not only the
size and address of the register, but also its alignment in memory.

This tutorial assumes you have installed and licensed Arm DS-5 Development Studio. For more
information, see Getting Started with Arm DS-5 Development Studio.
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Basic concepts

2. Basic concepts
The basic concepts are:

• unsigned int for 32-bit registers.

• unsigned short for 16-bit registers.

• unsigned char for 8-bit registers.

The compiler generates the appropriate single load and store instructions, that is LDR and STR for
32-bit registers, LDRH and STRH for 16-bit registers, and LDB and STRB for 8-bit registers.

You should also ensure that the memory-mapped registers lie on appropriate address boundaries,
that is either all word-aligned, or aligned on their natural size boundaries. For example, 16-bit
registers must be aligned on half-word addresses. However, note that Arm recommends that all
registers, whatever their size, be aligned on word boundaries.

You can also use #define to simplify your code:

#define PORTBASE 0x40000000 /* Counter/Timer Base */
#define PortLoad ((volatile unsigned int *) PORTBASE) /* 32 bits */
#define PortValue ((volatile unsigned short *)(PORTBASE + 0x04)) /* 16 bits */
#define PortClear ((volatile unsigned char *)(PORTBASE + 0x08)) /* 8 bits */ 

void init_regs(void)
{
  unsigned int int_val;
  unsigned short short_val;
  unsigned char char_val; 

  *PortLoad = (unsigned int) 0xF00FF00F;
  int_val = *PortLoad;

  *PortValue = (unsigned short) 0x0000;
  short_val = *PortValue;

  *PortClear = (unsigned char) 0x1F;
  char_val = *PortClear;
}

This results in the following (interleaved) code:

;;;5      void init_regs(void)
000000  e59f1024 LDR r1,|L1.44|
;;;6      {
;;;7        unsigned int int_val;
;;;8        unsigned short short_val;
;;;9        unsigned char char_val;
;;;10       *PortLoad = (unsigned int) 0xF00FF00F;
000004  e3a00101 MOV r0,#0x40000000
000008  e5801000 STR r1,[r0,#0]
;;;11       int_val = *PortLoad;
00000c  e5901000 LDR r1,[r0,#0]
;;;12       *PortValue = (unsigned short) 0x0000;
000010  e3a01000 MOV r1,#0
000014  e1c010b4 STRH r1,[r0,#4]
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;;;13       short_val = *PortValue;
000018  e1d010b4 LDRH r1,[r0,#4]
;;;14       *PortClear = (unsigned char) 0x1F;
00001c  e3a0101f MOV r1,#0x1f
000020  e5c01008 STRB r1,[r0,#8]
;;;15       char_val = *PortClear;
000024  e5d00008 LDRB r0,[r0,#8]
;;;16     }
000028  e12fff1e BX lr
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Arm recommendations

3. Arm recommendations
Arm recommends word alignment of peripheral registers even if they are 16-bit or 8-bit
peripherals. In a little-endian system, the peripheral databus can connect directly to the least
significant bits of the Arm databus and there is no need to multiplex (or duplicate) the peripheral
databus onto high bits of the Arm databus. In a big-endian system, the peripheral databus can
connect directly to the most significant bits of the Arm databus and there is no need to multiplex
(or duplicate) the peripheral databus onto low bits of the Arm databus.

Arm’s AMBA APB bridge uses the above technique to simplify the bridge design. The result of this
is that only word-aligned addresses should be used (whether byte, halfword or word transfer), and
a read will read garbage on any bits which are not connected to the peripheral. So, if a 32-bit word
is read from a 16-bit peripheral, the top 16 bits of the register value must be cleared before use.

For example, to access some 16-bit peripheral registers on 16-bit alignment, you might write:

volatile unsigned short u16_IORegs[20];

This is fine providing your peripheral controller has the logic to route the peripheral databus to the
high part (D31..D16) of the Arm databus as well as the low part (D15..D0) depending upon which
address you are accessing. You should check if this multiplexing logic exists or not in your design
(the standard Arm APB bridge does not support this).
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Alignment of registers

4. Alignment of registers
If you wish to map 16-bit registers on 32-bit alignment as recommended, then you could use:

1. volatile unsigned short u16_IORegs[40];

This only allows access to even numbered registers. You need to double the register number.
For example, to access the fourth register you could use:

x = u16_IORegs[8];
u16_IORegs[8] = newval;

2. volatile unsigned int u32_IORegs[20];

The registers are accessed as 32-bit full-width. But a simple peripheral controller such as Arm’s
AMBA APB bridge will read garbage into the top bits of the Arm register from the signals that
are not connected to the peripheral (D31..D16 for a little-endian system). So, when such a
peripheral is read, it must be cast to to an unsigned short to get the compiler to discard the
upper 16 bits.

For example, to access register R4:

x = (unsigned short)u32_IORegs[4];
u32_IORegs[4] = newval;

3. Use a struct.

This allows descriptive names to be used and can accommodate different register widths.

Padding should be made explicit rather than relying on automatic padding added
by the compiler. For example:

struct PortRegs {
    unsigned short ctrlreg; /* offset 0 */
    unsigned short dummy1;
    unsigned short datareg; /* offset 4 */
    unsigned short dummy2;
    unsigned int data32reg; /* offset 8 */
} iospace; 
x = iospace.ctrlreg;
iospace.ctrlreg = newval;

Peripheral locations must not be accessed using __packed structs (where
unaligned members are allowed and there is no internal padding), or using C
bitfields. This is because it is not possible to control the number and type of
memory access that is being performed by the compiler. The result is code
which is non-portable, has undesirable side-effects, and will not work as
intended. The recommended way of accessing peripherals is through explicit
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Alignment of registers

use of architecturally-defined types such as int, short, and char on their natural
alignment.
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Mapping variables to specific addresses

5. Mapping variables to specific addresses
Memory mapped registers can be accessed from C in two ways:

• Forcing an array or struct variable to a specific address.

• Using a pointer to an array or struct.

Both methods generate efficient code, the choice of method is a matter of personal preference.

1. Forcing an array or struct variable to a specific address.

The array or struct variable should be declared it in a file on its own. When it is compiled, the
object code for this file will only contain data. This data can be placed at a specified address
using the Arm scatter-loading mechanism. This is the recommended method for placing all
AREAs at required locations in the memory map.

a. Create a C source file, for example, iovar.c which contains a declaration of the array or
struct variable:

volatile unsigned short u16_IORegs[20];

or

struct{
  volatile unsigned reg1;
  volatile unsigned reg2;
} mem_mapped_reg;

b. Create a scatter-loading description file (called scatter.txt) containing the following:

ALL 0x8000
{
  ALL 0x8000
  {
    * (+RO,+RW,+ZI)
  }
}
IO 0x40000000
{
  IO 0x40000000
  {
    iovar.o (+ZI)
  }
}

The scatter-loading description file must be specified at link time to the linker using the --
scatter scatter.txt command line option. This creates two different load regions in your
image: ALL and IO. The zero-initialised area from iovar.o (containing your array) goes into
the IO area located at 0x40000000. All code (RO) and data areas (RW and ZI) from other
object files go into the ALL region which starts at 0x8000.

If you have more than one set of memory mapped registers, you would need to define each
group of variables as a separate execution region (though they could all lie within a single
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Mapping variables to specific addresses

load region). To do this, each group of variables would need to be defined in a separate
module.

The benefit of using a scatter-loading description file is that all the (target-specific)
absolute addresses chosen for your devices, code and data are located in one file, making
maintenance easy. Furthermore, if you decide to change your memory map (for example, if
peripherals are moved), you do not need to rebuild your entire project. You only need to re-
link the existing objects.

Alternatively, it is possible to use the #pragma arm section pragma to place the data into a
specific section and then use scatter-loading to place that data at an explicit location.

2. Using a pointer to an array or struct.

struct PortRegs {
  unsigned short ctrlreg; /* offset 0 */
  unsigned short dummy1;
  unsigned short datareg; /* offset 4 */
  unsigned short dummy2;
  unsigned int data32reg; /* offset 8 */
}; 
volatile struct PortRegs *iospace = (struct PortRegs *)0x40000000;
x = iospace->ctrlreg;
iospace->ctrlreg = newval;

The pointer could be either local or global. If global, to avoid the base pointer being reloaded
after function calls, make iospace a constant pointer to the struct by changing its definition to:

volatile struct PortRegs * const iospace = (struct PortRegs *)0x40000000;
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Code efficiency

6. Code efficiency
The Arm compiler will normally use a base register plus the immediate offset field available in the
load or store instruction to compile struct member or specific array element access.

In the Arm instruction set, LDR and STR word and byte instructions have a 4KB range, but LDRH
and STRH instructions have a smaller immediate offset of 256 bytes. Equivalent 16-bit Thumb
instructions are much more restricted. LDR and STR have a range of 32 words, LDRH and STRH have
a range of 32 halfwords and LDRB and STRB have a range of 32 bytes. However, 32-bit Thumb
instructions offer a significant improvement. Hence, it is important to group related peripheral
registers near to each other if possible. The compiler will generally do a good job of minimising the
number of instructions required to access the array elements or structure members by using base
registers.

There is a choice between one big C struct or array for the whole I/O space and smaller per-
peripheral structs. There is little difference in terms of efficiency. A big struct might be a benefit
if you are using Arm code where a base pointer can have a 4KB range (for word and byte access)
and the entire I/O space is <4KB. But arguably it is more elegant to have one struct per peripheral.
Smaller per-peripheral structs are more maintainable.
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