
Arm® Compiler
Version 6.6

Arm® C and C++ Libraries and Floating-Point
Support User Guide
Non-Confidential
Copyright © 2014–2017, 2019–2020, 2023 Arm
Limited (or its affiliates).
All rights reserved.

Issue
DUI0808_l_en

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Arm® Compiler
Arm® C and C++ Libraries and Floating-Point Support User Guide

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential Arm Compiler v6.00 Release

B 15 December 2014 Non-Confidential Arm Compiler v6.01 Release

C 30 June 2015 Non-Confidential Arm Compiler v6.02 Release

D 18 November 2015 Non-Confidential Arm Compiler v6.3 Release

E 24 February 2016 Non-Confidential Arm Compiler v6.4 Release

F 29 June 2016 Non-Confidential Arm Compiler v6.5 Release

G 4 November 2016 Non-Confidential Arm Compiler v6.6 Release

H 8 May 2017 Non-Confidential Arm Compiler v6.6.1 Release

I 29 November 2017 Non-Confidential Arm Compiler v6.6.2 Release

J 28 August 2019 Non-Confidential Arm Compiler v6.6.3 Release

K 26 August 2020 Non-Confidential Arm Compiler v6.6.4 Release

L 31 January 2023 Non-Confidential Arm Compiler v6.6.5 Release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 201

https://www.arm.com/company/policies/trademarks

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 201

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Contents

Contents

List of Figures...13

List of Tables.. 14

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Contents

1. Introduction..15
1.1 Conventions... 15
1.2 Other information...16

2. The Arm C and C++ Libraries... 17
2.1 Support level definitions...17
2.2 Mandatory linkage with the C library..21
2.3 C and C++ runtime libraries.. 22
2.3.1 Summary of the C and C++ runtime libraries..22
2.3.2 Compliance with the Application Binary Interface (ABI) for the Arm architecture.....................23
2.3.3 Increase portability of object files to other CLIBABI implementations...24
2.3.4 Arm C and C++ library directory structure.. 24
2.3.5 Selection of Arm C and C++ library variants based on build options...25
2.3.6 T32 C libraries... 27
2.4 C and C++ library features.. 27
2.5 C++ and C libraries and the std namespace... 28
2.6 Multithreaded support in Arm C libraries...28
2.6.1 Arm C libraries and multithreading...28
2.6.2 Arm C libraries and reentrant functions..29
2.6.3 Arm C libraries and thread-safe functions..29
2.6.4 Use of static data in the C libraries... 30
2.6.5 Use of the __user_libspace static data area by the C libraries... 31
2.6.6 C library functions to access subsections of the __user_libspace static data area.....................32
2.6.7 Re-implementation of legacy function __user_libspace() in the C library.....................................33
2.6.8 Management of locks in multithreaded applications.. 33
2.6.9 How to ensure re-implemented mutex functions are called.. 35
2.6.10 Using the Arm C library in a multithreaded environment...36
2.6.11 Thread safety in the Arm C library.. 37
2.6.12 The floating-point status word in a multithreaded environment...38
2.7 Multithreaded support in Arm C++ libraries [ALPHA]...38
2.7.1 Arm C++ libraries and multithreading [ALPHA]...38
2.7.2 Clocks [ALPHA]... 40
2.7.3 Mutexes [ALPHA]..41
2.7.4 Condition variables [ALPHA]..42
2.7.5 Threads [ALPHA]...44
2.7.6 Miscellaneous functions [ALPHA]...47

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Contents

2.7.7 Thread safety in the Arm C++ library..47
2.7.8 Supported C++ Concurrency Features [ALPHA]...48
2.7.9 Guard variables [ALPHA]...48
2.7.10 Exceptions [ALPHA]... 49
2.7.11 Thread local storage [ALPHA]... 50
2.7.12 Standard library concurrency constructs [ALPHA]... 50
2.7.13 Thread-safe initialization of Mutexes and Condition variables [ALPHA]....................................52
2.8 Support for building an application with the C library.. 53
2.8.1 Using the C library with an application... 54
2.8.2 Using the C and C++ libraries with an application in a semihosting environment..................... 54
2.8.3 Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality.....................................55
2.8.4 Using the libraries in a nonsemihosting environment.. 56
2.8.5 Direct semihosting C library function dependencies..57
2.8.6 Indirect semihosting C library function dependencies... 58
2.8.7 C library API definitions for targeting a different environment..59
2.9 Support for building an application without the C library.. 60
2.9.1 Standalone C library functions.. 60
2.9.2 Creating an application as bare machine C without the C library... 63
2.9.3 Integer and floating-point compiler functions and building an application without the C
library...63
2.9.4 Bare machine integer C...64
2.9.5 Bare machine C with floating-point processing...64
2.9.6 Customized C library startup code and access to C library functions..65
2.9.7 Using low-level functions when exploiting the C library...66
2.9.8 Using high-level functions when exploiting the C library..66
2.9.9 Using malloc() when exploiting the C library..67
2.10 Tailoring the C library to a new execution environment.. 67
2.10.1 Initialization of the execution environment and execution of the application.......................... 67
2.10.2 C++ initialization, construction and destruction..68
2.10.3 Exceptions system initialization...69
2.10.4 Library functions called from main().. 70
2.10.5 Program exit and the assert macro..70
2.11 Assembler macros that tailor locale functions in the C library..71
2.11.1 Link time selection of the locale subsystem in the C library..72
2.11.2 Runtime selection of the locale subsystem in the C library... 73
2.11.3 Definition of locale data blocks in the C library... 74

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Contents

2.11.4 LC_CTYPE data block..75
2.11.5 LC_COLLATE data block.. 78
2.11.6 LC_MONETARY data block..79
2.11.7 LC_NUMERIC data block..80
2.11.8 LC_TIME data block...80
2.12 Modification of C library functions for error signaling, error handling, and program exit....... 82
2.13 Stack and heap memory allocation and the Arm C and C++ libraries...82
2.13.1 Library heap usage requirements of the Arm C and C++ libraries..83
2.13.2 Choosing a heap implementation for memory allocation functions... 84
2.13.3 Stack pointer initialization and heap bounds... 86
2.13.4 Legacy support for __user_initial_stackheap().. 89
2.13.5 Avoiding the heap and heap-using library functions supplied by Arm.......................................89
2.14 Tailoring input/output functions in the C and C++ libraries..90
2.15 Target dependencies on low-level functions in the C and C++ libraries.......................................91
2.16 The C library printf family of functions..93
2.17 The C library scanf family of functions.. 93
2.18 Redefining low-level library functions to enable direct use of high-level library functions in the
C library..94
2.19 The C library functions fread(), fgets() and gets()...96
2.20 Re-implementing __backspace() in the C library...97
2.21 Re-implementing __backspacewc() in the C library..98
2.22 Redefining target-dependent system I/O functions in the C library..99
2.23 Tailoring non-input/output C library functions...100
2.24 Real-time integer division in the Arm libraries... 100
2.25 ISO C library implementation definition...101
2.25.1 How the Arm C library fulfills ISO C specification requirements..101
2.25.2 mathlib error handling...102
2.25.3 ISO-compliant implementation of signals supported by the signal() function in the C library
and additional type arguments...103
2.25.4 ISO-compliant C library input/output characteristics..104
2.25.5 Standard C++ library implementation definition...106
2.26 C library functions and extensions..109
2.27 Avoid linking in the Arm C library...110
2.28 C and C++ library naming conventions... 112
2.29 Using macro__ARM_WCHAR_NO_IO to disable FILE declaration and wide I/O function
prototypes..116
2.30 Using library functions with execute-only memory...116

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Contents

3. The Arm C Micro-library..117
3.1 About microlib.. 117
3.2 Differences between microlib and the default C library...117
3.3 Library heap usage requirements of microlib..119
3.4 ISO C features missing from microlib... 120
3.5 Building an application with microlib.. 121
3.6 Configuring the stack and heap for use with microlib.. 122
3.7 Entering and exiting programs linked with microlib...124
3.8 Tailoring the microlib input/output functions..124

4. Floating-point Support..126
4.1 About floating-point support.. 126
4.2 Controlling the Arm floating-point environment.. 127
4.2.1 Floating-point functions for compatibility with Microsoft products... 127
4.2.2 C99-compatible functions for controlling the Arm floating-point environment.......................128
4.2.3 C99 rounding mode and floating-point exception macros... 129
4.2.4 Exception flag handling...129
4.2.5 Functions for handling rounding modes... 131
4.2.6 Functions for saving and restoring the whole floating-point environment............................... 131
4.2.7 Functions for temporarily disabling exceptions...132
4.2.8 Arm floating-point compiler extensions to the C99 interface... 133
4.2.9 Example of a custom exception handler...134
4.2.10 Exception trap handling by signals.. 135
4.3 mathlib double and single-precision floating-point functions..136
4.4 IEEE 754 arithmetic.. 137
4.4.1 Basic data types for IEEE 754 arithmetic...137
4.4.2 Single precision data type for IEEE 754 arithmetic... 137
4.4.3 Double precision data type for IEEE 754 arithmetic...139
4.4.4 Sample single precision floating-point values for IEEE 754 arithmetic......................................140
4.4.5 Sample double precision floating-point values for IEEE 754 arithmetic....................................141
4.4.6 IEEE 754 arithmetic and rounding...142
4.4.7 Exceptions arising from IEEE 754 floating-point arithmetic...143
4.4.8 Exception types recognized by the Arm floating-point environment... 144

5. The C and C++ Library Functions Reference..146
5.1 __aeabi_errno_addr()..146
5.2 alloca()... 146

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Contents

5.3 clock().. 147
5.4 _clock_init()...148
5.5 __default_signal_handler()...148
5.6 errno..149
5.7 _findlocale().. 150
5.8 _fisatty().. 150
5.9 _get_lconv().. 151
5.10 getenv()...152
5.11 _getenv_init()... 152
5.12 __heapstats()..153
5.13 __heapvalid()..154
5.14 lconv structure... 155
5.15 localeconv()..156
5.16 _membitcpybl(), _membitcpybb(), _membitcpyhl(), _membitcpyhb(), _membitcpywl(),
_membitcpywb(), _membitmovebl(), _membitmovebb(), _membitmovehl(), _membitmovehb(),
_membitmovewl(), _membitmovewb()...157
5.17 _platform_pre_stackheap_init()..158
5.18 posix_memalign().. 159
5.19 __raise()...160
5.20 _rand_r()..161
5.21 remove()... 162
5.22 rename()... 162
5.23 __rt_entry...163
5.24 __rt_exit()..163
5.25 __rt_fp_status_addr()... 164
5.26 __rt_heap_extend()...164
5.27 __rt_lib_init()...165
5.28 __rt_lib_shutdown()..166
5.29 __rt_raise()..167
5.30 __rt_stackheap_init().. 168
5.31 setlocale()... 168
5.32 _srand_r()..169
5.33 strcasecmp()...170
5.34 strlcat()..170
5.35 strlcpy()...171
5.36 strncasecmp().. 171

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Contents

5.37 _sys_close().. 172
5.38 _sys_command_string()... 172
5.39 _sys_ensure()... 173
5.40 _sys_exit()...173
5.41 _sys_flen()...174
5.42 _sys_istty()..174
5.43 _sys_open().. 175
5.44 _sys_read()..176
5.45 _sys_seek()... 176
5.46 _sys_tmpnam().. 177
5.47 _sys_write().. 177
5.48 system().. 178
5.49 time()... 178
5.50 _ttywrch()... 179
5.51 __user_heap_extend()..179
5.52 __user_heap_extent()...180
5.53 __user_setup_stackheap()...181
5.54 __vectab_stack_and_reset.. 182
5.55 wcscasecmp().. 183
5.56 wcsncasecmp()..183
5.57 wcstombs()...184
5.58 Thread-safe C library functions... 184
5.59 C library functions that are not thread-safe... 186
5.60 Legacy function __user_initial_stackheap()...189

6. Floating-point Support Functions Reference.. 191
6.1 _clearfp()... 191
6.2 _controlfp()...191
6.3 __fp_status()... 193
6.4 gamma(), gamma_r()... 195
6.5 __ieee_status()... 195
6.6 j0(), j1(), jn(), Bessel functions of the first kind... 199
6.7 significand(), fractional part of a number... 199
6.8 _statusfp()...199
6.9 y0(), y1(), yn(), Bessel functions of the second kind.. 200

7. Arm C and C++ Libraries and Floating-Point Support User Guide Changes................................201
Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 11 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Contents

7.1 Changes for the Arm C and C++ Libraries and Floating-Point Support User Guide...................201

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

List of Figures

List of Figures

Figure 2-1: Integration boundaries in Arm Compiler for Embedded 6....................................19

Figure 4-1: IEEE 754 single-precision floating-point format...138

Figure 4-2: IEEE 754 double-precision floating-point format...139

Figure 6-1: Floating-point status word layout..193

Figure 6-2: IEEE status word layout...196

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

List of Tables

List of Tables

Table 2-1: C library callouts.. 31

Table 2-4: Direct semihosting dependencies...57

Table 2-5: Indirect semihosting dependencies..58

Table 2-6: Published API definitions..59

Table 2-7: Standalone C library functions..60

Table 2-8: Default ISO8859-1 locales.. 72

Table 2-9: Default Shift-JIS and UTF-8 locales.. 73

Table 2-10: Trap and error handling..82

Table 2-12: Signals supported by the signal() function...103

Table 2-13: perror() messages.. 105

Table 2-14: C library extensions.. 109

Table 4-1: Sample single-precision floating-point values... 140

Table 4-2: Sample double-precision floating-point values... 141

Table 5-1: Functions that are thread-safe... 184

Table 5-2: Functions that are not thread-safe..186

Table 6-1: _controlfp argument macros... 192

Table 6-2: Status word bit modification...196

Table 6-3: Rounding mode control..197

Table 7-1: Changes between 6.6.5 (revision L) and 6.6.4 (revision K).................................. 201

Table 7-2: Changes between 6.6.4 (revision K) and 6.6.3 (revision J)...................................201

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Introduction

1. Introduction
Arm® Compiler Arm C and C++ Libraries and Floating-Point Support User Guide. This manual
provides user information for the Arm libraries and floating-point support. It is also available as a
PDF.

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 201

https://developer.arm.com/glossary

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Introduction

Convention Use
An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 201

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2. The Arm C and C++ Libraries
Describes the Arm® C and C++ libraries.

2.1 Support level definitions
This describes the levels of support for various Arm® Compiler 6 features.

Arm Compiler 6 is built on Clang and LLVM technology. Therefore, it has more functionality than
the set of product features described in the documentation. The following definitions clarify the
levels of support and guarantees on functionality that are expected from these features.

Arm welcomes feedback regarding the use of all Arm Compiler 6 features, and intends to
support users to a level that is appropriate for that feature. You can contact support at https://
developer.arm.com/support.

Identification in the documentation
All features that are documented in the Arm Compiler 6 documentation are product features,
except where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well tested,
and is expected to be stable across feature and update releases.

• Arm intends to give advance notice of significant functionality changes to product features.

• If you have a support and maintenance contract, Arm provides full support for use of all
product features.

• Arm welcomes feedback on product features.

• Any issues with product features that Arm encounters or is made aware of are considered for
fixing in future versions of Arm Compiler.

In addition to fully supported product features, some product features are only alpha or beta
quality.

Beta product features
Beta product features are implementation complete, but have not been sufficiently tested to
be regarded as suitable for use in production environments.

Beta product features are identified with [BETA].

• Arm endeavors to document known limitations on beta product features.

• Beta product features are expected to eventually become product features in a future
release of Arm Compiler 6.

• Arm encourages the use of beta product features, and welcomes feedback on them.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 201

https://developer.arm.com/support
https://developer.arm.com/support

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• Any issues with beta product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler.

Alpha product features
Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Alpha product features are identified with [ALPHA].

• Arm endeavors to document known limitations of alpha product features.

• Arm encourages the use of alpha product features, and welcomes feedback on them.

• Any issues with alpha product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler.

Community features
Arm Compiler 6 is built on LLVM technology and preserves the functionality of that technology
where possible. This means that there are more features available in Arm Compiler that are
not listed in the documentation. These extra features are known as community features. For
information on these community features, see the Clang Compiler User's Manual.

Where community features are referenced in the documentation, they are identified with
[COMMUNITY].

• Arm makes no claims about the quality level or the degree of functionality of these features,
except when explicitly stated in this documentation.

• Functionality might change significantly between feature releases.

• Arm makes no guarantees that community features remain functional across update releases,
although changes are expected to be unlikely.

Some community features might become product features in the future, but Arm provides no
roadmap for such features. Arm is interested in understanding your use of these features, and
welcomes feedback on them. Arm supports customers using these features on a best-effort basis,
unless the features are unsupported. Arm accepts defect reports on these features, but does not
guarantee that these issues are to be fixed in future releases.

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:

• The following figure shows the structure of the Arm Compiler 6 toolchain:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 201

http://clang.llvm.org/docs/UsersManual.html

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Figure 2-1: Integration boundaries in Arm Compiler for Embedded 6.

Arm C library

armasm syntax
assembly

Arm C++ library

LLVM Project
libc++

armasm

C/C++
Source code

GNU syntax
Assembly

armclang

LLVM Project
clang

Source
code

headers

Objects ObjectsObjects

armlink

Image

Scatter/
Steering/

Symdefs file

The dashed boxes are toolchain components, and any interaction between these components
is an integration boundary. Community features that span an integration boundary might have
significant limitations in functionality. The exception to such features is if the interaction is
codified in one of the standards supported by Arm Compiler 6. See Application Binary Interface
(ABI). Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 201

https://developer.arm.com/architectures/system-architectures/software-standards/abi
https://developer.arm.com/architectures/system-architectures/software-standards/abi

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• The Clang implementations of compiler features, particularly those features that have been
present for a long time in other toolchains, are likely to be mature. The functionality of new
features, such as support for new language features, is likely to be less mature and therefore
more likely to have limited functionality.

Deprecated features
A deprecated feature is one that Arm plans to remove from a future release of Arm Compiler.
Arm does not make any guarantee regarding the testing or maintenance of deprecated features.
Therefore, Arm does not recommend using a feature after it is deprecated.

For information on replacing deprecated features with supported features, see the Arm Compiler
documentation and Release Notes. Where appropriate, each Arm Compiler document includes
notes for features that are deprecated, and also provides entries in the changes appendix of that
document.

Unsupported features
With both the product and community feature categories, specific features and use-cases are
known not to function correctly, or are not intended for use with Arm Compiler 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive
list of unsupported features or use-cases for community features. The known limitations on
community features are listed in Community features.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:

• The Clang option -stdlib=libstdc++ is not supported.

• C++ static initialization of local variables is not thread-safe when linked against the standard
C++ libraries. For thread-safety, you must provide your own implementation of thread-safe
functions as described in Standard C++ library implementation definition.

This restriction does not apply to the [ALPHA]-supported multithreaded C++
libraries.

• Use of C11 library features is unsupported.

• Any community feature that is exclusively related to non-Arm architectures is not supported.

• Except for Armv6-M, compilation for targets that implement architectures lower than Armv7 is
not supported.

• The long double data type is not supported for AArch64 state because of limitations in the
current Arm C library.

• C complex arithmetic is not supported, because of limitations in the current Arm C library.

• Complex numbers are defined in C++ as a template, std::complex. Arm Compiler supports
std::complex with the float and double types, but not the long double type because of
limitations in the current Arm C library.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 201

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

For C code that uses complex numbers, it is not sufficient to recompile with
the C++ compiler to make that code work. How you can use complex numbers
depends on whether you are building for Armv8-M architecture-based
processors.

• You must take care when mixing translation units that are compiled with and without the
[COMMUNITY] -fsigned-char option, and that share interfaces or data structures.

The Arm ABI defines char as an unsigned byte, and this is the interpretation
used by the C libraries supplied with the Arm compilation tools.

Alternatives to C complex numbers not being supported
If you are building for Armv8-M architecture-based processors, consider using the free and Open
Source CMSIS-DSP library that includes a data type and library functions for complex number
support in C. For more information about CMSIS-DSP and complex number support see the
following sections of the CMSIS documentation:

• Complex Math Functions

• Complex Matrix Multiplication

• Complex FFT Functions

If you are not building for Armv8-M architecture-based processors, consider modifying the affected
part of your project to use the C++ standard template library type std::complex instead.

2.2 Mandatory linkage with the C library
If you write an application in C, you must link it with the C library, even if it makes no direct use of
C library functions.

This is because the compiler might implicitly generate calls to C library functions to improve your
application, even though calls to such functions might not exist in your source code.

Even if your application does not have a main() function, meaning that the C library is not
initialized, some C library functions are still legitimately available and the compiler might implicitly
generate calls to these functions.

Related information
Summary of the C and C++ runtime libraries on page 22
Standalone C library functions on page 60

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 201

https://arm-software.github.io/CMSIS_5/DSP/html/group__groupCmplxMath.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__CmplxMatrixMult.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__ComplexFFT.html

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.3 C and C++ runtime libraries
Arm provides the C standardlib, C microlib, and C++ runtime libraries to support compiled C and C
++.

2.3.1 Summary of the C and C++ runtime libraries

A summary of the C and C++ runtime libraries provided by Arm.

C standardlib
This is a C library consisting of:

• All functions defined by the ISO C99 library standard.

• Target-dependent functions that implement the C library functions in the semihosted
execution environment. You can redefine these functions in your own application.

• Functions called implicitly by the compiler.

• Arm extensions that are not defined by the ISO C library standard, but are included in the
library.

C microlib
This is a C library that can be used as an alternative to C standardlib. It is a micro-library that
is ideally suited for deeply embedded applications that have to fit within small-sized memory.
The C micro-library, microlib, consists of:

• Functions that are highly optimized to achieve the minimum code size.

• Functions that are not compliant with the ISO C library standard.

• Functions that are not compliant with the 1985 IEEE 754 standard for binary floating-
point arithmetic.

C++
This is a C++ library that can be used with C standardlib. It consists of:

• Functions defined by the ISO C++ library standard.

• The libc++ library.

The C++ libraries depend on the C library for target-specific support. There are no target
dependencies in the C++ libraries.

Arm does not guarantee the compatibility of C++ compilation units compiled
with different major or minor versions of Arm® Compiler and linked into a
single image. Therefore, Arm recommends that you always build your C++
code from source with a single version of the toolchain.

You can mix C++ with C code or C libraries.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Related information
Mandatory linkage with the C library on page 21
Standalone C library functions on page 60
The Arm C and C++ Libraries on page 17
The Arm C Micro-library on page 117
Standard C++ library implementation definition on page 106
ISO C library standard
IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version

2.3.2 Compliance with the Application Binary Interface (ABI) for the Arm
architecture

The ABI for the Arm Architecture is a family of specifications that describes the processor-specific
aspects of the translation of a source program into object files.

Object files produced by any toolchain that conforms to the relevant aspects of the ABI can be
linked together to produce a final executable image or library.

Each document in the specification covers a specific area of compatibility. For example, the C
Library ABI for the Arm Architecture (CLIBABI) describes the parts of the C library that are expected
to be common to all conforming implementations.

The ABI documents contain several areas that are marked as platform specific. To define a
complete execution environment these platform-specific details have to be provided. This gives rise
to several supplemental specifications, for example the Arm GNU/Linux ABI supplement.

The Base Standard ABI for the Arm Architecture (BSABI) enables you to use A32 and T32 objects
and libraries from different producers that support the ABI for the Arm® Architecture. The Arm
compilation tools fully support the BSABI, including support for Debug With Arbitrary Record Format
(DWARF) 3 debug tables (DWARF Debugging Standard Version 3).

The Arm C and C++ libraries conform to the standards described in the BSABI and the CLIBABI.
The libc++ library conforms to the C++ ABI for the Arm Architecture (CPPABI), except for Array
Construction and Delete helper functions.

All C++ compilation units that are to be linked into a single image must be compiled
with the same version of the C++ standard library ABI. If the ABI version changes
between Arm Compiler releases, then you must recompile your object files.

If you are unable to recompile some of your object files, then contact Arm Support
at https://developer.arm.com/support.

Related information
Increase portability of object files to other CLIBABI implementations on page 24
Standard C++ library implementation definition on page 106

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 201

http://www.iso.org
http://ieeexplore.ieee.org/
https://developer.arm.com/support

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Application Binary Interface (ABI)
DWARF Debugging Standard

2.3.3 Increase portability of object files to other CLIBABI implementations

You can request full CLIBABI portability to increase the portability of your object files to other
implementations of the CLIBABI.

This reduces the performance of some library operations.

You can use the following methods to request full CLIBABI portability

• Specify #define _AEABI_PORTABILITY_LEVEL 1 before you #include any library headers, such
as <stdlib.h>.

• Specify -D_AEABI_PORTABILITY_LEVEL=1 on the compiler command line.

Related information
Compliance with the Application Binary Interface (ABI) for the Arm architecture on page 23
Application Binary Interface (ABI)

2.3.4 Arm C and C++ library directory structure

The libraries are installed in the armlib and libcxx subdirectories within install_directorylib.

armlib
Contains the variants of the Arm® C library, the floating-point arithmetic library (fplib), and
the math library (mathlib).

libcxx
Contains all libc++ and libc++abi libraries.

The accompanying header files for these libraries are installed in:

install_directory\include

To specify an alternative top-level lib directory, set either one of the environment variables
ARMCOMPILER6LIB or ARMLIB, to point to the new directory, or use the --libpath option.

You must not identify the armlib and libcxx directories separately because the directory structure
might change in future releases. The linker finds them from the location of lib.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 201

https://developer.arm.com/Architectures/Application%20Binary%20Interface
http://dwarfstd.org/
https://developer.arm.com/Architectures/Application%20Binary%20Interface

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• The Arm C libraries are supplied in binary form only.

• The Arm libraries must not be modified. If you want to create a new
implementation of a library function, place the new function in an object file, or
your own library, and include it when you link the application. Your version of
the function is used instead of the standard library version.

• Normally, only a few functions in the ISO C library require re-implementation to
create a target-dependent application.

• The libc++ and libc++abi libraries provided with Arm Compiler 6 are based on
the open source libc++ and libc++abi libraries. The modifications made by Arm
are covered by restrictions described in the end user license agreement.

2.3.5 Selection of Arm C and C++ library variants based on build options

When you build your application, you must make certain choices such as the target architecture,
instruction set, and byte order. You communicate these choices to the compiler using build options.
The linker then selects appropriate C and C++ library variants compatible with these build options.

Choices that influence the Arm® C and C++ library variant include the following:

Target Architecture and instruction set
A32 or T32 (AArch32 state instruction sets).

Microlib is not supported for AArch64 state.

Byte order
Big-endian or little-endian.

Floating-point support
• Software (SoftVFP).

• Hardware (VFP).

• Software or hardware with half-precision or double-precision extensions.

• No floating-point support.

In Armv8, VFP hardware is integral to the architecture. Software floating-point
is supported for AArch32 state, but is not supported for AArch64 state.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Position independence
Position independent code uses PC-relative addressing modes where possible and otherwise
accesses global data through the Global Offset Table (GOT).

Different ways to access your data are as follows:

• By absolute address.

• Relative to sb (read/write position-independent).

• Relative to pc (-fbare-metal-pie).

Different ways to access your code are as follows:

• By absolute address when appropriate.

• Relative to pc (read-only position independent).

A bare-metal Position Independent Executable (PIE) is an executable that does not need to be
executed at a specific address but can be executed at any suitably aligned address.

The standard C libraries provide variants to support all of these options.

You can only achieve position-independent C++ code with -fbare-metal-pie.

• Position independence is supported only in AArch32 state, and is not
supported in microlib.

• Bare-metal PIE support is deprecated in this release.

When you link your assembler code, C or C++ code, the linker selects appropriate C and C++
library variants compatible with the build options you specified. There is a variant of the ISO C
library for each combination of major build options.

Related information
-fropi, fnoropi [BETA] compiler option
-frwpi, fnorwpi [BETA] option
-marm compiler option
-mfpu compiler option
-mthumb compiler option
--fpu=name linker option
--ropi linker option
--rwpi linker option
--arm assembler option
--fpu assembler option
--thumb assembler option

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 201

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-fropi---fno-ropi
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-frwpi---fno-rwpi
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-marm
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-mfpu
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-mthumb
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--fpu-name
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--ropi
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--rwpi
https://developer.arm.com/documentation/dui0801/l/armasm-Command-line-Options/--arm
https://developer.arm.com/documentation/dui0801/l/armasm-Command-line-Options/--fpu-name
https://developer.arm.com/documentation/dui0801/l/armasm-Command-line-Options/--thumb

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.3.6 T32 C libraries

There are several variations of the T32 libraries. It depends on the architecture target or processor
as to which one is used.

Arm®v7-A and Armv7-R use a T32 library. It contains a small number of A32 instructions that are
used to significantly improve performance.

Armv7-R, Armv7E-M, and Armv8-R.mainline have their own T32 library.

Armv6-M and Armv8-R.baseline have their own T32 library.

2.4 C and C++ library features
The C library uses the standard Arm semihosted environment to provide facilities such as file input/
output. This environment is supported by the Arm DSTREAM debug and trace unit, the Arm RVI
debug unit, and the Fixed Virtual Platform (FVP) models.

You can re-implement any of the target-dependent functions of the C library as part of your
application. This enables you to tailor the C library and, therefore, the C++ library, to your own
execution environment.

You can also tailor many of the target-independent functions to your own application-specific
requirements. For example:

• The malloc family.

• The ctype family.

• All the locale-specific functions.

Many of the C library functions are independent of any other function and contain no target
dependencies. You can easily exploit these functions from assembler code.

Functions in the C library are responsible for:

• Creating an environment in which a C or C++ program can execute. This includes:

◦ Creating a stack.

◦ Creating a heap, if required.

◦ Initializing the parts of the library the program uses.

• Starting execution by calling main().

• Supporting use of ISO-defined functions by the program.

• Catching runtime errors and signals and, if required, terminating execution on error or program
exit.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.5 C++ and C libraries and the std namespace
All C++ standard library names, including the C library names, if you include them, are defined in
the namespace std.

Standard library names are defined using the following C++ syntax:

#include <cstdlib> // instead of stdlib.h

This means that you must qualify all the library names using one of the following methods:

• Specify the standard namespace, for example:

std::printf("example\n");

• Use the C++ keyword using to import a name to the global namespace:

using namespace std;
printf("example\n");

errno is a macro, so it is not necessary to qualify it with a namespace.

2.6 Multithreaded support in Arm C libraries
Describes the features that are supported by the Arm C libraries for creating multithreaded
applications.

2.6.1 Arm C libraries and multithreading

The Arm® C libraries support multithreading, for example, where you are using a Real-Time
Operating System (RTOS).

In this context, the following definitions are used:

Threads
Mean multiple streams of execution sharing global data between them.

Process
Means a collection of all the threads that share a particular set of global data.

If there are multiple processes on a machine, they can be entirely separate and do not share any
data (except under unusual circumstances). Each process might be a single-threaded process or
might be divided into multiple threads.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Where you have single-threaded processes, there is only one flow of control. In multithreaded
applications, however, several flows of control might try to access the same functions, and
the same resources, concurrently. To protect the integrity of resources, any code you write for
multithreaded applications must be reentrant and thread-safe.

Reentrancy and thread safety are both related to the way functions in a multithreaded application
handle resources.

Related information
Using the Arm C library in a multithreaded environment on page 36
Arm C libraries and reentrant functions on page 29
Arm C libraries and thread-safe functions on page 29

2.6.2 Arm C libraries and reentrant functions

A reentrant function does not hold static data over successive calls, and does not return a pointer
to static data.

For this type of function, the caller provides all the data that the function requires, such as pointers
to any workspace. This means that multiple concurrent invocations of the function do not interfere
with each other.

A reentrant function must not call non-reentrant functions.

Related information
Arm C libraries and thread-safe functions on page 29
Arm C libraries and multithreading on page 28

2.6.3 Arm C libraries and thread-safe functions

A thread-safe function protects shared resources from concurrent access using locks.

Thread safety concerns only how a function is implemented and not its external interface. In
C, local variables are held in processor registers, or if the compiler runs out of registers, are
dynamically allocated on the stack. Therefore, any function that does not use static data, or other
shared resources, is thread-safe.

Related information
Arm C libraries and reentrant functions on page 29
Arm C libraries and multithreading on page 28

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.6.4 Use of static data in the C libraries

Static data refers to persistent read/write data that is not stored on the stack or the heap. Callouts
from the C library enable access to static data.

Static data can be external or internal in scope, and is:

• At a fixed address, when compiled with -fnorwpi. This is the default.

• At a fixed address relative to the static base, register r9, when compiled with -frwpi.

• At a fixed address relative to the program counter (pc), when compiled with -fbare-metal-pie.

Bare-metal PIE support is deprecated in this release.

Libraries that use static data might be reentrant, but this depends on their use of the
__user_libspace static data area, and on the build options you choose:

• When compiled with -fnorwpi, read/write static data is addressed in a position-dependent
fashion. This is the default. Code from these variants is single-threaded because it uses read/
write static data.

• When compiled with -frwpi, read/write static data is addressed in a position-independent
fashion using offsets from the static base register sb. Code from these variants is reentrant and
can be multithreaded if each thread uses a different static base value.

The following describes how the C libraries use static data:

• The default floating-point arithmetic libraries fz_* and fj_* do not use static data and are
always reentrant. For software floating-point, the f_* and g_* libraries use static data to store
the Floating-Point (FP) status word. For hardware floating-point, the f_* and g_* libraries do
not use static data.

• All statically-initialized data in the C libraries is read-only.

• All writable static data is zero-initialized.

• Most C library functions use no writable static data and are reentrant whether built with:

◦ Default build options, -fnorwpi.

◦ Reentrant build options, -frwpi.

• Some functions have static data implicit in their definitions. You must not use these in a
reentrant application unless you build it with -frwpi and the callers use different values in sb.

Exactly which functions use static data in their definitions might change in future
releases.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Callouts from the C library enable access to static data. C library functions that use static data can
be categorized as:

• Functions that do not use any static data of any kind, for example fprintf().

• Functions that manage a static state, such as malloc(), rand(), and strtok().

• Functions that do not manage a static state, but use static data in a way that is specific to the
implementation in Arm® Compiler, for example isalpha().

When the C library does something that requires implicit static data, it uses a callout to a function
you can replace. These functions are shown in the following table. They do not use semihosting.

Table 2-1: C library callouts

Function Description

__rt_errno_addr() Called to get the address of the variable errno

__rt_fp_status_addr() Called by the floating-point support code to get the address of the
floating-point status word

locale functions The function __user_libspace() creates a block of private
static data for the library

The default implementation of __user_libspace creates a 96-byte block in the ZI region. Even
if your application does not have a main() function, the __user_libspace() function does not
normally have to be redefined.

Exactly which functions use static data in their definitions might change in future
releases.

Related information
Re-implementation of legacy function __user_libspace() in the C library on page 33
Assembler macros that tailor locale functions in the C library on page 71
Arm C libraries and multithreading on page 28
__rt_fp_status_addr() on page 164
-fropi, -fnoropi option
-frwpi, -fnorwpi option

2.6.5 Use of the __user_libspace static data area by the C libraries

The __user_libspace static data area holds the static data for the C libraries. The C libraries use
the __user_libspace area to store several different types of data.

This is a block of 96 bytes of zero-initialized data, supplied by the C library. It is also used as a
temporary stack during C library initialization.

The default Arm® C libraries use the __user_libspace area to hold:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 201

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-fropi---fno-ropi
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-frwpi---fno-rwpi

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• errno, used by any function that is capable of setting errno. By default, __rt_errno_addr()
returns a pointer to errno.

• The Floating-Point (FP) status word for software floating-point (exception flags, rounding mode).
It is unused in hardware floating-point. By default, __rt_fp_status_addr() returns a pointer to
the FP status word.

• A pointer to the base of the heap (that is, the __Heap_Descriptor), used by all the malloc-
related functions.

• The current locale settings, used by functions such as setlocale(), but also used by all other
library functions that depend on them. For example, the ctype.h functions have to access the
LC_CTYPE setting.

How the C and C++ libraries use the __user_libspace area might change in future
releases.

Related information
__aeabi_atexit() in C++ ABI for the Arm Architecture

2.6.6 C library functions to access subsections of the __user_libspace static
data area

The __user_perproc_libspace() and __user_perthread_libspace() functions return subsections
of the __user_libspace static data area.

__user_perproc_libspace()

Returns a pointer to memory for storing data that is global to an entire process. This data is
shared between all threads.

In AArch32 state, returns a pointer to 96 bytes of 4-byte aligned memory.

In AArch64 state, returns a pointer to 192 bytes of 8-byte aligned memory.

__user_perthread_libspace()

Returns a pointer to memory for storing data that is local to a particular thread. This means
that __user_perthread_libspace() returns a different address depending on the thread it is
called from.

In AArch32 state, returns a pointer to 96 bytes of 4-byte aligned memory.

In AArch64 state, returns a pointer to 192 bytes of 8-byte aligned memory.

Related information
Use of the __user_libspace static data area by the C libraries on page 31
Re-implementation of legacy function __user_libspace() in the C library on page 33

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 201

https://developer.arm.com/documentation/ihi0041/latest

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.6.7 Re-implementation of legacy function __user_libspace() in the C
library

The __user_libspace() function returns a pointer to a block of private static data for the C library.
This function does not normally have to be redefined.

If you are writing an operating system or a process switcher, then typically you use the
__user_perproc_libspace() and __user_perthread_libspace() functions (which are always
available) rather than re-implement __user_libspace().

If you have legacy source code that re-implements __user_libspace(), you do not have to change
the re-implementation for single-threaded processes. However, you are likely to be required
to do so for multi-threaded applications. For multi-threaded applications, use either or both of
__user_perproc_libspace() and __user_perthread_libspace(), instead of __user_libspace().

Related information
C library functions to access subsections of the __user_libspace static data area on page 32

2.6.8 Management of locks in multithreaded applications

A thread-safe function protects shared resources from concurrent access using locks. There are
functions in the C library that you can re-implement, that enable you to manage the locking
mechanisms and so prevent the corruption of shared data such as the heap.

These functions are mutex functions, where the lifecycle of a mutex is one of initialization, iterative
acquisition and releasing of the mutex as required, and then optionally freeing the mutex when it
is never going to be required again. The mutex functions wrap onto your own Real-Time Operating
System (RTOS) calls, and their function prototypes are:

_mutex_initialize()

int _mutex_initialize(mutex *m);

This function accepts a pointer to a pointer-sized word and initializes it as a valid mutex.

By default, _mutex_initialize() returns zero for a nonthreaded application. Therefore, in a
multithreaded application, _mutex_initialize() must return a nonzero value on success so
that at runtime, the library knows that it is being used in a multithreaded environment.

Ensure that _mutex_initialize() initializes the mutex to an unlocked state.

This function must be supplied if you are using mutexes.

_mutex_acquire()

void _mutex_acquire(mutex *m);

This function causes the calling thread to obtain a lock on the supplied mutex.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

_mutex_acquire() returns immediately if the mutex has no owner. If the mutex is owned by
another thread, _mutex_acquire() must block until it becomes available.

_mutex_acquire() is not called by the thread that already owns the mutex.

This function must be supplied if you are using mutexes.

_mutex_release()

void _mutex_release(mutex *m);

This function causes the calling thread to release the lock on a mutex acquired by
_mutex_acquire().

The mutex remains in existence, and can be re-locked by a subsequent call to
mutex_acquire().

_mutex_release() assumes that the mutex is owned by the calling thread.

This function must be supplied if you are using mutexes.

_mutex_free()

void _mutex_free(mutex *m);

This function causes the calling thread to free the supplied mutex. Any operating system
resources associated with the mutex are freed. The mutex is destroyed and cannot be reused.

_mutex_free() assumes that the mutex is owned by the calling thread.

This function is optional. If you do not supply this function, the C library does not attempt to
call it.

The mutex data structure type that is used as the parameter to the _mutex_<*>() functions is
not defined in any of the Arm® Compiler toolchain header files, but must be defined elsewhere.
Typically, it is defined as part of RTOS code.

Functions that call _mutex_<*>() functions create 4 bytes of memory for AArch32 and 8 bytes of
memory for AArch64. This memory holds the mutex data structure. __Heap_Initialize() is one
such function.

For the C library, a mutex is specified as a single pointer-sized word of memory that can be placed
anywhere. However, if your mutex implementation requires more space than this, or demands that
the mutex be in a special memory area, then you must treat the default mutex as a pointer to a real
mutex.

A typical example of a re-implementation framework for _mutex_initialize(), _mutex_acquire(),
and _mutex_release() is as follows, where SEMAPHORE_ID, CreateLock(), AcquireLock(), and
ReleaseLock() are defined in the RTOS, and (...) implies additional parameters:

int _mutex_initialize(SEMAPHORE_ID *sid)
{
 /* Create a mutex semaphore */

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

 *sid = CreateLock(...);
 return 1;
}
void _mutex_acquire(SEMAPHORE_ID *sid)
{
 /* Task sleep until get semaphore */
 AcquireLock(*sid, ...);
}
void _mutex_release(SEMAPHORE_ID *sid)
{
 /* Release the semaphore. */
 ReleaseLock(*sid);
}
void _mutex_free(SEMAPHORE_ID *sid)
{
 /* Free the semaphore. */
 FreeLock(*sid, ...);
}

• _mutex_release() releases the lock on the mutex that was acquired by
_mutex_acquire(), but the mutex still exists, and can be re-locked by a
subsequent call to _mutex_acquire().

• It is only when the optional wrapper function _mutex_free() is called that the
mutex is destroyed. After the mutex is destroyed, it cannot be used without first
calling _mutex_initialize() to set it up again.

Related information
How to ensure re-implemented mutex functions are called on page 35
Using the Arm C library in a multithreaded environment on page 36
Thread safety in the Arm C library on page 37
Thread safety in the Arm C++ library on page 47

2.6.9 How to ensure re-implemented mutex functions are called

If your re-implemented _mutex_*() functions are within an object that is contained within a library
file, the linker does not automatically include the object.

This can result in the _mutex_<*>() functions being excluded from the image you have built.

To ensure that your _mutex_<*>() functions are called, you can either:

• Place your mutex functions in a non-library object file. This helps to ensure that they are
resolved at link time.

• Place your mutex functions in a library object file, and arrange a non-weak reference to
something in the object.

• Place your mutex functions in a library object file, and have the linker explicitly
extract the specific object from the library on the command line by writing
libraryname.a(objectfilename.o) when you invoke the linker.

Related information
Using the Arm C library in a multithreaded environment on page 36

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Thread safety in the Arm C library on page 37
Thread safety in the Arm C++ library on page 47
Management of locks in multithreaded applications on page 33

2.6.10 Using the Arm C library in a multithreaded environment

There are several requirements you must fulfill before you can use the Arm® C library in a
multithreaded environment.

To use the Arm C library in a multithreaded environment, you must provide:

• An implementation of __user_perthread_libspace() that returns a different block of memory
for each thread. This can be achieved by either:

◦ Returning a different address depending on the thread it is called from.

◦ Having a single __user_perthread_libspace block at a fixed address and swapping its
contents when switching threads.

You can use either approach to suit your environment.

You do not have to re-implement __user_perproc_libspace() unless there is a specific reason
to do so. In the majority of cases, there is no requirement to re-implement this function.

• A way to manage multiple stacks.

A simple way to do this is to use the Arm two-region memory model. Using this means that you
keep the stack that belongs to the primary thread entirely separate from the heap. Then you
must allocate more memory for additional stacks from the heap itself.

• Thread management functions, for example, to create or destroy threads, to handle thread
synchronization, and to retrieve exit codes.

The Arm C libraries supply no thread management functions of their own so you
must supply any that are required.

• A thread-switching mechanism.

The Arm C libraries supply no thread-switching mechanisms of their own. This is
because there are many different ways to do this and the libraries are designed
to work with all of them.

You only have to provide implementations of the mutex functions if you require them to be called.

In some applications, the mutex functions might not be useful. For example, a co-operatively
threaded program does not have to take steps to ensure data integrity, provided it avoids calling its
yield function during a critical section. However, in other types of application, for example where

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

you are implementing preemptive scheduling, or in a Symmetric Multi-Processor (SMP) model, these
functions play an important part in handling locks.

If all of these requirements are met, you can use the Arm C library in your multithreaded
environment. The following behavior applies:

• Some functions work independently in each thread.

• Some functions automatically use the mutex functions to mediate multiple accesses to a shared
resource.

• Some functions are still nonreentrant so a reentrant equivalent is supplied.

• A few functions remain nonreentrant and no alternative is available.

Related information
Arm C libraries and multithreading on page 28

2.6.11 Thread safety in the Arm C library

Arm® C library functions are either always thread-safe, never thread-safe, or thread-safe in certain
circumstances.

In the Arm C library:

• Some functions are never thread-safe, for example setlocale().

• Some functions are inherently thread-safe, for example memcpy().

• Some functions, such as malloc(), can be made thread-safe by implementing the _mutex_<*>
functions.

• Other functions are only thread-safe if you pass the appropriate arguments, for example
tmpnam().

Threading problems might occur when your application makes use of the Arm C library in a way
that is hidden, for example, if the compiler implicitly calls functions that you have not explicitly
called in your source code. Familiarity with the thread-safe C library functions and C library
functions that are not thread-safe can help you to avoid this type of threading problem, although in
general, it is unlikely to arise.

Related information
How to ensure re-implemented mutex functions are called on page 35
Using the Arm C library in a multithreaded environment on page 36
Thread safety in the Arm C++ library on page 47
Management of locks in multithreaded applications on page 33

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.6.12 The floating-point status word in a multithreaded environment

Applicable to variants of the software floating-point libraries that require a status word, the
floating-point status word is safe to use in a multithreaded environment, even with software
floating-point.

A status word for each thread is stored in its own __user_perthread_libspace block.

In a hardware floating-point environment, the floating-point status word is stored in
a Vector Floating-Point (VFP) register. In this case, your thread-switching mechanism
must keep a separate copy of this register for each thread.

In Arm® Compiler 6, floating-point library variants are selected by default. For more information
see the armclang command-line option -ffp-mode .

Related information
Thread safety in the Arm C library on page 37

2.7 Multithreaded support in Arm C++ libraries [ALPHA]
Describes the features that the Arm C++ libraries support for creating multithreaded applications.
These features are [ALPHA]-supported.

This topic describes an [ALPHA] feature. See Support level definitions.

2.7.1 Arm C++ libraries and multithreading [ALPHA]

The C++ Thread Porting Application Programming Interface (API) is an [ALPHA]-supported API that
enables the use of C++11 concurrency constructs with Arm® Compiler 6. Operating system or
library vendors must provide an implementation of this API to enable the seamless use of C++11
concurrency constructs within user applications.

This topic describes an [ALPHA] feature. See Support level definitions.

The C++11 standard offers several high-level concurrency constructs intended to simplify parallel
programming and make multithreaded programs portable across platforms. Future versions of

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 201

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-ffp-mode

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

the C++ standard are set to introduce additional high-level concurrency constructs. For more
information, see https://isocpp.org/std/status.

Most standard library implementations expect an underlying operating system or library platform to
provide a comprehensive set of primitive concurrency constructs on top of which these higher level
constructs can be built.

The default standard C++ library supplied with Arm Compiler 6 has been built without concurrency
support to avoid passing these dependencies to target bare-metal systems.

Arm Compiler 6 includes a special variant of the standard C++ library that enables support for
C++11 concurrency constructs. This library variant requires platform vendors to provide an
implementation of the threading API described in this document. On certain architectures, for
example the Armv6-M architecture, this threaded library variant might contain library calls to
various __atomic_* functions. On these architectures, platform vendors must also provide an
implementation of an atomics library as discussed in LLVM Atomic Instructions and Concurrency
Guide.

To select the threaded standard C++ library variant instead of the default variant use the
compiler options -std=c++11 -D_ARM_LIBCPP_EXTERNAL_THREADS together with linker option --
stdlib=threaded_libc++.

Platform vendors can selectively implement subsets of the porting API based on the dependencies
between the high-level C++11 concurrency constructs and the underlying platform concurrency
primitives.

Arm Compiler 6 provides C++ libraries that are based on open source LLVM technology. The
libraries for multithreaded applications are:

• The standard library, libc++.

• Low level support for the standard library, libc++abi.

• Exception unwinding support library, libunwind.

The C++ Thread Porting API enables these libraries to correctly operate in different multithreaded
environments.

The C++ Thread Porting API is independent of the multithreaded support API
provided in the Arm C library. For more information, see Multithreaded support
in Arm C libraries. Platform vendors must implement both of these APIs, to the
respective specifications, to ensure correct operation of multithreaded programs.
The C++ Thread Porting API is declared in the <arm-tpl.h> header file of the Arm
Compiler 6 distribution.

The C++ Thread Porting API functional areas include:

• Clocks.

• Mutexes.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 201

https://isocpp.org/std/status
http://llvm.org/docs/Atomics.html#libcalls-atomic
http://llvm.org/docs/Atomics.html#libcalls-atomic

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• Conditional variables.

• Threads.

• Miscellaneous functions.

2.7.2 Clocks [ALPHA]

The C++ Thread Porting API provides clock functions in the <arm-tpl.h> header file.

This topic describes an [ALPHA] feature. See Support level definitions.

Types
struct timespec {
 time_t tv_sec;
 unsigned long tv_nsec;
};

Functions
int __ARM_TPL_clock_realtime(timespec* ts);

int __ARM_TPL_clock_monotonic(timespec* ts);

Usage
The function __ARM_TPL_clock_realtime() must populate the argument with the current system-
wide (wall-clock) time.

The function __ARM_TPL_clock_monotonic() must populate the argument with the elapsed time
since some fixed point in time.

Time measurements produced by __ARM_TPL_clock_monotonic() must be steady, in
that, those measurements must increase at a fixed rate relative to the real time.

Returns
These functions must return zero if successful, or return non-zero if not successful to indicate an
error.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.7.3 Mutexes [ALPHA]

The C++ Thread Porting API provides mutex functions in the <arm-tpl.h> header file.

This topic describes an [ALPHA] feature. See Support level definitions.

Types
struct __ARM_TPL_mutex_t {
 _Atomic uintptr_t data;
};

Functions
int __ARM_TPL_recursive_mutex_init(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_trylock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_unlock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_destroy(__ARM_TPL_mutex_t* __m);

Usage
The API uses the __ARM_TPL_mutex_t type to encapsulate a pointer to an underlying platform-
specific mutex type. The semantics of these functions are:

• The functions __ARM_TPL_mutex_lock() and __ARM_TPL_mutex_trylock() must operate
on an initialize-on-first-use basis with respect to __m->data. If the value __m->data is zero,
an implementation must first initialize __m->data to point to a valid platform mutex before
carrying out the requested locking operation. This initialization must be thread-safe. For more
information, see Thread-safe initialization of Mutexes and Condition variables [ALPHA].

• The function __ARM_TPL_mutex_lock() must lock the mutex represented at __m, blocking the
calling thread until the mutex becomes available. If the function is successful, it must return
zero, with the calling thread as the owner of the underlying mutex. If the function is not
successful, it must return non-zero.

• The function __ARM_TPL_mutex_trylock() is similar to __ARM_TPL_mutex_lock(), except if
the mutex at __m is already locked, it must return immediately unsuccessfully. If the function
successfully performs the lock, it must return zero. Otherwise, it must return non-zero.

• The function __ARM_TPL_mutex_unlock() and __ARM_TPL_mutex_destroy() must return zero
if the value __m->data is zero. Otherwise, they must perform the requested operation on the

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

platform mutex pointed to by __m->data and then return zero if successful, or return non-zero
if not successful.

• The function __ARM_TPL_mutex_unlock() must unlock the mutex represented at __m. If the
mutex at __m was initialized as a recursive mutex, it is unlocked only when the lock count
reaches zero. This function must return zero if successful, or return non-zero if not successful.

• The function __ARM_TPL_mutex_destroy() must destroy the mutex represented at __m. It is
guaranteed that an already destroyed __ARM_TPL_mutex_t object is not re-referenced through
any API functions afterward. __ARM_TPL_mutex_destroy() must return zero if successful, or
return non-zero if not successful.

• The function __ARM_TPL_recursive_mutex_init() must initialize the platform mutex pointed to
by __m->data as a recursive mutex. There is no requirement for this initialization to be thread-
safe. This function must return zero if successful, or non-zero if not successful.

Returns
These functions must return zero if successful, or return non-zero if not successful to indicate an
error.

2.7.4 Condition variables [ALPHA]

The C++ Thread Porting API provides functions for condition variables in the <arm-tpl.h> header
file.

This topic describes an [ALPHA] feature. See Support level definitions.

Types
struct __ARM_TPL_condvar_t {
 _Atomic uintptr_t data;
};

Functions
int __ARM_TPL_condvar_signal(__ARM_TPL_condvar_t* __cv);

int __ARM_TPL_condvar_broadcast(__ARM_TPL_condvar_t* __cv);

int __ARM_TPL_condvar_wait(__ARM_TPL_condvar_t* __cv, __ARM_TPL_mutex_t* __m);

int __ARM_TPL_condvar_timedwait(__ARM_TPL_condvar_t* __cv, __ARM_TPL_mutex_t* __m,
 timespec* __ts);

int __ARM_TPL_condvar_destroy(__ARM_TPL_condvar_t* __cv);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Usage
The C++ Thread Porting API uses the __ARM_TPL_condvar_t type to encapsulate a pointer to an
underlying platform-specific condition variable type. The semantics of the functions are:

• The functions __ARM_TPL_condvar_wait() and __ARM_TPL_condvar_timedwait() must operate
on an initialize-on-first-use basis with respect to __cv->data. If the value __cv->data is zero,
an implementation must first initialize __cv->data to point to a valid platform condition variable
before carrying out the requested operation. This initialization must be thread-safe. For more
information, see Thread-safe initialization of Mutexes and Condition variables [ALPHA].

• The function __ARM_TPL_condvar_wait() must cause the calling thread (which is guaranteed
to be the owner of the mutex __m) to block until the condition variable, __cv, is signaled by a
different thread or the calling thread is interrupted. For the duration where the calling thread
is blocked, the mutex __m must be unlocked. When this function returns, the unblocked thread
must be the owner of the mutex, __m, regardless of the reason for unblocking. The reason for
unblocking might be:

◦ Condition variable is signaled.

◦ The current thread is interrupted.

This function must return zero to indicate success when a thread is unblocked as a result of the
condition variable being signaled. This function must return a non-zero value to indicate any
error conditions.

• The function __ARM_TPL_condvar_timedwait() behaves similar to __ARM_TPL_condvar_wait(),
except that it allows an explicit time limit to be specified for the blocking operation. If this
function returns due to the timeout expiring, its return value shall be non-zero.

• The functions __ARM_TPL_condvar_signal(), __ARM_TPL_condvar_broadcast(), and
__ARM_TPL_condvar_destroy() must return zero if the value __cv->data is zero. Otherwise,
they must perform the requested operation on the platform condition variable pointed to by
__cv->data and return zero if successful, or return non-zero if not successful.

• The function __ARM_TPL_condvar_signal() must unblock at least one of the threads blocked
on the condition variable __cv. The function __ARM_TPL_condvar_broadcast() must unblock all
the threads blocked on the condition variable __cv. If more than one thread is unblocked as a
result of a call to one of these functions, they must all contend for the respective mutexes with
which they originally invoked __ARM_TPL_condvar_wait() or __ARM_TPL_condvar_timedwait()
functions.

• The function __ARM_TPL_condvar_destroy() must destroy the condition variable represented in
__cv. It is guaranteed that an already destroyed __ARM_TPL_condvar_t object is not referenced
through any API functions afterward. When successful, __ARM_TPL_condvar_destroy() must
return zero, or a non-zero value if not successful.

Returns
These functions must return zero if successful, or return non-zero if not successful to indicate an
error.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.7.5 Threads [ALPHA]

The C++ Thread Porting API provides thread function prototypes in the <arm-tpl.h> header file.

This topic describes an [ALPHA] feature. See Support level definitions.

Types
typedef uint32_t __ARM_TPL_thread_id;

struct __ARM_TPL_thread_t {
 uintptr_t data;
};

typedef uint32_t __ARM_TPL_tls_key;

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Functions
int __ARM_TPL_thread_create(__ARM_TPL_thread_t* __t, void* (*__f)(void*), void*
 __arg);

__ARM_TPL_thread_id __ARM_TPL_thread_get_current_id();

__ARM_TPL_thread_id __ARM_TPL_thread_get_id(const __ARM_TPL_thread_t* __t);

int __ARM_TPL_thread_id_compare(__ARM_TPL_thread_id t1, __ARM_TPL_thread_id t2);

int __ARM_TPL_thread_join(__ARM_TPL_thread_t* __t);

int __ARM_TPL_thread_detach(__ARM_TPL_thread_t* __t);

void __ARM_TPL_thread_yield();

void __ARM_TPL_thread_nanosleep(const timespec *req, timespec *rem);

unsigned __ARM_TPL_thread_hw_concurrency();

int __ARM_TPL_tls_create(__ARM_TPL_tls_key* __key, void (*__at_exit) (void*));

void __ARM_TPL_tls_set(__ARM_TPL_tls_key __key, void* __p);

void* __ARM_TPL_tls_get(__ARM_TPL_tls_key __key);

Usage
The C++ Thread Porting API uses the __ARM_TPL_thread_t type to encapsulate a pointer to an
underlying platform-specific thread type. The types __ARM_TPL_thread_id and __ARM_TPL_tls_key
are identifiers of threads and instances of thread local storage created within the system. The
semantics of the functions are:

• The __ARM_TPL_thread_create() function must initialize __t->data to point to a newly
allocated system thread structure. There is no requirement for this initialization to be thread
safe. The newly allocated thread must be scheduled to execute the __f routine with __arg as
its sole argument.

• The function __ARM_TPL_thread_get_current_id() must return the thread identifier for the
calling thread.

• The function __ARM_TPL_thread_get_id() must return the corresponding thread identifier for
the argument __t.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• The function __ARM_TPL_thread_id_compare() must return positive if t1 > t2, zero if t1 == t2,
and negative if t1 < t2.

• The function __ARM_TPL_thread_join() must cause the calling thread to block until the
thread represented in __t terminates. This function must return zero (success) immediately
if __t has already terminated. If the argument __t does not represent a joinable thread or
refers to the calling thread itself, this function must return a non-zero value to indicate error.
When a thread __t has been joined to, it is guaranteed not to be accessed again. Therefore,
any system resources accessible through __t must be reclaimed before returning from this
function. All threads are created in a joinable state, calling either __ARM_TPL_thread_join() or
__ARM_TPL_thread_detach() on an argument __t makes the thread represented in __t non-
joinable.

• The function __ARM_TPL_thread_detach() must cleanup any system resources accessible
through __t while allowing the underlying thread to continue execution. As with
__ARM_TPL_thread_join(), invoking this function on an argument __t causes the underlying
thread to become non-joinable. This function must return zero on success or non-zero if not
successful.

• The function __ARM_TPL_thread_yield() must force the calling thread to relinquish the
processor until it becomes eligible for execution again.

• The function __ARM_TPL_thread_nanosleep() must cause the calling thread to be blocked for
a minimum interval specified by req. The thread might be interrupted due to a signal being
delivered to it, in which case either the corresponding signal handler must be invoked or the
process must be terminated. When the argument rem is provided (non-null), and the function
returns before having the requested time interval elapsed, rem must be populated to indicate
the remaining time interval of the original request (time requested - actual time elapsed).

• The function __ARM_TPL_thread_hw_concurrency() must return the number of concurrent
threads supported by the underlying platform. The sole use of this function is for the
implementation of the std::hardware_concurrency() function.

• The __ARM_TPL_tls_create() function must initialize *__key to identify a unique process-
wide thread local storage. Upon creation, each __key must be bound to a NULL value, as if
__ARM_TPL_tls_set(*__key, NULL) was invoked. Individual threads within the current process
might later bind thread specific values to this key using the __ARM_TPL_tls_set() function.
There is no requirement for the initialization of *__key to be thread safe. If the __at_exit
argument is provided (non-null), and a thread has a non-null binding for that *__key at the point
of termination, the system must ensure that __at_exit(void*) is invoked with the current
binding for *__key as the sole argument.

• The function __ARM_TPL_tls_set() must associate the value __p with *__key for the calling
thread. It is guaranteed that __key has been obtained using __ARM_TPL_tls_create(). It is also
guaranteed that __ARM_TPL_tls_set() is not invoked from thread-local destructor functions
registered in __ARM_TPL_tls_create(). This function must return zero if successful or a non-
zero value if not successful.

• The function __ARM_TPL_tls_get() must return the value bound to the __key argument for
the calling thread. It is guaranteed that __ARM_TPL_tls_get() is not invoked from thread-local
destructor functions registered in __ARM_TPL_tls_create().

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Returns
These functions must return zero if successful, or return non-zero to indicate an error if not
successful.

2.7.6 Miscellaneous functions [ALPHA]

The C++ Thread Porting API provides functions in the <arm-tpl.h> header file.

This topic describes an [ALPHA] feature. See Support level definitions.

Types
typedef volatile unsigned long __ARM_TPL_exec_once_flag;

Function
void __ARM_TPL_execute_once(__ARM_TPL_exec_once_flag *__flag, void(*__func)(void));

Usage
The first invocation of the __ARM_TPL_execute_once() function by any thread within the current
process for a given __func argument must result in a call to the __func() routine. Subsequent
calls to __ARM_TPL_execute_once() for the same __func argument must not have any effect. The
argument __flag can be used to determine whether the routine __func has already been invoked
or not.

Returns
This function must return void.

2.7.7 Thread safety in the Arm C++ library

The functions contained within the libc++ library are fully-supported for use in single-threaded
environments, and [ALPHA]-supported for use in multithreaded environments.

This topic includes descriptions of [ALPHA] features. See Support level definitions.

The C++ Thread Porting API enables support for the C++11 concurrency constructs in the Arm®

Compiler 6 C++ library. This implies that the C++ library as a whole is exposed to multithreaded
environments, and users must consider the overall thread safety aspects of the library. The thread

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

safety provided by the C++ Thread Porting API applies to the use of shared global data within Arm
Compiler 6 C++ libraries. The default C++ libraries of Arm Compiler 6 are not thread safe. They are
only intended to be used in single-threaded environments. The [ALPHA]-supported multithreaded
C++ libraries are guaranteed to be thread safe if the C++ Thread Porting API is implemented and
the necessary steps are taken to ensure that the Arm Compiler 6 C libraries are also thread safe.
For more information, see Multithreaded support in Arm C libraries.

Related information
How to ensure re-implemented mutex functions are called on page 35
Using the Arm C library in a multithreaded environment on page 36
Thread safety in the Arm C library on page 37
Management of locks in multithreaded applications on page 33

2.7.8 Supported C++ Concurrency Features [ALPHA]

The following sections identify the high-level C++ concurrency constructs supported by the
multithreaded Arm® C++ libraries. For each of the features, the underlying section of the thread
porting API required for the correct functionality of that feature is also identified.

This topic describes an [ALPHA] feature. See Support level definitions.

Some language features require extra runtime support when operating in a multithreaded
environment. The C++ language features of concern here are initialization of guard variables and
exceptions.

2.7.9 Guard variables [ALPHA]

To ensure thread-safety of certain initializations, the compiler calls out to helper functions in the
libc++abi library.

This topic describes an [ALPHA] feature. See Support level definitions.

For example, in the following code snippet, the compiler must ensure that the Counter c is
constructed exactly once, even when multiple threads call getCount().

class Counter {
public:
 Counter(int x) : _m(x) {}
 int inc() {return _m++;}
private:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

 int _m;
}

int getCount() {
 static Counter c(42);
 return c.inc();
}

To support such thread-safe initializations, a platform vendor must provide the implementations
for the following subset of constructs from the Mutexes [ALPHA] and Condition variables [ALPHA]
sections of the API:

Types
struct __ARM_TPL_mutex_t{
 _Atomic uintptr_t data;
};
struct __ARM_TPL_condvar_t{
 _Atomic uintptr_t data;
};

Functions
int __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_unlock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_condvar_broadcast(__ARM_TPL_condvar_t* __cv);

int __ARM_TPL_condvar_wait(__ARM_TPL_condvar_t* __cv, __ARM_TPL_mutex_t* __m);

The ABI functions __cxa_guard_acquire(), __cxa_guard_release(), and __cxa_guard_abort()
need not be re-implemented under this scheme.

2.7.10 Exceptions [ALPHA]

The C++ runtime (libc++abi and libunwind) must take special measures when allocating and
handling exceptions in a threaded environment.

This topic describes an [ALPHA] feature. See Support level definitions.

An implementation of the following subset of the thread porting API is required for the correct
operation of exceptions in such an environment:

Types
struct __ARM_TPL_mutex_t{

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

 _Atomic uintptr_t data;
};
typedef uint32_t __ARM_TPL_tls_key;

Functions
int __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_mutex_unlock(__ARM_TPL_mutex_t* __m);

int __ARM_TPL_tls_create(__ARM_TPL_tls_key* __key, void (*__at_exit) (void*));

void* __ARM_TPL_tls_get(__ARM_TPL_tls_key __key);

void __ARM_TPL_tls_set(__ARM_TPL_tls_key __key, void* __p);

void __ARM_TPL_call_once(volatile unsigned long& flag, void* arg, void(*func)
(void*));

2.7.11 Thread local storage [ALPHA]

The thread storage duration specifier of C++, thread_local, is not supported.

This topic describes an [ALPHA] feature. See Support level definitions.

2.7.12 Standard library concurrency constructs [ALPHA]

The C++ standard library, beginning with the C++11 standard, provides various high-level
concurrency constructs. Presently, these constructs are spread across the headers <atomic>,
<chrono>, <mutex>, <shared_mutex>, <condition_variable>, <thread>, and <future>.

This topic describes an [ALPHA] feature. See Support level definitions.

The following sections identify how the functionality of each of these headers maps to the Arm®

Compiler thread porting API introduced in Arm C++ libraries and multithreading [ALPHA]. They also
identify any additional dependencies or expected limitations.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

<atomic>
The functionality of this header does not depend on the thread porting API.

The following table summarizes the level of support for the <atomic> header on various Arm
architectures.

Architecture T (Template parameter) atomic<T> atomic<T*>

Armv7-A, Armv7-R, Armv8-A,
Armv8-R

Any types Supported Supported

Armv7-M, Armv8-M Integral types (including
<stdint.h> defined types)

Supported Supported

Armv7-M, Armv8-M Complex types Unsupported Supported

Armv6-M Any types Unsupported Unsupported

None of the targets support the functions atomic_thread_fence() and atomic_signal_fence().

<chrono>
This header requires a full implementation of the Clocks [ALPHA] section of the thread porting API.

<mutex>, <shared_mutex>
These headers require a full implementation of the Mutexes [ALPHA] section of the thread
porting API. In addition, the time-related subset of constructs (for example, std::timed_mutex and
std::recursive_timed_mutex) defined in these headers requires an implementation of the Clocks
[ALPHA] section of the porting API.

<condition_variable>
This header requires a full implementation of the Condition variables [ALPHA] section of
the thread porting API. In addition, the time-related subset of constructs (for example,
std::condition_variable::wait_for()) defined in this header requires an implementation of the
Clocks [ALPHA] section of the porting API.

<thread>, <future>
These headers require a full implementation of the Threads [ALPHA] section of the thread porting
API. In addition, the time-related subset of constructs (for example, std::thread::sleep_until()
and std::future::wait_for()) defined in these headers requires an implementation of the Clocks
[ALPHA] section of the porting API.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.7.13 Thread-safe initialization of Mutexes and Condition variables
[ALPHA]

The Mutexes and Condition Variable parts of the porting API must adopt an initialize-on-first-use
strategy. Implementations must ensure that such initializations are thread-safe.

This topic describes an [ALPHA] feature. See Support level definitions.

Consider the following sample implementation of the __ARM_TPL_mutex_lock() function:

// [1] Include the header for your operating system, which defines a
// platform-specific API for mutexes. The names below were created for this
// example only.
#include <platform.h>

// Assume that platform.h declares the following types and functions:
// struct platform_mutex_t;
// platform_mutex_t *alloc_platform_mutex();
// void lock_platform_mutex(platform_mutex_t *p);
// void unlock_platform_mutex(platform_mutex_t *p);
// void destroy_platform_mutex(platform_mutex_t *p);

// [2] Include the Arm TPL header, which defines the functions that you must
// implement.
#include <arm-tpl.h>

// [3] Implement the Arm TPL functions according to the API that your operating
// system provides.

void __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t* __m) {
 if (__m->data == 0) {
 __m->data = static_cast<uintptr_t>(alloc_platform_mutex());
 }
 lock_platform_mutex(reinterpret_cast<platform_mutex_t*>(__m->data));
}

The anatomy of this snippet can be understood as follows:

1. Assume the underlying system (included through platform.h) provides the type
__platform_mutex_t and the functions alloc_platform_mutex(), lock_platform_mutex(),
unlock_platform_mutex(), and destroy_platform_mutex().

2. The porting API header (arm-tpl.h) is then included, which defines the type
__ARM_TPL_mutex_t and the prototypes for the various porting API functions.

3. The implementations of the various porting API functions follow.

This implementation of __ARM_TPL_mutex_lock() method leads to a race condition if multiple
threads attempt to lock the same std::mutex object. Therefore, an implementation must ensure
that __m->data initializes atomically. The following sections illustrate possible solutions to this
problem.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Global locking
An implementation may employ a platform provided mutex to guard the initialization of *__m as
follows:

static platform_mutex_t guard_mut;

void __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t* __m) {
 volatile __ARM_TPL_mutex_t *__vm = __m;
 if (__vm->data == 0) {
 lock_platform_mutex(&guard_mut);
 if (__vm->data == 0)
 __vm->data = static_cast<uintptr_t>(alloc_platform_mutex());
 unlock_platform_mutex(&guard_mut);
 }
 lock_platform_mutex(static_cast<platform_mutex_t*>(*__vm));
}

This solution could result in reduced performance because threads must contend
for the shared mutex guard_mut for each initial std::mutex lock operation.

Lock free
An implementation avoiding global locking is achievable using the lock-free concurrency constructs
available through the <stdatomic.h> header. The following snippet atomically attempts to initialize
__m->data, and undo its attempt if another thread has already done the initialization:

#include <cstdint>
#include <stdatomic.h>

int __ARM_TPL_mutex_lock(__ARM_TPL_mutex_t *__m) {
 if (__m->data == 0){
 uintptr_t mut_new =
 reinterpret_cast<uintptr_t>(alloc_platform_mutex());
 uintptr_t mut_null = 0;
 if (!atomic_compare_exchange_strong(&__m->data, &mut_null, mut_new))

 destroy_platform_mutex(reinterpret_cast<platform_mutex_t*>(mut_new));
 }
 return lock_platform_mutex(reinterpret_cast<platform_mutex_t*>(__m->data));
}

The Arm®v6-M architecture does not support this method.

2.8 Support for building an application with the C library
Describes the Arm® Compiler features that are supported when building an application with the C
library.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.8.1 Using the C library with an application

Depending on how you use the C and C ++ libraries with your application, you might have to re-
implement particular functions.

You can use the C and C ++ libraries with an application in the following ways:

• Build a non-hosted application that, for example, can be embedded into ROM.

• Build an application that does not use main() and does not initialize the library. This application
has restricted library functionality, unless you re-implement some functions.

Related information
Using the C and C++ libraries with an application in a semihosting environment on page 54
Using the libraries in a nonsemihosting environment on page 56
Standalone C library functions on page 60

2.8.2 Using the C and C++ libraries with an application in a semihosting
environment

If you are developing an application to run in a semihosted environment for debugging, you
must have an execution environment that supports A32 or T32 semihosting trap instructions for
AArch32 state or A64 semihosting trap instruction for AArch64 state.

The execution environment can be provided by either:

• Using the standard semihosting functionality that is present by default in, for example, the Arm
DSTREAM debug and trace unit.

• Implementing your own handler for the semihosting calls.

It is not necessary to write any new functions or include files if you are using the default
semihosting functionality of the C and C++ libraries.

The Arm® debug agents support semihosting, but the memory map assumed by the C library might
require tailoring to match the hardware being debugged.

Arm Compiler supports semihosting by generating trap instructions such as HLT, SVC, or BKPT
depending on the architecture or profile. Debug agents can trap these instructions to perform
semihosting operations on the host.

Architecture Instruction Set Trap Instruction

Armv8-A and Armv8-R A64 HLT 0xF000

HLT 0xF000Armv8-A and Armv8-R A32

SVC 0x123456

HLT 0x3CArmv8-A and Armv8-R T32

SVC 0xAB

Armv7-A and Armv7-R A32 HLT 0xF000

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Architecture Instruction Set Trap Instruction
SVC 0x123456

HLT 0x3CArmv7-A and Armv7-R T32

SVC 0xAB

Any architecture with M-profile T32 BKPT 0xAB

For AArch32 in architectures with A-profile or R-profile, Arm Compiler supports two different
semihosting implementations:

• Semihosting using the SVC instruction. This is the default and legacy implementation.

• Semihosting using the HLT instruction. This implementation is required for semihosting in
hardware debug environments with mixed AArch32 and AArch64 states.

There are separate libraries for SVC-based and HLT-based semihosting. Arm Compiler uses the
HLT-based semihosting library if your code references the symbol __use_hlt_semihosting. To do
this, either:

• IMPORT __use_hlt_semihosting from assembly language.

• __asm(".global __use_hlt_semihosting\n\t") from C.

If you do not use the symbol __use_hlt_semihosting, then by default, Arm Compiler emits SVC
instructions for semihosting calls. This symbol does not have an effect on M-profile architectures,
or in AArch64 state.

Arm strongly discourages mixing HLT and SVC semihosting mechanisms within the same executable.
The library only uses either SVC or HLT instructions, rather than a mixture. However, you must
ensure that you do not mix SVC and HLT instructions when using:

• inline assembly.

• <arm_compat.h> header file.

Related information
Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality on page 55
Direct semihosting C library function dependencies on page 57

2.8.3 Using $Sub$$ to mix semihosted and nonsemihosted I/O
functionality

You can use $Sub$$ to provide a mixture of semihosted and nonsemihosted functionality.

For example, given an implementation of fputc() that writes directly to a UART, and a semihosted
implementation of fputc(), you can provide both of these depending on the nature of the FILE *
pointer passed into the function:

int $Super$$fputc(int c, FILE *fp);
int $Sub$$fputc(int c, FILE *fp)
{
 if (fp == (FILE *)MAGIC_NUM) // where MAGIC_NUM is a special value that

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

 { // is different to all normal FILE * pointer
 // values.
 write_to_UART(c);
 return c;
 }
 else
 {
 return $Super$$fputc(c, fp);
 }
}

Related information
Using the C and C++ libraries with an application in a semihosting environment on page 54

2.8.4 Using the libraries in a nonsemihosting environment

Some C library functions use semihosting. If you use the libraries in a nonsemihosting environment,
you must ensure that semihosting function calls are dealt with appropriately.

If you do not want to use semihosting, either:

• Remove all calls to semihosting functions.

• Re-implement the lower-level functions, for example, fputc(). You are not required to re-
implement all semihosting functions. You must, however, re-implement the functions you are
using in your application.

You must re-implement functions that the C library uses to isolate itself from target
dependencies. For example, if you use printf() you must re-implement fputc(). If you do not
use the higher-level input/output functions like printf(), you do not have to re-implement the
lower-level functions like fputc().

• Implement a handler for all of the semihosting calls to be handled in your own specific way.
One such example is for the handler to intercept the calls, redirecting them to your own
nonsemihosted, that is, target-specific, functions.

To guarantee that no functions using semihosting are included in your application, use either:

• IMPORT __use_no_semihosting from armasm assembly language.

• __asm(".global __use_no_semihosting\n\t") for C or C++ code.

IMPORT __use_no_semihosting is only required to be added to a single assembly
source file. Similarly, __asm(".global __use_no_semihosting\n\t") is only required
to be added to a single C source file. It is unnecessary to add these inserts to every
single source file.

If you include a library function that uses semihosting and also reference __use_no_semihosting,
the library detects the conflicting symbols and the linker reports an error. For example, to
determine which objects are using semihosting when using an Arm®v8-R processor:

1. Link with armlink --cpu=8-M --verbose --list err.txt

2. Search err.txt for occurrences of __Iusesemihosting
Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 56 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

For example:

...
Loading member sys_exit.o from c_2.l.
reference : __Iusesemihosting
definition: _sys_exit
...

This example shows that the semihosting-using function _sys_exit is linked-in from the C
library. To prevent the C library being linked-in, you must provide your own implementation of
this function.

There are no target-dependent functions in the C++ library, although some C++ functions use
underlying C library functions that are target-dependent.

Related information
Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality on page 55
Mandatory linkage with the C library on page 21

2.8.5 Direct semihosting C library function dependencies

A table showing the functions that depend directly on semihosting.

Table 2-4: Direct semihosting dependencies

Function Description

__user_initial_stackheap() Sets up and returns the locations of the stack and the heap. If
you are using a scatter file at the link stage, you might have to re-
implement this function.

The linker issues an error when no semihosting is requested and
__user_initial_stackheap() is not re-implemented.

_sys_exit()

_ttywrch()

Error signaling, error handling, and program exit.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Function Description
_sys_command_string()

_sys_close()

_sys_iserror()

_sys_istty()

_sys_flen()

_sys_open()

_sys_read()

_sys_seek()

_sys_write()

_sys_tmpnam()

Tailoring input/output functions in the C and C++ libraries.

clock()

_clock_init()

remove()

rename()

system()

time()

Tailoring other C library functions.

Related information
Using the C and C++ libraries with an application in a semihosting environment on page 54

2.8.6 Indirect semihosting C library function dependencies

A table showing functions that depend indirectly on one or more of the directly dependent
functions.

You can use this table as an initial guide, but it is recommended that you use either of the following
to identify any other functions with indirect or direct dependencies on semihosting at link time:

• __asm(".global __use_no_semihosting\n\t") in C source code.

• IMPORT __use_no_semihosting in armasm assembly language source code.

Table 2-5: Indirect semihosting dependencies

Function Usage

__user_setup_stackheap() Sets up and returns the locations of the stack and the heap.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Function Usage
__raise() Catching, handling, or diagnosing C library exceptions, without C

signal support. (Tailoring error signaling, error handling, and program
exit.)

__default_signal_handler() Catching, handling, or diagnosing C library exceptions, with C signal
support. (Tailoring error signaling, error handling, and program exit.)

__Heap_Initialize() Choosing or redefining memory allocation. Avoiding the heap and
heap-using C library functions supplied by Arm®.

ferror(), fputc(), __stdout Re-implementing the printf family. (Tailoring input/output functions
in the C and C++ libraries.).

__backspace(), fgetc(), __stdin Re-implementing the scanf family. (Tailoring input/output functions
in the C and C++ libraries.).

fwrite(), fputs(), puts(), fread(), fgets(), gets(),
ferror()

Re-implementing the stream output family. (Tailoring input/output
functions in the C and C++ libraries.).

Related information
Direct semihosting C library function dependencies on page 57

2.8.7 C library API definitions for targeting a different environment

In addition to the direct and indirect semihosting dependent functions, there are several functions
and files that might be useful when building for a different environment.

The following table shows these functions and files.

Table 2-6: Published API definitions

File or function Description

__main(), __rt_entry() Initializes the runtime environment and executes the user
application

__rt_lib_init(), __rt_exit(), __rt_lib_shutdown() Initializes or finalizes the runtime library

LC_CTYPE locale Defines the character properties for the local alphabet

rt_sys.h A C header file describing all the functions whose default
(semihosted) implementations use semihosting calls

rt_heap.h A C header file describing the storage management abstract data
type

rt_locale.h A C header file describing the five locale category filing systems, and
defining some macros that are useful for describing the contents of
locale categories

rt_misc.h A C header file describing miscellaneous unrelated public interfaces
to the C library

rt_memory.s An empty, but commented, prototype implementation of the
memory model

If you are re-implementing a function that exists in the standard Arm® library, the linker uses an
object or library from your project rather than the standard Arm library.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Do not replace or delete libraries supplied by Arm. You must not overwrite the
supplied library files. Place your re-implemented functions in separate object files or
libraries instead.

Related information
--list=filename linker option
--verbose linker option

2.9 Support for building an application without the C
library

Describes the Arm® Compiler features that are supported and not supported when building an
application without the C library.

2.9.1 Standalone C library functions

If your application does not initialize the C library, several functions are not available in your
application.

Creating an application that has a main() function causes the C library initialization functions to be
included as part of __rt_lib_init.

If your application does not have a main() function, the C library is not initialized and the following
functions are not available in your application:

• Low-level stdio functions that have the prefix _sys_.

• Signal-handling functions, signal() and raise() in signal.h.

• Other functions, such as atexit().

The following table shows header files, and the functions they contain, that are available with an
uninitialized library. Some otherwise unavailable functions can be used if the library functions they
depend on are re-implemented.

Table 2-7: Standalone C library functions

Function Description

alloca.h Functions in this file work without any library initialization or
function re-implementation. You must know how to build an
application with the C library to use this header file.

assert.h Functions listed in this file require high-level stdio, __rt_raise(),
and _sys_exit(). You must be familiar with tailoring error
signaling, error handling, and program exit to use this header file.

ctype.h Functions listed in this file require the locale functions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 201

https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--list-filename
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--verbose

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Function Description
errno.h Functions in this file work without the requirement for any library

initialization or function re-implementation.

fenv.h Functions in this file work without the requirement for any
library initialization and only require the re-implementation of
__rt_raise().

float.h This file does not contain any code. The definitions in the file do not
require library initialization or function re-implementation.

inttypes.h Functions listed in this file require the locale functions.

limits.h Functions in this file work without the requirement for any library
initialization or function re-implementation.

locale.h Call setlocale() before calling any function that uses locale
functions. For example:

setlocale(LC_ALL, "C");

See the contents of locale.h for more information on the
following functions and data structures:

• setlocale() selects the appropriate locale as specified by
the category and locale arguments.

• lconv is the structure used by locale functions for formatting
numeric quantities according to the rules of the current locale.

• localeconv() creates an lconv structure and returns a
pointer to it.

• _get_lconv() fills the lconv structure pointed to by the
parameter. This ISO extension removes the requirement for
static data within the library.

locale.h also contains constant declarations used with locale
functions.

math.h For functions in this file to work, you must first call _fp_init()
and re-implement __rt_raise().

setjmp.h Functions in this file work without any library initialization or
function re-implementation.

signal.h Functions listed in this file are not available without library
initialization. You must know how to build an application with the C
library to use this header file.

__rt_raise() can be re-implemented for error and exit handling.
You must be familiar with tailoring error signaling, error handling,
and program exit.

stdarg.h Functions listed in this file work without any library initialization or
function re-implementation.

stddef.h This file does not contain any code. The definitions in the file do not
require library initialization or function re-implementation.

stdint.h This file does not contain any code. The definitions in the file do not
require library initialization or function re-implementation.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Function Description
stdio.h The following dependencies or limitations apply to these functions:

• The high-level functions such as printf(), scanf(),
puts(), fgets(), fread(), fwrite(), and perror()
depend on lower-level stdio functions fgetc(), fputc(),
and __backspace(). You must re-implement these lower-
level functions when using the standalone C library. However,
you cannot re-implement the _sys_ prefixed functions (for
example, _sys_read()) when using the standalone C library
because the layer of stdio that calls the _sys_ functions
requires library initialization. You must be familiar with tailoring
the input/output functions in the C and C++ libraries.

• The printf() and scanf() family of functions require
locale.

• The remove() and rename() functions are system-specific
and probably not usable in your application.

stdlib.h Most functions in this file work without any library initialization or
function re-implementation. The following functions depend on
other functions being instantiated correctly:

• ato*() requires locale.

• strto*() requires locale.

• malloc(), calloc(), realloc(), and free() require
heap functions.

• atexit() is not available when building an application
without the C library.

string.h Functions in this file work without any library initialization, except
for strcoll() and strxfrm(), that require locale.

time.h mktime() and localtime() can be used immediately

time() and clock() are system-specific and are probably not
usable unless re-implemented

asctime(), ctime(), and strftime() require locale.

wchar.h Wide character library functions added to ISO C by Normative
Addendum 1 in 1994.

The following dependencies or limitations apply to these functions:

• The high-level functions such as swprintf(), vswprintf(),
swscanf(), and vswscanf() depend on lower-level
stdio functions such as fgetwc() and fputwc(). You must
re-implement these lower-level functions when using the
standalone C library. See Target dependencies on low-level
functions in the C and C++ libraries for more information.

• The high-level functions such as swprintf(), vswprintf(),
swscanf(), and vswscanf() require locale.

• All the conversion functions (for example, btowc, wctob,
mbrtowc, and wcrtomb) require locale.

• wcscoll() and wcsxfrm() require locale.

wctype.h Wide character library functions added to ISO C by Normative
Addendum 1 in 1994. This requires locale.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Related information
Creating an application as bare machine C without the C library on page 63
Assembler macros that tailor locale functions in the C library on page 71
Tailoring input/output functions in the C and C++ libraries on page 90
Modification of C library functions for error signaling, error handling, and program exit on page
81
Integer and floating-point compiler functions and building an application without the C library on
page 63
Using high-level functions when exploiting the C library on page 66
Using low-level functions when exploiting the C library on page 66

2.9.2 Creating an application as bare machine C without the C library

Bare machine C applications do not automatically use the full C runtime environment provided by
the C library.

Even though you are creating an application without the library, some functions from the library
that are called implicitly by the compiler must be included. There are also many library functions
that can be made available with only minor re-implementations.

Related information
Standalone C library functions on page 60

2.9.3 Integer and floating-point compiler functions and building an
application without the C library

There are several compiler helper functions that the compiler uses to handle operations that do not
have a short machine code equivalent. These functions require __rt_raise().

For example, integer divide uses a function that is implicitly called by the compiler if there is no
divide instruction available in the target instruction set. (Arm®v7-R and Armv7-M architectures use
the instructions SDIV and UDIV in Thumb® state. Other versions of the Arm architecture also use
compiler functions that are implicitly invoked.)

Integer divide, and all the floating-point functions if you use a floating-point mode that involves
throwing exceptions, require __rt_raise() to handle math errors. Re-implementing __rt_raise()
enables all the math functions, and it avoids having to link in all the signal-handling library code.

Related information
Creating an application as bare machine C without the C library on page 63

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.9.4 Bare machine integer C

If you are writing a program in C that does not use the library and is to run without any
environment initialization, there are several requirements you must meet.

These requirements are:

• Re-implement __rt_raise() if you are using the heap.

• Not define main(), to avoid linking in the library initialization code.

• Write an assembly language veneer that establishes the register state required to run C. This
veneer must branch to the entry function in your application.

• Provide your own RW/ZI initialization code.

• Ensure that your initialization veneer is executed by, for example, placing it in your reset
handler.

• For AArch32 targets, build your application using -mfpu=none. For AArch64 targets, use -mcpu
or -march to disable floating-point instructions and registers.

When you have met these requirements, link your application normally. The linker uses the
appropriate C library variant to find any required compiler functions that are implicitly called.

Many library facilities require __user_libspace for static data. Even without the initialization code
activated by having a main() function, __user_libspace is created automatically and uses 96 bytes
in the ZI segment.

Related information
Creating an application as bare machine C without the C library on page 63

2.9.5 Bare machine C with floating-point processing

If you want to use floating-point processing in an application without the C library, there are several
requirements you must fulfill.

These requirements are:

• Re-implement __rt_raise() if you are using the heap.

• Not define main(), to avoid linking in the library initialization code.

• Write an assembly language veneer that establishes the register state required to run C. This
veneer must branch to the entry function in your application. The register state required to run
C primarily comprises the stack pointer.

The register state also consists of sb, the static base register, if Read/Write Position-Independent
(RWPI) code applies.

• Provide your own RW/ZI initialization code.

• Ensure that your initialization veneer is executed by, for example, placing it in your reset
handler.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• Use the appropriate FPU option when you build your application.

• Call _fp_init() to initialize the floating-point status register before performing any floating-
point operations.

Do not build your application with the -mfpu=none option.

Certain floating-point modes when used with software floating-point support require a
floating-point status word. This is enabled by default in Arm® Compiler 6, but you can
disable it with the armclang command-line option -ffp-mode=fast. In such cases, you can
also define the function __rt_fp_status_addr() to return the address of a writable data
word to be used instead of the floating-point status register. If you rely on the default library
definition of __rt_fp_status_addr(), this word resides in the program data section, unless
you define __user_perthread_libspace() (or in the case of legacy code that does not yet use
__user_perthread_libspace(), __user_libspace()).

Related information
Creating an application as bare machine C without the C library on page 63

2.9.6 Customized C library startup code and access to C library functions

If you build an application with customized startup code, you must either avoid functions that
require initialization or provide the initialization and low-level support functions.

When building an application without the C library, if you create an application that includes a
main() function, the linker automatically includes the initialization code necessary for the execution
environment. There are situations where this is not desirable or possible. For example, a system
running a Real-Time Operating System (RTOS) might have its execution environment configured by
the RTOS startup code.

You can create an application that consists of customized startup code and still use many of the
library functions. You must either:

• Avoid functions that require initialization.

• Provide the initialization and low-level support functions.

The functions you must re-implement depend on how much of the library functionality you require:

• If you want only the compiler support functions for division, structure copy, and floating-point
arithmetic, you must provide __rt_raise(). This also enables very simple library functions such
as those in errno.h, setjmp.h, and most of string.h to work.

• If you call setlocale() explicitly, locale-dependent functions are activated. This enables you to
use the atoi family, sprintf(), sscanf(), and the functions in ctype.h.

• armclang uses full IEEE math by default, therefore __rt_fp_status_addr() is always required.

• Implementing high-level input/output support is necessary for functions that use fprintf()
or fputs(). The high-level output functions depend on fputc() and ferror(). The high-level
input functions depend on fgetc() and __backspace().

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Implementing these functions and the heap enables you to use almost the entire library.

Related information
Creating an application as bare machine C without the C library on page 63

2.9.7 Using low-level functions when exploiting the C library

If you are using the libraries in an application that does not have a main() function, you must re-
implement some functions in the library.

__rt_raise() is essential if you are using the heap.

If rand() is called, srand() must be called first. This is done automatically during
library initialization but not when you avoid the library initialization.

Related information
Using high-level functions when exploiting the C library on page 66
Standalone C library functions on page 60

2.9.8 Using high-level functions when exploiting the C library

High-level I/O functions can be used if the low-level functions are re-implemented.

High-level I/O functions are those such as fprintf(), printf(), scanf(), puts(), fgets(),
fread(), fwrite(), and perror(). Low-level functions are those such as fputc(), fgetc(), and
__backspace(). Most of the formatted output functions also require a call to setlocale().

Anything that uses locale must not be called before first calling setlocale(). setlocale() selects
the appropriate locale. For example, setlocale(LC_ALL, "C"), where LC_ALL means that the
call to setlocale() affects all locale categories, and "C" specifies the minimal environment for C
translation. Locale-using functions include the functions in ctype.h and locale.h , the printf()
family, the scanf() family, ato*, strto*, strcoll/strxfrm, and most of time.h.

Related information
Using low-level functions when exploiting the C library on page 66
Standalone C library functions on page 60

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.9.9 Using malloc() when exploiting the C library

If heap support is required for bare machine C, you must implement _init_alloc() and
__rt_heap_extend().

_init_alloc() must be called first to supply initial heap bounds, and __rt_heap_extend() must be
provided even if it only returns failure. Without __rt_heap_extend(), certain library functionality is
included that causes problems when you are writing bare machine C.

Prototypes for both _init_alloc() and __rt_heap_extend() are in rt_heap.h.

Related information
Creating an application as bare machine C without the C library on page 63

2.10 Tailoring the C library to a new execution
environment

Tailoring the C library to a new execution environment involves re-implementing functions to
produce an application for a new execution environment, for example, embedded in ROM or used
with an RTOS.

Functions whose names start with a single or double underscore are used as part of the low-level
implementation. You can re-implement some of these functions. Additional information on these
library functions is available in the rt_heap.h , rt_locale.h, rt_misc.h, and rt_sys.h include files
and the rt_memory.s assembler file.

Related information
Initialization of the execution environment and execution of the application on page 67
C++ initialization, construction and destruction on page 68
Exceptions system initialization on page 69
Library functions called from main() on page 70
Program exit and the assert macro on page 70

2.10.1 Initialization of the execution environment and execution of the
application

You can customize execution initialization by defining your own __main that branches to
__rt_entry.

The entry point of a program is at __main in the C library where library code:

1. Copies non-root (RO and RW) execution regions from their load addresses to their execution
addresses. Also, if any data sections are compressed, they are decompressed from the load
address to the execution address.

2. Zeroes ZI regions.
Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 67 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

3. Branches to __rt_entry.

If you do not want the library to perform these actions, you can define your own __main that
branches to __rt_entry. Use the armclang option -e or armlink option --entry to specify __main
as the entry point. For example:

 .global __rt_entry
 .global __main
__main:
 B__rt_entry

The library function __rt_entry() runs the program as follows:

1. Sets up the stack and the heap by one of several means that include calling
__user_setup_stackheap(), calling __rt_stackheap_init(), or loading the absolute addresses
of scatter-loaded regions.

2. Calls __rt_lib_init() to initialize referenced library functions, initialize the locale and, if
necessary, set up argc and argv for main().

For C++, calls the constructors for any top-level objects by way of __cpp_initialize__aeabi_.

3. Calls main(), the user-level root of the application.

From main(), your program might call, among other things, library functions.

4. Calls exit() with the value returned by main().

Related information
Direct semihosting C library function dependencies on page 57

2.10.2 C++ initialization, construction and destruction

The C++ standard places certain requirements on the construction and destruction of objects with
static storage duration. The static constructors are executed before main(), the destructors are
called after the program exits.

The library must ensure that all the static constructors within a translation unit are called in the
order of declaration, and the static destructors are called in reverse order of declaration. There is
no way to determine the initialization order between translation units.

Each translation unit containing static constructors has an initialization function. This function calls
the static constructors for the translation unit, and registers the static destructors with a call to
__aeabi_atexit(). Function-local static objects with destructors also register their destructors
using __aeabi_atexit().

The location of the per translation unit initialization function is stored in an .init_array section. At
link time the .init_array sections must be collated together into a single contiguous .init_array
section. The linker generates an error if this is not possible.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

The library routine __cpp_initialize_aeabi_ is called from the C library startup code
__rt_lib_init(), before main(). __cpp_initialize_aeabi_ walks through the .init_array, calling
each function in turn.

On exit __rt_lib_shutdown() calls cxa_finalize() which calls the static destructors registered
with __aeabi_atexit().

The __aeabi_atexit() function calls malloc().

Related information
Tailoring the C library to a new execution environment on page 67

2.10.3 Exceptions system initialization

The exceptions system can be initialized either on demand (that is, when first used), or before
entering main().

Initialization on demand has the advantage of not allocating heap memory unless the exceptions
system is used, but has the disadvantage that it becomes impossible to throw any exception (such
as std::bad_alloc) if the heap is exhausted at the time of first use.

The default behavior is to initialize on demand. To initialize the exceptions system before entering
main(), include the following function in the link:

extern "C" void __cxa_get_globals(void);
extern "C" void __ARM_exceptions_init(void)
{
 __cxa_get_globals();
}

Although you can place the call to __cxa_get_globals() directly in your code, placing it in
__ARM_exceptions_init() ensures that it is called as early as possible. That is, before any global
variables are initialized and before main() is entered.

__ARM_exceptions_init() is weakly referenced by the library initialization mechanism, and is called
if it is present as part of __rt_lib_init().

The exception system is initialized by calls to various library functions, for example,
std::set_terminate(). Therefore, you might not have to initialize before the entry
to main().

Related information
Tailoring the C library to a new execution environment on page 67

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.10.4 Library functions called from main()

The function main() can call several user-customizable functions in the C library.

The function main() is the user-level root of the application. It requires the execution environment
to be initialized and input/output functions to be capable of being called. While in main() the
program might perform one of the following actions that calls user-customizable functions in the C
library:

• Extend the stack or heap.

• Call library functions that require a callout to a user-defined function, for example
__rt_fp_status_addr() or clock().

• Call library functions that use locale or CTYPE.

• Perform floating-point calculations that require the floating-point unit or floating-point library.

• Input or output directly through low-level functions, for example putc(), or indirectly through
high-level input/output functions and input/output support functions, for example, fprintf()
or sys_open().

• Raise an error or other signal, for example ferror.

Related information
Initialization of the execution environment and execution of the application on page 67
Tailoring the C library to a new execution environment on page 67
Assembler macros that tailor locale functions in the C library on page 71
Tailoring input/output functions in the C and C++ libraries on page 90
Tailoring non-input/output C library functions on page 100
Modification of C library functions for error signaling, error handling, and program exit on page
81

2.10.5 Program exit and the assert macro

A program can exit normally at the end of main() or it can exit prematurely because of an error. The
behavior of the assert macro depends on several conditions:

1. If the NDEBUG macro is defined (on the command line or as part of a source file), the assert
macro has no effect.

2. If the NDEBUG macro is not defined, the assert expression (the expression given to the assert
macro) is evaluated. If the result is TRUE, that is != 0, the assert macro has no more effect.

3. If the assert expression evaluates to FALSE, the assert macro calls the __aeabi_assert()
function if any of the following are true:

• __OPT_SMALL_ASSERT is defined.

• __ASSERT_MSG is defined.

• _AEABI_PORTABILITY_LEVEL is defined and not 0.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

4. If the assert expression evaluates to FALSE and the conditions specified in point 3 do not apply,
the assert macro calls abort(). Then:

a. abort() calls __rt_raise().

b. If __rt_raise() returns, abort() tries to finalize the library.

If you are creating an application that does not use the library, __aeabi_assert() works if you re-
implement abort() and the stdio functions.

Another solution for retargeting is to re-implement the __aeabi_assert() function itself. The
function prototype is:

void __aeabi_assert(const char *expr, const char *file, int line);

where:

• expr points to the string representation of the expression that was not TRUE.

• file and line identify the source location of the assertion.

The behavior for __aeabi_assert() supplied in the Arm® C library is to print a message on stderr
and call abort().

Related information
Tailoring the C library to a new execution environment on page 67

2.11 Assembler macros that tailor locale functions in the C
library

Applications use locales when they display or process data that depends on the local language or
region, for example, character set, monetary symbols, decimal point, time, and date.

Locale-related functions are declared in the include file, rt_locale.

Related information
Link time selection of the locale subsystem in the C library on page 71
Runtime selection of the locale subsystem in the C library on page 73
Definition of locale data blocks in the C library on page 73
LC_CTYPE data block on page 75
LC_COLLATE data block on page 78
LC_MONETARY data block on page 79
LC_NUMERIC data block on page 80
LC_TIME data block on page 80

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.11.1 Link time selection of the locale subsystem in the C library

The locale subsystem of the C library can be selected at link time or can be extended to be
selectable at runtime.

The following list describes the use of locale categories by the library:

• The default implementation of each locale category is for the C locale. The library also provides
an alternative, ISO8859-1 (Latin-1 alphabet) implementation of each locale category that you
can select at link time.

• Both the C and ISO8859-1 default implementations usually provide one locale for each
category to select at runtime.

• You can replace each locale category individually.

• You can include as many of your own locales in each category as you choose, and you can
name your own locales as you choose.

• Each locale category uses one word in the private static data of the library.

• The locale category data is read-only and position independent.

• scanf() forces the inclusion of the LC_CTYPE locale category, but in either of the default locales
this adds only 260 bytes of read-only data to several kilobytes of code.

Related information
ISO8859-1 implementation on page 72
Shift-JIS and UTF-8 implementation on page 73

2.11.1.1 ISO8859-1 implementation

The default implementation of each locale category is for the C locale. The library also provides
an alternative, ISO8859-1 (Latin-1 alphabet) implementation of each locale category that you can
select at link time.

The following table shows the ISO8859-1 (Latin-1 alphabet) locale categories.

Table 2-8: Default ISO8859-1 locales

Symbol Description

__use_iso8859_ctype Selects the ISO8859-1 (Latin-1) classification of characters. This is
essentially 7-bit ASCII, except that the character codes 160-255
represent a selection of useful European punctuation characters,
letters, and accented letters.

__use_iso8859_collate Selects the strcoll / strxfrm collation table appropriate to the
Latin-1 alphabet. The default C locale does not require a collation
table.

__use_iso8859_monetary Selects the Sterling monetary category using Latin-1 coding.

__use_iso8859_numeric Selects separation of thousands with commas in the printing of
numeric values.

__use_iso8859_locale Selects all the ISO8859-1 selections described in this table.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

There is no ISO8859-1 version of the LC_TIME category.

2.11.1.2 Shift-JIS and UTF-8 implementation

The Shift-JIS and UTF-8 locales let you use Japanese and Unicode characters.

The following table shows the Shift-JIS (Japanese characters) or UTF-8 (Unicode characters) locale
categories.

Table 2-9: Default Shift-JIS and UTF-8 locales

Function Description

__use_sjis_ctype Sets the character set to the Shift-JIS multibyte encoding of
Japanese characters

__use_utf8_ctype Sets the character set to the UTF-8 multibyte encoding of all
Unicode characters

The following list describes the effects of Shift-JIS and UTF-8 encoding:

• The ordinary ctype functions behave correctly on any byte value that is a self-contained
character in Shift-JIS. For example, half-width katakana characters that Shift-JIS encodes as
single bytes between A6 and DF are treated as alphabetic by isalpha().

UTF-8 encoding uses the same set of self-contained characters as the ASCII character set.

• The multibyte conversion functions such as mbrtowc(), mbsrtowcs(), and wcrtomb(), all convert
between wide strings in Unicode and multibyte character strings in Shift-JIS or UTF-8.

• printf("%ls") converts a Unicode wide string into Shift-JIS or UTF-8 output, and
scanf("%ls") converts Shift-JIS or UTF-8 input into a Unicode wide string.

2.11.2 Runtime selection of the locale subsystem in the C library

The C library function setlocale() selects a locale at runtime for the locale category, or categories,
specified in its arguments.

It does this by selecting the requested locale separately in each locale category. In effect, each
locale category is a small filing system containing an entry for each locale.

The rt_locale.h and rt_locale.s header files describe what must be implemented and provide
some useful support macros.

Related information
setlocale() on page 168

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.11.3 Definition of locale data blocks in the C library

Locale data blocks let you customize your own locales.

The locale data blocks are defined using a set of assembly language macros provided in
rt_locale.s. Therefore, the recommended way to define locale blocks is by writing an assembly
language source file. The Arm® Compiler toolchain provides a set of macros for each type of locale
data block. You define each locale block in the same way with a _begin macro, some data macros,
and an _end macro.

LC_TYPE_begin prefix, name

Begins the definition of a locale block.

LC_TYPE_function

Specifies the data for a locale block.

• When specifying locale data, you must call the macro repeatedly for each
respective function.

• To specify the data for your locale block, call the macros for that locale
type in the order specified for that particular locale type.

LC_TYPE_end

Ends the definition of a locale block.

Where:

TYPE

is one of the following:

• CTYPE

• COLLATE

• MONETARY

• NUMERIC

• TIME

prefix

is the prefix for the assembler symbols defined within the locale data.

name

is the textual name for the locale data.

function

is a specific function, table(), full_wctype(), or multibyte(), related to your locale data.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Example of a fixed locale block
To write a fixed function that always returns the same locale, you can use the _start symbol name
defined by the macros. The following shows how this is implemented for the CTYPE locale:

 GET rt_locale.s
 AREA my_locales, DATA, READONLY
 LC_CTYPE_begin my_ctype_locale, "MyLocale"
 ... ; include other LC_CTYPE_xxx macros here
 LC_CTYPE_end
 AREA my_locale_func, CODE, READONLY
_get_lc_ctype FUNCTION
 LDR r0, =my_ctype_locale_start
 BX lr
 ENDFUNC

Example of multiple contiguous locale blocks
Contiguous locale blocks suitable for passing to the _findlocale() function must be declared
in sequence. You must call the macro LC_index_end to end the sequence of locale blocks. The
following shows how this is implemented for the CTYPE locale:

 GET rt_locale.s
 AREA my_locales, DATA, READONLY
my_ctype_locales
 LC_CTYPE_begin my_first_ctype_locale, "MyLocale1"
 ... ; include other LC_CTYPE_xxx macros here
 LC_CTYPE_end
 LC_CTYPE_begin my_second_ctype_locale, "MyLocale2"
 ... ; include other LC_CTYPE_xxx macros here
 LC_CTYPE_end
 LC_index_end
 AREA my_locale_func, CODE, READONLY
 IMPORT _findlocale
_get_lc_ctype FUNCTION
 LDR r0, =my_ctype_locales
 B _findlocale
 ENDFUNC

Related information
LC_CTYPE data block on page 75
LC_COLLATE data block on page 78
LC_MONETARY data block on page 79
LC_NUMERIC data block on page 80
LC_TIME data block on page 80

2.11.4 LC_CTYPE data block

The LC_CTYPE data block configures character classification and conversion.

When defining a locale data block in the C library, the macros that define an LC_CTYPE data block
are as follows:

1. Call LC_CTYPE_begin with a symbol name and a locale name.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2. Call LC_CTYPE_table repeatedly to specify 256 table entries. LC_CTYPE_table takes a single
argument in quotes. This must be a comma-separated list of table entries. Each table entry
describes one of the 256 possible characters, and can be either an illegal character (IL) or the
bitwise OR of one or more of the following flags:
__S

whitespace characters
__P

punctuation characters
__B

printable space characters
__L

lowercase letters
__U

uppercase letters
__N

decimal digits
__C

control characters
__X

hexadecimal digit letters A-F and a-f
__A

alphabetic but neither uppercase nor lowercase, such as Japanese katakana.

A printable space character is defined as any character where the result of both
isprint() and isspace() is true.

__A must not be specified for the same character as either __N or __X.

3. If required, call one or both of the following optional macros:

• LC_CTYPE_full_wctype. Calling this macro without arguments causes the C99 wide-
character ctype functions (iswalpha(), iswupper(), …) to return useful values across the full
range of Unicode when this LC_CTYPE locale is active. If this macro is not specified, the wide
ctype functions treat the first 256 wchar_t values as the same as the 256 char values, and
the rest of the wchar_t range as containing illegal characters.

• LC_CTYPE_multibyte defines this locale to be a multibyte character set. Call this macro
with three arguments. The first two arguments are the names of functions that perform
conversion between the multibyte character set and Unicode wide characters. The last
argument is the value that must be taken by the C macro MB_CUR_MAX for the respective
character set. The two function arguments have the following prototypes:

size_t internal_mbrtowc(char32_t *pwc, char c, mbstate_t *pstate, int
 wchar32);
size_t internal_wcrtomb(char *s, char32_t w, mbstate_t *pstate, int wchar32);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

internal_mbrtowc()
takes one byte, c, as input, and updates the mbstate_t pointed to by pstate as
a result of reading that byte. If the byte completes the encoding of a multibyte
character, it writes the corresponding wide character into the location pointed to by
pwc, and returns 1 to indicate that it has done so. If not, it returns -2 to indicate the
state change of mbstate_t and that no character is output. Otherwise, it returns -1 to
indicate that the encoded input is invalid.

internal_wcrtomb()
takes one wide character, w, as input, and writes some number of bytes into the
memory pointed to by s. It returns the number of bytes output, or -1 to indicate that
the input character has no valid representation in the multibyte character set.

The wchar32 parameter specifies whether the wide character is 32-bit (1) or 16-bit (0).
If your code does not use the C11/C++11 headers <uchar.h> or <cuchar>, the wchar32
parameter can be ignored because it defaults to the current definition of wchar_t.

4. Call LC_CTYPE_end, without arguments, to finish the locale block definition.

Example LC_CTYPE data block
;#
 LC_CTYPE_begin utf8_ctype, "UTF-8"
 ;
 ; Single-byte characters in the low half of UTF-8 are exactly
 ; the same as in the normal "C" locale.
 LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x00-0x08
 LC_CTYPE_table "__C|__S, __C|__S, __C|__S, __C|__S, __C|__S"
 ; 0x09-0x0D(BS,LF,VT,FF,CR)
 LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x0E-0x16
 LC_CTYPE_table "__C, __C, __C, __C, __C, __C, __C, __C, __C" ; 0x17-0x1F
 LC_CTYPE_table "__B|__S" ; space
 LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P, __P" ; !"#$%&'(
 LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P" ;)*+,-./
 LC_CTYPE_table "__N, __N, __N, __N, __N, __N, __N, __N, __N, __N" ; 0-9
 LC_CTYPE_table "__P, __P, __P, __P, __P, __P, __P" ; :;<=>?@
 LC_CTYPE_table "__U|__X, __U|__X, __U|__X, __U|__X, __U|__X, __U|__X" ; A-F
 LC_CTYPE_table "__U, __U, __U, __U, __U, __U, __U, __U, __U, __U" ; G-P
 LC_CTYPE_table "__U, __U, __U, __U, __U, __U, __U, __U, __U, __U" ; Q-Z
 LC_CTYPE_table "__P, __P, __P, __P, __P, __P" ; [\]^_`
 LC_CTYPE_table "__L|__X, __L|__X, __L|__X, __L|__X, __L|__X, __L|__X" ; a-f
 LC_CTYPE_table "__L, __L, __L, __L, __L, __L, __L, __L, __L, __L" ; g-p
 LC_CTYPE_table "__L, __L, __L, __L, __L, __L, __L, __L, __L, __L" ; q-z
 LC_CTYPE_table "__P, __P, __P, __P" ; {|}~
 LC_CTYPE_table "__C" ; 0x7F
 ;
 ; Nothing in the top half of UTF-8 is valid on its own as a
 ; single-byte character, so they are all illegal characters (IL).
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 LC_CTYPE_table "IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL,IL"
 ;
 ; The UTF-8 ctype locale wants the full version of wctype.
 LC_CTYPE_full_wctype
 ;
 ; UTF-8 is a multibyte locale, so we must specify some
 ; conversion functions. MB_CUR_MAX is 6 for UTF-8 (the lead

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

 ; bytes 0xFC and 0xFD are each followed by five continuation
 ; bytes).
 ;
 ; The implementations of the conversion functions are not
 ; provided in this example.
 ;
 IMPORT utf8_mbrtowc
 IMPORT utf8_wcrtomb
 LC_CTYPE_multibyte utf8_mbrtowc, utf8_wcrtomb, 6
 LC_CTYPE_end

Related information
Definition of locale data blocks in the C library on page 73

2.11.5 LC_COLLATE data block

The LC_COLLATE data block configures collation of strings.

When defining a locale data block in the C library, the macros that define an LC_COLLATE data block
are as follows:

1. Call LC_COLLATE_begin with a symbol name and a locale name.

2. Call one of the following alternative macros:

• Call LC_COLLATE_table repeatedly to specify 256 table entries. LC_COLLATE_table takes
a single argument in quotes. This must be a comma-separated list of table entries. Each
table entry describes one of the 256 possible characters, and can be a number indicating its
position in the sorting order. For example, if character A is intended to sort before B, then
entry 65 (corresponding to A) in the table, must be smaller than entry 66 (corresponding to
B).

• Call LC_COLLATE_no_table without arguments. This indicates that the collation order is the
same as the string comparison order. Therefore, strcoll() and strcmp() are identical.

3. Call LC_COLLATE_end, without arguments, to finish the locale block definition.

Example LC_COLLATE data block
 LC_COLLATE_begin iso88591_collate, "ISO8859-1"
 LC_COLLATE_table "0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07"
 LC_COLLATE_table "0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f"
 LC_COLLATE_table "0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17"
 LC_COLLATE_table "0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f"
 LC_COLLATE_table "0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27"
 LC_COLLATE_table "0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f"
 LC_COLLATE_table "0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37"
 LC_COLLATE_table "0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f"
 LC_COLLATE_table "0x40, 0x41, 0x49, 0x4a, 0x4c, 0x4d, 0x52, 0x53"
 LC_COLLATE_table "0x54, 0x55, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x60"
 LC_COLLATE_table "0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x71, 0x72"
 LC_COLLATE_table "0x73, 0x74, 0x76, 0x79, 0x7a, 0x7b, 0x7c, 0x7d"
 LC_COLLATE_table "0x7e, 0x7f, 0x87, 0x88, 0x8a, 0x8b, 0x90, 0x91"
 LC_COLLATE_table "0x92, 0x93, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9e"
 LC_COLLATE_table "0xa5, 0xa6, 0xa7, 0xa8, 0xaa, 0xab, 0xb0, 0xb1"
 LC_COLLATE_table "0xb2, 0xb3, 0xb6, 0xb9, 0xba, 0xbb, 0xbc, 0xbd"
 LC_COLLATE_table "0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5"
 LC_COLLATE_table "0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd"
 LC_COLLATE_table "0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5"
 LC_COLLATE_table "0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd"
 LC_COLLATE_table "0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5"

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

 LC_COLLATE_table "0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed"
 LC_COLLATE_table "0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5"
 LC_COLLATE_table "0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd"
 LC_COLLATE_table "0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x4b"
 LC_COLLATE_table "0x4e, 0x4f, 0x50, 0x51, 0x56, 0x57, 0x58, 0x59"
 LC_COLLATE_table "0x77, 0x5f, 0x61, 0x62, 0x63, 0x64, 0x65, 0xfe"
 LC_COLLATE_table "0x66, 0x6d, 0x6e, 0x6f, 0x70, 0x75, 0x78, 0xa9"
 LC_COLLATE_table "0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x89"
 LC_COLLATE_table "0x8c, 0x8d, 0x8e, 0x8f, 0x94, 0x95, 0x96, 0x97"
 LC_COLLATE_table "0xb7, 0x9d, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xff"
 LC_COLLATE_table "0xa4, 0xac, 0xad, 0xae, 0xaf, 0xb4, 0xb8, 0xb5"
 LC_COLLATE_end

Related information
Definition of locale data blocks in the C library on page 73

2.11.6 LC_MONETARY data block

The LC_MONETARY data block configures formatting of monetary values.

When defining a locale data block in the C library, the macros that define an LC_MONETARY data
block are as follows:

1. Call LC_MONETARY_begin with a symbol name and a locale name.

2. Call the LC_MONETARY data macros as follows:

a. Call LC_MONETARY_fracdigits with two arguments: frac_digits and int_frac_digits from
the lconv structure.

b. Call LC_MONETARY_positive with four arguments: p_cs_precedes, p_sep_by_space,
p_sign_posn and positive_sign.

c. Call LC_MONETARY_negative with four arguments: n_cs_precedes, n_sep_by_space,
n_sign_posn and negative_sign.

d. Call LC_MONETARY_currsymbol with two arguments: currency_symbol and int_curr_symbol.

e. Call LC_MONETARY_point with one argument: mon_decimal_point.

f. Call LC_MONETARY_thousands with one argument: mon_thousands_sep.

g. Call LC_MONETARY_grouping with one argument: mon_grouping.

3. Call LC_MONETARY_end, without arguments, to finish the locale block definition.

Example LC_MONETARY data block
 LC_MONETARY_begin c_monetary, "C"
 LC_MONETARY_fracdigits 255, 255
 LC_MONETARY_positive 255, 255, 255, ""
 LC_MONETARY_negative 255, 255, 255, ""
 LC_MONETARY_currsymbol "", ""
 LC_MONETARY_point ""
 LC_MONETARY_thousands ""
 LC_MONETARY_grouping ""
 LC_MONETARY_end

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Related information
Definition of locale data blocks in the C library on page 73

2.11.7 LC_NUMERIC data block

The LC_NUMERIC data block configures formatting of numeric values that are not monetary.

When defining a locale data block in the C library, the macros that define an LC_NUMERIC data block
are as follows:

1. Call LC_NUMERIC_begin with a symbol name and a locale name.

2. Call the LC_NUMERIC data macros as follows:

a. Call LC_NUMERIC_point with one argument: decimal_point from lconv structure.

b. Call LC_NUMERIC_thousands with one argument: thousands_sep.

c. Call LC_NUMERIC_grouping with one argument: grouping.

3. Call LC_NUMERIC_end, without arguments, to finish the locale block definition.

Example LC_NUMERIC data block
 LC_NUMERIC_begin c_numeric, "C"
 LC_NUMERIC_point "."
 LC_NUMERIC_thousands ""
 LC_NUMERIC_grouping ""
 LC_NUMERIC_end

Related information
Definition of locale data blocks in the C library on page 73

2.11.8 LC_TIME data block

The LC_TIME data block configures formatting of date and time values.

When defining a locale data block in the C library, the macros that define an LC_TIME data block are
as follows:

1. Call LC_TIME_begin with a symbol name and a locale name.

2. Call the LC_TIME data macros as follows:

a. Call LC_TIME_week_short seven times to provide the short names for the days of the week.
Sunday being the first day. Then call LC_TIME_week_long and repeat the process for long
names.

b. Call LC_TIME_month_short twelve times to provide the short names for the days of the
month. Then call LC_TIME_month_long and repeat the process for long names.

c. Call LC_TIME_am_pm with two arguments that are respectively the strings representing
morning and afternoon.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

d. Call LC_TIME_formats with three arguments that are respectively the standard date/time
format used in strftime("%c"), the standard date format strftime("%x"), and the standard
time format strftime("%X"). These strings must define the standard formats in terms of
other simpler strftime primitives. The example below shows that the standard date/time
format is permitted to reference the other two formats.

e. Call LC_TIME_c99format with a single string that is the standard 12-hour time format used
in strftime("%r") as defined in C99.

3. Call LC_TIME_end, without arguments, to finish the locale block definition.

Example LC_TIME data block
 LC_TIME_begin c_time, "C"
 LC_TIME_week_short "Sun"
 LC_TIME_week_short "Mon"
 LC_TIME_week_short "Tue"
 LC_TIME_week_short "Wed"
 LC_TIME_week_short "Thu"
 LC_TIME_week_short "Fri"
 LC_TIME_week_short "Sat"
 LC_TIME_week_long "Sunday"
 LC_TIME_week_long "Monday"
 LC_TIME_week_long "Tuesday"
 LC_TIME_week_long "Wednesday"
 LC_TIME_week_long "Thursday"
 LC_TIME_week_long "Friday"
 LC_TIME_week_long "Saturday"
 LC_TIME_month_short "Jan"
 LC_TIME_month_short "Feb"
 LC_TIME_month_short "Mar"
 LC_TIME_month_short "Apr"
 LC_TIME_month_short "May"
 LC_TIME_month_short "Jun"
 LC_TIME_month_short "Jul"
 LC_TIME_month_short "Aug"
 LC_TIME_month_short "Sep"
 LC_TIME_month_short "Oct"
 LC_TIME_month_short "Nov"
 LC_TIME_month_short "Dec"
 LC_TIME_month_long "January"
 LC_TIME_month_long "February"
 LC_TIME_month_long "March"
 LC_TIME_month_long "April"
 LC_TIME_month_long "May"
 LC_TIME_month_long "June"
 LC_TIME_month_long "July"
 LC_TIME_month_long "August"
 LC_TIME_month_long "September"
 LC_TIME_month_long "October"
 LC_TIME_month_long "November"
 LC_TIME_month_long "December"
 LC_TIME_am_pm "AM", "PM"
 LC_TIME_formats "%a %b %e %T %Y", "%m/%d/%y", "%H:%M:%S"
 LC_TIME_c99format "%I:%M:%S %p"
 LC_TIME_end

Related information
Definition of locale data blocks in the C library on page 73

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.12 Modification of C library functions for error signaling,
error handling, and program exit

All trap or error signals raised by the C library go through the __raise() function. You can re-
implement this function or the lower-level functions that it uses.

The IEEE 754 standard for floating-point processing states that the default response
to an exception is to proceed without a trap. You can modify floating-point error
handling by tailoring the functions and definitions in fenv.h.

The rt_misc.h header file contains more information on error-related functions.

The following table shows the trap and error-handling functions.

Table 2-10: Trap and error handling

Function Description

_sys_exit() Called, eventually, by all exits from the library.

errno Is a static variable used with error handling.

__rt_errno_addr() Is called to obtain the address of the variable errno.

__raise() Raises a signal to indicate a runtime anomaly.

__rt_raise() Raises a signal to indicate a runtime anomaly.

__default_signal_handler() Displays an error indication to the user.

_ttywrch() Writes a character to the console. The default implementation of
_ttywrch() is semihosted and, therefore, uses semihosting calls.

__rt_fp_status_addr() This function is called to obtain the address of the floating-point
status word.

Related information
Direct semihosting C library function dependencies on page 57

2.13 Stack and heap memory allocation and the Arm C and
C++ libraries

The Arm® C and C++ libraries require you to specify where the stack pointer begins, but specifying
the heap is optional. However, some library functions use the heap, either explicitly (for example
malloc) or implicitly (for example fopen).

If you are providing a heap, you must:

• Understand the heap usage requirements of the Arm C and C++ libraries.

• Configure the size and placement of the heap.

• Consider which heap implementation you want to use.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

If you are not providing a heap, you must:

• Understand the heap usage requirements of the Arm C and C++ libraries.

• Understand how to avoid or reimplement the heap-using functions.

2.13.1 Library heap usage requirements of the Arm C and C++ libraries

Functions such as malloc() and other dynamic memory allocation functions explicitly allocate
memory when used. However, some library functions and mechanisms implicitly allocate memory
from the heap.

If heap usage requirements are significant to your code development (for example, you might be
developing code for an embedded system with a tiny memory footprint), you must be aware of
both implicit and explicit heap requirements.

In C standardlib, implicit heap usage occurs as a result of:

• Calling the library function fopen() and the first time that an I/O operation is applied to the
resulting stream.

• Passing command-line arguments into the main() function.

The size of heap memory allocated for fopen() is 80 bytes for the FILE structure. When the first I/
O operation occurs, and not until the operation occurs, an additional default of 512 bytes of heap
memory is allocated for a buffer associated with the operation. You can reconfigure the size of this
buffer using setvbuf().

When fclose() is called, the default 80 bytes of memory is kept on a freelist for possible re-use.
The 512-byte buffer is freed on fclose().

Declaring main() to take arguments requires 256 bytes of implicitly allocated memory from the
heap. This memory is never freed because it is required for the duration of main(). In microlib,
main() must not be declared to take arguments, so this heap usage requirement only applies to
standardlib. In the standardlib context, it only applies if you have a heap.

The memory sizes quoted might change in future releases.

Related information
Library heap usage requirements of microlib on page 119

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.13.2 Choosing a heap implementation for memory allocation functions

malloc(), realloc(), calloc(), and free() are built on a heap abstract data type. You can choose
between Heap1 or Heap2, the two provided heap implementations.

The available heap implementations are:

• Heap1, the default implementation, implements the smallest and simplest heap manager.

• Heap2 provides an implementation with the performance cost of malloc() or free() growing
logarithmically with the number of free blocks.

The default implementations of malloc(), realloc(), and calloc() maintain an
eight-byte aligned heap.

Heap1
Heap1, the default implementation, implements the smallest and simplest heap manager. The
heap is managed as a single-linked list of free blocks that are held in increasing address order. This
implementation has low overheads. However, the performance cost of malloc() or free() grows
linearly with the number of free blocks and might be too slow for some use cases.

If you expect more than 100 unallocated blocks, Arm recommends that you use Heap2 when you
require near constant-time performance.

The allocation policy is first-fit by address. For AArch32, the smallest block that can be allocated is
4 bytes and there is an extra overhead of 4 bytes. For AArch64, the smallest allocation is 8 bytes,
and there is an extra overhead of 8 bytes per allocation. For AArch64 with __use_memtag_heap, the
smallest allocation is 0 bytes, and there is an extra overhead of 16 bytes per allocation.

Heap2
Heap2 provides an implementation with the performance cost of malloc() or free() growing
logarithmically with the number of free blocks.

The allocation policy is first-fit by address. For AArch32, the smallest block that can be allocated is
12 bytes and there is an extra overhead of 4 bytes. For AArch64, the smallest allocation is 24 bytes
and there is an extra overhead of 8 bytes per allocation. For AArch64 with __use_memtag_heap, the
smallest allocation is 16 bytes and there is an extra overhead of 16 bytes per allocation.

Heap2 is recommended when you require near constant-time performance in the presence
of hundreds of free blocks. To select the alternative standard implementation, use one of the
following:

• IMPORT __use_realtime_heap when using the legacy armasm-syntax assembly language.

• __asm(".global __use_realtime_heap\n\t") from C.

The Heap2 real-time heap implementation must know the maximum address space that the heap
can span. The smaller the address range, the more efficient the algorithm is.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

The heap must fit within 16MB of address space.

By default, the heap extent is taken to be 16MB starting at the beginning of the heap (defined as
the start of the first chunk of memory given to the heap manager by __rt_initial_stackheap() or
__rt_heap_extend()).

For AArch32 targets, the heap bounds are given by:

struct __heap_extent {
 unsigned base;
 size_t range;
};
__attribute__((value_in_regs)) struct __heap_extent __user_heap_extent(
 unsigned ignore1, size_t ignore2);

For AArch64 targets, the heap bounds are given by:

struct __heap_extent {
 unsigned long base;
 size_t range;
};
__attribute__((value_in_regs)) struct __heap_extent __user_heap_extent(
 unsigned long ignore1, size_t ignore2);

The function prototype for __user_heap_extent() is in rt_misc.h.

(The Heap1 algorithm does not require the bounds on the heap extent. Therefore, it never calls this
function.)

You must implement __user_heap_extent() if:

• You require a heap to span more than 16MB of address space.

• Your memory model can supply a block of memory at a lower address than the first one
supplied.

If you know in advance that the address space bounds of your heap are small, you do not have to
implement __user_heap_extent(), but it does speed up the heap algorithms if you do.

The input parameters are the default values that are used if this routine is not defined. You can, for
example, leave the default base value unchanged and only adjust the size.

The size field returned must be a power of two. The library does not check this and
fails in unexpected ways if this requirement is not met. If you return a size of zero,
the extent of the heap is set to 4GB.

Related information
Avoiding the heap and heap-using library functions supplied by Arm on page 89

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.13.3 Stack pointer initialization and heap bounds

The C library requires you to specify where the stack pointer begins. If you intend to use Arm
library functions that use the heap, for example, malloc(), calloc(), or if you define argc and argv
command-line arguments for main(), the C library also requires you to specify which region of
memory the heap is initially expected to use.

You must always specify where the stack pointer begins. The initial stack pointer must be aligned to
a multiple of 8 bytes for AArch32 and a multiple of 16 bytes for AArch64.

You might have to configure the heap if, for example:

• You intend to use Arm library functions that use the heap, for example, malloc(), calloc().

• You define argc and argv command-line arguments for main().

If you are using the C library's initialization code, use any of the following methods to configure the
stack and heap:

• Use the symbols __initial_sp, __heap_base, and __heap_limit.

• Use a scatter file to define ARM_LIB_STACKHEAP, ARM_LIB_STACK, or ARM_LIB_HEAP regions.

• Implement __user_setup_stackheap() or __user_initial_stackheap().

The first two methods are the only methods that microlib supports for defining
where the stack pointer starts and for defining the heap bounds.

If you are not using the C library's initialization code (see Standalone C library functions), use the
following method to configure the stack and heap:

• Set up the stack pointer manually at your application's entry point.

• Call _init_alloc() to set up an initial heap region, and implement __rt_heap_extend() if you
need to add memory to it later.

Configuring the stack and heap with symbols
Define the symbol __initial_sp to point to the top of the stack.

If using the heap, also define symbols __heap_base and __heap_limit.

You can define these symbols in an assembly language file.

For example:

__attribute__((naked)) void dummy_function(void)
{
 __asm(".global __initial_sp\n\t"
 ".global __heap_base\n\t"
 ".global __heap_limit\n\t"
 ".equ __initial_sp, STACK_BASE\n\t"
 ".equ __heap_base, HEAP_BASE\n\t"

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

 ".equ __heap_limit, (HEAP_BASE+HEAP_SIZE)\n\t"
);
}

The constants STACK_BASE, HEAP_BASE, and HEAP_SIZE can be defined in a header file, for example
stack.h, as follows:

/* stack.h */
#define HEAP_BASE 0x20100000 /* Example memory addresses */
#define STACK_BASE 0x20200000
#define HEAP_SIZE ((STACK_BASE-HEAP_BASE)/2)
#define STACK_SIZE ((STACK_BASE-HEAP_BASE)/2)

This method of specifying the initial stack pointer and heap bounds is supported by
both the standard C library (standardlib) and the micro C library (microlib).

Configuring the stack and heap with a scatter file
In a scatter file, either:

• Define ARM_LIB_STACK and ARM_LIB_HEAP regions.

If you do not intend to use the heap, only define an ARM_LIB_STACK region.

• Define an ARM_LIB_STACKHEAP region.

If you define an ARM_LIB_STACKHEAP region, the stack starts at the top of that region. The heap
starts at the bottom.

Configuring the stack and heap with __user_setup_stackheap()
Implement __user_setup_stackheap() to set up the stack pointer and return the bounds of the
initial heap region.

Configuring the heap from bare machine C using _init_alloc and __rt_heap_extend
If you are using a heap implementation from bare machine C (that is an application that does not
define main() and does not initialize the C library) you must define the base and top of the heap as
well as providing a heap extension function.

1. Call _init_alloc(base, top) to define the base and top of the memory you want to manage
as a heap.

The parameters of _init_alloc(base, top) must be eight-byte aligned.

2. Define the function unsigned __rt_heap_extend(unsigned size, void **block) to handle
calls to extend the heap when it becomes full.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Stack and heap collision detection
By default, if memory allocated for the heap is destined to overlap with memory that lies in close
proximity with the stack, the potential collision of heap and stack is automatically detected and
the requested heap allocation fails. If you do not require this automatic collision detection, you can
save a small amount of code size by disabling it with __asm(".global __use_two_region_memory\n
\t").

The memory allocation functions (malloc(), realloc(), calloc(),
posix_memalign()) attempt to detect allocations that collide with the current stack
pointer. Such detection cannot be guaranteed to always be successful.

Although it is possible to automatically detect expansion of the heap into the stack, it is not
possible to automatically detect expansion of the stack into heap memory.

For legacy purposes, it is possible for you to bypass all of these methods and behavior. You can do
this by defining the following functions to perform your own stack and heap memory management:

• __rt_stackheap_init()

• __rt_heap_extend()

Extending heap size at runtime
To enable the heap to extend into areas of memory other than the region of memory that is
specified when the program starts, you can redefine the function __user_heap_extend().

__user_heap_extend() returns blocks of memory for heap usage in extending the size of the heap.

Related information
Legacy support for __user_initial_stackheap() on page 88
__user_heap_extend() on page 179
__user_heap_extent() on page 180
Legacy function __user_initial_stackheap() on page 188
__rt_heap_extend() on page 164
__rt_stackheap_init() on page 167
__user_setup_stackheap() on page 181
__vectab_stack_and_reset on page 182

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.13.4 Legacy support for __user_initial_stackheap()

Defined in rt_misc.h, __user_initial_stackheap() is supported for backwards compatibility with
earlier versions of the Arm® C and C++ libraries. However Arm recommends not using this option
if possible.

Arm recommends that you use __user_setup_stackheap() instead of
__user_initial_stackheap().

The differences between __user_initial_stackheap() and __user_setup_stackheap() are:

• __user_initial_stackheap() receives the stack pointer (containing the same value it had on
entry to __main()) in r1, and is expected to return the new stack base in r1.

__user_setup_stackheap() receives the stack pointer in sp, and returns the stack base in sp.

• __user_initial_stackheap() is provided with a small temporary stack to run on. This
temporary stack enables __user_initial_stackheap() to be implemented in C, providing that
it uses no more than 88 bytes of stack space.

__user_setup_stackheap() has no temporary stack and cannot usually be implemented in C.

Using __user_setup_stackheap() instead of __user_initial_stackheap() reduces code size,
because __user_setup_stackheap() has no requirement for a temporary stack.

Exceptions
When you must create the heap and stack in C code rather than in assembly code,
you cannot use the __user_setup_stackheap() function. Therefore, you must use the
__user_initial_stackheap() function instead.

If your implementation is sufficiently complex that it warrants the use of a temporary stack when
setting up the initial heap and stack, use either:

• __user_setup_stackheap() and manually set up up the temporary stack yourself.

• __user_initial_stackheap(), which sets up the temporary stack for you.

Related information
Stack pointer initialization and heap bounds on page 85

2.13.5 Avoiding the heap and heap-using library functions supplied by Arm

If you are developing embedded systems that have limited RAM or that provide their own heap
management (for example, an operating system), you might require a system that does not define a
heap area.

To avoid using the heap you can either:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• Re-implement the functions in your own application.

• Write the application so that it does not call any heap-using function.

You can reference the __use_no_heap or __use_no_heap_region symbols in your code to guarantee
that no heap-using functions are linked in from the Arm® library. You are only required to import
these symbols once in your application, for example, using either:

• IMPORT __use_no_heap from assembly language.

• __asm(".global __use_no_heap\n\t") from C.

If you include a heap-using function and also reference __use_no_heap or __use_no_heap_region,
the linker reports an error. For example, the following sample code results in the linker error shown:

#include <stdio.h>
#include <stdlib.h>

__asm(".global __use_no_heap\n\t");
void main()
{
 char *p = malloc(256);
 ...
}

Error: L6915E: Library reports error: __use_no_heap was requested, but malloc was
 referenced

To find out which objects are using the heap, link with --verbose --list=out.txt, search the
output for the relevant symbol (in this case malloc), and find out what object referenced it.

__use_no_heap guards against the use of malloc(), realloc(), free(), and any function that uses
those functions. For example, calloc() and other stdio functions.

__use_no_heap_region has the same properties as __use_no_heap, but in addition, guards against
other things that use the heap memory region. For example, if you declare main() as a function
taking arguments, the heap region is used for collecting argc and argv.

Related information
Indirect semihosting C library function dependencies on page 58

2.14 Tailoring input/output functions in the C and C++
libraries

The input/output library functions, such as the high-level fscanf() and fprintf(), and the low-
level fputc() and ferror(), and the C++ object std::cout, are not target-dependent. However, the
high-level library functions perform input/output by calling the low-level ones. These low-level
functions call system I/O functions that are target-dependent.

To retarget input/output, you can:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• Avoid the high-level library functions.

• Redefine the low-level library functions.

• Redefine the system I/O functions.

Whether redefining the low-level library functions or redefining the system I/O functions is
a better solution depends on your use. For example, UARTs write a single character at a time
and the default fputc() uses buffering, so redefining this function without a buffer might suit a
UART. However, where buffer operations are possible, redefining the system I/O functions would
probably be more appropriate.

Related information
Direct semihosting C library function dependencies on page 57

2.15 Target dependencies on low-level functions in the C
and C++ libraries

Higher-level C and C++ library input/output functions are built upon lower-level functions. If you
define your own versions of the lower-level functions, you can use the library versions of the
higher-level functions directly.

The following table shows the dependencies of the higher-level functions on lower-level functions.

fgetc() uses __FILE, but fputc() uses __FILE and ferror().

• You must provide definitions of __stdin and __stdout if you use any of their
associated high-level functions. This applies even if your re-implementations of
other functions, such as fgetc() and fputc(), do not reference any data stored
in __stdin and __stdout.

• When targeting the strict ANSI C standard, you must provide your own
implementation of the __FILE structure. For example:

struct __FILE { int handle; /* Add whatever you need here */ };

• If you choose to re-implement fgetc(), fputc(), and __backspace(), be aware
that fopen() and related functions use the Arm layout for the __FILE structure.
You might also have to re-implement fopen() and related functions if you define
your own version of __FILE.

Table key:

1. __FILE, the file structure.

2. __stdin, the standard input object of type __FILE.

3. __stdout, the standard output object of type __FILE.

4. fputc(), outputs a character to a file.
Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 91 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

5. ferror(), returns the error status accumulated during file I/O.

6. fgetc(), gets a character from a file.

7. fgetwc()

8. fputwc()

9. __backspace(), moves the file pointer to the previous character.

10. __backspacewc().

High-level function Low-level object

1 2 3 4 5 6 7 8 9 10

fgets x - - - x x - - - -

fgetws x - - - - - x - - -

fprintf x - - x x - - - - -

fputs x - - x - - - - - -

fputws x - - - - - - x - -

fread x - - - - x - - - -

fscanf x - - - - x - - x -

fwprintf x - - - x - - x - -

fwrite x - - x - - - - - -

fwscanf x - - - - - x - - x

getchar x x - - - x - - - -

gets x x - - x x - - - -

getwchar x x - - - - x - - -

perror x - x x - - - - - -

printf x - x x x - - - - -

putchar x - x x - - - - - -

puts x - x x - - - - - -

putwchar x - x - - - - x - -

scanf x x - - - x - - x -

vfprintf x - - x x - - - - -

vfscanf x - - - - x - - x -

vfwprintf x - - - x - - x - -

vfwscanf x - - - - - x - - x

vprintf x - x x x - - - - -

vscanf x x - - - x - - x -

vwprintf x - x - x - - x - -

vwscanf x x - - - - x - - x

wprintf x - x - x - - x - -

wscanf x x - - - - x - - x

Related information
Tailoring input/output functions in the C and C++ libraries on page 90

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

The C library printf family of functions on page 93
The C library scanf family of functions on page 93
Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 94
The C library functions fread(), fgets() and gets() on page 96
Re-implementing __backspace() in the C library on page 97
Re-implementing __backspacewc() in the C library on page 98
Redefining target-dependent system I/O functions in the C library on page 98

2.16 The C library printf family of functions
The printf family consists of _printf(), printf(), _fprintf(), fprintf(), vprintf(), and
vfprintf().

All these functions use __FILE opaquely and depend only on the functions fputc() and ferror().
The functions _printf() and _fprintf() are identical to printf() and fprintf() except that they
cannot format floating-point values.

The standard output functions of the form _printf(...) are equivalent to:

fprintf(& __stdout, ...)

where __stdout has type __FILE.

Related information
The C library scanf family of functions on page 93
Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 94
The C library functions fread(), fgets() and gets() on page 96
Re-implementing __backspace() in the C library on page 97
Re-implementing __backspacewc() in the C library on page 98
Redefining target-dependent system I/O functions in the C library on page 98
Tailoring input/output functions in the C and C++ libraries on page 90
Target dependencies on low-level functions in the C and C++ libraries on page 91

2.17 The C library scanf family of functions
The scanf() family consists of scanf() and fscanf().

These functions depend only on the functions fgetc(), __FILE, and __backspace().

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

The standard input function of the form scanf(...) is equivalent to:

fscanf(& __stdin, ...)

where __stdin is of type __FILE.

Related information
The C library printf family of functions on page 93
Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 94
The C library functions fread(), fgets() and gets() on page 96
Re-implementing __backspace() in the C library on page 97
Re-implementing __backspacewc() in the C library on page 98
Redefining target-dependent system I/O functions in the C library on page 98
Tailoring input/output functions in the C and C++ libraries on page 90
Target dependencies on low-level functions in the C and C++ libraries on page 91

2.18 Redefining low-level library functions to enable direct
use of high-level library functions in the C library

If you define your own version of __FILE, your own fputc() and ferror() functions, and the
__stdout object, you can use all of the printf() family, fwrite(), fputs(), puts() and the C++
object std::cout unchanged from the library.

These examples show you how to do this. However, consider modifying the system I/O functions
instead of these low-level library functions if you require real file handling.

You are not required to re-implement every function shown in these examples. Only re-implement
the functions that are used in your application.

Retargeting printf()
#include <stdio.h>
struct __FILE
{
 int handle;
 /* Whatever you require here. If the only file you are using is */
 /* standard output using printf() for debugging, no file handling */
 /* is required. */
};
/* FILE is typedef'd in stdio.h. */
FILE __stdout;
int fputc(int ch, FILE *f)
{
 /* Your implementation of fputc(). */
 return ch;
}
int ferror(FILE *f)
{
 /* Your implementation of ferror(). */
 return 0;

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

}
void test(void)
{
 printf("Hello world\n");
}

Be aware of endianness with fputc(). fputc() takes an int parameter, but contains
only a character. Whether the character is in the first or the last byte of the integer
variable depends on the endianness. The following code sample avoids problems
with endianness:

extern void sendchar(char *ch);
int fputc(int ch, FILE *f)
{
 /* example: write a character to an LCD */
 char tempch = ch; // temp char avoids endianness issue
 sendchar(&tempch); // sendchar(&ch) would not work everywhere
 return ch;
}

Retargeting cout
File 1: Re-implement any functions that require re-implementation.

#include <stdio.h>
namespace std {
 struct __FILE
 {
 int handle;
 /* Whatever you require here. If the only file you are using is */
 /* standard output using printf() for debugging, no file handling */
 /* is required. */
 };
 FILE __stdout;
 FILE __stdin;
 FILE __stderr;
 int fgetc(FILE *f)
 {
 /* Your implementation of fgetc(). */
 return 0;
 }
 int fputc(int c, FILE *stream)
 {
 /* Your implementation of fputc(). */
 }
 int ferror(FILE *stream)
 {
 /* Your implementation of ferror(). */
 }
 long int ftell(FILE *stream)
 {
 /* Your implementation of ftell(). */
 }
 int fclose(FILE *f)
 {
 /* Your implementation of fclose(). */
 return 0;
 }
 int fseek(FILE *f, long nPos, int nMode)
 {
 /* Your implementation of fseek(). */
 return 0;

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

 }
 int fflush(FILE *f)
 {
 /* Your implementation of fflush(). */
 return 0;
 }
}

File 2: Print "Hello world" using your re-implemented functions.

#include <stdio.h>
#include <iostream>
using namespace std;
int main()
{
 cout << "Hello world\n";
 return 0;
}

By default, fread() and fwrite() call fast block input/output functions that are part of the Arm
stream implementation. If you define your own __FILE structure instead of using the Arm® stream
implementation, fread() and fwrite() call fgetc() instead of calling the block input/output
functions.

Related information
The C library printf family of functions on page 93
The C library scanf family of functions on page 93
The C library functions fread(), fgets() and gets() on page 96
Re-implementing __backspace() in the C library on page 97
Re-implementing __backspacewc() in the C library on page 98
Redefining target-dependent system I/O functions in the C library on page 98
Tailoring input/output functions in the C and C++ libraries on page 90
Target dependencies on low-level functions in the C and C++ libraries on page 91

2.19 The C library functions fread(), fgets() and gets()
The functions fread(), fgets(), and gets() are implemented as fast block input/output functions
where possible.

These fast implementations are part of the Arm stream implementation and they bypass fgetc().
Where the fast implementation is not possible, they are implemented as a loop over fgetc() and
ferror(). Each uses the FILE argument opaquely.

If you provide your own implementation of __FILE, __stdin (for gets()), fgetc(), and ferror(),
you can use these functions, and the C++ object std::cin directly from the library.

Related information
The C library printf family of functions on page 93
The C library scanf family of functions on page 93

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 94
Re-implementing __backspace() in the C library on page 97
Re-implementing __backspacewc() in the C library on page 98
Redefining target-dependent system I/O functions in the C library on page 98
Tailoring input/output functions in the C and C++ libraries on page 90
Target dependencies on low-level functions in the C and C++ libraries on page 91

2.20 Re-implementing __backspace() in the C library
The function __backspace() is used by the scanf family of functions, and must be re-implemented
if you retarget the stdio arrangements at the fgetc() level.

Normally, you are not required to call __backspace() directly, unless you are
implementing your own scanf-like function.

The syntax is:

int __backspace(FILE *stream);

__backspace(stream) must only be called after reading a character from the stream. You must
not call it after a write, a seek, or immediately after opening the file, for example. It returns to the
stream the last character that was read from the stream, so that the same character can be read
from the stream again by the next read operation. This means that a character that was read from
the stream by scanf but that is not required (that is, it terminates the scanf operation) is read
correctly by the next function that reads from the stream.

__backspace is separate from ungetc(). This is to guarantee that a single character can be pushed
back after the scanf family of functions has finished.

The value returned by __backspace() is either 0 (success) or EOF (failure). It returns EOF only if used
incorrectly, for example, if no characters have been read from the stream. When used correctly,
__backspace() must always return 0, because the scanf family of functions do not check the error
return.

The interaction between __backspace() and ungetc() is:

• If you apply __backspace() to a stream and then ungetc() a character into the same stream,
subsequent calls to fgetc() must return first the character returned by ungetc(), and then the
character returned by __backspace().

• If you ungetc() a character back to a stream, then read it with fgetc(), and then backspace
it, the next character read by fgetc() must be the same character that was returned to the
stream. That is the __backspace() operation must cancel the effect of the fgetc() operation.
However, another call to ungetc() after the call to __backspace() is not required to succeed.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• The situation where you ungetc() a character into a stream and then __backspace()
another one immediately, with no intervening read, never arises. __backspace() must only
be called after fgetc(), so this sequence of calls is illegal. If you are writing __backspace()
implementations, you can assume that the ungetc() of a character into a stream followed
immediately by a __backspace() with no intervening read, never occurs.

Related information
The C library printf family of functions on page 93
The C library scanf family of functions on page 93
Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 94
The C library functions fread(), fgets() and gets() on page 96
Re-implementing __backspacewc() in the C library on page 98
Redefining target-dependent system I/O functions in the C library on page 98
Tailoring input/output functions in the C and C++ libraries on page 90
Target dependencies on low-level functions in the C and C++ libraries on page 91

2.21 Re-implementing __backspacewc() in the C library
__backspacewc() is the wide-character equivalent of __backspace().

__backspacewc() behaves in the same way as __backspace() except that it pushes back the last
wide character instead of a narrow character.

Related information
The C library printf family of functions on page 93
The C library scanf family of functions on page 93
Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 94
The C library functions fread(), fgets() and gets() on page 96
Re-implementing __backspace() in the C library on page 97
Redefining target-dependent system I/O functions in the C library on page 98
Tailoring input/output functions in the C and C++ libraries on page 90
Target dependencies on low-level functions in the C and C++ libraries on page 91

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.22 Redefining target-dependent system I/O functions in
the C library

The default target-dependent I/O functions use semihosting. If any of these functions are
redefined, then they must all be redefined.

The function prototypes are contained in rt_sys.h. These functions are called by the C standard
I/O library functions. For example, _sys_open() is called by fopen() and freopen(). _sys_open()
uses the strings __stdin_name, __stdout_name, and __stderr_name during C library initialization to
identify which standard I/O device handle to return. You can leave their values as the default (:tt)
if _sys_open() does not use them.

stdin, stdout, and stderr are assumed to be interactive devices. They are line-
buffered at program startup, regardless of what _sys_istty reports for them. An
exception is if they have been redirected on the command line.

The following example shows you how to redefine the required functions for a device that supports
writing but not reading.

Example of retargeting the system I/O functions
/*
 * These names are used during library initialization as the
 * file names opened for stdin, stdout, and stderr.
 * As we define _sys_open() to always return the same file handle,
 * these can be left as their default values.
 */
const char __stdin_name[] = ":tt";
const char __stdout_name[] = ":tt";
const char __stderr_name[] = ":tt";

FILEHANDLE _sys_open(const char *name, int openmode)
{
 return 1; /* everything goes to the same output */
}
int _sys_close(FILEHANDLE fh)
{
 return 0;
}
int _sys_write(FILEHANDLE fh, const unsigned char *buf,
 unsigned len, int mode)
{
 your_device_write(buf, len);
 return 0;
}
int _sys_read(FILEHANDLE fh, unsigned char *buf,
 unsigned len, int mode)
{
 return -1; /* not supported */
}
void _ttywrch(int ch)
{
 char c = ch;
 your_device_write(&c, 1);
}
int _sys_istty(FILEHANDLE fh)
{
 return 0; /* buffered output */

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

}
int _sys_seek(FILEHANDLE fh, long pos)
{
 return -1; /* not supported */
}
long _sys_flen(FILEHANDLE fh)
{
 return -1; /* not supported */
}

rt_sys.h defines the type FILEHANDLE. The value of FILEHANDLE is returned by _sys_open() and
identifies an open file on the host system.

If the system I/O functions are redefined, both normal character I/O and wide character I/O work.
That is, you are not required to do anything extra with these functions for wide character I/O to
work.

Related information
The C library printf family of functions on page 93
The C library scanf family of functions on page 93
Redefining low-level library functions to enable direct use of high-level library functions in the C
library on page 94
The C library functions fread(), fgets() and gets() on page 96
Re-implementing __backspace() in the C library on page 97
Re-implementing __backspacewc() in the C library on page 98
Tailoring input/output functions in the C and C++ libraries on page 90
Target dependencies on low-level functions in the C and C++ libraries on page 91

2.23 Tailoring non-input/output C library functions
In addition to tailoring input/output C library functions, many C library functions that are not input/
output functions can also be tailored.

Implementation of these ISO standard functions depends entirely on the target operating system.

The default implementation of these functions is semihosted. That is, each function uses
semihosting.

Related information
Direct semihosting C library function dependencies on page 57

2.24 Real-time integer division in the Arm libraries
The Arm library provides a real-time division routine and a standard division routine.

The standard division routine supplied with the Arm® libraries provides good overall performance.
However, the amount of time required to perform a division depends on the input values. For

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

example, a division that generates a four-bit quotient might require only 12 cycles while a 32-bit
quotient might require 96 cycles. Depending on your target, some applications require a faster
worst-case cycle count at the expense of lower average performance. For this reason, the Arm
library provides two divide routines.

The real-time routine:

• Always executes in fewer than 45 cycles.

• Is faster than the standard division routine for larger quotients.

• Is slower than the standard division routine for typical quotients.

• Returns the same results.

• Does not require any change in the surrounding code.

Real-time division is not available in the libraries for the Armv6-M and Armv8-
M.baseline architecture.

The Armv7-M, Armv7-R, and Armv8-M.mainline architectures support hardware
floating-point divide. Code running on these architectures do not require the library
divide routines.

Select the real-time divide routine using either of the following methods:

• IMPORT __use_realtime_division from assembly language.

• __asm(".global __use_realtime_division\n\t") from C.

2.25 ISO C library implementation definition
Describes how the libraries fulfill the requirements of the ISO specification.

2.25.1 How the Arm C library fulfills ISO C specification requirements

The ISO specification leaves some features to implementors, but requires that implementation
choices be documented.

The implementation of the generic Arm® C library in this respect is as follows:

• The macro NULL expands to the integer constant 0.

• If a program redefines a reserved external identifier, an error might occur when the program is
linked with the standard libraries. If it is not linked with standard libraries, no error is diagnosed.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• The __aeabi_assert() function prints information on the failing diagnostic on stderr and then
calls the abort() function:

 *** assertion failed: expression, file name, line number

The behavior of the assert macro depends on the conditions in operation at
the most recent occurrence of #include <assert.h>. See Program exit and the
assert macro for more information about the behavior of the assert macro.

• The following functions test for character values in the range EOF (-1) to 255 inclusive:

◦ isalnum()

◦ isalpha()

◦ iscntrl()

◦ islower()

◦ isprint()

◦ isupper()

◦ ispunct()

• The fully POSIX-compliant functions remquo(), remquof() and remquol() return the remainder
of the division of x by y and store the quotient of the division in the pointer *quo. An
implementation-defined integer value defines the number of bits of the quotient that are
stored. In the Arm C library, this value is set to 4.

• C99 behavior, with respect to mathlib error handling, is enabled by default.

Related information
mathlib error handling on page 102
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 103
ISO-compliant C library input/output characteristics on page 104
Program exit and the assert macro on page 70
C and C++ library naming conventions on page 112

2.25.2 mathlib error handling

The error handling of mathematical functions is consistent with Annex F of the ISO/IEC C99
standard.

Related information
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 103
ISO-compliant C library input/output characteristics on page 104
How the Arm C library fulfills ISO C specification requirements on page 101

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

2.25.3 ISO-compliant implementation of signals supported by the signal()
function in the C library and additional type arguments

The signal() function supports several signals.

The following table shows the signals supported by the signal() function. It also shows which
signals use an additional argument to give more information about the circumstance in which
the signal was raised. The additional argument is given in the type parameter of __raise(). For
example, division by floating-point zero results in a SIGFPE signal with a corresponding additional
argument of FE_EX_DIVBYZERO.

Table 2-12: Signals supported by the signal() function

Signal Number Description Additional argument

SIGABRT 1 Returned when the abort()
function is called.

The abort() function is
triggered when there is an
untrapped C++ exception, or
when an assertion fails.

None

SIGFPE 2 Signals any arithmetic exception,
for example, division by zero.
Used by hard and soft floating-
point and by integer division.

A set of bits from
FE_EX_INEXACT,
FE_EX_UNDERFLOW,
FE_EX_OVERFLOW,
FE_EX_DIVBYZERO,
FE_EX_INVALID, DIVBYZERO
1

SIGILL 3 Illegal instruction. None

SIGINT 2 4 Attention request from user. None

SIGSEGV 2 5 Bad memory access. None

SIGTERM 2 6 Termination request. None

SIGSTAK 7 Obsolete. None

SIGRTRED 8 Redirection failed on a runtime
library input/output stream.

Name of file or device being re-
opened to redirect a standard
stream

SIGRTMEM 9 Out of heap space during
initialization or after corruption.

Size of failed request

SIGUSR1 10 User-defined. User-defined

SIGUSR2 11 User-defined. User-defined

SIGPVFN 12 A pure virtual function was called
from C++.

-

SIGCPPL 13 Not supported. -

SIGOUTOFHEAP 14 Not supported. Size of the failed request in bytes

1 These constants are defined in fenv.h. FE_EX_DIVBYZERO is for floating-point division while DIVBYZERO is for
integer division.

2 The library never generates this signal. It is available for you to raise manually, if required.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Signal Number Description Additional argument
reserved >=15 Reserved. Reserved

Although SIGSTAK exists in signal.h, this signal is not generated by the C library and is considered
obsolete.

A signal number greater than SIGUSR2 can be passed through __raise() and caught by the default
signal handler, but it cannot be caught by a handler registered using signal().

signal() returns an error code if you try to register a handler for a signal number greater than
SIGUSR2.

The default handling of all recognized signals is to print a diagnostic message and call exit(). This
default behavior applies at program startup and until you change it.

The IEEE 754 standard for floating-point processing states that the default action
to an exception is to proceed without a trap. A raised exception in floating-point
calculations does not, by default, generate SIGFPE. You can modify floating-point
error handling by tailoring the functions and definitions in fenv.h. However you
must compile these functions using a fully-conforming floating-point model, such as
the armclang default.

For all the signals in the above table, when a signal occurs, if the handler points to a function, the
equivalent of signal(sig, SIG_DFL) is executed before the call to the handler.

If the SIGILL signal is received by a handler specified to by the signal() function, the default
handling is reset.

Related information
mathlib error handling on page 102
ISO-compliant C library input/output characteristics on page 104
How the Arm C library fulfills ISO C specification requirements on page 101

2.25.4 ISO-compliant C library input/output characteristics

The generic Arm® C library has defined input/output characteristics.

These input/output characteristics are as follows:

• The last line of a text stream does not require a terminating newline character.

• Space characters written out to a text stream immediately before a newline character do
appear when read back in.

• No NUL characters are appended to a binary output stream.

• The file position indicator of an append mode stream is initially placed at the end of the file.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• A write to a text stream causes the associated file to be truncated beyond the point where the
write occurred if this is the behavior of the device category of the file.

• If semihosting is used, the maximum number of open files is limited by the available target
memory.

• A zero-length file exists, that is, where no characters have been written by an output stream.

• A file can be opened many times for reading, but only once for writing or updating. A file
cannot simultaneously be open for reading on one stream, and open for writing or updating on
another.

• stdin, stdout, and stderr are assumed to be interactive devices. They are line-buffered at
program startup, regardless of what _sys_istty reports for them. An exception is if they have
been redirected on the command line.

• localtime() is implemented and returns the local time. gmtime() is not implemented and
returns NULL. Therefore converting between time-zones is not supported.

• The status returned by exit() is the same value that was passed to it. For definitions of
EXIT_SUCCESS and EXIT_FAILURE, see the header file stdlib.h. Semihosting, however, does not
pass the status back to the execution environment.

• The error messages returned by the strerror() function are identical to those given by the
perror() function.

• If the size of area requested is zero, calloc() and realloc() return NULL.

• If the size of area requested is zero, malloc() returns a pointer to a zero-size block.

• abort() closes all open files and deletes all temporary files.

• fprintf() prints %p arguments in lowercase hexadecimal format as if a precision of 8 had been
specified. If the variant form (%#p) is used, the number is preceded by the character @.

• fscanf() treats %p arguments he same as %x arguments.

• fscanf() always treats the character "-" in a %...[...] argument as a literal character.

• ftell(), fsetpos() and fgetpos() set errno to the value of EDOM on failure.

• perror() generates the messages shown in the following table.

Table 2-13: perror() messages

Error Message

0 No error (errno = 0)

EDOM EDOM - function argument out of range

ERANGE ERANGE - function result not representable

ESIGNUM ESIGNUM - illegal signal number

Others Unknown error

The following characteristics are unspecified in the Arm C library. They must be specified in an ISO-
compliant implementation:

• The validity of a filename.

• Whether remove() can remove an open file.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• The effect of calling the rename() function when the new name already exists.

• The effect of calling getenv() (the default is to return NULL, no value available).

• The effect of calling system().

• The value returned by clock().

Related information
mathlib error handling on page 102
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 103
How the Arm C library fulfills ISO C specification requirements on page 101

2.25.5 Standard C++ library implementation definition

The Standard C++ library in Arm® Compiler 6 is based on the LLVM libc++ project.

This topic includes descriptions of [ALPHA] and [COMMUNITY] features. See
Support level definitions.

The following sections describe the limitations of the Standard C++ library in Arm Compiler 6.

All supported standard versions
For all supported standards, the libc++ library deviates from the standard library as follows:

• For std::vector<bool>::const_reference, the standards require the const_reference type
to be bool. However, in libc++ the const_reference type is an IMPLEMENTATION DEFINED, read-
only bit reference class.

• For std::bitset<N>, the standards require bool operator[](size_t pos) const; to return
bool. However, in libc++ bool operator[](size_t pos) const; returns an IMPLEMENTATION
DEFINED, read-only bit reference object.

Support for C++98
Arm Compiler 6 C++ libraries support the C++98 standard, except:

• Where the C++11 standard deviates from the C++98 standard. For example, where
std::deque<T>::insert() returns an iterator, as required by the C++11 standard, but the C+
+98 standard requires it to return void. Information about how the C++11 standard deviates
from the C++98 standard is available in Annex "C Compatibility" of the C++11 standard
definition.

• Where the libc++ library deviates from the C++98 standard library:

For std::raw_storage_iterator, the C++98 standard requires
the raw_storage_iterator class template to be inherited from
std::iterator<std::output_iterator_tag,void,void,void,void>. However, in libc++ the

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

raw_storage_iterator class template is inherited from an instantiation of std::iterator with a
different list of template arguments.

Support for C++03
Arm Compiler 6 C++ libraries support the C++03 standard, except:

• Where the C++11 standard deviates from the C++03 standard. For example, where
std::deque<T>::insert() returns an iterator, as required by the C++11 standard, but the C+
+03 standard requires it to return void. Information about how the C++11 standard deviates
from the C++03 standard is available in Annex "C Compatibility" of the C++11 standard
definition.

• Where the libc++ library deviates from the C++98 standard library:

For std::raw_storage_iterator, the C++98 standard requires
the raw_storage_iterator class template to be inherited from
std::iterator<std::output_iterator_tag,void,void,void,void>. However, in libc++ the
raw_storage_iterator class template is inherited from an instantiation of std::iterator with a
different list of template arguments.

• When compiling with any optimization other than -O0, Arm Compiler might omit a call to a
replaceable global allocation function and the corresponding deallocation function. When it
does so, the storage is instead provided by the implementation or provided by extending the
allocation of another new expression. This rule is part of the C++14 standard, but Arm Compiler
also applies the rule for C++03 and C++11.

Support for C++11
Arm Compiler 6 C++ libraries support the majority of C++11.

• Thread support, <thread>, and other concurrency features, are [ALPHA] supported.

• When compiling with any optimization other than -O0, Arm Compiler might omit a call to a
replaceable global allocation function and the corresponding deallocation function. When it
does so, the storage is instead provided by the implementation or provided by extending the
allocation of another new expression. This rule is part of the C++14 standard, but Arm Compiler
also applies the rule for C++03 and C++11.

Support for exceptions
Arm Compiler 6 supports:

• C++ libraries with exceptions.

• C++ libraries without exceptions. These libraries are compiled with the -fno-exceptions option.

Linking objects that have been compiled with -fno-exceptions automatically selects the libraries
without exceptions. You can use the linker option --no_exceptions to diagnose whether the
objects being linked contain exceptions.

• By default, C++ sources are compiled with exceptions support. You can use the
-fno-exceptions option to disable exceptions support.

• By default, C sources are compiled without exceptions support. You can use the
-fexceptions option to enable exceptions support.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

• If an exception propagates into a function that has been compiled without
exceptions support, then the program terminates.

• If the C++ libraries built without exception support is put in an error state, then
an exception is not thrown, but the program behavior is undefined.

Support for Array Construction and Delete helper functions
Arm Compiler 6 is not compatible with C++ objects from other compilers that use Array
Construction and Delete helper functions.

Support for Atomic [ALPHA]
Arm Compiler 6 provides access to the Atomic operations library <atomic> as an [ALPHA] feature.

Arm Compiler 6 does not provide an implementation of libatomic. You must either
provide an implementation of libatomic or only use the atomic operation library for
types for which the hardware can provide synchronization primitives.

Support for multithreading [ALPHA]
The default standard C++ library shipped in Arm Compiler 6 does not support multithreading. This
variant of the standard C++ library does not support the concurrency constructs available through
the headers, that includes <thread> and <mutex>. A multi-threaded [ALPHA]-supported variant of
the C++ library is also included in Arm Compiler 6.

Support for thread-safe static initialization of local variables in C++
The default C++ library in Arm Compiler 6 contains trivial implementations of the following one-
time construction API functions, which are not thread-safe:

extern "C" int __cxa_guard_acquire(int*guard_object);

extern "C" void __cxa_guard_release(int *guard_object);

extern "C" void __cxa_guard_abort(int *guard_object);

• This does not apply to the [ALPHA]-supported multi-threaded C++ libraries.

• For thread-safe static initialization of local variables in C++, you must provide
your own thread-safe implementation of these functions.

These API functions are described in more detail in the Run-time ABI for the Arm Architecture. On
Armv6-M, you must also provide thread-safe atomic helperfunctions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 201

https://developer.arm.com/documentation/ihi0043/latest/

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Support for Armv6-M atomic helper functions
The Arm Compiler 6 Armv6-M libraries contain trivial implementations of the following atomic
helper functions, which are not thread-safe:

uint32_t __user_cmpxchg_4(uint32_t *ptr, uint32_t old, uint32_t new);

uint16_t __user_cmpxchg_2(uint16_t *ptr, uint16_t old, uint16_t new);

uint8_t __user_cmpxchg_1(uint8_t *ptr, uint8_t old, uint8_t new);

uint64_t __atomic_exchange_8(uint64_t *dest, uint64_t val, int model);

uint32_t __atomic_exchange_4(uint32_t *dest, uint32_t val, int model);

uint16_t __atomic_exchange_2(uint16_t *dest, uint16_t val, int model);

uint8_t __atomic_exchange_1(uint8_t *dest, uint8_t val, int model);

For atomic access on Armv6-M, you must provide your own thread-safe
implementation of the atomic helper functions.

Library extensions
All libc++ experimental features that are not part of the C++ standard are [COMMUNITY]-
supported. In particular, the headers <ext/*> and <experimental/*> are [COMMUNITY]-
supported.

Related information
The LLVM Compiler Infrastructure
The LLVM libc++ library

2.26 C library functions and extensions
The Arm C library is fully compliant with the ISO C99 library standard and provides several GNU,
POSIX, BSD-derived, and Arm® Compiler-specific extensions.

The following table describes these extensions.

Table 2-14: C library extensions

Function Header file definition Extension

wcscasecmp() wchar.h GNU extension with Arm library support

wcsncasecmp() wchar.h GNU extension with Arm library support

wcstombs() stdlib.h POSIX extended functionality

posix_memalign() stdlib.h POSIX extended functionality

alloca() alloca.h Common nonstandard extension to many C
libraries

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 201

http://llvm.org/
http://libcxx.llvm.org/

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Function Header file definition Extension
strlcpy() string.h Common BSD-derived extension to many C

libraries

strlcat() string.h Common BSD-derived extension to many C
libraries

strcasecmp() string.h Standardized by POSIX

strncasecmp() string.h Standardized by POSIX

_fisatty() stdio.h Specific to Arm Compiler

__heapstats() stdlib.h Specific to Arm Compiler

__heapvalid() stdlib.h Specific to Arm Compiler

Related information
wcscasecmp() on page 183
wcsncasecmp() on page 183
wcstombs() on page 183
alloca() on page 146
strlcat() on page 170
strlcpy() on page 171
strcasecmp() on page 170
strncasecmp() on page 171
_fisatty() on page 150
__heapstats() on page 152
__heapvalid() on page 154

2.27 Avoid linking in the Arm C library
The C runtime libraries provided with Arm® Compiler 6 are suitable for various Arm-based projects.
However, some projects might have certain requirements that mean it is necessary to avoid using
all or part of the standard C library.

This topic includes descriptions of [COMMUNITY] features. See Support level
definitions.

For example:

• The project must use a certified functional safety (FuSa) C library to make it easier to fulfill the
safety requirements for the project.

• The project uses alternative libraries provided by the operating system (OS) vendor.

• The project has some custom requirements to re-implement certain C library functionality.

The following sections expand on the information provided in Standalone C library functions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

The following sections do not:

• Describe how to fully avoid the C++ library.

• Explain how to develop your startup and initialization code that must run before the main
function is reached.

The C libraries provided in Arm Compiler 6
Arm Compiler 6 provides the following C runtime libraries:

• C standardlib.

• C microlib.

The standard C library (standardlib) is the default C library that projects are likely to use. The micro
library (microlib) is an alternative to the standard C library. Microlib focuses in particular on smaller
code size, but with some documented limitations and restrictions.

Build options required to avoid the C library
The following compiler and linker options are required to avoid the C library being used explicitly by
the user and implicitly by the compiler:

Compiler options
• -fno-builtin prevents the compiler from transforming calls to standard library functions

based on built-in knowledge about how those functions behave.

This behavior applies to functions such as printf rather than __builtin_name functions,
despite the name. The compiler knows something about functions such as printf, and
sometimes transforms the source code based on that understanding. However, the
compiler still expects the library to provide an implementation of those functions.

For example, if your code calls printf("hello, world\n"), the compiler might convert
it into puts("hello, world") because it knows from the descriptions of those two
functions in the C standard that they perform the same operations. But the puts()
function cannot perform all the operations of printf by itself. If you write a more
complicated call involving formatting such as %d, then the compiler has to emit a call to
the printf library function.

• -nostdlibinc prevents the compiler from using the Arm standard C and C++ library
header files.

• -nostdlib prevents the compiler from using the Arm standard C and C++ libraries.

Also, if you are working in a freestanding, non-hosted, environment you can specify the
[COMMUNITY] option -ffreestanding. This option:

• Asserts that compilation targets a freestanding environment.

• Implies -fno-builtin.

• Sets the macro STD_C_HOSTED to 0.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Linker options
• --no_scanlib prevents the linker from scanning the Arm libraries to resolve references.

As a consequence of using this option, the Arm supplied libraries are not used by the
linker and you must include your own libraries.

Source code changes to avoid the C library
The function label main() has a special significance. The presence of a main() function forces the
linker to link in the initialization code in __main. The __main function calls the following initialization
functions:

• __scatterload (scatter-loading memory initialization code).

• __rt_entry (runtime library initialization code).

Without a function labeled main(), the initialization sequence is not linked in, and as a result, some
standard C library functionality is not supported.

To prevent a reference to __main, either:

• Specify a different main function, for example, my_main().

• Link with the --no_startup option.

Related information
__rt_entry on page 162
-fno-builtin
-nostdlib
-nostdlibinc
--scanlib, --no_scanlib
--startup=symbol, --no_startup

2.28 C and C++ library naming conventions
The library filename identifies how the variant was built.

This topic includes descriptions of [ALPHA] features. See Support level definitions.

The library naming convention described in this documentation applies to the
current release of the Arm compilation tools. Do not rely on C and C++ library
names. They might change in future releases.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 201

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-fno-builtin
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-nostdlib
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-nostdlibinc
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--scanlib---no-scanlib
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--startupsymbol---no-startup

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

Normally, you do not have to list any of the C and C++ libraries explicitly on the linker command
line. The Arm linker automatically selects the correct C or C++ libraries to use, and it might use
several, based on the accumulation of the object attributes.

The values for the fields of the filename, and the relevant build options are:

root /prefix _arch[fpu][position-independence][enum][wchar][exception]

[threading].endian

root

armlib

Arm® C library.

libcxx

libc++ library.

prefix

c

ISO C and C++ basic runtime support.

libcpp

libc++ library.

libcppabi

libc++abi runtime library.

f

IEEE-compliant library with a fixed rounding mode (round to nearest) and no inexact
exceptions.

fj

IEEE-compliant library with a fixed rounding mode (round to nearest) and no
exceptions.

fz

Behaves like the fj library, but additionally flushes denormals and infinities to zero.

This library behaves like the Arm VFP in Fast mode. This is the default.

g

IEEE-compliant library with configurable rounding mode and all IEEE exceptions.

h

Compiler support (helper function) library.

m

Transcendental math functions.

mc

Non ISO C-compliant ISO C micro-library basic runtime support.

mf

Non IEEE 754 floating-point compliant micro-library support.
Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 113 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

arch

4

An A32 only library for use with the Armv4 architecture. This is not available for C++.

t

An A32/T32 interworking library for use with the Armv4T architecture. This is not
available for C++.

5

An A32/T32 interworking library for use with the Armv5T architecture and later. This is
not available for C++.

p

A T32 only library for use with the Armv6-M architecture.

w

A T32 only library for use with the Armv7-M architecture.

2

A combined A32 and T32 library for use with Cortex®-A and Cortex-R series
processors.

8

An A32/T32 interworking library for use with the Armv8 architecture, in AArch32
state.

o

An A64 library for use with the Armv8 architecture, in AArch64 state.

fpu

m

A variant of the library for processors that have single-precision hardware floating-
point only, such as the Cortex-M4 processor.

v

Uses VFP instruction set.

s

Soft VFP.

If none of v, m, or s are present in a library name, the library provides no
floating-point support.

position-independence

e

Position-independent access to static data.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

f

FPIC addressing is enabled (used by armclang option -bare-metal-pie).

• Position independence is only supported in AArch32 state. If both
e and f are not present in a library name, the library uses position-
dependent access to static data.

• Bare-metal PIE support is deprecated in this release.

enum

n

Compatible with the default compiler option, -fno-short-enums.

wchar

u

Indicates the size of wchar_t. When present, the library is compatible with the compiler
option, -fno-short-wchar. Otherwise, it is compatible with -fshort-wchar.

exception

x

This only applies to the C++ library. x indicates that the library is built with exception
handling. Libraries without x are built without exception handling.

threading

z

This only applies to the C++ library. z indicates that the library is a multithreaded
[ALPHA]-supported variant of the C++ library. Libraries without z are built without
multithreading support.

endian

l

Little-endian.

b

Big-endian.

For example:

armlib/c_2.b
libcxx/libcpp_8f.l

Not all variant/name combinations are valid. See the armlib and libcxx directories
for the libraries that are supplied with the Arm Compiler.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C and C++ Libraries

The linker command-line option --info libraries provides information on every library that is
automatically selected for the link stage.

Related information
--info=topic[,topic,…] linker option

2.29 Using macro__ARM_WCHAR_NO_IO to disable FILE
declaration and wide I/O function prototypes

You can define the macro __ARM_WCHAR_NO_IO to cause the wchar.h and cwchar header files not to
declare FILE or the wide I/O function prototypes.

Declaring the FILE type can lead to better consistency in debug information.

2.30 Using library functions with execute-only memory
Arm® Compiler lets you build applications for execute-only memory. However, the Arm C and C++
libraries are not execute-only compliant.

If your application calls library functions, the library objects included in the image are not execute-
only compliant. You must ensure these objects are not assigned to an execute-only memory region.

Arm does not provide libraries that are built without literal pools. The libraries still
use literal pools, even when you use the -mexecute-only option.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 201

https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--info-topic--topic---

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C Micro-library

3. The Arm C Micro-library
Describes microlib, the C micro-library.

3.1 About microlib
Microlib is an alternative library to the default C library. It is intended for use with deeply
embedded applications that must fit into extremely small memory footprints.

These applications do not run under an operating system.

• Microlib does not attempt to be an ISO C-compliant library.

• Microlib has no support for AArch64 execution state.

Microlib is highly optimized for small code size. It has less functionality than the default C library
and some ISO C features are completely missing. Some library functions are also slower.

Functions in microlib are responsible for:

• Creating an environment that a C program can execute in. This includes:

◦ Creating a stack.

◦ Creating a heap, if required.

◦ Initializing the parts of the library the program uses.

• Starting execution by calling main().

Related information
Differences between microlib and the default C library on page 117
Library heap usage requirements of microlib on page 119
ISO C features missing from microlib on page 120
Building an application with microlib on page 121
Entering and exiting programs linked with microlib on page 123
Configuring the stack and heap for use with microlib on page 122
Tailoring the microlib input/output functions on page 124

3.2 Differences between microlib and the default C library
There are several differences between microlib and the default C library.

The main differences are:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C Micro-library

• Microlib is not compliant with the ISO C library standard. Some ISO features are not supported
and others have less functionality.

• Microlib is not compliant with the IEEE 754 standard for binary floating-point arithmetic.

• Microlib is highly optimized for small code size.

• Locales are not configurable. The default C locale is the only one available.

• main() must not be declared to take arguments and must not return. In main, argc and argv
parameters are undefined and cannot be used to access command-line arguments.

• Microlib provides limited support for C99 functions. Specifically, microlib does not support the
following C99 functions:

◦ <fenv.h> functions:

feclearexcept fegetenv fegetexceptflag
fegetround feholdexcept feraiseexcept
fesetenv fesetexceptflag fesetround
fetestexcept feupdateenv

◦ Wide characters in general:

btowc fgetwc fgetws fputwc
fputws fwide fwprintf fwscanf
getwc getwchar iswalnum iswalpha
iswblank iswcntrl iswctype iswdigit
iswgraph iswlower iswprint iswpunct
iswspace iswupper iswxdigit mblen
mbrlen mbsinit mbsrtowcs mbstowcs
mbtowc putwc putwchar swprintf
swscanf towctrans towlower towupper
ungetwc vfwprintf vfwscanf vswprintf
vswscanf vwprintf vwscanf wcscat
wcschr wcscmp wcscoll wcscspn
wcsftime wcslen wcsncat wcsncmp
wcsncpy wcspbrk wcsrchr wcsrtombs
wcsspn wcsstr wcstod wcstof
wcstoimax wcstok wcstol wcstold
wcstoll wcstombs wcstoul wcstoull
wcstoumax wcsxfrm wctob wctomb
wctrans wctype wmemchr wmemcmp
wmemcpy wmemmove wmemset wprintf
wscanf

◦ Auxiliary <math.h> functions:

ilogb ilogbf ilogbl
lgamma lgammaf lgammal
logb logbf logbl
nextafter nextafterf nextafterl
nexttoward nexttowardf nexttowardl

◦ Functions relating to program startup and shutdown and other OS interaction:

_Exit atexit exit
system time

• Microlib does not support C++.

• Microlib does not support operating system functions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C Micro-library

• Microlib does not support position-independent code.

• Microlib does not provide mutex locks to guard against code that is not thread safe.

• Microlib does not support wide characters or multibyte strings.

• Microlib does not support selectable one or two region memory models as the standard library
(stdlib) does. Microlib provides only the two region memory model with separate stack and
heap regions.

• Microlib does not support the bit-aligned memory functions _membitcpy[b|h|w][b|l]() and
membitmove[b|h|w][b|l]().

• Microlib can be used only with the armclang command-line option -ffp-mode=fast.

• The level of ANSI C stdio support that is provided can be controlled with __asm(".global
__use_full_stdio\n\t").

• __asm(".global __use_smaller_memcpy\n\t") selects a smaller, but slower, version of
memcpy().

• setvbuf() and setbuf() always fail because all streams are unbuffered.

• feof() and ferror() always return 0 because the error and EOF indicators are not supported.

• Microlib has no support in AArch64 state.

• When compiling a program that uses the microlib character classification functions in ctype.h,
if the variable to be classified is not an ASCII character, the behavior of these functions is
undefined.

Related information
About microlib on page 117
Library heap usage requirements of microlib on page 119
ISO C features missing from microlib on page 120
Building an application with microlib on page 121
Entering and exiting programs linked with microlib on page 123
Configuring the stack and heap for use with microlib on page 122
Tailoring the microlib input/output functions on page 124

3.3 Library heap usage requirements of microlib
Library heap usage requirements for microlib differ to those of standardlib.

The differences are:

• The size of heap memory allocated for fopen() is 20 bytes for the FILE structure.

• No buffer is ever allocated.

You must not declare main() to take arguments if you are using microlib.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C Micro-library

The size of heap memory allocated for fopen() might change in future releases.

Related information
Library heap usage requirements of the Arm C and C++ libraries on page 83

3.4 ISO C features missing from microlib
Microlib does not support all ISO C90 features.

Major ISO C90 features not supported by microlib are:

Wide character and multibyte support
All functions dealing with wide characters or multibyte strings are not supported by microlib.
A link error is generated if these are used. For example, mbtowc(), wctomb(), mbstowcs() and
wcstombs(). All functions defined in Normative Addendum 1 are not supported by microlib.

Operating system interaction
Almost all functions that interact with an operating system are not supported by microlib. For
example, abort(), exit(), atexit(), assert(), time(), system() and getenv(). An exception
is clock(). A minimal implementation of clock() has been provided, which returns only -1,
not the elapsed time. You may reimplement clock() (and _clock_init(), which it needs), if
required.

File I/O
By default, all the stdio functions that interact with a file pointer return an error if called. The
only exceptions to this are the three standard streams stdin, stdout, and stderr.

You can change this behavior using __asm(".global __use_full_stdio\n\t"). Use of this
assembler directive provides a microlib version of stdio that supports ANSI C, with only the
following exceptions:

• The error and EOF indicators are not supported, so feof() and ferror() return 0.

• All streams are unbuffered, so setvbuf() and setbuf() fail.

Configurable locale
The default C locale is the only one available.

Signals
The functions signal() and raise() are provided but microlib does not generate signals. The
only exception to this is if the program explicitly calls raise().

Floating-point support
Floating-point support diverges from IEEE 754 in the following ways, but uses the same data
formats and matches IEEE 754 in operations involving only normalized numbers:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C Micro-library

• Operations involving NaNs, infinities or input denormals produce indeterminate results.
Operations that produce a result that is nonzero but very small in value, return zero.

• IEEE exceptions cannot be flagged by microlib, and there is no fp_status() register in
microlib.

• The sign of zero is not treated as significant by microlib, and zeroes that are output from
microlib floating-point arithmetic have an unknown sign bit.

• Only the default rounding mode is supported.

Position independent and thread safe code
Microlib has no reentrant variant. Microlib does not provide mutex locks to guard against
code that is not thread safe. Use of microlib is not compatible with position independent
compilation modes.

Although ROPI code can be linked with microlib, the resulting binary is not ROPI-compliant
overall.

Command-line arguments
In main, argc and argv parameters are undefined and cannot be used to access command-
line arguments.

Related information
About microlib on page 117
Differences between microlib and the default C library on page 117
Library heap usage requirements of microlib on page 119
Building an application with microlib on page 121
Entering and exiting programs linked with microlib on page 123
Configuring the stack and heap for use with microlib on page 122
Tailoring the microlib input/output functions on page 124

3.5 Building an application with microlib
To build a program using microlib, you must use the command-line option --
library_type=microlib. This option can be used by the compiler, assembler or linker.

Use --library_type=microlib with the linker to override all other options.

Compiler option

When compiling, --library_type must be used with -Wl.

armclang --target arm-arm-none-eabi -march=armv8-a -Wl,--library_type=microlib
 main.c

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C Micro-library

armclang --target arm-arm-none-eabi -march=armv8-a -c extra.c
armlink --cpu=8-A.32 -o image.axf main.o extra.o

Specifying -Wl,--library_type=microlib when compiling main.c results in an object file
containing an attribute that asks the linker to use microlib. Compiling extra.c with -Wl,--
library_type=microlib is unnecessary, because the request to link against microlib exists in the
object file generated by compiling main.c.

Assembler option
armclang --target arm-arm-none-eabi -march=armv8-a -c main.c
armclang --target arm-arm-none-eabi -march=armv8-a -c extra.c
armasm --cpu=8-A.32 --library_type=microlib more.s
armlink --cpu=8-A.32 -o image.axf main.o extra.o more.o

The request to the linker to use microlib is made as a result of assembling more.s with --
library_type=microlib.

Linker option
armclang --target arm-arm-none-eabi -march=armv8-a -c main.c
armclang --target arm-arm-none-eabi -march=armv8-a -c extra.c
armlink --cpu=8-A.32 --library_type=microlib -o image.axf main.o extra.o

Neither object file contains the attribute requesting that the linker link against microlib, so the linker
selects microlib as a result of being explicitly asked to do so on the command line.

Related information
About microlib on page 117
Differences between microlib and the default C library on page 117
Library heap usage requirements of microlib on page 119
ISO C features missing from microlib on page 120
Entering and exiting programs linked with microlib on page 123
Configuring the stack and heap for use with microlib on page 122
Tailoring the microlib input/output functions on page 124

3.6 Configuring the stack and heap for use with microlib
To use microlib, you must specify an initial pointer for the stack. You can specify the initial pointer
in a scatter file or using the __initial_sp symbol.

To use the heap functions, for example, malloc(), calloc(), realloc() and free(), you must
specify the location and size of the heap region.

To configure the stack and heap for use with microlib, use either of the following methods:

• Define the symbol __initial_sp to point to the top of the stack. If using the heap, also define
symbols __heap_base and __heap_limit.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C Micro-library

__initial_sp must be aligned to a multiple of eight bytes.

__heap_limit must point to the byte beyond the last byte in the heap region.

• In a scatter file, either:

◦ Define ARM_LIB_STACK and ARM_LIB_HEAP regions.

If you do not intend to use the heap, only define an ARM_LIB_STACK region.

◦ Define an ARM_LIB_STACKHEAP region.

If you define an ARM_LIB_STACKHEAP region, the stack starts at the top of that region. The
heap starts at the bottom.

Examples
To set up the initial stack and heap pointers using armasm assembly language:

 .global __initial_sp
.equ __initial_sp, 0x10000 ; top of the stack
 .global __heap_base
.equ __heap_base, 0x400000 ; start of the heap
 .global __heap_limit
.equ __heap_limit, 0x800000 ; end of the heap

To set up the initial stack pointer using inline assembler in C.

__asm(".global __initial_sp\n\t"
 ".equ __initial_sp, 0x10000\n\t" /* equal to the top of the stack */
);

To set up the heap pointer using inline assembler in C.

__asm(".global __heap_base\n\t"
 ".equ __heap_base, 0x400000\n\t" /* equal to the start of the heap */
 ".global __heap_limit\n\t"
 ".equ __heap_limit, 0x800000\n\t" /* equal to the end of the heap */
);

Related information
About microlib on page 117
Differences between microlib and the default C library on page 117
Library heap usage requirements of microlib on page 119
ISO C features missing from microlib on page 120
Building an application with microlib on page 121
Entering and exiting programs linked with microlib on page 123
Tailoring the microlib input/output functions on page 124

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C Micro-library

3.7 Entering and exiting programs linked with microlib
Microlib requires a main() function that takes no arguments and never returns.

Use main() to begin your program. Do not declare main() to take arguments. Microlib does not
support command-line arguments from an operating system.

Your program must not return from main(). This is because microlib does not contain any code to
handle exit from main(). Microlib does not support programs that call exit().

You can ensure that your main() function does not return, by inserting an endless loop at the end
of the function. For example:

void main()
{
 ...
 while (1); // endless loop to prevent return from main()
}

Related information
About microlib on page 117
Differences between microlib and the default C library on page 117
Library heap usage requirements of microlib on page 119
ISO C features missing from microlib on page 120
Building an application with microlib on page 121
Configuring the stack and heap for use with microlib on page 122
Tailoring the microlib input/output functions on page 124

3.8 Tailoring the microlib input/output functions
Microlib provides a limited stdio subsystem. To use high-level I/O functions you must reimplement
the base I/O functions.

Microlib provides a limited stdio subsystem that supports unbuffered stdin, stdout, and stderr
only. This enables you to use printf() for displaying diagnostic messages from your application.

To use high-level I/O functions you must provide your own implementation of the following base
functions so that they work with your own I/O device.

fputc()

Implement this base function for all output functions. For example, fprintf(), printf(),
fwrite(), fputs(), puts(), putc(), and putchar().

fgetc()

Implement this base function for all input functions. For example, fscanf(), scanf(),
fread(), read(), fgets(), gets(), getc(), and getchar().

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The Arm C Micro-library

__backspace()

Implement this base function if your input functions use scanf() or fscanf().

Conversions that are not supported in microlib are %lc, %ls, and %a.

Related information
About microlib on page 117
Differences between microlib and the default C library on page 117
Library heap usage requirements of microlib on page 119
ISO C features missing from microlib on page 120
Building an application with microlib on page 121
Entering and exiting programs linked with microlib on page 123
Configuring the stack and heap for use with microlib on page 122

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

4. Floating-point Support
Describes Arm support for floating-point computations.

4.1 About floating-point support
The Arm floating-point environment is an implementation of the IEEE 754-1985 standard for
binary floating-point arithmetic. However, there is no guarantee that armclang generates floating-
point exceptions in compliance with the IEEE 754-1985 standard when compiling C/C++ code.

The underlying library system is IEEE 754-1985 compliant, at least if you use the -ffp-mode=full
model that enables all the optional features. Therefore, if you write floating-point code in assembly
language, it behaves as you expect. But if you write your floating-point code in C, compiler
optimizations might affect which exceptions you get.

In Arm®v8, floating-point hardware is integral to the architecture. Software floating-
point is supported for AArch32 state, but is not supported for AArch64 state.

An Arm system might have:

• A VFP coprocessor.

• No floating-point hardware.

If you compile for a system with a hardware VFP coprocessor, the Arm Compiler makes use of it.
If you compile for a system without a coprocessor, the compiler implements the computations in
software. For example, the compiler option -mfloat-abi=hard selects a hardware VFP coprocessor
and the option -mfloat-abi=soft specifies that arithmetic operations are to be performed in
software, without the use of any coprocessor instructions.

In Arm Compiler 6, there is no command-line option to exclude both hardware and
software floating-point computations. If the compiler encounters floating-point
types in the source code, it uses software-based floating-point library functions.

Related information
IEEE 754 arithmetic on page 136
-ffp-mode
-mfloat-abi

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 201

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-ffp-mode
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-mfloat-abi

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

4.2 Controlling the Arm floating-point environment
The Arm compilation tools supply several different interfaces to the floating-point environment, for
compatibility and porting ease.

These interfaces enable you to change the rounding mode, enable and disable trapping of
exceptions, and install your own custom exception trap handlers.

The Arm® Compiler toolchain does not support floating-point exception trapping
for AArch64 targets.

Related information
Floating-point functions for compatibility with Microsoft products on page 127
C99-compatible functions for controlling the Arm floating-point environment on page 127
C99 rounding mode and floating-point exception macros on page 128
Exception flag handling on page 129
Functions for handling rounding modes on page 130
Functions for saving and restoring the whole floating-point environment on page 131
Functions for temporarily disabling exceptions on page 132
Arm floating-point compiler extensions to the C99 interface on page 133
Example of a custom exception handler on page 134
Exception trap handling by signals on page 135

4.2.1 Floating-point functions for compatibility with Microsoft products

Functions declared in float.h give compatibility with Microsoft products to ease porting of
floating-point code to the Arm® architecture.

These functions require you to select a floating-point model that supports exceptions. In Arm
Compiler 6 this is disabled by default, and can be enabled by the armclang command-line option -
fno-fast-math.

Related information
Controlling the Arm floating-point environment on page 126
_clearfp() on page 191
_controlfp() on page 191
_statusfp() on page 199

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

4.2.2 C99-compatible functions for controlling the Arm floating-point
environment

The compiler supports all functions defined in the C99 standard, and functions that are not C99-
standard.

The Arm® Compiler toolchain does not support floating-point exception trapping
for AArch64 targets.

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

The C99-compatible functions are the only interface that enables you to install custom exception
trap handlers with the ability to define your own return value. All the function prototypes, data
types, and macros for this functionality are declared in fenv.h.

C99 defines two data types, fenv_t and fexcept_t. The C99 standard does not give information
about these types, so for portable code you must treat them as opaque. The compiler defines them
to be structure types.

The type fenv_t is defined to hold all the information about the current floating-point environment.
This comprises:

• The rounding mode.

• The exception sticky flags.

• Whether each exception is masked.

• What handlers are installed, if any.

The type fexcept_t is defined to hold all the information relevant to a given set of exceptions.

Related information
Controlling the Arm floating-point environment on page 126
C99 rounding mode and floating-point exception macros on page 128
Exception flag handling on page 129
Functions for handling rounding modes on page 130
Functions for saving and restoring the whole floating-point environment on page 131
Functions for temporarily disabling exceptions on page 132
Arm floating-point compiler extensions to the C99 interface on page 133

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

4.2.3 C99 rounding mode and floating-point exception macros

C99 defines a macro for each rounding mode and each exception

The following functionality requires a floating-point model that supports exceptions.
In Arm® Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

The C99 rounding mode and exception macros are:

• FE_DIVBYZERO

• FE_INEXACT

• FE_INVALID

• FE_OVERFLOW

• FE_UNDERFLOW

• FE_ALL_EXCEPT

• FE_DOWNWARD

• FE_TONEAREST

• FE_TOWARDZERO

• FE_UPWARD

The exception macros are bit fields. The macro FE_ALL_EXCEPT is the bitwise OR of all of them.

Related information
Functions for handling rounding modes on page 130
C99-compatible functions for controlling the Arm floating-point environment on page 127

4.2.4 Exception flag handling

The feclearexcept(), fetestexcept(), and feraiseexcept() functions let you clear, test and raise
exceptions. The fegetexceptflag() and fesetexceptflag() functions let you save and restore
information about a given exception.

The Arm® Compiler toolchain does not support floating-point exception trapping
for AArch64 targets.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

C99 defines these functions as follows:

void feclearexcept(int excepts);

int fetestexcept(int excepts);

void feraiseexcept(int excepts);

The feclearexcept() function clears the sticky flags for the given exceptions. The fetestexcept()
function returns the bitwise OR of the sticky flags for the given exceptions, so that if the
Overflow flag was set but the Underflow flag was not, then calling fetestexcept(FE_OVERFLOW|
FE_UNDERFLOW) would return FE_OVERFLOW.

The feraiseexcept() function raises the given exceptions, in unspecified order. If an exception trap
is enabled for an exception raised this way, it is called.

C99 also provides functions to save and restore all information about a given exception. This
includes the sticky flag, whether the exception is trapped, and the address of the trap handler, if
any. These functions are:

void fegetexceptflag(fexcept_t *flagp, int excepts);

void fesetexceptflag(const fexcept_t *flagp, int excepts);

The fegetexceptflag() function copies all the information relating to the given exceptions into the
fexcept_t variable provided. The fesetexceptflag() function copies all the information relating to
the given exceptions from the fexcept_t variable into the current floating-point environment.

You can use fesetexceptflag() to set the sticky flag of a trapped exception to 1
without calling the trap handler, whereas feraiseexcept() calls the trap handler for
any trapped exception.

Related information
C99-compatible functions for controlling the Arm floating-point environment on page 127

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

4.2.5 Functions for handling rounding modes

The fegetround() and fesetround() functions let you get and set the current rounding mode.

The following functionality requires a floating-point model that supports exceptions.
In Arm® Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

C99 defines these functions as follows:

int fegetround(void);

int fesetround(int round);

The fegetround() function returns the current rounding mode. The current rounding mode has a
value equal to one of the C99 rounding mode macros or exceptions.

The fesetround() function sets the current rounding mode to the value provided. fesetround()
returns zero for success, or nonzero if its argument is not a valid rounding mode.

Related information
C99 rounding mode and floating-point exception macros on page 128
C99-compatible functions for controlling the Arm floating-point environment on page 127

4.2.6 Functions for saving and restoring the whole floating-point
environment

The fegetenv() and fesetenv() functions let you save and restore the entire floating-point
environment.

The following functionality requires a floating-point model that supports exceptions.
In Arm® Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

C99 defines these functions as follows:

void fegetenv(fenv_t *envp);

void fesetenv(const fenv_t *envp);

The fegetenv() function stores the current state of the floating-point environment into the fenv_t
variable provided. The fesetenv() function restores the environment from the variable provided.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

Like fesetexceptflag(), fesetenv() does not call trap handlers when it sets the sticky flags for
trapped exceptions.

Related information
C99-compatible functions for controlling the Arm floating-point environment on page 127

4.2.7 Functions for temporarily disabling exceptions

The feholdexcept() and feupdateenv() functions let you temporarily disable exception trapping.

The Arm® Compiler toolchain does not support floating-point exception trapping
for AArch64 targets.

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

These functions let you avoid risking exception traps when executing code that might cause
exceptions. This is useful when, for example, trapped exceptions are using the Arm default
behavior. The default is to cause SIGFPE and terminate the application.

int feholdexcept(fenv_t *envp);

void feupdateenv(const fenv_t *envp);

The feholdexcept() function saves the current floating-point environment in the fenv_t variable
provided, sets all exceptions to be untrapped, and clears all the exception sticky flags. You can
then execute code that might cause unwanted exceptions, and make sure the sticky flags for
those exceptions are cleared. Then you can call feupdateenv(). This restores any exception traps
and calls them if necessary. For example, suppose you have a function, frob(), that might cause
the Underflow or Invalid Operation exceptions (assuming both exceptions are trapped). You are
not interested in Underflow, but you want to know if an invalid operation is attempted. You can
implement the following code to do this:

fenv_t env;
feholdexcept(&env);
frob();
feclearexcept(FE_UNDERFLOW);
feupdateenv(&env);

Then, if the frob() function raises Underflow, it is cleared again by feclearexcept(), so no trap
occurs when feupdateenv() is called. However, if frob() raises Invalid Operation, the sticky flag is
set when feupdateenv() is called, so the trap handler is invoked.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

This mechanism is provided by C99 because C99 specifies no way to change exception trapping
for individual exceptions. A better method is to use __ieee_status() to disable the Underflow trap
while leaving the Invalid Operation trap enabled. This has the advantage that the Invalid Operation
trap handler is provided with all the information about the invalid operation (that is, what operation
was being performed, and on what data), and can invent a result for the operation. Using the C99
method, the Invalid Operation trap handler is called after the fact, receives no information about
the cause of the exception, and is called too late to provide a substitute result.

Related information
C99-compatible functions for controlling the Arm floating-point environment on page 127

4.2.8 Arm floating-point compiler extensions to the C99 interface

The Arm C library provides some extensions to the C99 interface to enable it to do everything that
the Arm floating-point environment is capable of. This includes trapping and untrapping individual
exception types, and installing custom trap handlers.

The Arm® Compiler toolchain does not support floating-point exception trapping
for AArch64 targets.

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

The types fenv_t and fexcept_t are not defined by C99 to be anything in particular. The Arm
compiler defines them both to be the same structure type.

In AArch32 state, fenv_t and fexcept_t have the following structure:

typedef struct{
 unsigned __statusword;
 __ieee_handler_t __invalid_handler;
 __ieee_handler_t __divbyzero_handler;
 __ieee_handler_t __overflow_handler;
 __ieee_handler_t __underflow_handler;
 __ieee_handler_t __inexact_handler;
} fenv_t, fexcept_t;

The members of this structure are:

• __statusword, the same status variable that the function __ieee_status() sees, laid out in the
same format.

• Five function pointers giving the address of the trap handler for each exception. By default,
each is NULL. This means that if the exception is trapped, the default exception trap action
happens. The default is to cause a SIGFPE signal.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

In AArch64 state, fenv_t and fexcept_t have the following structure:

typedef struct{
 unsigned __statusword;
} fenv_t, fexcept_t;

Related information
Controlling the Arm floating-point environment on page 126
Example of a custom exception handler on page 134
__ieee_status() on page 195
C99-compatible functions for controlling the Arm floating-point environment on page 127

4.2.9 Example of a custom exception handler

This example exception trap handler overrides the division by zero exception to return 1 rather
than an invalid operation exception.

The Arm® Compiler toolchain does not support floating-point exception trapping
for AArch64 targets.

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

Suppose you are converting some Fortran code into C. The Fortran numerical standard requires 0
divided by 0 to be 1, whereas IEEE 754 defines 0 divided by 0 to be an Invalid Operation and so
by default it returns a quiet NaN. The Fortran code is likely to rely on this behavior, and rather than
modifying the code, it is probably easier to make 0 divided by 0 return 1.

After the handler is installed, dividing 0.0 by 0.0 returns 1.0.

Custom exception handler example
#include <fenv.h>
#include <signal.h>
#include <stdio.h>
__softfp __ieee_value_t myhandler(__ieee_value_t op1, __ieee_value_t op2,
 __ieee_edata_t edata)
{
 __ieee_value_t ret;
 if ((edata & FE_EX_FN_MASK) == FE_EX_FN_DIV)
 {
 if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_FLOAT)
 {
 if (op1.f == 0.0 && op2.f == 0.0)
 {
 ret.f = 1.0;
 return ret;
 }

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

 }
 if ((edata & FE_EX_INTYPE_MASK) == FE_EX_INTYPE_DOUBLE)
 {
 if (op1.d == 0.0 && op2.d == 0.0)
 {
 ret.d = 1.0;
 return ret;
 }
 }
 }
 /* For all other invalid operations, raise SIGFPE as usual */
 raise(SIGFPE);
}
int main(void)
{
 float i, j, k;
 fenv_t env;
 fegetenv(&env);
 env.statusword |= FE_IEEE_MASK_INVALID;
 env.invalid_handler = myhandler;
 fesetenv(&env);
 i = 0.0;
 j = 0.0;
 k = i/j;
 printf("k is %f\n", k);
}

Related information
Arm floating-point compiler extensions to the C99 interface on page 133

4.2.10 Exception trap handling by signals

You can use the SIGFPE signal to handle exceptions.

The Arm® Compiler toolchain does not support floating-point exception trapping
for AArch64 targets.

The following functionality requires a floating-point model that supports exceptions.
In Arm Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

If an exception is trapped but the trap handler address is set to NULL, a default trap handler is used.

The default trap handler raises a SIGFPE signal. The default handler for SIGFPE prints an error
message and terminates the program.

If you trap SIGFPE, you can declare your signal handler function to have a second parameter
that tells you the type of floating-point exception that occurred. This feature is provided

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

for compatibility with Microsoft products. The values are _FPE_INVALID, _FPE_ZERODIVIDE,
_FPE_OVERFLOW, _FPE_UNDERFLOW and _FPE_INEXACT. They are defined in float.h. For example:

void sigfpe(int sig, int etype){
 printf("SIGFPE (%s)\n",
 etype == _FPE_INVALID ? "Invalid Operation" :
 etype == _FPE_ZERODIVIDE ? "Divide by Zero" :
 etype == _FPE_OVERFLOW ? "Overflow" :
 etype == _FPE_UNDERFLOW ? "Underflow" :
 etype == _FPE_INEXACT ? "Inexact Result" :
 "Unknown");
}
signal(SIGFPE, (void(*)(int))sigfpe);

To generate your own SIGFPE signals with this extra information, you can call the function
__rt_raise() instead of the ISO function raise(). For example:

__rt_raise(SIGFPE, _FPE_INVALID);

__rt_raise() is declared in rt_misc.h.

Related information
Example of a custom exception handler on page 134
Exceptions arising from IEEE 754 floating-point arithmetic on page 143
Controlling the Arm floating-point environment on page 126
Arm floating-point compiler extensions to the C99 interface on page 133
C99-compatible functions for controlling the Arm floating-point environment on page 127
__rt_raise() on page 167

4.3 mathlib double and single-precision floating-point
functions

The math library, mathlib, provides double and single-precision functions for mathematical
calculations.

For example, to calculate a cube root, you can use cbrt() (double-precision) or cbrtf() (single-
precision).

ISO/IEC 14882 specifies that in addition to the double versions of the math functions in
<cmath>, C++ adds float (and long double) overloaded versions of these functions. The Arm
implementation extends this in scope to include the additional math functions that do not exist in
C90, but that do exist in C99.

In C++, std::cbrt() on a float argument selects the single-precision version of the function, and
the same type of selection applies to other floating-point functions in C++.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

4.4 IEEE 754 arithmetic
The Arm floating-point environment is an implementation of the IEEE 754 standard for binary
floating-point arithmetic.

Related information
Basic data types for IEEE 754 arithmetic on page 137
Single precision data type for IEEE 754 arithmetic on page 137
Double precision data type for IEEE 754 arithmetic on page 139
Sample single precision floating-point values for IEEE 754 arithmetic on page 140
Sample double precision floating-point values for IEEE 754 arithmetic on page 140
IEEE 754 arithmetic and rounding on page 142
Exceptions arising from IEEE 754 floating-point arithmetic on page 143
Exception types recognized by the Arm floating-point environment on page 143

4.4.1 Basic data types for IEEE 754 arithmetic

Arm floating-point values are stored in one of two data types, single-precision and double-
precision. In this documentation, they are called float and double, these being the corresponding C
data types.

Related information
Sample single precision floating-point values for IEEE 754 arithmetic on page 140
Sample double precision floating-point values for IEEE 754 arithmetic on page 140
IEEE 754 arithmetic on page 136
Single precision data type for IEEE 754 arithmetic on page 137
Double precision data type for IEEE 754 arithmetic on page 139
IEEE 754 arithmetic and rounding on page 142
Exceptions arising from IEEE 754 floating-point arithmetic on page 143

4.4.2 Single precision data type for IEEE 754 arithmetic

A float value is 32 bits wide.

The structure is:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

Figure 4-1: IEEE 754 single-precision floating-point format

31 23 2230 0

S Exp Frac

The S field gives the sign of the number. It is 0 for positive, or 1 for negative.

The Exp field gives the exponent of the number, as a power of two. It is biased by 0x7F (127), so
that very small numbers have exponents near zero and very large numbers have exponents near
0xFF (255).

For example:

• If Exp = 7D (125), the number is between 0.25 and 0.5 (not including 0.5).

• If Exp = 7E (126), the number is between 0.5 and 1.0 (not including 1.0).

• If Exp = 7F (127), the number is between 1.0 and 2.0 (not including 2.0).

• If Exp = 80 (128), the number is between 2.0 and 4.0 (not including 4.0).

• If Exp = 81 (129), the number is between 4.0 and 8.0 (not including 8.0).

The Frac field gives the fractional part of the number. It usually has an implicit 1 bit on the front
that is not stored to save space.

For example, if Exp is 0x7F:

• If Frac = 00000000000000000000000 (binary), the number is 1.0.

• If Frac = 10000000000000000000000 (binary), the number is 1.5.

• If Frac = 01000000000000000000000 (binary), the number is 1.25.

• If Frac = 11000000000000000000000 (binary), the number is 1.75.

In general, the numeric value of a bit pattern in this format is given by the formula:

(-1)S * 2(Exp-0x7F) * (1 + Frac * 2-23)

Numbers stored in this form are called normalized numbers.

The maximum and minimum exponent values, 0 and 255, are special cases. Exponent 255 can
represent infinity and store Not a Number (NaN) values. Infinity can occur as a result of dividing
by zero, or as a result of computing a value that is too large to store in this format. NaN values are
used for special purposes. Infinity is stored by setting Exp to 255 and Frac to all zeros. If Exp is 255
and Frac is nonzero, the bit pattern represents a NaN.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

Exponent 0 can represent very small numbers in a special way. If Exp is zero, then the Frac field has
no implicit 1 on the front. This means that the format can store 0.0, by setting both Exp and Frac to
all 0 bits. It also means that numbers that are too small to store using Exp >= 1 are stored with less
precision than the ordinary 23 bits. These are called denormals.

Related information
IEEE 754 arithmetic on page 136
Double precision data type for IEEE 754 arithmetic on page 139
IEEE 754 arithmetic and rounding on page 142
Exceptions arising from IEEE 754 floating-point arithmetic on page 143
Basic data types for IEEE 754 arithmetic on page 137
Sample single precision floating-point values for IEEE 754 arithmetic on page 140
Sample double precision floating-point values for IEEE 754 arithmetic on page 140

4.4.3 Double precision data type for IEEE 754 arithmetic

A double value is 64 bits wide.

The structure is:

Figure 4-2: IEEE 754 double-precision floating-point format

63 52 5162 0

S Exp Frac

As with single-precision float data types, S is the sign, Exp the exponent, and Frac the fraction.
Most of the detail of float values remains true for double values, except that:

• The Exp field is biased by 3FF (1023) instead of 7F, so numbers between 1.0 and 2.0 have an
Exp field of 3FF.

• The Exp value representing infinity and NaNs is 7FF (2047) instead of FF.

Related information
IEEE 754 arithmetic on page 136
Single precision data type for IEEE 754 arithmetic on page 137
IEEE 754 arithmetic and rounding on page 142
Exceptions arising from IEEE 754 floating-point arithmetic on page 143
Basic data types for IEEE 754 arithmetic on page 137
Sample single precision floating-point values for IEEE 754 arithmetic on page 140
Sample double precision floating-point values for IEEE 754 arithmetic on page 140

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

4.4.4 Sample single precision floating-point values for IEEE 754 arithmetic

Sample float bit patterns, together with their mathematical values.

Table 4-1: Sample single-precision floating-point values

Float value S Exp Frac Mathematical value

0x3F800000 0 0x7F 000...000 1.0

0xBF800000 1 0x7F 000...000 -1.0

0x3F800001 3 0 0x7F 000...001 1.000 000 119

0x3F400000 0 0x7E 100...000 0.75

0x00800000 4 0 0x01 000...000 1.18*10-38

0x00000001 5 0 0x00 000...001 1.40*10-45

0x7F7FFFFF 6 0 0xFE 111...111 3.40*1038

0x7F800000 0 0xFF 000...000 Plus infinity

0xFF800000 1 0xFF 000...000 Minus infinity

0x00000000 7 0 0x00 000...000 0.0

0x7FC00000 8 0 0xFF 100...000 Quiet NaN

Related information
Basic data types for IEEE 754 arithmetic on page 137
Sample double precision floating-point values for IEEE 754 arithmetic on page 140
IEEE 754 arithmetic on page 136
Single precision data type for IEEE 754 arithmetic on page 137
Double precision data type for IEEE 754 arithmetic on page 139
IEEE 754 arithmetic and rounding on page 142
Exceptions arising from IEEE 754 floating-point arithmetic on page 143

3 The smallest representable number that can be seen to be greater than 1.0. The amount that it differs from 1.0 is
known as the machine epsilon. This is 0.000 000 119 in float, and 0.000 000 000 000 000 222 in double.
The machine epsilon gives a rough idea of the number of significant figures the format can keep track of. float can
do six or seven places. double can do fifteen or sixteen.

4 The smallest value that can be represented as a normalized number in each format. Numbers smaller than this can
be stored as denormals, but are not held with as much precision.

5 The smallest positive number that can be distinguished from zero. This is the absolute lower limit of the format.
6 The largest finite number that can be stored. Attempting to increase this number by addition or multiplication

causes overflow and generates infinity (in general).
7 Zero. Strictly speaking, they show plus zero. Zero with a sign bit of 1, minus zero, is treated differently by some

operations, although the comparison operations (for example == and !=) report that the two types of zero are
equal.

8 There are two types of NaNs, signaling NaNs and quiet NaNs. Quiet NaNs have a 1 in the first bit of Frac, and
signaling NaNs have a zero there. The difference is that signaling NaNs cause an exception when used, whereas
quiet NaNs do not.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

4.4.5 Sample double precision floating-point values for IEEE 754 arithmetic

Sample double bit patterns, together with their mathematical values.

Table 4-2: Sample double-precision floating-point values

Double value S Exp Frac Mathematical value

0x3FF00000
00000000

0 0x3FF 000...000 1.0

0xBFF00000
00000000

1 0x3FF 000...000 -1.0

0x3FF00000

00000001 9
0 0x3FF 000...001 1.000 000 000 000

000 222

0x3FE80000
00000000

0 0x3FE 100...000 0.75

0x00100000

00000000 10
0 0x001 000...000 2.23*10-308

0x00000000

00000001 11
0 0x000 000...001 4.94*10-324

0x7FEFFFFF

FFFFFFFF 12
0 0x7FE 111...111 1.80*10308

0x7FF00000
00000000

0 0x7FF 000...000 Plus infinity

0xFFF00000
00000000

1 0x7FF 000...000 Minus infinity

0x00000000

00000000 13
0 0x000 000...000 0.0

0x7FF00000
00000001

0 0x7FF 000...001 Signaling NaN

0x7FF80000

00000000 14
0 0x7FF 100...000 Quiet NaN

Related information
Basic data types for IEEE 754 arithmetic on page 137

9 The smallest representable number that can be seen to be greater than 1.0. The amount that it differs from 1.0 is
known as the machine epsilon. This is 0.000 000 119 in float, and 0.000 000 000 000 000 222 in double.
The machine epsilon gives a rough idea of the number of significant figures the format can keep track of. float can
do six or seven places. double can do fifteen or sixteen.

10 The smallest value that can be represented as a normalized number in each format. Numbers smaller than this can
be stored as denormals, but are not held with as much precision.

11 The smallest positive number that can be distinguished from zero. This is the absolute lower limit of the format.
12 The largest finite number that can be stored. Attempting to increase this number by addition or multiplication

causes overflow and generates infinity (in general).
13 Zero. Strictly speaking, they show plus zero. Zero with a sign bit of 1, minus zero, is treated differently by some

operations, although the comparison operations (for example == and !=) report that the two types of zero are
equal.

14 There are two types of NaNs, signaling NaNs and quiet NaNs. Quiet NaNs have a 1 in the first bit of Frac, and
signaling NaNs have a zero there. The difference is that signaling NaNs cause an exception when used, whereas
quiet NaNs do not.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

Sample single precision floating-point values for IEEE 754 arithmetic on page 140
IEEE 754 arithmetic on page 136
Single precision data type for IEEE 754 arithmetic on page 137
Double precision data type for IEEE 754 arithmetic on page 139
IEEE 754 arithmetic and rounding on page 142
Exceptions arising from IEEE 754 floating-point arithmetic on page 143

4.4.6 IEEE 754 arithmetic and rounding

IEEE 754 defines different rounding rules to use when calculating arithmetic results.

The Arm® Compiler toolchain does not support floating-point exception trapping
for AArch64 targets.

Arithmetic is generally performed by computing the result of an operation as if it were stored
exactly (to infinite precision), and then rounding it to fit in the format. Apart from operations whose
result already fits exactly into the format (such as adding 1.0 to 1.0), the correct answer is generally
somewhere between two representable numbers in the format. The system then chooses one of
these two numbers as the rounded result. It uses one of the following methods:

Round to nearest
The system chooses the nearer of the two possible outputs. If the correct answer is exactly
halfway between the two, the system chooses the output where the least significant bit of
Frac is zero. This behavior (round-to-even) prevents various undesirable effects.

This is the default mode when an application starts up. It is the only mode supported by the
ordinary floating-point libraries. Hardware floating-point environments and the enhanced
floating-point libraries support all four rounding modes.

Round up, or round toward plus infinity
The system chooses the larger of the two possible outputs (that is, the one further from zero
if they are positive, and the one closer to zero if they are negative).

Round down, or round toward minus infinity
The system chooses the smaller of the two possible outputs (that is, the one closer to zero if
they are positive, and the one further from zero if they are negative).

Round toward zero, or chop, or truncate
The system chooses the output that is closer to zero, in all cases.

Related information
IEEE 754 arithmetic on page 136
Single precision data type for IEEE 754 arithmetic on page 137
Double precision data type for IEEE 754 arithmetic on page 139
Exceptions arising from IEEE 754 floating-point arithmetic on page 143

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

Basic data types for IEEE 754 arithmetic on page 137
Sample single precision floating-point values for IEEE 754 arithmetic on page 140
Sample double precision floating-point values for IEEE 754 arithmetic on page 140

4.4.7 Exceptions arising from IEEE 754 floating-point arithmetic

Floating-point arithmetic operations can run into various problems. These are known as exceptions,
because they indicate unusual or exceptional situations.

For example, the result computed might be either too big or too small to fit into the format, or
there might be no way to calculate the result (as in trying to take the square root of a negative
number, or trying to divide zero by zero).

The Arm® Compiler toolchain does not support floating-point exception trapping
for AArch64 targets.

The Arm floating-point environment can handle an exception by inventing a plausible result for the
operation and returning that result, or by trapping the exception.

For example, the square root of a negative number can produce a NaN, and trying to compute a
value too big to fit in the format can produce infinity. If an exception occurs and is ignored, a flag
is set in the floating-point status word to tell you that something went wrong at some time in the
past.

When an exception occurs, a piece of code called a trap handler is run. The system provides a
default trap handler that prints an error message and terminates the application. However, you can
supply your own trap handlers to clean up the exceptional condition in whatever way you choose.
Trap handlers can even supply a result to be returned from the operation.

For example, if you had an algorithm where it was convenient to assume that 0 divided by 0 was
1, you could supply a custom trap handler for the Invalid Operation exception to identify that
particular case and substitute the answer you required.

Related information
Example of a custom exception handler on page 134
Exception trap handling by signals on page 135
Controlling the Arm floating-point environment on page 126
Arm floating-point compiler extensions to the C99 interface on page 133
C99-compatible functions for controlling the Arm floating-point environment on page 127
__rt_raise() on page 167

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

4.4.8 Exception types recognized by the Arm floating-point environment

The Arm floating-point environment recognizes several different types of exception.

The Arm® Compiler toolchain does not support floating-point exception trapping
for AArch64 targets.

The following types of exception are recognized:

Invalid Operation exception
This occurs when there is no sensible result for an operation. This can happen for any of the
following reasons:

• Performing any operation on a signaling NaN, except the simplest operations (copying
and changing the sign).

• Adding plus infinity to minus infinity, or subtracting an infinity from itself.

• Multiplying infinity by zero.

• Dividing 0 by 0, or dividing infinity by infinity.

• Taking the remainder from dividing anything by 0, or infinity by anything.

• Taking the square root of a negative number (not including minus zero).

• Converting a floating-point number to an integer if the result does not fit.

• Comparing two numbers if one of them is a NaN.

If the Invalid Operation exception is not trapped, these operations return a quiet NaN. The
exception is conversion to an integer. This returns zero because there are no quiet NaNs in
integers.

Divide by Zero exception
This occurs if you divide a finite nonzero number by zero. Be aware that:

• Dividing zero by zero gives an Invalid Operation exception.

• Dividing infinity by zero is valid and returns infinity.

If Divide by Zero is not trapped, the operation returns infinity.

Overflow exception
This occurs when the result of an operation is too big to fit into the format. This happens,
for example, if you add the largest representable number to itself. The largest float value is
0x7F7FFFFF.

If Overflow is not trapped, the operation returns infinity, or the largest finite number,
depending on the rounding mode.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support

Underflow exception
This can occur when the result of an operation is too small to be represented as a normalized
number (with Exp at least 1).

The situations that cause Underflow depend on whether it is trapped or not:

• If Underflow is trapped, it occurs whenever a result is too small to be represented as a
normalized number.

• If Underflow is not trapped, it only occurs if the result requires rounding. So, for example,
dividing the float number 0x00800000 by 2 does not signal Underflow, because the
result 0x00400000 is exact. However, trying to multiply the float number 0x00000001 by
1.5 does signal Underflow.

For readers familiar with the IEEE 754 specification, the chosen
implementation options in the Arm Compiler are to detect tininess before
rounding, and to detect loss of accuracy as an inexact result.

If Underflow is not trapped, the result is rounded to one of the two nearest representable
denormal numbers, according to the current rounding mode. The loss of precision is
ignored and the system returns the best result it can.

• The Inexact Result exception happens whenever the result of an operation requires
rounding. This would cause significant loss of speed if it had to be detected on every
operation in software, so the ordinary floating-point libraries do not support the Inexact
Result exception. The enhanced floating-point libraries, and hardware floating-point
systems, all support Inexact Result.

If Inexact Result is not trapped, the system rounds the result in the usual way.

The flag for Inexact Result is also set by Overflow and Underflow if either one of those is
not trapped.

All exceptions are untrapped by default.

Related information
Exception flag handling on page 129
Example of a custom exception handler on page 134
Exception trap handling by signals on page 135
IEEE 754 arithmetic on page 136
Exceptions arising from IEEE 754 floating-point arithmetic on page 143
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 103
Sample single precision floating-point values for IEEE 754 arithmetic on page 140
IEEE Standard for Floating-Point Arithmetic (IEEE 754), 1985 version

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 201

http://ieeexplore.ieee.org/

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5. The C and C++ Library Functions
Reference

Describes the standard C and C++ library functions that are extensions to the C Standard or that
differ in some way to the standard.

Some of the standard functions interact with the Arm retargetable semihosting environment. Such
functions are also documented.

5.1 __aeabi_errno_addr()
The __aeabi_errno_addr() returns the address of the C library errno variable when the C library
attempts to read or write errno.

Syntax
volatile int *__aeabi_errno_addr(void);

Usage
The library provides a default implementation. It is unlikely that you have to re-implement this
function.

This function is not part of the C library standard, but the Arm® C library supports it as an
extension.

Related information
C Library ABI for the Arm Architecture

5.2 alloca()
Declared in alloca.h, the alloca() function allocates local storage in a function. It returns a pointer
to the number of bytes of memory allocated.

Syntax
void *alloca(size_t size);

Usage
The default implementation returns an eight-byte aligned block of memory on the stack.

Memory returned from alloca() must never be passed to free(). Instead, the memory is de-
allocated automatically when the function that called alloca() returns.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 201

https://developer.arm.com/documentation/ihi0039/d/c-library-abi-for-the-arm-architecture-abi-r210

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

alloca() must not be called through a function pointer. You must take care when
using alloca() and setjmp() in the same function, because memory allocated by
alloca() between calling setjmp() and longjmp() is de-allocated by the call to
longjmp().

This function is a common nonstandard extension to many C libraries.

Returns
Returns in size a pointer to the number of bytes of memory allocated.

Related information
Arm C libraries and thread-safe functions on page 29
Standalone C library functions on page 60

5.3 clock()
This is the standard C library clock function from time.h.

Syntax
clock_t clock(void);

Usage
The default implementation of this function uses semihosting.

If the units of clock_t differ from the default of centiseconds, you must define __CLK_TCK on the
compiler command line or in your own header file. The value in the definition is used for CLK_TCK
and CLOCKS_PER_SEC. The default value is 100 for centiseconds.

If you re-implement clock() you must also re-implement _clock_init().

Returns
The returned value is an unsigned integer.

Related information
Direct semihosting C library function dependencies on page 57

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.4 _clock_init()
Declared in rt_misc.h, the _clock_init() function is an initialization function for clock().

It is not part of the C library standard, but the Arm® C library supports it as an extension.

Syntax
void _clock_init(void);

Usage
This is a function that you can re-implement in an implementation-specific way. It is called from the
library initialization code, so you do not have to call it from your application code.

You must re-implement this function if you re-implement clock().

The initialization that _clock_init() applies enables clock() to return the time that has elapsed
since the program was started.

An example of how you might re-implement _clock_init() might be to set the timer to zero.
However, if your implementation of clock() relies on a system timer that cannot be reset, then
_clock_init() could instead read the time at startup (when called from the library initialization
code), with clock() later subtracting the time that was read at initialization, from the current value
of the timer. In both cases, some form of initialization is required of _clock_init().

Related information
Direct semihosting C library function dependencies on page 57

5.5 __default_signal_handler()
Declared in rt_misc.h, the __default_signal_handler() function handles a raised signal. The
default action is to print an error message and exit.

This function is not part of the C library standard, but the Arm® C library supports it as an
extension.

Syntax
int __default_signal_handler(int signal, intptr_t type);

Usage
The default signal handler returns a nonzero value to indicate that the caller has to arrange for the
program to exit. You can replace the default signal handler by defining:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

int __default_signal_handler(int signal, intptr_t type);

The interface is the same as __raise(), but this function is only called after the C signal handling
mechanism has declined to process the signal.

A complete list of the defined signals is in signal.h.

The signals used by the libraries might change in future releases of Arm Compiler.

Related information
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 103

5.6 errno
The C library errno variable is defined in the implicit static data area of the library.

This area is identified by __user_libspace(). The function that returns the address of errno is:

(*(volatile int *) __aeabi_errno_addr())

You can define __aeabi_errno_addr() if you want to place errno at a user-defined location instead
of the default location identified by __user_libspace().

Legacy versions of errno.h might define errno in terms of __rt_errno_addr()
rather than __aeabi_errno_addr(). The function name __rt_errno_addr() is a
legacy from pre-ABI versions of the tools, and is still supported to ensure that
object files generated with those tools link successfully.

Returns
The return value is a pointer to a variable of type int, containing the currently applicable instance
of errno.

Related information
__aeabi_errno_addr() on page 146

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 149 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.7 _findlocale()
Declared in rt_locale.h, _findlocale() searches a set of contiguous locale data blocks for the
requested locale, and returns a pointer to that locale.

This function is not part of the C library standard, but the Arm® C library supports it as an
extension.

Syntax
void const *_findlocale(void const *index, const char *name);

Where:

index

is a pointer to a set of locale data blocks that are contiguous in memory and that end with a
terminating value (set by the LC_index_end macro).

name

is the name of the locale to find.

Usage
You can use _findlocale() as an optional helper function when defining your own locale setup.

The _get_lc_<*>() functions, for example, _get_lc_ctype(), are expected to return a pointer
to a locale definition created using the assembler macros. If you only want to write one locale
definition, you can write an implementation of _get_lc_ctype() that always returns the same
pointer. However, if you want to use different locale definitions at runtime, then the _get_lc_<*>()
functions have to be able to return a different data block depending on the name passed to them
as an argument. _findlocale() provides an easy way to do this.

Returns
Returns a pointer to the requested data block.

Related information
Assembler macros that tailor locale functions in the C library on page 71
Link time selection of the locale subsystem in the C library on page 71
Runtime selection of the locale subsystem in the C library on page 73
Definition of locale data blocks in the C library on page 73

5.8 _fisatty()
Declared in stdio.h, the _fisatty() function determines whether the given stdio stream is
attached to a terminal device or a normal file.

It calls the _sys_istty() low-level function on the underlying file handle.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

This function is not part of the C library standard, but the Arm® C library supports it as an
extension.

Syntax
int _fisatty(FILE *stream);

The return value indicates the stream destination:

0
A file.

1
A terminal.

Negative
An error.

Related information
_sys_istty() on page 174

5.9 _get_lconv()
Declared in locale.h, _get_lconv() performs the same function as the standard C library function,
localeconv(), except that it delivers the result in user-provided memory instead of an internal
static variable.

_get_lconv() sets the components of an lconv structure with values appropriate for the formatting
of numeric quantities.

Syntax
void _get_lconv(struct lconv *lc);

Usage
This extension to the ISO C library does not use any static data. If you are building an application
that must conform strictly to the ISO C standard, use localeconv() instead.

Returns
The existing lconv structure lc is filled with formatting data.

Related information
_findlocale() on page 149
lconv structure on page 154
localeconv() on page 156
setlocale() on page 168

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.10 getenv()
This is the standard C library getenv() function from stdlib.h. It gets the value of a specified
environment variable.

Syntax
char *getenv(const char *name);

Usage
The default implementation returns NULL, indicating that no environment information is available.

If you re-implement getenv(), Arm recommends that you re-implement it in such a way that it
searches some form of environment list for the input string, name. The set of environment names
and the method for altering the environment list are implementation-defined. getenv() does not
depend on any other function, and no other function depends on getenv().

A function closely associated with getenv() is _getenv_init(). _getenv_init() is called during
startup if it is defined, to enable a user re-implementation of getenv() to initialize itself.

Returns
The return value is a pointer to a string associated with the matched list member. The array
pointed to must not be modified by the program, but might be overwritten by a subsequent call to
getenv().

5.11 _getenv_init()
Declared in rt_misc.h, the _getenv_init() function enables a user version of getenv() to initialize
itself.

This function is not part of the C library standard, but the Arm® C library supports it as an
extension.

Syntax
void _getenv_init(void);

Usage
If this function is defined, the C library initialization code calls it when the library is initialized, that
is, before main() is entered.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.12 __heapstats()
Declared in stdlib.h, the __heapstats() function displays statistics on the state of the storage
allocation heap.

Syntax
void __heapstats(int (*dprint)(void *param, char const *format,...), void *param);

Usage
The default implementation in the compiler gives information on how many free blocks exist, and
estimates their size ranges.

The __heapstats() function generates output as follows:

32272 bytes in 2 free blocks (avge size 16136)
1 blocks 2^12+1 to 2^13
1 blocks 2^13+1 to 2^14

Line 1 of the output displays the total number of bytes, the number of free blocks, and the average
size. The following lines give an estimate of the size of each block in bytes, expressed as a range.
__heapstats() does not give information on the number of used blocks.

The function outputs its results by calling the output function dprint(), that must work like
fprintf(). The first parameter passed to *dprint() is the supplied pointer *param. You can pass
fprintf() itself, provided you cast it to the right function pointer type. This type is defined as a
typedef for convenience. It is called __heapprt. For example:

__heapstats((__heapprt)fprintf, stderr);

If you call fprintf() on a stream that you have not already sent output to, the
library calls malloc() internally to create a buffer for the stream. If this happens in
the middle of a call to __heapstats(), the heap might be corrupted. Therefore, you
must ensure you have already sent some output to stderr.

If you are using the default one-region memory model, heap memory is allocated only as it is
required. This means that the amount of free heap changes as you allocate and deallocate memory.
For example, the sequence:

int *ip;
__heapstats((__heapprt)fprintf,stderr); // print initial free heap size
ip = malloc(200000);
free(ip);
__heapstats((__heapprt)fprintf,stderr); // print heap size after freeing

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 153 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

gives output such as:

4076 bytes in 1 free blocks (avge size 4076)
1 blocks 2^10+1 to 2^11
2008180 bytes in 1 free blocks (avge size 2008180)
1 blocks 2^19+1 to 2^20

This function is not part of the C library standard, but the Arm® C library supports it as an
extension.

5.13 __heapvalid()
Declared in stdlib.h, the __heapvalid() function performs a consistency check on the heap.
This function assumes a single contiguous block of memory for the heap. If you use the
__rt_heap_extend() function to add a non-contiguous block of memory to the heap, then you
must not use __heapvalid().

Syntax
int __heapvalid(int (*dprint)(void *param, char const *format,...), void *param, int
 verbose);

Usage
__heapvalid() outputs full information about every free block if the parameter is nonzero.
Otherwise, it only outputs errors.

The function outputs its results by calling the output function dprint(), that must work like
fprintf(). The first parameter passed to *dprint() is the supplied pointer *param. You can pass
fprintf() itself, provided you cast it to the right function pointer type. This type is defined as a
typedef for convenience. It is called __heapprt. For example:

__heapvalid((__heapprt) fprintf, stderr, 0);

If you call fprintf() on a stream that you have not already sent output to, the
library calls malloc() internally to create a buffer for the stream. If this happens
in the middle of a call to __heapvalid(), the heap might be corrupted. You must
therefore ensure you have already sent some output to stderr. The example code
fails if you have not already written to the stream.

This function is not part of the C library standard, but the Arm® C library supports it as an
extension.

Related information
__rt_heap_extend() on page 164

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 154 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.14 lconv structure
Defined in locale.h, the lconv structure contains numeric formatting information

The structure is filled by the functions _get_lconv() and localeconv().

The definition of lconv from locale.h is as follows.

struct lconv {
 char *decimal_point;
 /* The decimal point character used to format non monetary quantities */
 char *thousands_sep;
 /* The character used to separate groups of digits to the left of the */
 /* decimal point character in formatted non monetary quantities. */
 char *grouping;
 /* A string whose elements indicate the size of each group of digits */
 /* in formatted non monetary quantities. See below for more details. */
 char *int_curr_symbol;
 /* The international currency symbol applicable to the current locale.*/
 /* The first three characters contain the alphabetic international */
 /* currency symbol in accordance with those specified in ISO 4217. */
 /* Codes for the representation of Currency and Funds. The fourth */
 /* character (immediately preceding the null character) is the */
 /* character used to separate the international currency symbol from */
 /* the monetary quantity. */
 char *currency_symbol;
 /* The local currency symbol applicable to the current locale. */
 char *mon_decimal_point;
 /* The decimal point used to format monetary quantities. */
 char *mon_thousands_sep;
 /* The separator for groups of digits to the left of the decimal point*/
 /* in formatted monetary quantities. */
 char *mon_grouping;
 /* A string whose elements indicate the size of each group of digits */
 /* in formatted monetary quantities. See below for more details. */
 char *positive_sign;
 /* The string used to indicate a non negative-valued formatted */
 /* monetary quantity. */
 char *negative_sign;
 /* The string used to indicate a negative-valued formatted monetary */
 /* quantity. */
 char int_frac_digits;
 /* The number of fractional digits (those to the right of the */
 /* decimal point) to be displayed in an internationally formatted */
 /* monetary quantities. */
 char frac_digits;
 /* The number of fractional digits (those to the right of the */
 /* decimal point) to be displayed in a formatted monetary quantity. */
 char p_cs_precedes;
 /* Set to 1 or 0 if the currency_symbol respectively precedes or */
 /* succeeds the value for a non negative formatted monetary quantity. */
 char p_sep_by_space;
 /* Set to 1 or 0 if the currency_symbol respectively is or is not */
 /* separated by a space from the value for a non negative formatted */
 /* monetary quantity. */
 char n_cs_precedes;
 /* Set to 1 or 0 if the currency_symbol respectively precedes or */
 /* succeeds the value for a negative formatted monetary quantity. */
 char n_sep_by_space;
 /* Set to 1 or 0 if the currency_symbol respectively is or is not */
 /* separated by a space from the value for a negative formatted */
 /* monetary quantity. */
 char p_sign_posn;
 /* Set to a value indicating the position of the positive_sign for a */
 /* non negative formatted monetary quantity. See below for more details*/
 char n_sign_posn;

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 155 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

 /* Set to a value indicating the position of the negative_sign for a */
 /* negative formatted monetary quantity. */
};

The elements of grouping and mon_grouping are interpreted as follows:

CHAR_MAX

No additional grouping is to be performed.

0

The previous element is repeated for the remainder of the digits.

other

The value is the number of digits that comprise the current group. The next element is
examined to determine the size of the next group of digits to the left of the current group.

The value of p_sign_posn and n_sign_posn are interpreted as follows:

0

Parentheses surround the quantity and currency symbol.

1

The sign string precedes the quantity and currency symbol.

2

The sign string is after the quantity and currency symbol.

3

The sign string immediately precedes the currency symbol.

4

The sign string immediately succeeds the currency symbol.

Related information
_findlocale() on page 149
_get_lconv() on page 151
localeconv() on page 156
setlocale() on page 168

5.15 localeconv()
Declared in stdlib.h, localeconv() creates and sets the components of an lconv structure with
values appropriate for the formatting of numeric quantities according to the rules of the current
locale.

Syntax
struct lconv *localeconv(void);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

Usage
The members of the structure with type char * are strings. Any of these, except for
decimal_point, can point to an empty string, "", to indicate that the value is not available in the
current locale or is of zero length.

The members with type char are non-negative numbers. Any of the members can be CHAR_MAX to
indicate that the value is not available in the current locale.

This function is not thread-safe, because it uses an internal static buffer. _get_lconv() provides a
thread-safe alternative.

Returns
The function returns a pointer to the filled-in object. The structure pointed to by the return value
is not modified by the program, but might be overwritten by a subsequent call to the localeconv()
function. In addition, calls to the setlocale() function with categories LC_ALL, LC_MONETARY, or
LC_NUMERIC might overwrite the contents of the structure.

Related information
_findlocale() on page 149
lconv structure on page 154
_get_lconv() on page 151
setlocale() on page 168

5.16 _membitcpybl(), _membitcpybb(), _membitcpyhl(),
_membitcpyhb(), _membitcpywl(), _membitcpywb(),
_membitmovebl(), _membitmovebb(),
_membitmovehl(), _membitmovehb(),
_membitmovewl(), _membitmovewb()

Similar to the standard C library memcpy() and memmove() functions, these nonstandard C library
functions provide bit-aligned memory operations.

They are Declared in string.h.

Syntax
void _membitcpy[b|h|w][b|l](void *dest, const void *src, int dest_offset, int
 src_offset, size_t nbits);

void _membitmove[b|h|w][b|l](void *dest, const void *src, int dest_offset, int
 src_offset, size_t nbits);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

Usage
The number of contiguous bits specified by nbits is copied, or moved (depending on the function
being used), from a memory location starting src_offset bits after (or before if a negative offset)
the address pointed to by src, to a location starting dest_offset bits after (or before if a negative
offset) the address pointed to by dest.

To define a contiguous sequence of bits, a form of ordering is required. The variants of each
function define this order, as follows:

• Functions whose second-last character is b, for example _membitcpybl(), are byte-oriented.
Byte-oriented functions consider all of the bits in one byte to come before the bits in the next
byte.

• Functions whose second-last character is h are halfword-oriented.

• Functions whose second-last character is w are word-oriented.

Within each byte, halfword, or word, the bits can be considered to go in different order depending
on the endianness. Functions ending in b, for example _membitmovewb(), are bitwise big-endian.
This means that the Most Significant Bit (MSB) of each byte, halfword, or word (as appropriate) is
considered to be the first bit in the word, and the Least Significant Bit (LSB) is considered to be the
last. Functions ending in l are bitwise little-endian. They consider the LSB to come first and the
MSB to come last.

As with memcpy() and memmove(), the bitwise memory copying functions copy as fast as they can in
their assumption that source and destination memory regions do not overlap, whereas the bitwise
memory move functions ensure that source data in overlapping regions is copied before being
overwritten.

On a little-endian platform, the bitwise big-endian functions are distinct, but the bitwise little-
endian functions use the same bit ordering, so they are synonymous symbols that refer to the same
function. On a big-endian platform, the bitwise big-endian functions are all effectively the same,
but the bitwise little-endian functions are distinct.

5.17 _platform_pre_stackheap_init()
If defined, _platform_pre_stackheap_init is called by __rt_entry before stack and heap
initialization. Define this function to perform hardware initialization after scatter-loading but before
stack and heap initialization.

Because _platform_pre_stackheap_init is called before the stack initialization, either it must not
use the stack or the SP must already be valid.

Invalidating the Armv8 instruction cache
To invalidate the Arm®v8 instruction cache after scatter-loading and before initialization of the
stack and heap, you must:

• Implement instruction cache invalidation code in _platform_pre_stackheap_init.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

• Ensure that all code that is executed from the program entry, up to and including
_platform_pre_stackheap_init, is located in a root region.

Where a processor starts in AArch64 state, then switches to AArch32 state, it is possible that
addresses are speculatively prefetched, and therefore cached, while in AArch64 state. If the MMU
has remained off while in AArch64 state, a processor is allowed to speculatively prefetch from any
address either within:

• The same page as an architecturally executed instruction.

• The following page, where page is the smallest supported granule sizeof for the processor.

If you have AArch64 startup code that switches to AArch32 state to run __main and then run C/C+
+ applications, then the cache invalidation must be done in AArch32 state.

Example
Invalidate caches in AArch64 as follows:

_platform_pre_stackheap_init:
 dsb ish // ensure all previous stores have completed
 // before invalidating
 ic ialluis // I cache invalidate all inner shareable to PoU
 // (which includes secondary cores)
 dsb ish // ensure completion on inner shareable domain
 // (which includes secondary cores)
 isb
 b InvalidateUDCaches // only needed if the MMU is on at this point

b is a tail-call to avoid saving the return address.

Related information
__rt_entry on page 162
Placing code in a root region

5.18 posix_memalign()
Declared in stdlib.h, the posix_memalign() function provides aligned memory allocation.

This function is fully POSIX-compliant.

Syntax
int posix_memalign(void **memptr, size_t alignment, size_t size);

Usage
This function allocates size bytes of memory at an address that is a multiple of alignment.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 201

https://developer.arm.com/documentation/dui0803/l/Scatter-loading-Features/Placement-of-Arm-C-and-C---library-code/Placing-code-in-a-root-region

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

The value of alignment must be a power of two and a multiple of sizeof(void *).

You can free memory allocated by posix_memalign() using the standard C library free() function.

Returns
The returned address is written to the void * variable pointed to by memptr.

The integer return value from the function is zero on success, or an error code on failure.

If no block of memory can be found with the requested size and alignment, the function returns
ENOMEM and the value of *memptr is undefined.

Related information
The Open Group Base Specifications, IEEE Std 1003.1

5.19 __raise()
Declared in rt_misc.h, the __raise() function raises a signal to indicate a runtime anomaly.

It is not part of the C library standard, but the Arm® C library supports it as an extension.

Syntax
int __raise(int signal, intptr_t type);

where:

signal

is an integer that holds the signal number.

type

is an integer, string constant or variable that provides additional information about the
circumstances that the signal was raised in, for some kinds of signal.

Usage
If the user has configured the handling of the signal by calling signal() then __raise() takes the
action specified by the user. That is, either to ignore the signal or to call the user-provided handler
function. Otherwise, __raise() calls __default_signal_handler(), which provides the default
signal handling behavior.

You can replace the __raise() function by defining:

int __raise(int signal, intptr_t type);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 201

http://www.opengroup.org

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

This enables you to bypass the C signal mechanism and its data-consuming signal handler vector,
but otherwise gives essentially the same interface as:

int __default_signal_handler(int signal, intptr_t type);

The default signal handler of the library uses the type parameter of __raise() to vary the
messages it outputs.

Returns
There are three possibilities for a __raise() return condition:

no return
The handler performs a long jump or restart.

0
The signal was handled.

nonzero
The calling code must pass that return value to the exit code. The default library
implementation calls _sys_exit(rc) if __raise() returns a nonzero return code rc.

Related information
Thread safety in the Arm C library on page 37
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 103

5.20 _rand_r()
Declared in stdlib.h, the _rand_r() function is a reentrant version of the rand() function.

Syntax
int _rand_r(struct _rand_state * buffer);

where:

buffer

is a pointer to a user-supplied buffer storing the state of the random number generator.

Usage
This function enables you to explicitly supply your own buffer in thread-local storage.

Related information
_srand_r() on page 169

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.21 remove()
This function is the standard C library remove() function from stdio.h.

Syntax
int remove(const char *filename);

Usage
The default implementation of this function uses semihosting.

remove() causes the file whose name is the string pointed to by *filename to be removed.
Subsequent attempts to open the file result in failure, unless it is created again. If the file is open,
the behavior of the remove() function is implementation-defined.

Returns
Returns zero if the operation succeeds or nonzero if it fails.

Related information
Direct semihosting C library function dependencies on page 57

5.22 rename()
This is the standard C library rename() function from stdio.h.

Syntax
int rename(const char *old, const char *new);

Usage
The default implementation of this function uses semihosting.

rename() causes the file with a name that is the string pointed to by old to be later known by
the name given by the string pointed to by new. The file named old is effectively removed. If a file
named by the string pointed to by new exists prior to the call of the rename() function, the behavior
is implementation-defined.

Returns
Returns zero if the operation succeeds or nonzero if it fails. If the operation returns nonzero and
the file existed previously it is still known by its original name.

Related information
Direct semihosting C library function dependencies on page 57

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 162 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.23 __rt_entry
The symbol __rt_entry is the starting point for a program using the Arm® C library.

Control passes to __rt_entry after all scatter-loaded regions have been relocated to their
execution addresses.

Usage
The default implementation of __rt_entry:

1. Performs hardware initialization by calling _platform_pre_stackheap_init(), if this function is
defined.

2. Sets up the heap and stack.

3. Initializes the C library by calling __rt_lib_init.

4. Calls main().

5. Shuts down the C library, by calling __rt_lib_shutdown.

6. Exits.

__rt_entry must end with a call to one of the following functions:

exit()
Calls atexit()-registered functions and shuts down the library.

__rt_exit()
Shuts down the library but does not call atexit() functions.

_sys_exit()
Exits directly to the execution environment. It does not shut down the library and does not
call atexit() functions.

Related information
_platform_pre_stackheap_init() on page 158

5.24 __rt_exit()
Declared in rt_misc.h, the __rt_exit() function shuts down the library but does not call functions
registered with atexit().

atexit() -registered functions are called by exit().

The __rt_exit() function is not part of the C library standard, but the Arm® C library supports it
as an extension.

Syntax
void __rt_exit(int code);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

Where code is not used by the standard function.

Usage
Shuts down the C library by calling __rt_lib_shutdown(), and then calls _sys_exit() to terminate
the application. Reimplement _sys_exit() rather than __rt_exit().

Returns
This function does not return.

Related information
_sys_exit() on page 173

5.25 __rt_fp_status_addr()
Declared in rt_fp.h, the __rt_fp_status_addr() function returns the address of the floating-point
status word.

By default, the floating-point status word resides in __user_libspace.

This function is not part of the C library standard, but the Arm® C library supports it as an
extension.

Syntax
unsigned *__rt_fp_status_addr(void);

Usage
If __rt_fp_status_addr() is not defined, the default implementation from the C library is used. The
value is initialized when __rt_lib_init() calls _fp_init(). The constants for the status word are
listed in fenv.h. The default floating-point status is 0.

Returns
The address of the floating-point status word.

Related information
Thread safety in the Arm C library on page 37

5.26 __rt_heap_extend()
Declared in rt_heap.h, the __rt_heap_extend() function returns a new aligned block of memory to
add to the heap, if possible.

If you reimplement __rt_stackheap_init(), you must reimplement this function. An incomplete
prototype implementation is in rt_memory.s.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 164 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

This function is not part of the C library standard, but the Arm® C library supports it as an
extension.

Syntax
extern size_t __rt_heap_extend(size_t size, void **block);

Usage
The calling convention is ordinary AAPCS. On entry, r0 is the minimum size of the block to add,
and r1 holds a pointer to a location to store the base address.

The default implementation has the following characteristics:

• The returned size is one of the following:

◦ In AArch32 state, a multiple of 8 bytes of at least the requested size.

◦ In AArch64 state, a multiple of 16 bytes of at least the requested size.

◦ 0, denoting that the request cannot be honored.

• The returned base address is aligned on:

◦ In AArch32 state, an 8-byte boundary.

◦ In AArch64 state, a 16-byte boundary.

• Size is measured in bytes.

• The function is subject only to Arm Architecture Procedure Call Standard (AAPCS) constraints.

Returns
The default implementation extends the heap if there is sufficient free heap memory. If it cannot,
it calls __user_heap_extend() if it is implemented. On exit, r0 is the size of the block acquired, or
0 if nothing could be obtained, and the memory location r1 pointed to on entry contains the base
address of the block.

Related information
Stack pointer initialization and heap bounds on page 85

5.27 __rt_lib_init()
Declared in rt_misc.h, this is the library initialization function and is the companion to
__rt_lib_shutdown().

Syntax
For AArch32 targets:

extern __attribute__((value_in_regs)) struct __argc_argv __rt_lib_init(unsigned
 heapbase, unsigned heaptop);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 165 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

For AArch64 targets:

extern __attribute__((value_in_regs)) struct __argc_argv __rt_lib_init(unsigned long
 heapbase, unsigned long heaptop);

where:

heapbase

is the start of the heap memory block.

heaptop

is the end of the heap memory block.

Usage
This function is called immediately after __rt_stackheap_init() and is passed an initial chunk of
memory to use as a heap. This function is the standard Arm® C library initialization function and it
must not be reimplemented.

Returns
This function returns argc and argv ready to be passed to main(). The structure is returned in the
registers.

For AArch32 targets:

struct __argc_argv
{ int argc;
 char **argv;
 void *r2; // optional extra arguments that on entry to main() are
 void *r3; // found in registers R2 and R3.
};

For AArch64 targets:

struct __argc_argv
{ long argc;
 char **argv;
 void *r2; // optional extra arguments that on entry to main() are
 void *r3; // found in registers X2 (alias for R2) and X3 (alias for R3).
};

5.28 __rt_lib_shutdown()
Declared in rt_misc.h, __rt_lib_shutdown() is the library shutdown function and is the
companion to __rt_lib_init().

Syntax
void __rt_lib_shutdown(void);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

Usage
This function is provided in case a user must call it directly. This is the standard Arm® C library
shutdown function and it must not be reimplemented.

5.29 __rt_raise()
Declared in rt_misc.h, the __rt_raise() function raises a signal to indicate a runtime anomaly.

This function is not part of the C library standard, but the Arm® C library supports it as an
extension.

Syntax
void __rt_raise(int signal, intptr_t type);

where:

signal

is an integer that holds the signal number.

type

is an integer, string constant or variable that provides additional information about the
circumstances that the signal was raised in, for some kinds of signal.

Usage
Redefine this function to replace the entire signal handling mechanism for the library. The default
implementation calls __raise().

Depending on the value returned from __raise():

no return
The handler performed a long jump or restart and __rt_raise() does not regain control.

0
The signal was handled and __rt_raise() exits.

nonzero
The default library implementation calls _sys_exit(rc) if __raise() returns a nonzero return
code rc.

Related information
ISO-compliant implementation of signals supported by the signal() function in the C library and
additional type arguments on page 103

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 167 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.30 __rt_stackheap_init()
The __rt_stackheap_init() function sets up the stack pointer and returns a region of memory for
use as the initial heap.

It is called from the library initialization code.

On return from this function, SP must point to the top of the stack region, r0 must point to the
base of the heap region, and r1 must point to the limit of the heap region.

A user-defined memory model (that is, __rt_stackheap_init() and __rt_heap_extend()) is
allocated 16 bytes of storage from the __user_perproc_libspace area if wanted. It accesses this
storage by calling __rt_stackheap_storage() to return a pointer to its 16-byte region.

This function is not part of the C library standard, but the Arm® C library supports it as an
extension.

Related information
Stack pointer initialization and heap bounds on page 85

5.31 setlocale()
Declared in locale.h, the setlocale() function selects the appropriate locale as specified by the
category and locale arguments.

Syntax
char *setlocale(int category, const char *locale);

Usage
Use the setlocale() function to change or query part or all of the current locale. The effect of the
category argument for each value is:

LC_COLLATE

Affects the behavior of strcoll().

LC_CTYPE

Affects the behavior of the character handling functions.

LC_MONETARY

Affects the monetary formatting information returned by localeconv().

LC_NUMERIC

Affects the decimal-point character for the formatted input/output functions and the string
conversion functions and the numeric formatting information returned by localeconv().

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 168 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

LC_TIME

Can affect the behavior of strftime(). For currently supported locales, the option has no
effect.

LC_ALL

Affects all locale categories. This is the bitwise OR of all the locale categories.

A value of "C" for locale specifies the minimal environment for C translation. An empty string,
"", for locale specifies the implementation-defined native environment. At program startup, the
equivalent of setlocale(LC_ALL, "C") is executed.

Valid locale values depend on which __use_X_ctype symbol is imported (__use_iso8859_ctype,
__use_sjis_ctype, or __use_utf8_ctype), and on user-defined locales.

Only one __use_X_ctype symbol can be imported.

Returns
If a pointer to a string is given for locale and the selection is valid, the string associated with the
specified category for the new locale is returned. If the selection cannot be honored, a null pointer
is returned and the locale is not changed.

A null pointer for locale causes the string associated with the category for the current locale to be
returned and the locale is not changed.

If category is LC_ALL and the most recent successful locale-setting call uses a category other than
LC_ALL, a composite string might be returned. The string returned when used in a subsequent call
with its associated category restores that part of the program locale. The string returned is not
modified by the program, but might be overwritten by a subsequent call to setlocale().

Related information
ISO8859-1 implementation on page 72
Shift-JIS and UTF-8 implementation on page 73
Definition of locale data blocks in the C library on page 73

5.32 _srand_r()
Declared in stdlib.h, this is a reentrant version of the srand() function.

Syntax
int _srand_r(struct _rand_state * buffer, unsigned int seed);

where:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 169 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

buffer

is a pointer to a user-supplied buffer storing the state of the random number generator.

seed

is a seed for a new sequence of pseudo-random numbers to be returned by subsequent calls
to _rand_r().

Usage
This function enables you to explicitly supply your own buffer that can be used for thread-local
storage.

If _srand_r() is repeatedly called with the same seed value, the same sequence of pseudo-random
numbers is repeated. If _rand_r() is called before any calls to _srand_r() have been made with the
same buffer, undefined behavior occurs because the buffer is not initialized.

Related information
_rand_r() on page 161

5.33 strcasecmp()
Declared in string.h, the strcasecmp() function performs a case-insensitive string comparison
test.

Syntax
extern _ARMABI int strcasecmp(const char *s1, const char *s2);

Related information
Application Binary Interface for the Arm Architecture

5.34 strlcat()
Declared in string.h, the strlcat() function concatenates two strings.

Syntax
extern size_t strlcat(char *dst, const char *src, size_t size);

Usage
strlcat() appends up to size-strlen(dst)-1 bytes from the NUL-terminated string src to the end
of dst. It takes the full size of the buffer, not only the length, and terminates the result with NUL as
long as size is greater than 0. Include a byte for the NUL in your size value.

The strlcat() function returns the total length of the string that would have been created if there
was unlimited space. This might or might not be equal to the length of the string actually created,

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 201

https://developer.arm.com/documentation/ihi0036/latest

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

depending on whether there was enough space. This means that you can call strlcat() once to
find out how much space is required, then allocate it if you do not have enough, and finally call
strlcat() a second time to create the required string.

This function is a common BSD-derived extension to many C libraries.

5.35 strlcpy()
Declared in string.h, the strlcpy() function copies up to size-1 characters from the NUL-
terminated string src to dst.

Syntax
extern size_t strlcpy(char *dst, const char *src, size_t size);

Usage
strlcpy() takes the full size of the buffer, not only the length, and terminates the result with NUL as
long as size is greater than 0. Include a byte for the NUL in your size value.

The strlcpy() function returns the total length of the string that would have been copied if there
was unlimited space. This might or might not be equal to the length of the string actually copied,
depending on whether there was enough space. This means that you can call strlcpy() once to
find out how much space is required, then allocate it if you do not have enough, and finally call
strlcpy() a second time to do the required copy.

This function is a common BSD-derived extension to many C libraries.

5.36 strncasecmp()
Declared in string.h, the strncasecmp() function performs a case-insensitive string comparison
test of not more than a specified number of characters.

Syntax
extern _ARMABI int strncasecmp(const char *s1, const char *s2, size_t n);

Related information
Application Binary Interface for the Arm Architecture

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 171 of 201

https://developer.arm.com/documentation/ihi0036/latest

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.37 _sys_close()
Declared in rt_sys.h, the _sys_close() function closes a file previously opened with _sys_open().

Syntax
int _sys_close(FILEHANDLE fh);

Usage
This function must be defined if any input/output function is to be used.

Returns
The return value is 0 if successful. A nonzero value indicates an error.

Related information
Direct semihosting C library function dependencies on page 57

5.38 _sys_command_string()
Declared in rt_sys.h, the _sys_command_string() function retrieves the command line that
invoked the current application from the environment that called the application.

Syntax
char *_sys_command_string(char *cmd, int len);

where:

cmd

is a pointer to a buffer that can store the command line. It is not required that the command
line is stored in cmd.

len

is the length of the buffer.

Usage
This function is called by the library startup code to set up argv and argc to pass to main().

You must not assume that the C library is fully initialized when this function is
called. For example, you must not call malloc() from within this function. This is
because the C library startup sequence calls this function before the heap is fully
configured.

Returns
The function must return either:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 172 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

• A pointer to the command line, if successful. This can be either a pointer to the cmd buffer if it
is used, or a pointer to wherever else the command line is stored.

• NULL, if not successful.

Related information
Direct semihosting C library function dependencies on page 57

5.39 _sys_ensure()
This function is deprecated. It is never called by any other library function, and you are not required
to re-implement it if you are retargeting standard I/O (stdio).

5.40 _sys_exit()
Declared in rt_sys.h, this is the library exit function. All exits from the library eventually call
_sys_exit().

Syntax
void _sys_exit(int return_code);

Usage
This function must not return. You can intercept application exit at a higher level by either:

• Implementing the C library function exit() as part of your application. You lose atexit()
processing and library shutdown if you do this.

• Implementing the function __rt_exit(int n) as part of your application. You lose library
shutdown if you do this, but atexit() processing is still performed when exit() is called or
main() returns.

Returns
The return code is advisory. An implementation might attempt to pass it to the execution
environment.

Related information
Direct semihosting C library function dependencies on page 57

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 173 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.41 _sys_flen()
Declared in rt_sys.h, the _sys_flen() function returns the current length of a file.

Syntax
long _sys_flen(FILEHANDLE fh);

Usage
This function is used by _sys_seek() to convert an offset relative to the end of a file into an offset
relative to the beginning of the file.

You do not have to define _sys_flen() if you do not intend to use fseek().

If you retarget at system _sys_<*>() level, you must supply _sys_flen(), even if the underlying
system directly supports seeking relative to the end of a file.

Returns
This function returns the current length of the file fh, or a negative error indicator.

Related information
Direct semihosting C library function dependencies on page 57

5.42 _sys_istty()
Declared in rt_sys.h, the _sys_istty() function determines whether a file handle is attached to
an interactive device.

Syntax
int _sys_istty(FILEHANDLE fh);

Usage
The Arm® libraries call __sys_istty() to determine whether a file handle (that is being used for an
output file stream) is attached to an interactive device.

For file streams that are attached to interactive devices, the Arm library:

• Provides unbuffered behavior by default, in the absence of a call to setbuf() or setvbuf().

• Prohibits seeking.

Restriction
stdin, stdout, and stderr are assumed to be interactive devices. They are line-buffered at program
startup, regardless of what _sys_istty reports for them. An exception is if they have been
redirected on the command line.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

This restriction does not apply when using microlib. In microlib, stdin, stdout, and
stderr are always unbuffered.

Returns
The return value is one of the following values:

0
fh is not attached to an interactive device.

1
fh is attached to an interactive device.

other
An error occurred.

Related information
Direct semihosting C library function dependencies on page 57

5.43 _sys_open()
Declared in rt_sys.h, the _sys_open() function opens a file.

Syntax
FILEHANDLE _sys_open(const char *name, int openmode);

Usage
The _sys_open() function is required by fopen() and freopen(). These functions in turn are
required if any file input/output function is to be used.

The parameter is a bitmap whose bits mostly correspond directly to the ISO mode specification.
Target-dependent extensions are possible, but freopen() must also be extended.

Returns
The return value is -1 if an error occurs.

Related information
Direct semihosting C library function dependencies on page 57

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 175 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.44 _sys_read()
Declared in rt_sys.h, the _sys_read() function reads the contents of a file into a buffer.

Syntax
int _sys_read(FILEHANDLE fh, unsigned char *buf, unsigned len, int mode);

The mode parameter is here for historical reasons. It contains nothing useful and
must be ignored.

Returns
The return value is one of the following:

• The number of bytes not read (that is, minus the number of bytes that were read).

• An error indication.

• An EOF indicator. The EOF indication involves the setting of 0x80000000 in the normal result.

Reading up to and including the last byte of data does not turn on the EOF indicator. The EOF
indicator is only reached when an attempt is made to read beyond the last byte of data. The target-
independent code is capable of handling:

• The EOF indicator being returned in the same read as the remaining bytes of data that precede
the EOF.

• The EOF indicator being returned on its own after the remaining bytes of data have been
returned in a previous read.

Related information
Direct semihosting C library function dependencies on page 57

5.45 _sys_seek()
Declared in rt_sys.h, the _sys_seek() function puts the file pointer at offset pos from the
beginning of the file.

Syntax
int _sys_seek(FILEHANDLE fh, long pos);

Usage
This function sets the current read or write position to the new location pos relative to the start of
the current file fh.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

Returns
The result is:

• Negative if an error occurs.

• Non-negative if no error occurs.

Related information
Direct semihosting C library function dependencies on page 57

5.46 _sys_tmpnam()
Declared in rt_sys.h, the _sys_tmpnam() function converts the file number fileno for a temporary
file to a unique filename, for example, tmp0001.

Syntax
void _sys_tmpnam(char *name, int fileno, unsigned maxlength);

Usage
The function must be defined if tmpnam() or tmpfile() is used.

Returns
Returns the filename in name.

Related information
Direct semihosting C library function dependencies on page 57

5.47 _sys_write()
Declared in rt_sys.h, the _sys_write() function writes the contents of a buffer to a file previously
opened with _sys_open().

Syntax
int _sys_write(FILEHANDLE fh, const unsigned char *buf, unsigned len, int mode);

The mode parameter is here for historical reasons. It contains nothing useful and
must be ignored.

Returns
The return value is either:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 177 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

• A positive number representing the number of characters not written (so any nonzero return
value denotes a failure of some sort).

• A negative number indicating an error.

Related information
Direct semihosting C library function dependencies on page 57

5.48 system()
This is the standard C library system() function from stdlib.h.

Syntax
int system(const char *string);

Usage
The default implementation of this function uses semihosting.

system() passes the string pointed to by string to the host environment to be executed by a
command processor in an implementation-defined manner. A null pointer can be used for string,
to inquire whether a command processor exists.

Returns
If the argument is a NULL pointer, the system function returns nonzero only if a command processor
is available.

If the argument is not a NULL pointer, the system() function returns an implementation-defined
value.

Related information
Direct semihosting C library function dependencies on page 57

5.49 time()
This is the standard C library time() function from time.h.

The default implementation of this function uses semihosting.

Syntax
time_t time(time_t *timer);

The return value is an approximation of the current calendar time.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

Returns
The value ((time_t)-1) is returned if the calendar time is not available. If timer is not a NULL
pointer, the return value is also stored in timer.

Related information
Direct semihosting C library function dependencies on page 57

5.50 _ttywrch()
Declared in rt_sys.h, the _ttywrch() function writes a character to the console.

The console might have been redirected. You can use this function as a last resort error handling
routine.

Syntax
void _ttywrch(int ch);

Usage
The default implementation of this function uses semihosting.

You can redefine this function, or __raise(), even if there is no other input/output. For example, it
might write an error message to a log kept in nonvolatile memory.

Related information
Direct semihosting C library function dependencies on page 57

5.51 __user_heap_extend()
Declared in rt_misc.h, the __user_heap_extend() function can be defined to return extra blocks of
memory, separate from the initial one, to be used by the heap.

If defined, this function must return the size and base address of an eight-byte aligned heap
extension block.

Syntax
extern size_t __user_heap_extend(int var0, void **base, size_t requested_size);

Usage
There is no default implementation of this function. If you define this function, it must have the
following characteristics:

• The returned size is one of the following:

◦ In AArch32 state, a multiple of 8 bytes of at least the requested size.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 179 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

◦ In AArch64 state, a multiple of 16 bytes of at least the requested size.

◦ 0, denoting that the request cannot be honored.

• The returned base address is aligned on:

◦ In AArch32 state, an 8-byte boundary.

◦ In AArch64 state, a 16-byte boundary.

• Size is measured in bytes.

• The function is subject only to Procedure Call Standard for the Arm Architecture (AAPCS)
constraints.

• The first argument is always zero on entry and can be ignored. The base is returned in the
register holding this argument.

The function __user_heap_extend() is only weakly referenced by the C library. This
means that unused section elimination might remove the __user_heap_extend()
function at link time, and in this case, the heap cannot be extended. To prevent this
situation, you can use armlink --keep to prevent the function from being eliminated.
Alternatively, include an explicit reference to __user_heap_extend() from a part of
the application code that you are sure is not removed at link time.

Returns
This function places a pointer to a block of at least the requested size in *base and returns the size
of the block. 0 is returned if no such block can be returned, in which case the value stored at *base
is never used.

Related information
Stack pointer initialization and heap bounds on page 85

5.52 __user_heap_extent()
If defined, the __user_heap_extent() function returns the bounds of the memory available to the
Heap2 allocator.

See rt_misc.h.

If you provide an implementation of this function, then you must link with either the
--keep or --no_remove armlink options. Otherwise, the unused section elimination
feature of the linker might remove your implementation.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 180 of 201

https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--keep-section-id

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

Syntax
For AArch32 targets:

extern __attribute__((value_in_regs)) struct __heap_extent
 __user_heap_extent(unsigned ignore1, size_t ignore2);

For AArch64 targets:

extern __attribute__((value_in_regs)) struct __heap_extent
 __user_heap_extent(unsigned long ignore1, size_t ignore2);

Usage
The parameters ignore1 and ignore2 are the default values for the base address and size of the
heap. They are for information only and can be ignored.

You only need to implement this function if you are using the Heap2 allocator, which is also part
of the C library. This function has no default implementation. The Heap2 allocator calls it during
heap initialization to determine the maximum address range that the heap can occupy. The function
returns the base address of the heap and the total number of bytes available to the heap, rounded
up to the next power of two.

For example, if you want to specify that all your heap allocations comes from address 0x80000000
and above, and that the heap has a total maximum size of 3MiB, __user_heap_extent() must
return base=0x80000000 and range=0x400000, which is 3MiB rounded up to the next power of two.

Related information
Stack pointer initialization and heap bounds on page 85

5.53 __user_setup_stackheap()
__user_setup_stackheap() sets up and returns the locations of the initial stack and heap.

If you define this function, it is called by the C library during program start-up.

When __user_setup_stackheap() is called, sp has the same value it had on entry to the
application. If this was set to a valid value before calling the C library initialization code, it can be
left at this value. If sp is not valid, __user_setup_stackheap() must change this value before using
any stack and before returning.

__user_setup_stackheap() returns the:

• Heap base, if the program uses the heap.

◦ In AArch32 state, register R0 contains the heap base.

◦ In AArch64 state, register X0 contains the heap base.

• Stack base in sp.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 181 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

• Heap limit, if the program uses the heap and uses two-region memory.

◦ In AArch32 state, register R2 contains the heap limit.

◦ In AArch64 state, register X2 contains the heap limit.

If this function is re-implemented, it must:

• Preserve the registers required by the PCS, except for SP.

• Ensure alignment of the stack and heap:

◦ In AArch32 state, ensure that the stack base and heap base are a multiple of 8 to maintain
8-byte alignment of the stack and heap.

◦ In AArch64 state, ensure that the stack base and heap base are a multiple of 16 to maintain
16-byte alignment of the stack and heap.

To create a version of __user_setup_stackheap() that inherits sp from the execution environment
and does not have a heap:

• In AArch32 state, set r0 and r2 to zero and return.

• In AArch64 state, set x0 and x2 to zero and return.

There is no limit to the size of the stack. However, if the heap region grows into the stack, malloc()
attempts to detect the overlapping memory and fails the new memory allocation request.

Any re-implementation of __user_setup_stackheap() must be in assembler.

Related information
Direct semihosting C library function dependencies on page 57

5.54 __vectab_stack_and_reset
__vectab_stack_and_reset is a library section that provides a way for the initial values of sp and pc
to be placed in the vector table, starting at address 0 for M-profile processors, such as Cortex®-M1
and Cortex-M3 embedded applications.

__vectab_stack_and_reset requires the existence of a main() function in your source code.
Without a main() function, if you place the __vectab_stack_and_reset section in a scatter file, an
error is generated to the following effect:

Error: L6236E: No section matches selector - no section to be FIRST/LAST

If the normal start-up code is bypassed, that is, if there is intentionally no main() function, you are
responsible for setting up the vector table without __vectab_stack_and_reset.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 182 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

The following segment is part of a scatter file. It includes a minimal vector table illustrating the
use of __vectab_stack_and_reset to place the initial sp and pc values at addresses 0 and 4 in the
vector table:

;; Maximum of 256 exceptions (256*4 bytes == 0x400)
VECTORS 0x0 0x400
{
 ; First two entries provided by library
 ; Remaining entries provided by the user in exceptions.c
 * (:gdef:__vectab_stack_and_reset, +FIRST)
 * (exceptions_area)
}
CODE 0x400 FIXED
{
 * (+RO)
}

Related information
Stack pointer initialization and heap bounds on page 85

5.55 wcscasecmp()
Declared in wchar.h, the wcscasecmp() function performs a case-insensitive string comparison test
on wide characters.

This function is a GNU extension to the libraries. It is not POSIX-standardized.

Syntax
int wcscasecmp(const wchar_t * __restrict s1, const wchar_t * __restrict s2);

5.56 wcsncasecmp()
Declared in wchar.h, the wcsncasecmp() function performs a case-insensitive string comparison
test of not more than a specified number of wide characters.

This function is a GNU extension to the libraries. It is not POSIX-standardized.

Syntax
int wcsncasecmp(const wchar_t * __restrict s1, const wchar_t * __restrict s2, size_t
 n);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 183 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.57 wcstombs()
Declared in wchar.h, the wcstombs() function works as described in the ISO C standard, with
extended functionality as specified by POSIX.

That is, if s is a NULL pointer, wcstombs() returns the length required to convert the entire array
regardless of the value of n, but no values are stored.

Syntax
size_t wcstombs(char *s, const wchar_t *pwcs, size_t n);

5.58 Thread-safe C library functions
The following table shows the C library functions that are thread-safe.

Table 5-1: Functions that are thread-safe

Functions Description

calloc(), free(), malloc(), realloc() The heap functions are thread-safe if the _mutex_* functions are
implemented.

All threads share a single heap and use mutexes to avoid
data corruption when there is concurrent access. Each heap
implementation is responsible for doing its own locking. If you
supply your own allocator, it must also do its own locking. This
enables it to do fine-grained locking if required, rather than
protecting the entire heap with a single mutex (coarse-grained
locking).

alloca() alloca() is thread-safe because it allocates memory on the stack.

abort(), raise(), signal(), fenv.h The Arm signal handling functions and floating-point exception traps
are thread-safe.

The settings for signal handlers and floating-point traps are
global across the entire process and are protected by locks. Data
corruption does not occur if multiple threads call signal() or
an fenv.h function at the same time. However, be aware that
the effects of the call act on all threads and not only on the calling
thread.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 184 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

Functions Description
clearerr(), fclose(), feof(),ferror(),
fflush()fgets()fputs()fseek()fwrite()gets()putchar()setbuf()tmpnam()

The stdio library is thread-safe if the _mutex_* functions are
implemented.

Each individual stream is protected by a lock, so two threads can
each open their own stdio stream and use it, without interfering
with one another.

If two threads both want to read or write the same stream, locking
at the fgetc() and fputc() level prevents data corruption, but
it is possible that the individual characters output by each thread
might be interleaved in a confusing way.

Note:
tmpnam() also contains a static buffer but this is only used if
the argument is NULL. To ensure that your use of tmpnam() is
thread-safe, supply your own buffer space.

fprintf(), printf(), vfprintf(), vprintf(), fscanf(),
scanf()

When using these functions:

• The standard C printf() and scanf() functions use stdio
so they are thread-safe.

• The standard C printf() function is susceptible to changes
in the locale settings if called in a multithreaded program.

clock() clock() contains static data that is written once at program
startup and then only ever read. Therefore, clock() is thread-safe
provided no extra threads are already running at the time that the
library is initialized.

errno errno is thread-safe.

Each thread has its own errno stored in a
__user_perthread_libspace block. This means that each
thread can call errno-setting functions independently and then
check errno afterwards without interference from other threads.

atexit() The list of exit functions maintained by atexit() is process-global
and protected by a lock.

In the worst case, if more than one thread calls atexit(), the
order that exit functions are called cannot be guaranteed.

abs(), acos(), asin(),atan(), atan2(), atof(),atol(),
atoi(), bsearch(),ceil(), cos(), cosh(),difftime(),
div(), exp(),fabs(), floor(), fmod(),frexp(), labs(),
ldexp(),ldiv(), log(), log10(),memchr(), memcmp(),
memcpy(),memmove(), memset(), mktime(),modf(), pow(),
qsort(),sin(), sinh(), sqrt(),strcat(), strchr(),
strcmp(),strcpy(), strcspn(), strlcat(),strlcpy(),
strlen(), strncat(),strncmp(), strncpy(),
strpbrk(),strrchr(), strspn(), strstr(),strxfrm(),
tan(), tanh()

These functions are inherently thread-safe.

longjmp(), setjmp() Although setjmp() and longjmp() keep data in
__user_libspace, they call the __alloca_* functions, that are
thread-safe.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 185 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

Functions Description
remove(), rename(), time() These functions use interrupts that communicate with the Arm

debugging environments. Typically, you have to reimplement these
for a real-world application.

snprintf(), sprintf(), vsnprintf(),vsprintf(),
sscanf(), isalnum(),isalpha(), iscntrl(),
isdigit(),isgraph(), islower(), isprint(),ispunct(),
isspace(), isupper(),isxdigit(), tolower(),
toupper(),strcoll(), strtod(), strtol(),strtoul(),
strftime()

When using these functions, the string-based functions read the
locale settings. Typically, they are thread-safe. However, if you
change locale in mid-session, you must ensure that these functions
are not affected.

The string-based functions, such as sprintf() and sscanf(), do
not depend on the stdio library.

stdin, stdout, stderr These functions are thread-safe.

Related information
alloca() on page 146

5.59 C library functions that are not thread-safe
The following table shows the C library functions that are not thread-safe.

Table 5-2: Functions that are not thread-safe

Functions Description

asctime(), localtime(), strtok() These functions are all thread-unsafe. Each contains a static buffer
that might be overwritten by another thread between a call to the
function and the subsequent use of its return value. Arm supplies
reentrant versions, _asctime_r(), _localtime_r(), and
_strtok_r(). Arm recommends that you use these functions
instead to ensure safety.These reentrant versions take additional
parameters. _asctime_r() takes an additional parameter that
is a pointer to a buffer that the output string is written into.
_localtime_r() takes an additional parameter that is a pointer
to a struct tm, that the result is written into. _strtok_r()
takes an additional parameter that is a pointer to a char pointer to
the next token.

exit() Do not call exit() in a multithreaded program even if you have
provided an implementation of the underlying _sys_exit() that
actually terminates all threads.

In this case, exit() cleans up before calling _sys_exit() so
disrupts other threads.

gamma(), lgamma(), lgammaf(), lgammal() 15 These extended mathlib functions use a global variable, _signgam,
so are not thread-safe.

15 If migrating from RVCT, be aware that gamma() is deprecated in Arm Compiler 4.1 and later.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 186 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

Functions Description
mbrlen(), mbsrtowcs(), mbrtowc(), wcrtomb(),
wcsrtombs()

The C90 multibyte conversion functions (declared in stdlib.h)
are not thread-safe, for example mblen() and mbtowc(), because
they contain internal static state that is shared between all threads
without locking.

However, the extended restartable versions (declared in wchar.h)
are thread-safe, for example mbrtowc() and wcrtomb(),
provided you pass in a pointer to your own mbstate_t object. You
must exclusively use these functions with non-NULL mbstate_t
* parameters if you want to ensure thread-safety when handling
multibyte strings.

rand(), srand() These functions keep internal state that is both global and
unprotected. This means that calls to rand() are never thread-
safe. Arm recommends that you do one of the following:Use the
reentrant versions _rand_r() and _srand_r() supplied by
Arm®. These use user-provided buffers instead of static data
within the C library.Use your own locking to ensure that only one
thread ever calls rand() at a time, for example, by defining $Sub
$$rand() if you want to avoid changing your code. Arrange
that only one thread ever needs to generate random numbers.
Supply your own random number generator that can have multiple
independent instances. _rand_r() and _srand_r() both take an
additional parameter that is a pointer to a buffer storing the state of
the random number generator.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 187 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

Functions Description
setlocale(), localeconv() setlocale() is used for setting and reading locale settings. The

locale settings are global across all threads, and are not protected by
a lock. If two threads call setlocale() to simultaneously modify
the locale settings, or if one thread reads the settings while another
thread is modifying them, data corruption might occur. Also, many
other functions, for example strtod() and sprintf(), read the
current locale settings. Therefore, if one thread calls setlocale()
concurrently with another thread calling such a function, there
might be unexpected results.

Multiple threads reading the settings simultaneously is thread-safe
in simple cases and if no other thread is simultaneously modifying
those settings, but where internally an intermediate buffer is
required for more complicated returned results, unexpected results
can occur unless you use a reentrant version of setlocale().

Arm recommends that you either:

• Choose the locale you want and call setlocale() once
to initialize it. Do this before creating any additional threads
in your program so that any number of threads can read the
locale settings concurrently without interfering with one
another.

• Use the reentrant version _setlocale_r() supplied by
Arm. This returns a string that is either a pointer to a constant
string, or a pointer to a string stored in a user-supplied buffer
that can be used for thread-local storage, rather than using
memory within the C library. The buffer must be at least
_SETLOCALE_R_BUFSIZE bytes long, including space for a
trailing NUL.

Be aware that _setlocale_r() is not fully thread-safe when
accessed concurrently to change locale settings. This access is not
lock-protected.

Also, be aware that localeconv() is not thread-safe. Call the Arm
function _get_lconv() with a pointer to a user-supplied buffer
instead.

Related information
_rand_r() on page 161
_srand_r() on page 169

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 188 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

5.60 Legacy function __user_initial_stackheap()
If you have legacy source code you might see __user_initial_stackheap(), from rt_misc.h. This
is an old function that is only supported for backwards compatibility with legacy source code.

Arm recommends not using __user_initial_stackheap() in new code. Instead, use
its modern equivalent, __user_setup_stackheap().

Syntax
For targets in AArch32 state:

extern __attribute__((value_in_regs)) struct __initial_stackheap
 __user_initial_stackheap(unsigned R0, unsigned SP, unsigned R2, unsigned SL);

For targets in AArch64 state:

extern __attribute__((value_in_regs)) struct __initial_stackheap
 __user_initial_stackheap(unsigned long R0, unsigned long SP, unsigned long R2,
 unsigned long SL);

Usage
__user_initial_stackheap() returns the:

• Heap base in r0.

• Stack base in r1, that is, the highest address in the stack region.

• Heap limit in r2.

If this function is reimplemented, it must:

• Use no more than 88 bytes of stack.

• Not corrupt registers other than r12 (ip) when targeting AArch32 state.

• Not corrupt registers other than r16 (ip0) and r17 (ip1) when targeting AArch64 state.

• Maintain 8-byte alignment of the heap when targeting AArch32 state.

• Maintain 16-byte alignment of the heap when targeting AArch64 state.

When __user_initial_stackheap() is called, the argument in r1 is the value that sp had when
__main() was called. The default implementation of __user_initial_stackheap(), using the
semihosting SYS_HEAPINFO, is given by the library in module sys_stackheap.o.

To create a version of __user_initial_stackheap() that inherits sp from the execution
environment and does not have a heap, set r0 and r2 to the value of r1 and return.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 189 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

The C and C++ Library Functions Reference

There is no limit to the size of the stack. However, if the heap region grows into the stack, malloc()
attempts to detect the overlapping memory and fails the new memory allocation request.

For targets in AArch32 state, the definition of __initial_stackheap in rt_misc.h is:

struct __initial_stackheap {
 unsigned heap_base; /* low-address end of initial heap */
 unsigned stack_base; /* high-address end of initial stack */
 unsigned heap_limit; /* high-address end of initial heap */
 unsigned stack_limit; /* unused */
};

For targets in AArch64 state, the definition of __initial_stackheap in rt_misc.h is:

struct __initial_stackheap {
 unsigned long heap_base; /* low-address end of initial heap */
 unsigned long stack_base; /* high-address end of initial stack */
 unsigned long heap_limit; /* high-address end of initial heap */
 unsigned long stack_limit; /* unused */
};

The value of stack_base is 1 greater than the highest address used by the stack
because a full-descending stack is used.

Related information
Stack pointer initialization and heap bounds on page 85

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 190 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support Functions Reference

6. Floating-point Support Functions
Reference

Describes Arm support for floating-point functions.

6.1 _clearfp()
Defined in float.h, the _clearfp() function is provided for compatibility with Microsoft products.

_clearfp() clears all five exception sticky flags and returns their previous values. You can use the
_controlfp() argument macros, for example _EM_INVALID and _EM_ZERODIVIDE, to test bits of the
returned result.

The function prototype for _clearfp() is:

unsigned _clearfp(void);

This function requires a floating-point model that supports exceptions. In Arm®

Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

Related information
_controlfp() on page 191
_statusfp() on page 199

6.2 _controlfp()
Defined in float.h, the _controlfp() function is provided for compatibility with Microsoft
products. It enables you to control exception traps and rounding modes.

The Arm® Compiler toolchain does not support floating-point exception trapping
for AArch64 targets.

The function prototype for _controlfp() is:

unsigned int _controlfp(unsigned int new, unsigned int mask);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 191 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support Functions Reference

This function requires a floating-point model that supports exceptions. In Arm
Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

_controlfp() also modifies a control word using a mask to isolate the bits to modify. For every bit
of mask that is zero, the corresponding control word bit is unchanged. For every bit of mask that is
nonzero, the corresponding control word bit is set to the value of the corresponding bit of new. The
return value is the previous state of the control word.

This is different behavior to that of __ieee_status() or __fp_status(), where you
can toggle a bit by setting a zero in the mask word and a one in the flags word.

The following table describes the macros you can use to form the arguments to _controlfp().

Table 6-1: _controlfp argument macros

Macro Description

_MCW_EM Mask containing all exception bits

_EM_INVALID Bit describing the Invalid Operation exception

_EM_ZERODIVIDE Bit describing the Divide by Zero exception

_EM_OVERFLOW Bit describing the Overflow exception

_EM_UNDERFLOW Bit describing the Underflow exception

_EM_INEXACT Bit describing the Inexact Result exception

_MCW_RC Mask for the rounding mode field

_RC_CHOP Rounding mode value describing Round Toward Zero

_RC_UP Rounding mode value describing Round Up

_RC_DOWN Rounding mode value describing Round Down

_RC_NEAR Rounding mode value describing Round To Nearest

The values of these macros are not guaranteed to remain the same in future
versions of Arm products. To ensure that your code continues to work if the value
changes in future releases, use the macro rather than its value.

For example, to set the rounding mode to round down, call:

_controlfp(_RC_DOWN, _MCW_RC);

To trap the Invalid Operation exception and untrap all other exceptions:

_controlfp(_EM_INVALID, _MCW_EM);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 192 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support Functions Reference

To untrap the Inexact Result exception:

_controlfp(0, _EM_INEXACT);

Related information
_clearfp() on page 191
_statusfp() on page 199

6.3 __fp_status()
The Arm® Compiler toolchain supports an interface to the status word in the floating-
point environment. Some older versions of the Arm libraries implemented a function called
__fp_status() to provide this interface.

The Arm Compiler toolchain does not support floating-point exception trapping for
AArch64 targets.

__fp_status() is the same as __ieee_status() but it uses an older style of status word layout. The
compiler still supports the __fp_status() function for backwards compatibility. __fp_status() is
declared in stdlib.h.

The function prototype for __fp_status() is:

unsigned int __fp_status(unsigned int mask, unsigned int flags);

This function requires a floating-point model that supports exceptions. In Arm
Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

The layout of the status word as seen by __fp_status() is as follows:

Figure 6-1: Floating-point status word layout

031 24 23 21 20 16 15 13 12 8 7 5 4

System ID Masks StickyFPA onlyR R R

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 193 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support Functions Reference

The fields in the status word are as follows:

• Bits 0 to 4 (values 0x1 to 0x10, respectively) are the sticky flags, or cumulative flags, for each
exception. The sticky flag for an exception is set to 1 whenever that exception happens and
is not trapped. Sticky flags are never cleared by the system, only by the user. The mapping of
exceptions to bits is:

◦ Bit 0 (0x01) is for the Invalid Operation exception

◦ Bit 1 (0x02) is for the Divide by Zero exception.

◦ Bit 2 (0x04) is for the Overflow exception.

◦ Bit 3 (0x08) is for the Underflow exception.

◦ Bit 4 (0x10) is for the Inexact Result exception.

• Bits 8 to 12 (values 0x100 to 0x1000) control various aspects of the Floating-Point Architecture
(FPA). The FPA is obsolete and the Arm compilation tools do not support it. Any attempt to
write to these bits is ignored.

• Bits 16 to 20 (values 0x10000 to 0x100000) are the exception masks. These control whether
each exception is trapped or not. If a bit is set to 1, the corresponding exception is trapped. If a
bit is set to 0, the corresponding exception sets its sticky flag and returns a plausible result.

• Bits 24 to 31 contain the system ID that cannot be changed. It is set to 40 for software
floating-point, to 0x80 or above for hardware floating-point, and to 0 or 1 if a hardware floating-
point environment is being faked by an emulator.

• Bits marked R are reserved. They cannot be written to by the __fp_status() call, and you must
ignore anything you find in them.

The rounding mode cannot be changed with the __fp_status() call.

In addition to defining the __fp_status() call itself, stdlib.h also defines the following constants
to be used for the arguments:

#define __fpsr_IXE 0x100000
#define __fpsr_UFE 0x80000
#define __fpsr_OFE 0x40000
#define __fpsr_DZE 0x20000
#define __fpsr_IOE 0x10000
#define __fpsr_IXC 0x10
#define __fpsr_UFC 0x8
#define __fpsr_OFC 0x4
#define __fpsr_DZC 0x2
#define __fpsr_IOC 0x1

For example, to trap the Invalid Operation exception and untrap all other exceptions, you would call
__fp_status() with the following input parameters:

__fp_status(_fpsr_IXE | _fpsr_UFE | _fpsr_OFE |
 _fpsr_DZE | _fpsr_IOE, _fpsr_IOE);

To untrap the Inexact Result exception:

__fp_status(_fpsr_IXE, 0);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 194 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support Functions Reference

To clear the Underflow sticky flag:

__fp_status(_fpsr_UFC, 0);

Related information
Controlling the Arm floating-point environment on page 126
__ieee_status() on page 195

6.4 gamma(), gamma_r()
The gamma() and gamma_r() functions both compute the logarithm of the gamma function. They
are synonyms for lgamma and lgamma_r.

double gamma(double x);
double gamma_r(double x, int *);

Despite their names, these functions compute the logarithm of the gamma function,
not the gamma function itself. To compute the gamma function itself, use tgamma().

These functions are deprecated.

6.5 __ieee_status()
The Arm® Compiler toolchain supports an interface to the status word in the floating-point
environment. This interface is provided as function __ieee_status() and it is generally the most
efficient function to use for modifying the status word for VFP.

The Arm Compiler toolchain does not support floating-point exception trapping for
AArch64 targets.

__ieee_status() is declared in fenv.h.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 195 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support Functions Reference

The function prototype for __ieee_status() is:

unsigned int __ieee_status(unsigned int mask, unsigned int flags);

This function requires a floating-point model that supports exceptions. In Arm
Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

__ieee_status() modifies the writable parts of the status word according to the parameters, and
returns the previous value of the whole word.

The writable bits are modified by setting them to:

new = (old & ~mask) ^ flags;

Four different operations can be performed on each bit of the status word, depending on the
corresponding bits in mask and flags.

Table 6-2: Status word bit modification

Bit of mask Bit of flags Effect

0 0 Leave alone

0 1 Toggle

1 0 Set to 0

1 1 Set to 1

The layout of the status word as seen by __ieee_status() is as follows:

Figure 6-2: IEEE status word layout

031 24 23 21 20 16 15 13 12 8 7 5 4

S ticky

25 22 19 18

FZ RM MasksR RRR VFPVFP

262728

RQC

The fields in the status word are as follows:

• Bits 0 to 4 (values 0x1 to 0x10, respectively) are the sticky flags, or cumulative flags, for each
exception. The sticky flag for an exception is set to 1 whenever that exception happens and
is not trapped. Sticky flags are never cleared by the system, only by the user. The mapping of
exceptions to bits is:

◦ Bit 0 (0x01) is for the Invalid Operation exception

◦ Bit 1 (0x02) is for the Divide by Zero exception.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 196 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support Functions Reference

◦ Bit 2 (0x04) is for the Overflow exception.

◦ Bit 3 (0x08) is for the Underflow exception.

◦ Bit 4 (0x10) is for the Inexact Result exception.

• Bits 8 to 12 (values 0x100 to 0x1000) are the exception masks. These control whether each
exception is trapped or not. If a bit is set to 1, the corresponding exception is trapped. If a bit is
set to 0, the corresponding exception sets its sticky flag and returns a plausible result.

• Bits 16 to 18, and bits 20 and 21, are used by VFP hardware to control the VFP vector
capability. The __ieee_status() call does not let you modify these bits.Bits 22 and 23 control
the rounding mode. See the following table.

Table 6-3: Rounding mode control

Bits Rounding mode

00 Round to nearest

01 Round up

10 Round down

11 Round toward zero

The relevant libraries are selected by default in Arm Compiler 6. For more
information, see the armclang command-line option -ffp-mode.

• Bit 24 enables FZ (Flush to Zero) mode if it is set. In FZ mode, denormals are forced to zero to
speed up processing because denormals can be difficult to work with and slow down floating-
point systems. Setting this bit reduces accuracy but might increase speed.

◦ The FZ bit in the IEEE status word is not supported by any of the fplib
variants. This means that switching between flushing to zero and not
flushing to zero is not possible with any variant of fplib at runtime.
However, flushing to zero or not flushing to zero can be set at compile time
as a result of the library you choose to build with.

◦ Some functions are not provided in hardware. They exist only in the
software floating-point libraries. So these functions cannot support the FZ
mode, even when you are compiling for a hardware VFP architecture. As
a result, behavior of the floating-point libraries is not consistent across all
functions when you change the FZ mode dynamically.

• Bit 27 indicates that saturation has occurred in an Advanced SIMD saturating integer operation.
This is accessible through the __ieee_status() call.

• Bits marked R are reserved. They cannot be written to by the __ieee_status() call, and you
must ignore anything you find in them.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 197 of 201

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-ffp-mode

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support Functions Reference

In addition to defining the __ieee_status() call itself, fenv.h also defines the following constants
to be used for the arguments:

#define FE_IEEE_FLUSHZERO (0x01000000)
#define FE_IEEE_ROUND_TONEAREST (0x00000000)
#define FE_IEEE_ROUND_UPWARD (0x00400000)
#define FE_IEEE_ROUND_DOWNWARD (0x00800000)
#define FE_IEEE_ROUND_TOWARDZERO (0x00C00000)
#define FE_IEEE_ROUND_MASK (0x00C00000)
#define FE_IEEE_MASK_INVALID (0x00000100)
#define FE_IEEE_MASK_DIVBYZERO (0x00000200)
#define FE_IEEE_MASK_OVERFLOW (0x00000400)
#define FE_IEEE_MASK_UNDERFLOW (0x00000800)
#define FE_IEEE_MASK_INEXACT (0x00001000)
#define FE_IEEE_MASK_ALL_EXCEPT (0x00001F00)
#define FE_IEEE_INVALID (0x00000001)
#define FE_IEEE_DIVBYZERO (0x00000002)
#define FE_IEEE_OVERFLOW (0x00000004)
#define FE_IEEE_UNDERFLOW (0x00000008)
#define FE_IEEE_INEXACT (0x00000010)
#define FE_IEEE_ALL_EXCEPT (0x0000001F)

For example, to set the rounding mode to round down, you would call:

__ieee_status(FE_IEEE_ROUND_MASK, FE_IEEE_ROUND_DOWNWARD);

To trap the Invalid Operation exception and untrap all other exceptions:

__ieee_status(FE_IEEE_MASK_ALL_EXCEPT, FE_IEEE_MASK_INVALID);

To untrap the Inexact Result exception:

__ieee_status(FE_IEEE_MASK_INEXACT, 0);

To clear the Underflow sticky flag:

__ieee_status(FE_IEEE_UNDERFLOW, 0);

Related information
Controlling the Arm floating-point environment on page 126
Arm floating-point compiler extensions to the C99 interface on page 133
C and C++ library naming conventions on page 112
Exceptions arising from IEEE 754 floating-point arithmetic on page 143

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 198 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support Functions Reference

6.6 j0(), j1(), jn(), Bessel functions of the first kind
These functions compute Bessel functions of the first kind.

j0 and j1 compute the functions of order 0 and 1 respectively. jn computes the function of order
n.

double j0(double x);
double j1(double x);
double jn(int n, double x);

If the absolute value of x exceeds pi times 2^52, these functions return an ERANGE error, denoting
total loss of significance in the result.

These functions are deprecated.

6.7 significand(), fractional part of a number
The significand() function returns the fraction part of x, as a number between 1.0 and 2.0 (not
including 2.0).

double significand(double x);

This function is deprecated.

6.8 _statusfp()
Defined in float.h, the _statusfp() function is provided for compatibility with Microsoft products.
It returns the current value of the exception sticky flags.

You can use the _controlfp() argument macros, for example _EM_INVALID and _EM_ZERODIVIDE, to
test bits of the returned result.

The function prototype for _statusfp() is:

unsigned _statusfp(void);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 199 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Floating-point Support Functions Reference

This function requires a floating-point model that supports exceptions. In Arm®

Compiler 6 this is disabled by default, and can be enabled by the armclang
command-line option -ffp-mode=full.

Related information
_clearfp() on page 191
_controlfp() on page 191

6.9 y0(), y1(), yn(), Bessel functions of the second kind
These functions compute Bessel functions of the second kind.

y0 and y1 compute the functions of order 0 and 1 respectively. yn computes the function of order
n.

double y0(double x);
double y1(double x);
double yn(int, double);

If x is positive and exceeds pi times 2^52, these functions return an ERANGE error, denoting total
loss of significance in the result.

These functions are deprecated.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200 of 201

Arm® Compiler Arm® C and C++ Libraries and Floating-Point
Support User Guide

Document ID: DUI0808_l_en
Version 6.6

Arm C and C++ Libraries and Floating-Point Support User Guide
Changes

7. Arm C and C++ Libraries and Floating-
Point Support User Guide Changes

Describes the technical changes that have been made to the Arm C and C++ Libraries and Floating-
Point Support User Guide.

7.1 Changes for the Arm C and C++ Libraries and Floating-
Point Support User Guide

Changes that have been made to the Arm C and C++ Libraries and Floating-Point Support User Guide
are listed with the latest version first.

Table 7-1: Changes between 6.6.5 (revision L) and 6.6.4 (revision K)

Change Topics affected

[SDCOMP-59739] Added note about new and delete potentially
being omitted by optimizer in C++03 and C++11, as well as C++14
which is standard.

• Standard C++ library implementation definition.

[SDCOMP-57264] Added note on mixing objects compiled with
different C/C++ standards.

• Summary of the C and C++ runtime libraries.

• Compliance with the Application Binary Interface (ABI) for the
Arm architecture.

Table 7-2: Changes between 6.6.4 (revision K) and 6.6.3 (revision J)

Change Topics affected

[SDCOMP-52286] Modified the statement that a mutex is always 4
bytes. A mutex is 4 bytes for AArch32 and 8 bytes for AArch64.

• Management of locks in multithreaded applications.

• Choosing a heap implementation for memory allocation
functions.

[SDCOMP-54116] Added descriptions for SIGCPPL and
SIGOUTOFHEAP.

• ISO-compliant implementation of signals supported by the
signal() function in the C library and additional type arguments.

[SDCOMP-53622] Added a statement about stack and heap
alignment for AArch32 and AArch64.

• Stack pointer initialization and heap bounds.

• __user_setup_stackheap().

[SDCOMP-54283] Added a note about using the armlink options
--keep or --no_remove when implementing your own version of
__user_heap_extent().

• __user_heap_extent().

[SDCOMP-55662] Added sentence for assumption about
contiguous heap.

• __heapvalid().

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 201 of 201

	Arm® Compiler Arm® C and C++ Libraries and Floating-Point Support User Guide
	Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Conventions
	1.2 Other information

	2. The Arm C and C++ Libraries
	2.1 Support level definitions
	2.2 Mandatory linkage with the C library
	2.3 C and C++ runtime libraries
	2.3.1 Summary of the C and C++ runtime libraries
	2.3.2 Compliance with the Application Binary Interface (ABI) for the Arm architecture
	2.3.3 Increase portability of object files to other CLIBABI implementations
	2.3.4 Arm C and C++ library directory structure
	2.3.5 Selection of Arm C and C++ library variants based on build options
	2.3.6 T32 C libraries

	2.4 C and C++ library features
	2.5 C++ and C libraries and the std namespace
	2.6 Multithreaded support in Arm C libraries
	2.6.1 Arm C libraries and multithreading
	2.6.2 Arm C libraries and reentrant functions
	2.6.3 Arm C libraries and thread-safe functions
	2.6.4 Use of static data in the C libraries
	2.6.5 Use of the __user_libspace static data area by the C libraries
	2.6.6 C library functions to access subsections of the __user_libspace static data area
	2.6.7 Re-implementation of legacy function __user_libspace() in the C library
	2.6.8 Management of locks in multithreaded applications
	2.6.9 How to ensure re-implemented mutex functions are called
	2.6.10 Using the Arm C library in a multithreaded environment
	2.6.11 Thread safety in the Arm C library
	2.6.12 The floating-point status word in a multithreaded environment

	2.7 Multithreaded support in Arm C++ libraries [ALPHA]
	2.7.1 Arm C++ libraries and multithreading [ALPHA]
	2.7.2 Clocks [ALPHA]
	2.7.3 Mutexes [ALPHA]
	2.7.4 Condition variables [ALPHA]
	2.7.5 Threads [ALPHA]
	2.7.6 Miscellaneous functions [ALPHA]
	2.7.7 Thread safety in the Arm C++ library
	2.7.8 Supported C++ Concurrency Features [ALPHA]
	2.7.9 Guard variables [ALPHA]
	2.7.10 Exceptions [ALPHA]
	2.7.11 Thread local storage [ALPHA]
	2.7.12 Standard library concurrency constructs [ALPHA]
	2.7.13 Thread-safe initialization of Mutexes and Condition variables [ALPHA]

	2.8 Support for building an application with the C library
	2.8.1 Using the C library with an application
	2.8.2 Using the C and C++ libraries with an application in a semihosting environment
	2.8.3 Using $Sub$$ to mix semihosted and nonsemihosted I/O functionality
	2.8.4 Using the libraries in a nonsemihosting environment
	2.8.5 Direct semihosting C library function dependencies
	2.8.6 Indirect semihosting C library function dependencies
	2.8.7 C library API definitions for targeting a different environment

	2.9 Support for building an application without the C library
	2.9.1 Standalone C library functions
	2.9.2 Creating an application as bare machine C without the C library
	2.9.3 Integer and floating-point compiler functions and building an application without the C library
	2.9.4 Bare machine integer C
	2.9.5 Bare machine C with floating-point processing
	2.9.6 Customized C library startup code and access to C library functions
	2.9.7 Using low-level functions when exploiting the C library
	2.9.8 Using high-level functions when exploiting the C library
	2.9.9 Using malloc() when exploiting the C library

	2.10 Tailoring the C library to a new execution environment
	2.10.1 Initialization of the execution environment and execution of the application
	2.10.2 C++ initialization, construction and destruction
	2.10.3 Exceptions system initialization
	2.10.4 Library functions called from main()
	2.10.5 Program exit and the assert macro

	2.11 Assembler macros that tailor locale functions in the C library
	2.11.1 Link time selection of the locale subsystem in the C library
	2.11.1.1 ISO8859-1 implementation
	2.11.1.2 Shift-JIS and UTF-8 implementation

	2.11.2 Runtime selection of the locale subsystem in the C library
	2.11.3 Definition of locale data blocks in the C library
	2.11.4 LC_CTYPE data block
	2.11.5 LC_COLLATE data block
	2.11.6 LC_MONETARY data block
	2.11.7 LC_NUMERIC data block
	2.11.8 LC_TIME data block

	2.12 Modification of C library functions for error signaling, error handling, and program exit
	2.13 Stack and heap memory allocation and the Arm C and C++ libraries
	2.13.1 Library heap usage requirements of the Arm C and C++ libraries
	2.13.2 Choosing a heap implementation for memory allocation functions
	2.13.3 Stack pointer initialization and heap bounds
	2.13.4 Legacy support for __user_initial_stackheap()
	2.13.5 Avoiding the heap and heap-using library functions supplied by Arm

	2.14 Tailoring input/output functions in the C and C++ libraries
	2.15 Target dependencies on low-level functions in the C and C++ libraries
	2.16 The C library printf family of functions
	2.17 The C library scanf family of functions
	2.18 Redefining low-level library functions to enable direct use of high-level library functions in the C library
	2.19 The C library functions fread(), fgets() and gets()
	2.20 Re-implementing __backspace() in the C library
	2.21 Re-implementing __backspacewc() in the C library
	2.22 Redefining target-dependent system I/O functions in the C library
	2.23 Tailoring non-input/output C library functions
	2.24 Real-time integer division in the Arm libraries
	2.25 ISO C library implementation definition
	2.25.1 How the Arm C library fulfills ISO C specification requirements
	2.25.2 mathlib error handling
	2.25.3 ISO-compliant implementation of signals supported by the signal() function in the C library and additional type arguments
	2.25.4 ISO-compliant C library input/output characteristics
	2.25.5 Standard C++ library implementation definition

	2.26 C library functions and extensions
	2.27 Avoid linking in the Arm C library
	2.28 C and C++ library naming conventions
	2.29 Using macro__ARM_WCHAR_NO_IO to disable FILE declaration and wide I/O function prototypes
	2.30 Using library functions with execute-only memory

	3. The Arm C Micro-library
	3.1 About microlib
	3.2 Differences between microlib and the default C library
	3.3 Library heap usage requirements of microlib
	3.4 ISO C features missing from microlib
	3.5 Building an application with microlib
	3.6 Configuring the stack and heap for use with microlib
	3.7 Entering and exiting programs linked with microlib
	3.8 Tailoring the microlib input/output functions

	4. Floating-point Support
	4.1 About floating-point support
	4.2 Controlling the Arm floating-point environment
	4.2.1 Floating-point functions for compatibility with Microsoft products
	4.2.2 C99-compatible functions for controlling the Arm floating-point environment
	4.2.3 C99 rounding mode and floating-point exception macros
	4.2.4 Exception flag handling
	4.2.5 Functions for handling rounding modes
	4.2.6 Functions for saving and restoring the whole floating-point environment
	4.2.7 Functions for temporarily disabling exceptions
	4.2.8 Arm floating-point compiler extensions to the C99 interface
	4.2.9 Example of a custom exception handler
	4.2.10 Exception trap handling by signals

	4.3 mathlib double and single-precision floating-point functions
	4.4 IEEE 754 arithmetic
	4.4.1 Basic data types for IEEE 754 arithmetic
	4.4.2 Single precision data type for IEEE 754 arithmetic
	4.4.3 Double precision data type for IEEE 754 arithmetic
	4.4.4 Sample single precision floating-point values for IEEE 754 arithmetic
	4.4.5 Sample double precision floating-point values for IEEE 754 arithmetic
	4.4.6 IEEE 754 arithmetic and rounding
	4.4.7 Exceptions arising from IEEE 754 floating-point arithmetic
	4.4.8 Exception types recognized by the Arm floating-point environment

	5. The C and C++ Library Functions Reference
	5.1 __aeabi_errno_addr()
	5.2 alloca()
	5.3 clock()
	5.4 _clock_init()
	5.5 __default_signal_handler()
	5.6 errno
	5.7 _findlocale()
	5.8 _fisatty()
	5.9 _get_lconv()
	5.10 getenv()
	5.11 _getenv_init()
	5.12 __heapstats()
	5.13 __heapvalid()
	5.14 lconv structure
	5.15 localeconv()
	5.16 _membitcpybl(), _membitcpybb(), _membitcpyhl(), _membitcpyhb(), _membitcpywl(), _membitcpywb(), _membitmovebl(), _membitmovebb(), _membitmovehl(), _membitmovehb(), _membitmovewl(), _membitmovewb()
	5.17 _platform_pre_stackheap_init()
	5.18 posix_memalign()
	5.19 __raise()
	5.20 _rand_r()
	5.21 remove()
	5.22 rename()
	5.23 __rt_entry
	5.24 __rt_exit()
	5.25 __rt_fp_status_addr()
	5.26 __rt_heap_extend()
	5.27 __rt_lib_init()
	5.28 __rt_lib_shutdown()
	5.29 __rt_raise()
	5.30 __rt_stackheap_init()
	5.31 setlocale()
	5.32 _srand_r()
	5.33 strcasecmp()
	5.34 strlcat()
	5.35 strlcpy()
	5.36 strncasecmp()
	5.37 _sys_close()
	5.38 _sys_command_string()
	5.39 _sys_ensure()
	5.40 _sys_exit()
	5.41 _sys_flen()
	5.42 _sys_istty()
	5.43 _sys_open()
	5.44 _sys_read()
	5.45 _sys_seek()
	5.46 _sys_tmpnam()
	5.47 _sys_write()
	5.48 system()
	5.49 time()
	5.50 _ttywrch()
	5.51 __user_heap_extend()
	5.52 __user_heap_extent()
	5.53 __user_setup_stackheap()
	5.54 __vectab_stack_and_reset
	5.55 wcscasecmp()
	5.56 wcsncasecmp()
	5.57 wcstombs()
	5.58 Thread-safe C library functions
	5.59 C library functions that are not thread-safe
	5.60 Legacy function __user_initial_stackheap()

	6. Floating-point Support Functions Reference
	6.1 _clearfp()
	6.2 _controlfp()
	6.3 __fp_status()
	6.4 gamma(), gamma_r()
	6.5 __ieee_status()
	6.6 j0(), j1(), jn(), Bessel functions of the first kind
	6.7 significand(), fractional part of a number
	6.8 _statusfp()
	6.9 y0(), y1(), yn(), Bessel functions of the second kind

	7. Arm C and C++ Libraries and Floating-Point Support User Guide Changes
	7.1 Changes for the Arm C and C++ Libraries and Floating-Point Support User Guide

