arm

Arm® Compiler

Version 6.6

armlink User Guide

Non-Confidential Issue
Copyright © 2014-2017, 2019-2020, 2023 Arm DUI0803_I_en
Limited (or its affiliates).

All rights reserved.

Arm” Compiler armlink User Guide

Arm® Compiler
armlink User Guide

Document ID: DUIO8O3 | en

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential Arm Compiler v6.00 Release
B 15 December 2014 Non-Confidential Arm Compiler v6.01 Release
C 30 June 2015 Non-Confidential Arm Compiler v6.02 Release
D 18 November 2015 Non-Confidential Arm Compiler v6.3 Release
E 24 February 2016 Non-Confidential Arm Compiler v6.4 Release
F 29 June 2016 Non-Confidential Arm Compiler v6.5 Release
G 4 November 2016 Non-Confidential Arm Compiler v6.6 Release
H 8 May 2017 Non-Confidential Arm Compiler v6.6.1 Release
| 29 November 2017 Non-Confidential Arm Compiler v6.6.2 Release
J 28 August 2019 Non-Confidential Arm Compiler v6.6.3 Release
K 26 August 2020 Non-Confidential Arm Compiler v6.6.4 Release
L 31 January 2023 Non-Confidential Arm Compiler v6.6.5 Release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or

implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 2 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR

ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please

follow Arm'’s trademark usage guidelines at https:/www.arm.com/company/policies/trademarks.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NU.

(LES-PRE-20349|version 21.0)

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 3 of 351

https://www.arm.com/company/policies/trademarks

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https:/support.developer.arm.com

To provide feedback on the document, fill the following survey: https:/developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 4 of 351

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

Version 6.6
Contents

Contents
LISE Of FIGUIES.....uoeeeeeeeeeeeeeeeereceeseeeesessessesessessessesesssssessssesessessessssessessssssessesssssssessessssessessssssnessens 17
LISt Of TADIES...cueeeneeeieeeeecteceecenteeeeceeeseesseesseessesssessessseessessesssssssessssssssssesssessassssessasssssssenss .18

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 5 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Contents
L. INEFOAUCTION. ..ttt s se e e e e e e e e se e se e e s e e s s s s s eassssenssssssssssasssassnsanes 20
L L CONVENTIONS ettt 20
1.2 Other INfOrMatiON. ... 21
2. OVEIVIEW Of The LINKET ..ottt e e e e sese e sssssesssesesesssesssssssssssesssssssssssssssssssssssssssnns 22
2.0 ADOUL TNE TINKET ..ottt 22
2.1.1 Summary of the INKEr fEATUIES. ..ot 22
2.1.2 What the linker can accept as INDUL......ooio oo, 23
2.1.3 What the INKEr OULDUES. ... 24
2.2 Linker commMand=liNE SYNTAX... ..o e e 24
2.3 What the linker does when constructing an executable IMage.........c.oooovoioeiecieceeeeeeeeee 25
2.4 SUPPOIt [EVEl AEfINITIONS. ..o 26
3. Linking Models Supported DY armMlinK............cocoeeeeereerneeeereeeneeecseseseesesesesesesssssssessssesssssesssssssens 31
3.1 Overview of HNKING MOAEIS. ... 31
3.2 Bare-metal lINKING MOAEL... ... 32
3.3 Partial INKING MOAEL 33
3.4 Base Platform Application Binary Interface (BPABI) linking model.........ccoooooiiiiiiiiieeee, 34
3.5 Base Platform lNKING MOo e 35
4. Image Structure and GENEIALION........ccceereeereeetereeteeeteesteete e rtesesaesessesessesessesessesesssessrsessssessssessrsesersene 38
4.1 The structure of an Arm ELF IMage. ... 38
4.1.1 Views of the image at €ach lINK STaZe ..o 38
4.1.2 Input sections, output sections, regions, and program SegmMentsS........c.ccooveveveeeeeveeceeeeeeeeeeee. 40
4.1.3 Load view and execution VIEW Of an IMaAgE.....c.oi oo 42
4.1.4 Methods of specifying an image memory map with the linker ... 44
415 IMABE ENENY POINES oo 46
4.1.6 Restrictions 0N IMage SErUCTUIE.oie e 47
4.2 SIMIPIE IMAEZES. ..ottt 48
421 TYPES Of SIMIPIE MO ettt 48
4.2.2 Type 1 image structure, one load region and contiguous execution regionsS.........cccceceeveveecen.n. 49
4.2.3 Type 2 image structure, one load region and non-contiguous execution regions...................... 51
4.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions............. 54
4.3 Section placement With the lINKE ... 56
4.3.1 Default section plaCemMeNt. 56
4.3.2 Section placement with the FIRST and LAST attributes. ..o 58
4.3.3 Section alignment WIth the TNKEr e 59

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 6 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Contents
4.4 Linker support for creating demand-paged fIlS..........ooivioiioee e 60
4.5 Linker reordering of execution regions containing T32 COAe.......ooiiiiiiiiiiieieeeeeeeeeeeeeee 61
4.6 LINKEr-8ENEIateA VENEEIS. ...t 61
.01 WAL IS @ VENMEEI ..ottt 61
A.6.2 VENEET SNATING ..o 63
.3 NV BNEET TV DB ..o 63
4.6.4 Generation of position independent to absolute VENEErs.........ocoov oo 64
4.6.5 Reuse of veneers when scatter-I0ading.........c.oooioooice e 65
4.6.6 Generation Of SECUrE ZatEWaY VENEEIS.c.oieeeeeeeeeeeeeeeeee e 66
4.7 Command-line options used to control the generation of C++ exception tables......................... 67
4.8 Weak references and definitioNS. ..o 67
4.9 How the linker performs library searching, selection, and sCanNiNg.........ccocovvvveeieeeeiececeieeeeen 70
4.10 How the linker searches for the Arm standard liDraries. ..o, 71
411 Specifying user libraries When lINKING........ooo oo 72
4.12 How the lINKer resOIVES MEfErENCES. ..o 73
4.13 The strict family Of lINKET OPLIONS....cviiiieice s 74
5. LinKer OptimizZation FEAtUIES........ v iececetceteteteresetessesessseesesssesessesessesessesessesessesesssessesessasessaseses 75
5.1 Elimination of common debug SECTIONS........ocviieoe e 75
5.2 Elimination of common groups OF SECHIONS......vi e 75
5.3 Elimination of UNUSEA SECLIONS....c.cviiiiicieicece e 76
5.4 Optimization wWith RW data COMPIrESSION ..ot 77
5.4.1 How the liInker ChO0SES @ COMPIESSONo, 77
5.4.2 Options available to override the compression algorithm used by the linker..........ccccococoeoo. 78
5.4.3 How compression IS @PPIIE. ... 79
5.4.4 Considerations when working with RW data compression.........ococooveeeooeeeeeeeeeeeeeeee 79
5.5 Function inlining WIth the TNKEro e 80
5.6 Factors that influence fuNCON INTINING. ... 81
5.7 About branches that optimize t0 @ NOP ... 82
5.8 Linker reordering of tail Calling SECTIONS.o 83
5.9 Restrictions on reordering of tail calling SECTIONS........oviioeeeceee e, 83
5.10 Linker merging of COMMENT SECTIONS. ..o 84
5.11 Merging identical CONSTANTS. ..o 84
6. Getting IMAZE DELAIIS.....cuoueeceeeeeereeeeteeee ettt eeeteteteesesesese e s sese e ssssesessssssesesessssnsssesessnssssesersnssesn 87
6.1 Options for getting information about linker-generated fileS........ccooooiioiiccceeeeeeee 87
6.2 ldentifying the source of SOMe lINK ©ITOIS.. ..o 88

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 7 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Contents
6.3 Example of using the --info INKEr OPtION ..o, 88
6.4 How to find where a symbol is placed when INKING.........oooooi e 92
7. Accessing and Managing Symbols With armlinK..........coeeeeeeeereceecnecreceneeere e seesesessesesseseeees 94
7.1 ADOUL MaPPING SYMIDOIS ..ot 94
7.2 LINKer-defiNed SYMDOIS....... e e e 95
7.3 Region-related SYMDOIS... ... e 96
7.3.1 Types of region-related SYMDOIS e 96
7.3.2 IMage$$ execution reZiON SYMDOIS. ... 96
7.3.3 Load$$ execution reZioN SYMDOIS........ooiieeeceeeeeeeeeeeeeeeeeeeeeeee e 97
7.3.4 Load$FLRES 10ad regIoN SYMDOIS. ... 98
7.3.5 Region name values when not scatter-1oading.........oooiooeeoe e, 99
7.3.6 Linker defined symbols and SCatter fIleS.... ..o 100
7.3.7 Methods of importing linker-defined symbols in C and CH+....ooiieeeeee 100
7.3.8 Methods of importing linker-defined symbols in Arm assembly language..........cccocoeeveenn. 100
7.4 Section-related SYMDOIS. ... e 101
7.4.1 Types of section-related SYMDOIS. ... 101
7 4.2 IMAZE SYMDOIS. ... oo 102
7.4.3 INPUL SECTION SYMIDOIS. ... e 103
7.5 Access symbols iN anOther IMAEE. ... e 104
7.5.1 Creating @ SYMAETS 11, . ot 104
7.5.2 Outputting a subset of the global symbolS. ..., 104
7.5.3 Reading a SYMAETS fIle.... e 105
7.5.4 Symdefs fIle FOrMIAt.. ..o e 106
7.6 Edit the symbol tables with @ steering flle . ..o, 107
7.6.1 Specifying steering files on the linker command-lNe...........cooiiiiiiieeeeeeeeeeeeee. 107
7.6.2 Steering file COMMAN SUMMATIYiivie oottt 108
7.6.3 Steering 1€ fOIMAt. ..o e 109
7.6.4 Hide and rename global symbols with a steering file ... 110
7.7 Use of $Super$$ and $Sub$$ to patch symbol definitions.cveeeeeeeeeeeeeeeeeeeeeeeeeeeeen. 110
8. SCAttEr-10adiNG FEATUIES.......ceeeeeeeeereeereeeeeteieteeese et sste s stesese e stesessesesaesesaesessesessesessasessasessasesansesenes 112
8.1 The scatter-loading MECNANISINoov e 112
8.1.1 Overview of SCatter-l0adiNg.......oo oo e 112
8.1.2 When to Use SCatter-I0adiNg.. ... oo 112
8.1.3 Linker-defined symbols that are not defined when scatter-loading..........cccccoooovoioiiecicc. 113
8.1.4 Placing the stack and heap with a scatter file. ... 114
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Contents
8.1.5 Scatter-loading command-liNe OPTIONS. ..o 115
8.1.6 Scatter-loading images with a simple MEMONY MaP ... 116
8.1.7 Scatter-loading images with a complex Memory Map.......ccoovooeooeeeeeeeeeeeeeeee e 118
8.2 Root region and the initial entry POINT ..o, 119
8.2.1 Effect of the ABSOLUTE attribute on a root region.........ooieieoeeeeeeeeeeeeeeeeeeeeeee 120
8.2.2 Effect of the FIXED attribute on a root reZioN.......cocv oo 121
8.2.3 Methods of placing functions and data at specific addresses. ..o, 123
8.2.4 Placing functions and data in @ named SEeCtioN. ... 129
8.2.5 Placing __at sections at @ specific addreSS........ooiiioieeeeeeeeeeeeeeeeee e 131
8.2.6 Restrictions on placing at SECTIONS. ... 132
8.2.7 Automatically placing __at SECHIONS. ..o 132
8.2.8 Manually placing __at SECHIONS. ... 134
8.2.9 Placing a key in flash memory with an __at SECTION. ... 135
8.3 Example of how to explicitly place a named section with scatter-loading.........cccccocveveeveeenn. 136
8.4 Placement of UNassiZNed SECTIONS.o.ii oot 138
8.4.1 Default rules for placing unassigned SECTIONS.ciiv i 139
8.4.2 Command-line options for controlling the placement of unassigned sections......................... 140
8.4.3 Prioritizing the placement of unassigned SECHIONS. ..o 141
8.4.4 Specify the maximum region size permitted for placing unassigned sections...........ccccccoco...... 141
8.4.5 Examples of using placement algorithms for /ANY SeCtions........cocooiivioioiiiceeeeeeeeeeee, 143
8.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority......... 145
8.4.7 Examples of using sorting algorithms for ANY SECtIONS.......c.ooiiiiiecee e 147
8.4.8 Behavior when .ANY sections overflow because of linker-generated content........................ 148
8.5 Placing veneers With @ sCatter flle. ..o 152
8.6 Placement of CMSE veneer sections for a SECUre IMage........coovovoiioeeeeeeeeeeeeeeeeeeeeeee 152
8.7 Reserving an empty DIOCK Of MEMOINY ..o, 155
8.7.1 Characteristics of a reserved empty block of MEMOIY.....cooiiviiice e 155
8.7.2 Example of reserving an empty block of MeEMOIY......coiiiviiecceeeeeeeeeeeeeeeeeeeeeeee 155
8.8 Placement of Arm C and CH+ lIbrary COUC.. ..o 157
8.8.1 Placing code iN @ MOOT FEZION ...t 157
8.8.2 Placing Arm C lIDrary COA ... e, 158
8.8.3 Placing Armn CH+ [IDrary COUE ... 158
8.9 Aligning regions t0 Page DOUNAAIIES. ..o, 160
8.10 Aligning execution regions and INPUL SECTIONS.oiiii i 161
8.171 Preprocessing @ SCatter f1lE. .o, 162
8.11.1 Default behavior for armclang -E in a scatter file. ..., 163

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 9 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Contents
8.11.2 Using other preprocessors in a SCatter flle . .o 163
8.12 Example of using expression evaluation in a scatter file to avoid padding........c.cccccoeveeeveenn. 164
8.13 Equivalent scatter-loading descriptions for simple iIMages.......c.oviovieiceeeeeeeeeeeeeeeeeeeeeee 165
8.13.1 Command-line options for creating SiMple IMagES.......co oo 165
8.13.2 Type 1 image, one load region and contiguous execution regioNS........cceeeveveeeeeeveeeeeeee. 166
8.13.3 Type 2 image, one load region and non-contiguous execution regions.........cccceeeveeeveeennnn. 168
8.13.4 Type 3 image, multiple load regions and non-contiguous execution regions..........ccccccoce..... 170
8.14 How the linker resolves multiple matches when processing scatter files.........ccoooiviiiin. 173
8.15 How the linker resolves path names when processing scatter files.........coooooiiiieccceeee 175
8.16 Scatter file T0 ELF MaPDING ..o 175
9. SCALLEN FlE SYNTAX.uceiiiiitererrerieteieteeeteeeteesteseeteseetesessesessesessesessesessssessesessssesssessnsessssessnsessrsesensessnsesensesen 178
9.1 BNF notation used in scatter-loading description SYNtaX.......cooeoiovoiioeeeeeeeeeeeeeeeeeeeeeen, 178
9.2 SYNtaX OF @ SCATTOI 11 e e 179
9.3 Load region AeSCIIPTIONS .. .o e 180
9.3.1 Components of a load region deSCriPLiON.......c.i oo 180
9.3.2 Syntax of a load region desCriptioN.. ..., 181
9.3.3 Load region attribULES.o, 183
9.3.4 Inheritance rules for load region address attribuUtes. ..o 184
9.3.5 Inheritance rules for the RELOC address attribute.......ccoooviiiiiieiiiiiiccccceee, 186
9.3.6 Considerations when using a relative address +offset for a load region........c.ccocooveveeeecvenn.. 186
9.4 EXeCUtion region AeSCrIDtIONS. 187
9.4.1 Components of an execution region deSCriPTION.......coi oo 187
9.4.2 Syntax of an execution region deSCriPtioN. ... 188
9.4.3 EXecUtion region attribULES. ..o 190
9.4.4 Inheritance rules for execution region address attributes..........ccoooovoiieiieeceeee 194
9.4.5 Considerations when using a relative address +offset for execution regions..........c.ccccocvev..... 195
2.5 INPUL SECHION AESCIIPTIONS. ... et 196
9.5.1 Components of an input section deSCriptioN........ooiioio e 196
9.5.2 Syntax of an inpuUt section deSCriPHION ..o e 197
9.5.3 Examples of module and input section specifiCations.........ccocvoiiiceeceeeeeeeeeeeeeeeeeee 201
9.6 Expression evaluation in SCatter fIlES. ... 202
9.6.1 EXPression Usage 1N SCAtter fIlES. ..o 202
9.6.2 EXpression rules in SCatter fIlES. ... oo e 203
9.6.3 Execution address built-in functions for use in scatter fileS.......coooooioiceeeeeeeeeee 204
9.6.4 ScatterAssert function and load address related fuNCIONS.....c.cooviieeiiiriiceee e 206

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 10 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Contents
9.6.5 Symbol related function in a SCatter flle. .. .o 207
9.6.6 AlIGNEXPr(expr, aligN) fUNCLION. ... 208
9.6.7 GetPageSizZe() TUNCHION. ... e 209
9.6.8 SizeOfHeaders() fUNCHION. ..o 209
9.6.9 Example of aligning a base address in execution space but still tightly packed in load space..210
9.6.10 Scatter files containing relative base address load regions and a Z| execution region.......... 210
10. BPABI Shared Libraries and EXECULabIES..........covrrerrerrerireteeeteestseeteeseensestsesassesssssssssesens 212
10.1 About the Base Platform Application Binary Interface (BPABI)......c.oooiooeeeceeeeeeee 212
10.2 Platforms supported by the BPABI.......ooo e, 213
10.3 Features common to all BPABI MOAEIS. ..o 213
10.3.1 About importing and exporting symbols for BPABI models........c.ccoooovioiieiiiiieeceeee 214
10.3.2 Symbol visibility for BPABI MOAEIS. ..o 214
10.3.3 Automatic import and export for BPABI MOdelS........ooovoioee e, 215
10.3.4 Manual import and export for BPABI MOElS..... ..o 215
10.3.5 Symbol versioning for BPABI MOAEIS. ... 216
10.3.6 RW compression for BPABI MOAEIS. ..o 216
10.4 Bare metal and DLL-like Memory MOAEIS.......ocooiioee oo 216
10.4.1 BPABI standard memory MOAEL... ... 217
10.4.2 Customization of the BPABI standard memory model. ..o 218
10.4.3 Linker command-line options for bare metal and DLL-like models........cccccccoovvvvveveevirivereiennn. 218
10.4.4 Mandatory symbol versioning in the BPABI DLL-like model........cccoooioiiiiiiiieeeeee, 220
10.4.5 Automatic dynamic symbol table rules in the BPABI DLL-like model........c..cooooovoiiiii 220
10.4.6 Addressing modes in the BPABI DLL-like Model. ... 221
10.4.7 C++ initialization in the BPABI DLL-like MOEl.......coovivieieiiiiiceeeeeeeeeeeeeeee e 222
LO.5 SYMDOI VEISIONMING. ...t 223
10.5.1 Overview of SYMbDOl VEISIONING......ov oo 223
10.5.2 Embedded SYmMDOIS. ... oo 223
10.5.3 The symbol versioning SCIPE fllE ..o e 224
10.5.4 Example of creating versioned SYMDOIS.......c.ooiiiii e 225
10.5.5 Linker options for enabling implicit symbol versioning..........ccooioooeceeeeeeeeeeeeeeeeeee 226
11. Features of the Base Platform LinKing MoOdel..........u ettt seesessesessssessnes 227
11.1 Restrictions on the use of scatter files with the Base Platform model..........cccccooovviiiicnn 227
11.2 Scatter files for the Base Platform linking model. ..o, 229
11.3 Placement of PLT sequences with the Base Platform model..........cccoooooiiiiiieieee 231

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 11 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Contents
12. armlink Command-liNE OPLIONS......c.cveeieerereiereieeiererrete et essessesesssessssesessessssesessesessesessesessesessases 232
T2.0 =ANY _CONEINEZENCY e ettt 232
12.2 -—any_placement=algorithim. . ..o 232
12.3 =AY _SOM_ OrAEI= O AN . .o 234
T2 ==AD0, =70 @D et 235
L 2.5 mmaUL0AE, “ 70 AULOAT e ettt 236
12,6 —=DarE METAl IO e 236
12,7 —=DaSE _PIAt O e 237
12.8 --bestdebug, --N0_beSTAEDUE.......c.ooeeeeeeeeeee e 238
12.9 --blx_arm_thumb, ==No_bIX_ arm ERUMD . et 239
12.10 --blIx_thumb_arm, =-No_ DX ThUMD QMoo 239
T2 070 7DD 240
12.12 --branchnop, ==N0O_DranCRNOD ... e 240
12.13 --callgraph, ==N0_CallGraph... ..o e 241
12.14 ——callgraph_fIle=fllE@NamME... ..o 242
12.15 ——callgraph_OUtPUEETIME. o 243
12.16 --callgraph_subset=symbol[,symMbol,...] . ..o 244
L2 7 oI Tty D e 244
12,08 —=C8SYMDOIEEYPE e 245
12,09 —C8UNAEIINEATEYDE oo 246
12.20 --comment_section, --N0_COMMENT_ SECEION. ..c.vt oot 246
12.21 --compress_debug, --N0_COMPress_ AEDUE.......oiiviiieeeeeee e 247
12.22 -=CPPINIE, =mNMO_CPDINIT et 248
T2.28 == CPUSLIS T 248
L 2. 24 = CDUTNAMC ..o ettt 249
12.25 --crosser_veneershare, =-N0_CrOSSEr VENEEISNAIEC ..ottt ee e 251
12.26 —=dataComDrES SO 0D e 251
12.27 —=debUEg, ~=NO_AEDUS. ... 252
12.28 —-diag ermOr=tag[tag, ... oo 253
12.29 —=diag remMark=tagEag, ... oo, 253
12.30 -=diag Style=arm[IA@IGNU. ..o oo 254
12.31 -=diag SUPPIeSS=Iag Eag, ..] oo 254
12.32 --diag wWarning=tag[,tag, oo 255
T2.33 QI 256
12.34 —=dyNamiC_lINKEIENAME. ...t 256
12.35 --eager_load_debug, --no_eager_load_debug. ... 257

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 12 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Contents
T2.36 =8N A A e e ettt 257
12.37 = @AIEEIE LISt 258
12.38 ——emit_debug OVerlay TEIOCS. ..o 259
12.39 ——emit_debug_overlay SECTION. ..o e 259
12.40 —-emit_NON_dEDUE TEIOCS. ... 260
L2 L =M T 0TS ettt ettt et ettt et et 260
L1242 €Ny ZI0CA 0N oo 260
1243 —=@rTOrS=fIENAME ..ottt 262
12.44 --eXCePtioNS, ==NO_EXCEDTIONS.ot 262
12.45 ——export_all, —=NO_eXPOrt_allo 262
12.46 --export_dynamic, —-N0_eXPOrt_dYNamMiC.... ..o 263
12.47 --filtercomment, =-N0O_fIEEICOMMENTo ettt 264
T2.48 ——FINIESYMDON .o 264
L2 4D — o I ST SO CEION 10ttt ettt ettt ettt ettt et 265
12.50 —=F0rCe_eXPICIt _athr .. e, 266
12.51 --force_so_throw, =-N0_fOrCE SO TNTOW ...ttt 266
L2 D o D e e 267
T2.58 o PUSIIST ettt 267
L2 5 o DUSNAMIE e 267
L2 DD B T Y D e 268
12.56 —-gnU_lINKer _defiNEA _SYMIS...o. e 269
L 2,57 oDt 270
12.58 ——import_cmse_lID_ iIN=flENaME ... 270
12.59 —-import_cmse_lID_OUt=IlE@NAME ... 270
12,60 == INTOTEOPICL,EODIC, e+ Lot 271
12670 —=INfO 1D DI IXTODT i 274
T2.62 —INEESYMIDO| e e et 274
T2.63 =mINIINE, =200 N INC e e ettt ettt 275
L 2. 04 = INlINE Y PO TR DO oo 275
12.65 —=INlINEVENEEL, ==NO NNV ENCE ..ottt ettt ettt 276
L2.66 INPUETUEIST oo 277
12.67 —KEEPZSECHION I oo 278
12.68 --Keep INTEIMEAIATO. ... oo 279
12.69 --largeregions, ==NO_larZEIrEEZIONS.ieee e 280
L2 70 = aSEm SO O ON ettt ettt 281
12.71 --legacyalign, ——N0_1€8aCYAIIZN......ov oo 282

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 13 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Contents
12,72 —=lbPath=patiliSt. ... 283
D27 3 =l DAY S NAMIE .o 283
L1274 —=lDrany tYPETIID .o 284
L1275 —lISEEMENAME. ..ot 285
12.76 --list_mapping_symbols, --no_list_mapping_SymMbOIS.......c.coiovieeeeeeeeeeeeeeeeeeeeee 285
12.77 --load_addr_map_info, --no_load_addr_map_iNfO.......ccocoiioiieee e 286
D278 ==l0CAIS, =710 LOCAIS ettt 286
D279 =m100, =m0 E 0o e e ettt 287
12.80 --Ito_keep_all symbols, --no_[to_keep_all sSymbolS........cocioiiiiii e 289
12,871 —=1t0 INTErMEAIate 1 ENaAMIC ..ottt ettt 289
D282 =mTE0 LBVEL e et 290
12.83 =-1t0_1eI0CATION MO .. .o ettt ettt 291
12.84 —-mangled, —-UNMangIed ..o 292
L2285 =mNAD, “ 70 NIAD it 292
12.86 ——mMatCh=CroSSmManGIed. ... 293
L2 87— oK F EX NS ONTSIZE e e ettt 293
12.88 --MaX_VENEEI _PASSESTVAIUCo 294
12,89 == aX _VISIDI Y FEY DO e 294
1290 =mNEIEE, N0 MBI o ettt ettt 295
12.91 --merge_litpools, --N0_Merge_ltPO0IS.......c.o oo, 296
12.92 --muldefweak, —=NO_ MUIAETWEAKoo e 296
12.93 -0 filename, —-0UtPULEFIENAMIE......oi e 296
12.94 —-output_float_abimOptioN. ..o 297
L2.95 o0V VEIAY VENMEEIS ...ttt 298
12.96 -=0VerTIdE VISIDITY .o 299
T2.97 “OIMNAXeiiitiiiieieieieeee ettt 299
12,08 m AT NUM . oot 300
L2.99 mmDAEE et 300
12,100 - PAEESIZEZPAEESIZE ..o 301
T2.000 =mPAMTIAL e 301
L2002 DIttt 301
12103 ==PIVENEEL, ==NO_PIVENEET ...t 302
L2 004 oD O T Y PO e 302
12005 —-pIEGOT OPISTMOAE .. oo 304
12,006 —=predefiNe="StrINE .. oo 304
12007 ==preinit, =N DI INIT. .o 306

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 14 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Contents
T2 008 = mDlIVACY e e e 306
12.109 --ref_cpp_init, —=NO_TeF _CPP_INIT .o 307
12.1710 --ref_pre_init, ——N0_ref _Pre NIt e 307
T2 0T mmTIOC ittt 308
L2002 —oTEMIATKS ettt 309
12,013 =TEMOVE, =N _TEIMOVEC ettt ettt ettt ettt ettt et e e et e et eee e et e et e et e et e st eeeeeneeeen 309
L2004 =210 DS T AUAIESS e ettt ettt ettt 310
L2075 o 0Dttt 310
T2 006 =m0 e e 311
L2007 o1 W DASETAAAIESS. ..ottt ettt ettt 312
T2 008 oWttt 312
12,109 ==SCANIID, N0 SCANIID .ot ettt ettt 313
12120 —-SCatter=fllENAME. ...t 313
12.127 --section_iINdeX_diSplay =ty Pe. ..o oo 315
L2022 == SO CMNAIINC ettt ettt 316
12,123 ==ShOW _TUIL AN .o 316
12024 -=SNOW_PareNt D e e e 316
L2025 mm SN 0W ST T X ettt et ettt ettt 317
12,026 —=SOrt=algOrTt M. . e 317
L2027 =PIttt 319
12.128 --startup=symbol, ==N0_STArtUDoi e e 320
T2.029 —=SEAIID ot 320
T2.0B0 ==SEIICE et 321
12,1371 --strict_enum_Size, ——NO_SEIICE ENUM _ SIZE.. v et 322
12.132 --strict_flags, ——N0O_STHCT flIA8S. .. oo 322
12133 ==Strict_ph, ==NO_STICE PN 323
12.134 --strict_relocations, ==NO_STrCT relOCAtIONS ... ettt ettt 323
12.135 --strict_symbols, --N0_Strict_SYMDOIS.... ..o 324
12.136 --strict_visibility, --N0_SErCt VISIDIEY ..o 325
12.137 --strict_wchar_Size, —-N0O_StriCE WCNAT SIZ .ot 325
12.138 -=SymMDOIS, ==NO_SYMIDOIS ... 326
12.139 —=SYMAETS = I ENAMIE. ..o 326
12140 --SymMVEr SCHIPE=TIENAME ..ot 327
L2047 =Sy NIV SONAIME ..ottt ettt 327
12,142 —-tailreorder, ==NO LAl OIAE .. oo ettt ettt 328
12,148 —-HieDrEaKer=0DtiON ..o 328

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 15 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Contents
12.144 --unaligned_access, --N0_UNaligNed_aCCESS. ..o 329
12145 --undefiN@A=SYMDOL ... e 330
12.146 --undefined_and_exXport=SyMDOLl. 330
12,147 -=UnreSOIVEA=SYMDON ..o 331
12.148 --use_ defiNition VISIDITEY ..o e 332
12149 --userlibpath=pathliSt.o 332
12.150 --veneerinject, ——NO_VENEEINJECT.o, 333
121570 --veneer N eCt ty PO =ty DO o e 333
12052 =-VENEEI _POO| SIZETSIZO o oo et 334
12,153 --VENEEISNAre, ==-N0O VENEEISNAI ..o e ettt et 335
L2 54 = oVEIDOSE ...ttt 335
L2 LD oV IS ON UMD ettt ettt ettt ettt ettt 336
L2156 VA= lENAME .ot 336
L2 LS 7w o Sttt 336
L2158 =oXO DASETAUAINESS ettt ettt 337
L2059 coXIEE, =m0 XIOT e e e et 338
12.160 --Xrefdbg, N0 _XreFADG ..o 338
12.161 --Xref{from|to}=0D]ECt(SECTION). ... e 338
D202 ==ZI DASETAUANESS ettt ettt 339
13. Linker Steering File Command REfEIENCE.......uuueeeeeeeeeereeeeeeeerereeeeererereeeeeseseesesssesessssssesessasessses 341
13.1 EXPORT steering file COMMANG......coiioeie e 341
13.2 HIDE steering file COMMANG......oo oo 342
13.3 IMPORT steering file COMMANG. ..o 343
13.4 RENAME steering file COMMANG.... ..o 344
13.5 REQUIRE steering file COMMIANG.......oiiieeeeeeeeee e 345
13.6 RESOLVE steering file COMMANG... ... 346
13.7 SHOW steering file COMMANG......c.ooi i, 347
T4, VA FIlE SYNEAX.ucritiiiiiitiicteietcectcetceteet s ssesessesessesessesessesessssessssessssessssessssessssesessesessesenssensesessanes 348
T4 OVEINVIEW OF VIA FIES....iiiiiiiiiiceeeee ettt 348
T4.2 Vi fUlE SYNTAX TUIES ... e, 348
15. armlink User GUIAE ChanGES........ccoeceereereeereereetereeeeesteessesessesessssessesessssessssessesesssssssssessssessssessnsesensens 351
15.1 Changes for the armlink User GUIE...........oioiiviieeeeeeeeeeeee e, 351

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 16 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

List of Figures

\ersion 6.6
List of Figures

Figure 2-1: Integration boundaries in Arm Compiler for Embedded 6.........c.ccoovoiveveinennnn. 28
Figure 4-1: Relationship between sections, regions, and segments........ccccoovveveeevveceeceenne. 40
Figure 4-2: Load and execution memory maps for an image without an XO section........... 42
Figure 4-3: Load and execution memory maps for an image with an XO section................. 43
Figure 4-4: Simple Type 1 image without execute-only code.......c.covviiiiiiiiiieieeee. 50
Figure 4-5: Simple Type 2 image without execute-only code........cooivioiioiiiciceceeeeee. 52
Figure 4-6: Simple Type 3 image without execute-only code........coovviioeieeiiiieeeee 54
Figure 8-1: Simple scatter-loaded MemMOry Map.......coooo oo, 117
Figure 8-2: CompleX MEMOINY MAPD .. i oottt 118
Figure 8-3: Memory map for fixed exeCcution regiONS........c.ccoveveeeveeeeeeeeeeeeeeeeeeeeeeeen 121
Figure 8-4: ANY CONTINGENCY . .ouiiioeeceeeeeeee e 149
Figure 8-5: Reserving a region for the Stack.........ocoooioeeeeeeeeeeeeeeeeeeeeeeee 156
Figure 9-1: Components of a scatter file. ... 179
Figure 9-2: Components of a load region description........ccoo oo 181
Figure 9-3: Components of an execution region description.........ccocceveeeveeceeeceeeeeeeeeeen, 188
Figure 9-4: Components of an input section description.........ccoeoeeveeeieeceeeeeeeeeee 197
Figure 10-1: BPABI t0O] flOW. ..o 212

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

\ersion 6.6

List of Tables
List of Tables

Table 4-1: Comparing load and eXeCUtiON VIEWS.........ccvcieoueieeeeeeeeeeeeeeeeeeeeee e 43
Table 4-2: Comparison of scatter file and equivalent command-line options..........c..c.......... 45
Table 5-1: Inlining sMall fUNCHIONS.....c.oiieeeeeeee e 81
Table 7-2: Image$$ execution region SYMDOIS. ... 96
Table 7-3: Load$$ execution region SYMDOIS. ..., 97
Table 7-4: Load$SLRES load region SYMDOIS. ..., 99
Table 7-5: IMagE SYMDOIS.......ieiieeeeeeeeee e 102
Table 7-6: Section-related SYMDOIS. ..o, 103
Table 7-7: Steering file cOMMand SUMMANYc.ooiiviieeeeeeeeeeeeeeeeeeeeee e 108
Table 8-1: Input section properties for placement of .ANY sections.......c.ccocovvvvecvecieeeenn.. 143
Table 8-2: Input section properties for placement of sections with next_fit....................... 145
Table 8-4: Sort order for descending_size algorithm........c.cooooviiieeeeeeeeeeeeee 147
Table 8-5: Sort order for cmdline algorithm. . ..o, 148
Table 9-1: BNF NOLAtION ..ot 178
Table 9-2: Execution address related funCtionS.......ooceiiicc s 204
Table 9-3: Load address related fUNCIONS. ... 206
Table 10-1: SYMDBOI VISIDHITYovie e 214
Table 10-2: Turning on BPABI SUPPOIM ..., 218
Table 12-1: Supported Arm arChiteCEUMES.ovieoeeeeeee e 249
Table 12-2: Data compressor algorithmS. ..., 252
Table 12-3: GNU equivalent of iNput SECTIONS ..o, 269
Table 12-4: Link time optimization dependenCies........coooviiieeeceieeeeeeeeeeeeeee e, 287
Table 15-1: Changes between 6.6.5 (revision L) and 6.6.4 (revision K)........ccooveveceenn.n.. 351

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 18 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en

\ersion 6.6
List of Tables

Table 15-2: Changes between 6.6.4 (revision K) and 6.6.3 (revision J) ..o 351

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en

\ersion 6.6
Introduction

1. Introduction

Arm® Compiler armlink User Guide provides user information for the Arm linker, armlink. It
describes the basic linker functionality, image structure, BPABI support, how to access image
symbols, and how to use scatter files.

1.1 Conventions

The following subsections describe conventions used in Arm documents.

Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use
italic Citations.
bold Interface elements, such as menu names.
Terms in descriptive lists, where appropriate.
monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline

A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:
MRC pl5, 0, <Rd>, <CRn>, <CRm>, <Opcode 2>
SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Warning

Requirements for the system. Not following these requirements might result in system failure or damage.

Danger

Requirements for the system. Not following these requirements will result in system failure or damage.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 20 of 351

https://developer.arm.com/glossary

Arm® Compiler armlink User Guide Document ID: DUIO803_I_en
\ersion 6.6
Introduction

Convention Use
R" An important piece of information that needs your attention.

Note

A useful tip that might make it easier, better or faster to perform a task.

Q A reminder of something important that relates to the information you are reading.

Remember

1.2 Other information

See the Arm website for other relevant information.

e Arm® Developer.
e Arm® Documentation.
e Technical Support.

e Arm® Glossary.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 21 of 351

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
\ersion 6.6
Overview of the Linker

2. Overview of the Linker

Gives an overview of the Arm linker, armlink.

2.1 About the linker

The linker combines the contents of one or more object files with selected parts of one or more
object libraries to produce executable images, partially linked object files, or shared object files.

2.1.1 Summary of the linker features
The linker has many features for linking input files to generate various types of output files.

The linker can:

e Link A32 and T32 code, or A64 code.

e Generate interworking veneers to switch between A32 and T32 states when required.

e Generate range extension veneers, where required, to extend the range of branch instructions.

e Automatically select the appropriate standard C or C++ library variants to link with, based on
the build attributes of the objects it is linking.

o Position code and data at specific locations within the system memory map, using either a
command-line option or a scatter file.

e Perform RW data compression to minimize ROM size.

o Eliminate unused sections to reduce the size of your output image.
e Control the generation of debug information in the output file.

o Generate a static callgraph and list the stack usage.

e Control the contents of the symbol table in output images.

e Show the sizes of code and data in the output.

» Build images suitable for all states of the Arm®v8-M Security Extension.

Be aware of the following:
o Generated code might be different between two Arm Compiler releases.

o For a feature release, there might be significant code generation differences.

The command-line option descriptions and related information in the individual Arm
Compiler tools documents describe all the features that Arm Compiler supports.
Any features not documented are not supported and are used at your own risk.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 22 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
Overview of the Linker

You are responsible for making sure that any generated code using Support level
definitions is operating correctly.

Related information

Linker support for creating demand-paged files on page 60
Linking Models Supported by armlink on page 31

Image Structure and Generation on page 38

Linker Optimization Features on page 75

Getting Image Details on page 87

Accessing and Managing Symbols with armlink on page 94
Scatter-loading Features on page 112

BPABI Shared Libraries and Executables on page 212
Features of the Base Platform Linking Model on page 227
Placement of CMSE veneer sections for a Secure image on page 152
Base Platform ABI for the Arm Architecture

2.1.2 What the linker can accept as input

armlink can accept one or more object files from toolchains that support Arm ELF.

Object files must be formatted as Arm® ELF. This format is described in:
e ELF for the Arm Architecture (IHI 0044).
e ELF for the Arm 64-bit Architecture (AArché4) (IHI 0056).

Optionally, the following files can be used as input to armlink:
e One or more libraries created by the librarian, armar.

e A symbol definitions file.

o A scatter file.

o A steering file.

e A Secure code import library when building a Non-secure image that needs to call a Secure
image.

e A Secure code import library when building a Secure image that has to use the entry addresses
in a previously generated import library.

Related information
Scatter-loading Features on page 112
Access symbols in another image on page 103
Linker Steering File Command Reference on page 341
Scatter File Syntax on page 178
--import_cmse_lib_in=filename on page 270
About the Arm librarian
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 23 of 351

https://developer.arm.com/documentation/ihi0037/latest
https://developer.arm.com/documentation/dui0806/l/Overview-of-the-Arm-Librarian/About-the-Arm-Librarian

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
Overview of the Linker

Building Secure and Non-secure Images Using Armv8-M Security Extensions
ELF for the Arm Architecture (IHI 0044)
ELF for the Arm 64-bit Architecture (AArché4) (IHI 0056)

2.1.3 What the linker outputs
armlink Can create executable images and object files.

Output from armlink can be:
e An ELF executable image.
e A partially linked ELF object that can be used as input in a subsequent link step.

e A Secure code import library that is required by developers building a Non-secure image that
needs to call a Secure image.

You can also use fromelf to convert an ELF executable image to other file formats,
or to display, process, and protect the content of an ELF executable image.

Related information

Partial linking model on page 33

Section placement with the linker on page 56

The structure of an Arm ELF image on page 38
--import_cmse_lib_out=filename on page 270

Building Secure and Non-secure Images Using Armv8-M Security Extensions
Overview of the fromelf image converter

2.2 Linker command-line syntax

The armlink command can accept many input files together with options that determine how to
process the files.

The command for invoking the linker is:
armlink options input-file-list

where:
options
Linker command-line options.
input-file-list
A space-separated list of objects, libraries, or symbol definitions (symdefs) files.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 24 of 351

https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions
https://developer.arm.com/documentation/ihi0044/latest
https://developer.arm.com/documentation/ihi0056/c
https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions
https://developer.arm.com/documentation/dui0805/l/Overview-of-the-fromelf-Image-Converter

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Overview of the Linker

Some armlink options, such as --keep, require parentheses as values. On

Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,
for example:

—-—-keep="foo.o0 (Premier*)"

Related information
input-file-list on page 276
armlink Command-line Options on page 232

2.3 What the linker does when constructing an executable
image

armlink performs many operations, depending on the content of the input files and the command-
line options you specify.

When you use the linker to construct an executable image, it:

e Resolves symbolic references between the input object files.

o Extracts object modules from libraries to satisfy otherwise unsatisfied symbolic references.

» Removes unused sections.

e Eliminates duplicate common groups and common code, data, and debug sections.

o Sorts input sections according to their attributes and names, and merges sections with similar
attributes and names into contiguous chunks.

e Organizes object fragments into memory regions according to the grouping and placement
information provided.

e Assigns addresses to relocatable values.

e Generates an executable image.

Related information

Elimination of common debug sections on page 75
Elimination of unused sections on page 76

The structure of an Arm ELF image on page 38

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 25 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
\ersion 6.6
Overview of the Linker

2.4 Support level definitions
This describes the levels of support for various Arm® Compiler 6 features.

Arm Compiler 6 is built on Clang and LLVM technology. Therefore, it has more functionality than
the set of product features described in the documentation. The following definitions clarify the
levels of support and guarantees on functionality that are expected from these features.

Arm welcomes feedback regarding the use of all Arm Compiler 6 features, and intends to
support users to a level that is appropriate for that feature. You can contact support at https:/
developer.arm.com/support.

Identification in the documentation

All features that are documented in the Arm Compiler 6 documentation are product features,
except where explicitly stated. The limitations of non-product features are explicitly stated.

Product features

Product features are suitable for use in a production environment. The functionality is well tested,
and is expected to be stable across feature and update releases.

e Arm intends to give advance notice of significant functionality changes to product features.

e |f you have a support and maintenance contract, Arm provides full support for use of all
product features.

e Arm welcomes feedback on product features.

e Anvyissues with product features that Arm encounters or is made aware of are considered for
fixing in future versions of Arm Compiler.

In addition to fully supported product features, some product features are only alpha or beta
quality.
Beta product features

Beta product features are implementation complete, but have not been sufficiently tested to
be regarded as suitable for use in production environments.

Beta product features are identified with [BETA].
e Arm endeavors to document known limitations on beta product features.

e Beta product features are expected to eventually become product features in a future
release of Arm Compiler é.

e Arm encourages the use of beta product features, and welcomes feedback on them.

e Any issues with beta product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler.

Alpha product features

Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 26 of 351

https://developer.arm.com/support
https://developer.arm.com/support

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
\ersion 6.6
Overview of the Linker

Alpha product features are identified with [ALPHA].
e Arm endeavors to document known limitations of alpha product features.
e Arm encourages the use of alpha product features, and welcomes feedback on them.

e Anyissues with alpha product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler.

Community features

Arm Compiler 6 is built on LLVM technology and preserves the functionality of that technology
where possible. This means that there are more features available in Arm Compiler that are

not listed in the documentation. These extra features are known as community features. For
information on these community features, see the Clang Compiler User's Manual.

Where community features are referenced in the documentation, they are identified with
[COMMUNITY].

e Arm makes no claims about the quality level or the degree of functionality of these features,
except when explicitly stated in this documentation.

e Functionality might change significantly between feature releases.

e Arm makes no guarantees that community features remain functional across update releases,
although changes are expected to be unlikely.

Some community features might become product features in the future, but Arm provides no
roadmap for such features. Arm is interested in understanding your use of these features, and
welcomes feedback on them. Arm supports customers using these features on a best-effort basis,
unless the features are unsupported. Arm accepts defect reports on these features, but does not
guarantee that these issues are to be fixed in future releases.

Guidance on use of community features

There are several factors to consider when assessing the likelihood of a community feature being
functional:

e The following figure shows the structure of the Arm Compiler 6 toolchain:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 27 of 351

http://clang.llvm.org/docs/UsersManual.html

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
\ersion 6.6
Overview of the Linker

Figure 2-1: Integration boundaries in Arm Compiler for Embedded 6.

—_—— e ——

I

armasm syntax C/C++ GNU syntax '
assembly Source code | Assembly :

I

N L I I

LLVM Project
libc++

: : larmclang :
| L Source
| armasm : |) *— code
: | : LLVM Project headers
I I clang
[“ ______ I e —
Objects Objects Objects
. T |
| |
| |
Scatter/ | armlink |
Steering/ — |
Symdefs file !_ Jl

The dashed boxes are toolchain components, and any interaction between these components
is an integration boundary. Community features that span an integration boundary might have
significant limitations in functionality. The exception to such features is if the interaction is
codified in one of the standards supported by Arm Compiler 6. See Application Binary Interface
(ABI). Community features that do not span integration boundaries are more likely to work as
expected.

o Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 28 of 351

https://developer.arm.com/architectures/system-architectures/software-standards/abi
https://developer.arm.com/architectures/system-architectures/software-standards/abi

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
\ersion 6.6
Overview of the Linker

e The Clang implementations of compiler features, particularly those features that have been
present for a long time in other toolchains, are likely to be mature. The functionality of new
features, such as support for new language features, is likely to be less mature and therefore
more likely to have limited functionality.

Deprecated features

A deprecated feature is one that Arm plans to remove from a future release of Arm Compiler.
Arm does not make any guarantee regarding the testing or maintenance of deprecated features.
Therefore, Arm does not recommend using a feature after it is deprecated.

For information on replacing deprecated features with supported features, see the Arm Compiler
documentation and Release Notes. Where appropriate, each Arm Compiler document includes
notes for features that are deprecated, and also provides entries in the changes appendix of that
document.

Unsupported features

With both the product and community feature categories, specific features and use-cases are
known not to function correctly, or are not intended for use with Arm Compiler 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive
list of unsupported features or use-cases for community features. The known limitations on
community features are listed in Community features.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:
e The Clang option -stdlib=1ibstdc++ iS NOt supported.

o C++ static initialization of local variables is not thread-safe when linked against the standard
C++ libraries. For thread-safety, you must provide your own implementation of thread-safe
functions as described in Standard C++ library implementation definition.

This restriction does not apply to the [ALPHA]-supported multithreaded C++
libraries.

e Use of C11 library features is unsupported.
e Any community feature that is exclusively related to non-Arm architectures is not supported.

e Except for Armvé-M, compilation for targets that implement architectures lower than Armv7 is
not supported.

e The long double data type is not supported for AArché4 state because of limitations in the
current Arm C library.

e C complex arithmetic is not supported, because of limitations in the current Arm C library.

e Complex numbers are defined in C++ as a template, std: : complex. Arm Compiler supports
std: :complex With the float and double types, but not the 1ong double type because of
limitations in the current Arm C library.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 29 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

\ersion 6.6
Overview of the Linker

For C code that uses complex numbers, it is not sufficient to recompile with
the C++ compiler to make that code work. How you can use complex numbers

depends on whether you are building for Armv8-M architecture-based
pProcessors.

e You must take care when mixing translation units that are compiled with and without the
[COMMUNITY] -fsigned-char option, and that share interfaces or data structures.

The Arm ABI defines char as an unsigned byte, and this is the interpretation
used by the C libraries supplied with the Arm compilation tools.

Warning

Alternatives to C complex numbers not being supported

If you are building for Armv8-M architecture-based processors, consider using the free and Open
Source CMSIS-DSP library that includes a data type and library functions for complex number
support in C. For more information about CMSIS-DSP and complex number support see the
following sections of the CMSIS documentation:

e Complex Math Functions
e Complex Matrix Multiplication
o Complex FFT Functions

If you are not building for Armv8-M architecture-based processors, consider modifying the affected
part of your project to use the C++ standard template library type std: : complex instead.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 351

https://arm-software.github.io/CMSIS_5/DSP/html/group__groupCmplxMath.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__CmplxMatrixMult.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__ComplexFFT.html

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Linking Models Supported by armlink

3. Linking Models Supported by armlink

Describes the linking models supported by the Arm linker, armlink.

3.1 Overview of linking models

A linking model is a group of command-line options and memory maps that control the behavior of
the linker.

The linking models supported by armlink are:
Bare-metal

This model does not target any specific platform. It enables you to create an image with
your own custom operating system, memory map, and, application code if required. Some
limited dynamic linking support is available. You can specify additional options depending on
whether a scatter file is in use.

Bare-metal Position Independent Executables (PIE)

This model produces a bare-metal Position Independent Executable (PIE). This is an executable
that does not need to be executed at a specific address but can be executed at any suitably
aligned address. All objects and libraries linked into the image must be compiled to be
position independent.

Bare-metal PIE support is deprecated in this release.

Partial linking

This model produces a relocatable ELF object suitable for input to the linker in a subsequent
link step. The partial object can be used as input to another link step. The linker performs
limited processing of input objects to produce a single output object.

BPABI
This model supports the DLL-like Base Platform Application Binary Interface (BPABI). It is
intended to produce applications and DLLs that can run on a platform OS that varies in

complexity. The memory model is restricted according to the Base Platform ABI for the Arm
Architecture (IHI 0037 C).

Not supported for AArché4 state.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 31 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Linking Models Supported by armlink

Base Platform
This is an extension to the BPABI model to support scatter-loading.

Not supported for AArché4 state.

You can combine related options in each model to tighten control over the output.

Related information

Bare-metal linking model on page 32

Partial linking model on page 33

Base Platform Application Binary Interface (BPABI) linking model on page 34
Base Platform linking model on page 35

BPABI Shared Libraries and Executables on page 212

Base Platform ABI for the Arm Architecture

3.2 Bare-metal linking model

Focuses on the conventional embedded market where the whole program, possibly including a
Real-Time Operating System (RTOS), is linked in one pass.

The linker can make very few assumptions about the memory map of a bare-metal system.
Therefore, you must use the scatter-loading mechanism if you want more precise control. Scatter-
loading allows different regions in an image memory map to be placed at addresses other than

at their natural address. Such an image is a relocatable image, and the linker must adjust program
addresses and resolve references to external symbols.

By default, the linker attempts to resolve all the relocations statically. However, it is also possible to
create a position-independent or relocatable image. Such an image can be executed from different
addresses and have its relocations resolved at load or run-time. You can use a dynamic model to
create relocatable images. A position-independent image does not require a dynamic model.

With the bare-metal model, you can:

e |dentify the regions that can be relocated or are position-independent using a scatter file or
command-line options.

e l|dentify the symbols that can be imported and exported using a steering file.

You can use --scatter=rile With this model. You can use the following options when scatter-
loading is not used:

e —-reloc (not supported in AArché4 state).
®¢ --ro base=address.
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 32 of 351

https://developer.arm.com/documentation/ihi0037/latest

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Linking Models Supported by armlink

® -—-ropi.

e -—-rosplit.

®¢ --rw base=address.
* —-rwpi.

e -—-split.

® --xo0 base=address.
¢ --zi base.

--xo0_base cannot be used with --ropi Or --rwpi.

Related information

--x0_base=address on page 337

Methods of specifying an image memory map with the linker on page 44
--edit=file_list on page 258

--reloc on page 307

--ro_base=address on page 309

--ropi on page 310

--rosplit on page 311

--rw_base=address on page 311

--rwpi on page 312

--scatter=filename on page 313

--split on page 319

--Zi_base=address on page 339

Linker Steering File Command Reference on page 341

Base Platform Application Binary Interface (BPABI) linking model on page 34
Scatter files for the Base Platform linking model on page 229

3.3 Partial linking model
Produces a single output file that can be used as input to a subsequent link step.

Partial linking:
e Eliminates duplicate copies of debug sections.
e Merges the symbol tables into one.
e Leaves unresolved references unresolved.
e Merges common data (COMDAT) groups.
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 33 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Linking Models Supported by armlink

e Generates a single object file that can be used as input to a subsequent link step.

If the linker finds multiple entry points in the input files it generates an error because the single
output file can have only one entry point.

To link with this model, use the --partial command-line option.

If you use partial linking, you cannot refer to the original objects by name in a
scatter file. Therefore, you might have to update your scatter file.

Related information

Edit the symbol tables with a steering file on page 107
Steering file format on page 109

Linker Steering File Command Reference on page 341
--edit=file_list on page 258

--partial on page 301

3.4 Base Platform Application Binary Interface (BPABI)
linking model

The Base Platform Application Binary Interface (BPABI) is a meta-standard for third parties to
generate their own platform-specific image formats.

The BPABI model produces as much dynamic information as possible without focusing on any
specific platform.

BPABI is not supported for AArché4 state.

To link with this model, use the --bpabi command-line option. Other linker command-line options
supported by this model are:

e -—-dl1.

e --force so throw, --no_ force so_ throw.
e --pltgot=type.

¢ --ro base=address.

e -—-rosplit.

®¢ --rw base=address.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 34 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Linking Models Supported by armlink

e —-—rwpi.

Be aware of the following:

e You cannot use scatter-loading. However, the Base Platform linking model supports scatter-
loading.

e The model by default assumes that shared objects cannot throw a C++ exception (--
noiforceisoithrow).

e The default value of the --pltgot option is direct.

e You must use symbol versioning to ensure that all the required symbols are available at load
time.

Related information

Bare-metal linking model on page 32
Symbol versioning on page 222

--bpabi on page 239

--dll on page 255

--force_so_throw, --no_force_so_throw on page 266
--pltgot=type on page 302
--ro_base=address on page 309

--rosplit on page 311

--rw_base=address on page 311

--rwpi on page 312

Base Platform ABI for the Arm Architecture

3.5 Base Platform linking model

Enables you to create dynamically linkable images that do not have the memory map enforced by
the Base Platform Application Binary Interface (BPABI) linking model.

The Base Platform linking model enables you to:

e Create images with a memory map described in a scatter file.

e Have dynamic relocations so the images can be dynamically linked. The dynamic relocations can
also target within the same image.

Base Platform is not supported for AArché4 state.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 35 of 351

https://developer.arm.com/documentation/ihi0037/latest

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

Version 6.6
Linking Models Supported by armlink

The BPABI specification places constraints on the memory model that can be
violated using scatter-loading. However, because Base Platform is a superset of
BPABI, it is possible to create a BPABI conformant image with Base Platform.

To link with the Base Platform model, use the --base platform command-line option.

If you specify this option, the linker acts as if you specified --bpabi, with the following exceptions:

Scatter-loading is available with --scatter. If you do not specify --scatter, then the standard
BPABI memory model scatter file is used.

The following options are available:

° --dll.

° -—-force so throw, --no force so throw.
° --pltgot=type.

° --rosplit.

The default value of the --p1tgot option is different to that for --bpabi:
° For --base platform, the default is --pltgot=none.
o For --bpabi the default is --pltgot=direct.

Each load region containing code might require a Procedure Linkage Table (PLT) section to
indirect calls from the load region to functions where the address is not known at static link
time. The PLT section for a load region n.r must be placed in nr and be accessible at all times to
code within Lr.

If you do not use a scatter file, the linker can ensure that the PLT section is placed correctly,
and contains entries for calls only to imported symbols. If you specify a scatter file, the linker
might not be able to find a suitable location to place the PLT.

To ensure calls between relocated load regions use a PLT entry:

o Use the --pltgot=direct option to turn on PLT generation.

o Use the --pltgot opts=crosslr option to add entries in the PLT for calls from and to revoC
load regions. The linker generates a PLT for each load region so that calls do not have to be
extended to reach a distant PLT.

Be aware of the following:

The model by default assumes that shared objects cannot throw a C++ exception (--
no_force_so_throw).

You must use symbol versioning to ensure that all the required symbols are available at load
time.

There are restrictions on the type of scatter files you can use.

Related information
Restrictions on the use of scatter files with the Base Platform model on page 227

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 36 of 351

Arm” Compiler armlink User Guide Document ID: DUIO8O3_|_en
\ersion 6.6
Linking Models Supported by armlink

Scatter files for the Base Platform linking model on page 229

Base Platform Application Binary Interface (BPABI) linking model on page 34
Methods of specifying an image memory map with the linker on page 44
Symbol versioning on page 222

--base_platform on page 237

--dll on page 255

--pltgot_opts=mode on page 303

--rosplit on page 311

--scatter=filename on page 313

--pltgot=type on page 302

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 37 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

4. Image Structure and Generation

Describes the image structure and the functionality available in the Arm linker, arm1ink, to generate

images.

4.1 The structure of an Arm ELF image

An Arm ELF image contains sections, regions, and segments, and each link stage has a different
view of the image.

The structure of an image is defined by the:
e Number of its constituent regions and output sections.
o Positions in memory of these regions and sections when the image is loaded.

e Positions in memory of these regions and sections when the image executes.

4.1.1 Views of the image at each link stage
Each link stage has a different view of the image.

The image views are:

ELF object file view (linker input)
The ELF object file view comprises input sections. The ELF object file can be:

e Arelocatable file that holds code and data suitable for linking with other object files to
create an executable or a shared object file.

o A shared object file that holds code and data.

Linker view

The linker has two views for the address space of a program that become distinct in the
presence of overlaid, position-independent, and relocatable program fragments (code or
data):

e The load address of a program fragment is the target address that the linker expects
an external agent such as a program loader, dynamic linker, or debugger to copy the
fragment from the ELF file. This might not be the address at which the fragment
executes.

e The execution address of a program fragment is the target address where the linker

expects the fragment to reside whenever it participates in the execution of the program.
If a fragment is position-independent or relocatable, its execution address can vary during
execution.

ELF image file view (linker output)
The ELF image file view comprises program segments and output sections:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

Version 6.6
Image Structure and Generation

e Aload region corresponds to a program segment.

e An execution region contains one or more of the following output sections:
o RO section.

o RW section.
o XO section.

o/l section.

One or more execution regions make up a load region.

With armlink, the maximum size of a program segment is 2GB.

When describing a memory view:

e The term root region means a region that has the same load and execution addresses.

e Load regions are equivalent to ELF segments.

The following figure shows the relationship between the views at each link stage:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

Figure 4-1: Relationship between sections, regions, and segments

ELF image file view Linker view ELF object file view
ELF Header ELF Header ELF Header
Program Header Table Program Header Table Program I-!eader Table
(optional)
Segment 1 (Load Region 1) Load Region 1 - Input Section 1.1.1
—— Input Section 1.1.2
Output sections 1.1 | —
= —
] Execution Region 1 Input Section 1.2.1
Output sections 1.2 ~ < —
-~ ~
Output sections 1.3 Input Section 1.3.1
- ™~ — Input Section 1.3.2
Segment 2 (Load Region 2) Load Region 2 L
—— Input Section 2.1.1
Output section 2.1 Execution Region 2 Input Section 2.1.2
Input Section 2.1.3
Input Section n
ion H Tabl ion H Tabl .
Section gader able Section gader able Section Header Table
(optional) (optional)

4.1.2 Input sections, output sections, regions, and program segments

An object or image file is constructed from a hierarchy of input sections, output sections, regions,
and program segments.

Input section

An input section is an individual section from an input object file. It contains code, initialized
data, or describes a fragment of memory that is not initialized or that must be set to zero
before the image can execute. These properties are represented by attributes such as RO,
RW, XO, and ZI. These attributes are used by armlink to group input sections into bigger
building blocks called output sections and regions.

Output section

An output section is a group of input sections that have the same RO, RW, XO, or ZI
attribute, and that are placed contiguously in memory by the linker. An output section has
the same attributes as its constituent input sections. Within an output section, the input
sections are sorted according to the section placement rules.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 40 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

Version 6.6
Image Structure and Generation

Region

A region contains up to three output sections depending on the contents and the number
of sections with different attributes. By default, the output sections in a region are sorted
according to their attributes:

e |f no XO output sections are present, then the RO output section is placed first, followed
by the RW output section, and finally the ZI output section.

o Ifall code in the execution region is execute-only, then an XO output section is placed
first, followed by the RW output section, and finally the ZI output section.

A region typically maps onto a physical memory device, such as ROM, RAM, or peripheral. You can
change the order of output sections using scatter-loading.

Program segment

A program segment corresponds to a load region and contains execution regions. Program
segments hold information such as text and data.

With armlink, the maximum size of a program segment is 2GB.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Considerations when execute-only sections are present
Be aware of the following when execute-only (XO) sections are present:

e You can mix XO and non-XO sections in the same execution region. In this case, the XO section
loses its XO property and results in the output of a RO section.

e Ifaninput file has one or more XO sections then the linker generates a separate XO execution
region if the XO and RO sections are in distinct regions. In the final image, the XO execution
region immediately precedes the RO execution region, unless otherwise specified by a scatter
file or the --xo_base option.

The linker automatically fabricates a separate ER_XO execution region for XO sections when all
the following are true:

o You do not specify the --xo base option or a scatter file.

o The input files contain at least one XO section.

Related information
Views of the image at each link stage on page 38

Methods of specifying an image memory map with the linker on page 44
Section placement with the linker on page 56

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

4.1.3 Load view and execution view of an image

Image regions are placed in the system memory map at load time. The location of the regions in
memory might change during execution.

Before you can execute the image, you might have to move some of its regions to their execution
addresses and create the ZI output sections. For example, initialized RW data might have to be
copied from its load address in ROM to its execution address in RAM.

The memory map of an image has the following distinct views:

Load view

Describes each image region and section in terms of the address where it is located when the
image is loaded into memory, that is, the location before image execution starts.

Execution view

Describes each image region and section in terms of the address where it is located during
image execution.

The following figure shows these views for an image without an execute-only (XO) section:

Figure 4-2: Load and execution memory maps for an image without an XO section

Load view OXOFFFF Execution view

Memory initialized

to zero \
RAM Z| section

0x0A000

RW section
0x08000

RW section
ROM 0x06000

RO section RO section

The following figure shows load and execution views for an image with an XO section:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 42 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Image Structure and Generation

Figure 4-3: Load and execution memory maps for an image with an XO section

Load view OXOFFFF Execution view
s -/ T ——(&"——FfY7/———/>——/7/>7—7—
Memory
initialized
RAM to zero \> Z| section
0x0A000 [
. > RW section
| RW section 0x08000 .
A -
ROM RO section »> RO section
v _ _ _0Ox0e000 _ _ _ _ _
XOM XO section > XO section
y _ _ _0x00000

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

The following table compares the load and execution views:

Table 4-1: Comparing load and execution views

Description Execution Description

Load address The address where a section or | Execution address The address where a section or
region is loaded into memory region is located while the image
before the image containing containing it is being executed.

it starts executing. The load
address of a section or a non-
root region can differ from its
execution address.

Load region A load region describes the Execution region An execution region describes
layout of a contiguous chunk of the layout of a contiguous chunk
memory in load address space. of memory in execution address

space.

Related information
Views of the image at each link stage on page 38
Methods of specifying an image memory map with the linker on page 44
Section placement with the linker on page 56
Input sections, output sections, regions, and program segments on page 40
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 43 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

4.1.4 Methods of specifying an image memory map with the linker

An image can consist of any number of regions and output sections. Regions can have different
load and execution addresses.

When constructing the memory map of an image, armlink must have information about:
e How input sections are grouped into output sections and regions.

e Where regions are to be located in the memory map.

Depending on the complexity of the memory map of the image, there are two ways to pass this
information to armlink:
Command-line options for simple memory map descriptions

You can use the following options for simple cases where an image has only one or two load
regions and up to three execution regions:

e -—-first.

e --last.

®¢ --ro base.
e -—-rosplit.
® --rw base.
e -—-split.

® --xo0 base.
® --zi base.

These options provide a simplified notation that gives the same settings as a scatter-loading
description for a simple image. However, no limit checking for regions is available when using
these options.

Scatter file for complex memory map descriptions

A scatter file is a textual description of the memory layout and code and data placement. It
is used for more complex cases where you require complete control over the grouping and
placement of image components. To use a scatter file, specify —-scatter=filename at the
command-line.

You cannot use --scatter with the other memory map related command-line
options.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 44 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Image Structure and Generation

Table 4-2: Comparison of scatter file and equivalent command-line options

Scatter file Equivalent command-line options

LR1 0x0000 0x20000)
{

ER RO 0x0 0x2000 --ro base=0x0

{
init.o (INIT, +FIRST) ——first=init.o(init)
* (+RO)

}

ER RW 0x400000 --rw_base=0x400000
* (+RW)

}
ER ZI 0x405000 --z1 base=0x405000
{

*(+21)

}

LR XO 0x8000 0x4000
{

ER XO 0x8000 --x0_base=0x8000
{

*(X0)

when you specify --xo_base. If you do not specify --xo_base, then the ER_XO
region is placed in the LR1 region at the address specified by --ro base. The ER_RO
region is then placed immediately after the ER_XO region.

*o If XO sections are present, a separate load and execution region is created only

Note

Related information

Load view and execution view of an image on page 42
Simple images on page 48

The structure of an Arm ELF image on page 38

Input sections, output sections, regions, and program segments on page 40
--first=section_id on page 264

--last=section_id on page 281

--ro_base=address on page 309

--ropi on page 310

--rosplit on page 311

--rw_base=address on page 311

--rwpi on page 312

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 45 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

--scatter=filename on page 313
--split on page 319

--x0_base=address on page 337
--7i_base=address on page 339

4.1.5 Image entry points

An entry point in an image is the location that is loaded into the PC. It is the location where
program execution starts. Although there can be more than one entry point in an image, you can
specify only one when linking.

Not every ELF file has to have an entry point. Multiple entry points in a single ELF file are not
permitted.

For embedded programs targeted at a Cortex®-M-based processor, the program
starts at whatever location is loaded into the PC from the Reset vector. Typically,
the Reset vector points to the CMSIS reset Handler function.

Types of entry point
There are two distinct types of entry point:

Initial entry point

The initial entry point for an image is a single value that is stored in the ELF header file. For
programs loaded into RAM by an operating system or boot loader, the loader starts the image
execution by transferring control to the initial entry point in the image.

An image can have only one initial entry point. The initial entry point can be, but is not
required to be, one of the entry points set by the enTrY directive.

Entry points set by the ENTRY directive

You can select one of many possible entry points for an image. An image can have only one
entry point.

You create entry points in objects with the enTry directive in an assembler file. In embedded
systems, typical use of this directive is to mark code that is entered through the processor
exception vectors, such as RESET, IRQ, and FIQ.

The directive marks the output code section with an entry keyword that instructs the linker
not to remove the section when it performs unused section elimination.

For C and C++ programs, the main () function in the C library is also an entry point.

If an embedded image is to be used by a loader, it must have a single initial entry point
specified in the header. Use the ——entry command-line option to select the entry point.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 46 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

4.1.5.1 The initial entry point for an image

There can be only one initial entry point for an image, otherwise linker warning 6305w is output.

The initial entry point must meet the following conditions:

e Theimage entry point must always lie within an execution region.

e The execution region must not overlay another execution region, and must be a root execution
region. That is, where the load address is the same as the execution address.

If you do not use the --entry option to specify the initial entry point, then:

e |f the input objects contain only one entry point set by the enTrY directive, the linker uses that
entry point as the initial entry point for the image.

e The linker generates an image that does not contain an initial entry point when either:
o More than one entry point is specified using the exTry directive.
o No entry point is specified using the exTrY directive.

For embedded applications with ROM at address zero use --entry=0, or optionally 0xrFrr0000 for
processors that are using high vectors.

High vectors are not supported in AArché4 state.

Some processors, such as Cortex®-M7, can boot from a different address in some
configurations.

Related information

Root region and the initial entry point on page 119
--entry=location on page 260

ENTRY

List of the armlink error and warning messages

4.1.6 Restrictions on image structure

When an instruction accesses a memory address on an AArché4 target, the data must be within
4GB of the program counter.

For example, consider the following scatter file:

LOAD REGION 0x0000000000 0x200000
{

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 47 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/ENTRY
https://developer.arm.com/documentation/dui0807/l/Linker-Errors-and-Warnings/List-of-the-armlink-error-and-warning-messages

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

ROOT REGION +0
{

* (Init, +FIRST)
* (+RO)
* (+RW, +2I)

}
STACKHEAP Ox1FFFFO EMPTY -0x18000
{
}
}

LOAD REGION2 0x4000000000 0x200000

{
ROOT REGION2 +0

{
}

* (high mem)

LoAD REGIONZ2 is 16GB away from Loap REGION, sO data in high mem is not accessible from code in
LOAD REGION. This results in a relocation out of range error at link time.

4.2 Simple images

A simple image consists of several input sections of type RO, RW, XO, and ZI. The linker collates
the input sections to form the RO, RW, XO, and ZI output sections.

4.2.1 Types of simple image

The types of simple image the linker can create depends on how the output sections are arranged
within load and execution regions.

The types are:

Type 1
One region in load view, four contiguous regions in execution view. Use the --ro_base option
to create this type of image.

Any XO sections are placed in an ER_XO region at the address specified by --ro_base, with
the ER_RO region immediately following the ER_XO region.

Type 2
One region in load view, four non-contiguous regions in execution view. Use the --ro base
and --rw_base options to create this type of image.

Type 3

Two regions in load view, four non-contiguous regions in execution view. Use the --ro base,
--rw base, and --split options to create this type of image.

For all the simple image types when --xo base is not specified:

e |f any XO sections are present, the first execution region contains the XO output section. The
address specified by --ro_base is used as the base address of this output section.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 48 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Image Structure and Generation

e The second execution region contains the RO output section. This output section immediately
follows an XO output.

e The third execution region contains the RW output section, if present.

e The fourth execution region contains the ZI output section, if present.
These execution regions are referred to as, XO, RO, RW, and ZI execution regions.
When you specify --xo_base, then XO sections are placed in a separate load and execution region.

However, you can also use the --rosplit option for a Type 3 image. This option splits the default
load region into two RO output sections, one for code and one for data.

You can also use the --zi_base command-line option to specify the base address of a ZI execution
region for Type 1 and Type 2 images. This option is ignored if you also use the --sp1it command-
line option that is required for Type 3 images.

You can also create simple images with scatter files.

Related information

Equivalent scatter-loading descriptions for simple images on page 164

Type 1 image structure, one load region and contiguous execution regions on page 49
Type 2 image structure, one load region and non-contiguous execution regions on page 51
Type 3 image structure, multiple load regions and non-contiguous execution regions on page 54
--ro_base=address on page 309

--rosplit on page 311

--rw_base=address on page 311

--scatter=filename on page 313

--split on page 319

--x0_base=address on page 337

--7i_base=address on page 339

4.2.2 Type 1 image structure, one load region and contiguous execution
regions

A Type 1 image consists of a single load region in the load view and three default execution
regions, ER_RO, ER_RW, ER_ZI. These are placed contiguously in the memory map. An additional
ER_XO execution region is created only if any input section is execute-only.

This approach is suitable for systems that load programs into RAM, for example, an OS bootloader
or a desktop system. The following figure shows the load and execution view for a Type 1 image
without execute-only (XO) code:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 49 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Image Structure and Generation

Figure 4-4: Simple Type 1 image without execute-only code

A

ZI| execution
ZI output section region
RAM '
y A
RW execution
RW output section RW output section region
Single
load 4
region I
. RO execution
RO output section i
p RO output section region
0x8000
--ro-base value — y — — '
0x0000
Load

. Execution view
view

Use the following command for images of this type:

armlink --cpu=8-A.32 --ro base=0x8000

0x8000 is the default address, so you do not have to specify --ro base for the
example.

Load view

The single load region consists of the RO and RW output sections, placed consecutively. The RO
and RW execution regions are both root regions. The ZI output section does not exist at load time.
It is created before execution, using the output section description in the image file.

Execution view

The three execution regions containing the RO, RW, and ZI output sections are arranged
contiguously. The execution addresses of the RO and RW regions are the same as their load
addresses, so nothing has to be moved from its load address to its execution address. However, the
/| execution region that contains the ZI output section is created at run-time.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 50 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Image Structure and Generation

Use armlink option --ro_base=address to specify the load and execution address of the region
containing the RO output. The default address is 0x8000.

Use the --zi_base command-line option to specify the base address of a ZI execution region.

Load view for images containing execute-only regions

For images that contain XO sections, the XO output section is placed at the address that is
specified by --ro_base. The RO and RW output sections are placed consecutively and immediately
after the XO section.

Execution view for images containing execute-only regions

For images that contain XO sections, the XO execution region is placed at the address that is
specified by --ro_pase. The RO, RW, and ZI execution regions are placed contiguously and
immediately after the XO execution region.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Related information

The structure of an Arm ELF image on page 38

Input sections, output sections, regions, and program segments on page 40
Load view and execution view of an image on page 42

--ro_base=address on page 309

--x0_base=address on page 337

--7i_base=address on page 339

4.2.3 Type 2 image structure, one load region and non-contiguous
execution regions

A Type 2 image consists of a single load region, and three execution regions in execution view. The
RW execution region is not contiguous with the RO execution region.

This approach is used, for example, for ROM-based embedded systems, where RW data is copied
from ROM to RAM at startup. The following figure shows the load and execution view for a Type 2
image without execute-only (XO) code:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 51 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Image Structure and Generation

Figure 4-5: Simple Type 2 image without execute-only code

A
. Z| execution
ZI output section region
RAM
RW output section I i\g\/i::ecutlon
0xA0Q0 /é‘ — --rw-base value
Copy/
| decompress
A
RW output section
Single
ROM load i
RO output section region RO output section RO execution
region
v 0x0000
————— - --ro-base value
Load view Execution view

Use the following command for images of this type:

armlink --cpu=8-A.32 --ro base=0x0 --rw base=0xA000

Load view

In the load view, the single load region consists of the RO and RW output sections placed
consecutively, for example, in ROM. Here, the RO region is a root region, and the RW region is
non-root. The Z| output section does not exist at load time. It is created at runtime.

Execution view

In the execution view, the first execution region contains the RO output section and the second
execution region contains the RW and Z| output sections.

The execution address of the region containing the RO output section is the same as its load
address, so the RO output section does not have to be moved. That is, it is a root region.

The execution address of the region containing the RW output section is different from its load
address, so the RW output section is moved from its load address (from the single load region) to

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 52 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Image Structure and Generation

its execution address (into the second execution region). The ZI execution region, and its output
section, is placed contiguously with the RW execution region.

Use armlink options --ro_base=address to specify the load and execution address for the RO
output section, and --rw_base=address to specify the execution address of the RW output section.
If you do not use the --ro_base option to specify the address, the default value of 0x8000 is used
by armlink. For an embedded system, o is typical for the --ro_base value. If you do not use the --
rw_base option to specify the address, the default is to place RW directly above RO (as in a Type 1
image).

Use the --zi_base command-line option to specify the base address of a ZI execution region.

The execution region for the RW and ZI output sections cannot overlap any of the
load regions.

Load view for images containing execute-only regions

For images that contain XO sections, the XO output section is placed at the address specified by --
ro base. The RO and RW output sections are placed consecutively and immediately after the XO
section.

Execution view for images containing execute-only regions

For images that contain XO sections, the XO execution region is placed at the address specified by
--ro_base. The RO execution region is placed contiguously and immediately after the XO execution
region.

If you use --xo base address, then the XO execution region is placed in a separate load region at
the specified address.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Related information

The structure of an Arm ELF image on page 38

Input sections, output sections, regions, and program segments on page 40

Load view and execution view of an image on page 42

Type 1 image structure, one load region and contiguous execution regions on page 49
--ro_base=address on page 309

--rw_base=address on page 311

--x0_base=address on page 337

--7i_base=address on page 339

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 53 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

4.2.4 Type 3 image structure, multiple load regions and non-contiguous
execution regions

A Type 3 image is similar to a Type 2 image except that the single load region is split into multiple
root load regions.

The following figure shows the load and execution view for a Type 3 image without execute-only
(XO) code:

Figure 4-6: Simple Type 3 image without execute-only code

A .
Zl output section Zl gxecutlon
1 region
RAM fSecond S
RW output section load RW output section RW. execution
i OxE000 region
--rw-base | v _region VA=Y v
value
_______ r
First .
RO output section | | oad RO output section Fe(;igﬁl(ecutlon
--ro-base — _regoi _0x8000__ v
value | 0x0000_
Load view Execution view

Use the following command for images of this type:

armlink --cpu=8-A.32 --split --ro base=0x8000 --rw base=0xE000

Load view

In the load view, the first load region consists of the RO output section, and the second load region
consists of the RW output section. The ZI output section does not exist at load time. It is created
before execution, using the description of the output section contained in the image file.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 54 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

Execution view

In the execution view, the first execution region contains the RO output section, the second
execution region contains the RW output section, and the third execution region contains the ZI
output section.

The execution address of the RO region is the same as its load address, so the contents of the
RO output section do not have to be moved or copied from their load address to their execution
address.

The execution address of the RW region is also the same as its load address, so the contents of the
RW output section are not moved from their load address to their execution address. However, the
Z1 output section is created at run-time and is placed contiguously with the RW region.

Specify the load and execution address using the following linker options:

--ro_base=address

Instructs arm1ink to set the load and execution address of the region containing the RO
section at a four-byte aligned address, for example, the address of the first location in ROM.
If you do not use the --ro base option to specify the address, the default value of 0x8000 is
used by armlink.

--rw_base=address

Instructs arm1ink to set the execution address of the region containing the RW output
section at a four-byte aligned address. If this option is used with --sp1it, this specifies both
the load and execution addresses of the RW region, for example, a root region.

-split

Splits the default single load region, that contains both the RO and RW output sections, into
two root load regions:

e One containing the RO output section.

e One containing the RW output section.
You can then place them separately using --ro_base and --rw_base.

Load view for images containing XO sections

For images that contain XO sections, the XO output section is placed at the address specified by --
ro _base. The RO and RW output sections are placed consecutively and immediately after the XO
section.

If you use --split, then the one load region contains the XO and RO output sections, and the
other contains the RW output section.

Execution view for images containing XO sections

For images that contain XO sections, the XO execution region is placed at the address specified by
--ro_base. The RO execution region is placed contiguously and immediately after the XO execution
region.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 55 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Image Structure and Generation

If you specify --sp1it, then the XO and RO execution regions are placed in the first load region,
and the RW and ZI execution regions are placed in the second load region.

If you specify --xo_base address, then the XO execution region is placed at the specified address
in a separate load region from the RO execution region.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Related information

The structure of an Arm ELF image on page 38

Input sections, output sections, regions, and program segments on page 40

Load view and execution view of an image on page 42

Type 2 image structure, one load region and non-contiguous execution regions on page 51
--ro_base=address on page 309

--rw_base=address on page 311

--x0_base=address on page 337

--split on page 319

4.3 Section placement with the linker

The linker places input sections in a specific order by default, but you can specify an alternative
sorting order if required.

4.3.1 Default section placement

By default, the linker places input sections in a specific order within an execution region.

The sections are placed in the following order:
1. By attribute as follows:

a. Read-only code.

b. Read-only data.

c. Read-write code.

d. Read-write data.

e. Zero-initialized data.

2. By input section name if they have the same attributes. Names are considered to be case-
sensitive and are compared in alphabetical order using the ASCII collation sequence for
characters.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 56 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

3. By atie-breaker if they have the same attributes and section names. By default, it is the order
that arm1ink processes the section. You can override the tie-breaker and sorting by input
section name with the rIrsT or 1asT input section attribute.

The sorting order is unaffected by ordering of section selectors within execution
regions.

These rules mean that the positions of input sections with identical attributes and names included
from libraries depend on the order the linker processes objects. This can be difficult to predict
when many libraries are present on the command line. The --tiebreaker=cmdline Option uses a
more predictable order based on the order the section appears on the command line.

The base address of each input section is determined by the sorting order defined by the linker,
and is correctly aligned within the output section that contains it.

The linker produces one output section for each attribute present in the execution region:

e One execute-only (XO) section if the execution region contains only XO sections.

e One RO section if the execution region contains read-only code or data.

e One RW section if the execution region contains read-write code or data.

e One Zl section if the execution region contains zero-initialized data.

If an attempt is made to place data in an XO only execution region, then the linker
generates an error.

XO sections lose the XO property if mixed with RO code in the same Execution
region.

The XO and RO output sections can be protected at run-time on systems that have memory
management hardware. RO and XO sections can be placed in ROM or Flash.

Alternative sorting orders are available with the --sort=aigorithm command-line option. The

linker might change the aigorithm to minimize the amount of veneers generated if no algorithm is
chosen.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 57 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

Example
The following scatter file shows how the linker places sections:

LoadRegion 0x8000
{ ExecRegionl 0x0000 0x4000
{ * (sections)
* (moresections)
%XecRegiOHZ 0x4000 0x2000

}

* (evenmoresections)

The order of execution regions within the load region is not altered by the linker.

Related information
Handling unassigned sections on page 58

4.3.1.1 Handling unassigned sections

The linker might not be able to place some input sections in any execution region.

When the linker is unable to place some input sections it generates an error message. This might
occur because your current scatter file does not permit all possible module select patterns and
input section selectors.

How you fix this depends on the importance of placing these sections correctly:

e If the sections must be placed at specific locations, then modify your scatter file to include
specific module selectors and input section selectors as required.

e If the placement of the unassigned sections is not important, you can use one or more .aNY
module selectors with optional input section selectors.

4.3.2 Section placement with the FIRST and LAST attributes

You can make sure that a section is placed either first or last in its execution region. For example,
you might want to make sure the section containing the vector table is placed first in the image.

To do this, use one of the following methods:

e If you are not using scatter-loading, use the --first and --1ast linker command-line options to
place input sections.

e |f you are using scatter-loading, use the attributes rIrsT and LasT in the scatter file to mark the
first and last input sections in an execution region if the placement order is important.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 58 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Image Structure and Generation

FIRST and LaST must not violate the basic attribute sorting order. For example,
FIRST RwW iS placed after any read-only code or read-only data.

Related information

The structure of an Arm ELF image on page 38

Input sections, output sections, regions, and program segments on page 40
Load view and execution view of an image on page 42

The scatter-loading mechanism on page 112

Syntax of an input section description on page 197

--first=section_id on page 264

--last=section_id on page 281

4.3.3 Section alignment with the linker

The linker ensures each input section starts at an address that is a multiple of the input section
alignment.

When input sections have been ordered and before the base addresses are fixed, armlink inserts
padding, if required, to force each input section to start at an address that is a multiple of the input
section alignment.

armlink supports strict conformance with the ELF specification with the default option --

no legacyalign. The linker faults the base address of a region if it is not aligned so padding might
be inserted to ensure compliance. With --no 1legacyalign, the region alignment is the maximum
alignment of any input section contained by the region.

If you use the option --1egacyalign, the linker permits ELF program headers and output sections
to be aligned on a four-byte boundary regardless of the maximum alignment of the input sections.
This enables arm1ink to minimize the amount of padding that it inserts into the image.

If you are using scatter-loading, you can increase the alignment of a load region or execution region
with the arn1cen attribute. For example, you can change an execution region that is normally four-
byte aligned to be eight-byte aligned. However, you cannot reduce the natural alignment. For
example, you cannot force two-byte alignment on a region that is normally four-byte aligned.

Related information

Load region attributes on page 182

Aligning regions to page boundaries on page 160
--legacyalign, --no_legacyalign on page 282

Example of aligning a base address in execution space but still tightly packed in load space on page
209

Execution region attributes on page 189

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 59 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

4.4 Linker support for creating demand-paged files
The linker provides features for you to create files that are memory mapped.

In operating systems that support virtual memory, an ELF file can be loaded by mapping the ELF
files into the address space of the process loading the file. When a virtual address in a page that is
mapped to the file is accessed, the operating system loads that page from disk. ELF files that are to
be used this way must conform to a certain format.

Use the --paged command-line option to enable demand paging mode. This helps produce ELF
files that can be demand paged efficiently.

The basic constraints for a demand-paged ELF file are:
e There is no difference between the load and execution address for any output section.

o All PT_LOAD Program Headers have a minimum alignment, pt_align, of the page size for the
operating system.

o Al PT_LOAD Program Headers have a file offset, pt_offset, that is congruent to the virtual
address (pt_addr) modulo pt_align.

When you specify --paged:

e The linker automatically generates the Program Headers from the execution region base
addresses. The usual situation where one load region generates one Program Header no longer
applies.

e The operating system page size is controlled by the --pagesize command-line option.

e The linker attempts to place the ELF Header and Program Header in the first PT_LOAD
program header, if space is available.

Example

This is an example of a demand paged scatter file:

LR1 GetPageSize() + SizeOfHeaders ()
{ ER RO +0

{ * (+RO)

éRfRW +GetPageSize ()

{ * (+RW)

éRfZI +0

I * (+71)

Related information
Aligning regions to page boundaries on page 160

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Image Structure and Generation

The scatter-loading mechanism on page 112
--scatter=filename on page 313
GetPageSize() function on page 208

--paged on page 300

--pagesize=pagesize on page 300
SizeOfHeaders() function on page 209

4.5 Linker reordering of execution regions containing T32
code

The linker reorders execution regions containing T32 code only if the size of the T32 code exceeds
the branch range.

If the code size of an execution region exceeds the maximum branch range of a T32 instruction,
then arm1ink reorders the input sections using a different sorting algorithm. This sorting algorithm
attempts to minimize the amount of veneers generated.

The T32 branch instructions that can be veneered are always encoded as a pair of 16-bit
instructions. Processors that support Thumb®-2 technology have a range of 16MB. Processors that
do not support Thumb-2 technology have a range of 4MB.

To disable section reordering, use the --no_largeregions command-line option.

Related information
Linker-generated veneers on page 61
--largeregions, --no_largeregions on page 280

4.6 Linker-generated veneers

Veneers are small sections of code generated by the linker and inserted into your program.

4.6.1 What is a veneer?

A veneer extends the range of a branch by becoming the intermediate target of the branch
instruction.

The range of a BL instruction depends on the architecture:

o For AArch32 state, the range is 32MB for A32 instructions, 16MB for 32-bit T32 instructions,
and 4MB for 16-bit T32 instructions. A veneer extends the range of the branch by becoming
the intermediate target of the branch instruction. The veneer then sets the PC to the
destination address.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 61 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

This enables the veneer to branch anywhere in the 4GB address space. If the veneer is inserted
between A32 and T32 code, the veneer also handles instruction set state change.

o For AArché4 state, the range is 128MB. A veneer extends the range of the branch by
becoming the intermediate target of the branch instruction. The veneer then loads the
destination address and branches to it.

This enables the veneer to branch anywhere in the ox16eB address space.

There are no state-change veneers in AArché4 state.

The linker can generate the following veneer types depending on what is required:
e Inline veneers.
e Short branch veneers.

e Long branch veneers.

armlink creates one input section called veneersscode for each veneer. A veneer is generated only
if no other existing veneer can satisfy the requirements. If two input sections contain a long branch
to the same destination, only one veneer is generated that is shared by both branch instructions. A
veneer is only shared in this way if it can be reached by both sections.

If execute-only (XO) sections are present, only XO-compliant veneer code is created
in XO regions.

Related information

Veneer sharing on page 62

Veneer types on page 63

Generation of position independent to absolute veneers on page 64
Reuse of veneers when scatter-loading on page 65

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 62 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

4.6.2 Veneer sharing

If multiple objects result in the same veneer being created, the linker creates a single instance of
that veneer. The veneer is then shared by those objects.

You can use the command-line option --no_veneershare to specify that veneers are not shared.
This assigns ownership of the created veneer section to the object that created the veneer and so
enables you to select veneers from a particular object in a scatter file, for example:

LR 0x8000

{
ER ROOT +0

{
objectl.o (VeneerSCode)

}

Be aware that veneer sharing makes it impossible to assign an owning object. Using --
no_veneershare provides a more consistent image layout. However, this comes at the cost of a
significant increase in code size, because of the extra veneers generated by the linker.

Related information

What is a veneer? on page 61

The scatter-loading mechanism on page 112
Scatter File Syntax on page 178
--veneershare, --no_veneershare on page 335

4.6.3 Veneer types
Veneers have different capabilities and use different code pieces.

The linker selects the most appropriate, smallest, and fastest depending on the branching
requirements:

e Inline veneer:
o Performs only a state change.
o The veneer must be inserted just before the target section to be in range.

o An A32 to T32 interworking veneer has a range of 256 bytes so the function entry point
must appear within 256 bytes of the veneer.

o AT32to A32 interworking veneer has a range of zero bytes so the function entry point
must appear immediately after the veneer.

o Aninline veneer is always position-independent.
e Short branch veneer:

o Aninterworking T32 to A32 short branch veneer has a range of 32MB, the range for an
A32 instruction. An Aé4 short branch veneer has a range of 128MB.

o A short branch veneer is always position-independent.
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 63 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

o A Range Extension T32 to T32 short branch veneer for processors that support Thumb-2
technology.

e Long branch veneer:
o Can branch anywhere in the address space.
o All long branch veneers are also interworking veneers.

o There are different long branch veneers for absolute or position-independent code.

When you are using veneers be aware of the following:

e Theinline veneer limitations mean that you cannot move inline veneers out of an execution
region using a scatter file. Use the command-line option --no_inlineveneer to prevent the
generation of inline veneers.

e All veneers cannot be collected into one input section because the resulting veneer input
section might not be within range of other input sections. If the sections are not within
addressing range, long branching is not possible.

e The linker generates position-independent variants of the veneers automatically. However,
because such veneers are larger than non position-independent variants, the linker only does
this where necessary, that is, where the source and destination execution regions are both
position-independent and are rigidly related.

To optimize the code size of veneers, armlink chooses the variant in the order of preference:
1. Inline veneer.

2. Short branch veneer.

3. Long veneer.

Related information

What is a veneer? on page 61
--max_veneer_passes=value on page 294
--inlineveneer, --no_inlineveneer on page 276

4.6.4 Generation of position independent to absolute veneers
Calling from position independent (Pl) code to absolute code requires a veneer.

The normal call instruction encodes the address of the target as an offset from the calling address.
When calling from Pl code to absolute code the offset cannot be calculated at link time, so the
linker must insert a long-branch veneer.

The generation of Pl to absolute veneers can be controlled using the --piveneer option, that is set
by default. When this option is turned off using --no piveneer, the linker generates an error when
a call from PI code to absolute code is detected.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 64 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Image Structure and Generation

Not supported for AArché4 state.

Related information

What is a veneer? on page 61
--max_veneer_passes=value on page 294
--piveneer, --no_piveneer on page 302

4.6.5 Reuse of veneers when scatter-loading

The linker reuses veneers whenever possible, but there are some limitations on the reuse of
veneers in protected load regions and overlaid execution regions.

A scatter file enables you to create regions that share the same area of RAM:
e |f you use the proTECTED attribute for a load region it prevents:

o Qverlapping of load regions.

o Veneer sharing.

o String sharing with the --merge option.

e If you use the auto overLay attribute for a region, no other execution region can reuse a
veneer placed in an overlay execution region.

e |f you use the overLay attribute for a region, no other execution region can reuse a veneer
placed in an overlay execution region.

If it is not possible to reuse a veneer, new veneers are created instead. Unless you have instructed
the linker to place veneers somewhere specific using scatter-loading, a veneer is usually placed

in the execution region that contains the call requiring the veneer. However, in some situations
the linker has to place the veneer in an adjacent execution region, either to maximize sharing
opportunities or for a short branch veneer to reach its target.

Related information

What is a veneer? on page 61

Load region attributes on page 182

Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 65 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

4.6.6 Generation of secure gateway veneers

armlink can generate secure gateway veneers for symbols that are present in a Secure image. It
can also output symbols to a specified output import library, when necessary.

armlink generates a secure gateway veneer when it finds in the Secure image an entry function
that has both symbols acle se <entry> and <entry> pointing to the same offset in the same
section.

The secure gateway veneer is a sequence of two instructions:

<entry>:
SG
B.W acle se <entry>

The original symbol <entry> is changed to point to the sc instruction of the secure gateway veneer.

You can specify an input import library and output import library with the following command-line
options:

® -—-import cmse lib in=filename.

® --import cmse lib out=filename.

Placement of secure gateway veneers is controlled by an input import library and by a scatter file
selection. The linker can also output addresses of secure gateways to an output import library.

Example
The following example shows the generation of a secure gateway veneer:

Input code:

.text
entry:
__acle se entry:
[entry's code]
BXNS 1lr

Output code produced by armlink:

.text

__acle se entry:
[entry's code]
BXNS 1r

.section Veneer$$CMSE, "ax"
entry:

SG

B.W acle se entry

Related information
Placement of CMSE veneer sections for a Secure image on page 152

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 66 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Image Structure and Generation

--import_cmse_lib_in=filename on page 270
--import_cmse_lib_out=filename on page 270
Building Secure and Non-secure Images Using Armv8-M Security Extensions

4.7 Command-line options used to control the generation
of C++ exception tables

You can control the generation of C++ exception tables using command-line options.

By default, or if the option --exceptions is specified, the image can contain exception tables.
Exception tables are discarded silently if no code throws an exception. However, if the option --
no_exceptions is specified, the linker generates an error if any exceptions tables are present after
unused sections have been eliminated.

You can use the --no_exceptions option to ensure that your code is exceptions free. The linker
generates an error message to highlight that exceptions have been found and does not produce a
final image.

However, you can use the --no_exceptions option with the --diag warning option to downgrade
the error message to a warning. The linker produces a final image but also generates a message to
warn you that exceptions have been found.

Related information
--diag_warning=tag[,tag,...] on page 255
--exceptions, --no_exceptions on page 262
-fexceptions, -fno-exceptions compiler option

4.8 Weak references and definitions

Weak references and definitions provide additional flexibility in the way the linker includes various
functions and variables in a build.

Weak references and definitions are typically used in connection with library functions.

Weak references

If the linker cannot resolve normal, non-weak, references to symbols from the content loaded
so far, it attempts to do so by finding the symbol in a library:

e If itis unable to find such a reference, the linker reports an error.

e |f such a reference is resolved, a section that is reachable from an entry point by at least
one non-weak reference is marked as used. This ensures the section is not removed by
the linker as an unused section. Each non-weak reference must be resolved by exactly
one definition. If there are multiple definitions, the linker reports an error.

Symbols can be given weak binding by the compiler and assembler.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 67 of 351

https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-fexceptions---fno-exceptions

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

The linker does not load an object from a library to resolve a weak reference. It is able to
resolve the weak reference only if the definition is included in the image for other reasons.
The weak reference does not cause the linker to mark the section containing the definition as
used, so it might be removed by the linker as unused. The definition might already exist in the
image for several reasons:

e The symbol has a non-weak reference from somewhere else in the code.

e The symbol definition exists in the same ELF section as a symbol definition that is
included for any of these reasons.

e The symbol definition is in a section that has been specified using --keep, or contains an
ENTRY point.

e The symbol definition is in an object file included in the link and the --no_remove option
is used. The object file is not referenced from a library unless that object file within the
library is explicitly included on the linker command-line.

In summary, a weak reference is resolved if the definition is already included in the image, but
it does not determine if that definition is included.

An unresolved weak function call is replaced with either:
e A no-operation instruction, Nop.

e A branch with link instruction, Bz, to the following instruction. That is, the function call
just does not happen.

Weak definitions

You can mark a function or variable definition as weak in a source file. A weak symbol
definition is then present in the created object file.

You can use a weak definition to resolve any reference to that symbol in the same way as a
normal definition. However, if another non-weak definition of that symbol exists in the build,
the linker uses that definition instead of the weak definition, and does not produce an error
because of multiply-defined symbols.

Example of a weak reference

A library contains a function foo (), that is called in some builds of an application but not in others.
If it is used, init foo () must be called first. You can use weak references to automate the call to
init foo().

The library can define init_foo () and foo () in the same ELF section. The application initialization
code must call init foo () weakly. If the application includes foo () for any reason, it also includes
init_foo () and this is called from the initialization code. In any builds that do not include foo (),
the call to init_ foo () is removed by the linker.

Typically, the code for multiple functions defined within a single source file is placed into a single
ELF section by the compiler. However, certain build options might alter this behavior, so you

must use them with caution if your build is relying on the grouping of files into ELF sections. The
compiler command-line option -ffunction-sections results in each function being placed in its
own section. In this example, compiling the library with this option results in foo () and init_ foo ()

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 68 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

being placed in separate sections. Therefore init_foo () is not automatically included in the build
due to a call to foo ().

In this example, there is no need to rebuild the initialization code between builds that include foo ()
and do not include foo (). There is also no possibility of accidentally building an application with a
version of the initialization code that does not call init_foo (), and other parts of the application
that call foo ().

An example of foo.c source code that is typically built into a library is:

void init foo ()

{
}

void foo ()

{

// Some initialization code

// A function that is included in some builds
// and requires init foo() to be called first.

An example of init.cis:

__attribute ((weak)) void init foo(void);
int main (void)
{
init fool();
// Rest of code that may make calls to foo() directly or indirectly.

An example of a weak reference generated by the assembler is:

init.s:
main:

bl init foo
// Rest of code

.weak init foo

Example of a weak definition

You can provide a simple or dummy implementation of a function as a weak definition. This enables
you to build software with defined behavior without having to provide a full implementation of the
function. It also enables you to provide a full implementation for some builds if required.

Related information
How the linker performs library searching, selection, and scanning on page 69
How the linker resolves references on page 72

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 69 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

4.9 How the linker performs library searching, selection,
and scanning

The linker always searches user libraries before the Arm libraries.

If you specify the --no_scan1ib command-line option, the linker does not search for the default
Arm® libraries and uses only those libraries that are specified in the input file list to resolve
references.

The linker creates an internal list of libraries as follows:
1. Any libraries explicitly specified in the input file list are added to the list.
2. The user-specified search path is examined to identify Arm standard libraries to satisfy requests

embedded in the input objects.

The best-suited library variants are chosen from the searched directories and their
subdirectories. Libraries supplied by Arm have multiple variants that are named according to the
attributes of their members.

Be aware of the following differences between the way the linker adds object files to the image and
the way it adds libraries to the image:

e Each object file in the input list is added to the output image unconditionally, whether or not
anything refers to it. At least one object must be specified.

e A member from a library is included in the output only if:
o An object file or an already-included library member makes a non-weak reference to it.
o The linker is explicitly instructed to add it.

If a library member is explicitly requested in the input file list, the member
is loaded even if it does not resolve any current references. In this case, an
explicitly requested member is treated as if it is an ordinary object.

Unresolved references to weak symbols do not cause library members to be loaded.

Related information
How the linker searches for the Arm standard libraries on page 70

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 70 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

4.10 How the linker searches for the Arm standard
libraries

The linker searches for the Arm standard libraries using information specified on the command-line,
or by examining environment variables.

By default, the linker searches for the Arm® standard libraries in .. /1ib, relative to the location of
the armlink executable. Use the --1ibpath command-line option to specify a different location.

The --1ibpath command-line option

Use the --1ibpath command-line option with a comma-separated list of parent directories. This list
must end with the parent directory of the Arm library directories armlib, cpplib, and libexx.

The sequential nature of the search ensures that arm1ink chooses the library that appears earlier in
the list if two or more libraries define the same symbol.

Library search order
The linker searches for libraries in the following order:
1. At the location specified with the command-line option --1ibpath.

2. In../1ip, relative to the location of the arm1ink executable.

How the linker selects Arm library variants

The Arm Compiler toolchain includes several variants of each of the libraries, that are built using
different build options. For example, architecture versions, endianness, and instruction set. The
variant of the Arm library is coded into the library name. The linker must select the best-suited
variant from each of the directories identified during the library search.

The linker accumulates the attributes of each input object and then selects the library variant best
suited to those attributes. If more than one of the selected libraries are equally suited, the linker
retains the first library selected and rejects all others.

The --no_scanlib option prevents the linker from searching the directories for the Arm standard
libraries.

Related information

--libpath=pathlist on page 283

How the linker performs library searching, selection, and scanning on page 69
C and C++ library naming conventions

The Arm C and C++ Libraries

Toolchain environment variables

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 71 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/C-and-C---library-naming-conventions
https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries
https://developer.arm.com/documentation/dui1093/e/Supporting-reference-information/Toolchain-environment-variables

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Image Structure and Generation

4.11 Specifying user libraries when linking

You can specify your own libraries when linking.

To specify user libraries, either:
e Include them with path information explicitly in the input file list.

e Add the -—userlibpath option to the armlink command line with a comma-separated list of
directories, and then specify the names of the libraries as input files.

You can use the --1ibrary=name option to specify static libraries, 1ibnamne.a.

If you do not specify a full path name to a library on the command line, the linker tries to locate
the library in the directories specified by the --userlibpatnh option. For example, if the directory
/mylib containsmy lib.a and other 1lib.a, add /mylib/my lib.a to the input file list with the
command:

armlink --userlibpath /mylib my lib.a *.o

If you add a particular member from a library this does not add the library to the list of searchable
libraries used by the linker. To load a specific member and add the library to the list of searchable
libraries include the library filename on its own as well as specifying 1ibrary (member). For
example, to load stremp.o and place mystring.1lib on the searchable library list add the following
to the input file list:

mystring.lib (strcmp.o) mystring.lib

Any search paths used for the Arm standard libraries specified by the linker
command-line option --1ibpath are not searched for user libraries.

Related information

How the linker searches for the Arm standard libraries on page 70
--libpath=pathlist on page 283

--userlibpath=pathlist on page 332

The Arm C and C++ Libraries

Toolchain environment variables

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 72 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries
https://developer.arm.com/documentation/dui1093/e/Supporting-reference-information/Toolchain-environment-variables

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Image Structure and Generation

4.12 How the linker resolves references

When the linker has constructed the list of libraries, it repeatedly scans each library in the list to
resolve references.

armlink mMaintains two separate lists of files. The lists are scanned in the following order to resolve
all dependencies:

1. The list of user files and libraries that have been loaded.

2. List of Arm standard libraries found in a directory relative to the arm1ink executable, or the
directories specified by --1ibpath.

Each list is scanned using the following process:
1. Scan each of the libraries to load the required members:

a. For each currently unsatisfied non-weak reference, search sequentially through the list of
libraries for a matching definition. The first definition found is marked for processing in the
next step.

The sequential nature of the search ensures that the linker chooses the library that appears
earlier in the list if two or more libraries define the same symbol. This enables you to
override function definitions from other libraries, for example, the Arm® C libraries, by
adding your libraries to the input file list. However you must be careful to consistently
override all the symbols in a library member. If you do not, you risk the objects from both
libraries being loaded when there is a reference to an overridden symbol and a reference to
a symbol that was not overridden. This results in a multiple symbol definition error L.6200&
for each overridden symbol.

b. Load the library members marked in the previous step. As each member is loaded it might
satisfy some unresolved references, possibly including weak ones. Loading a library member
might also create new unresolved weak and non-weak references.

c. Repeat these stages until all non-weak references are either resolved or cannot be resolved
by any library.

2. If any non-weak reference remains unsatisfied at the end of the scanning operation, generate
an error message.

Related information

How the linker performs library searching, selection, and scanning on page 69
How the linker searches for the Arm standard libraries on page 70

Specifying user libraries when linking on page 71

--libpath=pathlist on page 283

Toolchain environment variables

List of the armlink error and warning messages

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 73 of 351

https://developer.arm.com/documentation/dui1093/e/Supporting-reference-information/Toolchain-environment-variables
https://developer.arm.com/documentation/dui0807/l/Linker-Errors-and-Warnings/List-of-the-armlink-error-and-warning-messages

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Image Structure and Generation

4.13 The strict family of linker options
The linker provides options to overcome the limitations of the standard linker checks.

The strict options are not directly related to error severity. Usually, you add a strict option because
the standard linker checks are not precise enough or are potentially noisy with legacy objects.

The strict options are:

e -—-strict.

¢ --[no]strict enum size.

. --[no_J]strict flags.

¢ --[no]strict ph.

¢ --[no]strict relocations.
¢ --[no]strict symbols.

¢ --[no]strict visibility.
® --[no]strict wchar size.

Related information

--strict on page 321

--strict_enum_size, --no_strict_enum_size on page 321
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 74 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Linker Optimization Features

5. Linker Optimization Features

Describes the optimization features available in the Arm linker, armlink.

5.1 Elimination of common debug sections
The linker can detect multiple copies of a debug section, and discard the additional copies.

In DWARF 3 and later, common debug sections are placed in common groups. armlink discards all
but one copy of each group with the same signature.

Related information
Elimination of common groups or sections on page 75
Elimination of unused sections on page 76

5.2 Elimination of common groups or sections
The linker can detect multiple copies of groups and sections, and discard the additional copies.

The Arm® Compiler generates complete objects for linking. Therefore:

e |f there are inline functions in C and C++ sources, each object contains the out-of-line copies of
the inline functions that the object requires.

o |f templates are used in C++ sources, each object contains the template functions that the
object requires.

When these functions are declared in a common header file, the functions might be defined
many times in separate objects that are later linked together. To eliminate duplicates, the compiler
compiles these functions into separate instances of common code sections or groups.

It is possible that the separate instances of common code sections, or groups, are not identical.
Some of the copies, for example, might be found in a library that has been built with different, but
compatible, build options, different optimization, or debug options.

If the copies are not identical, armlink retains the best available variant of each common code
section, or group, based on the attributes of the input objects. arm1ink discards the rest.

If the copies are identical, armlink retains the first section or group located.

You control this optimization with the following linker options:

e Use the —-bestdebug option to use the largest common data (COMDAT) group (likely to give
the best debug view).

e Use the --no bestdebug option to use the smallest COMDAT group (likely to give the smallest
code size). This is the default.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 75 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Linker Optimization Features

The image changes if you compile all files containing a COMDAT group A with -g, even if you
US€ --no_bestdebug.

Related information
Elimination of common debug sections on page 75
Elimination of unused sections on page 76

5.3 Elimination of unused sections

Elimination of unused sections is the most significant optimization on image size that the linker
performs.

Unused section elimination:

e Removes unreachable code and data from the final image.

e |s suppressed in cases that might result in the removal of all sections.

To control this optimization, use the --remove, --no_remove, --first, --last, and --keep linker
options.

Unused section elimination requires an entry point. Therefore, if no entry point is specified for
an image, use the --entry linker option to specify an entry point and permit unused section
elimination to work; if it is enabled.

Use the --info unused linker option to instruct the linker to generate a list of the unused sections
that it eliminates.

An input section is retained in the final image when:

e [t contains an entry point or an externally accessible symbol, for example, an entry function into
the secure code for Arm®v8-M Security Extensions.

e Itisan sHT INIT ARRAY, SHT FINI ARRAY, Of SHT PREINIT ARRAY section.

e |tis specified as the first or last input section, either by the --first or --1ast option or by a
scatter-loading equivalent.

e |tis marked as unremovable by the —--keep option.

e ltisreferred to, directly or indirectly, by a non-weak reference from an input section retained in
the image.

e |ts name matches the name referred to by an input section symbol, and that symbol is
referenced from a section that is retained in the image.

Compilers usually collect functions and data together and emit one section for each
category. The linker can only eliminate a section if it is entirely unused.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 76 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Linker Optimization Features

You can also use the -ffunction-sections compiler command-line option to
instruct the compiler to generate one ELF section for each function in the source
file.

Related information
Elimination of common debug sections on page 75
Elimination of common groups or sections on page 75

5.4 Optimization with RW data compression

RW data areas typically contain many repeated values, such as zeros, that makes them suitable for
compression.

RW data compression is enabled by default to minimize ROM size.
The linker compresses the data. This data is then decompressed on the target at run time.

The Arm® libraries contain some decompression algorithms and the linker chooses the optimal one
to add to your image to decompress the data areas when the image is executed. You can override
the algorithm chosen by the linker.

Not supported for AArché4 state.

5.4.1 How the linker chooses a compressor

armlink gathers information about the content of data sections before choosing the most
appropriate compression algorithm to generate the smallest image.

If compression is appropriate, armlink can only use one data compressor for all the compressible
data sections in the image. Different compression algorithms might be tried on these sections to
produce the best overall size. Compression is applied automatically if:

Compressed data size + Size of decompressor < Uncompressed data size

When a compressor has been chosen, armlink adds the decompressor to the code area of your
image. If the final image does not contain any compressed data, no decompressor is added.

Related information
Options available to override the compression algorithm used by the linker on page 78
Optimization with RW data compression on page 77

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 77 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Linker Optimization Features

How compression is applied on page 79
Considerations when working with RW data compression on page 79

5.4.2 Options available to override the compression algorithm used by the
linker

The linker has options to disable compression or to specify a compression algorithm to be used.

You can override the compression algorithm used by the linker by either:
e Using the -—datacompressor off option to turn off compression.

e Specifying a compression algorithm.

To specify a compression algorithm, use the number of the required compressor on the linker
command line, for example:

armlink --datacompressor 2 ...

Use the command-line option --datacompressor 1list to get a list of compression algorithms
available in the linker:

armlink --datacompressor list

Num Compression algorithm

0 Run-length encoding
1 Run-length encoding, with LZ77 on small-repeats
2 Complex LZ77 compression

When choosing a compression algorithm be aware that:
e Compressor O performs well on data with large areas of zero-bytes but few nonzero bytes.
e Compressor 1 performs well on data where the nonzero bytes are repeating.

e Compressor 2 performs well on data that contains repeated values.

The linker prefers compressor O or 1 where the data contains mostly zero-bytes (>75%).
Compressor 2 is chosen where the data contains few zero-bytes (<10%). If the image is made up
only of A32 code, then A32 decompressors are used automatically. If the image contains any T32
code, T32 decompressors are used. If there is no clear preference, all compressors are tested to
produce the best overall size.

It is not possible to add your own compressors into the linker. The algorithms that
are available, and how the linker chooses to use them, might change in the future.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 78 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Linker Optimization Features

Related information

Optimization with RW data compression on page 77

How compression is applied on page 79

How the linker chooses a compressor on page 77
--datacompressor=opt on page 251

Considerations when working with RW data compression on page 79

5.4.3 How compression is applied

The linker applies compression depending on the compression type specified, and might apply
additional compression on repeated phrases.

Run-length compression encodes data as non-repeated bytes and repeated zero-bytes. Non-
repeated bytes are output unchanged, followed by a count of zero-bytes.

Lempel-Ziv 1977 (LZ77) compression keeps track of the last n bytes of data seen. When a phrase is
encountered that has already been seen, it outputs a pair of values corresponding to:

e The position of the phrase in the previously-seen buffer of data.

e The length of the phrase.

Related information

Optimization with RW data compression on page 77

Options available to override the compression algorithm used by the linker on page 78
How the linker chooses a compressor on page 77

Considerations when working with RW data compression on page 79

5.4.4 Considerations when working with RW data compression

There are some considerations to be aware of when working with RW data compression.

When working with RW data compression:

e Use the linker option --map to see where compression has been applied to regions in your
code.

e The linker in RealView Compiler Tools (RVCT) v4.0 and later turns off RW compression if there is
a reference from a compressed region to a linker-defined symbol that uses a load address.

e If you are using an Arm® processor with on-chip cache, enable the cache after decompression
to avoid code coherency problems.

Compressed data sections are automatically decompressed at run time, providing main is
executed, using code from the Arm libraries. This code must be placed in a root region. This is best
done using InRootsssections in a scatter file.

If you are using a scatter file, you can specify that a load or execution region is not to be
compressed by adding the nocomprESS attribute.
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 79 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Linker Optimization Features

Related information

Optimization with RW data compression on page 77

How the linker chooses a compressor on page 77

Options available to override the compression algorithm used by the linker on page 78
Load$$ execution region symbols on page 97

Scatter-loading Features on page 112

--map, --no_map on page 292

How compression is applied on page 79

Scatter File Syntax on page 178

5.5 Function inlining with the linker

The linker inlines functions depending on what options you specify and the content of the input
files.

The linker can inline small functions in place of a branch instruction to that function. For the linker
to be able to do this, the function (without the return instruction) must fit in the four bytes of the
branch instruction.

Use the --inline and --no_inline command-line options to control branch inlining. However, --
no_inline only turns off inlining for user-supplied objects. The linker still inlines functions from the
Arm® standard libraries by default.

If branch inlining optimization is enabled, the linker scans each function call in the image and then
inlines as appropriate. When the linker finds a suitable function to inline, it replaces the function
call with the instruction from the function that is being called.

The linker applies branch inlining optimization before any unused sections are eliminated so that
inlined sections can also be removed if they are no longer called.

e For Armv7-A, the linker can inline two 16-bit encoded T32 instructions in place
of the 32-bit encoded T32 81 instruction.

e For Armv8-A and Armv8-M, the linker can inline two 16-bit T32 instructions in
place of the 32-bit T32 BL instruction.

Use the --info=inline command-line option to list all the inlined functions.

The linker does not inline small functions in AArché4 state.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 80 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Linker Optimization Features

Related information

Factors that influence function inlining on page 81
--inline_type=type on page 275

Elimination of unused sections on page 76
--info=topic[,topic,...] on page 271

--inline, --no_inline on page 275

5.6 Factors that influence function inlining

There are several factors that influence the linker inlines functions.

The following factors influence the way functions are inlined:

e The linker handles only the simplest cases and does not inline any instructions that read or
write to the PC because this depends on the location of the function.

e If your image contains both A32 and T32 code, functions that are called from the opposite
state must be built for interworking. The linker can inline functions containing up to two 16-bit
T32 instructions. However, an A32 calling function can only inline functions containing either
a single 16-bit encoded T32 instruction or a 32-bit encoded T32 instruction. The action that
the linker takes depends on the size of the function being called. The following table shows the
state of both the calling function and the function being called:

Table 5-1: Inlining small functions

Calling function state Called function state Called function size
A32 A32 4 to 8 bytes
A32 T32 2 to 6 bytes
T32 T32 2 to 6 bytes

The linker can inline in different states if there is an equivalent instruction available. For
example, if a T32 instruction is adds r0, ro0 then the linker can inline the equivalent A32
instruction. It is not possible to inline from A32 to T32 because there is less chance of T32
equivalent to an A32 instruction.

e For a function to be inlined, the last instruction of the function must be either:
MOV pc, 1lr
or

BX 1r

A function that consists only of a return sequence can be inlined as a nop.

e A conditional A32 instruction can only be inlined if either:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 81 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Linker Optimization Features

o The condition on the BL matches the condition on the instruction being inlined. For
example, BLEg can only inline an instruction with a matching condition like abpeo.

o The BL instruction or the instruction to be inlined is unconditional. An unconditional A32 BL
can inline any conditional or unconditional instruction that satisfies all the other criteria. An
instruction that cannot be conditionally executed cannot be inlined if the BL instruction is
conditional.

e AL thatis the last instruction of a T32 If-Then (IT) block cannot inline a 16-bit encoded T32
instruction or a 32-bit Mrs, MsRr, or cps instruction. This is because the IT block changes the
behavior of the instructions within its scope so inlining the instruction changes the behavior of
the program.

Related information

About branches that optimize to a NOP on page 82
Conditional instructions

ADD

B

CPS

IT

MOV

MRS (PSR to general-purpose register)

MSR (general-purpose register to PSR)

5.7 About branches that optimize to a NOP

Although the linker can replace branches with a nop, there might be some situations where you
want to stop this happening.

By default, the linker replaces any branch with a relocation that resolves to the next instruction
with a nop instruction. This optimization can also be applied if the linker reorders tail calling
sections.

However, there are cases where you might want to disable the option, for example, when
performing verification or pipeline flushes.

To control this optimization, use the --branchnop and --no_branchnop command-line options.

Related information
Linker reordering of tail calling sections on page 82
--branchnop, --no_branchnop on page 240

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 82 of 351

https://developer.arm.com/documentation/dui0801/l/Condition-Codes/Conditional-instructions
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/ADD
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/B
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/CPS
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/IT
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/MOV
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/MRS--PSR-to-general-purpose-register-
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/MSR--general-purpose-register-to-PSR-

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Linker Optimization Features

5.8 Linker reordering of tail calling sections

There are some situations when you might want the linker to reorder tail calling sections.

A tail calling section is a section that contains a branch instruction at the end of the section. If the
branch instruction has a relocation that targets a function at the start of another section, the linker
can place the tail calling section immediately before the called section. The linker can then optimize
the branch instruction at the end of the tail calling section to a nop instruction.

To take advantage of this behavior, use the command-line option --tailreorder to move tail calling
sections immediately before their target.

Use the --info=tailreorder command-line option to display information about any tail call
optimizations performed by the linker.

The linker does not reorder tail calling functions in AArché4 state.

Related information

About branches that optimize to a NOP on page 82
Restrictions on reordering of tail calling sections on page 83
Veneer types on page 63

--info=topic[,topic,...] on page 271

--tailreorder, --no_tailreorder on page 327

5.9 Restrictions on reordering of tail calling sections
There are some restrictions on the reordering of tail calling sections.

The linker:

e Can only move one tail calling section for each tail call target. If there are multiple tail calls to a
single section, the tail calling section with an identical section name is moved before the target.
If no section name is found in the tail calling section that has a matching name, then the linker
moves the first section it encounters.

e Cannot move a tail calling section out of its execution region.

e Does not move tail calling sections before inline veneers.

Related information
Linker reordering of tail calling sections on page 82

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 83 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Linker Optimization Features

5.10 Linker merging of comment sections

If input files have any comment sections that are identical, then the linker can merge them.

If input object files have any .comment sections that are identical, then the linker merges them to
produce the smallest . comment section while retaining all useful information.

The linker associates each input . comment section with the filename of the corresponding input
object. If it merges identical .comment sections, then all the filenames that contain the common
section are listed before the section contents, for example:

filel.o
file2.0
.comment section contents.

The linker merges these sections by default. To prevent the merging of identical . comment sections,
use the --no_filtercomment command-line option.

armlink does not preprocess comment sections from armclang. If you do not want
to retain the information in a . comment section, then use the fromelf command with
the --strip=comment option to strip this section from the image.

Related information

--comment_section, --no_comment_section on page 246
--filtercomment, --no_filtercomment on page 263

--strip (fromelf option)

5.11 Merging identical constants

The linker can attempt to merge identical constants in objects targeted at AArch32 state. The
objects must be produced with Arm® Compiler 6. If you compile with the armclang option -
ffunction-sections, the merge is more efficient. This option is the default.

About this task
The following procedure is an example that shows the merging feature.

Procedure
1. Create a Csource file, 1itpool.c, containing the following code:

int f£1() {

return Oxdeadbeef;
}
int f2 () {

return Oxdeadbeef;

}
2. Compile the source with -s to create an assembly file:
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 84 of 351

https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--strip-option--option---

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Linker Optimization Features

armclang -c -S -target arm-arm-none-eabi -mcpu=cortex-m0 -ffunction-sections

litpool.c -o litpool.s

-ffunction-sections is the default.

Because Oxdeadbeef is a difficult constant to create using instructions, a literal pool is created,

for example:

fl:
.fnstart

@ BB#0:
ldr r0, arm cp.0 O
bx lr - -
.p2align 2

@ BB#1:

__arm cp.0 O:
.long 3735928559 @ Oxdeadbeef
.fnend
.code 16 @ Qf2
.thumb func

f2:
.fnstart

@ BB#0:
ldr r0, arm cp.l O
bx 1r
.p2align 2

@ BBi#1l:

__arm cp.l O:
.long 3735928559 @ Oxdeadbeef
.fnend

There is one copy of the constant for each function, because armclang cannot
share these constants between both functions.

3. Compile the source to create an object:

armclang -c -target arm-arm-none-eabi -mcpu=cortex-m0 litpool.c -o litpool.o

4. Link the object file using the --merge 1itpools option:

armlink --cpu=Cortex-M0 --merge litpools litpool.o -o litpool.axf

--merge litpools is the default.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 85 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Linker Optimization Features

5. Run fromelf to view the image structure:
fromelf -¢ -d -s -t -v -z litpool.axf

The following example shows the result of the merge:

Related information
--merge_litpools, --no_merge_litpools on page 295
-ffunction-sections, -fno-function-sections (armclang option)

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 86 of 351

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-ffunction-sections---fno-function-sections

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Getting Image Details

6. Getting Image Details

Describes how to get image details from the Arm linker, armlink.

6.1 Options for getting information about linker-generated
files

The linker provides options for getting information about the files it generates.

You can use following options to get information about how your file is generated by the linker, and
about the properties of the files:
--info
Displays information about various topics.
--map
Displays the image memory map, and contains the address and the size of each load region,
execution region, and input section in the image, including linker-generated input sections. It
also shows how RW data compression is applied.
--show_cmdline
Outputs the command-line used by the linker.
--symbols
Displays a list of each local and global symbol used in the link step, and its value.
--verbose
Displays detailed information about the link operation, including the objects that are included
and the libraries that contain them.
--xref

Displays a list of all cross-references between input sections.

--xrefdbg
Displays a list of all cross-references between input debug sections.

The information can be written to a file using the --1ist=£ilename option.

Related information

Identifying the source of some link errors on page 87
Example of using the --info linker option on page 88
--info=topic[,topic,...] on page 271

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 87 of 351

Document ID: DUIO8O3 | en
\ersion 6.6
Getting Image Details

Arm® Compiler armlink User Guide

6.2 ldentifying the source of some link errors

The linker provides options to help you identify the source of some link errors.

To identify the source of some link errors, use --info inputs. For example, you can search the
output to locate undefined references from library objects or multiply defined symbols caused by
retargeting some library functions and not others. Search backwards from the end of this output to
find and resolve link errors.

You can also use the --verbose option to output similar text with additional information on the
linker operations.

Related information

Options for getting information about linker-generated files on page 87
--info=topic[,topic,...] on page 271

--verbose on page 335

6.3 Example of using the --info linker option
An example of the --info output.

To display the component sizes when linking enter:

armlink --info sizes ...

Here, sizes gives a list of the Code and data sizes for each input object and library member in the
image. Using this option implies --info sizes, totals.

The following example shows the output in tabular format with the totals separated out for easy
reading:

Image component sizes

Code (inc. data) RO Data RW Data 721 Data Debug Object Name
30 16 0 0 0 0 foo.o
56 10 960 0 1024 372 startup ARMCM7.o0o
88 26 992 0 5120 372 Object Totals
0 0 32 0 4096 0 (incl.
Generated)
2 0 0 0 0 0 (incl. Padding)
Code (inc. data) RO Data RW Data ZI Data Debug Library Member
Name
8 0 0 0 0 68 __main.o
0 0 0 0 0 0 __rtentry.o
12 0 0 0 0 0 __rtentry2.o

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 88 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
Getting Image Details

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Getting Image Details

Code (inc. data) RO Data RW Data ZI Data Debug
3050 226 1006 16 5472 1948 Grand Totals
3050 226 1006 16 5472 1948 ELF Image Totals
3050 226 1006 16 0 0 ROM Totals

Total RO Size (Code + RO Data) 4056 (3.96kB)

Total RW Size (RW Data + ZI Data) 5488 (5.36kB)

Total ROM Size (Code + RO Data + RW Data) 4072 (3.98kB)

In this example:

Code (inc. data)
The number of bytes occupied by the code. In this image, there are 3050 bytes of code.
This value includes 226 bytes of inline data (inc. data), for example, literal pools, and short
strings.

RO Data
The number of bytes occupied by the RO data. This value is in addition to the inline data
included in the code (inc. data) column.

RW Data
The number of bytes occupied by the RW data.

Zl Data
The number of bytes occupied by the ZI data.

Debug
The number of bytes occupied by the debug data, for example, debug Input sections and the
symbol and string table.

Object Totals
The number of bytes occupied by the objects when linked together to generate the image.

(incl. Generated)
armlink Might generate image contents, for example, interworking veneers, and input
sections such as region tables. If the object Totals row includes this type of data, it is
shown in this row.

Combined across all of the object files (foo.o and startup ARMCM7.0), the example shows
that there are 992 bytes of RO data, of which 32 bytes are linker-generated RO data.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 90 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Getting Image Details

If the scatter file contains empTY regions, the linker might generate ZI data. In
the example, the 4096 bytes of ZI data labeled (incl. Generated) correspond
to an arM_1.1B_sTackHEAP execution region used to set up the stack and heap
in a scatter file as follows:

ARM LIB STACKHEAP +0x0 EMPTY 0x1000 {} ; 4KB stack + heap

Library Totals
The number of bytes occupied by the library members that have been extracted and added
to the image as individual objects.

(incl. Padding)

If necessary, armlink inserts padding to force section alignment. If the object Totals row
includes this type of data, it is shown in the associated (incl. padding) row. Similarly, if the
Library Totals row includes this type of data, it is shown in its associated row.

In the example, there are 992 bytes of RO data in the object total, of which O bytes is linker-
generated padding, and 14 bytes of RO data in the library total, with 2 bytes of padding.
Grand Totals
Shows the true size of the image. In the example, there are 5120 bytes of ZI data (in object
Totals) and 352 of Z| data (in Library Totals) giving a total of 5472 bytes.
ELF Image Totals

If you are using RW data compression (the default) to optimize ROM size, the size of the final
image changes. This change is reflected in the output from --info. Compare the number of
bytes under Grand Totals and ELF Image Totals to see the effect of compression.

In the example, RW data compression is not enabled. If data is compressed, the RW value
changes.

Not supported for AArché4 state.

ROM Totals

Shows the minimum size of ROM required to contain the image. This size does not include ZI
data and debug information that is not stored in the ROM.

Related information
Options for getting information about linker-generated files on page 87
--info=topic[,topic,...] on page 271

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 91 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Getting Image Details

6.4 How to find where a symbol is placed when linking

To find where a symbol is placed when linking you must find the section that defines the symbol,
and ensure that the linker has not removed the section.

About this task

You can do this with the --kxeep="section id" and --symbols options. For example, if
object (section) iS the section containing the symbol, enter:

armlink --cpu=8-A.32 --keep="object (section)" --symbols s.o --output=s.axf

You can also run fromelf -s on the resultant image.

As an example, do the following:

Procedure
1. Create the file s.c containing the following source code:
long long array[l10] attribute ((section ("ARRAY")));

int main (void)

{
}

return sizeof (array);

2. Compile the source:

armclang --target=arm-arm-none-eabi -march=armv8-a -c s.c -0 s.0O

3. Link the object s.o, keeping the array symbol and displaying the symbols:
armlink --cpu=8-A.32 --keep="s.0(ARRAY)" --map --symbols s.o --output=s.axf

4. Locate the array symbol in the output, for example:

Execution Region ER RW (Base: 0x000083a8, Size: 0x00000028, Max: Oxffffffff,

ABSOLUTE)
Base Addr Size Type Attr Idx E Section Name Object
0x000083a8 0x00000028 Data RW 4 ARRAY s.0

Execution Region ER RW (Base: 0x00008360, Size: 0x00000050, Max: Oxffffffff,

ABSOLUTE)
Base Addr Size Type Attr Idx E Section Name Object
0x00008360 0x00000050 Data RW 3 ARRAY s.o

This shows that the array is placed in execution region ER_RW.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 92 of 351

Arm® Compiler armlink User Guide Document ID: DUIO8O3_I_en
\ersion 6.6

Getting Image Details

Related information

--keep=section_id on page 278

--map, --no_map on page 292

-0 filename, --output=filename on page 296

Using fromelf to find where a symbol is placed in an executable ELF image
-c compiler option

-march compiler option

-0 compiler option

--target compiler option

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 93 of 351

https://developer.arm.com/documentation/dui0805/l/Using-fromelf/Using-fromelf-to-find-where-a-symbol-is-placed-in-an-executable-ELF-image
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-c
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-march
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-o
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/--target

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Accessing and Managing Symbols with armlink

7. Accessing and Managing Symbols with
armlink

Describes how to access and manage symbols with the Arm linker, armlink.

7.1 About mapping symbols
Mapping symbols are generated by the compiler and assembler to identify various inline transitions.

For Arm®v7-A inline transitions can be between:
e Code and data at literal pool boundaries.

e Arm code and Thumb code, such as Arm and Thumb interworking veneers.

For Armv8-A, inline transitions can be between:
o Code and data at literal pool boundaries.
e AB32 code and T32 code, such as A32 and T32 interworking veneers.

For Armvé-M, Armv7-M, and Armv8-M, inline transitions can be between code and data at literal
pool boundaries.

The mapping symbols available for each architecture are:

Symbol Description Architecture

Sa Start of a sequence of Arm/A32 All
instructions.

$t Start of a sequence of Thumb/T32 All
instructions.

St.x Start of a sequence of ThumbEE Armv7-A
instructions.

$d Start of a sequence of data items, such asa |All
literal pool.

$x Start of Aé64 code. Armv8-A

armlink generates the sd.realdata mapping symbol to communicate to fromelf that the data is
from a non-executable section. Therefore, the code and data sizes output by fromelf -z are the
same as the output from armlink --info sizes, for example:

Code (inc. data) RO Data

X % z

In this example, the y is marked with sd, and ro pata is marked with $d.realdata.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 94 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Accessing and Managing Symbols with armlink

Symbols beginning with the characters sv are mapping symbols related to VFP and
might be output when building for a target with VFP. Avoid using symbols beginning
with sv in your source code.

Be aware that modifying an executable image with the fromelf --elf --strip=localsymbols
command removes all mapping symbols from the image.

Related information

--list_mapping_symbols, --no_list_mapping_symbols on page 285
--strict_symbols, --no_strict_symbols on page 324

Symbol naming rules

--strip=option[,option,...] fromelf option

--text fromelf option

ELF for the Arm Architecture

7.2 Linker-defined symbols

The linker defines some symbols that are reserved by Arm, and that you can access if required.

Symbols that contain the character sequence ss, and all other external names containing the
sequence $s, are names reserved by Arm.

You can import these symbolic addresses and use them as relocatable addresses by your assembly
language programs, or refer to them as extern symbols from your C or C++ source code.

Be aware that:
e Linker-defined symbols are only generated when your code references them.

o If execute-only (XO) sections are present, linker-defined symbols are defined with the following
constraints:

o XO linker defined symbols cannot be defined with respect to an empty region or a region
that has no XO sections.

o XO linker defined symbols cannot be defined with respect to a region that contains only RO
sections.

o RO linker defined symbols cannot be defined with respect to a region that contains only XO
sections.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 95 of 351

https://developer.arm.com/documentation/dui0801/l/Symbols--Literals--Expressions--and-Operators/Symbol-naming-rules
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--strip-option--option---
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--text
https://developer.arm.com/documentation/ihi0044/latest

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Accessing and Managing Symbols with armlink

Related information
Methods of importing linker-defined symbols in C and C++ on page 100
Methods of importing linker-defined symbols in Arm assembly language on page 100

7.3 Region-related symbols

The linker generates various types of region-related symbols that you can access if required.

7.3.1 Types of region-related symbols
The linker generates the different types of region-related symbols for each region in the image.

The types are:
e Images and Loads$ for each execution region.

e LoadsLrRs for each load region.
If you are using a scatter file these symbols are generated for each region in the scatter file.

If you are not using scatter-loading, the symbols are generated for the default region names. That
is, the region names are fixed and the same types of symbol are supplied.

Related information

Image$$ execution region symbols on page 96

Load$$ execution region symbols on page 97
Load$$LR$$ load region symbols on page 98

Region name values when not scatter-loading on page 99

7.3.2 Image$$ execution region symbols
The linker generates Image$$ symbols for every execution region present in the image.

The following table shows the symbols that the linker generates for every execution region present
in the image. All the symbols refer to execution addresses after the C library is initialized.

Table 7-2: Image$$ execution region symbols

Symbol Description

Image$$region name$$Base Execution address of the region.

Image$$region name$$Length Execution region length in bytes excluding ZI length.

Image$$region nameSLimit Address of the byte beyond the end of the non-ZI part of the
execution region.

Image$$region nameSROS$SBase Execution address of the RO output section in this region.

ImageSregion name$$SROS$SLength Length of the RO output section in bytes.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 96 of 351

Arm” Compiler armlink User Guide

Document ID: DUIO8O3 | en
Version 6.6
Accessing and Managing Symbols with armlink

Symbol Description

Image$$region name$$ROSSLimit

Address of the byte beyond the end of the RO output section in the
execution region.

ImageS$region name$SSRWSSBase

Execution address of the RW output section in this region.

Image$$region name$SRWSSLength

Length of the RW output section in bytes.

Image$$region nameSSRWSSLimit

Address of the byte beyond the end of the RW output section in
the execution region.

Image$$region name$$X0$$Base

Execution address of the XO output section in this region.

ImageS$region name$S$X0$SLength

Length of the XO output section in bytes.

Image$$region name$$X0S$SSLimit

Address of the byte beyond the end of the XO output section in the
execution region.

Image$$region nameSSZISSBase

Execution address of the ZI output section in this region.

Image$$region name$$zZISSLength

Length of the ZI output section in bytes.

ImageS$region name$SZISSLimit

Address of the byte beyond the end of the ZI output section in the
execution region.

Related information
Types of region-related symbols on page 96

7.3.3 Load$$ execution region symbols

The linker generates Loadss symbols for every execution region present in the image.

7

Note

Load$$region name Symbols apply only to execution regions. Load$$LRS
$load region name Symbols apply only to load regions.

The following table shows the symbols that the linker generates for every execution region present
in the image. All the symbols refer to load addresses before the C library is initialized.

Table 7-3: Load$$ execution region symbols

Symbol Description

Load$$region name$$Base

Load address of the region.

Load$$Sregion name$$Length

Region length in bytes.

Load$$Sregion name$SLimit

Address of the byte beyond the end of the execution region.

Load$Sregion name$$SROSSBase

Address of the RO output section in this execution region.

Load$$region name$$RO$$SLength

Length of the RO output section in bytes.

Load$$Sregion nameSS$SROSSLimit

Address of the byte beyond the end of the RO output section in the
execution region.

LoadSregion name$SRWSSBase

Address of the RW output section in this execution region.

Load$Sregion name$S$SRWSS$Length

Length of the RW output section in bytes.

Load$$region name$$SRWSSLimit

Address of the byte beyond the end of the RW output section in
the execution region.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Accessing and Managing Symbols with armlink

Symbol Description

Load$$region name$$X0$$Base Address of the XO output section in this execution region.

Load$$region name$$X0$$Length Length of the XO output section in bytes.

Load$$region name$$X0SLimit Address of the byte beyond the end of the XO output section in the
execution region.

Load$$region name$$zI$$Base Load address of the ZI output section in this execution region.

Load$$region name$$zI$$Length Load length of the ZI output section in bytes.

The Load Length of Zl is zero unless region name has the
ZEROPAD scatter-loading keyword set.

Load$$region name$$zIS$SSLimit Load address of the byte beyond the end of the ZI output section in
the execution region.

All symbols in this table refer to load addresses before the C library is initialized. Be aware of the
following:

e The symbols are absolute because section-relative symbols can only have execution addresses.
e The symbols take into account RW compression.

o References to linker-defined symbols from RW compressed execution regions must be to
symbols that are resolvable before RW compression is applied.

e |If the linker detects a relocation from an RW-compressed region to a linker-defined symbol that
depends on RW compression, then the linker disables compression for that region.

e Any zero bytes written to the file are visible. Therefore, the Limit and Length values must take
into account the zero bytes written into the file.

Related information

Types of region-related symbols on page 96

Methods of importing linker-defined symbols in C and C++ on page 100

Methods of importing linker-defined symbols in Arm assembly language on page 100
Region name values when not scatter-loading on page 99

Optimization with RW data compression on page 77

Image$$ execution region symbols on page 96

Load$$LR$$ load region symbols on page 98

Execution region attributes on page 189

7.3.4 Load$$LR$$ load region symbols
The linker generates Loads$sLRrRss symbols for every load region present in the image.

A LoadssLrS load region can contain many execution regions, so there are no separate ssro and s
S$RW components.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 98 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Accessing and Managing Symbols with armlink

o
* Load$$LR$S1oad region name Symbols apply only to load regions. Loads
$region_name Symbols apply only to execution regions.

Note

The following table shows the symbols that the linker generates for every load region present in
the image.

Table 7-4: Load$$LR$$ load region symbols

Symbol Description

Load$$LRS1oad region nameSBase Address of the load region.

Load$$LR$$1load region name$$Length Length of the load region.

Load$$LR$$1oad region name$$Limit Address of the byte beyond the end of the load region.

Related information

Types of region-related symbols on page 96

The structure of an Arm ELF image on page 38

Input sections, output sections, regions, and program segments on page 40
Load view and execution view of an image on page 42

7.3.5 Region name values when not scatter-loading

When scatter-loading is not used when linking, the linker uses default region name values.

If you are not using scatter-loading, the linker uses region name values of:
e ER_x0, for an execute-only execution region, if present.

e ER RO, for the read-only execution region.

» ER_RW, for the read-write execution region.

e ER 2T, for the zero-initialized execution region.

You can insert these names into the following symbols to obtain the required address:
e Image$$ execution region symbols.

e Load$$ execution region symbols.
For example, Load$$ER_RO$$Base.

Related information

Types of region-related symbols on page 96
Image$$ execution region symbols on page 96
Load$$ execution region symbols on page 97
Section-related symbols on page 101

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 99 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Accessing and Managing Symbols with armlink

7.3.6 Linker defined symbols and scatter files

When you are using scatter-loading, the names from a scatter file are used in the linker defined
symbols.
The scatter file:

e Names all the load and execution regions in the image, and provides their load and execution
addresses.

o Defines both stack and heap. The linker also generates special stack and heap symbols.

Related information
Scatter-loading Features on page 112
--scatter=filename on page 313

7.3.7 Methods of importing linker-defined symbols in C and C++

You can import linker-defined symbols into your C or C++ source code. They are external symbols
and you must take the address of them.

The only case where the & operator is not required is when the array declaration is used, for
example extern char symbol name(];.

The following examples show how to obtain the correct value:

Importing a linker-defined symbol

extern int Image$SER ZISSLimit;
heap base = (uintptr t)&ImageSSSER ZISSLimit;

Importing symbols that define a ZI output section
extern int ImageSSER ZI$SLength;

extern char Image$$SER ZISS$Basel];
memset (ImageSS$SER ZIS$Base, 0, (size t)&ImageSS$SER ZISSLength) ;

Related information
Image$$ execution region symbols on page 96

7.3.8 Methods of importing linker-defined symbols in Arm assembly
language

You can import linker-defined symbols into your Arm assembly code.

To import linker-defined symbols into your assembly language source code, use the .global
directive.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 100 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Accessing and Managing Symbols with armlink

32-bit applications
Create a 32-bit data word to hold the value of the symbol, for example:

.global Image$$SER ZISSLimit

.z1i limit:
.word ImageS$SER ZISSLimit

To load the value into a register, such as r1, use the Lor instruction:

LDR rl, .zi limit

The Lpr instruction must be able to reach the 32-bit data word. The accessible memory range
varies between Aé4, A32, and T32, and the architecture you are using.

64-bit applications
Create a 64-bit data word to hold the value of the symbol, for example:

.global Image$$SER ZISSLimit

.z1i limit:
.quad ImageS$SER ZISSLimit

To load the value into a register, such as x1, use the Lbr instruction:

LDR x1, .zi limit

The 1pr instruction must be able to reach the 64-bit data word.

Related information

Image$$ execution region symbols on page 96
A32 and T32 Instructions
IMPORT and EXTERN directives

7.4 Section-related symbols

Section-related symbols are symbols generated by the linker when it creates an image without
scatter-loading.

7.4.1 Types of section-related symbols
The linker generates different types of section-related symbols for output and input sections.

The types of symbols are:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 101 of 351

https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions
https://developer.arm.com/documentation/dui0801/l/Directives-Reference/IMPORT-and-EXTERN

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Accessing and Managing Symbols with armlink

e Image symbols, if you do not use scatter-loading to create a simple image. A simple image has
up to four output sections (XO, RO, RW, and ZI) that produce the corresponding execution
regions.

e Input section symbols, for every input section present in the image.

The linker sorts sections within an execution region first by attribute RO, RW, or ZI, then by name.
So, for example, all . text sections are placed in one contiguous block. A contiguous block of
sections with the same attribute and name is known as a consolidated section .

Related information
Image symbols on page 102
Input section symbols on page 103

7.4.2 Image symbols

Image symbols are generated by the linker when you do not use scatter-loading to create a simple
image.

The following table shows the image symbols:

Table 7-5: Image symbols

Symbol Section type Description

Image$$ROSSBase Output Address of the start of the RO output
section.

Image$SROSSLimit Output Address of the first byte beyond the end of
the RO output section.

ImageSSRWSSBase Output Address of the start of the RW output
section.

Image$SRWSSLimit Output Address of the byte beyond the end of the

ZI output section. (The choice of the end
of the ZI region rather than the end of the
RW region is to maintain compatibility with
legacy code.)

Image$$ZIsSBase Output Address of the start of the ZI output
section.
Image$$zZIsSSLimit Output Address of the byte beyond the end of the

Z| output section.

e Arm recommends that you use region-related symbols in preference to section-
related symbols.

e The ZI output sections of an image are not created statically, but are
automatically created dynamically at runtime.

e There are no load address symbols for RO, RW, and ZI output sections.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 102 of 351

Arm” Compiler armlink User Guide

Document ID: DUIO8O3 | en
Version 6.6
Accessing and Managing Symbols with armlink

If you are using a scatter file, the image symbols are undefined. If your code accesses any of these

symbols, you must treat them as a weak reference.

The standard implementation of user setup stackheap () uses the value in Image$$21$$Limit.
Therefore, if you are using a scatter file you must manually place the stack and heap. You can do

this either:

e In a scatter file using one of the following methods:

> Define separate stack and heap regions called arM_1.7B_STack and ARM_TLIB HEAP.

> Define a combined region containing both stack and heap called arM_LIB STACKHEAP.

e By re-implementing user setup stackheap () to set the heap and stack boundaries.

Related information

Linker-defined symbols that are not defined when scatter-loading on page 113

Placing the stack and heap with a scatter file on page 114
Simple images on page 48

Weak references and definitions on page 67
__user_setup_stackheap()

7.4.3 Input section symbols

Input section symbols are generated by the linker for every input section present in the image.

The following table shows the input section symbols:

Table 7-6: Section-related symbols

Symbol Section type Description

SectionName$$Base Input Address of the start of the consolidated
section called SectionName.

SectionName$$Length Input Length of the consolidated section called
SectionName (in bytes).

SectionNameSLimit Input Address of the byte beyond the end of the

consolidated section called SectionName.

If your code refers to the input-section symbols, it is assumed that you expect all the input sections
in the image with the same name to be placed contiguously in the image memory map.

If your scatter file places input sections non-contiguously, the linker issues an error. This is because
the use of the base and limit symbols over non-contiguous memory is ambiguous.

Related information
Scatter-loading Features on page 112

Input sections, output sections, regions, and program segments on page 40

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 103 of 351

https://developer.arm.com/documentation/dui0808/l/The-C-and-C---Library-Functions-Reference/--user-setup-stackheap--

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Accessing and Managing Symbols with armlink

7.5 Access symbols in another image

Use a symbol definitions (symdefs) file if you want one image to know the global symbol values of
another image.

7.5.1 Creating a symdefs file
You can specify a symdefs file on the linker command-line.

You can use a symdefs file, for example, if you have one image that always resides in ROM and
multiple images that are loaded into RAM. The images loaded into RAM can access global functions
and data from the image located in ROM.

Use the armlink option --symdefs=filename t0 generate a symdefs file.

The linker produces a symdefs file during a successful final link stage. It is not produced for partial
linking or for unsuccessful final linking.

If filename does not exist, the linker creates the file and adds entries for all the
global symbols to that file. If fi1ename exists, the linker uses the existing contents of
filename to select the symbols that are output when it rewrites the file. This means
that only the existing symbols in the filename are updated, and no new symbols

(if any) are added at all. If you do not want this behavior, ensure that any existing
symdefs file is deleted before the link step.

Related information

Outputting a subset of the global symbols on page 104
Symdefs file format on page 105

--symdefs=filename on page 326

Reading a symdefs file on page 105

7.5.2 Outputting a subset of the global symbols

You can use a symdefs file to output a subset of the global symbols to another application.

About this task
By default, all global symbols are written to the symdefs file. When a symdefs file exists, the linker
uses its contents to restrict the output to a subset of the global symbols.

This example uses an application image1 containing symbols that you want to expose to another
application using a symdefs file.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 104 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Accessing and Managing Symbols with armlink

Procedure

1. Specify --symdefs=rilename When you are doing a final link for image1. The linker creates a
symdefs file filename.

2. Open rfilename in a text editor, remove any symbol entries you do not want in the final list, and
save the file.

3. Specify --symdefs=rilename Wwhen you are doing a final link for image1l.
You can edit filename at any time to add comments and link image1 again. For example, to
update the symbol definitions to create image1 after one or more objects have changed.

You can use the symdefs file to link additional applications.

Related information

Creating a symdefs file on page 104

Symdefs file format on page 105
--symdefs=filename on page 326

Access symbols in another image on page 103

7.5.3 Reading a symdefs file
A symdefs file can be considered as an object file with symbol information but no code or data.

To read a symdefs file, add it to your file list as you do for any object file. The linker reads the
file and adds the symbols and their values to the output symbol table. The added symbols have
ABSOLUTE and GLoBAL attributes.

If a partial link is being performed, the symbols are added to the output object symbol table. If a full
link is being performed, the symbols are added to the image symbol table.

The linker generates error messages for invalid rows in the file. A row is invalid if:

e Any of the columns are missing.

e Any of the columns have invalid values.

The symbols extracted from a symdefs file are treated in the same way as symbols extracted from
an object symbol table. The same restrictions apply regarding multiple symbol definitions.

The same function name or symbol name cannot be defined in both A32 code and
in T32 code.

Related information
Symdefs file format on page 105

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 105 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Accessing and Managing Symbols with armlink

7.5.4 Symdefs file format
A symdefs file defines symbols and their values.

The file consists of:

Identification line
The identification line in a symdefs file comprises:

e Anidentifying string, #<symMpEFs>#, which must be the first 11 characters in the file for
the linker to recognize it as a symdefs file.

e Linker version information, in the format:

ARM Linker, vvvvbbb:

e Date and time of the most recent update of the symdefs file, in the format:
Last Updated: day month date hh:mm:ss year

For example, for version 6.3, build 169:

#<SYMDEFS># ARM Linker, 6030169: Last Updated: Thu Jun 4 12:49:45 2015

The version and update information are not part of the identifying string.

Comments
You can insert comments manually with a text editor. Comments have the following
properties:

e The first line must start with the special identifying comment #<sympers>#. This comment
is inserted by the linker when the file is produced and must not be manually deleted.

e Any line where the first non-whitespace character is a semicolon (;) or hash (#) is a
comment.

e A semicolon (;) or hash (#) after the first non-whitespace character does not start a
comment.

e Blank lines are ignored and can be inserted to improve readability.

Symbol information
The symbol information is provided on a single line, and comprises:

Symbol value
The linker writes the absolute address of the symbol in fixed hexadecimal format, for
example, 0x00008000. If you edit the file, you can use either hexadecimal or decimal
formats for the address value.

Type flag
A single letter to show symbol type:

X
Abé4 code (AArché4 only)

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 106 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Accessing and Managing Symbols with armlink

A
A32 code (AArch32 only)
T
T32 code (AArch32 only)
D
Data
N
Number.

Symbol name
The symbol name.

Example
This example shows a typical symdefs file format:

#<SYMDEFS># ARM Linker, 6030169: Last Updated: Date

;value type name, this is an added comment
0x00008000 A main

0x00008004 A scatterload

0x000080E0 T main

0x0000814D T main arg

0x0000814D T ~ argv alloc
0x00008199 T rt get argv

This is also a comment, blank lines are ignored
0x0000A4FC D _ stdin
0x0000A540 D stdout

0x0000A584 D stderr
OxFFFFFFFD N SIG IGN

Related information
Reading a symdefs file on page 105
Creating a symdefs file on page 104

7.6 Edit the symbol tables with a steering file

A steering file is a text file that contains a set of commands to edit the symbol tables of output
objects and the dynamic sections of images.

7.6.1 Specifying steering files on the linker command-line
You can specify one or more steering files on the linker command-line.

Use the option --edit file-1ist to specify one or more steering files on the linker command-line.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 107 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Accessing and Managing Symbols with armlink

When you specify more than one steering file, you can use either of the following command-line
formats:

armlink --edit filel --edit file2 --edit file3

armlink --edit filel,file2,file3

Do not include spaces between the comma and the filenames when using a comma-separated list.

Related information
Steering file command summary on page 108
Steering file format on page 109

7.6.2 Steering file command summary

Steering file commands enable you to manage symbols in the symbol table, control the copying of
symbols from the static symbol table to the dynamic symbol table, and store information about the
libraries that a link unit depends on.

For example, you can use steering files to protect intellectual property, or avoid namespace clashes.
The steering file commands are:

Table 7-7: Steering file command summary

Command Description

EXPORT Specifies that a symbol can be accessed by other shared objects or
executables.

HIDE Makes defined global symbols in the symbol table anonymous.
IMPORT Specifies that a symbol is defined in a shared object at runtime.
RENAME Renames defined and undefined global symbol names.
REQUIRE Creates a DT_NEEDED tag in the dynamic array. DT_NEEDED

tags specify dependencies to other shared objects used by the
application, for example, a shared library.

RESOLVE Matches specific undefined references to a defined global symbol.

SHOW Makes global symbols visible. This command is useful if you want to
make a specific symbol visible that is hidden using a HIDE command
with a wildcard.

o
* The steering file commands control only global symbols. Local symbols are not
affected by any of these commands.

Note

Related information
Specifying steering files on the linker command-line on page 107
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 108 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Accessing and Managing Symbols with armlink

Steering file format on page 109
--edit=file_list on page 258

EXPORT steering file command on page 341
HIDE steering file command on page 342
IMPORT steering file command on page 343
RENAME steering file command on page 344
REQUIRE steering file command on page 345
RESOLVE steering file command on page 346
SHOW steering file command on page 347

7.6.3 Steering file format
Each command in a steering file must be on a separate line.

A steering file has the following format:

e Lines with a semicolon (;) or hash (#) character as the first non-whitespace character are
interpreted as comments. A comment is treated as a blank line.

e Blank lines are ignored.

e Each non-blank, non-comment line is either a command, or part of a command that is split over
consecutive non-blank lines.

e Command lines that end with a comma (,) as the last non-whitespace character are continued
on the next non-blank line.

Each command line consists of a command, followed by one or more comma-separated operand
groups. Each operand group comprises either one or two operands, depending on the command.
The command is applied to each operand group in the command. The following rules apply:

e« Commands are case-insensitive, but are conventionally shown in uppercase.

e Operands are case-sensitive because they must be matched against case-sensitive symbol
names. You can use wildcard characters in operands.

Commands are applied to global symbols only. Other symbols, such as local symbols, are not
affected.

The following example shows a sample steering file:

; Import my funcl as funcl

IMPORT my funcl AS funcl
Rename a very long function name to a shorter name
RENAME a very long function name AS,

short func name

Related information
Steering file command summary on page 108
Specifying steering files on the linker command-line on page 107

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 109 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Accessing and Managing Symbols with armlink

EXPORT steering file command on page 341
HIDE steering file command on page 342
IMPORT steering file command on page 343
RENAME steering file command on page 344
REQUIRE steering file command on page 345
RESOLVE steering file command on page 346
SHOW steering file command on page 347

7.6.4 Hide and rename global symbols with a steering file

You can use a steering file to hide and rename global symbol names in output files.

Use the g1pE and rRENaME commands as required.

For example, you can use steering files to protect intellectual property, or avoid namespace clashes.

Example of renaming a symbol:
RENAME Ssteering command example

RENAME funcl AS my funcl

Example of hiding symbols:
HIDE steering command example

; Hides all global symbols with the 'internal' prefix
HIDE internal*

Related information

Specifying steering files on the linker command-line on page 107
Edit the symbol tables with a steering file on page 107

Steering file command summary on page 108

Symdefs file format on page 105

HIDE steering file command on page 342

RENAME steering file command on page 344

--edit=file_list on page 258

7.7 Use of $Super$$ and $Sub$$ to patch symbol
definitions

There are special patterns that you can use for situations where an existing symbol cannot be
modified.

An existing symbol cannot be modified if, for example, it is located in an external library or in ROM
code. In such cases you can use the ssuperss and ssubss patterns to patch an existing symbol.
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 110 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Accessing and Managing Symbols with armlink

To patch the definition of the function foo (), subsfoo and the original definition of foo () must
be a global or weak definition:
$Super$S$foo
Identifies the original unpatched function foo (). Use this pattern to call the original function
directly.

$Sub$$foo

Identifies the new function that is called instead of the original function foo (). Use this
pattern to add processing before or after the original function.

The $subss and ssuperss linker mechanism can operate only on symbol definitions and references
that are visible to the tool. For example, the compiler can replace a call to printf ("Hello\\n") with
puts ("Hello") in a C program. In such cases, only the reference to the symbol puts is visible to the
linker, so defining $subssprintf does not redirect this call.

The ssubss and ssuperss mechanism only works at static link time, ssuperss
references cannot be imported or exported into the dynamic symbol table.

Example

The following example shows how to use $superss and ssubss to insert a call to the function
ExtraFunc () before the call to the legacy function foo ().

extern void ExtraFunc (void);
extern void $Super$S$foo (void) ;

/* this function is called instead of the original foo() */
void $SubS$S$foo (void)
{
ExtraFunc () ; /* does some extra setup work */
SSupersfoo(); /* calls the original foo() function */
/* To avoid calling the original foo() function
* omit the $Super$$foo(); function call.
*
/

Related information
ELF for the Arm Architecture

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 111 of 351

https://developer.arm.com/documentation/ihi0044/latest

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

8. Scatter-loading Features

Describes the scatter-loading features and how you use scatter files with the Arm linker, arm1ink,
to create complex images.

8.1 The scatter-loading mechanism

The scatter-loading mechanism enables you to specify the memory map of an image to the linker
using a description in a text file.

8.1.1 Overview of scatter-loading
Scatter-loading gives you complete control over the grouping and placement of image components.

You can use scatter-loading to create simple images, but it is generally only used for images that
have a complex memory map. That is, where multiple memory regions are scattered in the memory
map at load and execution time.

An image memory map is made up of regions and output sections. Every region in the memory map
can have a different load and execution address.

To construct the memory map of an image, the linker must have:

e Grouping information that describes how input sections are grouped into output sections and
regions.

e Placement information that describes the addresses where regions are to be located in the
memory maps.

When the linker creates an image using a scatter file, it creates some region-related symbols. The
linker creates these special symbols only if your code references them.

Related information

When to use scatter-loading on page 112
Scatter file to ELF mapping on page 175

The structure of an Arm ELF image on page 38
Region-related symbols on page 96

8.1.2 When to use scatter-loading

Scatter-loading is usually required for implementing embedded systems because these use ROM,
RAM, and memory-mapped peripherals.

Situations where scatter-loading is either required or very useful:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 112 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

Complex memory maps

Code and data that must be placed into many distinct areas of memory require detailed
instructions on where to place the sections in the memory space.

Different types of memory

Many systems contain a variety of physical memory devices such as flash, ROM, SDRAM,
and fast SRAM. A scatter-loading description can match the code and data with the most
appropriate type of memory. For example, interrupt code might be placed into fast SRAM to
improve interrupt response time but infrequently-used configuration information might be
placed into slower flash memory.

Memory-mapped peripherals

The scatter-loading description can place a data section at a precise address in the memory
map so that memory mapped peripherals can be accessed.

Functions at a constant location

A function can be placed at the same location in memory even though the surrounding
application has been modified and recompiled. This is useful for jump table implementation.

Using symbols to identify the heap and stack
Symbols can be defined for the heap and stack location when the application is linked.

Related information
Overview of scatter-loading on page 112

8.1.3 Linker-defined symbols that are not defined when scatter-loading
When scatter-loading an image, some linker-defined symbols are undefined.

The following symbols are undefined when a scatter file is used:
® TImage$SROS$S$Base.

* TImage$SROS$SSLimit.

® ImageSSRWSS$Base.

* TImageSSRWSSLimit.

* ImageSXOSBase.

* Image$$XOSSLimit.

¢ Image$SZISSBase.

* Image$$ZISSLimit.

If you use a scatter file but do not use the special region names for stack and heap, or do not re-
implement _ user setup_stackheap (), an error message is generated.

Related information
Linker-defined symbols on page 95
Placing the stack and heap with a scatter file on page 114

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 113 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

8.1.4 Placing the stack and heap with a scatter file

The Arm® C library provides multiple implementations of the function user setup stackheap (),
and can select the correct one for you automatically from information that is given in a scatter file.

About this task

o If youre-implement user setup stackheap (), your version does not get invoked when stack
and heap are defined in a scatter file.

e You might have to update your startup code to use the correct initial stack pointer. Some
processors, such as the Cortex®-M3 processor, require that you place the initial stack pointer
in the vector table. See Stack and heap configuration in AN179 - Cortex-M3 Embedded Software
Development for more details.

e You must ensure correct alignment of the stack and heap:
o In AArch32 state, the stack and heap must be 8-byte aligned.
o In AArché4 state, the stack and heap must be 16-byte aligned.

Procedure

1. Define two special execution regions in your scatter file that are named arM 118 HEAP and
ARM LIB STACK.

2. Assign the empry attribute to both regions.
Because the stack and heap are in separate regions, the library selects the non-default
implementation of _ user setup_stackheap () that uses the value of the symbols:

¢ Image$SARM LIB STACKS$SZISSBase.
¢ Image$SARM LIB STACKS$SS$SZISSLimit.
® Image$$SARM LIB HEAPSSZISSBase.

L Image$$Z—\RM_LIB_HEAP$$ZI$$Limit.
You can specify only one ARM_LTB_STACK Or ARM_LTB_HEAP region, and you must allocate a size.

LOAD FLASH ...
{

ARM LIB STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
{1}
ARM LIB HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
{1}

}

3. Alternatively, define a single execution region that is named arM 1.1B STACKHEAP tO USe a
combined stack and heap region. Assign the empTyY attribute to the region.
Because the stack and heap are in the same region, user setup stackheap () USeS the value
of the symbols Tmage$$ARM LIB STACKHEAPS$$ZIS$$Base and Image$$SARM LIB STACKHEAPSS$ZIS
SLimit.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 114 of 351

https://developer.arm.com/documentation/dai0179/latest/cortex-m3-embedded-software-development

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

Related information
Region-related symbols on page 96
__user_setup_stackheap()

8.1.5 Scatter-loading command-line options

The command-line options to the linker give some control over the placement of data and code,
but complete control of placement requires more detailed instructions than can be entered on the
command line.

Complex memory maps

Placement of code and data in complex memory maps must be specified in a scatter file. You
specify the scatter file with the option:

--scatter=scatter file
This instructs the linker to construct the image memory map as described in scatter file.
You can use --scatter With the --base platform linking model.

Simple memory maps

For simple memory maps, you can place code and data with with the following memory map
related command-line options:

® —-Pbpabi.

e --dll.

e -—-partial.
¢ --ro base.
* --rw base.
e —-ropi.

s —-rwpi.

e -—-rosplit.
e --split.

e --reloc.

® --xo0 base
¢ --zi base.

Apart from --d11, you cannot use --scatter with these options.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 115 of 351

https://developer.arm.com/documentation/dui0808/l/The-C-and-C---Library-Functions-Reference/--user-setup-stackheap--

Arm” Compiler armlink User Guide

Related information

Base Platform linking model on page 35

The scatter-loading mechanism on page 112
When to use scatter-loading on page 112

Equivalent scatter-loading descriptions for simple images on page 164

--base_platform on page 237
--bpabi on page 239

--dll on page 255

--partial on page 301

--reloc on page 307
--ro_base=address on page 309
--ropi on page 310

--rosplit on page 311
--rw_base=address on page 311
--rwpi on page 312
--scatter=filename on page 313
--split on page 319
--x0_base=address on page 337
--7i_base=address on page 339
Scatter File Syntax on page 178

8.1.6 Scatter-loading images with a simple memory map

Document ID: DUIO8O3 | en
\ersion 6.6
Scatter-loading Features

For images with a simple memory map, you can specify the memory map using only linker
command-line options, or with a scatter file.

The following figure shows a simple memory map:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 116 of 351

Arm” Compiler armlink User Guide

Figure 8-1: Simple scatter-loaded memory map

Document ID: DUIO803 | en
\ersion 6.6
Scatter-loading Features

Load view Execution view 0x16000
Zero fill —> ZI| section SRAM
I _— RW section 0x10000
Copy / decompress
e | 0x8000 _ _
RW section
ROM
RO section > RO section
e _____ v 0x0000_ _ _

The following example shows the corresponding scatter-loading description that loads the

segments from the object file into memory:

LOAD ROM 0x0000 0x8000 8
; Start address for

; Maximum size of load region

EXEC ROM 0x0000 0x8000 g

Name of load region

Name of first exec region
; Start address for exec region

(LOAD ROM),
load region

; Maximum size of first exec region

* (+RO) ;
; this exec region

}
SRAM 0x10000 0x6000 ;

* (+RW, +2I) ;

; this exec region

Name of second exec region
; Start address of second exec region
; Maximum size of second exec region

Place all code and RO data into

(SRAM) ,

Place all RW and ZI data into

(0x0000) ,
(0x8000)

(EXEC ROM),
(0x0000) ,
(0x8000)

(0x10000) ,
(0x6000)

The maximum size specifications for the regions are optional. However, if you include them, they
enable the linker to check that a region does not overflow its boundary.

Apart from the limit checking, you can achieve the same result with the following linker command-

line:
armlink --ro base 0x0 --rw_base 0x10000

Related information
Scatter file to ELF mapping on page 175

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved

Non-Confidential

Page 117 of 351

Arm” Compiler armlink User Guide

The scatter-loading mechanism on p

age 112

When to use scatter-loading on page 112

--ro_base=address on page 309
--rw_base=address on page 311
--x0_base=address on page 337

Document ID: DUIO803 | en

\ersion 6.6

Scatter-loading Features

8.1.7 Scatter-loading images with a complex memory map

For images with a complex memory map, you cannot specify the memory map using only linker
command-line options. Such images require the use of a scatter file.

The following figure shows a complex memory map:

Figure 8-2: Complex memory map

Execution view

Load view
RW section#2
0x4000 RO section#2
RW section#1
0x0000 RO section#1

_0x20000 _ _

Z1 section#1 DRAM

RW section#1 0x18000
R A 0x10000 _ _

ZI section#2 SRAM

RW section#2 0x08000

ROM2

RO section#2
ROM1
RO section#1 0x00000

The following example shows the corresponding scatter-loading description that loads the
segments from the programl.o and program2.o files into memory:

LOAD ROM 1 0x0000

{
EXEC_ROM 1 0x0000

{
programl.o (+RO)

; Start address for first load region

; Start address for first exec region

; Place all code and RO data from
; programl.o into this exec region

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

(0x0000)

(0x0000)

Page 118 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

}
DRAM 0x18000 0x8000 ; Start address for this exec region (0x18000),
; Maximum size of this exec region (0x8000)
{
programl.o (+RW, +ZTI) ; Place all RW and ZI data from
; programl.o into this exec region
}
}
LOAD ROM 2 0x4000 ; Start address for second load region (0x4000)
{
EXEC ROM 2 0x4000
{
program2.o (+RO) ; Place all code and RO data from
; program2.o into this exec region
}
SRAM 0x8000 0x8000
{
program2.o (+RW, +ZI) ; Place all RW and ZI data from
; program2.o into this exec region

The scatter-loading description in this example specifies the location for code and
data for programl.o and program2.o only. If you link an additional module, for
example, program3.o, and use this description file, the location of the code and data
for program3.o is not specified.

Unless you want to be very rigorous in the placement of code and data, Arm
recommends that you use the * or .any specifier to place leftover code and data.

Related information

The scatter-loading mechanism on page 112

Effect of the ABSOLUTE attribute on a root region on page 120

Effect of the FIXED attribute on a root region on page 121

Scatter files containing relative base address load regions and a ZI execution region on page 210
Scatter file to ELF mapping on page 175

When to use scatter-loading on page 112

8.2 Root region and the initial entry point
The initial entry point of the image must be in a root region.
If the initial entry point is not in a root region, the link fails and the linker gives an error message.

Example
Root region with the same load and execution address.

LR 1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
ER RO 0x040000 ; load address = execution address
{
* (+RO) ; all RO sections (must include section with

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 119 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Scatter-loading Features

; initial entry point)

; rest of scatter-loading description

Related information

Effect of the ABSOLUTE attribute on a root region on page 120

Effect of the FIXED attribute on a root region on page 121

Methods of placing functions and data at specific addresses on page 123
Placing functions and data in a named section on page 129

Placing __at sections at a specific address on page 131

Restrictions on placing __at sections on page 132

Automatically placing __at sections on page 132

Manually placing __at sections on page 134

Placing a key in flash memory with an __at section on page 135

8.2.1 Effect of the ABSOLUTE attribute on a root region

You can use the aBsoruTk attribute to specify a root region. This attribute is the default for an
execution region.

To specify a root region, use aBsoLUTE as the attribute for the execution region. You can either
specify the attribute explicitly or permit it to default, and use the same address for the first
execution region and the enclosing load region.

To make the execution region address the same as the load region address, either:

e Specify the same numeric value for both the base address for the execution region and the
base address for the load region.

e Specify a +0 offset for the first execution region in the load region.

If you specify an offset of zero (+0) for all subsequent execution regions in the load region, then
all execution regions not following an execution region containing ZI are also root regions.

Example
The following example shows an implicitly defined root region:

LR 1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
ER RO 0x040000 ABSOLUTE ; load address = execution address
{
* (4+RO) ; all RO sections (must include the section

; containing the initial entry point)

; rest of scatter-loading description

Related information
Root region and the initial entry point on page 119

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 120 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

Effect of the FIXED attribute on a root region on page 121

Load region descriptions on page 180

Execution region descriptions on page 187

Considerations when using a relative address +offset for a load region on page 186
Considerations when using a relative address +offset for execution regions on page 195
Load region attributes on page 182

Execution region attributes on page 189

Inheritance rules for load region address attributes on page 184

Inheritance rules for the RELOC address attribute on page 185

Inheritance rules for execution region address attributes on page 194

ENTRY directive

8.2.2 Effect of the FIXED attribute on a root region

You can use the r1xeD attribute for an execution region in a scatter file to create root regions that
load and execute at fixed addresses.

Use the rIxED execution region attribute to ensure that the load address and execution address of
a specific region are the same.

You can use the r1xeD attribute to place any execution region at a specific address in ROM.
For example, the following memory map shows fixed execution regions:

Figure 8-3: Memory map for fixed execution regions

Filled with zeroes or the value
defined using
the --pad option

A
init.o init.o
. 0x80000
Single — — (FIXED)
load J
region Empty
—_— — (movable)
*(RO) *(RO)
' __0x4000
Load view Execution view

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 121 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/ENTRY

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

The following example shows the corresponding scatter-loading description:

LR 1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
ER RO 0x040000 ; load address = execution address
{
* (+RO) ; RO sections other than those in init.o

}

ER INIT 0x080000 FIXED ; load address and execution address of this
; execution region are fixed at 0x80000

{

}

init.o (+RO) ; all RO sections from init.o

; rest of scatter-loading description

You can use this to place a function or a block of data, such as a constant table or a checksum, at a
fixed address in ROM so that it can be accessed easily through pointers.

If you specify, for example, that some initialization code is to be placed at start of ROM and a
checksum at the end of ROM, some of the memory contents might be unused. Use the * or .any
module selector to flood fill the region between the end of the initialization block and the start of
the data block.

To make your code easier to maintain and debug, it is suggested that you use the minimum amount
of placement specifications in scatter files and leave the detailed placement of functions and data
to the linker.

There are some situations where using r1xep and a single load region are not
appropriate. Other techniques for specifying fixed locations are:

e |f your loader can handle multiple load regions, place the RO code or data in its
own load region.

e |f you do not require the function or data to be at a fixed location in ROM, use
aBsoLUTE instead of rixeD. The loader then copies the data from the load region
to the specified address in RAM. aBsoLuTE is the default attribute.

e To place a data structure at the location of memory-mapped I/0O, use two load
regions and specify UNINIT. UNINIT ensures that the memory locations are not
initialized to zero.

Example showing the misuse of the FIXED attribute

The following example shows common cases where the r1xED execution region attribute is
misused:

LR1 0x8000

{
ER_LOW +0 0x1000
{

}
; At this point the next available Load and Execution address is 0x8000 + size of
; contents of ER LOW. The maximum size is limited to 0x1000 so the next available
Load

* (+RO)

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 122 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

; and Execution address is at most 0x9000
ER HIGH 0xF0000000 FIXED
{

* (+RW, +21)
}
; The required execution address and load address is 0xF0000000. The linker inserts
; 0xF0000000 - (0x8000 + size of (ER LOW)) bytes of padding so that load address
matches

; execution address

3 The other common misuse of FIXED is to give a lower execution address than the
;niizilable load address.

LR_HIGH 0x100000000

: ?R_LOW 0x1000 FIXED

}
; The next available load address in LR HIGH is 0x10000000. The required Execution
; address is 0x1000. Because the next available load address in LR HIGH must
increase
; monotonically the linker cannot give ER LOW a Load Address lower than 0x10000000
}

* (+RO)

Related information

Execution region descriptions on page 187

Load region attributes on page 182

Execution region attributes on page 189

Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194

8.2.3 Methods of placing functions and data at specific addresses

There are various methods available to place functions and data at specific addresses.

8.2.3.1 Placing functions and data at specific addresses

To place a single function or data item at a fixed address, you must enable the linker to process the
function or data separately from the rest of the input files.

Where they are required, the compiler normally produces RO, RW, and ZI sections from a single
source file. These sections contain all the code and data from the source file.

For images targeted at Arm®v7-M or Armv8-M, the compiler might generate
execute-only (XO) sections.

Typically, you create a scatter file that defines an execution region at the required address with a
section description that selects only one section.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 123 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Scatter-loading Features

To place a function or variable at a specific address, it must be placed in its own section. There are
several ways to do this:

e Place the function or data item in its own source file.

e Use attribute ((section("name"))) to place functions and variables in a specially named
section, .ARM. _at_address, Where address is the address to place the function or variable. For
example, __attribute ((section(".ARM. at 0x4000"))).

To place ZI data at a specific address, use the variable attribute
__attribute ((section("name"))) with the special name .bss.ARM. at address.

These specially named sections are called at sections.

e Use the .section directive from assembly language. In assembly code, the smallest locatable
unit is a .section.

e Usethe -ffunction-sections compiler option to generate one ELF section for each function in
the source file.

This option results in a small increase in code size for some functions because it reduces the
potential for sharing addresses, data, and string literals between functions. However, this can
help to reduce the final image size overall by enabling the linker to remove unused functions
when you specify armlink --remove.

Related information

Placing __at sections at a specific address on page 131

Example of how to explicitly place a named section with scatter-loading on page 136
Restrictions on placing __at sections on page 132

--autoat, --no_autoat on page 235

--map, --no_map on page 292

--scatter=filename on page 313

-0 filename, --output=filename on page 296

AREA directive

8.2.3.2 Placing a variable at a specific address without scatter-loading

This example shows how to modify your source code to place code and data at specific addresses,
and does not require a scatter file.

To place code and data at specific addresses without a scatter file:

1. Create the source file main.c containing the following code:

#include <stdio.h>

extern int sqgr(int nl);
const int gValue attribute ((section(".ARM. at 0x5000"))) = 3; // Place at
0x5000
int main (void)
{
int squared;
squared=sgr (gValue) ;

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 124 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/AREA

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

printf ("Value squared is: %d\n", squared);
return O;

}

2. Create the source file function.c containing the following code:

int sqgr(int nl)

{
}

return nl*nl;

3. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --map function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.

In this example, attribute ((section(".ARM. at 0x5000"))) specifies that the global variable
gvalue is to be placed at the absolute address 0x5000. gvalue is placed in the execution region ErS
$.ARM. at 0x5000 and load region LR$$.ARM. at 0x5000.

The memory map shows:

" Load Region LR$S.ARM. AT 0x5000 (Base: 0x00005000, Size: 0x00000004, Max:
0x00000004, ABSOLUTE)

Execution Region ERS$S.ARM. AT 0x5000 (Base: 0x00005000, Size: 0x00000004, Max:
0x00000004, ABSOLUTE, UNINIT)

Base Addr Size Type Attr Idx E Section Name Object

0200005000 0x00000004 Data RO 18 .ARM. AT 0x5000 main.o

Related information

--autoat, --no_autoat on page 235

--map, --no_map on page 292

-0 filename, --output=filename on page 296

8.2.3.3 Placing a variable in a named section with scatter-loading

This example shows how to modify your source code to place code and data in a specific section
using a scatter file.

To modify your source code to place code and data in a specific section using a scatter file:

1. Create the source file main.c containing the following code:

#include <stdio.h>
extern int sqgr(int nl);
int gSquared attribute ((section("foo"))); // Place in section foo
int main (void)
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

gSquared=sqr (3) ;
printf ("Value squared is: %d\n", gSquared);
return O;

2. Create the source file function.c containing the following code:

int sqgr(int nl)

{
}

return nl*nl;

3. Create the scatter file scatter.scat containing the following load region:

LR1 0x0000 0x20000
{
ER1 0x0 0x2000
{
* (+RO) ; rest of code and read-only data
}
ER2 0x8000 0x2000
{
main.o
}
ER3 0x10000 0x2000
{
function.o
* (foo) ; Place gSquared in ER3
}
; RW and ZI data to be placed at 0x200000
RAM 0x200000 (0x1FF00-0x2000)
{
* (+RW, +21I)
}
ARM LIB STACK 0x800000 EMPTY -0x10000
{
}
ARM LIB HEAP +0 EMPTY 0x10000
{
}

The arv 1IB sTack and ARM LIB HEAP regions are required because the program is being linked
with the semihosting libraries.

4. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --map --scatter=scatter.scat function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.

In this example, attribute ((section("foo"))) specifies that the global variable gsquared is to
be placed in a section called foo. The scatter file specifies that the section foo is to be placed in the
ER3 execution region.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 126 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Scatter-loading Features

The memory map shows:

Load Region LR1 (Base: 0x00000000, Size: 0x00001570, Max: 0x00020000, ABSOLUTE)

Execution Region ER3 (Base: 0x00010000, Size: 0x00000010, Max: 0x00002000,
ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object
0x00010000 0x0000000c Code RO 3 .text

function.o
0x0001000c 0x00000004 Data RW 15 foo main.o

If you omit * (foo) from the scatter file, the section is placed in the region of the
same type. That is ram in this example.

Related information

--autoat, --no_autoat on page 235

--map, --no_map on page 292

-0 filename, --output=filename on page 296
--scatter=filename on page 313

8.2.3.4 Placing a variable at a specific address with scatter-loading

This example shows how to modify your source code to place code and data at a specific address
using a scatter file.

To modify your source code to place code and data at a specific address using a scatter file:

1. Create the source file main.c containing the following code:

#include <stdio.h>
extern int sqgr(int nl);
// Place at address 0x10000
const int gValue attribute ((section(".ARM. at 0x10000"))) = 3;
int main(void)
{
int squared;
squared=sqgr (gValue) ;
printf ("Value squared is: %d\n", squared);
return O;

}
2. Create the source file function.c containing the following code:

int sqgr (int nl)

return nl*nl;

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 127 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

3. Create the scatter file scatter.scat containing the following load region:

LR1 0x0

{
ER1 0x0

* (+RO) ; rest of code and read-only data

ER2 +0

function.o
*(.ARM. at 0x10000) ; Place gValue at 0x10000

; RW and ZI data to be placed at 0x200000
RAM 0x200000 (0x1FF00-0x2000)
{
*(+RW, +ZI)
}
ARM LIB STACK 0x800000 EMPTY -0x10000
{
}
ARM LIB HEAP +0 EMPTY 0x10000
{
}

The arv 1LIB sTack and ARM LIB HEAP regions are required because the program is being linked
with the semihosting libraries.

4. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --no autoat --scatter=scatter.scat --map function.o main.o -o squared.axf

The --map option displays the memory map of the image.

The memory map shows that the variable is placed in the Er2 execution region at address 0x10000:

Execution Region ER2 (Base: 0x00002a54, Size: 0x0000d5b0, Max: Oxffffffff,
ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00002a54 0x0000001c Code RO 4 .text.sqr
function.o
0x00002a70 0x0000d590 PAD
0x00010000 0x00000004 Data RO 9 .ARM. at 0x10000 main.o

In this example, the size of er1 is unknown. Therefore, gvalue might be placed in Er1 or ER2.
To make sure that gvalue is placed in Er2, you must include the corresponding selector in Er2
and link with the --no_autoat command-line option. If you omit --no_autoat, gvalue is to
placed in a separate load region Lrss.ARM. at 0x10000 that contains the execution region ers
$.ARM. at 0x10000.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 128 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

Related information

--autoat, --no_autoat on page 235

--map, --no_map on page 292

-0 filename, --output=filename on page 296
--scatter=filename on page 313

8.2.4 Placing functions and data in a named section

You can place functions and data by separating them into their own objects without having to use
toolchain-specific pragmas or attributes. Alternatively, you can specify a name of a section using
the function or variable attribute, attribute ((section ("name"))).

About this task

You can use _attribute ((section("name"))) to place a function or variable in a separate ELF
section, where name is a name of your choice. You can then use a scatter file to place the named
sections at specific locations.

You can place ZI data in a named section with _attribute ((section(".bss.name"))).

Use the following procedure to modify your source code to place functions and data in a specific
section using a scatter file.

Procedure

1. Create a C source file file.c to specify a section name foo for a variable and a section name
.bss.mybss for a zero-initialized variable z, for example:

#include "stdio.h"

int variable attribute ((section("foo"))) = 10;
__attribute ((section(".bss.mybss"))) int z;

int main (void)
{

int x = 4;

int vy = 7;
z = x + vy;
printf ("$d\n",variable) ;
printf ("$d\n", z) ;
return O;

}

2. Create a scatter file to place the named section, scatter.scat, for example:

LR 1 0x0

{ ER RO 0x0 0x4000
{ * (+RO)
éRfRW 0x4000 0x2000
{ * (+RW)
éRfZI 0x6000 0x2000
{ * (+271)
}

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 129 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

ER MYBSS 0x8000 0x2000

*(.bss.mybss)
}

ARM LIB STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
;RéiLIBiHEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up

; {

?LASH 0x24000000 0x4000000

; rest of code

ADDER 0x08000000
{

}

file.o (foo) ; select section foo from file.o

The arM_1.1B sTack and ARM_LIB HEAP regions are required because the program is being linked
with the semihosting libraries.

If you omit file.o (foo) from the scatter file, the linker places the section in
the region of the same type. That is, Er_rw in this example.

3. Compile and link the C source:

armclang --target=arm-arm-eabi-none -march=armv8-a file.c -g -c -01 -o file.o
armlink --cpu=8-A.32 --scatter=scatter.scat --map file.o --output=file.axf

The --map option displays the memory map of the image.

In this example:

e attribute ((section("foo"))) specifies that the linker is to place the global variable
variable in a section called foo.

e attribute ((section(".bss.mybss"))) specifies that the linker is to place the global
variable z in a section called .bss.mybss.

o The scatter file specifies that the linker is to place the section foo in the ADDER execution
region of the rLasH execution region.

The following example shows the output from --map:

Execution Region ER MYBSS (Base: 0x00008000, Size: 0x00000004, Max:
0x00002000, ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name
Object

0x00008000 0x00000004 Zero RW 7 .bss.mybss
file.o

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 130 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Scatter-loading Features

" lLoad Region FLASH (Base: 0x24000000, Size: 0x00000004, Max: 0x04000000,
ABSOLUTE)

Execution Region ADDER (Base: 0x08000000, Size: 0x00000004, Max: Oxffffffff,

ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name
Object

0x08000000 0x00000004 Data RW 5 foo
file.o

o |f scatter-loading is not used, the linker places the section foo in the default
ER_RW execution region of the tr 1 load region. It also places the section
.bss.mybss in the default execution region er_z1.

e |f you have a scatter file that does not include the foo selector, then the
linker places the section in the defined RW execution region.

You can also place a function at a specific address using .ARM. _at_address as the section
name. For example, to place the function sqr at 0x20000, specify:

int sgr(int nl) attribute ((section(".ARM. at 0x20000")));

int sqgr(int nl)

{
}

return nl*nl;

For more information, see Placing _ at sections at a specific address.

Related information

Placing __at sections at a specific address on page 131
Restrictions on placing __at sections on page 132
--autoat, --no_autoat on page 235

--scatter=filename on page 313

8.2.5 Placing __at sections at a specific address
You can give a section a special name that encodes the address where it must be placed.

To place a section at a specific address, use the function or variable attribute
__attribute__((section("name")))VWththGSpeCD|ﬂaﬁK3.ARM.__at_address

To place ZI data at a specific address, use the variable attribute
__attribute__((section("name")))VWththGSpeCD|ﬂaﬁN3.bss.ARM.__at_address

address is the required address of the section. The compiler normalizes this address to eight
hexadecimal digits. You can specify the address in hexadecimal or decimal. Sections in the form of
.ARM. at_address are referred to by the abbreviation at.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 131 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

The following example shows how to assign a variable to a specific address in C or C++ code:

// place variablel in a section called .ARM. at 0x8000
int variablel attribute ((section(".ARM. at 0x8000"))) = 10;

The name of the section is only significant if you are trying to match the section
by name in a scatter file. Without overlays, the linker automatically assigns at
sections when you use the --autoat command-line option. This option is the
default. If you are using overlays, then you cannot use --autoat to place at
sections.

Related information
Placing functions and data at specific addresses on page 123
Restrictions on placing __at sections on page 132

8.2.6 Restrictions on placing __at sections

There are restrictions when placing _ at sections at specific addresses.

The following restrictions apply:

e at section address ranges must not overlap, unless the overlapping sections are placed in
different overlay regions.

e at sections are not permitted in position independent execution regions.

e You must not reference the linker-defined symbols $$Base, $$Limit and $sLength of an __ at
section.

e at sections must not be used in Base Platform Application Binary Interface (BPABI) executables
and BPABI dynamically linked libraries (DLLs).

e at sections must have an address that is a multiple of their alignment.

e at sectionsignore any +FIRST Or +LAST ordering constraints.

Related information
Placing __at sections at a specific address on page 131
Base Platform ABI for the Arm Architecture

8.2.7 Automatically placing __at sections
The linker automatically places at sections, but you can override this feature.

The automatic placement of at sections is enabled by default. Use the linker command-line
option, --no_autoat to disable this feature.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 132 of 351

https://developer.arm.com/documentation/ihi0037/latest

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

You cannot use at section placement with position independent execution
regions.

When linking with the --autoat option, the linker does not place _ at sections with scatter-loading
selectors. Instead, the linker places the at section in a compatible region. If no compatible region
is found, the linker creates a load and execution region for the _ at section.

All linker execution regions created by --autoat have the uniniT scatter-loading attribute. If you
require a ZI __at section to be zero-initialized, then it must be placed within a compatible region.
A linker execution region created by --autoat must have a base address that is at least 4 byte-
aligned. If any region is incorrectly aligned, the linker produces an error message.

A compatible region is one where:

e The ataddress lies within the execution region base and limit, where limit is the base address
+ maximum size of execution region. If no maximum size is set, the linker sets the limit for
placing _at sections as the current size of the execution region without at sections plus a
constant. The default value of this constant is 10240 bytes, but you can change the value using
the --max_er extension command-line option.

e The execution region meets at least one of the following conditions:
° It has a selector that matches the at section by the standard scatter-loading rules.
o |t has at least one section of the same type (RO or RW) as the at section.

o |t does not have the empTY attribute.

The linker considers an __ at section with type RW compatible with RO.

The following example shows the sections .arM. at 0x0000 type RO, .arRM. at 0x4000 type RW,
and .ARM. at 0x8000 type RW:

// place the RO variable in a section called .ARM. at 0x0000
const int foo attribute ((section(".ARM. at 0x0000"))) = 10;

// place the RW variable in a section called .ARM. at 0x4000

int bar attribute ((section(".ARM. at 0x4000"))) = 100;

// place "variable" in a section called .ARM. at 0x00008000
int variable attribute ((section(".ARM. at 0x00008000")));

The following scatter file shows how automatically to place these at sections:

LR1 0x0

{
ER RO 0x0 0x4000

{

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 133 of 351

Arm® Compiler armlink User Guide

Document ID: DUIO8O3 | en
\ersion 6.6
Scatter-loading Features

* (+RO) ; .ARM. at 0x0000 lies within the bounds of ER RO

}
ER RW 0x4000 0x2000

{

* (+RW) ; .ARM. at 0x4000 lies within the bounds of ER RW

}
ER 7zI 0x6000 0x2000

{
}

*(+ZI)

}

; The linker creates a load and execution region for the at section

; .ARM. at 0x8000 because it lies outside all candidate regions.

Related information

Placing __at sections at a specific address on page 131
Manually placing __at sections on page 134

Placing a key in flash memory with an __at section on page 135
Execution region descriptions on page 187

Placing functions and data in a named section on page 129
Restrictions on placing __at sections on page 132

--autoat, --no_autoat on page 235

--ro_base=address on page 309

--rw_base=address on page 311

--x0_base=address on page 337

--7i_base=address on page 339

Execution region attributes on page 189
--max_er_extension=size on page 293
__attribute__((section("name"))) variable attribute

8.2.8 Manually placing __at sections

You can have direct control over the placement of _ at sections, if required.

You can use the standard section-placement rules to place at sections when using the --

no_autoat command-line option.

You cannot use _ at section placement with position-independent execution

regions.

The following example shows the placement of read-only sections .arM. at 0x2000 and the
read-write section .arM. at 0x4000. Load and execution regions are not created automatically in
manual mode. An error is produced if an _ at section cannot be placed in an execution region.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 134 of 351

https://developer.arm.com/documentation/dui0774/l/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----section--name-----variable-attribute

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

The following example shows the placement of the variables in C or C++ code:

// place the RO variable in a section called .ARM. at 0x2000
const int foo attribute ((section(".ARM. at 0x2000"))) = 100;
// place the RW variable in a section called .ARM. at 0x4000

int bar attribute ((section(".ARM. at 0x4000")));

The following scatter file shows how to place at sections manually:

LR1 0x0

{
ER RO 0x0 0x2000
{

}
ER RO2 0x2000

{

* (+RO) ; .ARM. at 0x0000 is selected by +RO

*(.ARM. at 0x02000) ; .ARM. at 0x2000 is selected by the section named
; -ARM. at 0x2000
}
ER2 0x4000
{

}

* (+RW, +ZI) ; -ARM. at 0x4000 is selected by +RW

Related information

Placing __at sections at a specific address on page 131
Automatically placing __at sections on page 132

Placing a key in flash memory with an __at section on page 135
Execution region descriptions on page 187

Placing functions and data in a named section on page 129
Restrictions on placing __at sections on page 132

--autoat, --no_autoat on page 235

Execution region attributes on page 189

__attribute ((section("name"))) variable attribute

8.2.9 Placing a key in flash memory with an __at section

Some flash devices require a key to be written to an address to activate certain features. An __at
section provides a simple method of writing a value to a specific address.

Placing the flash key variable in C or C++ code

Assume that a device has flash memory from 0x8000 to 0x10000 and a key is required in
address 0x8000. To do this with an at section, you must declare a variable so that the
compiler can generate a section called .ARM. _at 0x8000.

// place flash key in a section called .ARM. at 0x8000
long flash key attribute ((section(".ARM. at 0x8000")));

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 135 of 351

https://developer.arm.com/documentation/dui0774/l/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----section--name-----variable-attribute

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

Manually placing a flash execution region

The following example shows how to manually place a flash execution region with a scatter
file:

ER FLASH 0x8000 0x2000

{
* (+RW)
*(.ARM. at 0x8000) ; key

Use the linker command-line option --no_autoat to enable manual placement.

Automatically placing a flash execution region

The following example shows how to automatically place a flash execution region with a
scatter file. Use the linker command-line option --autoat to enable automatic placement.

LR1 0x0
ER FLASH 0x8000 0x2000

* (+RO) ; other code and read-only data, the
; __at section is automatically selected

}
ER2 0x4000
{

}

* (+RW +Z1I) ; Any other RW and ZI variables

Related information

Placing __at sections at a specific address on page 131
Automatically placing __at sections on page 132

Manually placing __at sections on page 134

Execution region descriptions on page 187

--autoat, --no_autoat on page 235

Section placement with the FIRST and LAST attributes on page 58

8.3 Example of how to explicitly place a named section
with scatter-loading

This example shows how to place a named section explicitly using scatter-loading.

Consider the following source files:

int foo() _ attribute ((section("INIT"))):
int foo() {
return 1;

}

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 136 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

int bar () {
return 2;

const long padding=123;
int z=5;

The following scatter file shows how to place a named section explicitly:

LR1 0x0 0x10000
{
; Root Region, containing init code
ER1 0x0 0x2000
{
init.o (INIT, +FIRST) ; place init code at exactly 0x0
* (+RO) ; rest of code and read-only data
}
; RW & ZI data to be placed at 0x400000
RAM RW 0x400000 (0x1FF00-0x2000)
{

}
RAM 71 +0

* (+RW)

*(+21)
}
; execution region at 0x1FFO0O0
; maximum space available for table is OxFF
DATABLOCK 0x1FFO0O OxFF
{

data.o (+RO-DATA) ; place RO data between 0x1FF00 and Ox1FFFE
}

In this example, the scatter-loading description places:

e The initialization code is placed in the InIT section in the init.o file. This example shows that
the code from the 1n1T section is placed first, at address o0xo, followed by the remainder of the
RO code and all of the RO data except for the RO data in the object data.o.

o All global RW variables in RAM at 0x400000.

e A table of ro-paTA from data.o at address 0x1FF00.

The resulting image memory map is as follows:

Memory Map of the image
Image entry point : Not specified.
Load Region LR1 (Base: 0x00000000, Size: 0x00000018, Max: 0x00010000, ABSOLUTE)

Execution Region ER1 (Base: 0x00000000, Size: 0x00000010, Max: 0x00002000,
ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object
0x00000000 0x00000008 Code RO 4 INIT init.o
0x00000008 0x00000008 Code RO 1 .text init.o
0x00000010 0x00000000 Code RO 16 .text data.o

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 137 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

Execution Region DATABLOCK (Base: 0x0001ff00, Size: 0x00000004, Max: 0x000000ff,
ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object
0x0001££00 0x00000004 Data RO 19 .rodata data.o

Execution Region RAM RW (Base: 0x00400000, Size: 0x00000004, Max: 0x0001df00,
ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object
0x00400000 0x00000000 Data RW 2 .data init.o
0x00400000 0x00000004 Data RW 17 .data data.o

Execution Region RAM ZI (Base: 0x00400004, Size: 0x00000000, Max: Oxffffffff,
ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object
0x00400004 0x00000000 Zero RW 3 .bss init.o
0x00400004 0x00000000 Zero RW 18 .bss data.o

Related information

Effect of the FIXED attribute on a root region on page 121

Load region descriptions on page 180

Execution region descriptions on page 187

Load region attributes on page 182

Execution region attributes on page 189

Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194
ENTRY

8.4 Placement of unassigned sections

The linker attempts to place input sections into specific execution regions. For any input sections
that cannot be resolved, and where the placement of those sections is not important, you can
specify where the linker is to place them.

To place sections that are not automatically assigned to specific execution regions, use the .any
module selector in a scatter file.

Usually, a single .any selector is equivalent to using the * module selector. However, unlike *, you
can specify .any in multiple execution regions.

The linker has default rules for placing unassigned sections when you specify multiple .any
selectors. However, you can override the default rules using the following command-line options:

e -—-any contingency to permit extra space in any execution regions containing .any sections for
linker-generated content such as veneers and alignment padding.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 138 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/ENTRY

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

e -—-any placement t0 provide more control over the placement of unassigned sections.

e -—-any sort order to control the sort order of unassigned input sections.

In a scatter file, you can also:

e Assign a priority to a .any selector. This gives you more control over how the unassigned
sections are divided between multiple execution regions. You can assign the same priority to
more than one execution region.

e Specify the maximum size for an execution region that the linker can fill with unassigned
sections.

8.4.1 Default rules for placing unassigned sections
The linker has default rules for placing sections when using multiple .any selectors.

When more than one .any selector is present in a scatter file, the linker sorts sections in
descending size order. It then takes the unassigned section with the largest size and assigns the
section to the most specific .any execution region that has enough free space. For example,
.ANY (.text) is judged to be more specific than .anv (+ro).

If several execution regions are equally specific, then the section is assigned to the execution region
with the most available remaining space.

For example:

e You might have two equally specific execution regions where one has a size limit of 0x2000 and
the other has no limit. In this case, all the sections are assigned to the second unbounded .any
region.

e You might have two equally specific execution regions where one has a size limit of 0x2000 and
the other has a size limit of 0x3000. In this case, the first sections to be placed are assigned
to the second .any region of size limit 0x3000. This assignment continues until the remaining
size of the second .any region is reduced to 0x2000. From this point, sections are assigned
alternately between both .any execution regions.

You can specify a maximum amount of space to use for unassigned sections with the execution
region attribute any stzE.

Related information

How the linker resolves multiple matches when processing scatter files on page 173
--any_placement=algorithm on page 232

--any_contingency on page 232

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 139 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

8.4.2 Command-line options for controlling the placement of unassigned
sections

You can modify how the linker places unassigned input sections when using multiple .any selectors
by using a different placement algorithm or a different sort order.

The following command-line options are available:

® --any placement=algorithm, where aigorithmis one of first fit, worst fit, best fit, Or
next fit.
®¢ --any sort order=order, where order is one of cmdline or descending_ size.

Use first fit when you want to fill regions in order.
Use best_fit when you want to fill regions to their maximum.

Use worst_fit when you want to fill regions evenly. With equal sized regions and sections
worst_fit fills regions cyclically.

Use next fit when you need a more deterministic fill pattern.

If the linker attempts to fill a region to its limit, as it does with first fit and best fit, it might
overfill the region. This is because linker-generated content such as padding and veneers are
not known until sections have been assigned to .any selectors. If this occurs you might see the
following error:

Error: L6220E: Execution region regionname size (size bytes) exceeds limit (limit
bytes) .

The --any_contingency option prevents the linker from filling the region up to its maximum.

It reserves a portion of the region's size for linker-generated content and fills this contingency
area only if no other regions have space. It is enabled by default for the first fit and best fit
algorithms, because they are most likely to exhibit this behavior.

Related information
Examples of using placement algorithms for .ANY sections on page 143

Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page
145

Examples of using sorting algorithms for .ANY sections on page 147

Behavior when .ANY sections overflow because of linker-generated content on page 148
--any_sort_order=order on page 234

--map, --no_map on page 292

armlink Command-line Options on page 232

--tiebreaker=option on page 328

--any_placement=algorithm on page 232

--any_contingency on page 232

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 140 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

8.4.3 Prioritizing the placement of unassigned sections

You can give a priority ordering when placing unassigned sections with multiple .ANY module
selectors.

To prioritize the order of multiple .any sections use the .aNynum selector, where num is a positive
integer starting at zero.

The highest priority is given to the selector with the highest integer.

The following example shows how to use .aANYnum:

1rl 0x8000 1024

{
erl +0 512

{

}
er2 +0 256

{
}
er3 +0 256
{

}

.ANY1 (+RO) ; evenly distributed with er3
.ANY2 (+RO) ; Highest priority, so filled first

.ANY1 (+RO) ; evenly distributed with erl

Related information
Examples of using placement algorithms for . ANY sections on page 143

Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page
145

Examples of using sorting algorithms for .ANY sections on page 147/

Behavior when .ANY sections overflow because of linker-generated content on page 148
--any_sort_order=order on page 234

--map, --no_map on page 292

armlink Command-line Options on page 232

--tiebreaker=option on page 328

How the linker resolves multiple matches when processing scatter files on page 173

8.4.4 Specify the maximum region size permitted for placing unassigned
sections

You can specify the maximum size in a region that armlink can fill with unassigned sections.

Use the execution region attribute any s1zE max size to specify the maximum size in a region that
armlink can fill with unassigned sections.

Be aware of the following restrictions when using this keyword:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 141 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

* max_size must be less than or equal to the region size.

e If you use any s1zE On a region without a .any selector, it is ignored by armlink.

When any s1zE is present, arm1ink does not attempt to calculate contingency and strictly follows
the .any priorities.

When any s1zE is not present for an execution region containing a .any selector, and you specify
the --any contingency command-line option, then arm1ink attempts to adjust the contingency for
that execution region. The aims are to:

o Never overflow a .aANY region.

e Make sure there is a contingency reserved space left in the given execution region. This space is
reserved for veneers and section padding.

If you specify --any contingency on the command line, it is ignored for regions that have any s1zE
specified. It is used as normal for regions that do not have any s1zE specified.

Example
The following example shows how to use aNy s1zE:

LOAD REGION 0x0 0x3000

{
ER 1 0x0 ANY SIZE 0xF00 0x1000

{
.ANY

}
ER 2 0x0 ANY SIZE OxFBO 0x1000

{
.ANY

)
ER 3 0x0 ANY SIZE 0x1000 0x1000

{
.ANY

}

In this example:
e ER_1 has 0x100 reserved for linker-generated content.

» ER_2 has 0x50 reserved for linker-generated content. That is about the same as the automatic
contingency of -—any contingency.

» ER_3 has no reserved space. Therefore, 100% of the region is filled, with no contingency for
veneers. Omitting the any s1zE parameter causes 98% of the region to be filled, with a two
percent contingency for veneers.

Related information
Examples of using placement algorithms for .ANY sections on page 143

Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page
145

Examples of using sorting algorithms for .ANY sections on page 147
Behavior when .ANY sections overflow because of linker-generated content on page 148

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 142 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

--any_sort_order=order on page 234
--map, --no_map on page 292
--any_contingency on page 232

8.4.5 Examples of using placement algorithms for .ANY sections

These examples show the operation of the placement algorithms for RO-CODE sections in

sections.o
The input section properties and ordering are shown in the following table:

Table 8-1: Input section properties for placement of .ANY sections

secl 0x4
sec?2 0x4
sec3 0x4
sec4d 0x4
secb 0x4
secbt 0x4

The scatter file used for the examples is:

LR 0x100

{
ER 1 0x100 0x10
{

}
ER 2 0x200 0x10

{

}
}

.ANY

.ANY

o
% These examples have --any contingency disabled.

Note

Example for first_fit, next_fit, and best_fit

This example shows the image memory map where several sections of equal size are assigned to
two regions with one selector. The selectors are equally specific, equivalent to .any (+ro) and have
No priority.

Execution Region ER 1 (Base: 0x00000100, Size: 0x00000010, Max: 0x00000010,
ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved

Non-Confidential
Page 143 of 351

Arm” Compiler armlink User Guide

0x00000100 0x00000004 Code RO
0x00000104 0x00000004 Code RO
0x00000108 0x00000004 Code RO
0x0000010c 0x00000004 Code RO
Execution Region ER 2 (Base: 0x00000200,
ABSOLUTE)

Base Addr Size Type Attr
0x00000200 0x00000004 Code RO
0x00000204 0x00000004 Code RO

In this example:

Size:

Idx

1 secl
2 sec?2
3 sec3
4 sec4d
0x00000008, Max:
E Section Name
5 secb
6 secb

Document ID: DUIO803 | en
\ersion 6.6
Scatter-loading Features

sections.
sections.
sections.
sections.

O 00O

0x00000010,

Object

sections.o
sections.o

o For first fit the linker first assigns all the sections it can to er 1, then moves on to Er 2

because that is the next available region.

e Fornext fit the linker does the same as first fit. However, when er 1 is full it is marked
as rurL and is not considered again. In this example, r 1 is completely full. r_2 is then

considered.

e Forpest fit the linker assigns sec1 to Er 1. It then has two regions of equal priority and
specificity, but gr_1 has less space remaining. Therefore, the linker assigns sec2 to Er 1, and
continues assigning sections until er_1 is full.

Example for worst_fit

This example shows the image memory map when using the worst_fit algorithm.

Execution Region ER 1 (Base: 0x00000100,
ABSOLUTE)

Base Addr Size Type Attr
0x00000100 0x00000004 Code RO
0x00000104 0x00000004 Code RO
0x00000108 0x00000004 Code RO
Execution Region ER 2 (Base: 0x00000200,
ABSOLUTE)

Base Addr Size Type Attr
0x00000200 0x00000004 Code RO
0x00000204 0x00000004 Code RO
0x00000208 0x00000004 Code RO

Size:

Idx

Size:

Idx

0x0000000¢,

g wR

0x0000000¢,

o BN

Max:

E Section Name
secl

sec3
secb

Max:

E Section Name

sec?
secd
secb

0x00000010,

Object

sections.o
sections.
sections.o

O

0x00000010,

Object

sections.o
sections.
sections.o

O

The linker first assigns sec1 to Er_1. It then has two equally specific and priority regions. It assigns
sec2 to the one with the most free space, er 2 in this example. The regions now have the same
amount of space remaining, so the linker assigns sec3 to the first one that appears in the scatter

file, thatis Er 1.

The behavior of worst_fit is the default behavior in this version of the linker, and it
is the only algorithm available in earlier linker versions.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

Related information
Prioritizing the placement of unassigned sections on page 141
Command-line options for controlling the placement of unassigned sections on page 139

Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page
145

--scatter=filename on page 313
Specify the maximum region size permitted for placing unassigned sections on page 141

8.4.6 Example of next_fit algorithm showing behavior of full regions,
selectors, and priority

This example shows the operation of the next_fit placement algorithm for RO-CODE sections in
sections.o.

The input section properties and ordering are shown in the following table:

Table 8-2: Input section properties for placement of sections with next_fit

secl 0x14
sec?2 0x14
sec3 0x10
sec4d 0x4
secb 0x4
secbt 0x4

The scatter file used for the examples is:

LR 0x100

{
ER 1 0x100 0x20
{

}
ER 2 0x200 0x20

{

}
ER 3 0x300 0x20

{

}
}

.ANY1 (+RO-CODE)

.ANY2 (+RO)

.ANY3 (+RO)

o
% This example has --any contingency disabled.

Note

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 145 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

The next fit algorithm is different to the others in that it never revisits a region that is considered
to be full. This example also shows the interaction between priority and specificity of selectors.
This is the same for all the algorithms.

Execution Region ER 1 (Base: 0x00000100, Size: 0x00000014, Max: 0x00000020,
ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object
0x00000100 0x00000014 Code RO 1 secl sections.o

Execution Region ER 2 (Base: 0x00000200, Size: 0x0000001c, Max: 0x00000020,
ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00000200 0x00000010 Code RO 3 sec3 sections.o
0x00000210 0x00000004 Code RO 4 sec4d sections.o
0x00000214 0x00000004 Code RO 5 secH sections.o
0x00000218 0x00000004 Code RO 6 secb sections.o

Execution Region ER 3 (Base: 0x00000300, Size: 0x00000014, Max: 0x00000020,
ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00000300 0x00000014 Code RO 2 sec? sections.o

In this example:

e The linker places sec1 in ER 1 because Er_1 has the most specific selector. ErR_1 now has 0xé
bytes remaining.

e The linker then tries to place sec2 in ErR 1, because it has the most specific selector, but there
is not enough space. Therefore, er 1 is marked as full and is not considered in subsequent
placement steps. The linker chooses Er_3 for sec2 because it has higher priority than er_2.

e The linker then tries to place sec3 in ErR_3. It does not fit, so Er_3 is marked as full and the linker
places sec3 in ErR 2.

e The linker now processes seca. This is 0x4 bytes so it can fit in either er 1 or Er_3. Because
both of these sections have previously been marked as full, they are not considered. The linker
places all remaining sections in Er 2.

e |f another section sec7 of size 0xs exists, and is processed after secé the example fails to
link. The algorithm does not attempt to place the section in r 1 or Er 3 because they have
previously been marked as full.

Related information
Specify the maximum region size permitted for placing unassigned sections on page 141
Prioritizing the placement of unassigned sections on page 141
Command-line options for controlling the placement of unassigned sections on page 139
Examples of using placement algorithms for .ANY sections on page 143
How the linker resolves multiple matches when processing scatter files on page 173
Behavior when .ANY sections overflow because of linker-generated content on page 148
--scatter=filename on page 313

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 146 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

8.4.7 Examples of using sorting algorithms for .ANY sections

These examples show the operation of the sorting algorithms for RO-CODE sections in
sections a.o and sections b.o.

The input section properties and ordering are shown in the following table:

sections_a.o sections_b.o
Size Size
seca 1 0x4 secb 1 0x4
seca 2 0x4 secb 2 0x4
seca_3 0x10 secb 3 0x10
seca 4 O0x14 secb 4 0x14

Descending size example
The following linker command-line options are used for this example:

--any sort order=descending size sections_a.o sections b.o --scatter scatter.txt

The following table shows the order that the sections are processed by the .any assignment
algorithm:

Table 8-4: Sort order for descending_size algorithm

seca 4 Ox14
secb 4 O0x14
seca 3 0x10
secb 3 0x10
seca 1 Ox4
seca_ 2 Ox4
secb 1 O0x4
secb 2 0x4

With --any sort order=descending size, sections of the same size use the creation index as a
tiebreak.

Command-line example
The following linker command-line options are used for this example:

-—any sort order=cmdline sections_a.o sections b.o --scatter scatter.txt

The following table shows the order that the sections are processed by the .any assignment
algorithm:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 147 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

Table 8-5: Sort order for cmdline algorithm

seca_1 Ox4
seca 2 O0x4
seca 3 0x10
seca 4 O0x14
secb 1 0x4
secb 2 O0x4
secb 3 0x10
secb 4 O0x14

That is, the input sections are sorted by command-line index.

Related information

Prioritizing the placement of unassigned sections on page 141

Command-line options for controlling the placement of unassigned sections on page 139
--any_sort_order=order on page 234

--scatter=filename on page 313

Specify the maximum region size permitted for placing unassigned sections on page 141

8.4.8 Behavior when .ANY sections overflow because of linker-generated
content

Because linker-generated content might cause .any sections to overflow, a contingency algorithm
is included in the linker.

The linker does not know the address of a section until it is assigned to a region. Therefore, when
filling .any regions, the linker cannot calculate the contingency space and cannot determine if
calling functions require veneers. The linker provides a contingency algorithm that gives a worst-
case estimate for padding and an additional two percent for veneers. To enable this algorithm use
the --any contingency command-line option.

The following diagram represents the notional image layout during .any placement:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 148 of 351

Arm” Compiler armlink User Guide

Figure 8-4: .ANY contingency

Image
content

Execution region

Document ID: DUIO803 | en
\ersion 6.6
Scatter-loading Features

ANY
sections

Base A

l Prospective padding

98%

Free
space

2%

limit \J

The downward arrows for prospective padding show that the prospective padding continues to
grow as more sections are added to the .any selector.

Prospective padding is dealt with before the two percent veneer contingency.

When the prospective padding is cleared the priority is set to zero. When the two percent is
cleared the priority is decremented again.

You can also use the any_s1zE keyword on an execution region to specify the maximum amount of
space in the region to set aside for .any section assignments.

You can use the armlink command-line option --info=any to get extra information on where the
linker has placed sections. This can be useful when trying to debug problems.

Example

1. Create the following foo.c program:

#include "stdio.h"
int array([10] _ attribute ((section ("ARRAY")));
struct S {

char A[8];
char B[4];

bi

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 149 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
Scatter-loading Features

2. Create the following scatter.scat file:

3. Compile and link the program as follows:

The following shows an example of the information generated:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 150 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
Scatter-loading Features

Related information

--any_contingency on page 232

Prioritizing the placement of unassigned sections on page 141

Command-line options for controlling the placement of unassigned sections on page 139
Specify the maximum region size permitted for placing unassigned sections on page 141
--info=topic/,topic,...] on page 271

Syntax of an input section description on page 197

Execution region attributes on page 189

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 151 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

8.5 Placing veneers with a scatter file

You can place veneers at a specific location with a linker-generated symbol.

About this task
Veneers allow switching between A32 and T32 code or allow a longer program jump than can be
specified in a single instruction.

Procedure

To place veneers at a specific location, include the linker-generated symbol veneer$scode in a
scatter file. At most, one execution region in the scatter file can have the * (veneers$scode) section
selector.

If it is safe to do so, the linker places veneer input sections into the region identified by the

* (Veneer$$Code) section selector. It might not be possible for a veneer input section to be
assigned to the region because of address range problems or execution region size limitations. If
the veneer cannot be added to the specified region, it is added to the execution region containing
the relocated input section that generated the veneer.

Instances of * (zwvsscode) in scatter files from earlier versions of Arm tools are
automatically translated into * (veneers$scode). Use * (Vveneer$$Code) iN New
descriptions.

* (Veneer$$Code) IS ignored when the amount of code in an execution region
exceeds 4MB of 16-bit T32 code, 16MB of 32-bit T32 code, and 32MB of A32
code.

There are no state-change veneers in A64.

Related information
Linker-generated veneers on page 61

8.6 Placement of CMSE veneer sections for a Secure
image

armlink automatically generates all CMSE veneer sections for a Secure image.

The linker:

o Creates at sections that are called veneersscMsE AT address for secure gateway veneers
that you specify in a user-defined input import library.

e Produces one normal section veneersscuse to hold all other secure gateway veneers.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 152 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

Placement of secure gateway veneers generated from input import libraries

The following example shows the placement of secure gateway veneers for functions entry1 and
entry2 that are specified in the input import library:

** Section #4 'ERSVeneer$SCMSE AT 0x00004000' (SHT PROGBITS) [SHF ALLOC +
SHF EXECINSTR + SHF ARM NOREAD] B B

Size : 32 bytes (alignment 32)

Address: 0x00004000

St
entryl

0x00004000: e97fe97f 500 SG ; [0x3e08]

0x00004004: £004b85a 2. B.W acle se entryl ; 0x80bc
entry?2 - -

0x00004008: e97fe97f 5000 SG ; [0x3el0]

0x0000400c: £004b868 o olilc B.W __acle se entry2 ; 0x80e0

The same rules and options that apply to normal __at sections apply to _ at sections created for
secure gateway veneers. The same rules and options also apply to the automatic placement of
these sections when you specify ——autoat.

Placement of secure gateway veneers that are not specified in the input import library

Secure gateway veneers that do not have their addresses specified in an input import library get
generated in the veneersscMse input section. You must place this section as required. If you create
a simple image, that is without using a scatter file, the sections get placed in the ER_XO execution
region, and the respective ER_XO output section.

The following example shows the placement of secure gateway veneers for functions entry3 and
entry4 that are not specified in the input import library:

** Section #1 'ER_XO' (SHT_PROGBITS) [SHF_Z—\LLOC + SHF_EXECINSTR aF SHF_ARM_NOREAD}
Size : 32 bytes (alignment 32)
Address: 0x00008000

St
entry3

0x00008000: e97fe97f cee SG

0x00008004: £000b87e 0 0™ B.W acle se entry3 ; 0x8104
entry4 - -

0x00008008: e97fe97f 500C SG

0x0000800c: f000b894 500 C B.W __acle se entry4 ; 0x8138

Placement of secure gateway veneers with a scatter file

To make sure all the secure gateway veneers are in a single section, you must place them using a
scatter file.

Secure gateway veneers that are not specified in the input import library are new veneers.
New veneers get generated in the veneer$scuMst input section. You can place this section in

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 153 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

the scatter file as required. Veneers that are already present in the input import library are

placed at the address that is specified in this library. This placement is done by creating veneers
SCMSE_AT address sections for them. These sections use the same facility that is used by other AT
sections. Therefore, if you use --no_autoat, you can place these sections either by using the --
autoat Mmechanism or by manually placing them using a scatter file.

For a Non-secure callable region of size Ox1000 bytes with a base address of Ox4000 a suitable
example of a scatter file load and execution region to match the veneers is:

LOAD NSCR 0x4000 0x1000

{
EXEC NSCR 0x4000 0x1000

{
}

* (VeneerS$SCMSE)

The secure gateway veneers are placed as follows:

** Section #7 'EXEC NSCR' (SHT PROGBITS) [SHF ALLOC + SHF EXECINSTR +
SHFE ARM NOREAD] B B B

Size : 64 bytes (alignment 32)

Address: 0x00004000

St
entryl

0x00004000: e97fe97f cooc SG

0x00004004: £7£cb850 0 0l®e B acle se entryl ; Oxa8
entry2 - -

0x00004008: e97fe97f 5600 SG

0x0000400c: f7£fcb85e 5o02c B __acle se entry2 ; Oxcc
entry3

0x00004020: e97fe97f 5600 SG

0x00004024: £f7fcb864 o 0@le B acle se entry3 ; O0xfO0
entry4d o -

0x00004028: e97fe97f cooc SG

0x0000402c: f7fcb87a o 0B B __acle se entry4 ; 0x124

Related information

Generation of secure gateway veneers on page 65
Placing __at sections at a specific address on page 131
Restrictions on placing __at sections on page 132
Automatically placing __at sections on page 132
Manually placing __at sections on page 134

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 154 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

8.7 Reserving an empty block of memory
You can reserve an empty block of memory with a scatter file, such as the area used for the stack.

To reserve an empty block of memory, add an execution region in the scatter file and assign the
EMPTY attribute to that region.

Related information
Characteristics of a reserved empty block of memory on page 155
Example of reserving an empty block of memory on page 155

8.7.1 Characteristics of a reserved empty block of memory

An empty block of memory that is reserved with a scatter-loading description has certain
characteristics.

The block of memory does not form part of the load region, but is assigned for use at execution
time. Because it is created as a dummy ZI region, the linker uses the following symbols to access it:

® ImageS$$region name$SZISS$Base
® ImageSS$region name$SZISSLimit
* ImageS$Sregion name$$ZISSSLength.

If the length is given as a negative value, the address is taken to be the end address of the region.
This address must be an absolute address and not a relative one.

8.7.2 Example of reserving an empty block of memory

This example shows how to reserve and empty block of memory for stack and heap using a scatter-
loading description. It also shows the related symbols that the linker generates.

In the following example, the execution region definition sTack 0x800000 EMPTY -10000 defines a
region that is called stack. The region starts at address 0x7r0000 and ends at address 0x800000:

LR 1 0x80000 ; load region starts at 0x80000
{
STACK 0x800000 EMPTY -0x10000 ; region ends at 0x800000 because of the
; negative length. The start of the region
; 1s calculated using the length.
{

}

; Empty region for placing the stack

HEAP +0 EMPTY 0x10000 ; region starts at the end of previous
; region. End of region calculated using
; positive length

; Empty region for placing the heap

; rest of scatter-loading description

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 155 of 351

Arm” Compiler armlink User Guide

The dummy ZI region that is created for an empTy execution region is not initialized

to zero at runtime.

If the address is in relative (+ofrfset) form and the length is negative, the linker generates an error.

The following figure shows a diagrammatic representation for this example.

Figure 8-5: Reserving a region for the stack

0x810000

Limit
Heap
0x800000 T Base
i Limit
Stack
0x7F0000
Base

In this example, the linker generates the following symbols:

Image$$STACKSSZISSBase
Image$$SSTACKSSZISSLimit
Image$$SSTACKSSZISSLength
Image$SHEAPSSZISSBase
Image$SHEAPSSZISSLimit
ImageS$SSHEAPSSZISSLength

Copyright © 2014-2017, 2019~

0x7£0000
0x800000
0x10000
0x800000
0x810000
0x10000

2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Document ID: DUIO803 | en

Scatter-loading Features

Page 156 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

The empTY attribute applies only to an execution region. The linker generates a
warning and ignores an empTy attribute that is used in a load region definition.

The linker checks that the address space used for the empTy region does not
coincide with any other execution region.

8.8 Placement of Arm C and C++ library code

You can place code from the Arm® standard C and C++ libraries using a scatter file.
Use *armlib* Or *1libexx* SO that the linker can resolve library naming in your scatter file.
Some Arm C and C++ library sections must be placed in a root region, for example main.o,

__scatter*.o, dc*.o, and *RegionssTable. This list can change between releases. The linker can
place all these sections automatically in a future-proof way with InrRoot$$Sections.

For AArch64, rtentry*.o is moved to a root region.

8.8.1 Placing code in a root region

Some code must always be placed in a root region. You do this in a similar way to placing a named
section.

To place all sections that must be in a root region, use the section selector Inroot$sSections. For
example :

ROM LOAD 0x0000 0x4000

ROM EXEC 0x0000 0x4000 ; root region at 0xO0
{
vectors.o (Vect, +FIRST)
* (InRoot$$Sections)

Vector table
All library sections that must be in a

Ne Ne o Ne e

root region, for example, main.o,
__scatter*.o, dc*.o, and *Region$$Table
}
RAM 0x10000 0x8000
{
* (+RO, +RW, +7ZI) ; all other sections

}
}

Related information
Placing Arm C library code on page 158
Placing Arm C++ library code on page 158

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 157 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

Effect of the ABSOLUTE attribute on a root region on page 120
Effect of the FIXED attribute on a root region on page 121
Root region and the initial entry point on page 119

8.8.2 Placing Arm C library code

You can place C library code using a scatter file.

To place C library code, specify the library path and library name as the module selector. You can
use wildcard characters if required. For example:

LR1 0xO0
: ROM1 O
{ * (InRoot$$Sections)
* (+RO)
%OMZ 0x1000

}
RAM1 0x3000
{

armlib/c_ (+RO) ; all Arm-supplied C library functions

armlib (+RO) ; all other Arm-supplied library code
; for example, floating-point libraries

}
RAM2 0x4000

{
}

* (+RW, +ZI)

The name armlib indicates the Arm® C library files that are located in the directory
install directory\lib\armlib.

Related information

Placing code in a root region on page 157
Placing Arm C++ library code on page 158
C and C++ library naming conventions

8.8.3 Placing Arm C++ library code

You can place C++ library code using a scatter file.

About this task

To place C++ library code, specify the library path and library name as the module selector. You can
use wildcard characters if required.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 158 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/C-and-C---library-naming-conventions

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

Procedure
1. Create the following C++ program, foo.cpp:
#include <iostream>
using namespace std;
extern "C" int foo ()
{ cout << "Hello" << endl;

return 1;

}

2. To place the C++ library code, define the following scatter file, scatter.scat:
LR 0x8000
{ ER1 +0
armlib (+RO)
ER2 +0
1libcxx (+RO)
ER3 +0
* (+RO)
All .ARM.exidx* sections must be coalesced into a single contiguous
.ARM.exidx section because the unwinder references linker-generated

Base and Limit symbols for this section.
(0x70000001) ; SHT ARM EXIDX sections

e Ne N

All .init array sections must be coalesced into a single contiguous
.init array section because the initialization code references
linker—-generated Base and Limit for this section.

(.init array)

S} Ne Ne o Ne

ER4 +0

* (+RW, +21)

The name *armlib* matches install directory\lib\armlib, indicating the Arm® C library
files that are located in the arm1ib directory.

The name *1ibcxx* matches install directory\lib\libcxx, indicating the C++ library files
that are located in the 1ibcxx directory.

3. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c foo.cpp
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --scatter=scatter.scat --map main.o foo.o -o foo.axf

The --map option displays the memory map of the image.

Related information

Placing code in a root region on page 157
Placing Arm C library code on page 158
C and C++ library naming conventions

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 159 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/C-and-C---library-naming-conventions

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

8.9 Aligning regions to page boundaries

You can produce an ELF file with each execution region starting at a page boundary.

The linker provides the following built-in functions to help create load and execution regions on
page boundaries:

e AlignExpr, to specify an address expression.

e GetPageSize, t0 obtain the page size for use in alignExpr. If YOU USE GetPageSize, YOU Must
also use the --paged linker command-line option.

e SizeOfHeaders (), to return the size of the ELF header and Program Header table.

e Alignment on an execution region causes both the load address and execution
address to be aligned.

e The default page size is 0x8000. To change the page size, specify the --pagesize
linker command-line option.

To produce an ELF file with each execution region starting on a new page, and with code starting
on the next page boundary after the header information:

LR1 0x0 + SizeOfHeaders /()

{
ER RO +0
{

}
ER RW AlignExpr (+0, GetPageSize())
{

}
ER 7ZI AlignExpr (+0, GetPageSize())
{

}

* (+RO)

* (+RW)

*(+z1I)

If you set up your ELF file in this way, then you can memory-map it onto an operating system in
such a way that:

e RO and RW data can be given different memory protections, because they are placed in
separate pages.

e The load address everything expects to run at is related to its offset in the ELF file by specifying
SizeOfHeaders () for the first load region.

Related information

Aligning execution regions and input sections on page 161

Linker support for creating demand-paged files on page 60

Expression evaluation in scatter files on page 202

Example of using expression evaluation in a scatter file to avoid padding on page 163
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 160 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

Example of aligning a base address in execution space but still tightly packed in load space on page
209

AlignExpr(expr, align) function on page 207

GetPageSize() function on page 208

--pagesize=pagesize on page 300

Load region attributes on page 182

Execution region attributes on page 189

--paged on page 300

8.10 Aligning execution regions and input sections

There are situations when you want to align code and data sections. How you deal with them
depends on whether you have access to the source code.

Aligning when it is convenient for you to modify the source and recompile
When it is convenient for you to modify the original source code, you can align at compile
time with the align(n) keyword, for example.

Aligning when it is not convenient for you to modify the source and recompile

It might not be convenient for you to modify the source code for various reasons. For
example, your build process might link the same object file into several images with different
alignment requirements.

When it is not convenient for you to modify the source code, then you must use the
following alignment specifiers in a scatter file:

ALIGNALL
Increases the section alignment of all the sections in an execution region, for example:

ER DATA ... ALIGNALL 8
{

}

. ;selectors

OVERALIGN
Increases the alignment of a specific section, for example:

ER DATA ...

{
*.0(.bar, OVERALIGN 8)

. ;selectors

armlink does not ovERALIGN some sections where it might be unsafe to do so. For
more information, see Syntax of an input section description.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 161 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

Related information

Aligning regions to page boundaries on page 160
Input section descriptions on page 196
Execution region attributes on page 189

8.11 Preprocessing a scatter file

You can pass a scatter file through a C preprocessor. This permits access to all the features of the C
preprocessor.

Use the first line in the scatter file to specify a preprocessor command that the linker invokes to
process the file. The command is of the form:

#! preprocessor [preprocessor flags]

Most typically the command is #! armclang —--target=arm-arm-none-eabi -march=armv8-a -E -x
c. This passes the scatter file through the armclang preprocessor.

You can:

e Add preprocessing directives to the top of the scatter file.

e Use simple expression evaluation in the scatter file.

For example, a scatter file, file.scat, might contain:

#! armclang --target=arm-arm-none-eabi -march=armv8-a -E -x c
#define ADDRESS 0x20000000
#include "include file 1.h"

LR1 ADDRESS
{

}

The linker parses the preprocessed scatter file and treats the directives as comments.

You can also use the --predefine command-line option to assign values to constants. For this
example:

1. Modify file.scat to delete the directive #define ADDRESS 20000000.

2. Specify the command:
armlink --predefine="-DADDRESS=0x20000000" --scatter=file.scat

Related information
Default behavior for armclang -E in a scatter file on page 163
Using other preprocessors in a scatter file on page 163

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 162 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

8.11.1 Default behavior for armclang -E in a scatter file
armlink behaves in the same way as armclang when invoking other Arm tools.

armlink searches for the armclang binary in the following order:
1. The same location as armlink.

2. The paTH locations.

armlink iNVokes armclang With the -Tscatter file path option so that any relative preprocessor
directives work. The linker only adds this option if the full name of the preprocessor tool given is
armclang OF armclang.exe. |his means that if an absolute path or a relative path is given, the linker
does not give the -1scatter file path option to the preprocessor. This also happens with the --
cpu option.

On Windows, .exe suffixes are handled, so armclang.exe is considered the same as armclang.
Executable names are case insensitive, so armclang is considered the same as armclang. The
portable way to write scatter file preprocessing lines is to use correct capitalization, and omit the
.exe suffix.

8.11.2 Using other preprocessors in a scatter file

You must ensure that the preprocessing command line is appropriate for execution on the host
system.

This means:

e The string must be correctly quoted for the host system. The portable way to do this is to use
double-quotes.

e Single quotes and escaped characters are not supported and might not function correctly.

e The use of a double-quote character in a path name is not supported and might not work.
These rules also apply to any strings passed with the --predefine option.

All preprocessor executables must accept the -o fize option to mean output to file and accept the
input as a filename argument on the command line. These options are automatically added to the
user command line by arm1ink. Any options to redirect preprocessing output in the user-specified
command line are not supported.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 163 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

8.12 Example of using expression evaluation in a scatter
file to avoid padding

This example shows how to use expression evaluation in a scatter file to avoid padding.

Using certain scatter-loading attributes in a scatter file can result in a large amount of padding in
the image.

To remove the padding caused by the avL1cn, aLIGNALL, and FIXED attributes, use expression
evaluation to specify the start address of a load region and execution region. The built-in function
AlignExpr iS available to help you specify address expressions.

Example
The following scatter file produces an image with padding:

LR1 0x4000

{
ER1 +0 ALIGN 0x8000

{
}

In this example, the ar1en keyword causes er1 to be aligned to a 0x8000 boundary in both the load
and the execution view. To align in the load view, the linker must insert ox4000 bytes of padding.

The following scatter file produces an image without padding:

LR1 0x4000

{
ER1 AlignExpr (+0, 0x8000)

{
}

Using alignExpr the result of +o is aligned to a 0x8000 boundary. This creates an execution region
with a load address of 0x4000 but an Execution Address of 0x8000.

Related information

Example of aligning a base address in execution space but still tightly packed in load space on page
209

AlignExpr(expr, align) function on page 207
Execution region attributes on page 189

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 164 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

8.13 Equivalent scatter-loading descriptions for simple
images

Although you can use command-line options to scatter-load simple images, you can also use a
scatter file.

8.13.1 Command-line options for creating simple images

The command-line options --reloc, --ro base, --rw base, --ropi, ——-rwpi, --split, and --xo base
create the simple image types. - - -
The simple image types are:

e Type 1 image, one load region and contiguous execution regions.

e Type 2 image, one load region and non-contiguous execution regions.

e Type 3 image, two load regions and non-contiguous execution regions.

You can create the same image types by using the --scatter command-line option and a file
containing one of the corresponding scatter-loading descriptions.

The option --reloc is not supported for AArché4 state.

Related information

Type 1 image, one load region and contiguous execution regions on page 165
Load region descriptions on page 180

Type 2 image, one load region and non-contiguous execution regions on page 168
Type 3 image, multiple load regions and non-contiguous execution regions on page 170
--reloc on page 307

--ro_base=address on page 309

--ropi on page 310

--rw_base=address on page 311

--rwpi on page 312

--scatter=filename on page 313

--split on page 319

--x0_base=address on page 337

Load region attributes on page 182

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 165 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

8.13.2 Type 1 image, one load region and contiguous execution regions

A Type 1 image consists of a single load region in the load view and up to four execution regions in
the execution view. The execution regions are placed contiguously in the memory map.

By default, the ER_RO, ER_RW, and ER_ZI execution regions are present. If an image contains any
execute-only (XO) sections, then an ER_XO execution region is also present.

--ro_base address specifies the load and execution address of the region containing the RO
output section. The following example shows the scatter-loading description equivalent to using --
ro _base 0x040000:

LR 1 0x040000 ; Define the load region name as LR 1, the region starts at
0x040000.
{
ER_RO +0 ; First execution region is called ER RO, region starts at end of

; previous region. Because there is no previous region, the
; address is 0x040000.

* (+RO) ; All RO sections go into this region, they are placed
; consecutively.
}
ER RW +0 ; Second execution region is called ER RW, the region starts at
the
; end of the previous region.
; The address is 0x040000 + size of ER RO region.
{
* (+RW) ; All RW sections go into this region, they are placed
; consecutively.
}
ER ZI +0 ; Last execution region is called ER ZI, the region starts at the

; end of the previous region at 0x040000 + the size of the ER RO
; regions + the size of the ER RW regions.

(B I)) ; All ZI sections are placed consecutively here.

In this example:

» This description creates an image with one load region called 1.r_1 that has a load address of
0x040000.

» The image has three execution regions, named Er_Rro, ER_Rrw, and R 371, that contain the RO,
RW, and ZI output sections respectively. RO and RW are root regions. ZI is created dynamically
at runtime. The execution address of Er _ro is 0x040000. All three execution regions are placed
contiguously in the memory map by using the +ofrset form of the base designator for the
execution region description. This enables an execution region to be placed immediately
following the end of the preceding execution region.

Use the --reloc option to make relocatable images. Used on its own, --reloc makes an image
similar to simple type 1, but the single load region has the reroc attribute.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 166 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

The —-reloc option and reLoC attribute are not supported for AArché4 state.

ROPI example variant (AArch32 only)

In this variant, the execution regions are placed contiguously in the memory map. However, --ropi
marks the load and execution regions containing the RO output section as position-independent.

The following example shows the scatter-loading description equivalent to using --ro base
0x010000 --ropi:

LR 1 0x010000 PI ; The first load region is at 0x010000.
{
ER RO +0 ; The PI attribute is inherited from parent.
; The default execution address is 0x010000, but the code
; can be moved.

{

* (+RO) ; All the RO sections go here.
éR_RW +0 ABSOLUTE ; PI attribute is overridden by ABSOLUTE.
: * (+RW) ; The RW sections are placed next. They cannot be moved.
éR_ZI +0 ; ER ZI region placed after ER RW region.
: 2 (im0) ; All the ZI sections are placed consecutively here.

}

ER_RO, the RO execution region, inherits the p1 attribute from the load region tr_1. The next
execution region, Er_Rw, is marked as aBsor.UTE and uses the +offset form of base designator. This
prevents Er_rw from inheriting the p1 attribute from gr_ro. Also, because the er_z1 region has an
offset of +o, it inherits the aBsoruTE attribute from the er rw region.

If an image contains execute-only sections, ROPI is not supported. If you use --ropi
to link such an image, armlink gives an error.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Related information

Command-line options for creating simple images on page 165

Load region descriptions on page 180

Considerations when using a relative address +offset for a load region on page 186

Considerations when using a relative address +offset for execution regions on page 195
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 167 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

--ro_base=address on page 309
--ropi on page 310

Load region attributes on page 182
--reloc on page 307

8.13.3 Type 2 image, one load region and non-contiguous execution regions

A Type 2 image consists of a single load region in the load view and three execution regions in
the execution view. It is similar to images of Type 1 except that the RW execution region is not
contiguous with the RO execution region.

--ro_base=address specifies the load and execution address of the region containing the RO
output section. --rw base=address specifies the execution address for the RW execution region.

For images that contain execute-only (XO) sections, the XO execution region is placed at the
address specified by --ro_base. The RO execution region is placed contiguously and immediately
after the XO execution region.

If you use --xo base address, then the XO execution region is placed in a separate load region at
the specified address.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Example for single load region and multiple execution regions

The following example shows the scatter-loading description equivalent to using --
ro base=0x010000 --rw base=0x040000

LR 1 0x010000 ; Defines the load region name as LR 1
{
ER RO +0 ; The first execution region is called ER RO and starts at end
; of previous region. Because there is no previous region, the
; address is 0x010000.
{

}

ER RW 0x040000 ; Second execution region is called ER RW and starts at
0x040000.

{

}
ER ZI +0 ; The last execution region is called ER ZI.
; The address is 0x040000 + size of ER RW region.

* (4+RO) ; All RO sections are placed consecutively into this region.

* (+RW) ; All RW sections are placed consecutively into this region.

{
}

* (4+21) ; All ZI sections are placed consecutively here.

In this example:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 168 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

» This description creates an image with one load region, named r_1, with a load address of
0x010000.

e The image has three execution regions, named R _Rro, ER_Rrw, and Er z71, that contain the RO,
RW, and ZI output sections respectively. The RO region is a root region. The execution address
of ER RO iS 0x010000.

» The eEr rRw execution region is not contiguous with Er_ro. Its execution address is 0x040000.

e The ErR zT execution region is placed immediately following the end of the preceding execution
region, ER_RW.

RWPI example variant (AArch32 only)

This is similar to images of Type 2 with --rw_base where the RW execution region is separate from
the RO execution region. However, --rwpi marks the execution regions containing the RW output
section as position-independent.

The following example shows the scatter-loading description equivalent to using --
ro base=0x010000 --rw base=0x018000 --rwpi:

LR 1 0x010000 ; The first load region is at 0x010000.
{
ER_RO +0 ; Default ABSOLUTE attribute is inherited from parent.
; The execution address is 0x010000. The code and RO data
; cannot be moved.

{

* (4+RO) ; All the RO sections go here.
ER_RW 0x018000 PI ; PI attribute overrides ABSOLUTE
{ * (4+RW) ; The RW sections are placed at 0x018000 and they can be
; moved.
éRﬁZI +0 ; ER ZI region placed after ER RW region.
{ # (B ; All the ZI sections are placed consecutively here.

}

ER RO, the RO execution region, inherits the aBsorutk attribute from the load region tr_1. The
next execution region, Er_Rrw, is marked as p1. Also, because the er_z1 region has an offset of +o, it
inherits the p1 attribute from the er _rw region.

Similar scatter-loading descriptions can also be written to correspond to the usage of other
combinations of --ropi and --rwpi with Type 2 and Type 3 images.

Related information

Load region descriptions on page 180

Considerations when using a relative address +offset for a load region on page 186
Considerations when using a relative address +offset for execution regions on page 195
--ro_base=address on page 309

--rw_base=address on page 311

--x0_base=address on page 337

Load region attributes on page 182

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 169 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

Version 6.6
Scatter-loading Features

8.13.4 Type 3 image, multiple load regions and non-contiguous execution
regions

A Type 3 image consists of multiple load regions in load view and multiple execution regions in

execution view. They are similar to images of Type 2 except that the single load region in Type 2 is
now split into multiple load regions.

You can relocate and split load regions using the following linker options:
--reloc

The combination --reloc --split makes an image similar to simple Type 3, but the two load
regions now have the revoc attribute.

--ro_base=addressl
Specifies the load and execution address of the region containing the RO output section.
--rw base=address2
_Speciﬁes the load and execution address for the region containing the RW output section.
--x0_base=address3

Specifies the load and execution address for the region containing the execute-only (XO)
output section, if present.

--split

Splits the default single load region that contains the RO and RW output sections into two

load regions. One load region contains the RO output section and one contains the RW
output section.

For images containing XO sections, and if --xo_base is not used, an XO execution
region is placed at the address specified by --ro _base. The RO execution region is
placed immediately after the XO region.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Example for multiple load regions

The following example shows the scatter-loading description equivalent to using --
ro base=0x010000 --rw base=0x040000 --split:

LR 1 0x010000 ; The first load region is at 0x010000.
{
ER RO +0 ; The address is 0x010000.
{
* (+RO)

}

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

Version 6.6
Scatter-loading Features

LR 2 0x040000 ; The second load region is at 0x040000.

{ ER RW +0 ; The address is 0x040000.
{ * (+RW) ; All RW sections are placed consecutively into this region.
éR_ZI +0 ; The address is 0x040000 + size of ER RW region.
{ * (+2T) ; All ZI sections are placed consecutively into this region.

}

In this example:

This description creates an image with two load regions, named tr_1 and 1r_2, that have load
addresses 0x010000 and 0x040000.

The image has three execution regions, named erR_ro, ER_rRw and £r 21, that contain the RO,
RW, and ZI output sections respectively. The execution address of ErR R0 i 0x010000.

The Er_rw execution region is not contiguous with Er_Rro, because its execution address is
0x040000.

The Er 271 execution region is placed immediately after Er_rw.

Example for multiple load regions with an XO region

The following example shows the scatter-loading description equivalent to using --
ro base=0x010000 --rw base=0x040000 --split when an object file has XO sections:

LR 1 0x010000 ; The first load region is at 0x010000.
{
ER XO +0 ; The address is 0x010000.
{
* (+X0)
}
ER RO +0 ; The address is 0x010000 + size of ER XO region.
{
* (4+RO)
}
}
LR 2 0x040000 ; The second load region is at 0x040000.
{
ER RW +0 ; The address is 0x040000.
{
* (+RW) ; All RW sections are placed consecutively into this region.
}
ER ZI +0 ; The address is 0x040000 + size of ER RW region.
{
* (+21) ; All ZI sections are placed consecutively into this region.

}

In this example:

This description creates an image with two load regions, named nr 1 and 1r 2, that have load
addresses 0x010000 and 0x040000.

The image has four execution regions, named ErR_xo, ER_RO, ER_Rw and R _z1, that contain the
XO, RO, RW, and ZI output sections respectively. The execution address of Er_xo is placed at
the address specified by --ro base, 0x010000. ER_RO is placed immediately after Er_xo.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 171 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

e The Er_Rw execution region is not contiguous with £r_ro, because its execution address is
0x040000.

e The ErR 7T execution region is placed immediately after Er_Rrw.

If you also specify --xo_base, then the Er_xo execution region is placed in a load
region separate from the er_Rro execution region, at the specified address.

Relocatable load regions example variant

This Type 3 image also consists of two load regions in load view and three execution regions
in execution view. However, --reloc specifies that the two load regions now have the rReLoC
attribute.

The following example shows the scatter-loading description equivalent to using --ro_base
0x010000 --rw base 0x040000 --reloc --split:

LR 1 0x010000 RELOC

{
ER RO + 0
{

}
}
LR2 0x040000 RELOC
{

* (+RO)

ER RW + 0
{

}
ER_ZI +0
{

}

* (+RW)

* (+ZI)

Related information

Load region descriptions on page 180

Considerations when using a relative address +offset for a load region on page 186
Considerations when using a relative address +offset for execution regions on page 195
--reloc on page 307

--ro_base=address on page 309

--rw_base=address on page 311

--split on page 319

--x0_base=address on page 337

Load region attributes on page 182

Inheritance rules for load region address attributes on page 184

Inheritance rules for the RELOC address attribute on page 185

Inheritance rules for execution region address attributes on page 194

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 172 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

8.14 How the linker resolves multiple matches when
processing scatter files

An input section must be unique. In the case of multiple matches, the linker attempts to assign the
input section to a region based on the attributes of the input section description.

The linker assignment of the input section is based on a module select pattern and
input_section selector pair that is the most specific. However, if a uniqgue match cannot be
found, the linker faults the scatter-loading description.

The following variables describe how the linker matches multiple input sections:
e mIand m2 represent module selector patterns.

e s1and s2represent input section selectors.

For example, if input section A matches m1, s1 for execution region R1, and A matches m2, s2 for
execution region R2, the linker:

e Assigns Ato R1 if m1,s1 is more specific than m2, s2.
e Assigns Ato R2 if mz2, sz is more specific than m1,s1.

o Diagnoses the scatter-loading description as faulty if m1, s1 is not more specific than mz2, s2 and
m2,s2is not more specific than mi1, s1.

armlink uses the following strategy to determine the most specific module select pattern,

input section selector pair:

Resolving the priority of two module_selector, section_selector pairs m1, s1 and m2, s2
The strategy starts with two module select pattern, input section selector pairs. mi1,s1
is more specific than m2, s2 only if any of the following are true:

1. s1is either a literal input section name, that is it contains no pattern characters, or a
section type and s2 matches input section attributes.

2. m1is more specific than mz.

3. s1is more specific than s2.

The conditions are tested in order so condition 1 takes precedence over condition 2 and 3,
and condition 2 takes precedence over condition 3.

Resolving the priority of two module selectors m1 and m2 in isolation
For the module selector patterns, m1 is more specific than mz if the text string mz matches
pattern m2 and the text string m2 does not match pattern mi.

Resolving the priority of two section selectors s1 and s2 in isolation
For the input section selectors:
e |f one of s1 or s2 matches the input section name or type and the other matches the

input section attributes, s1 and s2 are unordered and the description is diagnosed as
faulty.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 173 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

e |f both s1 and s2 match the input section name or type, the following relationships
determine whether s1 is more specific than s2:

o Section type is more specific than section name.

o If both s1 and s2 match input section type, s1 and sz are unordered and the
description is diagnosed as faulty.

o If s1 and sz are both patterns matching section names, the same definition as for
module selector patterns is used.

e |f both s1 and s2 match input section attributes, the following relationships determine
whether s1 is more specific than szs:

° ENTRY iS more specific than Ro-CODE, RO-DATA, RW-CODE, OF RW-DATA.
° RO-CODE is more specific than ro.
° RO-DATA iS more specific than ro.
° RW-CODE is more specific than rw.
° RW-DATA IS more specific than rw.
> There are no other members of the (s1 more specific than s2) relationship between
section attributes.
This matching strategy has the following consequences:
e Descriptions do not depend on the order they are written in the file.

e Generally, the more specific the description of an object, the more specific the description of
the input sections it contains.

e The input section selectorS are not examined unless:
o Object selection is inconclusive.

o One selector specifies a literal input section name or a section type and the other selects
by attribute. In this case, the explicit input section name or type is more specific than any
attribute. This is true even if the object selector associated with the input section name is
less specific than that of the attribute.

The .any module selector is available to assign any sections that cannot be resolved from the
scatter-loading description.

Example
The following example shows multiple execution regions and pattern matching:

LR_1 0x040000

{
ER_ROM 0x040000
{

}
ER RAM1 0x048000

{

}
ER RAM2 0x050000

{

The startup exec region address is the same
as the load address.

The section containing the entry point from
the object is placed here.

application.o (+ENTRY)

Ne Ne Ne N

application.o (+RO-CODE) ; Other RO code from the object goes here

application.o (+RO-DATA) ; The RO data goes here

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 174 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter-loading Features

}
ER RAM3 0x060000

{

application.o (+RW) ; RW code and data go here
}
ER RAM4 +0 ; Follows on from end of ER R3
{
*.0 (+RO, +RW, +7ZI) ; Everything except for application.o goes here

}

Related information

Placement of unassigned sections on page 138
Input section descriptions on page 196

Syntax of a scatter file on page 178

Syntax of an input section description on page 197

8.15 How the linker resolves path names when processing
scatter files

The linker matches wildcard patterns in scatter files against any combination of forward slashes and
backslashes it finds in path names.

This might be useful where the paths are taken from environment variables or multiple sources, or
where you want to use the same scatter file to build on Windows or Unix platforms.

Use forward slashes in path names to ensure they are understood on Windows and
Unix platforms.

Related information
Syntax of a scatter file on page 178

8.16 Scatter file to ELF mapping

Shows how scatter file components map onto ELF.

ELF executable files contain segments:

e Aload region is represented by an ELF program segment with type PT_LOAD.

e An execution region is represented by one or more of the following ELF sections:
o XO.
o RO.

o RW.
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 175 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter-loading Features

If XO and RO are mixed within an execution region, that execution region is treated
as RO.

For example, you might have a scatter file similar to the following:

LOAD 0x8000

{
EXEC_ROM +0
{

}
RAM +0

{

}

HEAP +0x100 EMPTY 0x100
{

}

STACK +0 EMPTY 0x400

{

}

* (+RO)

* (+RW, +21)

This scatter file creates a single program segment with type PT_LOAD for the load region with
address 0x8000.

A single output section with type SHT_PROGBITS is created to represent the contents
of EXEC_ROM. Two output sections are created to represent RAM. The first has a type
SHT_PROGBITS and contains the initialized read/write data. The second has a type of
SHT _NOBITS and describes the zero-initialized data.

The heap and stack are described in the ELF file by SHT_NOBITS sections.

Enter the following fromelf command to see the scatter-loaded sections in the image:
fromelf --text -v my image.axf

To display the symbol table, enter the command:

fromelf --text -s -v my image.axf

The following is an example of the fromelf output showing the r.oap, Exec_rowm, RaM, HEAP, and
STACK sections:

** Program header #0
Type : PT LOAD (1)
File Offset : 527 (0x34)
Virtual Addr : 0x00008000

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
Scatter-loading Features

Related information
Overview of scatter-loading on page 112
Scatter-loading images with a simple memory map on page 116

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 177 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

9. Scatter File Syntax

Describes the format of scatter files.

9.1 BNF notation used in scatter-loading description
syntax

Scatter-loading description syntax uses standard BNF notation.

The following table summarizes the Backus-Naur Form (BNF) symbols that are used for describing
the syntax of scatter-loading descriptions.

Table 9-1: BNF notation

Symbol Description

" Quotation marks indicate that a character that is normally part of
the BNF syntax is used as a literal character in the definition. The
definition B"+" ; C, for example, can only be replaced by the pattern
B+C. The definition B+C can be replaced by, for example, patterns
BC, BBC, or BBBC.

A:=B Defines A as B. For example, A: := B"+" | C meansthat Ais
equivalent to either B+ or C. The : : = notation defines a higher
level construct in terms of its components. Each component might
also have a ::= definition that defines it in terms of even simpler
components. For example, A: := BandB::= C | D means that
the definition 4 is equivalent to the patterns C or D.

(4] Optional element A. For example, A: := B[C]D means that the
definition A can be expanded into either BD or BCD.

A+ Element A can have one or more occurrences. For example, A: := B
+ means that the definition A can be expanded into B, BB, or BBB.

A* Element A can have zero or more occurrences.

A|B Either element A or B can occur, but not both.

(A B Element A and B are grouped together. This is particularly useful
when the | operator is used or when a complex pattern is repeated.
For example, A: :=(B C)+ (D | E) means that the definition a4
can be expanded into any of BCD, , BCE, BCBCD, BCBCE, BCBCBCD,
or BCBCRBCE.

Related information
Syntax of a scatter file on page 178

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 178 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Scatter File Syntax

9.2 Syntax of a scatter file

A scatter file contains one or more load regions. Each load region can contain one or more
execution regions.

The following figure shows the components and organization of a typical scatter file:

Figure 9-1: Components of a scatter file

Scatter description

LOAD_ROM_1 0x0000 Load region description
/

{ p
EXEC_ROM_1 0x0000 |___— Execution region description
‘//
{ orogramL.o (+RO) 4//// Input section description
}
— Execution region description
DRAM 0x18000 0x8000 |
{ | | — Input section description
programl.o (+RW,+Zl) - |
}
}
LOAD_ROM_ 2 0x4000 */ Load region description
{ . . -
Execution region description
{E XEC_ROM_2 0x4000 «// d
Input section description
/
program2.o (+RO) 1
) Execution region description
{SRAM 0x8000 0x8000 Pus o ection d -
| ___—— Input section description
program2.o (+RW,+ZI) 1
} \ X

} \ N\

\ AN
\ \
Module selector pattern Input section attributes

Related information

Load region descriptions on page 180
Execution region descriptions on page 187
Scatter-loading Features on page 112

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 179 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

9.3 Load region descriptions

A load region description specifies the region of memory where its child execution regions are to be
placed.

Related information

Components of a load region description on page 180

Syntax of a load region description on page 181

Load region attributes on page 182

Inheritance rules for load region address attributes on page 184

Inheritance rules for the RELOC address attribute on page 185

Considerations when using a relative address +offset for a load region on page 186

9.3.1 Components of a load region description

The components of a load region description allow you to uniquely identify a load region and to
control what parts of an ELF file are placed in that region.

A load region description has the following components:

e A name (used by the linker to identify different load regions).

e A base address (the start address for the code and data in the load view).

o Attributes that specify the properties of the load region.

e An optional maximum size specification.

e One or more execution regions.

The following figure shows an example of a typical load region description:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 180 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Scatter File Syntax

Figure 9-2: Components of a load region description

Load region description
LOAD_ROM_1 0x0000 ‘/
{
A load region description contains
EXEC_ROM_1 0x0000 one or more execution region
{ // descriptions
programl.o (+RO) all
}
DRAM 0x18000 0x8000
{
programl.o (+RW,+ZI)
}
}

Related information

Syntax of a load region description on page 181

Load region attributes on page 182

Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194
Aligning regions to page boundaries on page 160

Scatter-loading Features on page 112

Expression evaluation in scatter files on page 202

9.3.2 Syntax of a load region description
A load region can contain one or more execution region descriptions.

The syntax of a load region description, in Backus-Naur Form (BNF), is:

load region description ::=
load region name (base address | ("+" offset)) [attribute list] [max size]
H{H
execution region description+t

" } "
where:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 181 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter File Syntax

load region_name
Names the load region. You can use a quoted name. The name is case-sensitive only if you
use any region-related linker-defined symbols.

base_address

Specifies the address where objects in the region are to be linked. base address must satisfy
the alignment constraints of the load region.

+offset

Describes a base address that is offrset bytes beyond the end of the preceding load region.
The value of offset must be zero modulo four. If this is the first load region, then +ofrset
means that the base address begins orfset bytes from zero.

If you use +offset, then the load region might inherit certain attributes from a previous load
region.
attribute list
The attributes that specify the properties of the load region contents.
max_size
Specifies the maximum size of the load region. This is the size of the load region before any
decompression or zero initialization take place. If the optional max size value is specified,
armlink generates an error if the region has more than max size bytes allocated to it.
execution region description

Specifies the execution region name, address, and contents.

The BNF definitions contain additional line returns and spaces to improve
readability. They are not required in scatter-loading descriptions and are ignored if
present in a scatter file.

Related information

Components of a load region description on page 180

Load region attributes on page 182

Inheritance rules for the RELOC address attribute on page 185

BNF notation used in scatter-loading description syntax on page 178
Considerations when using a relative address +offset for a load region on page 186
Inheritance rules for load region address attributes on page 184

Syntax of a scatter file on page 178

Expression evaluation in scatter files on page 202

Region-related symbols on page 96

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 182 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Scatter File Syntax

9.3.3 Load region attributes

A load region has attributes that allow you to control where parts of your image are loaded in the
target memory.

The load region attributes are:

ABSOLUTE
The content is placed at a fixed address that does not change after linking. The load address
of the region is specified by the base designator. This is the default, unless you use p1 or
RELOC.

ALIGN alignment

Increase the alignment constraint for the load region from 4 to alignment. alignment must
be a positive power of 2. If the load region has a base address then this must be a1ignment
aligned. If the load region has a +ofrset then the linker aligns the calculated base address of
the region to an alignment boundary.

This can also affect the offset in the ELF file. For example, the following causes the data for
roo to be written out at 4k offset into the ELF file:

FOO +4 ALIGN 4096

NOCOMPRESS

RW data compression is enabled by default. The nocompress keyword enables you to specify
that the contents of a load region must not be compressed in the final image.

OVERLAY
The overLAY keyword enables you to have multiple load regions at the same address. Arm
tools do not provide an overlay mechanism. To use multiple load regions at the same address,
you must provide your own overlay manager.

The content is placed at a fixed address that does not change after linking. The content might
overlap with other regions designated as overLAY regions.

PI
This region is position independent. The content does not depend on any fixed address and
might be moved after linking without any extra processing.

PI is not supported for AArché4 state.

This attribute is not supported if an image contains execute-only sections.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 183 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

PROTECTED
The proTECTED keyword prevents:

e Overlapping of load regions.
e Veneer sharing.
e String sharing with the --merge option.

RELOC

This region is relocatable. The content depends on fixed addresses. Relocation information is
output to enable the content to be moved to another location by another tool.

RELOC is not supported for AArché4 state.

Related information

--merge, --No_merge on page 295

Components of a load region description on page 180
Syntax of a load region description on page 181

Example of aligning a base address in execution space but still tightly packed in load space on page
209

Section alignment with the linker on page 59

Reuse of veneers when scatter-loading on page 65

Aligning regions to page boundaries on page 160

Considerations when using a relative address +offset for a load region on page 186
Inheritance rules for load region address attributes on page 184

Inheritance rules for the RELOC address attribute on page 185

\Veneer sharing on page 62

Generation of position independent to absolute veneers on page 64

Optimization with RW data compression on page 77

9.3.4 Inheritance rules for load region address attributes
A load region can inherit the attributes of a previous load region.

For a load region to inherit the attributes of a previous load region, specify a +ofrset base address
for that region. A load region cannot inherit attributes if:
e You explicitly set the attribute of that load region.

e The load region immediately before has the overiay attribute.

You can explicitly set a load region with the aBsoLuTE, PI, RELOC, Or OVERLAY address attributes.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 184 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

pI and rReLoc are not supported for AArché4 state.

The following inheritance rules apply when no address attribute is specified:

e The overray attribute cannot be inherited. A region with the overray attribute cannot inherit.

e A base address load or execution region always defaults to aBsorLuTE.

e A +ofrset load region inherits the address attribute from the previous load region or ABSOLUTE
if no previous load region exists.

Example
This example shows the inheritance rules for setting the address attributes of load regions:

LR1 0x8000 PI

LR2 +0 ; LR2 inherits PI from LR1

LR3 0x1000 ; LR3 does not inherit because it has no relative base
address, gets default of ABSOLUTE

LR4 +0 ; LR4 inherits ABSOLUTE from LR3

{

}

LR5 +0 RELOC ; LR5 does not inherit because it explicitly sets RELOC
{

}

LR6 +0 OVERLAY ; LR6 does not inherit, an OVERLAY cannot inherit

{

}

LR7 +0 ; LR7 cannot inherit OVERLAY, gets default of ABSOLUTE

Related information

Components of a load region description on page 180

Components of an execution region description on page 187
Inheritance rules for execution region address attributes on page 194

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 185 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

9.3.5 Inheritance rules for the RELOC address attribute

You can explicitly set the reLoc attribute for a load region. However, an execution region can only
inherit the reroc attribute from the parent load region.

RELOC iS not supported for AArché4 state.

Example
This example shows the inheritance rules for setting the address attributes with reroc:

LR1 0x8000 RELOC
{
ER1 +0 ; inherits RELOC from LR1

{

}
ER2 +0 ; inherits RELOC from ERL

{
}

ER3 +0 RELOC ; Error cannot explicitly set RELOC on an execution region

{
}

Related information

Components of a load region description on page 180

Syntax of a load region description on page 181

Components of an execution region description on page 187

Restrictions on the use of scatter files with the Base Platform model on page 227
Inheritance rules for load region address attributes on page 184

Inheritance rules for execution region address attributes on page 194

Considerations when using a relative address +offset for execution regions on page 195
Considerations when using a relative address +offset for a load region on page 186
Base Platform linking model on page 35

9.3.6 Considerations when using a relative address +offset for a load region
There are some considerations to be aware of when using a relative address for a load region.

When using +orfset to specify a load region base address:

e |fthe +orrset load region LR2 follows a load region LR1 containing ZI data, then LR2 overlaps
the ZI data. To fix this, use the ImageLimit () function to specify the base address of LR2.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 186 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

A +orfset load region LR2 inherits the attributes of the load region LR1 immediately before it,
unless:

o LR1 has the overray attribute.

o LR2 has an explicit attribute set.

If a load region is unable to inherit an attribute, then it gets the attribute apsoruTE.

e A gap might exist in a ROM image between a +orfset load region and a preceding region when
the preceding region has RW data compression applied. This is because the linker calculates the
+ofrset based on the uncompressed size of the preceding region. However, this gap disappears
when the RW data is decompressed at load time.

Related information
Inheritance rules for load region address attributes on page 184
Execution address built-in functions for use in scatter files on page 204

9.4 Execution region descriptions

An execution region description specifies the region of memory where parts of your image are to
be placed at run-time.

Related information

Components of an execution region description on page 187

Syntax of an execution region description on page 188

Execution region attributes on page 189

Inheritance rules for execution region address attributes on page 194

Considerations when using a relative address +offset for execution regions on page 195

9.4.1 Components of an execution region description

The components of an execution region description allow you to uniquely identify each execution
region and its position in the parent load region, and to control what parts of an ELF file are placed
in that execution region.

An execution region description has the following components:

e A name (used by the linker to identify different execution regions).

e A base address (either absolute or relative).

o Attributes that specify the properties of the execution region.

e An optional maximum size specification.

e One or more input section descriptions (the modules placed into this execution region).

The following figure shows the components of a typical execution region description:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 187 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter File Syntax

Figure 9-3: Components of an execution region description

Execution region description
EXEC_ROM_1 0x0000

{ An execution region description contains
/ . - - -
programl.0 (+RO) | one or more input section descriptions

Related information

Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194
Syntax of an execution region description on page 188

Execution region attributes on page 189

9.4.2 Syntax of an execution region description

An execution region specifies where the input sections are to be placed in target memory at run-
time.

The syntax of an execution region description, in Backus-Naur Form (BNF), is:

execution region description ::=
exec region name (base address | "+" offset) [attribute list] [max size | length]
ll{ll
input section description*

ll}ll

where:

exec_region_name
Names the execution region. You can use a quoted name. The name is case-sensitive only if
you use any region-related linker-defined symbols.

base_address

Specifies the address where objects in the region are to be linked. base address must be
word-aligned.

Using ALIGN ONn an execution region causes both the load address and
execution address to be aligned.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 188 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

+offset

Describes a base address that is orfrset bytes beyond the end of the preceding execution
region. The value of orfset must be zero modulo four.

If this is the first execution region in the load region then +offset means that the base
address begins offset bytes after the base of the containing load region.

If you use +offset, then the execution region might inherit certain attributes from the parent
load region, or from a previous execution region within the same load region.
attribute list
The attributes that specify the properties of the execution region contents.
max size
For an execution region marked empTY Or FILL the max size value is interpreted as the
length of the region. Otherwise the max size value is interpreted as the maximum size of the
execution region.
[-]length
Can only be used with empTY to represent a stack that grows down in memory. If the length is
given as a negative value, the base address is taken to be the end address of the region.
input section description

Specifies the content of the input sections.

The BNF definitions contain additional line returns and spaces to improve
readability. They are not required in scatter-loading descriptions and are ignored if
present in a scatter file.

Related information

Components of an execution region description on page 187

Execution region attributes on page 189

Scatter-loading Features on page 112

Considerations when using a relative address +offset for execution regions on page 195
Expression evaluation in scatter files on page 202

Base Platform linking model on page 35

Region-related symbols on page 96

Aligning regions to page boundaries on page 160

Restrictions on the use of scatter files with the Base Platform model on page 227
Inheritance rules for load region address attributes on page 184

Inheritance rules for the RELOC address attribute on page 185

Input section descriptions on page 196

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 189 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Scatter File Syntax

9.4.3 Execution region attributes

An execution region has attributes that allow you to control where parts of your image are loaded
in the target memory at runtime.

The execution region attributes are:

ABSOLUTE

The content is placed at a fixed address that does not change after linking. A base designator
specifies the execution address of the region.

ALIGN alignment

Increase the alignment constraint for the execution region from 4 to alignment. alignment
must be a positive power of 2. If the execution region has a base address, then the address
must be a1ignment aligned. If the execution region has a +offset, then the linker aligns the
calculated base address of the region to an aiignment boundary.

ALIGN On an execution region causes both the load address and execution
address to be aligned. This alignment can result in padding being added to the
ELF file. To align only the execution address, use the alignExpr expression on
the base address.

ALIGNALL value
Increases the alignment of sections within the execution region.

The value must be a positive power of 2 and must be greater than or equal to 4.

ANY SIZE max size
Specifies the maximum size within the execution region that arm1ink can fill with unassigned
sections. You can use a simple expression to specify the max size. That is, you cannot use
functions such as ImageLimit ().

Specifying any stz overrides any effects that --any contingency has on the
region.

Be aware of the following restrictions when using this keyword:
e max size must be less than or equal to the region size.
e You can use anNYy STz on a region without a .any selector but arm1ink ignores it.

AUTO_OVERLAY

Use to indicate regions of memory where armlink assigns the overlay sections for loading
into at runtime. Overlay sections are those named .aRrM.overlayn in the input object.

The execution region must not have any section selectors.
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 190 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

Version 6.6
Scatter File Syntax

The addresses that you give for the execution regions are the addresses that arm1ink expects
the overlaid code to be loaded at when running. The load region containing the execution
regions is where armlink places the overlay contents.

By default, the overlay manager loads overlays by copying them into RAM from some other
memory that is not suitable for direct execution. For example, very slow Flash or memory
from which instruction fetches are not enabled. You can keep your unloaded overlays in
peripheral storage that is not mapped into the address space of the processor. To keep such
overlays in peripheral storage, you must extract the data manually from the linked image.

armlink allocates every overlay to one of the auto_overLaY execution regions, and has to be
loaded into only that region to run correctly.

You must use the --overlay veneers command-line option when linking with a scatter file
containing the auTo overray attribute.

With the auto overLay attribute, arm1ink decides how your code sections get
allocated to overlay regions. With the overLay attribute, you must manually
arrange the allocation of the code sections.

Arm® Compiler does not support using both manual and automatic overlays
within the same program.

EMPTY [-]length

FILL

FIXED

Reserves an empty block of memory of a given size in the execution region, typically used by
a heap or stack. No section can be placed in a region with the empry attribute.

length represents a stack that grows down in memory. If the length is given as a negative
value, the pase address is taken to be the end address of the region.

value

Creates a linker generated region containing a value. If you specify r1LL, you must give a
value, for example: r1LL 0xFFFFFFFF. The FILL attribute replaces the following combination:
EMPTY ZEROPAD PADVALUE.

In certain situations, such as a simulation, filling a region with a value is preferable to
spending a long time in a zeroing loop.

Fixed address. The linker attempts to make the execution address equal the load address. If it
succeeds, then the region is a root region. If it does not succeed, then the linker produces an
error.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 191 of 351

Document ID: DUIO803 | en
\ersion 6.6
Scatter File Syntax

Arm” Compiler armlink User Guide

The linker inserts padding with this attribute.

NOCOMPRESS
RW data compression is enabled by default. The nocompress keyword enables you to specify
that RW data in an execution region must not be compressed in the final image.

OVERLAY
Use for sections with overlaying address ranges. If consecutive execution regions have the
same +offset, then they are given the same base address.

The content is placed at a fixed address that does not change after linking. The content might
overlap with other regions designated as oveErLAY regions.

Arm Compiler does not support using both manual and automatic overlays
within the same program.

PADVALUE value
Defines the vaiue to use for padding. If you specify pabvaLug, you must give a value, for
example:

EXEC 0x10000 PADVALUE OxFFFFFFFF EMPTY ZEROPAD 0x2000

This example creates a region of size 0x2000 full of 0xFFFFFFFF.

PADVALUE must be a word in size. PaADVALUE attributes on load regions are ignored.

PI
This region contains only position independent sections. The content does not depend on
any fixed address and might be moved after linking without any extra processing.

PI is not supported for AArché4 state.

This attribute is not supported if an image contains execute-only sections.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 192 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter File Syntax

SORTTYPE algorithm
Specifies the sorting algorithm for the execution region, for example:

ER1 +0 SORTTYPE CallTree

This attribute overrides any sorting algorithm that you specify with the --sort
command-line option.

UNINIT

Use to create execution regions containing uninitialized data or memory-mapped I/O. Only ZI
output sections are affected. For example, in the following ER_RW region only the ZI part is
uninitialized:

LR 0x8000
{
ER_RO +0
* (+RO)

}
ER_RW 0x10000 UNINIT
{

}

* (+RW, +Z1I)

Arm Compiler does not support systems with ECC or parity protection where
the memory is not initialized.

ZEROPAD

Zero-initialized sections are written in the ELF file as a block of zeros and, therefore, do not
have to be zero-filled at runtime.

This attribute sets the load length of a ZI output section to Tmages$sregion name$sz1s
S$SLength.

Only root execution regions can be zero-initialized using the zeropap attribute. Using the
zEROPAD attribute with a non-root execution region generates a warning and the attribute is
ignored.

In certain situations, such as a simulation, filling a region with a value is preferable to
spending a long time in a zeroing loop.

Related information
Syntax of an execution region description on page 188

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 193 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

Behavior when .ANY sections overflow because of linker-generated content on page 148
Section alignment with the linker on page 59

Load$$ execution region symbols on page 97

Aligning regions to page boundaries on page 160

Aligning execution regions and input sections on page 161

Example of using expression evaluation in a scatter file to avoid padding on page 163

Example of aligning a base address in execution space but still tightly packed in load space on page
209

AlignExpr(expr, align) function on page 207

BNF notation used in scatter-loading description syntax on page 178
--any_contingency on page 232

Considerations when using a relative address +offset for execution regions on page 195
Expression evaluation in scatter files on page 202

Optimization with RW data compression on page 77

Image$$ execution region symbols on page 96

Syntax of an input section description on page 197

Inheritance rules for execution region address attributes on page 194
--overlay_veneers on page 298

--sort=algorithm on page 317

Overlay support in Arm Compiler

9.4.4 Inheritance rules for execution region address attributes
An execution region can inherit the attributes of a previous execution region.

For an execution region to inherit the attributes of a previous execution region, specify a +offset
base address for that region. The first +orfset execution region can inherit the attributes of the
parent load region. An execution region cannot inherit attributes if:

e You explicitly set the attribute of that execution region.
e The previous execution region has the auTo ovERLAY Or ovERLAY attribute.
You can explicitly set an execution region with the ABSOLUTE, AUTO OVERLAY, PI, OF OVERLAY

attributes. However, an execution region can only inherit the reLoc attribute from the parent load
region.

pI and rReLoc are not supported for AArché4 state.

The following inheritance rules apply when no address attribute is specified:

e The overLay attribute cannot be inherited. A region with the overLay attribute cannot inherit.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 194 of 351

https://developer.arm.com/documentation/dui0773/l/Overlays/Overlay-support-in-Arm-Compiler

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

« A base address load or execution region always defaults to aBsorLuTE.
e A +offset execution region inherits the address attribute from the previous execution region or
parent load region if no previous execution region exists.

Example
This example shows the inheritance rules for setting the address attributes of execution regions:

LR1 0x8000 PI
{

ER1 +0 ; ER1 inherits PI from LR1

{

}

ER2 +0 ; ER2 inherits PI from ERL

{

}

ER3 0x10000 ; ER3 does not inherit because it has no relative base

address and gets the default of ABSOLUTE
ER4 +0 ; ER4 inherits ABSOLUTE from ER3
ER5 +0 PI ; ER5 does not inherit, it explicitly sets PI
ER6 +0 OVERLAY ; ER6 does not inherit, an OVERLAY cannot inherit

ER7 +0 ; ER7 cannot inherit OVERLAY, gets the default of ABSOLUTE

Related information

Components of a load region description on page 180

Components of an execution region description on page 187

Considerations when using a relative address +offset for a load region on page 186
Inheritance rules for load region address attributes on page 184

Considerations when using a relative address +offset for execution regions on page 195
Syntax of an execution region description on page 188

9.4.5 Considerations when using a relative address +offset for execution
regions

There are some considerations to be aware of when using a relative address for execution regions.

When using +offset to specify an execution region base address:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 195 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

e The first execution region inherits the attributes of the parent load region, unless an attribute is
explicitly set on that execution region.

e A +orfset execution region ER2 inherits the attributes of the execution region ER1 immediately
before it, unless:

o ER1 has the overLay attribute.

o ER2 has an explicit attribute set.

If an execution region is unable to inherit an attribute, then it gets the attribute aBsoruTE.

e |f the parent load region has the reroc attribute, then all execution regions within that load
region must have a +offset base address.

Related information
Inheritance rules for execution region address attributes on page 194
Inheritance rules for the RELOC address attribute on page 185

9.5 Input section descriptions

An input section description is a pattern that identifies input sections.

9.5.1 Components of an input section description

The components of an input section description allow you to identify the parts of an ELF file that
are to be placed in an execution region.

An input section description identifies input sections by:

e Module name (object filename, library member name, or library filename). The module name
can use wildcard characters.

e Input section name, type, or attributes such as rReap-oNLY, or cobe. You can use wildcard
characters for the input section name.

e Symbol name.

The following figure shows the components of a typical input section description.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 196 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Scatter File Syntax

Figure 9-4: Components of an input section description

Input section description
program2.0 (+RO)

X X
\ \

Module select pattern Input section selector

Ordering in an execution region does not affect the ordering of sections in the
output image.

Input section descriptions when linking partially-linked objects

You cannot specify partially-linked objects in an input section description, only the combined object
file.

For example, if you link the partially linked objects ob41.0, obj2.0, and obi3.0 together to produce
obj_all.o, the component object names are discarded in the resulting object. Therefore, you
cannot refer to one of the objects by name, for example, obj1.0. You can refer only to the
combined object obj al1.o.

Related information

Syntax of an input section description on page 197
Syntax of a scatter file on page 178

--partial on page 301

9.5.2 Syntax of an input section description

An input section description specifies what input sections are loaded into the parent execution
region.

The syntax of an input section description, in Backus-Naur Form (BNF), is:

input section description ::=

module select pattern [" (" input section selector (","
input section selector)* ")"]
input section selector ::= "+" input section attr |

input section pattern |
input section type |
input symbol pattern |
section properties

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 197 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter File Syntax

Where:

module select pattern

A pattern that is constructed from literal text. An input section matches a module selector
pattern when module select pattern matches one of the following:

e The name of the object file containing the section.
e The name of the library member (without leading path name).

e The full name of the library (including path name) the section is extracted from. If the
names contain spaces, use wild characters to simplify searching. For example, use
*libname.lib to match c:\1ib dir\libname.lib.

The wildcard character * matches zero or more characters and » matches any single
character.

Matching is not case-sensitive, even on hosts with case-sensitive file naming.
Use *.o to match all objects. Use * to match all object files and libraries.
You can use quoted filenames, for example "file one.o".

You cannot have two * selectors in a scatter file. You can, however, use two modified
selectors, for example *a and *B, and you can use a .any selector together with a * module
selector. The » module selector has higher precedence than .anvy. If the portion of the file
containing the * selector is removed, the .any selector then becomes active.

input_section_attr
An attribute selector that is matched against the input section attributes. Each
input section attr follows a +.
The selectors are not case-sensitive. The following selectors are recognized:
e RO-CODE.
. RO-DATA.
e RO, selects both ro-cope and rRo-DATA.
L] RW-DATA.
e RW-CODE.
e R, selects both rw-cobe and Rw-DATA.
* XO.
e ZI.

e ENTRY, thatis, a section containing an EnTrRY point.

The following synonyms are recognized:
e CODE fOr RO-CODE.

e CONST fOr RO-DATA.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 198 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Scatter File Syntax

e TEXT fOr rO.
e DATA for rw.

e Bss for zr.

The following pseudo-attributes are recognized:

e FIRST.

e LAST.

Use rIrsT and 1asT to mark the first and last sections in an execution region if the placement

order is important. For example, if a specific input section must be first in the region and an
input section containing a checksum must be last.

FIRST and LasT must not violate the basic attribute sorting order. For example,
FIRST RW iS placed after any read-only code or read-only data.

There can be only one rIrsT or one LasT attribute for an execution region, and it must follow
a single input section selector. For example:

(section, +FIRST)
This pattern is correct.

(+FIRST, section)
This pattern is incorrect and produces an error message.

input section pattern
A pattern that is matched, without case sensitivity, against the input section name. It is
constructed from literal text. The wildcard character * matches O or more characters, and »
matches any single character. You can use a quoted input section name.

If you use more than one input section pattern, ensure that there are no
duplicate patterns in different execution regions to avoid ambiguity errors.

input_section_type
A number that is compared against the input section type. The number can be decimal or
hexadecimal.

input symbol pattern
You can select the input section by the global symbol name that the section defines. The
global name enables you to choose individual sections with the same name from partially
linked objects.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 199 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Scatter File Syntax

The :gdef: prefix distinguishes a global symbol pattern from a section pattern. For example,
use :gdef:mysym to select the section that defines mysym. The following example shows a
scatter file in which Execregl contains the section that defines global symbol mysym1, and the
section that contains global symbol mysym2:

LoadRegion 0x8000

{
ExecRegl +0
{
*(:gdef:mysyml)
* (:gdef:mysym2)
}

; rest of scatter-loading description

You can use a quoted global symbol pattern. The :gdef: prefix can be inside or outside the
quotes.

If you use more than one input_symbol pattern, ensure that there are no
duplicate patterns in different execution regions to avoid ambiguity errors.

section properties

A section property can be +FIRST, +LAST, and OVERALIGN value.

The value for overaLIeN must be a positive power of 2 and must be greater than or equal to
4.

armlink does not oVERALIGN some sections where it might be unsafe to do so. In particular,
sections that rely on or might rely on control falling through to adjacent sections, or that
expect a table of contiguous sections to step through. For example, programs that generate
a pT_ARM EXIDX program header that describes the location of the contiguous range of
.arm.exidx sections.

armlink does Not OVERALIGN:
e A section with a linker defined ssBase, $$Limit, Or $$Length Symbol.
¢ A section with an inline veneer.

e A section with a link-order dependency on another section. That is, an ELF section
header entry for a section that has the sur 11Nk _ORDER flag set. The sh_1ink field for
such sections holds the index to another section header entry. Therefore, if a Section
s has its suF_1.INK ORDER flag set, and its sh_1ink field points to the index of Section 1,
then the linker must maintain this relative order between s and 1. in the output file.

e The order of input section descriptors is not significant.

e Only input sections that match both moduie select pattern and at least one
input section_attr Of input section pattern are included in the execution

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

region. If you omit (+input section attr) and (input section pattern), the
default is +ro.

e Do not rely on input section names that the compiler generates, or that are
used by Arm library code. If, for example, different compiler options are used,
the input section names can change between compilations. In addition, section
naming conventions that are used by the compiler are not guaranteed to remain
constant between releases.

e The BNF definitions contain extra line returns and spaces to improve readability.
If present in a scatter file, they are not required in scatter-loading descriptions
and are ignored.

Related information

Components of an input section description on page 196

Behavior when .ANY sections overflow because of linker-generated content on page 148
Examples of module and input section specifications on page 201

BNF notation used in scatter-loading description syntax on page 178

Syntax of a scatter file on page 178

Examples of using placement algorithms for .ANY sections on page 143

Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page 145
Examples of using sorting algorithms for .ANY sections on page 147

Aligning execution regions and input sections on page 161

Placement of unassigned sections on page 138

9.5.3 Examples of module and input section specifications
Examples of module_select_pattern specifications and input_section_selector specifications.

Examples of module select pattern specifications are:

e * matches any module or library.

e *.o matches any object module.

e math.o matches the math.o module.

e *armlib* matches all C libraries supplied by Arm® .

e "file 1.o" matchesthe file file 1.0.

e *math.lib matches any library path ending with math.1ib, for example, c:\apps\lib\math
\satmath.lib.

Examples of input section selector specifications are:

e +RO IS an input section attribute that matches all RO code and all RO data.

e +RW,+zI iS an input section attribute that matches all RW code, all RW data, and all ZI data.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 201 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

e BLOCK 42 is an input section pattern that matches sections named Brock_42. There can be
multiple ELF sections with the same Brock 42 name that possess different attributes, for
example +RO-CODE, +RW.

Related information
Components of an input section description on page 196
Syntax of an input section description on page 197

9.6 Expression evaluation in scatter files

Scatter files frequently contain numeric constants. These can be specific values, or the result of an
expression.

9.6.1 Expression usage in scatter files
You can use expressions for various load and execution region attributes.

Expressions can be used in the following places:

e Load and execution region base address.

e |load and execution region +offset.

e Load and execution region max_size.

e Parameter for the ALIGN, FILL Or PADVALUE keywords.

e Parameter for the scatterassert function.

Example of specifying the maximum size in terms of an expression

LR1 0x8000 (2 * 1024)

{
ER1 +0 (1 * 1024)

* (+RO)
ER2 +0 (1 * 1024)

* (+RW, +21)

Related information

Expression rules in scatter files on page 203

Execution address built-in functions for use in scatter files on page 204

ScatterAssert function and load address related functions on page 205

Symbol related function in a scatter file on page 207

Considerations when using a relative address +offset for a load region on page 186
Considerations when using a relative address +offset for execution regions on page 195

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 202 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

Example of aligning a base address in execution space but still tightly packed in load space on page
209

Syntax of a scatter file on page 178
Syntax of a load region description on page 181
Syntax of an execution region description on page 188

9.6.2 Expression rules in scatter files
Expressions follow the C-Precedence rules.

Expressions are made up of the following:
e Decimal or hexadecimal numbers.

e Arithmetic operators: +, -, /, *, ~, OR, and AND.

The or and anp operators map to the C operators | and & respectively.

e logical operators: Lor, LanD, and !.

The ror and L.anDp operators map to the C operators || and ss respectively.

e Relational operators: <, <=, >, >=, and ==.

Zero is returned when the expression evaluates to false and nonzero is returned when true.

o Conditional operator: Expression ? Expressionl : Expression?.

This matches the C conditional operator. If Expression evaluates to nonzero then Expressioni
is evaluated otherwise Expression2 is evaluated.

When using a conditional operator in a +offset context on an execution region
or load region description, the final expression is considered relative only if both
Expressionl and Expression2, are considered relative. For example:

erl 0x8000
{

}
er?2 ((ImagelLimit (erl) < 0x9000) 2 +0 : +0x1000) ; er2 has a
relative address

{

}
er3 ((Imagelimit (er2) < 0x10000) ? 0x0 : +0)
absolute address

{
}

; er3 has an

e Functions that return numbers.

All operators match their C counterparts in meaning and precedence.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 203 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Scatter File Syntax

Expressions are not case-sensitive and you can use parentheses for clarity.

Related information

Expression usage in scatter files on page 202

Execution address built-in functions for use in scatter files on page 204

ScatterAssert function and load address related functions on page 205

Symbol related function in a scatter file on page 207

Considerations when using a relative address +offset for a load region on page 186
Considerations when using a relative address +offset for execution regions on page 195

Example of aligning a base address in execution space but still tightly packed in load space on page
209

Syntax of a scatter file on page 178
Syntax of a load region description on page 181
Syntax of an execution region description on page 188

9.6.3 Execution address built-in functions for use in scatter files

Built-in functions are provided for use in scatter files to calculate execution addresses.

The execution address related functions can only be used when specifying a base address,
+offset Value, or max size. They map to combinations of the linker defined symbols shown in the
following table.

Table 9-2: Execution address related functions

Function Linker defined symbol value

ImageBase (region name) Image$$region nameSBase

ImageLength (region name) Image$$region name$SLength + Image$$region name$
$Z21$S$Length

Imagelimit (region name) ImageS$$region name$SBase + Image$Sregion names
$Length + Image$Sregion name$$ZI$SLength

The parameter region name can be either a load or an execution region name. Forward references
are not permitted. The region name can only refer to load or execution regions that have already
been defined.

because a .any region uses the maximum size when assigning sections. The
maximum size might not be available at that point, because the size of all regions is
not known until after the .any assignment.

*o You cannot use these functions when using the .any selector pattern. This is

Note

The following example shows how to use ImageLimit (region name) to place one execution region
immediately after another:

LR1 0x8000
{

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 204 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

ER1 0x100000
{

}
}
LR2 0x100000
{

* (+RO)

ER2 (Imagelimit (ER1)) ; Place ER2 after ER1 has finished
{

}

*(+RW +Z7I)

Using +off£set with expressions

A +offset value for an execution region is defined in terms of the previous region. You can use this
as an input to other expressions such as alignExpr. For example:

LR1 0x4000

{
ER1 AlignExpr (+0, 0x8000)

{
}

By using alignExpr, the result of +0 is aligned to a 0x8000 boundary. This creates an execution
region with a load address of ox4000 but an execution address of 0x8000.

Related information

Expression usage in scatter files on page 202

Expression rules in scatter files on page 203

ScatterAssert function and load address related functions on page 205

Symbol related function in a scatter file on page 207

Considerations when using a relative address +offset for a load region on page 186
Scatter files containing relative base address load regions and a ZI execution region on page 210
Considerations when using a relative address +offset for execution regions on page 195
Syntax of a scatter file on page 178

Syntax of a load region description on page 181

Syntax of an execution region description on page 188

AlignExpr(expr, align) function on page 207

Image$$ execution region symbols on page 96

Example of aligning a base address in execution space but still tightly packed in load space on page
209

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 205 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

9.6.4 ScatterAssert function and load address related functions

The scatterassert function allows you to perform more complex size checks than those permitted
by the max_size attribute.

The scatterassert (expression) function can be used at the top level, or within a load region. It is
evaluated after the link has completed and gives an error message if expression evaluates to false.

The load address related functions can only be used within the scatterassert function. They map
to the three linker defined symbol values:

Table 9-3: Load address related functions

Function Linker defined symbol value

LoadBase (region name) Load$$Sregion name$$Base
LoadLength (region name) Load$$region name$$Length
LoadLimit (region name) LoadSregion nameSSLimit

The parameter region name can be either a load or an execution region name. Forward references
are not permitted. The region name can only refer to load or execution regions that have already
been defined.

The following example shows how to use the scatterassert function to write more complex size
checks than those permitted by the max size attribute of the region:

LR1 0x8000

{
ERO +0

* (+RO)
ER1 +0

filel.o (+RW)
ER2 +0

file2.0 (+RW)

ScatterAssert ((LoadLength (ER1) + LoadLength (ER2)) < 0x1000)

; LoadLength is compressed size
ScatterAssert ((Imagelength (ER1) + ImagelLength (ER2)) < 0x2000)

; Imagelength is uncompressed size

}
ScatterAssert (ImageLength (LR1) < 0x3000)

; Check uncompressed size of load region
LR1

Related information

Expression usage in scatter files on page 202

Expression rules in scatter files on page 203

Execution address built-in functions for use in scatter files on page 204
Symbol related function in a scatter file on page 207

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 206 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

Example of aligning a base address in execution space but still tightly packed in load space on page
209

Syntax of a scatter file on page 178

Syntax of a load region description on page 181
Syntax of an execution region description on page 188
Load$$ execution region symbols on page 97

9.6.5 Symbol related function in a scatter file

The symbol related function defined allows you to assign different values depending on whether a
global symbol is defined.

The symbol related function, defined (global symbol name) returns zero if global symbol name IS
not defined and nonzero if it is defined.

Example

The following scatter file shows an example of conditionalizing a base address based on the
presence of the symbol versioni:

LR1 0x8000
{
ER1 (defined(versionl) ? 0x8000 : 0x10000) ; Base address is 0x8000
; 1f versionl is defined
; 0x10000 if not
{
* (+RO)
}
ER2 +0
{
*(+RW +Z1)

}

Related information

Expression usage in scatter files on page 202

Expression rules in scatter files on page 203

Execution address built-in functions for use in scatter files on page 204
ScatterAssert function and load address related functions on page 205

Example of aligning a base address in execution space but still tightly packed in load space on page
209

Syntax of a scatter file on page 178
Syntax of a load region description on page 181
Syntax of an execution region description on page 188

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 207 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Scatter File Syntax

9.6.6 AlignExpr(expr, align) function
Aligns an address expression to a specified boundary.
This function returns:

(expr + (align-1)) & ~(align-1))

Where:
e expr is avalid address expression.

e alignis the alignment, and must be a positive power of 2.
It increases expr until:
expr = 0 (mod align)

Example
This example aligns the address of er2 on an 8-byte boundary:

ER +0
{

}
ER2 AlignExpr (+0x8000, 8)
{

}

Relationship with the ALIGN keyword
The following relationship exists between aLiey and AlignExpr:

aLIGN keyword
Load and execution regions already have an arien keyword:

e For load regions the ar1en keyword aligns the base of the load region in load space and in
the file to the specified alignment.

e For execution regions the ar1en keyword aligns the base of the execution region in
execution and load space to the specified alignment.

AlignExpr
Aligns the expression it operates on, but has no effect on the properties of the load or
execution region.

Related information
Execution region attributes on page 189

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 208 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

9.6.7 GetPageSize() function

Returns the page size when an image is demand paged, and is useful when used with the AlignExpr
function.

When you link with the --paged command-line option, returns the value of the internal page size
that arm1ink uses in its alignment calculations. Otherwise, it returns zero.

By default the internal page size is set to 0x8000, but you can change it with the --pagesize
command-line option.

Example
This example aligns the base address of &r to a Page Boundary:

ER AlignExpr (+0, GetPageSize())
{

}

Related information

Example of aligning a base address in execution space but still tightly packed in load space on page
209

--pagesize=pagesize on page 300
AlignExpr(expr, align) function on page 207

9.6.8 SizeOfHeaders() function
Returns the size of ELF header plus the estimated size of the Program Header table.

This is useful when writing demand paged images to start code and data immediately after the ELF
header and Program Header table.

Example
This example sets the base of Lr1 to start immediately after the ELF header and Program Headers:

LR1 SizeOfHeaders ()
{

}

Related information

Example of aligning a base address in execution space but still tightly packed in load space on page
209

Linker support for creating demand-paged files on page 60
Aligning regions to page boundaries on page 160

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 209 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Scatter File Syntax

9.6.9 Example of aligning a base address in execution space but still tightly
packed in load space

This example shows how to use a combination of preprocessor macros and expressions to copy
tightly packed execution regions to execution addresses in a page-boundary.

Using the arn1cn scatter-loading keyword aligns the load addresses of Er2 and r3 as well as the
execution addresses
Aligning a base address in execution space but still tightly packed in load space
#! armclang -E
#define START ADDRESS 0x100000
#define PAGE_ALIGNMENT 0x100000
LR1 0x8000
{
ERO +0
* (InRootSSSections)
ER1 START ADDRESS
filel.o(*)

ER2 AlignExpr (ImageLimit (ER1), PAGE ALIGNMENT)
{

}
ER3 AlignExpr (ImageLimit (ER2), PAGE ALIGNMENT)
{

}

file2.o0 (%)

file3.o0(*)

Related information

Load region attributes on page 182

Execution region attributes on page 189
GetPageSize() function on page 208

SizeOfHeaders() function on page 209

Syntax of a load region description on page 181
Syntax of an execution region description on page 188
AlignExpr(expr, align) function on page 207

9.6.10 Scatter files containing relative base address load regions and a ZI
execution region

You might want to place zero-initialized (Z1) data in one load region, and use a relative base address
for the next load region.

To place ZI data in load region LR1, and use a relative base address for the next load region LR2, for
example:

LR1 0x8000

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 210 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
Scatter File Syntax

Because the linker does not adjust the base address of LR2 to account for ZI data, the execution
region er zi overlaps the execution region er moreprogbits. This generates an error when linking.

To correct this, use the TmageLimit () function with the name of the ZI execution region to
calculate the base address of LR2. For example:

Related information

Expression evaluation in scatter files on page 202

Syntax of a scatter file on page 178

Syntax of a load region description on page 181

Syntax of an execution region description on page 188

Expression usage in scatter files on page 202

Expression rules in scatter files on page 203

Image$$ execution region symbols on page 96

Execution address built-in functions for use in scatter files on page 204

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 211 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
\ersion 6.6
BPABI Shared Libraries and Executables

10. BPABI Shared Libraries and Executables

Describes how the Arm linker, armlink, supports the Base Platform Application Binary Interface
(BPABI) shared libraries and executables.

10.1 About the Base Platform Application Binary Interface
(BPABI)

The Base Platform Application Binary Interface (BPABI) is a meta-standard for third parties to
generate their own platform-specific image formats.

Many embedded systems use an operating system (OS) to manage the resources on a device. In
many cases this is a large, single executable with a Real-Time Operating System (RTOS) that tightly
integrates with the applications.

To run an application or use a shared library on a platform OS, you must conform to the Application
Binary Interface (ABI) for the platform and also the ABI for the Arm® architecture. This can involve
substantial changes to the linker output, for example, a custom file format. To support such a wide
variety of platforms, the ABI for the Arm architecture provides the BPABI.

The BPABI provides a base standard from which a platform ABI can be derived. The linker produces
a BPABI conforming ELF image or shared library. A platform specific tool called a post-linker
translates this ELF output file into a platform-specific file format. Post linker tools are provided by
the platform OS vendor. The following figure shows the BPABI tool flow.

Figure 10-1: BPABI tool flow

Tool: compiler linker postlinker
Format: .C .0 .axf bin/exe
Language ABI BPABI Platform
binary

Related information
Platforms supported by the BPABI on page 212

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 212 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
BPABI Shared Libraries and Executables

10.2 Platforms supported by the BPABI

The Base Platform Application Binary Interface (BPABI) defines different platform models based on
the type of shared library.

The platform models are:

Bare metal

The bare metal model is designed for an offline dynamic loader or a simple module loader.
References between modules are resolved by the loader directly without any additional
support structures.

DLL-like

The dynamically linked library (DLL) like model sacrifices transparency between the dynamic
and static library in return for better load and run-time efficiency.

The DLL-like model is not supported for AArché4 state.

Linker support for the BPABI

The Arm® linker supports all three BPABI models enabling you to link a collection of objects and
libraries into a:

o Bare metal executable image.
o BPABI DLL shared object.
o BPABI executable file.

Related information
About the Base Platform Application Binary Interface (BPABI) on page 212

10.3 Features common to all BPABI models

Some features are common to all BPABI models.

The linker enables you to build Base Platform Application Binary Interface (BPABI) shared libraries and
to link objects against shared libraries. The following features are common to all BPABI models:

e Symbol importing.

e Symbol exporting.

e \Versioning.

e Visibility of symbols.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 213 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
BPABI Shared Libraries and Executables

10.3.1 About importing and exporting symbols for BPABI models
How symbols are imported and exported depends on the platform model.

In traditional linking, all symbols must be defined at link time for linking into a single executable
file containing all the required code and data. In platforms that support dynamic linking, symbol
binding can be delayed to load-time or in some cases, run-time. Therefore, the application can be
split into several modules, where a module is either an executable or a shared library. Any symbols
that are defined in modules other than the current module are placed in the dynamic symbol table.
Any functions that are suitable for dynamically linking to at load or runtime are also listed in the
dynamic symbol table.

There are two ways to control the contents of the dynamic symbol table:
e Automatic rules that infer the contents from the ELF symbol visibility property.

e Manual directives that are present in a steering file.

Related information

Automatic import and export for BPABI models on page 215

Symbol visibility for BPABI models on page 214

Manual import and export for BPABI models on page 215

Symbol versioning for BPABI models on page 216

RW compression for BPABI models on page 216

Linker command-line options for bare metal and DLL-like models on page 218
The symbol versioning script file on page 224

10.3.2 Symbol visibility for BPABI models

For Base Platform Application Binary Interface (BPABI) models, each symbol has a visibility property
that can be controlled by compiler switches, a steering file, or attributes in the source code.

If a symbol is a reference, the visibility controls the definitions that the linker can use to define the
symbol.

If a symbol is a definition, the visibility controls whether the symbol can be made visible outside the
current module.

The visibility options defined by the ELF specification are:

Table 10-1: Symbol visibility

Visibility Reference Definition
STV _DEFAULT Symbol can be bound to a definition in a Symbol can be made visible outside the
shared object. module. It can be preempted by the
dynamic linker by a definition from another
module.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 214 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
BPABI Shared Libraries and Executables

Visibility Reference Definition

STV_PROTECTED Symbol must be resolved within the module. | Symbol can be made visible outside the
module. It cannot be preempted at run-time
by a definition from another module.

STV_HIDDEN STV _INTERNAL Symbol must be resolved within the module. | Symbol is not visible outside the module.

Symbol preemption can happen in dynamically linked library (DLL) like implementations of the
BPABI. The platform owner defines how this works. See the documentation for your specific
platform for more information.

Related information

Linker command-line options for bare metal and DLL-like models on page 218
Optimization with RW data compression on page 77
The symbol versioning script file on page 224
--max_visibility=type on page 294
--override_visibility on page 299

EXPORT steering file command on page 341
IMPORT steering file command on page 343
REQUIRE steering file command on page 345
--use_definition_visibility on page 331

EXPORT or GLOBAL directives

10.3.3 Automatic import and export for BPABI models
The linker can automatically import and export symbols for BPABI models.

This behavior depends on a combination of the symbol visibility in the input object file, if the
output is an executable or a shared library. This depends on what type of linking model is being
used.

Related information

Features common to all BPABI models on page 213

Linker command-line options for bare metal and DLL-like models on page 218
Symbol versioning on page 222

10.3.4 Manual import and export for BPABI models
You can directly control the import and export of symbols with a linker steering file.

You can use linker steering files to:
e Manually control dynamic import and export.

e Override the automatic rules.
The steering file commands available to control the dynamic symbol table contents are:
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 215 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/EXPORT-or-GLOBAL

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

BPABI Shared Libraries and Executables

e EXPORT.
e IMPORT.
e REQUIRE.

Related information

Edit the symbol tables with a steering file on page 107
EXPORT steering file command on page 341

IMPORT steering file command on page 343
REQUIRE steering file command on page 345

10.3.5 Symbol versioning for BPABI models
Symbol versioning provides a way to tightly control the interface of a shared library.

When a symbol is imported from a shared library that has versioned symbols, arm1ink binds to the
most recent (default) version of the symbol. At load or run-time when the platform OS resolves the
symbol version, it always resolves to the version selected by armlink, even if there is a more recent
version available. This process is automatic.

When a symbol is exported from an executable or a shared library, it can be given a version.
armlink supports explicit symbol versioning where you use a script to precisely define the versions.

Related information
Symbol versioning on page 222

10.3.6 RW compression for BPABI models

The decompressor for compressed RW data is tightly integrated into the start-up code in the Arm®
C library.

When running an application on a platform OS, this functionality must be provided by the platform
or platform libraries. Therefore, RW compression is turned off when linking a Base Platform
Application Binary Interface (BPABI) file because there is no decompressor. It is not possible to turn
compression back on again.

Related information
Optimization with RW data compression on page /7

10.4 Bare metal and DLL-like memory models

If you are developing applications or DLLs for a specific platform OS that are based around the
BPABI, there are some features that you must be aware of.

You must use the following information in conjunction with the platform documentation:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 216 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
\ersion 6.6
BPABI Shared Libraries and Executables

e BPABI standard memory model.

e Mandatory symbol versioning in the BPABI DLL-like model.

e Automatic dynamic symbol table rules in the BPABI DLL-like model.
e Addressing modes in the BPABI DLL-like model.

o C++initialization in the BPABI DLL-like model.

If you are implementing a platform OS, you must use this information in conjunction with the
BPABI specification.

The DLL-like model is not supported for AArché4 state.

10.4.1 BPABI standard memory model

Base Platform Application Binary Interface (BPABI) files have a standard memory model that is
described in the BPABI specification.

When you use the --bpabi command-line option, the linker automatically applies the standard
memory model and ignores any scatter file that you specify on the command-line. This is
equivalent to the following image layout:

LR 1 <read-only base address>
{

ER RO +0

{

* (+RO)

}
}
LR 2 <read-write base address>
{

ER RW +0

{

}
ER Z2I +0
{

}

* (+RW)

*(+z21I)

The BPABI model is also referred to as the bare metal and DLL-like memory model.

The DLL-like model is not supported for AArché4 state.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 217 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

BPABI Shared Libraries and Executables

Related information
Customization of the BPABI standard memory model on page 218

10.4.2 Customization of the BPABI standard memory model

You can customize the BPABI standard memory model with the memory map related command-line
options.

o
* If you specify the option --ropi, LR 1 is marked as position-independent. Likewise,
if you specify the option --rwpi, LR 2 is marked as position-independent.

Note

the default values, 0x8000 and o respectively, might not be suitable for your
platform. These addresses do not have to reflect the addresses to which the image
is relocated at run time.

*o In most cases, you must specify the --ro_base and --rw_base options, because

Note

If you require a more complicated memory layout, use the Base Platform linking model, --

base platform.

Related information

--bpabi on page 239

Base Platform linking model on page 35
--base_platform on page 237
--ro_base=address on page 309

--ropi on page 310

--rosplit on page 311
--rw_base=address on page 311

--rwpi on page 312

--x0_base=address on page 337

10.4.3 Linker command-line options for bare metal and DLL-like models

There are linker command-line options available for building bare metal executables and dynamically
linked library (DLL) like models for a platform OS.

The command-line options are:

Table 10-2: Turning on BPABI support

Command-line options Description
--base platform To use scatter-loading with Base Platform Application Binary Interface
(BPABI).

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 218 of 351

Arm® Compiler armlink User Guide Document ID: DUIO8O3_I_en
\ersion 6.6
BPABI Shared Libraries and Executables

Command-line options Description

--bpabi To produce a BPABI executable.
--bpabi --dll To produce a BPABI DLL.

o
* The DLL-like model is not supported for AArché4 state.

Note

Additional linker command-line options for the BPABI DLL-like model
There are additional linker command-line options available for the BPABI DLL-like model.

The additional command-line options are:

e --export all, --no_export all.
e --pltgot=type.

¢ --pltgot opts=mode.

¢ --ro base=address.

e -—-ropi.

e -—-rosplit.

® --rw base=address.

* —-rwpi.

® --symver script=filename.

® --symver soname.

Related information

BPABI standard memory model on page 217

Automatic dynamic symbol table rules in the BPABI DLL-like model on page 220
Addressing modes in the BPABI DLL-like model on page 221
Mandatory symbol versioning in the BPABI DLL-like model on page 220
--base_platform on page 237

--bpabi on page 239

--dll on page 255

--export_all, --no_export_all on page 262

--pltgot=type on page 302

--pltgot_opts=mode on page 303

--ropi on page 310

--rosplit on page 311

--rw_base=address on page 311

--rwpi on page 312

--symver_script=filename on page 327/

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 219 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
BPABI Shared Libraries and Executables

--symver_soname on page 327/
armlink Command-line Options on page 232
Base Platform ABI for the Arm Architecture

10.4.4 Mandatory symbol versioning in the BPABI DLL-like model

The Base Platform Application Binary Interface (BPABI) DLL-like model requires static binding to
ensure a symbol can be searched for at run-time.

This is because a post-linker might translate the symbolic information in a BPABI DLL to an import
or export table that is indexed by an ordinal. In which case, it is not possible to search for a symbol
at run-time.

Static binding is enforced in the BPABI with the use of symbol versioning. The command-line
option --symver_soname is on by default for BPABI files, this means that all exported symbols are
given a version based on the name of the DLL.

The DLL-like model is not supported for AArché4 state.

Related information

Symbol versioning on page 222
--symver_script=filename on page 327
--symver_soname on page 327

10.4.5 Automatic dynamic symbol table rules in the BPABI DLL-like model

There are rules that apply to dynamic symbol tables for the Base Platform Application Binary
Interface (BPABI) DLL-like model.

The following rules apply:

Executable
An undefined symbol reference is an undefined symbol error.

Global symbols with sTv_nIDDEN Or sTV_INTERNAL Visibility are never exported to the dynamic
symbol table.

Global symbols with sTv_proTECTED Or sTv_DEFAULT Visibility are not exported to the dynamic
symbol table unless --export_all Or -—export_dynamic IS set.

DLL
An undefined symbol reference is an undefined symbol error.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 220 of 351

https://developer.arm.com/documentation/ihi0037/latest

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
BPABI Shared Libraries and Executables

Global symbols with sTv_BIDDEN Or sTV_INTERNAL Visibility are never exported to the dynamic
symbol table.

STV_HIDDEN OF STV_INTERNAL global symbols that are required for relocation
can be placed in the dynamic symbol table, however the linker changes them
into local symbols to prevent them from being accessed from outside the
shared library.

Global symbols with sTv_proTECTED Or sTv_DEFAULT Visibility are always exported to the
dynamic symbol table.

The DLL-like model is not supported for AArché4 state.

You can manually export and import symbols using the exporT and 1MpPORT Steering file commands.
Use the --edit command-line option to specify a steering file command.

Related information

Edit the symbol tables with a steering file on page 107
Steering file command summary on page 108

Steering file format on page 109

--edit=file_list on page 258

--export_all, --no_export_all on page 262
--export_dynamic, --no_export_dynamic on page 263
EXPORT steering file command on page 341

IMPORT steering file command on page 343

10.4.6 Addressing modes in the BPABI DLL-like model

The main difference between the bare metal and Base Platform Application Binary Interface (BPABI)
DLL-like models is the addressing mode used when accessing imported and own-program code and
data.

There are four options available that correspond to categories in the BPABI specification:

e None.

e Direct references.

e Indirect references.

e Relative static base address references.

You can control the selection of the required addressing mode with the following command-line
options:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 221 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
BPABI Shared Libraries and Executables

e -—-pltgot.

¢ --pltgot opts.

The DLL-like model is not supported for AArché4 state.

Related information
--pltgot=type on page 302
--pltgot_opts=mode on page 303

10.4.7 C++ initialization in the BPABI DLL-like model

A dynamically linked library (DLL) supports the initialization of static constructors with a table that
contains references to initializer functions that perform the initialization.

The table is stored in an ELF section with a special section type of sar_1n1T ARRAY. FOr each
of these initializers there is a relocation of type r_armM TarceT1 to a function that performs the
initialization.

The ELF Application Binary Interface (ABI) specification describes R arM TaRGET1 as either a relative
form, or an absolute form.

The Arm® C libraries use the relative form. For example, if the linker detects a definition of the Arm
Clibrary cpp initialize _aeabi, it uses the relative form of R_arM TarcET1 Otherwise it uses
the absolute form.

The DLL-like model is not supported for AArché4 state.

Related information

BPABI standard memory model on page 217

Mandatory symbol versioning in the BPABI DLL-like model on page 220
Automatic dynamic symbol table rules in the BPABI DLL-like model on page 220
Addressing modes in the BPABI DLL-like model on page 221

Linker command-line options for bare metal and DLL-like models on page 218
Initialization of the execution environment and execution of the application

C++ initialization, construction and destruction

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 222 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/Tailoring-the-C-library-to-a-new-execution-environment/Initialization-of-the-execution-environment-and-execution-of-the-application
https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/Tailoring-the-C-library-to-a-new-execution-environment/C---initialization--construction-and-destruction

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
\ersion 6.6
BPABI Shared Libraries and Executables

10.5 Symbol versioning

Symbol versioning records extra information about symbols imported from, and exported by, a
dynamic shared object.

A dynamic loader uses this extra information to ensure that all the symbols required by an image
are available at load time.

10.5.1 Overview of symbol versioning

Symbol versioning enables shared object creators to produce new versions of symbols for use by
all new clients, while maintaining compatibility with clients linked against old versions of the shared
object.

Version

Symbol versioning adds the concept of a version to the dynamic symbol table. A version is a name
that symbols are associated with. When a dynamic loader tries to resolve a symbol reference
associated with a version name, it can only match against a symbol definition with the same version
name.

A version might be associated with previous version names to show the revision
history of the shared object.

Default version

While a shared object might have multiple versions of the same symbol, a client of the shared
object can only bind against the latest version.

This is called the default version of the symbol.

Creation of versioned symbols

By default, the linker does not create versioned symbols for a non Base Platform Application Binary
Interface (BPABI) shared object.

Related information
The symbol versioning script file on page 224

10.5.2 Embedded symbols

You can add specially-named symbols to input objects that cause the linker to create symbol
versions.

These symbols are of the form:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 223 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
\ersion 6.6
BPABI Shared Libraries and Executables

e name@version for a non-default version of a symbol.

e name@@version for a default version of a symbol.

You must define these symbols, at the address of the function or data, as that you want to export.
The symbol name is divided into two parts, a symbol name name and a version definition version.
The name is added to the dynamic symbol table and becomes part of the interface to the shared
object. Version creates a version called ver if it does not already exist and associates name with the
version called ver.

The following example places the symbols foo@veri, fook@ver2, and bareeverl into the object
symbol table:

int old function(void) asm ("foo@verl");
int new_ function(void) asm_("fooQ@ver2");
int other function(void) asm ("bar@@verl");

The linker reads these symbols and creates version definitions ver1 and ver2. The symbol foo is
associated with a non-default version of ver1, and with a default version of ver2. The symbol bar is
associated with a default version of ver1.

There is no way to create associations between versions with this method.

Related information
Writing A32/T32 Assembly Language

10.5.3 The symbol versioning script file
You can embed the commands to produce symbol versions in a script file.

You specify a symbol versioning script file with the command-line option --symver script=Ffile.
Using this option automatically enables symbol versioning.

The script file supports the same syntax as the GNU Id linker.
Using a script file enables you to associate a version with an earlier version.

You can provide a steering file in addition to the embedded symbol method. If you choose to do
this then your script file must match your embedded symbols and use the Backus-Naur Form (BNF)
notation:

version definition ::=

version name "{" symbol association* "}" [depend version] ";"
symbol association ::=

"local:" | "global:" | symbol name ";"
Where:

e version name IS a string containing the name of the version.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 224 of 351

https://developer.arm.com/documentation/dui0801/l/Writing-A32-T32-Assembly-Language

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

BPABI Shared Libraries and Executables

* depend version s a string containing the name of a version that this version name depends on.
This version must have already been defined in the script file.

e "local:" indicates that all subsequent symbol names in this version definition are local to the
shared object and are not versioned.

e "global:" indicates that all subsequent symbol names belong to this version definition.

There is an implicit "g1lobal:" at the start of every version definition.

e symbol name is the name of a global symbol in the static symbol table.

Version names have no specific meaning, but they are significant in that they make it into the
output. In the output, they are a part of the version specification of the library and a part of the
version requirements of a program that links against such a library. The following example shows
the use of version names:

VERSION 1
{

}i
VERSION 2
{

} VERSION 1;

If you use a script file then the version definitions and symbols associated with them
must match. The linker warns you if it detects any mismatch.

Related information
Overview of symbol versioning on page 223

10.5.4 Example of creating versioned symbols

This example shows how to create versioned symbols in code and with a script file.

The following example places the symbols foo@veri, fook@ver2, and bareeverl into the object
symbol table:

int old function(void) asm ("foo@verl");
int new_ function(void) asm ("fooR@ver2");
int other function(void) asm ("bar@@verl");

The corresponding script file includes the addition of dependency information so that ver2
depends on ver1 is:

verl

{
global:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 225 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

BPABI Shared Libraries and Executables

foo; bar;
local:
* .
}i

ver?2
{
global:
foo;
} verl;

Related information

Symbol versioning on page 222

Linker options for enabling implicit symbol versioning on page 226
--symver_script=filename on page 327

10.5.5 Linker options for enabling implicit symbol versioning

If you have to version your symbols to force static binding, but you do not care about the version
number that they are given, you can use implicit symbol versioning.

Use the command-line option --symver soname to turn on implicit symbol versioning.
Where a symbol has no defined version, the linker uses the soname of the file being linked.

This option can be combined with embedded symbols or a script file. arm1ink adds the sonamze
*; }; definition to its internal representation of a symbol versioning script.

Related information
The symbol versioning script file on page 224

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 226 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Features of the Base Platform Linking Model

11. Features of the Base Platform Linking
Model

Describes features of the Base Platform linking model supported by the Arm linker, armlink.

The Base Platform linking model is not supported for AArché4 state.

11.1 Restrictions on the use of scatter files with the Base
Platform model

The Base Platform model supports scatter files, with some restrictions.

Although there are no restrictions on the keywords you can use in a scatter file, there are
restrictions on the types of scatter files you can use:

e Aload region marked with the reroc attribute must contain only execution regions with a
relative base address of +ofrset. The following examples show valid and invalid scatter files
using the reLoc attribute and +orfset relative base address:

Valid scatter file example using

This is valid. All execution regions have +offset addresses.
LR1 0x8000 RELOC

{
ER RELATIVE +0

{
}

* (+RO)

}

Invalid scatter file example using

This is not valid. One execution region has an absolute base address.
LR1 0x8000 RELOC

{
ER RELATIVE +0

{

* (+RO)

}

ER ABSOLUTE 0x1000

{
* (+RW)
}

}

e Anv load region that requires a PLT section must contain at least one execution region
containing code, that is not marked overLay. This execution region holds the PLT section. An
OVERLAY region cannot be used as the PLT must remain in memory at all times. The following

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 227 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

Version 6.6
Features of the Base Platform Linking Model

examples show valid and invalid scatter files that define execution regions requiring a PLT
section:

Valid scatter file example for a load region that requires a PLT section

This is valid. ER 1 contains code and is not OVERLAY.
LR NEEDING PLT 0x8000
{

ER 1 +0

{

}

* (+RO)

}

Invalid scatter file example for a load region that requires a PLT section

This is not valid. All execution regions containing code are marked
OVERLAY.
LR NEEDING PLT 0x8000
{
ER 1 +0 OVERLAY
{

}
ER 2 +0
{

}

* (+RO)

* (+RW)

}

If a load region requires a PLT section, then the PLT section must be placed within the load
region. By default, if a load region requires a PLT section, the linker places the PLT section in
the first execution region containing code. You can override this choice with a scatter-loading
selector.

If there is more than one load region containing code, the PLT section for a load region with
name name is .plt_name. If there is only one load region containing code, the PLT section is
called .p1t.

The following examples show valid and invalid scatter files that place a PLT section:
Valid scatter file example for placing a PLT section

#This is valid. The PLT section for LRl is placed in LRI1.
LR1 0x8000
{
ER1 +0
{
* (+RO)
}
ER2 +0
{
*(.plt LR1)
}
}
LR2 0x10000
{
ER1 +0
{

}

* (other code)

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 228 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Features of the Base Platform Linking Model

Invalid scatter file example for placing a PLT section

#This is not valid. The PLT section of LR1 has been placed in LR2.
LR1 0x8000

{
ER1 +0
{
* (+RO)
}

}
LR2 0x10000

{
ER1 +0
{
*(.plt LR1)
}
}

Related information

Base Platform linking model on page 35

Placement of PLT sequences with the Base Platform model on page 230
Load region attributes on page 182

Execution region attributes on page 189

Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194

11.2 Scatter files for the Base Platform linking model

Scatter files containing relocatable and non-relocatable load regions for the Base Platform linking
model.

Standard BPABI scatter file with relocatable load regions

If you do not specify a scatter file when linking for the Base Platform linking model, the linker uses
a default scatter file defined for the standard Base Platform Application Binary Interface (BPABI)
memory model. This scatter file defines the following relocatable load regions:

LR1 0x8000 RELOC

{
ER_RO +0
{

}
}
LR2 0x0 RELOC
{

* (+RO)

ER_RW +0
{

}
ER_ZI +0
{

}

* (+RW)

*(+2Z1I)

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 229 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Features of the Base Platform Linking Model

This example conforms to the BPABI, because it has the same two-region format as the BPABI
specification.

Scatter file with some load regions that are not relocatable
This example shows two load regions LR1 and LR2 that are not relocatable.

LR1 0x8000

{
ER RO +0

{
}
ER_RW +0
{
}
ER _ZI +0
{
}

LR2 0x10000

* (+RO)

* (+RW)

*(+Z1)

ER _KNOWN ADDRESS +0
{

}

LR3 0x20000 RELOC

* (fixedsection)

ER RELOCATABLE +0
{

}

* (floatingsection)

The linker does not have to generate dynamic relocations between LR1 and LR2 because they have
fixed addresses. However, the reLoc load region LR3 might be widely separated from load regions
LR1 and LR2 in the address space. Therefore, dynamic relocations are required between LR1 and
LR3, and LR2 and LR3.

Use the options --pltgot=direct --pltgot opts=crosslr to ensure a PLT is generated for each
load region.

Related information

Bare-metal linking model on page 32

Base Platform Application Binary Interface (BPABI) linking model on page 34
Restrictions on the use of scatter files with the Base Platform model on page 227
Load region attributes on page 182

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 230 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Features of the Base Platform Linking Model

11.3 Placement of PLT sequences with the Base Platform
model

The linker supports Procedure Linkage Table (PLT) generation for multiple load regions containing
code when linking in Base Platform mode.

To turn on PLT generation when in Base Platform mode (--base platform) USe --pltgot=option
that generates PLT sequences. You can use the option --pltgot opts=crosslr to add entries in
the PLT for calls from and to reroc load-regions. PLT generation for multiple Load Regions is only
supported for --pltgot=direct.

The --pltgot opts=crosslr option is useful when you have multiple load regions that might be
moved relative to each other when the image is dynamically loaded. The linker generates a PLT for
each load region so that calls do not have to be extended to reach a distant PLT.

Placement of linker generated PLT sections:

e When there is only one load region there is one PLT. The linker creates a section called .p1t
with an object anonssobj . o.

* When there are multiple load regions, a PLT section is created for each load region that requires
one. By default, the linker places the PLT section in the first execution region containing code.
You can override this by specifying the exact PLT section name in the scatter file.

For example, a load region with name tr_name the PLT section is called .p1t 1R name with an
object of anonssobi.o. To precisely name this PLT section in a scatter file, use the selector:

anon$$obj.o(.plt LR NAME)

Be aware of the following:

e The linker gives an error message if the PLT for load region r wame is moved out of load region
LR _NAME.

e The linker gives an error message if load region rr_name contains a mixture of rReroc and
non-reroc execution regions. This is because it cannot guarantee that the rReLoC execution
regions are able to reach the PLT at run-time.

e -—-pltgot=indirect and --pltgot=sbrel are not supported for multiple load regions.

Related information

Base Platform linking model on page 35
--base_platform on page 237
--pltgot=type on page 302
--pltgot_opts=mode on page 303

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 231 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12. armlink Command-line Options

Describes the command-line options supported by the Arm linker, armlink.

12.1 --any_contingency

Permits extra space in any execution regions containing .any sections for linker-generated content
such as veneers and alignment padding.

Usage
Two percent of the extra space in such execution regions is reserved for veneers.

When a region is about to overflow because of potential padding, arm1ink lowers the priority of
the .any selector.

This option is off by default. That is, arm1ink does not attempt to calculate padding and strictly
follows the .anvy priorities.

Use this option with the --scatter option.

Related information

--info=topic[,topic,...] on page 271

--any_sort_order=order on page 234

--scatter=filename on page 313

Behavior when .ANY sections overflow because of linker-generated content on page 148

12.2 --any_placement=algorithm

Controls the placement of sections that are placed using the .ANY module selector.

Default
The default option is worst fit.

Syntax

--any placement=algorithm

where algorithmis one of the following:

best fit

Place the section in the execution region that currently has the least free space but is also
sufficient to contain the section.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 232 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

first fit
—Place the section in the first execution region that has sufficient space. The execution regions
are examined in the order they are defined in the scatter file.
next fit
_Place the section using the following rules:
e Place in the current execution region if there is sufficient free space.
e Place in the next execution region only if there is insufficient space in the current region.
e Never place a section in a previous execution region.
worst fit

Place the section in the execution region that currently has the most free space.
Use this option with the --scatter option.

Usage
The placement algorithms interact with scatter files and --any contingency as follows:
Interaction with normal scatter-loading rules

Scatter-loading with or without . any assigns a section to the most specific selector. All
algorithms continue to assign to the most specific selector in preference to .any priority or
size considerations.

Interaction with .ANY priority
Priority is considered after assignment to the most specific selector in all algorithms.

worst fit and best fit consider priority before their individual placement criteria. For
example, you might have .anv1 and .any2 selectors, with the .anv1 region having the most
free space. When using worst fit the section is assigned to . any2 because it has higher
priority. Only if the priorities are equal does the algorithm come into play.

first fit considers the most specific selector first, then priority. It does not introduce any
more placement rules.

next fit also does not introduce any more placement rules. If a region is marked full during
next fit, that region cannot be considered again regardless of priority.

Interaction with -any_contingency

The priority of a .any selector is reduced to o if the region might overflow because of linker-
generated content. This is enabled and disabled independently of the sorting and placement
algorithms.

armlink calculates a worst-case contingency for each section.

Forworst fit,best fit,and first fit, when a region is about to overflow because of the
contingency, armlink lowers the priority of the related .any selector.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 233 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

For next fit, when a possible overflow is detected, arm1ink marks that section as rurL and
does not consider it again. This stays consistent with the rule that when a section is full it can
never be revisited.

Related information

--any_sort_order=order on page 234

--info=topic[,topic,...] on page 271

--scatter=filename on page 313

Examples of using placement algorithms for .ANY sections on page 143

Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page 145
--any_contingency on page 232

Placement of unassigned sections on page 138

Syntax of an input section description on page 197

Behavior when .ANY sections overflow because of linker-generated content on page 148

12.3 --any_sort_order=order

Controls the sort order of input sections that are placed using the .ANY module selector.

Default
The default option is --any_sort_order=descending_ size.

Syntax

--any sort order=order

where order is one of the following:

descending_size

Sort input sections in descending size order.

cmdline

The order that the section appears on the linker command-line. The command-line order is
defined as File.object.Section Where:

e section is the section index, sh_idx, of the section in the object.
e Object is the order that object appears in the rile.

e Frileisthe order the rile appears on the command line.
The order the object appears in the rile is only significant if the file is an ar archive.

By default, sections that have the same properties are resolved using the creation index. The --
tiebreaker cOmmand-line option does not have any effect in the context of --any sort order.

Use this option with the --scatter option.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 234 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

Usage

The sorting governs the order that sections are processed during .any assignment. Normal scatter-
loading rules, for example ro before rw, are obeyed after the sections are assigned to regions.

Related information

--info=topic[,topic,...] on page 271

--scatter=filename on page 313

--any_contingency on page 232

Placement of unassigned sections on page 138

Examples of using sorting algorithms for .ANY sections on page 147

12.4 --api, --no_api

Enables and disables API section sorting. APl sections are the sections that are called the most
within a region.

Default

The default is --no_api. The linker automatically switches to --api if at least one execution region
contains more code than the smallest inter-section branch. The smallest inter-section branch
depends on the code in the region and the target processor:

128MB

Execution region contains only A64 instructions.
32MB

Execution region contains only A32 instructions.
16MB

Execution region contains 32-bit T32 instructions.
4MB

Execution region contains only 16-bit T32 instructions.

Usage

In large region mode the API sections are extracted from the region and then inserted closest to
the hotspots of the calling sections. This minimises the number of veneers generated.

Related information
--largeregions, --no_largeregions on page 280
Linker-generated veneers on page 61

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 235 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.5 --autoat, --no_autoat

Controls the automatic assignment of at sections to execution regions.
__at sections are sections that must be placed at a specific address.

Default
The default is --autoat.

Usage

If enabled, the linker automatically selects an execution region for each _ at section. If a suitable
execution region does not exist, the linker creates a load region and an execution region to contain
the at section.

If disabled, the standard scatter-loading section selection rules apply.

Restrictions
You cannot use _ at section placement with position independent execution regions.

If you use at sections with overlays, you cannot use --autoat to place those sections. You must
specify the names of __ at sections in a scatter file manually, and specify the --no_autoat option.

Related information

Syntax of a scatter file on page 178

Placing __at sections at a specific address on page 131
Automatically placing __at sections on page 132
Manually placing __at sections on page 134

12.6 --bare_metal_pie

Specifies the bare-metal Position Independent Executable (PIE) linking model.

Not supported for AArché4 state.

Bare-metal PIE support is deprecated in this release.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 236 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en

Version 6.6
armlink Command-line Options

Default
The following default settings are automatically specified:

--fpic.
--pie.

--ref pre init.

Related information

--fpic on page 267

--pie on page 301

--ref_pre_init, --no_ref_pre_init on page 307

12.7 --base_platform

Specifies the Base Platform linking model. It is a superset of the Base Platform Application Binary
Interface (BPABI) model, --bpabi option.

Not supported for AArché4 state.

Usage

When you specify --base_platform, the linker also acts as if you specified --bpabi with the
following exceptions:

The full choice of memory models is available, including scatter-loading:

° --dll.

° --force so throw, --no force so throw.
° --pltgot=type.

° --rosplit.

If you do not specify a scatter file with --scatter, then the standard BPABI
memory model scatter file is used.

The default value of the --p1tgot option is different to that for --bpabi:
° For -—base platform, the default is --pltgot=none.
o For --bpabi the default is --pltgot=direct.

If you specify --pltgot opts=crosslr then calls to and from a load region marked reroc go by
way of the Procedure Linkage Table (PLT).

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 237 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

To place unresolved weak references in the dynamic symbol table, use the 1mporT steering file
command.

If you are linking with --base platform, and the parent load region has the revnoC
attribute, then all execution regions within that load region must have a +ofrset
base address.

Related information

--bpabi on page 239

--pltgot=type on page 302

--pltgot_opts=mode on page 303

--scatter=filename on page 313

--remove, --no_remove on page 309

Scatter files for the Base Platform linking model on page 229
--dll on page 255

--force_so_throw, --no_force_so_throw on page 266
--ro_base=address on page 309

--rosplit on page 311

--rw_base=address on page 311

--rwpi on page 312

Base Platform Application Binary Interface (BPABI) linking model on page 34
Base Platform linking model on page 35

Inheritance rules for the RELOC address attribute on page 185

12.8 --bestdebug, --no_bestdebug

Selects between linking for smallest code and data size or for best debug illusion.

Default

The default is --no_bestdebug. The smallest COMDAT groups are selected when linking, at the
expense of a possibly slightly poorer debug illusion.

Usage

Input objects might contain common data (COMDAT) groups, but these might not be identical
across all input objects because of differences such as objects compiled with different optimization
levels.

Use --bestdebug to select COMDAT groups with the best debug view. Be aware that the code and
data of the final image might not be the same when building with or without debug.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 238 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Example
For two objects compiled with different optimization levels:

armclang --target=arm-arm-none-eabi -march=armv8-a -c -02 filel.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c -00 file2.c
armlink --bestdebug filel.o file2.o0 -o image.axf

Related information

-o filename, --output=filename on page 296
Elimination of common debug sections on page 75
Elimination of common groups or sections on page 75
Elimination of unused sections on page 76

12.9 --blx_arm_thumb, --no_blx_arm_thumb
Enables the linker to use the Brx instruction for A32 to T32 state changes.

Usage

If the linker cannot use BLx it must use an A32 to T32 interworking veneer to perform the state
change.

This option is on by default. It has no effect if the target architecture does not support BLx or when
linking for AArché64 state.

Related information
--bIx_thumb_arm, --no_blIx_thumb_arm on page 239

12.10 --blx_thumb_arm, --no_bIx_thumb_arm

Enables the linker to use the Brx instruction for T32 to A32 state changes.

Usage

If the linker cannot use BLx it must use a T32 to A32 interworking veneer to perform the state
change.

This option is on by default. It has no effect if the target architecture does not support sLx or when
linking for AArché4 state.

Related information
--bIx_arm_thumb, --no_blx_arm_thumb on page 239

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 239 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.11 --bpabi

Creates a Base Platform Application Binary Interface (BPABI) ELF file for passing to a platform-
specific post-linker.

Not supported for AArché4 state.

Usage

The BPABI model defines a standard-memory model that enables interoperability of BPABI-
compliant files across toolchains. When you specify this option:

e Procedure Linkage Table (PLT) and Global Offset Table (GOT) generation is supported.

e The default value of the --pltgot option is direct.

e A dynamically linked library (DLL) placed on the command-line can define symbols.

Restrictions

The BPAPI model does not support scatter-loading. However, scatter-loading is supported in the
Base Platform model.

Weak references in the dynamic symbol table are permitted only if the symbol is defined by a
DLL placed on the command-line. You cannot place an unresolved weak reference in the dynamic
symbol table with the tmporT steering file command.

Related information

--base_platform on page 237

--remove, --no_remove on page 309

--dll on page 255

--pltgot=type on page 302

Base Platform Application Binary Interface (BPABI) linking model on page 34
Base Platform linking model on page 35

BPABI Shared Libraries and Executables on page 212

12.12 --branchnop, --no_branchnop

Enables or disables the replacement of any branch with a relocation that resolves to the next
instruction with a ~op.

Default
The default is —--branchnop.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 240 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

Usage

The default behavior is to replace any branch with a relocation that resolves to the next instruction
with a nop. However, there are cases where you might want to use --no_branchnop to disable this
behavior. For example, when performing verification or pipeline flushes.

Related information

--inline, --no_inline on page 275

--tailreorder, --no_tailreorder on page 327

About branches that optimize to a NOP on page 82

12.13 --callgraph, --no_callgraph
Creates a file containing a static callgraph of functions.

The callgraph gives definition and reference information for all functions in the image.

If you use the —-partial option to create a partially linked object, then no callgraph
file is created.

Default
The default is --no_callgraph.

Usage
The callgraph file:

e Issaved in the same directory as the generated image.

e Has the name of the linked image with the extension, if any, replaced by the callgraph output
extension, either .htm or .txt. Use the --callgraph file=filename Option to specify a
different callgraph filename.

e Has a default output format of HTML. Use the --callgraph output=rmt option to control the
output format.

If the linker is to calculate the function stack usage, any functions defined in the
assembler files must have the appropriate:

e .cfi startproc and .cfi endproc directives.

e .cfi sections .debug frame directive.

The linker lists the following for each function func:
e Instruction set state for which the function is compiled (A32, T32, or Aé4).

e Set of functions that call func.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 241 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

e Set of functions that are called by func.

e Number of times the address of func is used in the image.

In addition, the callgraph identifies functions that are:
e Called through interworking veneers.

e Defined outside the image.

e Permitted to remain undefined (weak references).
e Called through a Procedure Linkage Table (PLT).

e Not called but still exist in the image.

The static callgraph also gives information about stack usage. It lists the:
e Size of the stack frame used by each function.

e Maximum size of the stack used by the function over any call sequence, that is, over any acyclic
chain of function calls.

If there is a cycle, or if the linker detects a function with no stack size information in the call chain,
+ Unknown IS added to the stack usage. A reason is added to indicate why stack usage is unknown.

The linker reports missing stack frame information if there is no debug frame information for the
function.

For indirect functions, the linker cannot reliably determine which function made the indirect call.
This might affect how the maximum stack usage is calculated for a call chain. The linker lists all
function pointers used in the image.

Use frame directives in assembly language code to describe how your code uses the stack.
These directives ensure that debug frame information is present for debuggers to perform stack
unwinding or profiling.

Related information

--callgraph_file=filename on page 242
--callgraph_output=fmt on page 243
--callgraph_subset=symbol[,symbol....] on page 243
--cgfile=type on page 244

--cgsymbol=type on page 245

--cgundefined=type on page 245

12.14 --callgraph_file=filename
Controls the output filename of the callgraph.

Syntax
--callgraph file=filename

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 242 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

where filename is the callgraph filename.

The default filename is the name of the linked image with the extension, if any, replaced by the
callgraph output extension, either .nhtm or . txt.

Related information

--callgraph, --no_callgraph on page 241
--callgraph_output=fmt on page 243
--callgraph_subset=symbol[,symbol....] on page 243
--cgfile=type on page 244

--cgsymbol=type on page 245

--cgundefined=type on page 245

12.15 --callgraph_output=fmt

Controls the output format of the callgraph.

Default
The default is --callgraph output=html.

Syntax
--callgraph output=fmt

Where fmt can be one of the following:

html
Outputs the callgraph in HTML format.

text
Outputs the callgraph in plain text format.

Related information

--callgraph, --no_callgraph on page 241
--callgraph_file=filename on page 242
--callgraph_subset=symbol[,symbol....] on page 243
--cgfile=type on page 244

--cgsymbol=type on page 245

--cgundefined=type on page 245

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 243 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

12.16 --callgraph_subset=symbol[,symbol,...]

Creates a file containing a static callgraph for one or more specified symbols.

Syntax
--callgraph subset={symboll[, symbol,...]}

where symbol is a comma-separated list of symbols.

Usage
The callgraph file:

e Issaved in the same directory as the generated image.

e Has the name of the linked image with the extension, if any, replaced by the callgraph output
extension, either .htm or .txt. Use the --callgraph file=filename Option to specify a
different callgraph filename.

e Has a default output format of HTML. Use the --calligraph output=rmt option to control the
output format.

Related information

--callgraph, --no_callgraph on page 241
--callgraph_file=filename on page 242
--callgraph_output=fmt on page 243
--cgfile=type on page 244
--cgsymbol=type on page 245
--cgundefined=type on page 245

12.17 --cgfile=type
Controls the type of files to use for obtaining the symbols to be included in the callgraph.

Default
The default is -—cgfile=all.

Syntax
--cgfile=type

where type can be one of the following:

all
Includes symbols from all files.

user

Includes only symbols from user defined objects and libraries.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 244 of 351

Arm” Compiler armlink User Guide

system

Includes only symbols from system libraries.

Related information

--callgraph, --no_callgraph on page 241
--callgraph_file=filename on page 242
--callgraph_output=fmt on page 243
--callgraph_subset=symbol[,symbol....] on page 243
--cgsymbol=type on page 245

--cgundefined=type on page 245

12.18 --cgsymbol=type

Controls what symbols are included in the callgraph.

Default
The default is --cgsymbol=all.

Syntax

-—cgsymbol=type

Where type can be one of the following:

all
Includes both local and global symbols.

locals

Includes only local symbols.

globals
Includes only global symbols.

Related information

--callgraph, --no_callgraph on page 241
--callgraph_file=filename on page 242
--callgraph_output=fmt on page 243
--callgraph_subset=symbol[,symbol....] on page 243
--cgfile=type on page 244

--cgundefined=type on page 245

Document ID: DUIO8O3 | en
\ersion 6.6
armlink Command-line Options

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 245 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.19 --cgundefined=type

Controls what undefined references are included in the callgraph.

Default
The default is -—cqundefined=all.

Syntax

--cgundefined=type

Where type can be one of the following:
all
Includes both function entries and calls to undefined weak references.
entries
Includes function entries for undefined weak references.
calls
Includes calls to undefined weak references.

none

Omits all undefined weak references from the output.

Related information

--callgraph, --no_callgraph on page 241
--callgraph_file=filename on page 242
--callgraph_output=fmt on page 243
--callgraph_subset=symbol[,symbol....] on page 243
--cgfile=type on page 244

--cgsymbol=type on page 245

12.20 --comment_section, --no_comment_section

Controls the inclusion of a comment section .comment in the final image.

Default
The default is -—comment section.

Usage

Use --no_comment_section to remove the .comment section, to help reduce the image size.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 246 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

You can also use the --filtercomment Option to merge comments.

Related information
Linker merging of comment sections on page 83
--filtercomment, --no_filtercomment on page 263

12.21 --compress_debug, --no_compress_debug

Causes the linker to compress .debug_* sections, if it is sensible to do so.

Deprecated in this release.

Not supported for AArché4 state.

Default
The default is -—-no_compress_debug.

Usage

This removes some redundancy and reduces debug table size. Using --compress_debug can
significantly increase the time required to link an image. Debug compression can only be performed
on DWARF3 debug data, not DWARF2.

This option does not work on DWARF 4. Therefore, you must compile with the armclang option -
gdwar£3, because DWARF 4 is the default for armclang.

Related information
The DWARF Debugging Standard

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 247 of 351

http://dwarfstd.org/

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.22 --cppinit, --no_cppinit
Enables the linker to use alternative C++ libraries with a different initialization symbol if required.

Syntax

--cppinit=symbol
Where symbo1 is the initialization symbol to use.

Usage

If you do not specify --cppinit=symbol then the default symbol cpp initialize aeabi IS
assumed.

--no_cppinit does not take a symbo1 argument.

Effect

The linker adds a non-weak reference to symbo1 if any static constructor or destructor sections are
detected.

For --cppinit=_cpp initialize aeabi_in AArch32 state, the linker processes
R_ARM_TARGET1 relocations as R_LARM_REL32, because this is required by the
__cpp_initialize aeabi_function. In all other cases R_ARM_TARGET1 relocations are processed
as R_ARM_ABS32.

There is no equivalent of R_ARM_TARGET1 in AARCH64 state.

--no_cppinit means do not add a reference.

Related information
--ref_cpp_init, --no_ref_cpp_init on page 307

12.23 --cpu=list

Lists the architecture and processor names that are supported by the --cpu=name option.

Syntax

--cpu=list

Related information
--Cpu=name on page 249
--fpu=list on page 267

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 248 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

--fpu=name on page 267

12.24 --cpu=name
Enables code generation for the selected Arm® processor or architecture.

If you do not include the --cpu option, armlink derives an architecture from the combination of the
input objects.

If you include --cpu=name, armlink:
e Faults any input object that is not compatible with the cpu.

e For library selection, acts as if at least one input object is compiled with —-cpu=name.

Syntax

——Ccpu=name

Where name is the name of a processor or architecture:
Processor and architecture names are not case-sensitive.
Wildcard characters are not accepted.

The following table shows the supported architectures. For a complete list of the supported
architecture and processor names, specify the --cpu=1ist option.

Table 12-1: Supported Arm architectures

Architecture name Description

6-M Armvé architecture microcontroller profile.

6S-M Armvé architecture microcontroller profile with OS extensions.

7-A Armv7 architecture application profile.

7-A.security Armv7-A architecture profile with Security Extensions and includes
the sMC instruction (formerly SMI).

7-R Armv7 architecture real-time profile.

7-M Armv7 architecture microcontroller profile.

TE-M Armv7-M architecture profile with DSP extension.

8-A.32 Armv8-A architecture profile, AArch32 state.

8-A.32.crypto Armv8-A architecture profile, AArch32 state with cryptographic
instructions.

8-A.64 Armv8-A architecture profile, AArché4 state.

8-A.64.crypto Armv8-A architecture profile, AArché4 state with cryptographic
instructions.

8.1-A.32 Armv8.1, for Armv8-A architecture profile, AArch32 state.

8.1-A.32.crypto Armv8.1, for Armv8-A architecture profile, AArch32 state with

cryptographic instructions.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 249 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Architecture name Description

8.1-A.64 Armv8.1, for Armv8-A architecture profile, AArché4 state.

8.1-A.64.crypto Armv8.1, for Armv8-A architecture profile, AArché4 state with
cryptographic instructions.

8.2-A.32 Armv8.2, for Armv8-A architecture profile, AArch32 state.

8.2-A.32.crypto Armv8.2, for Armv8-A architecture profile, AArch32 state with
cryptographic instructions.

8.2-A.64 Armv8.2, for Armv8-A architecture profile, AArché4 state.

8.2-A.64.crypto Armv8.2, for Armv8-A architecture profile, AArché4 state with
cryptographic instructions.

8.3-A.32 Armv8.3, for Armv8-A architecture profile, AArch32 state.

8.3-A.32.crypto Armv8.3, for Armv8-A architecture profile, AArch32 state with
cryptographic instructions.

8.3-A.64 Armv8.3, for Armv8-A architecture profile, AArché4 state.

8.3-A.64.crypto Armv8.3, for Armv8-A architecture profile, AArché4 state with
cryptographic instructions.

8-R Armv8-R architecture profile.

8-M.Base Armv8-M baseline architecture profile. Derived from the Armvé-M
architecture.

8-M.Main Armv8-M mainline architecture profile. Derived from the Armv7-M
architecture.

8-M.Main.dsp Armv8-M mainline architecture profile with DSP extension.

The full list of supported architectures and processors depends on your license.

Build attribute checking is not supported for AArché4 state.

Usage
If you omit --cpu, the linker auto-detects the processor or architecture from the input object files.

Specify --cpu=1ist to list the supported processor and architecture names that you can use with

——Ccpu=name.

The link phase fails if any of the component object files rely on features that are incompatible with
the specified processor. The linker also uses this option to optimize the choice of system libraries
and any veneers that have to be generated when building the final image.

Restrictions
You cannot specify both a processor and an architecture on the same command-line.
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 250 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en

\ersion 6.6

armlink Command-line Options

Related information
--cpu=list on page 248
--fpu=list on page 267
--fpu=name on page 267

12.25 --crosser_veneershare, --no_crosser_veneershare

Enables or disables veneer sharing across execution regions.

Usage

The default is --crosser veneershare, and enables veneer sharing across execution regions.

--no_crosser veneershare pProhibits veneer sharing across execution regions.

Related information
--veneershare, --no_veneershare on page 335

12.26 --datacompressor=opt

Enables you to specify one of the supplied algorithms for RV data compression.

Not supported for AArché4 state.

Default
The default is --datacompressor=on.

Syntax

--datacompressor=opt

Where opt is one of the following:

on
Enables RW data compression to minimize ROM size.
off
Disables RW data compression.
list
Lists the data compressors available to the linker.
id

A data compression algorithm:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 251 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

Table 12-2: Data compressor algorithms

id Compression algorithm

0 run-length encoding

1 run-length encoding, with LZ77 on small-repeats
2 complex LZ77 compression

Specifying a compressor adds a decompressor to the code area. If the final image does not
have compressed data, the decompressor is not added.

Usage

If you do not specify a data compression algorithm, the linker chooses the most appropriate one for
you automatically. In general, it is not necessary to override this choice.

Related information
How compression is applied on page 79

12.27 --debug, --no_debug

Controls the generation of debug information in the output file.

Default
The default is --debug.

Usage
Debug information includes debug input sections and the symbol/string table.

Use --no_debug to exclude debug information from the output file. The resulting ELF image is
smaller, but you cannot debug it at source level. The linker discards any debug input section it finds
in the input objects and library members, and does not include the symbol and string table in the
image. This only affects the image size as loaded into the debugger. It has no effect on the size of
any resulting binary image that is downloaded to the target.

If you are using --partial the linker creates a partially-linked object without any debug data.

Do not use the armlink option --no_debug if you want to use the fromelf option
--fieldoffsets on the image. The --fieldoffsets functionality requires that the
Note object or image file has debug information.

Related information
--fieldoffsets fromelf option

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 252 of 351

https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--fieldoffsets

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.28 --diag_error=tag|,tag,...]
Sets diagnostic messages that have a specific tag to Error severity.

Syntax

--diag_error=tagl[, tag, ...]

Where tag can be:

e A diagnostic message number to set to error severity. This is the four-digit number, nnnn, with
the tool letter prefix, but without the letter suffix indicating the severity.

e warning, to treat all warnings as errors.

Related information
--diag_remark=tag|,tag,...] on page 253
--diag_style=armlide|gnu on page 253
--diag_suppress=tag|[,tag,...] on page 254
--diag_warning=tag[,tag,...] on page 255
--strict on page 321

12.29 --diag_remark=tag|,tag,...]

Sets diagnostic messages that have a specific tag to Remark severity.

Remarks are not displayed by default. Use the --remarks option to display these
messages.

Syntax

--diag remark=tagl[, tag, ...]

Where tag is a comma-separated list of diagnostic message numbers. This is the four-digit number,
nnnn, with the tool letter prefix, but without the letter suffix indicating the severity.

Related information
--diag_error=tag|[,tag,...] on page 252
--diag_style=armlide|gnu on page 253
--diag_suppress=tag[,tag,...] on page 254
--diag_warning=tag[,tag,...] on page 255
--remarks on page 308

--strict on page 321

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 253 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.30 --diag_style=arml|ide|gnu
Specifies the display style for diagnostic messages.

Default
The default is --diag_style=arm.

Syntax

--diag style=string

Where stringis one of:

arm
Display messages using the legacy Arm® compiler style.

ide
Include the line number and character count for any line that is in error. These values are
displayed in parentheses.

gnu
Display messages in the format used by gce.

Usage

--diag style=gnu matches the format reported by the GNU Compiler, gce.
--diag style=ide matches the format reported by Microsoft Visual Studio.

Related information
--diag_error=tag|,tag,...| on page 252
--diag_remark=tag[,tag,...] on page 253
--diag_suppress=tag[,tag,...] on page 254
--diag_warning=tag[,tag,...] on page 255
--remarks on page 308

--strict on page 321

12.31 --diag_suppress=tag|,tag,...]
Suppresses diagnostic messages that have a specific tag.

Syntax

--diag suppress=tagl, tag, ...]

Where tag can be:

e A diagnostic message number to be suppressed. This is the four-digit number, nnnn , with the
tool letter prefix, but without the letter suffix indicating the severity.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 254 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

e error, to suppress all errors that can be downgraded.

e warning, to suppress all warnings.
g

Example

To suppress the warning messages that have numbers 1.6314w and 6305w, use the following
command:

armlink --diag suppress=L6314,L6305 ...

Related information
--diag_error=tag|,tag,...] on page 252
--diag_remark=tag[,tag,...] on page 253
--diag_style=armlide|gnu on page 253
--diag_warning=tag[,tag,...] on page 255
--strict on page 321

--remarks on page 308

12.32 --diag_warning=tag|,tag,...]
Sets diagnostic messages that have a specific tag to Warning severity.

Syntax

--diag warning=tagl, tag, ...]

Where tag can be:

e A diagnostic message number to set to warning severity. This is the four-digit number, nnnn,
with the tool letter prefix, but without the letter suffix indicating the severity.

e error, to set all errors that can be downgraded to warnings.

Related information
--diag_error=tag|,tag,...] on page 252
--diag_remark=tag[,tag,...] on page 253
--diag_style=armlide|gnu on page 253
--diag_suppress=tag|[,tag,...] on page 254
--remarks on page 308

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 255 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.33 --dll

Creates a Base Platform Application Binary Interface (BPABI) dynamically linked library (DLL).

Not supported for AArché4 state.

Usage
The DLL is marked as a shared object in the ELF file header.

You must use --bpabi with --d11 to produce a BPABI-compliant DLL.

You can also use --d11 with --base platform.

By default, this option disables unused section elimination. Use the —-remove option
to re-enable unused sections when building a DLL.

Related information

--remove, --no_remove on page 309

--bpabi on page 239

BPABI Shared Libraries and Executables on page 212

12.34 --dynamic_linker=name

Specifies the dynamic linker to use to load and relocate the file at runtime.

Not supported for AArché4 state.

Syntax

--dynamic_linker=name
--dynamiclinker=name

Where name is the name of the dynamic linker to store in the executable.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 256 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

Usage

When you link with shared objects, the dynamic linker to use is stored in the executable. This
option specifies a particular dynamic linker to use when the file is executed.

Related information

--fini=symbol on page 264

--init=symbol on page 274

--library=name on page 283

BPABI Shared Libraries and Executables on page 212

12.35 --eager_load_debug, --no_eager_load_debug
Manages how armlink loads debug section data.

Usage

The --no_eager load debug option causes the linker to remove debug section data from memory
after object loading. This lowers the peak memory usage of the linker at the expense of some linker
performance, because much of the debug data has to be loaded again when the final image is
written.

Using --no_eager load debug option does not affect the debug data that is written into the ELF
file.

The default is -—eager load debug.

If you use some command-line options, such as --map, the resulting image or object
built without debug information might differ by a small number of bytes. This is
because the .comment section contains the linker command line used, where the
options have differed from the default. Therefore --no_eager load debug images
are a little larger and contain Program Header and possibly a section header a small
number of bytes later. Use --no_comment_section to eliminate this difference.

Related information
--comment_section, --no_comment_section on page 246

12.36 --eh_frame_hdr

When an AArch64 image contains C++ exceptions, merges all .eh frame sections into one
.eh_frame section and then creates the .eh_frame hdr section.

Default
The default is -eh_frame_hdr.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 257 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

Usage

The .enh frame hdr section contains a binary search table of pointers to the .eh frame records.
During the merge armlink removes any orphaned records.

Only .enh_ frame sections defined by the Linux Standard Base specification are supported. The
.eh_frame hdr section is created according to the Linux Standard Base specification. If armlink finds
an unexpected .en_frame section, it stops merging, does not create the .en frame hdr section, and
generates corresponding warnings.

Restrictions
Valid only for AArché4 images.

Related information
Linux Foundation

12.37 --edit=file_list

Enables you to specify steering files containing commands to edit the symbol tables in the output
binary.

Syntax

--edit=file 1Iist

Where rile 1ist can be more than one steering file separated by a comma. Do not include a
space after the comma.

Usage
You can specify commands in a steering file to:

o Hide global symbols. Use this option to hide specific global symbols in object files. The hidden
symbols are not publicly visible.

e Rename global symbols. Use this option to resolve symbol naming conflicts.

Examples

-—edit=filel --edit=file2 --edit=file3
--edit=filel, file2,file3

Related information

Steering file command summary on page 108

Hide and rename global symbols with a steering file on page 110
Linker Steering File Command Reference on page 341

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 258 of 351

http://www.linuxfoundation.org/

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.38 --emit_debug_overlay_relocs

Outputs only relocations of debug sections with respect to overlaid program sections to aid an
overlay-aware debugger.

Not supported for AArché4 state.

Related information

--emit_debug_overlay_section on page 259

--emit_relocs on page 260

--emit_non_debug_relocs on page 260

Manual overlay support

ABI for the Arm Architecture: Support for Debugging Overlaid Programs

12.39 --emit_debug_overlay_section

Emits a special debug overlay section during static linking.

Not supported for AArché64 state.

Usage

In a relocatable file, a debug section refers to a location in a program section by way of a relocated
location. A reference from a debug section to a location in a program section has the following
format:

<debug section index, debug section offset>, <program section index,
program section offset>

During static linking the pair of program values is reduced to single value, the execution address.
This is ambiguous in the presence of overlaid sections.

To resolve this ambiguity, use this option to output a .arM.debug overlay section of type
SHT ARM DEBUG OVERLAY = SHT LOUSER + 4 containing a table of entries as follows:

debug section offset, debug section index, program section index

Related information
--emit_debug_overlay_relocs on page 258

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 259 of 351

https://developer.arm.com/documentation/dui0773/l/Overlays/Manual-overlay-support
https://developer.arm.com/documentation/ihi0049/latest

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

--emit_relocs on page 260

Automatic overlay support

Manual overlay support

ABI for the Arm Architecture: Support for Debugging Overlaid Programs

12.40 --emit_non_debug_relocs

Retains only relocations from non-debug sections in an executable file.

o
* Not supported for AArché4 state.

Note

Related information
--emit_relocs on page 260

12.41 --emit_relocs

Retains all relocations in the executable file. This results in larger executable files.

o
* Not supported for AArché4 state.

Note

Usage
This is equivalent to the GNU |d --emit-relocs option.

Related information

--emit_debug_overlay_relocs on page 258

--emit_non_debug_relocs on page 260

ABI for the Arm Architecture: Support for Debugging Overlaid Programs

12.42 --entry=location

Specifies the unique initial entry point of the image. Although an image can have multiple entry
points, only one can be the initial entry point.

Syntax
--entry=location

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 260 of 351

https://developer.arm.com/documentation/dui0773/l/Overlays/Automatic-overlay-support
https://developer.arm.com/documentation/dui0773/l/Overlays/Manual-overlay-support
https://developer.arm.com/documentation/ihi0049/latest
https://developer.arm.com/documentation/ihi0049/latest

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

Where 1ocation is one of the following:
entry address

A numerical value, for example: --entry=0.
symbol

Specifies an image entry point as the address of symbo1, for example: —-
entry=reset handler.

offset+object (section)

Specifies an image entry point as an offset inside a section within a particular object , for
examp|e:——entry=8+startup .0 (startupseq).

There must be no spaces within the argument to --entry. The input section and object

names are matched without case-sensitivity. You can use the following simplified notation:

® object(section), if offset is zero.

e object, if there is only one input section. armlink generates an error message if there is
more than one code input section in object.

If the entry address of your image is in T32 state, then the least significant bit of the
address must be set to 1. The linker does this automatically if you specify a symbol.

For example, if the entry code starts at address oxso000 in T32 state you must use --
entry=0x8001.

On Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,
for example:

—-—entry="8+startup.o(startupseqg)"

Usage

The image can contain multiple entry points. Multiple entry points might be specified with the
ENTRY directive in assembler source files. In such cases, a unique initial entry point must be
specified for an image, otherwise the error L6305E is generated. The initial entry point specified
with the --entry option is stored in the executable file header for use by the loader. There can

be only one occurrence of this option on the command line. A debugger typically uses this entry
address to initialize the Program Counter (PC) when an image is loaded. The initial entry point must
meet the following conditions:

e Theimage entry point must lie within an execution region.

e The execution region must be non-overlay, and must be a root execution region (load address
== execution address).

Related information
--startup=symbol, --no_startup on page 319
ENTRY directive

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 261 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/ENTRY

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

12.43 --errors=filename
Redirects the diagnostics from the standard error stream to a specified file.

Syntax

-—errors=filename

Usage

The specified file is created at the start of the link stage. If a file of the same name already exists, it
is overwritten.

If rilename is specified without path information, the file is created in the current directory.

Related information
--diag_error=tag|,tag,...] on page 252
--diag_remark=tag[,tag,...] on page 253
--diag_style=armlide|gnu on page 253
--diag_suppress=tag[,tag,...] on page 254
--diag_warning=tag|[,tag,...] on page 255
--remarks on page 308

12.44 --exceptions, --no_exceptions

Controls the generation of exception tables in the final image.

Default
The default is --exceptions.

Usage

Using --no_exceptions generates an error message if any exceptions sections are present in the
image after unused sections have been eliminated. Use this option to ensure that your code is
exceptions free.

12.45 --export_all, --no_export_all

Controls the export of all global, non-hidden symbols to the dynamic symbols table.

Default
The default is --export_a11 for building shared libraries and dynamically linked libraries (DLLs).

The default is --no_export_a11 for building applications.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 262 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Usage

Use --export_al1l to dynamically export all global, non-hidden symbols from the executable or
DLL to the dynamic symbol table. Use --no_export _al1 to prevent the exporting of symbols to the
dynamic symbol table.

--export_all always exports non-hidden symbols into the dynamic symbol table. The dynamic
symbol table is created if necessary.

You cannot use --export_all to produce a statically linked image because it always exports non-
hidden symbols, forcing the creation of a dynamic segment.

For more precise control over the exporting of symbols, use one or more steering files.

Related information
--export_dynamic, --no_export_dynamic on page 263

12.46 --export_dynamic, --no_export_dynamic

Controls the export of dynamic symbols to the dynamic symbols table.

Not supported for AArché4 state.

Default

--no_export_dynamic is the default.

Usage
If an executable has dynamic symbols, then --export dynamic exports all externally visible symbols.

--export_dynamic exports non-hidden symbols into the dynamic symbol table only if a dynamic
symbol table already exists.

You can use --export_dynamic to produce a statically linked image if there are no imports or
exports.

Related information
--export_all, --no_export_all on page 262

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 263 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

12.47 --filtercomment, --no_filtercomment

Controls whether the linker modifies the . comment section to assist merging.

Default
The default is --filtercomment.

Usage

The linker always removes identical comments. The --filtercomment permits the linker to
preprocess the . comment section and remove some information that prevents merging.

Use --no_filtercomment to prevent the linker from modifying the . comment section.

armlink does not preprocess comment sections from armclang.

Related information
Linker merging of comment sections on page 83
--comment_section, --no_comment_section on page 246

12.48 --fini=symbol

Specifies the symbol name to use to define the entry point for finalization code.

Syntax

-—-fini=symbol
Where symbo1 is the symbol name to use for the entry point to the finalization code.

Usage
The dynamic linker executes this code when it unloads the executable file or shared object.

Related information
--dynamic_linker=name on page 256
--init=symbol on page 274
--library=name on page 283

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 264 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

12.49 --first=section _id

Places the selected input section first in its execution region. This can, for example, place the
section containing the vector table first in the image.

Syntax

--first=section id

Where section idis one of the following:

symbol
Selects the section that defines symbol. For example: —-first=reset.

You must not specify a symbol that has more than one definition, because only one section
can be placed first.

object (section)
Selects section from object. There must be no space between object and the following
open parenthesis. For example: --first=init.o (init).

object
Selects the single input section in object. For example: --first=init.o.

If you use this short form and there is more than one input section in object, armlink
generates an error message.

On Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,
for example:

——first="init.o(init)"

Usage

The --first option cannot be used with --scatter. Instead, use the +rIRrsT attribute in a scatter
file.

Related information

--last=section_id on page 281

--scatter=filename on page 313

Section placement with the FIRST and LAST attributes on page 58
Section placement with the linker on page 56

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 265 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.50 --force_explicit_attr

Causes the linker to retry the CPU mapping using build attributes constructed when an architecture
is specified with --cpu.

Build attribute compatibility checking is supported only for AArch32 state.

Usage
The —-cpu option checks the FPU attributes if the CPU chosen has a built-in FPU.

The error message Le6463U: Input Objects contain <archtype> instructions but could not
find valid target for <archtype> architecture based on object attributes. Suggest using
--cpu option to select a specific cpu. is given in the following situations:

e The ELF file contains instructions from architecture archtype yet the build attributes claim that
archtype is not Supported.

e The build attributes are inconsistent enough that the linker cannot map them to an existing
CPU.

If setting the --cpu option still fails, use --force explicit attr to cause the linker to retry the
CPU mapping using build attributes constructed from --cpu=archtype . This might help if the error
is being given solely because of inconsistent build attributes.

Related information
--Cpu=name on page 249
--fpu=name on page 267

12.51 --force_so_throw, --no_force_so_throw

Controls the assumption made by the linker that an input shared object might throw an exception.

Not supported for AArché64 state.

Usage
By default, exception tables are discarded if no code throws an exception.

Use --force so_throw to specify that all shared objects might throw an exception and so force the
linker to keep the exception tables, regardless of whether the image can throw an exception or not.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 266 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

Default
The default is -—-no_force so_ throw.

12.52 --fpic

Enables you to link Position-Independent Code (PIC), that is, code that has been compiled using the -
fbare-metal-pie Or -fpic compiler command-line options.

The --fpic option is implicitly specified when the --bare metal pie option is used.

Bare-metal PIE support is deprecated in this release.

Related information
--bare_metal_pie on page 236

12.53 --fpu=list
Lists the FPU architectures that are supported by the --fpu=name option.

Deprecated options are not listed.

Related information
--cpu=list on page 248
--Cpu=name on page 249
--fpu=name on page 267

12.54 --fpu=name

Specifies the target FPU architecture.

Default
The default target FPU architecture is derived from use of the —--cpu option.

If the processor you specify with --cpu has a VFP coprocessor, the default target FPU architecture
is the VFP architecture for that processor.

Syntax

--fpu=name

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 267 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

Where name is the name of the target FPU architecture. Specify --fpu=1ist to list the supported
FPU architecture names that you can use with --fpu=name.

The default floating-point architecture depends on the target architecture.

Software floating-point linkage is not supported for AArché4 state.

Usage

If you specify this option, it overrides any implicit FPU option that appears on the command line,
for example, where you use the --cpu option.

The linker uses this option to optimize the choice of system libraries. The default is to select an
FPU that is compatible with all of the component object files.

The linker fails if any of the component object files rely on features that are incompatible with the
selected FPU architecture.

Restrictions
Arm® Neon® support is disabled for softvre.

Related information
--cpu=list on page 248
--Cpu=name on page 249
--fpu=list on page 267

12.55 --got=type

Generates Global Offset Tables (GOTs) to resolve GOT relocations in bare metal images. armlink
statically resolves the GOT relocations.

Default
The default for AArch32 state is none.

The default for AArché4 state is 1ocal.
Syntax
—-—got=type

Where type is one of the following:

none

Disables GOT generation.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 268 of 351

Arm” Compiler armlink User Guide

local

Creates a local offset table for each execution region.

Document ID: DUIO8O3 | en
\ersion 6.6
armlink Command-line Options

o
EI Not supported for AArch32 state.

Note

global
Creates a single offset table for the whole image.

12.56 --gnu_linker_defined_syms

Enables support for the GNU equivalent of input section symbols

o
% Deprecated in this release.

Note

Usage

If you want GNU-style behavior when treating the Arm® symbols
SectionName$$Limit, then specify --gnu_linker defined syms.

Table 12-3: GNU equivalent of input sections

SectionNameSBase and

GNU symbol Arm symbol Description

__start_SectionName SectionName$$Base Address of the start of the consolidated
section called SectionName.

___stop_SectionName SectionName$$Limit Address of the byte beyond the end of the
consolidated section called SectionName

section from being removed as unused.

o o Avreference to sectionname by a GNU input section symbol is sufficient for
* armlink to prevent the section from being removed as unused.

A reference by an Arm input section symbol is not sufficient to prevent the

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affilia
Non-Confidential

tes). All rights reserved.

Page 269 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.57 --help

Displays a summary of the main command-line options.

Default
This is the default if you specify armlink without any options or source files.

Related information
--version_number on page 335
--vsn on page 336

12.58 --import_cmse_lib_in=filename

Reads an existing import library and creates gateway veneers with the same address as given in the
import library. This option is useful when producing a new version of a Secure image where the
addresses in the output import library must not change. It is optional for a Secure image.

Syntax

--import cmse lib in=filename
Where filename is the name of the import library file.

Usage

The input import library is an object file that contains only a symbol table. Each symbol specifies
an absolute address of a secure gateway veneer for an entry function of the same name as the
symbol.

armlink places secure gateway veneers generated from an existing import library using the _ at
feature. New secure gateway veneers must be placed using a scatter file.

Related information

Generation of secure gateway veneers on page 65
--import_cmse_lib_out=filename on page 270

Building Secure and Non-secure Images Using Armv8-M Security Extensions

12.59 --import_cmse_lib_out=filename

Outputs the secure code import library to the location specified. This option is required for a
Secure image.

Syntax

—-—import cmse lib out=filename

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 270 of 351

https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

Where filename is the name of the import library file.

The output import library is an object file that contains only a symbol table. Each symbol specifies
an absolute address of a secure gateway for an entry function of the same name as the symbol.
Secure gateways include both secure gateway veneers generated by arm1ink and any other secure
gateways for entry functions found in the image.

Related information

Generation of secure gateway veneers on page 65
--import_cmse_lib_in=filename on page 270

Building Secure and Non-secure Images Using Armv8-M Security Extensions

12.60 --info=topic],topic,...]
Prints information about specific topics. You can write the output to a text file using -list=file.

Syntax

--info={topicl, topic,...]}

Where topicis a comma-separated list from the following topic keywords:

an
! For unassigned sections that are placed using the .any module selector, lists:
e The sort order.
e The placement algorithm.
e The sections that are assigned to each execution region in the order that the placement
algorithm assigns them.

e Information about the contingency space and policy that is used for each region.
This keyword also displays additional information when you use the execution region
attribute any s1zE in a scatter file.

architecture
Summarizes the image architecture by listing the processor, FPU, and byte order.

common
Lists all common sections that are eliminated from the image. Using this option implies --
info=common, totals.

compression
Gives extra information about the RW compression process.

debug

Lists all rejected input debug sections that are eliminated from the image as a result of using
--remove. Using this option implies --info=debug, totals.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 271 of 351

https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

exceptions
Gives information on exception table generation and optimization.
inline
If you also specify --inline, lists all functions that the linker inlines, and the total number
inlined.
inputs
Lists the input symbols, objects, and libraries.
libraries

Lists the full path name of every library the link stage automatically selects.

You can use this option with --info 1ib prefix to display information about a specific
library.

merge
Lists the const strings that the linker merges. Each item lists the merged result, the strings
being merged, and the associated object files.

pltgot
Lists the PLT entries that are built for the executable or DLL.

sizes

Lists the code and data (RO Data, RW Data, ZI Data, and Debug Data) sizes for each input
object and library member in the image. Using this option implies --info=sizes, totals.
stack

Lists the stack usage of all functions.

summarysizes

Summarizes the code and data sizes of the image.

summarystack

Summarizes the stack usage of all global symbols.

tailreorder
Lists all the tail calling sections that are moved above their targets, as a result of using --
tailreorder.
totals
Lists the totals of the code and data (RO Data, RW Data, ZI Data, and Debug Data) sizes for
input objects and libraries.
unused
Lists all unused sections that are eliminated from the user code as a result of using --remove.
It does not list any unused sections that are loaded from the Arm® C libraries.
unusedsymbols
Lists all symbols that unused section elimination removes.

veneers

Lists the linker-generated veneers.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 272 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

veneercallers
Lists the linker-generated veneers with additional information about the callers to each
veneer. Use with --verbose to list each call individually.

veneerpools
Displays information on how the linker has placed veneer pools.

visibility
Lists the symbol visibility information. You can use this option with either --info=inputs or
--verbose to enhance the output.

weakrefs

Lists all symbols that are the target of weak references, and whether they were defined.

Usage

The output from --info=sizes, totals always includes the padding values in the totals for input
objects and libraries.

If you are using RW data compression (the default), or if you have specified a compressor using the
--datacompressor=id option, the output from --info=sizes, totals includes an entry under Grand
Totals to reflect the true size of the image.

Spaces are not permitted between topic keywords in the list. For example, you can
enter -—info=sizes, totals but not -—-info=sizes, totals.

Related information

--any_contingency on page 232

--any_sort_order=order on page 234

--info_lib_prefix=opt on page 274

--merge, --No_merge on page 295

--veneer_inject_type=type on page 333

Elimination of unused sections on page 76

Options for getting information about linker-generated files on page 87
Placement of unassigned sections on page 138
--datacompressor=opt on page 251

--inline, --no_inline on page 275

--remove, --no_remove on page 309

--keep_intermediate on page 279

--tailreorder, --no_tailreorder on page 327

Considerations when working with RW data compression on page 79
Optimization with RW data compression on page 77

How the linker chooses a compressor on page 77

How compression is applied on page 79

Execution region attributes on page 189

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 273 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.61 --info_lib_prefix=opt

Specifies a filter for the --info=1libraries option. The linker only displays the libraries that have
the same prefix as the filter.

Syntax

--info=1libraries --info lib prefix=opt
Where opt is the prefix of the required library.

Examples

o Displaying a list of libraries without the filter:

armlink --info=libraries test.o

Produces a list of libraries, for example:

install directory\lib\armlib\c 4.linstall directory\lib\armlib
\fz 4s.linstall directory\lib\armlib\h 4.linstall directory\lib\armlib
\m 4s.linstall directory\lib\armlib\vfpsupport.l

o Displaying a list of libraries with the filter:

armlink --info=libraries --info lib prefix=c test.o

Produces a list of libraries with the specified prefix, for example:

install directory\lib\armlib\c 4.1

Related information
--info=topic[,topic,...] on page 271

12.62 --init=symbol

Specifies a symbol name to use for the initialization code. A dynamic linker executes this code
when it loads the executable file or shared object.

Syntax

--init=symbol

Where symbo1 is the symbol name you want to use to define the location of the initialization code.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 274 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Related information
--dynamic_linker=name on page 256
--fini=symbol on page 264
--library=name on page 283

12.63 --inline, --no_inline

Enables or disables branch inlining to optimize small function calls in your image.

Not supported for AArché4 state.

Default
The default is -=-no_inline.

This branch optimization is off by default because enabling it changes the image
such that debug information might be incorrect. If enabled, the linker makes no
attempt to correct the debug information.

--no_inline turns off inlining for user-supplied objects only. The linker still inlines
functions from the Arm® standard libraries by default.

Related information

--branchnop, --no_branchnop on page 240
Function inlining with the linker on page 80
--inline_type=type on page 275
--tailreorder, --no_tailreorder on page 327

12.64 --inline_type=type
Inlines functions from all objects, Arm® C Library only, or turns off inlining completely.

Syntax

--inline type=type

Where type is one of:

all
The linker is permitted to inline functions from all input objects.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 275 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

library
The linker is permitted to inline functions from the Arm standard libraries.

none

The linker is not permitted to inline functions.
This option takes precedence over --inline if both options are present on the command line. The
mapping between the options is:
e -—-inline MapsSs to --inline type=all.

®¢ --no_inline Maps to --inline type=library.

To disable linker inlining completely you must use --inline type=none.

Related information
--inline, --no_inline on page 275
--tailreorder, --no_tailreorder on page 327

12.65 --inlineveneer, --no_inlineveneer

Enables or disables the generation of inline veneers to give greater control over how the linker
places sections.

Default
The default is --inlineveneer.

Related information

--piveneer, --no_piveneer on page 302

--veneershare, --no_veneershare on page 335

\Veneer types on page 63

Linker-generated veneers on page 61

Veneer sharing on page 62

Generation of position independent to absolute veneers on page 64
Reuse of veneers when scatter-loading on page 65

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 276 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

12.66 input-file-list

A space-separated list of objects, libraries, or symbol definitions (symdefs) files.

Usage

The linker sorts through the input file list in order. If the linker is unable to resolve input file
problems then a diagnostic message is produced.

The symdefs files can be included in the list to provide global symbol addresses for previously
generated image files.

You can use libraries in the input file list in the following ways:

e Specify a library to be added to the list of libraries that the linker uses to extract members if
they resolve any non weak unresolved references. For example, specify mystring.1ib in the
input file list.

Members from the libraries in this list are added to the image only when they
resolve an unresolved non weak reference.

e Specify particular members to be extracted from a library and added to the image as individual
objects. Members are selected from a comma separated list of patterns that can include wild
characters. Spaces are permitted but if you use them you must enclose the whole input file list
in quotes.

The following shows an example of an input file list both with and without spaces:
mystring.lib (strcmp.o,std*.o)
'mystring.lib(strcmp.o, std*.o)'

The linker automatically searches the appropriate C and C++ libraries to select the best standard
functions for your image. You can use --no_scanlib to prevent automatic searching of the
standard system libraries.

The linker processes the input file list in the following order:

1. Objects are added to the image unconditionally.

2. Members selected from libraries using patterns are added to the image unconditionally, as if
they are objects. For example, to add all a*.o objects and stdio.o from mystring.1lib use the
following:

"mystring.lib(stdio.o, a*.o)"

3. Library files listed on the command-line are searched for any unresolved non-weak references.
The standard C or C++ libraries are added to the list of libraries that the linker later uses to
resolve any remaining references.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 277 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

Related information

--scanlib, --no_scanlib on page 313

Access symbols in another image on page 103

How the linker performs library searching, selection, and scanning on page 69
--stdlib on page 320

12.67 --keep=section_id

Specifies input sections that must not be removed by unused section elimination.

Syntax

--keep=section id

Where section_idis one of the following:

symbol
Specifies that an input section defining symbo1 is to be retained during unused section
elimination. If multiple definitions of symbol exist, armlink generates an error message.

For example, you might use --keep=int_handler.

To keep all sections that define a symbol ending in _nhandler, Use --keep=* handler.

object (section)

Specifies that section from object is to be retained during unused section elimination. If
a single instance of section is generated, you can omit section, for example, file.o ().
Otherwise, you must specify section.

For example, to keep the vect section from the vectors.o object use:
—-—keep=vectors.o (vect)

To keep all sections from the vectors.o object where the first three characters of the name
of the sections are vec, use:

—-—keep=vectors.o (vec*)

object
Specifies that the single input section from object is to be retained during unused section
elimination. If you use this short form and there is more than one input section in object, the
linker generates an error message.

For example, you might use --keep=dspdata.o.

To keep the single input section from each of the objects that has a name starting with dsp,
US€ --keep=dsp*.o.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 278 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

On Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,
for example:

——-keep="foo.0 (Premier*)"

Usage

All forms of the section idargument can contain the » and 2 wild characters. Matching is case-
insensitive, even on hosts with case-sensitive file naming. For example:

e _——keep foo.o(Premier*) causes the entire match for premier* to be case-insensitive.

e ——keep foo.o(Premier) Causes a case-insensitive match for the string Premier.

The only case where a case-sensitive match is made is for --keep=symbol when
symbol does not contain any wildcard characters.

Use *.o to match all object files. Use * to match all object files and libraries.
You can specify multiple --keep options on the command line.

Matching a symbol that has the same name as an object

If you name a symbol with the same name as an object, then --keep=symbo1 id searches for a
symbol that matches symbo1 ia:

e If asymbolis found, it matches the symbol.

e If no symbol is found, it matches the object.

You can force --keep to match an object with --keep=symbo1_id(). Therefore, to keep both the
symbol and the object, specify --keep foo.o --keep foo.o().

Related information
How the linker performs library searching, selection, and scanning on page 69
The structure of an Arm ELF image on page 38

12.68 --keep_intermediate

Specifies whether the linker preserves the ELF intermediate object file produced by the link time
optimizer.

Default

By default, arm1ink does not preserve the intermediate object file produced by the link time
optimizer.
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 279 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

Syntax

--keep intermediate=option

Where option is:

lto
Preserve an intermediate ELF object file produced by the link time optimizer.

Related information
--Ito, --no_Ito on page 287
Optimizing across modules with link time optimization

12.69 --largeregions, --no_largeregions

Controls the sorting order of sections in large execution regions to minimize the distance between
sections that call each other.

Default

The default is --no_1argeregions. The linker automatically switches to --1argeregions if at least
one execution region contains more code than the smallest inter-section branch. The smallest inter-
section branch depends on the code in the region and the target processor:

128MB
Execution region contains only A64 instructions.

32MB

Execution region contains only A32 instructions.
16MB

Execution region contains T32 instructions, 32-bit T32 instructions are supported.
4MB

Execution region contains T32 instructions, no 32-bit T32 instructions are supported.

Usage

If the execution region contains more code than the range of a branch instruction then the linker
switches to large region mode. In this mode the linker sorts according to the approximated average
call depth of each section in ascending order. The linker might also distribute veneers amongst the
code sections to minimize the number of veneers.

Large region mode can result in large changes to the layout of an image even when
small changes are made to the input.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 280 of 351

https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

To disable large region mode and revert to lexical order, use --no_largeregions. Section placement
is then predictable and image comparisons are more predictable. The linker automatically switches
on --veneerinject if it is needed for a branch to reach the veneer.

Large region support enables:
o Average call depth sorting, --sort=avgCallbepth.
e APl sorting, --api.

e \Veneer injection, --veneerinject.

The following command lines are equivalent:

armlink --largeregions --no_api --no veneerinject --sort=Lexical
armlink --no largeregions

Related information

--api, --no_api on page 235

--sort=algorithm on page 317

--veneer_inject_type=type on page 333

Linker-generated veneers on page 61

\Veneer sharing on page 62

\Veneer types on page 63

Generation of position independent to absolute veneers on page 64
--veneerinject, --no_veneerinject on page 332

12.70 --last=section_id

Places the selected input section last in its execution region.

Syntax

--last=section id

Where section idis one of the following:

symbol
Selects the section that defines symbo1. You must not specify a symbol that has more
than one definition because only a single section can be placed last. For example, --

last=checksum.
object (section)
Selects the section from object. There must be no space between object and the following
open parenthesis. For example, --last=checksum.o (check).
object
Selects the single input section from object. For example, --1ast=checksumn.o.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 281 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

If you use this short form and there is more than one input section in object, armlink
generates an error message.

On Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,
for example:

--last="checksum.o (check)"

Usage
The --1ast option cannot be used with --scatter. Instead, use the +1ast attribute in a scatter file.

Example

This option can force an input section that contains a checksum to be placed last in the RW
section.

Related information

--first=section_id on page 264

--scatter=filename on page 313

Section placement with the FIRST and LAST attributes on page 58
Section placement with the linker on page 56

12.71 --legacyalign, --no_legacyalign

Controls how padding is inserted into the image.

Deprecated in this release.

Default
The default is --no_legacyalign.

Usage

Using --legacyalign, the linker assumes execution regions and load regions to be four-byte
aligned. This option enables the linker to minimize the amount of padding that it inserts into the
image.

The --no_legacyalign option instructs the linker to insert padding to force natural alignment of
execution regions. Natural alignment is the highest known alignment for that region.

Use --no_legacyalign to ensure strict conformance with the ELF specification.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 282 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

You can also use expression evaluation in a scatter file to avoid padding.

Related information

Section placement with the linker on page 56

Load region attributes on page 182

Execution region attributes on page 189

Example of using expression evaluation in a scatter file to avoid padding on page 163

12.72 --libpath=pathlist

Specifies a list of paths that the linker uses to search for the Arm® standard C and C++ libraries.

Syntax

--libpath=pathlist

Where pathlist is a comma-separated list of paths that the linker only uses to search for required
Arm libraries. Do not include spaces between the comma and the path name when specifying
multiple path names, for example, pathi,path2,path3, .., pathn.

This option does not affect searches for user libraries. Use --userlibpath instead
for user libraries.

Related information
--userlibpath=pathlist on page 332

12.73 --library=name

Enables the linker to search a static library without you having specifying the full library filename on
the command-line.

Not supported in the Keil® Microcontroller Development Kit (Keil® MDK).

Syntax

--library=name

Links with the static library, 1ibname.a.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 283 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

Usage

The order that references are resolved to libraries is the order that you specify the libraries on the
command line.

Example
The following example shows how to search for 1ibfoo.a before 1ibbar.a:

--library=foo --library=bar

Related information
--fpic on page 267

12.74 --library_type=lib

Selects the library to be used at link time.

Default

If you do not specify --1ibrary type at link time and no object file specifies a preference, then the
linker assumes --1ibrary type=standardlib.

Syntax

--library type=lib

Where 1ib can be one of:

standardlib
Specifies that the full Arm® Compiler runtime libraries are selected at link time. This is the
default.

microlib

Specifies that the C micro-library (microlib) is selected at link time.

microlib is not supported for AArché4 state.

Usage
Use this option when use of the libraries require more specialized optimizations.

Related information
Building an application with microlib

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 284 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-Micro-library/Building-an-application-with-microlib

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.75 --list=filename

Redirects diagnostic output to a file.

Syntax

--list=filename
Where filename is the file to use to save the diagnostic output. fizename can include a path.

Usage

Redirects the diagnostics output by the --info, --map, --symbols, --verbose, --xref, -~-xreffrom,
and --xrefto options to file.

The specified file is created when diagnostics are output. If a file of the same name already exists, it
is overwritten. However, if diagnostics are not output, a file is not created. In this case, the contents
of any existing file with the same name remain unchanged.

If rilename is specified without a path, it is created in the output directory, that is, the directory
where the output image is being written.

Related information

--map, --no_map on page 292

--verbose on page 335

--xref, --no_xref on page 338

--xrefdbg, --no_xrefdbg on page 338
--xref{from|to}=object(section) on page 338
--info=topic[,topic,...] on page 271
--symbols, --no_symbols on page 326

12.76 --list_mapping_symbols, --no_list_mapping_symbols
Enables or disables the addition of mapping symbols in the output produced by --symbols.

The mapping symbols sa, st, st.x, $d, and $x flag transitions between A32 code, T32 code,
Thumb® EE code (Arm®v7-A), data, and Aé4 code.

Default
The default is --no_list mapping symbols.

Related information

--symbols, --no_symbols on page 326
About mapping symbols on page 94
ELF for the Arm Architecture

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 285 of 351

https://developer.arm.com/documentation/ihi0044/latest

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

12.77 --load_addr_map_info, --no_load_addr_map_info

Includes the load addresses for execution regions and the input sections within them in the map
file.

Default
The default is --no_load addr map info.

Usage

If an input section is compressed, then the load address has no meaning and coMPRESSED iS
displayed instead.

For sections that do not have a load address, such as ZI data, the load address is blank

Restrictions
You must use --map with this option.

Example
The following example shows the format of the map file output:

Base Addr Load Addr Size Type Attr Idx E Section Name
Object
0200008000 0x00008000 0200000008 Code RO 25 * !llmain
__main.o(c_4.1)
0x00010000 COMPRESSED 0x00001000 Data RW 2 dataA
data.o
0200003000 = 0200000004 Zero RW 2 .bss
test.o

Related information
--map, --no_map on page 292

12.78 --locals, --no_locals

Adds local symbols or removes local symbols depending on whether an image or partial object is
being output.

Default
The default is --1ocals.

Usage
The --10cals option adds local symbols in the output symbol table.

The effect of the --no_10cals option is different for images and object files.

When producing an executable image --no_1ocals removes local symbols from the output symbol
table.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 286 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

For object files built with the --partial option, the --no_1ocals option:

o Keeps mapping symbols and build attributes in the symbol table.

e Removes those local symbols that can be removed without loss of functionality.
Symbols that cannot be removed, such as the targets for relocations, are kept. For these

symbols, the names are removed. These are marked as [anonymous Symbol] inthe fromelf --
text output.

--no_locals is a useful optimization if you want to reduce the size of the output symbol table in
the final image.

Related information

--privacy on page 306

--privacy fromelf option
--strip=option[,option,...] fromelf option

12.79 --lto, --no_lto

Enables link time optimization.

Link Time Optimization performs aggressive optimizations by analyzing the
dependencies between bitcode format objects. This can result in the removal of
unused variables and functions in the source code.

o
When you specify the -f1to option, armclang produces ELF files that contain
bitcode in a .11vmbc section.

Note

With the --no_1to option, armlink gives an error message if it encounters any .11vmbc sections.

Default
The default is --no_1to.

Dependencies
Link time optimization requires the dependent library 1ibLTO.

Table 12-4: Link time optimization dependencies

Dependency Windows filename Linux filename

1ibLTO LTO.d11 1ibLTO.so

By default, the dependent library 1ibLTO is present in the same directory as armlink.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 287 of 351

https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--privacy
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--strip-option--option---

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

The search order for these dependencies is as follows.

LTO.d11:
1. The same directory as the armlink executable.

2. The directories in the current directory search path.

1ibLTO. so.

The same directory as the arm1ink executable.

2. The directories in the b_rL1BRARY PATH environment variable.
3. The cache file /etc/1d.s0.cache.
4. The directories /1ib and /usr/1ib.

These directories might have the suffix 64 on some 64-bit Linux systems. For example, on 64-
bit Red Hat Enterprise Linux the directories are /1ib64 and /usr/1ib64.

The armclang executables and the 1ibrTo library must come from the same Arm®
Compiler 6 installation. Any use of 1ibLTo other than that supplied with Arm
Compiler 6 is unsupported.

LTO does not honor the armclang option -mexecute-only. If YOu use the armclang
options -f1to or -omax, then the compiler cannot generate execute-only code.

Related information

--info=topic[,topic,...] on page 271

--keep_intermediate on page 279

--Ito_keep_all_symbols, --no_lto_keep_all_symbols on page 288
--Ito_intermediate_filename on page 289
--Ito_relocation_model on page 291

--Ito_level on page 289

-Omax on page 299

-flto, -fno-Ito

Optimizing across modules with link time optimization

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 288 of 351

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-flto---fno-lto
https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.80 --lto_keep_all_symbols, --no_Ito_keep_all_symbols
Specifies whether link time optimization removes unreferenced global symbols.

Using --1to_keep all symbols affects all symbols and largely reduces the usefulness of link time
optimization. If you need to keep only a specific unreferenced symbol, then use the --keep option
instead.

Default
The default is --no_lto keep all symbols.

Related information

--keep=section_id on page 278

--Ito, --no_Ito on page 287

Optimizing across modules with link time optimization

12.81 --lto_intermediate_filename

Specifies the name of the ELF object file produced by the link time optimizer.

Default
The default is a temporary filename.

Syntax

--1lto intermediate filename=filename
Where filename is the filename the link time optimizer uses for the ELF object file it produces.

Usage

The purpose of the --1to_intermediate filename Option is so that the intermediate file produced
by the link time optimizer can be named in other inputs to the linker, such as scatter loading files.

The --1to_intermediate filename Option does not cause the linker to keep the
intermediate object file. Use the --keep-intermediate=1to Option to keep the
intermediate file.

Related information

--keep_intermediate on page 279

--Ito, --no_Ito on page 287

Optimizing across modules with link time optimization

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 289 of 351

https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization
https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

12.82 --lto_level

Sets the optimization level for the link time optimization feature.

Default

If you do not specify o1evel, the linker assumes o2. This level is different from the default armc1ang
optimization level, -oo. Arm recommends that you always specify a --1to_level=0level to match
the optimization level that is used with armclang, instead of relying on the default.

Syntax

-—-1lto level=0O{level}

Where 1evel is one of the following:

0
Minimum optimization for the performance of the compiled binary. Turns off most
optimizations. When debugging is enabled, this option generates code that directly
corresponds to the source code. Therefore, this optimization might result in a significantly
larger image.

1
Restricted optimization. When debugging is enabled, this option selects a good compromise
between image size, performance, and quality of debug view.
Arm recommends -o1 rather than -oo for the best trade-off between debug view, code size,
and performance.

2
High optimization. When debugging is enabled, the debug view might be less satisfactory
because the mapping of object code to source code is not always clear. The linker might
perform optimizations that the debug information cannot describe.
This optimization is the default optimization level.

3
Very high optimization. When debugging is enabled, this option typically gives a poor debug
view. Arm recommends debugging at lower optimization levels.

fast
Enables all the optimizations from level 3 including those optimizations that are performed
with the armclang

max

Maximum optimization. Specifically targets performance optimization. Enables all the
optimizations from level fast, together with other aggressive optimizations.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 290 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

This option is not guaranteed to be fully standards-compliant for all code
cases.

o Code-size, build-time, and the debug view can each be adversely affected
when using this option.

e Arm cannot guarantee that the best performance optimization is achieved
in all code cases.

Performs optimizations to reduce code size, balancing code size against code speed.

Performs optimizations to minimize image size.

Related information

--Ito, --no_Ito on page 287

-Omax on page 299

-O

Optimizing across modules with link time optimization

12.83 --lto_relocation_model

Specifies whether the link time optimizer produces absolute or position independent code.

Default

The default is --1lto relocation model=static.

Syntax

--1lto _relocation model=model

Where model is one of the following:
static

The link time optimizer produces absolute code.
pic

The link time optimizer produces code that uses GOT relative position independent code.

The --1to_relocation model=pic option requires the armlink option --bare metal pie.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 291 of 351

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-O
https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Bare-metal PIE support is deprecated in this release.

Related information

--bare_metal_pie on page 236

--Ito, --no_Ito on page 287

Optimizing across modules with link time optimization

12.84 --mangled, --unmangled

Instructs the linker to display mangled or unmangled C++ symbol names in diagnostic messages,
and in listings produced by the --xref, ~-xreffrom, -—xrefto, and --symbols options.

Default
The default is ——unmangled.

Usage
If -——unmangled is selected, C++ symbol names are displayed as they appear in your source code.

If -——-mangled is selected, C++ symbol names are displayed as they appear in the object symbol
tables.

Related information
--match=crossmangled on page 293

12.85 --map, --no_map

Enables or disables the printing of a memory map.

Default
The default is --no_map.

Usage

The map contains the address and the size of each load region, execution region, and input section
in the image, including linker-generated input sections. This can be output to a text file using --
list=filename.

Related information
--load_addr_map_info, --no_load_addr_map_info on page 285
--list=filename on page 284

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 292 of 351

https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

--section_index_display=type on page 315

12.86 --match=crossmangled

Instructs the linker to match the combinations of mangled and unmangled symbol references and
definitions.

Deprecated in this release.

Usage
Matches:

e Areference to an unmangled symbol with the mangled definition.

e Areference to a mangled symbol with the unmangled definition.

Libraries and matching combinations operate as follows:

e |f the library members define a mangled definition, and there is an unresolved unmangled
reference, the member is loaded to satisfy it.

« If the library members define an unmangled definition, and there is an unresolved mangled
reference, the member is loaded to satisfy it.

This option has no effect if used with partial linking. The partial object contains all
the unresolved references to unmangled symbols, even if the mangled definition
exists. Matching is done only in the final link step.

Related information
--mangled, --unmangled on page 292

12.87 --max_er_extension=size

Specifies a constant value to add to the size of an execution region when no maximum size is
specified for that region. The value is used only when placing _ at sections.

Default
The default size is 10240 bytes.

Syntax

--max er extension=size

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 293 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Where size is the constant value in bytes to use when calculating the size of the execution region.

Related information
Automatically placing __at sections on page 132

12.88 --max_veneer_passes=value

Specifies a limit to the number of veneer generation passes the linker attempts to make when
certain conditions are met.

Default
The default number of passes is 10.

Syntax

--max_veneer passes=value

Where value is the maximum number of veneer passes the linker is to attempt. The minimum value
you can specify is one.

Usage
The linker applies this limit when both the following conditions are met:

e A section that is sufficiently large has a relocation that requires a veneer.
e The linker cannot place the veneer close enough to the call site.
The linker attempts to diagnose the failure if the maximum number of veneer generation passes

you specify is exceeded, and displays a warning message. You can downgrade this warning message
using --diag_remark.

Related information
--diag_remark=tag|,tag,...] on page 253
--diag_warning=tag[,tag,...] on page 255

12.89 --max_visibility=type
Controls the visibility of all symbol definitions.

Default
The default is --max visibility=default.

Syntax
--max_visibility=type
Where type can be one of:
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 294 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

default
Default visibility.

protected
Protected visibility.

Usage

Use --max_visibility=protected to limit the visibility of all symbol definitions. Global symbol
definitions that normally have default visibility, are given protected visibility when this option is
specified.

Related information
--override_visibility on page 299

12.90 --merge, --no_merge

Enables or disables the merging of const strings that are placed in shareable sections by the
compiler.

Default
The default is --merge.

Usage
Using --merge can reduce the size of the image if there are similarities between const strings.

Use —-info=merge to see a listing of the merged const strings.

By default, merging happens between different load and execution regions. Therefore, code from
one execution or load region might use a string stored in different region. If you do not want this
behavior, then do one of the following:

e Use the proTECTED l0ad region attribute if you are using scatter-loading.

o Globally disable merging with --no_merge.

Related information
--info=topic[,topic,...] on page 271
Load region attributes on page 182

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 295 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

12.91 --merge_litpools, --no_merge_litpools

Attempts to merge identical constants in objects targeted at AArch32 state. The objects must be
produced with Arm® Compiler 6.

Default
--merge_litpools is the default.

Related information
Merging identical constants on page 84

12.92 --muldefweak, --no_muldefweak

Enables or disables multiple weak definitions of a symbol.

Default
The default is --muldefweak.

Usage

If enabled, the linker chooses the first definition that it encounters and discards all the other
duplicate definitions. If disabled, the linker generates an error message for all multiply defined weak
symbols.

12.93 -o filename, --output=filename

Specifies the name of the output file. The file can be either a partially-linked object or an
executable image, depending on the command-line options used.

Syntax

--output=filename
-o filename

Where filename is the name of the output file, and can include a path.

Usage
If —~—output=rilename is Not specified, the linker uses the following default filenames:
__image.axf

If the output is an executable image.

__object.o
If the output is a partially-linked object.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 296 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

armlink Command-line Options

If filename is specified without path information, it is created in the current working directory. If
path information is specified, then that directory becomes the default output directory.

Related information
--callgraph_file=filename on page 242
--partial on page 301

12.94 --output_float_abi=option

Specifies the floating-point procedure call standard to advertise in the ELF header of the
executable.

Not supported for AArché4 state.

Default
The default option is auto.

Syntax

--output float abi=option

where option is one of the following:

auto

Checks the object files to determine whether the hard float or soft float bit in the ELF header
flag is set.
hard
The executable file is built to conform to the hardware floating-point procedure-call standard.
soft
Conforms to the software floating-point procedure-call standard.

Usage
When the option is set to auto:
e For multiple object files:

o If all the object files specify the same value for the flag, then the executable conforms to
the relevant standard.

o If some files have the hard float and soft float bits in the ELF header flag set to different
values from other files, this option is ignored and the hard float and soft float bits in the
executable are unspecified.

» If afile has the build attribute Tag aB1 vFP args set to 2, then the hard float and soft float bits
in the ELF header flag in the executable are set to zero.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 297 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

armlink Command-line Options

o If afile has the build attribute Tag aBI VFP args set to 3, then armlink ignores this option.

You can use fromelf --text on the image to see whether hard or soft float is set in the ELF
header flag.

Related information
--decode_build_attributes

--text

ELF for the Arm Architecture
Run-time ABI for the Arm Architecture

12.95 --overlay_veneers

When using the automatic overlay mechanism, causes armlink to redirect calls between overlays to
a veneer. The veneer allows an overlay manager to unload and load the correct overlays.

You must use this option if your scatter file includes execution regions with
AUTO OVERLAY attribute assigned to them.

Arm® Compiler does not support using both manual and automatic overlays within
the same program.

Usage
armlink creates a veneer for a function call when any of the following are true:

e The calling function is in non-overlaid code and the called function is in an overlay.
e The calling function is in an overlay and the called function is in a different overlay.

e The calling function is in an overlay and the called function is in non-overlaid code.

In the last of these cases, an overlay does not have to be loaded immediately, but the overlay
manager typically has to adjust the return address. It does this adjustment so that it can arrange to
check on function return that the overlay of the caller is reloaded before returning to it.

Veneers are not created when calls between two functions are in the same overlay. If the calling
function is running, then the called function is guaranteed to be loaded already, because each
overlay is atomic. This situation is also guaranteed when the called function returns.

A relocation might refer to a function in an overlay and not modify a branch instruction. For
example, the relocations R_ARM_ABS32 or R_ARM REL32 do not modify a branch instruction. In
this situation, arm1ink redirects the relocation to point at a veneer for the function regardless of

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 298 of 351

https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--decode-build-attributes
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--text
https://developer.arm.com/documentation/ihi0044/latest
https://developer.arm.com/documentation/ihi0043/latest/

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

where the relocation is. This redirection is done in case the address of the function is passed into
another overlay as an argument.

Related information
Execution region attributes on page 189
Automatic overlay support

12.96 --override_visibility
Enables exporT and 1MpoRT directives in a steering file to override the visibility of a symbol.

Usage
By default:

e Only symbol definitions with sTv_DEFAULT Or sTV_PROTECTED Visibility can be exported.

e Only symbol references with stv_peraurt visibility can be imported.

When you specify --override visibility, any global symbol definition can be exported and any
global symbol reference can be imported.

Related information
--undefined_and_export=symbol on page 330
EXPORT steering file command on page 341
IMPORT steering file command on page 343

12.97 -Omax

Enables maximum link time optimization.
-omax automatically enables the --1to and --1to_level=omax options.

If you have object files that have been compiled with the armc1ang option -omax, then you can link
them using the armlink option -omax to produce an image with maximum link time optimization.

Related information

--Ito_level on page 289

--Ito, --no_Ito on page 287

-O

Optimizing across modules with link time optimization

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 299 of 351

https://developer.arm.com/documentation/dui0773/l/Overlays/Automatic-overlay-support
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-O
https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.98 --pad=num

Enables you to set a value for padding bytes. The linker assigns this value to all padding bytes
inserted in load or execution regions.

Syntax

--pad=num
Where num is an integer, which can be given in hexadecimal format.

For example, setting num to rr might help to speed up ROM programming time. If numis greater
than rr, then the padding byte is cast to a char, that is (char) num.

Usage
Padding is only inserted:

e Within load regions. No padding is present between load regions.

e Between fixed execution regions (in addition to forcing alignment). Padding is not inserted up to
the maximum length of a load region unless it has a fixed execution region at the top.

» Between sections to ensure that they conform to alignment constraints.

Related information
Input sections, output sections, regions, and program segments on page 40
Load view and execution view of an image on page 42

12.99 --paged

Enables Demand Paging mode to help produce ELF files that can be demand paged efficiently.

Usage

A default page size of 8000 bytes is used. You can change this with the --pagesize command-line
option.

Related information

--pagesize=pagesize on page 300

Linker support for creating demand-paged files on page 60
Aligning regions to page boundaries on page 160

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 300 of 351

Arm” Compiler armlink User Guide

12.100 --pagesize=pagesize
Allows you to change the page size used when demand paging.

Default
The default value is 0x8000.

Syntax

--pagesize=pagesize
Where pagesize is the page size in bytes.

Related information

--paged on page 300

Linker support for creating demand-paged files on page 60
Aligning regions to page boundaries on page 160

12.101 --partial

Creates a partially-linked object that can be used in a subsequent link step.

Restrictions
You cannot use —--partial With --scatter.

Related information
Partial linking model on page 33

12.102 --pie

Species the Position Independent Executable (PIE) linking model.

Document ID: DUIO8O3 | en
\ersion 6.6
armlink Command-line Options

Bare-metal PIE support is deprecated in this release.

You must use this option with the --fpic and --ref pre init options.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 301 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Related information

--fpic on page 267

--bare_metal_pie on page 236
--ref_pre_init, --no_ref_pre_init on page 307

12.103 --piveneer, --no_piveneer

Enables or disables the generation of a veneer for a call from position independent (PI) code to
absolute code.

Default
The default is --piveneer.

Usage
When using --no_piveneer, an error message is produced if the linker detects a call from Pl code
to absolute code.

Not supported for AArché4 state.

Related information

--inlineveneer, --no_inlineveneer on page 276

--veneershare, --no_veneershare on page 335

Generation of position independent to absolute veneers on page 64
Linker-generated veneers on page 61

\eneer sharing on page 62

Veneer types on page 63

Reuse of veneers when scatter-loading on page 65

12.104 --pltgot=type

Specifies the type of Procedure Linkage Table (PLT) and Global Offset Table (GOT) to use,
corresponding to the different addressing modes of the Base Platform Application Binary Interface
(BPABI).

This option is supported only when using --base platform OF —-bpabi.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 302 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

Not supported for AArché4 state.

Default
When the --bpabi or --d11 options are used, the default is --pltgot=direct.

When the --base platform option is used, the default is --pltgot=none.

Syntax
--pltgot=type

Where type is one of the following:

none
References to imported symbols are added as dynamic relocations for processing by a
platform specific post-linker.

direct

References to imported symbols are resolved to read-only pointers to the imported symbols.
These are direct pointer references.

Use this type to turn on PLT generation when using --base platform.

indirect

The linker creates a GOT and possibly a PLT entry for the imported symbol. The reference
refers to PLT or GOT entry.

This type is not supported if you have multiple load regions.

sbrel

Same referencing as indirect, except that GOT entries are stored as offsets from the static
base address for the segment held in R at runtime.

This type is not supported if you have multiple load regions.

Related information

--base_platform on page 237

--bpabi on page 239

--pltgot_opts=mode on page 303

Base Platform linking model on page 35

--dll on page 255

Base Platform Application Binary Interface (BPABI) linking model on page 34

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 303 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.105 --pltgot_opts=mode

Controls the generation of Procedure Linkage Table (PLT) entries for weak references and function
calls to relocatable targets within the same file.

Not supported for AArché4 state.

Default

The(kﬁauﬁis——pltgot_opts:nocrosslr,noweakref&

Syntax

--pltgot opts=model[, mode, ...]

Where mode is one of the following:

crosslr

Calls to and from a load region marked reroc go by way of the PLT.

nocrosslr

Calls to and from a load region marked reroc do not generate PLT entries.

noweakrefs

Generates a nop for a function call, or zero for data. No PLT entry is generated. Weak
references to imported symbols remain unresolved.

weakrefs

Weak references produce a PLT entry. These references must be resolved at a later link stage.

Related information
--base_platform on page 237
--pltgot=type on page 302

12.106 --predefine="string"

Enables commands to be passed to the preprocessor when preprocessing a scatter file.
You specify a preprocessor on the first line of the scatter file.

Syntax

--predefine= "string"
You can use more than one --predefine option on the command-line.
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved

Non-Confidential
Page 304 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

Version 6.6
armlink Command-line Options

You can also use the synonym --pd="string".

Restrictions
Use this option with --scatter.

Example scatter file before preprocessing
The following example shows the scatter file contents before preprocessing.

#! armclang -E
lrl BASE

{
erl BASE

{
}
er2 BASE2
{

}

* (+RO)

* (+RW+ZTI)

Use armlink with the command-line options:

—--predefine="-DBASE=0x8000" --predefine="-DBASE2=0x1000000" --scatter=filename

This passes the command-line options: -DBASE=0x8000 -DBASE2=0x1000000 to the compiler to
preprocess the scatter file.

Example scatter file after preprocessing
The following example shows how the scatter file looks after preprocessing:

1rl 0x8000

{ erl 0x8000
{ * (+RO)
érZ 0x1000000
I * (+RW+ZT)

Related information

Preprocessing a scatter file on page 162
--scatter=filename on page 313

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 305 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

12.107 --preinit, --no_preinit
Enables the linker to use a different image pre-initialization routine if required.

Syntax

--preinit=symbol
If —~-preinit=symbol is not specified then the default symbol arm preinit is assumed.
--no_preinit does not take a symbol argument.

Effect
The linker adds a non-weak reference to symbol if a .preinit array section is detected.

For --preinit=_arm preinit Of --cppinit=_cpp initialize aeabi , the linker processes
R_ARM_TARGET1 relocations as R_ARM_REL32, because this is required by the arm preinit
and cpp initialize aeabi_ functions. In all other cases R_ARM_TARGET1 relocations are
processes as R_ARM_ABS32.

Related information

--fpic on page 267

--ref_pre_init, --no_ref_pre_init on page 307
--bare_metal_pie on page 236

12.108 --privacy

Modifies parts of an image to help protect your code.

Usage
The effect of this option is different for images and object files.

When producing an executable image it removes local symbols from the output symbol table.

For object files built with the --partial option, this option:
» Changes section names to a default value, for example, changes code section names to .text.
o Keeps mapping symbols and build attributes in the symbol table.
e Removes those local symbols that can be removed without loss of functionality.
Symbols that cannot be removed, such as the targets for relocations, are kept. For these

symbols, the names are removed. These are marked as [Anonymous Symbol] inthe fromelf --
text output.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 306 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

To help protect your code in images and objects that are delivered to third parties,
use the fromelf --privacy command.

Related information

--locals, --no_locals on page 286

--partial on page 301

--privacy fromelf option

--strip=option[,option,...] fromelf option

Options to protect code in object files with fromelf

12.109 --ref_cpp_init, --no_ref_cpp_init

Enables or disables the adding of a reference to the C++ static object initialization routine in the
Arm® libraries.

Default
The default is --ref cpp init.

Usage
The default reference added is _ cpp_initialize aeabi . o change this you can use --cppinit.

Use --no_ref cpp_init if you are not going to use the Arm libraries.

Related information
--cppinit, --no_cppinit on page 247

12.110 --ref_pre_init, --no_ref_pre_init

Allows the linker to add or not add references to the image pre-initialization routine in the Arm®
libraries. The default reference added is _arm preinit . To change this you can use --preinit.

Default
The default is -—-no_ref pre init.

Related information

--fpic on page 267

--preinit, --no_preinit on page 305
--bare_metal_pie on page 236

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 307 of 351

https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--privacy
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--strip-option--option---
https://developer.arm.com/documentation/dui0805/l/Using-fromelf/Options-to-protect-code-in-object-files-with-fromelf

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.111 --reloc

Creates a single relocatable load region with contiguous execution regions.

Not supported for AArché4 state.

Usage

Only use this option for legacy systems with the type of relocatable ELF images that conform to
the ELF for the Arm Architecture specification. The generated image might not be compliant with the
ELF for the Arm® Architecture specification.

When relocated mMovT and mMovw instructions are encountered in an image being linked with —-reloc,
armlink produces the following additional dynamic tags:
DT_RELA
The address of a relocation table.
DT_RELASZ
The total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT
The size, in bytes, of the DT_RELA relocation entry.

Restrictions
You cannot use --reloc With --scatter.

You cannot use this option with --xo_base.

Related information

Type 1 image, one load region and contiguous execution regions on page 165

Type 3 image structure, multiple load regions and non-contiguous execution regions on page 54
Base Platform ABI for the Arm Architecture

ELF for the Arm Architecture

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 308 of 351

https://developer.arm.com/documentation/ihi0037/latest
https://developer.arm.com/documentation/ihi0044/latest

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.112 --remarks

Enables the display of remark messages, including any messages redesignated to remark severity
using --diag_remark.

The linker does not issue remarks by default.

Related information
--diag_remark=tag[,tag,...] on page 253
--errors=filename on page 262

12.113 --remove, --no_remove

Enables or disables the removal of unused input sections from the image.

Default
The default is --remove.

The default is --no_remove only if you specify --base platform Or --bpabi With --d11.

Usage

An input section is considered used if it contains an entry point, or if it is referred to from a used
section.

By default, unused section elimination is disabled when building dynamically linked libraries (DLLs)
or shared objects, Use --remove to re-enable unused section elimination.

Use --remove with the --xeep option to retain specific sections in a normal build.

Related information

--base_platform on page 237

--bpabi on page 239

Elimination of unused sections on page 76

--dll on page 255

How the linker performs library searching, selection, and scanning on page 69
--keep=section_id on page 278

Elimination of common debug sections on page 75

Elimination of common groups or sections on page 75

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 309 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.114 --ro_base=address

Sets both the load and execution addresses of the region containing the RO output section at a
specified address.

Default

If this option is not specified, and no scatter file is specified, the default is --ro_base=0x8000. If XO
sections are present, then this is the default value used to place the ER_XO region.

Syntax

-—-ro_base={address}
Where {address} must be word-aligned.

Usage

If execute-only (XO) sections are present, and you specify --ro_base without --xo base, then an
ER_XO execution region is created at the address specified by --ro_base. The ER_RO execution
region immediately follows the ER_XO region.

Restrictions
You cannot use --ro_base with:

-—-scatter.

Related information

--ropi on page 310

--rosplit on page 311
--rw_base=address on page 311
--x0_base=address on page 337
--7i_base=address on page 339

12.115 --ropi

Makes the load and execution region containing the RO output section position-independent.

Not supported for AArché4 state.

Usage

If this option is not used, the region is marked as absolute. Usually each read-only input section
must be Read-Only Position-Independent (ROPI). If this option is selected, the linker:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 310 of 351

Arm® Compiler armlink User Guide

e Checks that relocations between sections are valid.

Document ID: DUIO8O3 | en

\ersion 6.6

armlink Command-line Options

o Ensures that any code generated by the linker itself, such as interworking veneers, is ROPI.

The linker gives a downgradable error if --ropi is used without --rwpi or --

rw_base.

Restrictions
You cannot use --ropi:
e With --fpic, --scatter, Ol --xo_base.

e When an object file contains execute-only sections.

Related information
--ro_base=address on page 309
--rosplit on page 311
--rw_base=address on page 311
--x0_base=address on page 337
--7i_base=address on page 339

12.116 --rosplit

Splits the default RO load region into two RO output sections.

The RO load region is split into the RO output sections:
e RO-CODE.

e RO-DATA.

Restrictions
You cannot use --rosplit with:

--scatter.

Related information
--ro_base=address on page 309
--ropi on page 310
--rw_base=address on page 311
--x0_base=address on page 337
--7i_base=address on page 339

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 311 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.117 --rw_base=address

Sets the execution addresses of the region containing the RW output section at a specified
address.

Syntax

--rw_base=address

Where address must be word-aligned.

This option does not affect the placement of execute-only sections.

Restrictions
You cannot use --rw_base with:

—--scatter.

Related information
--ro_base=address on page 309
--ropi on page 310

--rosplit on page 311
--x0_base=address on page 337
--7i_base=address on page 339

12.118 --rwpi

Makes the load and execution region containing the RW and ZI output section position-
independent.

Not supported for AArch64 state.

Usage

If this option is not used the region is marked as absolute. This option requires a value for --
rw_base. If ——rw_base is not specified, --rw base=0 is assumed. Usually each writable input section
must be Read-Write Position-Independent (RWPI).

If this option is selected, the linker:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 312 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

o Checks that the p1 attribute is set on input sections to any read-write execution regions.
o Checks that relocations between sections are valid.

o Generates entries relative to the static base in the table regionssTable.

This is used when regions are copied, decompressed, or initialized.

Restrictions
You cannot use --rwpi:

e With --fpic, --scatter, Ol --xo_base.

* When an object file contains execute-only sections.

Related information
--split on page 319
--scatter=filename on page 313

12.119 --scanlib, --no_scanlib

Enables or disables scanning of the Arm libraries to resolve references.
Use --no_scanlib if you want to link your own libraries.

Default
The default is --scanlib.

Related information
--stdlib on page 320

12.120 --scatter=filename

Creates an image memory map using the scatter-loading description that is contained in the
specified file.

The description provides grouping and placement details of the various regions and sections in the
image.

Syntax

--scatter=filename

Where filename is the name of a scatter file.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 313 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Usage

To modify the placement of any unassigned input sections when .any selectors are present, use the
following command-line options with —-scatter:

® --any contingency.
® --any placement.
® --any sort order.

You cannot use the —--scatter option with:

® —-bpabi.

e ——first.

e -—-last.

e -—-partial.
e -—-reloc.

¢ --ro base.
e -—-ropi.

e -—-rosplit.
® --rw base.
s —-rwpi.

e -—-split.

® --xo0 base.
e --zi base.

You can use --d11 when specified with --base platform.

Related information
--any_contingency on page 232
--any_sort_order=order on page 234
Examples of using placement algorithms for . ANY sections on page 143
--base_platform on page 237
Preprocessing a scatter file on page 162
--first=section_id on page 264
--last=section_id on page 281
--ro_base=address on page 309
--ropi on page 310
--rosplit on page 311
--rw_base=address on page 311
--rwpi on page 312
--split on page 319
--x0_base=address on page 337
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 314 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

--7i_base=address on page 339

--bpabi on page 239

--dll on page 255

--partial on page 301

--reloc on page 307

Scatter-loading Features on page 112

Behavior when .ANY sections overflow because of linker-generated content on page 148

12.121 --section_index_display=type
Changes the display of the index column when printing memory map output.

Default

The default is --section index display=internal.

Syntax

--section index display=type

Where type is one of the following:

cmdline

Alters the display of the map file to show the order that a section appears on the command-
line. The command-line order is defined as File.0Object.Section Where:

e section is the section index, sh_idx, of the section in the object.
e Object is the order that object appears in the rFile.

e Filelsthe order the rile appears on the command line.

The order the object appears in the rile is only significant if the file is an ar archive.
internal

The index value represents the order in which the linker creates the section.
input

The index value represents the section index of the section in the original input file. This is
useful when you want to find the exact section in an input object.

Usage
Use this option with --map.

Related information
--map, --no_map on page 292
--tiebreaker=option on page 328

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 315 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.122 --show_cmdline

Outputs the command line used by the linker.

Usage

Shows the command line after processing by the linker, and can be useful to check:

e The command line a build system is using.

e How the linker is interpreting the supplied command line, for example, the ordering of
command-line options.

The commands are shown normalized, and the contents of any via files are expanded.

The output is sent to the standard error stream (stderr).

Related information
--help on page 269
--via=filename on page 336

12.123 --show_full_path

Displays the full path name of an object in any diagnostic messages.

Usage

If the file representing object ob7 has full path name path/to/obj then the linker displays path/to/
obj instead of obj in any diagnostic message.

Related information
--show_parent_lib on page 316
--show_sec_idx on page 316

12.124 --show_parent_lib

Displays the library name containing an object in any diagnostic messages.

Usage

If an object obj comes from library 1ib, then this option displays 1ib (obj) instead of obj in any
diagnostic messages.

Related information
--show _full_path on page 316
--show_sec_idx on page 316

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 316 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

armlink Command-line Options

12.125 --show_sec_idx

Displays the section index, sh_idx, of section in the originating object.

Example
If section sec has section index 3 then it is displayed as sec:3 in all diagnostic messages.

Related information
--show_full_path on page 316
--show_parent_lib on page 316

12.126 --sort=algorithm

Specifies the sorting algorithm used by the linker to determine the order of sections in an output
image.

Default

The default algorithm is --sort=Lexical. In large region mode, the default algorithm is -
sort=AvgCallDepth.

Syntax

--sort=algorithm

where algorithmis one of the following:

Alignment
Sorts input sections by ascending order of alignment value.

AlignmentLexical
Sorts input sections by ascending order of alignment value, then sorts lexically.

AvgCallDepth
Sorts all T32 code before A32 code and then sorts according to the approximated average
call depth of each section in ascending order.

Use this algorithm to minimize the number of long branch veneers.

The approximation of the average call depth depends on the order of input
sections. Therefore, this sorting algorithm is more dependent on the order of
input sections than using, say, Runningbepth.

BreadthFirstCallTree
This is similar to the caliTtree algorithm except that it uses a breadth-first traversal when
flattening the Call Tree into a list.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 317 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

CallTree

The linker flattens the call tree into a list containing the read-only code sections from all
execution regions that have callTtree sorting enabled.

Sections in this list are copied back into their execution regions, followed by all the non read-
only code sections, sorted lexically. Doing this ensures that sections calling each other are
placed close together.

This sorting algorithm is less dependent on the order of input sections than
using either RunningDepth OF AvgCallDepth.

Lexical
Sorts according to the name of the section and then by input order if the names are the
same.

LexicalAlignment
Sorts input sections lexically, then according to the name of the section, and then by input
order if the names are the same.

LexicalState
Sorts T32 code before A32 code, then sorts lexically.

List
Provides a list of the available sorting algorithms. The linker terminates after displaying the
list.

ObjectCode

Sorts code sections by tiebreaker. All other sections are sorted lexically. This is most useful
when used with --tiebreaker=cmdline because it attempts to group all the sections from
the same object together in the memory map.

RunningDepth

Sorts all T32 code before A32 code and then sorts according to the running depth of the
section in ascending order. The running depth of a section S is the average call depth of all
the sections that call S, weighted by the number of times that they call S.

Use this algorithm to minimize the number of long branch veneers.

Usage

The sorting algorithms conform to the standard rules, placing input sections in ascending order by
attributes.

You can also specify sort algorithms in a scatter file for individual execution regions. Use the
sorTTYPE keyword to do this.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 318 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

The sorTTYPE execution region attribute overrides any sorting algorithm that you
specify with this option.

Related information

--tiebreaker=option on page 328
--largeregions, --no_largeregions on page 280
Execution region attributes on page 189
Section placement with the linker on page 56
Execution region descriptions on page 187

12.127 --split

Splits the default load region, that contains the RO and RW output sections, into separate load
regions.

Usage
The default load region is split into the following load regions:

e One region containing the RO output section. The default load address is 8000, but you can
specify a different address with the --ro_base option.

e One region containing the RW and ZI output sections. The default load address is o, but you
can specify a different address with the --rw_base option.

Both regions are root regions.

Considerations when execute-only sections are present

For images containing execute-only (XO) sections, an XO execution region is placed at the address
specified by --ro base. The RO execution region is placed immediately after the XO region.

If you specify --xo base address, then the XO execution region is placed at the specified address
in a separate load region from the RO execution region.

Restrictions
You cannot use --split With --scatter.

Related information
--scatter=filename on page 313
The structure of an Arm ELF image on page 38

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 319 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

12.128 --startup=symbol, --no_startup

Enables the linker to use alternative C libraries with a different startup symbol if required.

Default
The default is --startup=_ main.

Syntax

--startup =symbol
By default, symbo1is setto main.

--no_startup does not take a argument.

Usage

The linker includes the C library startup code if there is a reference to a symbol that is defined by
the C library startup code. This symbol reference is called the startup symbol. It is automatically
created by the linker when it sees a definition of main (). The --startup option enables you to
change this symbol reference.

e [f the linker finds a definition of main () and does not find a definition of symbo1, then it
generates an error.

e If the linker finds a definition of main () and a definition of symbo1, but no entry point is
specified, then it generates a warning.

--no_startup does not add a reference.

Related information
--entry=location on page 260

12.129 --stdlib

Specifies the C++ library to use.

This topic includes descriptions of [ALPHA] features. See Support level definitions.

Syntax
--stdlib=1library option

where 1ibrary optionis one of the following:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 320 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

libc++
The standard C++ library.

threaded_libc++ [ALPHA]
The threaded standard C++ library.

Usage
C++ objects compiled with armclang and linked with arm1ink use libc++ by default.

Related information
Arm C++ libraries and multithreading [ALPHA]

12.130 --strict

Instructs the linker to perform additional conformance checks, such as reporting conditions that
might result in failures.

Usage

--strict causes the linker to check for taking the address of:

e A non-interworking location from a non-interworking location in a different state.
e A RW location from a location that uses the static base register R9.

e A sTrckDp function in an image that contains usesv7 functions.

e A ~strckD function in an image that contains sTkcxp functions.

STKCKD functions reserve register r10 for Stack Checking, ~stkckp functions use
register r10 as variable register v7 and usesv7 functions use register r10 as v7/. See
the Procedure Call Standard for the Arm Architecture (AAPCS) for more information
about v7.

An example of a condition that might result in failure is taking the address of an interworking
function from a non-interworking function.

Related information

--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322

--strict_ph, --no_strict_ph on page 323
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 321 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/Multithreaded-support-in-Arm-C-libraries/Arm-C-libraries-and-multithreading

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

12.131 --strict_enum_size, --no_strict_enum_size

Checks whether the enum size is consistent across all inputs.

o
* Deprecated in this release.

Note

Usage

Use --strict enum size to force the linker to display an error message if the enum size is not
consistent across all inputs. This is the default.

Use --no_strict _enum size for compatibility with objects built using RVCT v3.1 and earlier.

Related information

--strict on page 321

--strict_flags, --no_strict_flags on page 322

--strict_ph, --no_strict_ph on page 323
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

12.132 --strict_flags, --no_strict_flags
Prevent or allow the generation of the EF_ARM_HASENTRY flag.

Default
The default is --no_strict flags.

Usage
The option --strict flags prevents the EF_ARM_HASENTRY flag from being generated.

Related information

--strict on page 321

--strict_enum_size, --no_strict_enum_size on page 321
--strict_ph, --no_strict_ph on page 323
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 322 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.133 --strict_ph, --no_strict_ph

Enables or disables the sorting of the Program Header Table entries.

Default
The default is --strict ph.

Usage

The linker writes the contents of load regions into the output ELF file in the order that load regions
are written in the scatter file. Each load region is represented by one ELF program segment. In
RVCT v2.2 the Program Header table entries describing the program segments are given the same
order as the program segments in the ELF file. To be more compliant with the ELF specification,

in RVCT v3.0 and later the Program Header table entries are sorted in ascending virtual address
order.

Use the --no_strict ph command-line option to switch off the sorting of the Program Header
table entries.

Related information

--strict on page 321

--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

12.134 --strict_relocations, --no_strict_relocations

Enables you to ensure Application Binary Interface (ABI) compliance of legacy or third party objects.

Default

The default is --no_strict relocations.

Usage

This option checks that branch relocation applies to a branch instruction bit-pattern. The linker
generates an error if there is a mismatch.

Use --strict relocations to instruct the linker to report instances of obsolete and deprecated
relocations.

Relocation errors and warnings are most likely to occur if you are linking object files built with
previous versions of the Arm tools.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 323 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

Related information

--strict on page 321

--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322

--strict_ph, --no_strict_ph on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

12.135 --strict_symbols, --no_strict_symbols

Checks whether a mapping symbol type matches an ABI symbol type.

Default
The default is --no_strict symbols.

Usage

The option --strict symbols checks that the mapping symbol type matches ABI symbol type. The
linker displays a warning if the types do not match.

A mismatch can occur only if you have hand-coded your own assembler.

Example
In the following assembler code the symbol sym has type stT_runc and is A32:

.section mycode, "x"

.word sym + 4

.code 32

.type sym, "function"
sym:

mov r0, r0

.code 16

mov r0, r0

.end

The difference in behavior is the meaning of .word sym + 4:

e In pre-ABI linkers the state of the symbol is the state of the mapping symbol at that location. In
this example, the state is T32.

e In ABI linkers the type of the symbol is the state of the location of symbol plus the offset.

Related information

--strict on page 321

--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322

--strict_ph, --no_strict_ph on page 323

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved
Non-Confidential
Page 324 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

--strict_relocations, --no_strict_relocations on page 323
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

12.136 --strict_visibility, --no_strict_visibility

Prevents or allows a hidden visibility reference to match against a shared object.

Default
The default is --strict visibility.

Usage

A linker is not permitted to match a symbol reference with str HIpDEN Visibility to a dynamic
shared object. Some older linkers might permit this.

Use --no_strict visibility to permit a hidden visibility reference to match against a shared
object.

Related information

--strict on page 321

--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322

--strict_ph, --no_strict_ph on page 323
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_wchar_size, --no_strict_wchar_size on page 325

12.137 --strict_wchar_size, --no_strict_wchar_size

Checks whether the wide character size is consistent across all inputs.

Deprecated in this release.

Usage

The option --strict wchar size causes the linker to display an error message if the wide
character size is not consistent across all inputs. This is the default.

Use --no_strict wchar_ size for compatibility with objects built using RVCT v3.1 and earlier.
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 325 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Related information

--strict on page 321

--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322

--strict_ph, --no_strict_ph on page 323
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325

12.138 --symbols, --no_symbols

Enables or disables the listing of each local and global symbol used in the link step, and its value.

This does not include mapping symbols output to stdout. Use -~
list mapping symbols to include mapping symbols in the output.

Default
The default is --no_symbols.

Related information
--list_mapping_symbols, --no_list_mapping_symbols on page 285

12.139 --symdefs=filename

Creates a file containing the global symbol definitions from the output image.

Default

By default, all global symbols are written to the symdefs file. If a symdefs file called filename
already exists, the linker restricts its output to the symbols already listed in this file.

If you do not want this behavior, be sure to delete any existing symdefs file before
the link step.

Syntax

--symdefs=filename

where filename is the name of the text file to contain the global symbol definitions.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 326 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

Usage

If £ilename is specified without path information, the linker searches for it in the directory where
the output image is being written. If it is not found, it is created in that directory.

You can use the symbol definitions file as input when linking another image.

Related information
Access symbols in another image on page 103

12.140 --symver_script=filename

Enables implicit symbol versioning.

Syntax

--symver script=filename

where filename is a symbol version script.

12.141 --symver_soname

Enables implicit symbol versioning to force static binding.

Not supported for AArché4 state.

Default

This is the default if you are generating a Base Platform Application Binary Interface (BPABI)
compatible executable file but where you do not specify a version script with the option --

symver script.

Usage

Where a symbol has no defined version, the linker uses the shared object name (soname) contained
in the file being linked.

Related information
Symbol versioning on page 222
Application Binary Interface (ABI)

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 327 of 351

https://developer.arm.com/Architectures/Application%20Binary%20Interface

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

armlink Command-line Options

12.142 --tailreorder, --no_tailreorder

Moves tail calling sections immediately before their target, if possible, to optimize the branch
instruction at the end of a section.

Not supported for AArché4 state.

Default
The default is --no_tailreorder.

Usage

A tail calling section is a section that contains a branch instruction at the end of the section. The
branch must have a relocation that targets a function at the start of a section.

Restrictions
The linker:

e Can only move one tail calling section for each tail call target. If there are multiple tail calls to a
single section, the tail calling section with an identical section name is moved before the target.
If no section name is found in the tail calling section that has a matching name, then the linker
moves the first section it encounters.

o Cannot move a tail calling section out of its execution region.

e Does not move tail calling sections before inline veneers.

Related information

Linker reordering of tail calling sections on page 82
--branchnop, --no_branchnop on page 240

About branches that optimize to a NOP on page 82

12.143 --tiebreaker=option

A tiebreaker is used when a sorting algorithm requires a total ordering of sections. It is used by the
linker to resolve the order when the sorting criteria results in more than one input section with
equal properties.

Default
The default option is creation.

Syntax

-—tiebreaker=option

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 328 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
armlink Command-line Options

where option is one of:

creation

The order that the linker creates sections in its internal section data structure.

When the linker creates an input section for each ELF section in the input objects, it
increments a global counter. The value of this counter is stored in the section as the creation
index.

The creation index of a section is unique apart from the special case of inline veneers.

cmdline

The order that the section appears on the linker command-line. The command-line order is
defined as File.object.Section Where:

e section is the section index, sh_idx, of the section in the object.
e Object is the order that object appears in the rFile.

e Fileisthe order the rile appears on the command line.
The order the object appears in the rile is only significant if the file is an ar archive.

This option is useful if you are doing a binary difference between the results of different
links, link1 and link2. If link2 has only small changes from link1, then you might want the
differences in one source file to be localized. In general, creation index works well for objects,
but because of the multiple pass selection of members from libraries, a small difference such
as calling a new function can result in a different order of objects and therefore a different
tiebreaker. The command-line index is more stable across builds.

Use this option with the --scatter option.

Related information
--sort=algorithm on page 317
--map, --no_map on page 292
--any_sort_order=order on page 234

12.144 --unaligned_access, --no_unaligned_access
Enable or disable unaligned accesses to data on Arm architecture-based processors.

Usage
When using --no_unaligned access, the linker:
e Does not select objects from the Arm® C library that allow unaligned accesses.

e Gives an error message if any input object allows unaligned accesses.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 329 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

This error message can be downgraded.

Default
The default is --unaligned access.

12.145 --undefined=symbol

Prevents the removal of a specified symbol if it is undefined.

Syntax

--undefined=symbol

Usage
Causes the linker to:
1. Create a symbol reference to the specified symbol name.

2. lssue an implicit --keep=symbol to prevent any sections brought in to define that symbol from
being removed.

Related information
--undefined_and_export=symbol on page 330
--keep=section_id on page 278

12.146 --undefined_and_export=symbol

Prevents the removal of a specified symbol if it is undefined, and pushes the symbol into the
dynamic symbol table.

Syntax

--undefined and export=symbol

Usage
Causes the linker to:
1. Create a symbol reference to the specified symbol name.

2. Issue an implicit --keep=symbol to prevent any sections brought in to define that symbol from
being removed.

3. Add an implicit ExPoRT symbol to push the specified symbol into the dynamic symbol table.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 330 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Considerations
Be aware of the following when using this option:

e |t does not change the visibility of a symbol unless you specify the --override visibility
option.

e A warning is issued if the visibility of the specified symbol is not high enough.

e A warning is issued if the visibility of the specified symbol is overridden because you also
specified the --override visibility option.

e Hidden symbols are not exported unless you specify the --override visibility option.

Related information

--override_visibility on page 299
--undefined=symbol on page 330
--keep=section_id on page 278

EXPORT steering file command on page 341

12.147 --unresolved=symbol

Takes each reference to an undefined symbol and matches it to the global definition of the
specified symbol.

Syntax

--unresolved=symbol

symbol Must be both defined and global, otherwise it appears in the list of undefined symbols and
the link step fails.

Usage

This option is particularly useful during top-down development, because it enables you to test
a partially-implemented system by matching each reference to a missing function to a dummy
function.

Related information
--undefined=symbol on page 330
--undefined_and_export=symbol on page 330

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 331 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.148 --use_definition_visibility

Enables the linker to use the visibility of the definition in preference to the visibility of a reference
when combining symbols.

Usage

When the linker combines global symbols the visibility of the symbol is set with the strictest
visibility of the symbols being combined. Therefore, a symbol reference with stv_a1ppen visibility
combined with a definition with stv_perauLT visibility results in a definition with sTv_rIDDEN
visibility.

For example, a symbol reference with stv_a1ppen visibility combined with a definition with
STV_DEFAULT Visibility results in a definition with stv_perauLT Visibility.

This can be useful when you want a reference to not match a Shared Library, but you want to
export the definition.

This option is not ELF-compliant and is disabled by default. To create ELF-compliant
images, you must use symbol references with the appropriate visibility.

12.149 --userlibpath=pathlist

Specifies a list of paths that the linker is to use to search for user libraries.

Syntax
--userlibpath=pathlist

Where pathiist is a comma-separated list of paths that the linker is to use to search for the
required libraries. Do not include spaces between the comma and the path name when specifying
multiple path names, for example, pathi,path2,path3,..,pathn.

Related information
--libpath=pathlist on page 283

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 332 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.150 --veneerinject, --no_veneerinject

Enables or disables the placement of veneers outside of the sorting order for the Execution Region.

Default

The default is --no_veneerinject. The linker automatically switches to large region mode if it is
required to successfully link the image. If large region mode is turned off with --no_largeregions
then only --veneerinject is turned on if it is required to successfully link the image.

--veneerinject is the default for large region mode.

Usage

Use --veneerinject to allow the linker to place veneers outside of the sorting order for the
Execution Region. This option is a subset of the --1argeregions command. Use --veneerinject if
you want to allow the veneer placement behavior described, but do not want to implicitly set the
--api and --sort=AvgCallDepth.

Use --no_veneerinject to allow the linker use the sorting order for the Execution Region.
Use --veneer inject type to control the strategy the linker uses to place injected veneers.

The following command-line options allow stable veneer placement with large Execution Regions:

--veneerinject --veneer inject type=pool --sort=lexical

Related information

--largeregions, --no_largeregions on page 280
--veneer_inject_type=type on page 333

--api, --no_api on page 235

--sort=algorithm on page 317

12.151 --veneer_inject_type=type
Controls the veneer layout when -largeregions mode is on.

Syntax

--veneer inject type=type

Where type is one of:

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 333 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en

Version 6.6
armlink Command-line Options

individual

pool

The linker places veneers to ensure they can be reached by the largest amount of sections
that use the veneer. Veneer reuse between execution regions is permitted. This type
minimizes the number of veneers that are required but disrupts the structure of the image
the most.

The linker:

1. Collects veneers from a contiguous range of the execution region.

2. Places all the veneers generated from that range into a pool.

3. Places that pool at the end of the range.

A large execution region might have more than one range and therefore more than one pool.
Although this type has much less impact on the structure of image, it has fewer opportunities
for reuse. This is because a range of code cannot reuse a veneer in another pool. The linker

calculates the range based on the presence of branch instructions that the linker predicts
might require veneers. A branch is predicted to require a veneer when either:

e A state change is required.
e The distance from source to target plus a contingency greater than the branch range.
You can set the size of the contingency with the --veneer pool size=size option. By default

the contingency size is set to 102400 bytes. The --info=veneerpools option provides
information on how the linker has placed veneer pools.

Restrictions
You must use --largeregions With this option.

Related information

--info=topic[,topic,...] on page 271
--veneerinject, --no_veneerinject on page 332
--veneer_pool_size=size on page 334
--largeregions, --no_largeregions on page 280

12.152 --veneer_pool_size=size

Sets the contingency size for the veneer pool in an execution region.

Default
The default size is 102400 bytes.

Syntax

--veneer pool size=pool

where poo1 is the size in bytes.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 334 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Related information
--veneer_inject_type=type on page 333

12.153 --veneershare, --no_veneershare

Enables or disables veneer sharing. Veneer sharing can cause a significant decrease in image size.

Default
The default is --veneershare.

Related information

--inlineveneer, --no_inlineveneer on page 276

--piveneer, --no_piveneer on page 302

\eneer sharing on page 62

Linker-generated veneers on page 61

\Veneer types on page 63

Generation of position independent to absolute veneers on page 64
--crosser_veneershare, --no_crosser_veneershare on page 251

12.154 --verbose

Prints detailed information about the link operation, including the objects that are included and the
libraries from which they are taken.

Usage

This output is particular useful for tracing undefined symbols reference or multiply defined symbols.
Because this output is typically quite long, you might want to use this command with the --
list=rfilename command to redirect the information to filename.

Use --verbose to output diagnostics to stdout.

Related information

--list=filename on page 284

--muldefweak, --no_muldefweak on page 296
--unresolved=symbol on page 331

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 335 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

12.155 --version_number
Displays the version of armlink you are using.

Usage

The linker displays the version number in the format Mmmuuxx, where:

e Mis the major version number, 6.

e mmis the minor version number.

e uuis the update number.

e xxis reserved for Arm internal use. You can ignore this for the purposes of checking whether

the current release is a specific version or within a range of versions.

Related information
--help on page 269
--vsn on page 336

12.156 --via=filename

Reads an additional list of input filenames and linker options from filename.

Syntax

--via=filename
Where rilename is the name of a via file containing options to be included on the command line.

Usage

You can enter multiple --via options on the linker command line. The --via options can also be
included within a via file.

Related information
Overview of via files on page 348
Via file syntax rules on page 348

12.157 --vsn

Displays the version information and the license details.

--vsn is intended to report the version information for manual inspection. The
component line indicates the release of Arm® Compiler you are using. If you need
to access the version in other tools or scripts, for example in build scripts, use the
output from --version_ number.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 336 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Example

> armlink --vsn

Product: ARM Compiler N.n
Component: ARM Compiler N.n
Tool: armlink [tool id]

license type
Software supplied by: ARM Limited

Related information
--help on page 269
--version_number on page 335

12.158 --xo_base=address

Specifies the base address of an execute-only (XO) execution region.

Syntax

--X0_base=address
Where address must be word-aligned.

Usage
When you specify --xo base:

e XO sections are placed in a separate load and execution region, at the address specified.

e No ER_XO region is created when no XO sections are present.

Restrictions
You can use --xo_base only with the bare-metal linking model.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

You cannot use --xo_base with:

e -—-reloc.

® -—-ropi.

e —-rwpi.

® -—-scatter.

Related information
--ro_base=address on page 309

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 337 of 351

Arm” Compiler armlink User Guide

--ropi on page 310

--rosplit on page 311
--rw_base=address on page 311
--7i_base=address on page 339

12.159 --xref, --no_xref

Lists to stdout all cross-references between input sections.

Default
The default is -—no_xref.

Related information
--xrefdbg, --no_xrefdbg on page 338
--xref{from|to}=object(section) on page 338

12.160 --xrefdbg, --no_xrefdbg

Lists to stdout all cross-references between input debug sections.

Default
The default is -=-no_xrefdbg.

Related information
--xref, --no_xref on page 338
--xref{from|to}=object(section) on page 338

12.161 --xref{from|to}=object(section)

Lists to stdout cross-references from and to input sections.

Syntax

--xref{from| to}=object (section)

Document ID: DUIO8O3 | en
\ersion 6.6
armlink Command-line Options

On Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,

for example:

—-—-xreffrom="init.o (init)"

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential

Page 338 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

Usage

This option lists to stdout cross-references:

e From input sectionin object to other input sections.

e TJoinput sectionin object from other input sections.

This is a useful subset of the listing produced by the --xref linker option if you are interested in

references from or to a specific input section. You can have multiple occurrences of this option to
list references from or to more than one input section.

Related information
--xref, --no_xref on page 338
--xrefdbg, --no_xrefdbg on page 338

12.162 --zi_base=address

Specifies the base address of an ER_ZI execution region.

Syntax

--z1 base=address

Where address must be word-aligned.

This option does not affect the placement of execute-only sections.

Restrictions
The linker ignores --zi_base if one of the following options is also specified:

® —-bpabi.

® --base platform.
e --reloc.

e ——rwpi.

e -—-split.

You cannot use --zi_base With --scatter.

Related information
--ro_base=address on page 309
--ropi on page 310

--rosplit on page 311

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 339 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
armlink Command-line Options

--rw_base=address on page 311
--x0_base=address on page 337

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 340 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Linker Steering File Command Reference

13. Linker Steering File Command
Reference

Describes the steering file commands supported by the Arm linker, armlink.

13.1 EXPORT steering file command

Specifies that a symbol can be accessed by other shared objects or executables.

A symbol can be exported only if the definition has sTv DEFAULT Or STV PROTECTED
visibility. You must use the --override visibility command-line option to enable
the linker to override symbol visibility to sTv pEFauLT.

Syntax

EXPORT pattern AS replacement pattern[,pattern AS replacement pattern]

where:

pattern

is a string, optionally including wildcard characters (either * or 2), that matches zero or more
defined global symbols. If pattern does not match any defined global symbol, the linker
ignores the command. The operand can match only defined global symbols.

If the symbol is not defined, the linker issues:

Warning: L6331W: No eligible global symbol matches pattern symbol

replacement pattern
is a string, optionally including wildcard characters (either * or 2), to which the defined global
symbol is to be renamed. Wild characters must have a corresponding wildcard in pattern.
The characters matched by the replacement pattern wildcard are substituted for the
pattern Wildcard.

For example:

EXPORT my func AS funcl

renames and exports the defined symbol my func as funcl.

Usage
You cannot export a symbol to a name that already exists. Only one wildcard character (either * or
?) is permitted in ExPORT.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 341 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Linker Steering File Command Reference

The defined global symbol is included in the dynamic symbol table (as repiacement pattern if
given, otherwise as pattern), if a dynamic symbol table is present.

Related information

IMPORT steering file command on page 343

Edit the symbol tables with a steering file on page 107
--override_visibility on page 299

13.2 HIDE steering file command

Makes defined global symbols in the symbol table anonymous.

Syntax

HIDE pattern],pattern]

where:

pattern

is a string, optionally including wildcard characters, that matches zero or more defined
global symbols. If pattern does not match any defined global symbol, the linker ignores the
command. You cannot hide undefined symbols.

Usage

You can use #1pE and sHow to make certain global symbols anonymous in an output image or
partially linked object. Hiding symbols in an object file or library can be useful as a means of
protecting intellectual property, as shown in the following example:

; steer.txt

; Hides all global symbols

HIDE *

; Shows all symbols beginning with 'os '
SHOW os_* -

This example produces a partially linked object with all global symbols hidden, except those
beginning with os .

Link this example with the command:

armlink --partial input object.o --edit steer.txt -o partial object.o

You can link the resulting partial object with other objects, provided they do not contain references
to the hidden symbols. When symbols are hidden in the output object, sgow commands in
subsequent link steps have no effect on them. The hidden references are removed from the output
symbol table.

Related information
SHOW steering file command on page 347

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 342 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Linker Steering File Command Reference

--edit=file_list on page 258
--partial on page 301
Edit the symbol tables with a steering file on page 107

13.3 IMPORT steering file command

Specifies that a symbol is defined in a shared object at runtime.

A symbol can be imported only if the reference has stv_peraurt visibility. You
must use the --override visibility command-line option to enable the linker to
override symbol visibility to sTv_DEFAULT.

Syntax

IMPORT pattern AS replacement pattern[,pattern AS replacement pattern]

where:

pattern

is a string, optionally including wildcard characters (either * or 2), that matches zero or more
undefined global symbols. If pattern does not match any undefined global symbol, the linker
ignores the command. The operand can match only undefined global symbols.

replacement pattern

is a string, optionally including wildcard characters (either * or 2), to which the symbol is to
be renamed. Wild characters must have a corresponding wildcard in pattern. The characters
matched by the pattern wildcard are substituted for the repiacement pattern wildcard.

For example:

IMPORT my func AS func

imports and renames the undefined symbol my func as func.

Usage

You cannot import a symbol that has been defined in the current shared object or executable. Only
one wildcard character (either » or 2) is permitted in IMPORT.

The undefined symbol is included in the dynamic symbol table (as replacement pattern if given,
otherwise as pattern), if a dynamic symbol table is present.

The MporT command only affects undefined global symbols. Symbols that have
been resolved by a shared library are implicitly imported into the dynamic symbol
table. The linker ignores any 1MporT directive that targets an implicitly imported
symbol.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 343 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6

Linker Steering File Command Reference

Related information

--override_visibility on page 299

EXPORT steering file command on page 341

Edit the symbol tables with a steering file on page 107

13.4 RENAME steering file command

Renames defined and undefined global symbol names.

Syntax

RENAME pattern AS replacement pattern[,pattern AS replacement pattern]

where:

pattern

is a string, optionally including wildcard characters (either * or 2), that matches zero or
more global symbols. If pattern does not match any global symbol, the linker ignores the
command. The operand can match both defined and undefined symbols.

replacement pattern
is a string, optionally including wildcard characters (either * or 2), to which the symbol is to be
renamed. Wildcard characters must have a corresponding wildcard in pattern. The characters
matched by the pattern wildcard are substituted for the repiacement pattern wildcard.

For example, for a symbol named funci:

RENAME f* AS my f*

renames funcl tO my funcl.

Usage
You cannot rename a symbol to a global symbol name that already exists, even if the target symbol
name is being renamed itself.

You cannot rename a symbol to the same name as another symbol. For example, you cannot do the
following:

RENAME fool AS bar
RENAME foo2 AS bar

Error: L6281E: Cannot rename both foo2 and fool to bar.

Renames only take effect at the end of the link step. Therefore, renaming a symbol does not
remove its original name. For example, given an image containing the symbols func1 and func2, you
cannot do the following:

RENAME funcl AS func?2

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 344 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6

Linker Steering File Command Reference

RENAME func2 AS func3

Error: L6282E: Cannot rename funcl to func2 as a global symbol of that name exists

Only one wildcard character (either * or 2) is permitted in RENAME.

Example
Given an image containing the symbols funci, func2, and func3, you might have a steering file
containing the following commands:

; invalid, func2 already exists
RENAME funcl AS func?2

; valid
RENAME func3 AS b2

; invalid, func3 still exists because the link step is not yet complete
RENAME func2 AS func3

Related information
Edit the symbol tables with a steering file on page 107

13.5 REQUIRE steering file command

Creates a pT_NEEDED tag in the dynamic array.

pT NEEDED tags specify dependencies to other shared objects used by the application, for example,
a shared library.

Syntax
REQUIRE pattern[,pattern]

where:

pattern
is a string representing a filename. No wild characters are permitted.

Usage
The linker inserts a bt NEEDED tag with the value of pattern into the dynamic array. This tells the
dynamic loader that the file it is currently loading requires pattern to be loaded.

DT NEEDED tags inserted as a result of a Reuire command are added after
DT_NEEDED tags generated from shared objects or dynamically linked libraries (DLLs)
placed on the command line.

Related information
Edit the symbol tables with a steering file on page 107
Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 345 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Linker Steering File Command Reference

13.6 RESOLVE steering file command

Matches specific undefined references to a defined global symbol.

Syntax

RESOLVE pattern AS defined pattern

where:

pattern

is a string, optionally including wildcard characters (either * or 2), that matches zero or more
undefined global symbols. If pattern does not match any undefined global symbol, the linker
ignores the command. The operand can match only undefined global symbols.

defined pattern

is a string, optionally including wildcard characters, that matches zero or more defined global
symbols. If defined pattern does not match any defined global symbol, the linker ignores the
command. You cannot match an undefined reference to an undefined symbol.

Usage

RESOLVE iS an extension of the existing arm1ink command-line option --unresolved. The difference
is that -—unresolved enables all undefined references to match one single definition, whereas
RESOLVE enables more specific matching of references to symbols.

The undefined references are removed from the output symbol table.
RESOLVE Works when performing partial-linking and when linking normally.

Example
You might have two files filel.c and file2.c, as shown in the following example:

filel.c

extern int foo;

extern void MP3 Init (void);
extern void MP3 Play(void) ;
int main (void)

{
int x = foo + 1;
MP3 Init ()
MP3 Play();
return x;

}

file2.c:

int foobar;

void MyMP3 Init ()
{

}
void MyMP3 Play ()

{
}

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 346 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Linker Steering File Command Reference

Create a steering file, ed. txt, containing the line:
RESOLVE MP3* AS MyMP3*

Enter the following command:

armlink filel.o file2.0 --edit ed.txt --unresolved foobar

This command has the following effects:

e The references from filel.o (foo, MP3 Tnit () and MP3 Play()) are matched to the definitions
in file2.o (foobar, MyMP3 Init () and MyMP3 Play () respectively), as specified by the steering
file ed. txt.

e The resoLveE command in ed.txt matches the mp3 functions and the --unresolved option
matches any other remaining references, in this case, foo to foobar.

e The output symbol table, whether it is an image or a partial object, does not contain the
symbols foo, MP3_Tnit Or MP3 Play.

Related information

--edit=file_list on page 258

--unresolved=symbol on page 331

Edit the symbol tables with a steering file on page 107

13.7 SHOW steering file command

Makes global symbols visible.

The saow command is useful if you want to make a specific symbol visible that is hidden using a
HIDE command with a wildcard.

Syntax

SHOW pattern[,pattern]

where:

pattern

is a string, optionally including wildcard characters, that matches zero or more global symbols.
If pattern does not match any global symbol, the linker ignores the command.

Usage
The usage of suow is closely related to that of nipe.

Related information
HIDE steering file command on page 342
Edit the symbol tables with a steering file on page 107

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 347 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Via File Syntax

14. Via File Syntax

Describes the syntax of via files accepted by the armasm, armlink, fromelf, and armar tools.

14.1 Overview of via files

Via files are plain text files that allow you to specify command-line arguments and options for the
armasm, armlink, fromelf, and armar tools.

Typically, you use a via file to overcome the command-line length limitations. However, you might
want to create multiple via files that:
e Group similar arguments and options together.

o Contain different sets of arguments and options to be used in different scenarios.

In general, you can use a via file to specify any command-line option to a tool,
including --via. Therefore, you can call multiple nested via files from within a via
file.

Via file evaluation
When you invoke the armasm, armlink, fromelf, O armar, the tool:

1. Replaces the first specified --via via file argument with the sequence of argument
words that are extracted from the via file, including recursively processing any nested --via
commands in the via file.

2. Processes any subsequent --via via file arguments in the same way, in the order they are
presented.

That is, via files are processed in the order that you specify them. Each via file is processed
completely, including any nested via files contained in that file, before processing the next via file.

Related information
Via file syntax rules on page 348
--via=filename on page 336

14.2 Via file syntax rules
Via files must conform to some syntax rules.

e Avia file is a text file containing a sequence of words. Each word in the text file is converted
into an argument string and passed to the tool.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 348 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_I_en
Version 6.6
Via File Syntax

o Words are separated by whitespace, or the end of a line, except in delimited strings, for
example:

--paged --pagesize=0x4000 (two words)

——paged——paqesize:0x4000(Oﬂe\NOFd)

e Theend of a line is treated as whitespace, for example:

-—-paged
--pagesize=0x4000

This is equivalent to:

--paged --pagesize=0x4000

e Strings enclosed in quotation marks (), or apostrophes (') are treated as a single word. Within a
quoted word, an apostrophe is treated as an ordinary character. Within an apostrophe delimited
word, a quotation mark is treated as an ordinary character.

Use guotation marks to delimit filenames or path names that contain spaces, for example:
--errors C:\\My Project\\errors.txt (three words)

——errors "C:\\My Project\\errors.txt " (two words)

Use apostrophes to delimit words that contain quotes, for example:

-DNAME=""Arm Compiler"'(Oﬂe\NOFd)

o Characters enclosed in parentheses are treated as a single word, for example:
-—option(x, vy, z) (one word)

-—option (x, y, z) (two words)

e Within quoted or apostrophe delimited strings, you can use a backslash (\\) character to escape
the quote, apostrophe, and backslash characters.

e A word that occurs immediately next to a delimited word is treated as a single word, for
example:
-—errors "C:\\Project\\errors.txt "

This is treated as the single word:

-—errorsC:\\Project\\errors.txt

e Lines beginning with a semicolon (;) or a hash (#) character as the first nonwhitespace character
are comment lines. A semicolon or hash character that appears anywhere else in a line is not
treated as the start of a comment, for example:

-0 objectname.axf ;this is not a comment

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 349 of 351

Arm” Compiler armlink User Guide Document ID: DUIO803_|_en
Version 6.6
Via File Syntax

A comment ends at the end of a line, or at the end of the file. There are no multi-line
comments, and there are no part-line comments.

Related information
Overview of via files on page 348
--via=filename on page 336

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 350 of 351

Arm” Compiler armlink User Guide Document ID: DUIO8O3_|_en
\ersion 6.6
armlink User Guide Changes

15. armlink User Guide Changes

Describes the technical changes that have been made to the armlink User Guide.

15.1 Changes for the armlink User Guide

Changes that have been made to the armlink User Guide are listed with the latest version first.

Table 15-1: Changes between 6.6.5 (revision L) and 6.6.4 (revision K)

Change Topics affected

[SDCOMP-58428] Added notes about build attribute compatibility |e --force_explicit_attr.
checking being supported only for AArch32.

[SDCOMP-57878] Added a note that, in a Linux environment, e Linker command-line syntax.
armlink requires quotation marks around options that accept

e -—-entry=location.
parentheses as values.

e --first=section id.

e --keep=section_id.

e --last=section id.

o -—xref{from|to}=object(section).
[SDCOMP-57039] Clarify that armlink does not OVERALIGN e Aligning execution regions and input sections.

some sections where it might be unsafe to do so. « Syntax of an input section description

Added a note that using manual and automatic overlays within the --overlay_veneers.

same program is not supported.

e Execution region attributes.

Table 15-2: Changes between 6.6.4 (revision K) and 6.6.3 (revision J)

Change Topics affected

[SDCOMP-54472] The note no longer states that a warning is e --lto, --no_lto.
emitted when using -mexecute-only with -f1lto.

[SDCOMP-53622] Added a statement to the note about stack and |e Placing the stack and heap with a scatter file.
heap alignment for AArch32 and AArché4.

Copyright © 2014-2017, 2019-2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 351 of 351

	Arm® Compiler armlink User Guide
	Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Conventions
	1.2 Other information

	2. Overview of the Linker
	2.1 About the linker
	2.1.1 Summary of the linker features
	2.1.2 What the linker can accept as input
	2.1.3 What the linker outputs

	2.2 Linker command-line syntax
	2.3 What the linker does when constructing an executable image
	2.4 Support level definitions

	3. Linking Models Supported by armlink
	3.1 Overview of linking models
	3.2 Bare-metal linking model
	3.3 Partial linking model
	3.4 Base Platform Application Binary Interface (BPABI) linking model
	3.5 Base Platform linking model

	4. Image Structure and Generation
	4.1 The structure of an Arm ELF image
	4.1.1 Views of the image at each link stage
	4.1.2 Input sections, output sections, regions, and program segments
	4.1.3 Load view and execution view of an image
	4.1.4 Methods of specifying an image memory map with the linker
	4.1.5 Image entry points
	4.1.5.1 The initial entry point for an image

	4.1.6 Restrictions on image structure

	4.2 Simple images
	4.2.1 Types of simple image
	4.2.2 Type 1 image structure, one load region and contiguous execution regions
	4.2.3 Type 2 image structure, one load region and non-contiguous execution regions
	4.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions

	4.3 Section placement with the linker
	4.3.1 Default section placement
	4.3.1.1 Handling unassigned sections

	4.3.2 Section placement with the FIRST and LAST attributes
	4.3.3 Section alignment with the linker

	4.4 Linker support for creating demand-paged files
	4.5 Linker reordering of execution regions containing T32 code
	4.6 Linker-generated veneers
	4.6.1 What is a veneer?
	4.6.2 Veneer sharing
	4.6.3 Veneer types
	4.6.4 Generation of position independent to absolute veneers
	4.6.5 Reuse of veneers when scatter-loading
	4.6.6 Generation of secure gateway veneers

	4.7 Command-line options used to control the generation of C++ exception tables
	4.8 Weak references and definitions
	4.9 How the linker performs library searching, selection, and scanning
	4.10 How the linker searches for the Arm standard libraries
	4.11 Specifying user libraries when linking
	4.12 How the linker resolves references
	4.13 The strict family of linker options

	5. Linker Optimization Features
	5.1 Elimination of common debug sections
	5.2 Elimination of common groups or sections
	5.3 Elimination of unused sections
	5.4 Optimization with RW data compression
	5.4.1 How the linker chooses a compressor
	5.4.2 Options available to override the compression algorithm used by the linker
	5.4.3 How compression is applied
	5.4.4 Considerations when working with RW data compression

	5.5 Function inlining with the linker
	5.6 Factors that influence function inlining
	5.7 About branches that optimize to a NOP
	5.8 Linker reordering of tail calling sections
	5.9 Restrictions on reordering of tail calling sections
	5.10 Linker merging of comment sections
	5.11 Merging identical constants

	6. Getting Image Details
	6.1 Options for getting information about linker-generated files
	6.2 Identifying the source of some link errors
	6.3 Example of using the --info linker option
	6.4 How to find where a symbol is placed when linking

	7. Accessing and Managing Symbols with armlink
	7.1 About mapping symbols
	7.2 Linker-defined symbols
	7.3 Region-related symbols
	7.3.1 Types of region-related symbols
	7.3.2 Image$$ execution region symbols
	7.3.3 Load$$ execution region symbols
	7.3.4 Load$$LR$$ load region symbols
	7.3.5 Region name values when not scatter-loading
	7.3.6 Linker defined symbols and scatter files
	7.3.7 Methods of importing linker-defined symbols in C and C++
	7.3.8 Methods of importing linker-defined symbols in Arm assembly language

	7.4 Section-related symbols
	7.4.1 Types of section-related symbols
	7.4.2 Image symbols
	7.4.3 Input section symbols

	7.5 Access symbols in another image
	7.5.1 Creating a symdefs file
	7.5.2 Outputting a subset of the global symbols
	7.5.3 Reading a symdefs file
	7.5.4 Symdefs file format

	7.6 Edit the symbol tables with a steering file
	7.6.1 Specifying steering files on the linker command-line
	7.6.2 Steering file command summary
	7.6.3 Steering file format
	7.6.4 Hide and rename global symbols with a steering file

	7.7 Use of $Super$$ and $Sub$$ to patch symbol definitions

	8. Scatter-loading Features
	8.1 The scatter-loading mechanism
	8.1.1 Overview of scatter-loading
	8.1.2 When to use scatter-loading
	8.1.3 Linker-defined symbols that are not defined when scatter-loading
	8.1.4 Placing the stack and heap with a scatter file
	8.1.5 Scatter-loading command-line options
	8.1.6 Scatter-loading images with a simple memory map
	8.1.7 Scatter-loading images with a complex memory map

	8.2 Root region and the initial entry point
	8.2.1 Effect of the ABSOLUTE attribute on a root region
	8.2.2 Effect of the FIXED attribute on a root region
	8.2.3 Methods of placing functions and data at specific addresses
	8.2.3.1 Placing functions and data at specific addresses
	8.2.3.2 Placing a variable at a specific address without scatter-loading
	8.2.3.3 Placing a variable in a named section with scatter-loading
	8.2.3.4 Placing a variable at a specific address with scatter-loading

	8.2.4 Placing functions and data in a named section
	8.2.5 Placing __at sections at a specific address
	8.2.6 Restrictions on placing __at sections
	8.2.7 Automatically placing __at sections
	8.2.8 Manually placing __at sections
	8.2.9 Placing a key in flash memory with an __at section

	8.3 Example of how to explicitly place a named section with scatter-loading
	8.4 Placement of unassigned sections
	8.4.1 Default rules for placing unassigned sections
	8.4.2 Command-line options for controlling the placement of unassigned sections
	8.4.3 Prioritizing the placement of unassigned sections
	8.4.4 Specify the maximum region size permitted for placing unassigned sections
	8.4.5 Examples of using placement algorithms for .ANY sections
	8.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
	8.4.7 Examples of using sorting algorithms for .ANY sections
	8.4.8 Behavior when .ANY sections overflow because of linker-generated content

	8.5 Placing veneers with a scatter file
	8.6 Placement of CMSE veneer sections for a Secure image
	8.7 Reserving an empty block of memory
	8.7.1 Characteristics of a reserved empty block of memory
	8.7.2 Example of reserving an empty block of memory

	8.8 Placement of Arm C and C++ library code
	8.8.1 Placing code in a root region
	8.8.2 Placing Arm C library code
	8.8.3 Placing Arm C++ library code

	8.9 Aligning regions to page boundaries
	8.10 Aligning execution regions and input sections
	8.11 Preprocessing a scatter file
	8.11.1 Default behavior for armclang -E in a scatter file
	8.11.2 Using other preprocessors in a scatter file

	8.12 Example of using expression evaluation in a scatter file to avoid padding
	8.13 Equivalent scatter-loading descriptions for simple images
	8.13.1 Command-line options for creating simple images
	8.13.2 Type 1 image, one load region and contiguous execution regions
	8.13.3 Type 2 image, one load region and non-contiguous execution regions
	8.13.4 Type 3 image, multiple load regions and non-contiguous execution regions

	8.14 How the linker resolves multiple matches when processing scatter files
	8.15 How the linker resolves path names when processing scatter files
	8.16 Scatter file to ELF mapping

	9. Scatter File Syntax
	9.1 BNF notation used in scatter-loading description syntax
	9.2 Syntax of a scatter file
	9.3 Load region descriptions
	9.3.1 Components of a load region description
	9.3.2 Syntax of a load region description
	9.3.3 Load region attributes
	9.3.4 Inheritance rules for load region address attributes
	9.3.5 Inheritance rules for the RELOC address attribute
	9.3.6 Considerations when using a relative address +offset for a load region

	9.4 Execution region descriptions
	9.4.1 Components of an execution region description
	9.4.2 Syntax of an execution region description
	9.4.3 Execution region attributes
	9.4.4 Inheritance rules for execution region address attributes
	9.4.5 Considerations when using a relative address +offset for execution regions

	9.5 Input section descriptions
	9.5.1 Components of an input section description
	9.5.2 Syntax of an input section description
	9.5.3 Examples of module and input section specifications

	9.6 Expression evaluation in scatter files
	9.6.1 Expression usage in scatter files
	9.6.2 Expression rules in scatter files
	9.6.3 Execution address built-in functions for use in scatter files
	9.6.4 ScatterAssert function and load address related functions
	9.6.5 Symbol related function in a scatter file
	9.6.6 AlignExpr(expr, align) function
	9.6.7 GetPageSize() function
	9.6.8 SizeOfHeaders() function
	9.6.9 Example of aligning a base address in execution space but still tightly packed in load space
	9.6.10 Scatter files containing relative base address load regions and a ZI execution region

	10. BPABI Shared Libraries and Executables
	10.1 About the Base Platform Application Binary Interface (BPABI)
	10.2 Platforms supported by the BPABI
	10.3 Features common to all BPABI models
	10.3.1 About importing and exporting symbols for BPABI models
	10.3.2 Symbol visibility for BPABI models
	10.3.3 Automatic import and export for BPABI models
	10.3.4 Manual import and export for BPABI models
	10.3.5 Symbol versioning for BPABI models
	10.3.6 RW compression for BPABI models

	10.4 Bare metal and DLL-like memory models
	10.4.1 BPABI standard memory model
	10.4.2 Customization of the BPABI standard memory model
	10.4.3 Linker command-line options for bare metal and DLL-like models
	10.4.4 Mandatory symbol versioning in the BPABI DLL-like model
	10.4.5 Automatic dynamic symbol table rules in the BPABI DLL-like model
	10.4.6 Addressing modes in the BPABI DLL-like model
	10.4.7 C++ initialization in the BPABI DLL-like model

	10.5 Symbol versioning
	10.5.1 Overview of symbol versioning
	10.5.2 Embedded symbols
	10.5.3 The symbol versioning script file
	10.5.4 Example of creating versioned symbols
	10.5.5 Linker options for enabling implicit symbol versioning

	11. Features of the Base Platform Linking Model
	11.1 Restrictions on the use of scatter files with the Base Platform model
	11.2 Scatter files for the Base Platform linking model
	11.3 Placement of PLT sequences with the Base Platform model

	12. armlink Command-line Options
	12.1 --any_contingency
	12.2 --any_placement=algorithm
	12.3 --any_sort_order=order
	12.4 --api, --no_api
	12.5 --autoat, --no_autoat
	12.6 --bare_metal_pie
	12.7 --base_platform
	12.8 --bestdebug, --no_bestdebug
	12.9 --blx_arm_thumb, --no_blx_arm_thumb
	12.10 --blx_thumb_arm, --no_blx_thumb_arm
	12.11 --bpabi
	12.12 --branchnop, --no_branchnop
	12.13 --callgraph, --no_callgraph
	12.14 --callgraph_file=filename
	12.15 --callgraph_output=fmt
	12.16 --callgraph_subset=symbol[,symbol,…]
	12.17 --cgfile=type
	12.18 --cgsymbol=type
	12.19 --cgundefined=type
	12.20 --comment_section, --no_comment_section
	12.21 --compress_debug, --no_compress_debug
	12.22 --cppinit, --no_cppinit
	12.23 --cpu=list
	12.24 --cpu=name
	12.25 --crosser_veneershare, --no_crosser_veneershare
	12.26 --datacompressor=opt
	12.27 --debug, --no_debug
	12.28 --diag_error=tag[,tag,…]
	12.29 --diag_remark=tag[,tag,…]
	12.30 --diag_style=arm|ide|gnu
	12.31 --diag_suppress=tag[,tag,…]
	12.32 --diag_warning=tag[,tag,…]
	12.33 --dll
	12.34 --dynamic_linker=name
	12.35 --eager_load_debug, --no_eager_load_debug
	12.36 --eh_frame_hdr
	12.37 --edit=file_list
	12.38 --emit_debug_overlay_relocs
	12.39 --emit_debug_overlay_section
	12.40 --emit_non_debug_relocs
	12.41 --emit_relocs
	12.42 --entry=location
	12.43 --errors=filename
	12.44 --exceptions, --no_exceptions
	12.45 --export_all, --no_export_all
	12.46 --export_dynamic, --no_export_dynamic
	12.47 --filtercomment, --no_filtercomment
	12.48 --fini=symbol
	12.49 --first=section_id
	12.50 --force_explicit_attr
	12.51 --force_so_throw, --no_force_so_throw
	12.52 --fpic
	12.53 --fpu=list
	12.54 --fpu=name
	12.55 --got=type
	12.56 --gnu_linker_defined_syms
	12.57 --help
	12.58 --import_cmse_lib_in=filename
	12.59 --import_cmse_lib_out=filename
	12.60 --info=topic[,topic,…]
	12.61 --info_lib_prefix=opt
	12.62 --init=symbol
	12.63 --inline, --no_inline
	12.64 --inline_type=type
	12.65 --inlineveneer, --no_inlineveneer
	12.66 input-file-list
	12.67 --keep=section_id
	12.68 --keep_intermediate
	12.69 --largeregions, --no_largeregions
	12.70 --last=section_id
	12.71 --legacyalign, --no_legacyalign
	12.72 --libpath=pathlist
	12.73 --library=name
	12.74 --library_type=lib
	12.75 --list=filename
	12.76 --list_mapping_symbols, --no_list_mapping_symbols
	12.77 --load_addr_map_info, --no_load_addr_map_info
	12.78 --locals, --no_locals
	12.79 --lto, --no_lto
	12.80 --lto_keep_all_symbols, --no_lto_keep_all_symbols
	12.81 --lto_intermediate_filename
	12.82 --lto_level
	12.83 --lto_relocation_model
	12.84 --mangled, --unmangled
	12.85 --map, --no_map
	12.86 --match=crossmangled
	12.87 --max_er_extension=size
	12.88 --max_veneer_passes=value
	12.89 --max_visibility=type
	12.90 --merge, --no_merge
	12.91 --merge_litpools, --no_merge_litpools
	12.92 --muldefweak, --no_muldefweak
	12.93 -o filename, --output=filename
	12.94 --output_float_abi=option
	12.95 --overlay_veneers
	12.96 --override_visibility
	12.97 -Omax
	12.98 --pad=num
	12.99 --paged
	12.100 --pagesize=pagesize
	12.101 --partial
	12.102 --pie
	12.103 --piveneer, --no_piveneer
	12.104 --pltgot=type
	12.105 --pltgot_opts=mode
	12.106 --predefine="string"
	12.107 --preinit, --no_preinit
	12.108 --privacy
	12.109 --ref_cpp_init, --no_ref_cpp_init
	12.110 --ref_pre_init, --no_ref_pre_init
	12.111 --reloc
	12.112 --remarks
	12.113 --remove, --no_remove
	12.114 --ro_base=address
	12.115 --ropi
	12.116 --rosplit
	12.117 --rw_base=address
	12.118 --rwpi
	12.119 --scanlib, --no_scanlib
	12.120 --scatter=filename
	12.121 --section_index_display=type
	12.122 --show_cmdline
	12.123 --show_full_path
	12.124 --show_parent_lib
	12.125 --show_sec_idx
	12.126 --sort=algorithm
	12.127 --split
	12.128 --startup=symbol, --no_startup
	12.129 --stdlib
	12.130 --strict
	12.131 --strict_enum_size, --no_strict_enum_size
	12.132 --strict_flags, --no_strict_flags
	12.133 --strict_ph, --no_strict_ph
	12.134 --strict_relocations, --no_strict_relocations
	12.135 --strict_symbols, --no_strict_symbols
	12.136 --strict_visibility, --no_strict_visibility
	12.137 --strict_wchar_size, --no_strict_wchar_size
	12.138 --symbols, --no_symbols
	12.139 --symdefs=filename
	12.140 --symver_script=filename
	12.141 --symver_soname
	12.142 --tailreorder, --no_tailreorder
	12.143 --tiebreaker=option
	12.144 --unaligned_access, --no_unaligned_access
	12.145 --undefined=symbol
	12.146 --undefined_and_export=symbol
	12.147 --unresolved=symbol
	12.148 --use_definition_visibility
	12.149 --userlibpath=pathlist
	12.150 --veneerinject, --no_veneerinject
	12.151 --veneer_inject_type=type
	12.152 --veneer_pool_size=size
	12.153 --veneershare, --no_veneershare
	12.154 --verbose
	12.155 --version_number
	12.156 --via=filename
	12.157 --vsn
	12.158 --xo_base=address
	12.159 --xref, --no_xref
	12.160 --xrefdbg, --no_xrefdbg
	12.161 --xref{from|to}=object(section)
	12.162 --zi_base=address

	13. Linker Steering File Command Reference
	13.1 EXPORT steering file command
	13.2 HIDE steering file command
	13.3 IMPORT steering file command
	13.4 RENAME steering file command
	13.5 REQUIRE steering file command
	13.6 RESOLVE steering file command
	13.7 SHOW steering file command

	14. Via File Syntax
	14.1 Overview of via files
	14.2 Via file syntax rules

	15. armlink User Guide Changes
	15.1 Changes for the armlink User Guide

