
Arm® Compiler
Version 6.6

armlink User Guide

Non-Confidential
Copyright © 2014–2017, 2019–2020, 2023 Arm
Limited (or its affiliates).
All rights reserved.

Issue
DUI0803_l_en

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Arm® Compiler
armlink User Guide

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential Arm Compiler v6.00 Release

B 15 December 2014 Non-Confidential Arm Compiler v6.01 Release

C 30 June 2015 Non-Confidential Arm Compiler v6.02 Release

D 18 November 2015 Non-Confidential Arm Compiler v6.3 Release

E 24 February 2016 Non-Confidential Arm Compiler v6.4 Release

F 29 June 2016 Non-Confidential Arm Compiler v6.5 Release

G 4 November 2016 Non-Confidential Arm Compiler v6.6 Release

H 8 May 2017 Non-Confidential Arm Compiler v6.6.1 Release

I 29 November 2017 Non-Confidential Arm Compiler v6.6.2 Release

J 28 August 2019 Non-Confidential Arm Compiler v6.6.3 Release

K 26 August 2020 Non-Confidential Arm Compiler v6.6.4 Release

L 31 January 2023 Non-Confidential Arm Compiler v6.6.5 Release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 351

https://www.arm.com/company/policies/trademarks

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 351

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

Contents

List of Figures...17

List of Tables.. 18

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

1. Introduction..20
1.1 Conventions... 20
1.2 Other information...21

2. Overview of the Linker...22
2.1 About the linker..22
2.1.1 Summary of the linker features...22
2.1.2 What the linker can accept as input..23
2.1.3 What the linker outputs..24
2.2 Linker command-line syntax.. 24
2.3 What the linker does when constructing an executable image...25
2.4 Support level definitions...26

3. Linking Models Supported by armlink.. 31
3.1 Overview of linking models... 31
3.2 Bare-metal linking model..32
3.3 Partial linking model...33
3.4 Base Platform Application Binary Interface (BPABI) linking model... 34
3.5 Base Platform linking model.. 35

4. Image Structure and Generation.. 38
4.1 The structure of an Arm ELF image..38
4.1.1 Views of the image at each link stage...38
4.1.2 Input sections, output sections, regions, and program segments..40
4.1.3 Load view and execution view of an image... 42
4.1.4 Methods of specifying an image memory map with the linker..44
4.1.5 Image entry points..46
4.1.6 Restrictions on image structure...47
4.2 Simple images..48
4.2.1 Types of simple image... 48
4.2.2 Type 1 image structure, one load region and contiguous execution regions.............................. 49
4.2.3 Type 2 image structure, one load region and non-contiguous execution regions......................51
4.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions.............54
4.3 Section placement with the linker..56
4.3.1 Default section placement..56
4.3.2 Section placement with the FIRST and LAST attributes... 58
4.3.3 Section alignment with the linker... 59

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

4.4 Linker support for creating demand-paged files... 60
4.5 Linker reordering of execution regions containing T32 code.. 61
4.6 Linker-generated veneers... 61
4.6.1 What is a veneer?...61
4.6.2 Veneer sharing...63
4.6.3 Veneer types.. 63
4.6.4 Generation of position independent to absolute veneers...64
4.6.5 Reuse of veneers when scatter-loading.. 65
4.6.6 Generation of secure gateway veneers...66
4.7 Command-line options used to control the generation of C++ exception tables..........................67
4.8 Weak references and definitions.. 67
4.9 How the linker performs library searching, selection, and scanning...70
4.10 How the linker searches for the Arm standard libraries... 71
4.11 Specifying user libraries when linking...72
4.12 How the linker resolves references... 73
4.13 The strict family of linker options..74

5. Linker Optimization Features.. 75
5.1 Elimination of common debug sections..75
5.2 Elimination of common groups or sections..75
5.3 Elimination of unused sections... 76
5.4 Optimization with RW data compression...77
5.4.1 How the linker chooses a compressor.. 77
5.4.2 Options available to override the compression algorithm used by the linker............................. 78
5.4.3 How compression is applied.. 79
5.4.4 Considerations when working with RW data compression.. 79
5.5 Function inlining with the linker... 80
5.6 Factors that influence function inlining...81
5.7 About branches that optimize to a NOP..82
5.8 Linker reordering of tail calling sections... 83
5.9 Restrictions on reordering of tail calling sections...83
5.10 Linker merging of comment sections..84
5.11 Merging identical constants...84

6. Getting Image Details..87
6.1 Options for getting information about linker-generated files...87
6.2 Identifying the source of some link errors... 88

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

6.3 Example of using the --info linker option...88
6.4 How to find where a symbol is placed when linking...92

7. Accessing and Managing Symbols with armlink...94
7.1 About mapping symbols... 94
7.2 Linker-defined symbols..95
7.3 Region-related symbols... 96
7.3.1 Types of region-related symbols... 96
7.3.2 Image$$ execution region symbols.. 96
7.3.3 Load$$ execution region symbols.. 97
7.3.4 Load$$LR$$ load region symbols...98
7.3.5 Region name values when not scatter-loading..99
7.3.6 Linker defined symbols and scatter files...100
7.3.7 Methods of importing linker-defined symbols in C and C++... 100
7.3.8 Methods of importing linker-defined symbols in Arm assembly language................................ 100
7.4 Section-related symbols... 101
7.4.1 Types of section-related symbols... 101
7.4.2 Image symbols...102
7.4.3 Input section symbols..103
7.5 Access symbols in another image..104
7.5.1 Creating a symdefs file... 104
7.5.2 Outputting a subset of the global symbols..104
7.5.3 Reading a symdefs file.. 105
7.5.4 Symdefs file format..106
7.6 Edit the symbol tables with a steering file.. 107
7.6.1 Specifying steering files on the linker command-line...107
7.6.2 Steering file command summary...108
7.6.3 Steering file format.. 109
7.6.4 Hide and rename global symbols with a steering file.. 110
7.7 Use of $Super$$ and $Sub$$ to patch symbol definitions...110

8. Scatter-loading Features.. 112
8.1 The scatter-loading mechanism..112
8.1.1 Overview of scatter-loading...112
8.1.2 When to use scatter-loading... 112
8.1.3 Linker-defined symbols that are not defined when scatter-loading..113
8.1.4 Placing the stack and heap with a scatter file...114

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

8.1.5 Scatter-loading command-line options..115
8.1.6 Scatter-loading images with a simple memory map...116
8.1.7 Scatter-loading images with a complex memory map... 118
8.2 Root region and the initial entry point... 119
8.2.1 Effect of the ABSOLUTE attribute on a root region..120
8.2.2 Effect of the FIXED attribute on a root region...121
8.2.3 Methods of placing functions and data at specific addresses..123
8.2.4 Placing functions and data in a named section...129
8.2.5 Placing __at sections at a specific address... 131
8.2.6 Restrictions on placing __at sections... 132
8.2.7 Automatically placing __at sections..132
8.2.8 Manually placing __at sections..134
8.2.9 Placing a key in flash memory with an __at section...135
8.3 Example of how to explicitly place a named section with scatter-loading................................... 136
8.4 Placement of unassigned sections...138
8.4.1 Default rules for placing unassigned sections... 139
8.4.2 Command-line options for controlling the placement of unassigned sections.........................140
8.4.3 Prioritizing the placement of unassigned sections..141
8.4.4 Specify the maximum region size permitted for placing unassigned sections.......................... 141
8.4.5 Examples of using placement algorithms for .ANY sections.. 143
8.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority.........145
8.4.7 Examples of using sorting algorithms for .ANY sections.. 147
8.4.8 Behavior when .ANY sections overflow because of linker-generated content........................ 148
8.5 Placing veneers with a scatter file...152
8.6 Placement of CMSE veneer sections for a Secure image.. 152
8.7 Reserving an empty block of memory..155
8.7.1 Characteristics of a reserved empty block of memory..155
8.7.2 Example of reserving an empty block of memory..155
8.8 Placement of Arm C and C++ library code... 157
8.8.1 Placing code in a root region.. 157
8.8.2 Placing Arm C library code.. 158
8.8.3 Placing Arm C++ library code... 158
8.9 Aligning regions to page boundaries...160
8.10 Aligning execution regions and input sections... 161
8.11 Preprocessing a scatter file... 162
8.11.1 Default behavior for armclang -E in a scatter file..163

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

8.11.2 Using other preprocessors in a scatter file.. 163
8.12 Example of using expression evaluation in a scatter file to avoid padding................................ 164
8.13 Equivalent scatter-loading descriptions for simple images.. 165
8.13.1 Command-line options for creating simple images.. 165
8.13.2 Type 1 image, one load region and contiguous execution regions...166
8.13.3 Type 2 image, one load region and non-contiguous execution regions.................................. 168
8.13.4 Type 3 image, multiple load regions and non-contiguous execution regions......................... 170
8.14 How the linker resolves multiple matches when processing scatter files...................................173
8.15 How the linker resolves path names when processing scatter files.. 175
8.16 Scatter file to ELF mapping.. 175

9. Scatter File Syntax...178
9.1 BNF notation used in scatter-loading description syntax...178
9.2 Syntax of a scatter file..179
9.3 Load region descriptions.. 180
9.3.1 Components of a load region description.. 180
9.3.2 Syntax of a load region description... 181
9.3.3 Load region attributes... 183
9.3.4 Inheritance rules for load region address attributes.. 184
9.3.5 Inheritance rules for the RELOC address attribute.. 186
9.3.6 Considerations when using a relative address +offset for a load region................................... 186
9.4 Execution region descriptions...187
9.4.1 Components of an execution region description..187
9.4.2 Syntax of an execution region description... 188
9.4.3 Execution region attributes.. 190
9.4.4 Inheritance rules for execution region address attributes...194
9.4.5 Considerations when using a relative address +offset for execution regions...........................195
9.5 Input section descriptions..196
9.5.1 Components of an input section description.. 196
9.5.2 Syntax of an input section description..197
9.5.3 Examples of module and input section specifications... 201
9.6 Expression evaluation in scatter files.. 202
9.6.1 Expression usage in scatter files...202
9.6.2 Expression rules in scatter files...203
9.6.3 Execution address built-in functions for use in scatter files...204
9.6.4 ScatterAssert function and load address related functions.. 206

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

9.6.5 Symbol related function in a scatter file...207
9.6.6 AlignExpr(expr, align) function... 208
9.6.7 GetPageSize() function.. 209
9.6.8 SizeOfHeaders() function..209
9.6.9 Example of aligning a base address in execution space but still tightly packed in load space..210
9.6.10 Scatter files containing relative base address load regions and a ZI execution region..........210

10. BPABI Shared Libraries and Executables...212
10.1 About the Base Platform Application Binary Interface (BPABI)..212
10.2 Platforms supported by the BPABI... 213
10.3 Features common to all BPABI models..213
10.3.1 About importing and exporting symbols for BPABI models...214
10.3.2 Symbol visibility for BPABI models..214
10.3.3 Automatic import and export for BPABI models..215
10.3.4 Manual import and export for BPABI models...215
10.3.5 Symbol versioning for BPABI models..216
10.3.6 RW compression for BPABI models..216
10.4 Bare metal and DLL-like memory models..216
10.4.1 BPABI standard memory model... 217
10.4.2 Customization of the BPABI standard memory model..218
10.4.3 Linker command-line options for bare metal and DLL-like models.. 218
10.4.4 Mandatory symbol versioning in the BPABI DLL-like model... 220
10.4.5 Automatic dynamic symbol table rules in the BPABI DLL-like model...................................... 220
10.4.6 Addressing modes in the BPABI DLL-like model..221
10.4.7 C++ initialization in the BPABI DLL-like model...222
10.5 Symbol versioning..223
10.5.1 Overview of symbol versioning..223
10.5.2 Embedded symbols..223
10.5.3 The symbol versioning script file..224
10.5.4 Example of creating versioned symbols... 225
10.5.5 Linker options for enabling implicit symbol versioning... 226

11. Features of the Base Platform Linking Model..227
11.1 Restrictions on the use of scatter files with the Base Platform model....................................... 227
11.2 Scatter files for the Base Platform linking model.. 229
11.3 Placement of PLT sequences with the Base Platform model..231

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

12. armlink Command-line Options... 232
12.1 --any_contingency... 232
12.2 --any_placement=algorithm...232
12.3 --any_sort_order=order.. 234
12.4 --api, --no_api... 235
12.5 --autoat, --no_autoat.. 236
12.6 --bare_metal_pie...236
12.7 --base_platform.. 237
12.8 --bestdebug, --no_bestdebug... 238
12.9 --blx_arm_thumb, --no_blx_arm_thumb..239
12.10 --blx_thumb_arm, --no_blx_thumb_arm... 239
12.11 --bpabi..240
12.12 --branchnop, --no_branchnop.. 240
12.13 --callgraph, --no_callgraph...241
12.14 --callgraph_file=filename..242
12.15 --callgraph_output=fmt.. 243
12.16 --callgraph_subset=symbol[,symbol,…]... 244
12.17 --cgfile=type... 244
12.18 --cgsymbol=type..245
12.19 --cgundefined=type.. 246
12.20 --comment_section, --no_comment_section...246
12.21 --compress_debug, --no_compress_debug..247
12.22 --cppinit, --no_cppinit...248
12.23 --cpu=list... 248
12.24 --cpu=name.. 249
12.25 --crosser_veneershare, --no_crosser_veneershare.. 251
12.26 --datacompressor=opt..251
12.27 --debug, --no_debug.. 252
12.28 --diag_error=tag[,tag,…]..253
12.29 --diag_remark=tag[,tag,…].. 253
12.30 --diag_style=arm|ide|gnu..254
12.31 --diag_suppress=tag[,tag,…]...254
12.32 --diag_warning=tag[,tag,…].. 255
12.33 --dll... 256
12.34 --dynamic_linker=name..256
12.35 --eager_load_debug, --no_eager_load_debug...257

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

12.36 --eh_frame_hdr.. 257
12.37 --edit=file_list..258
12.38 --emit_debug_overlay_relocs.. 259
12.39 --emit_debug_overlay_section..259
12.40 --emit_non_debug_relocs...260
12.41 --emit_relocs...260
12.42 --entry=location...260
12.43 --errors=filename...262
12.44 --exceptions, --no_exceptions.. 262
12.45 --export_all, --no_export_all..262
12.46 --export_dynamic, --no_export_dynamic... 263
12.47 --filtercomment, --no_filtercomment.. 264
12.48 --fini=symbol...264
12.49 --first=section_id..265
12.50 --force_explicit_attr... 266
12.51 --force_so_throw, --no_force_so_throw... 266
12.52 --fpic...267
12.53 --fpu=list..267
12.54 --fpu=name...267
12.55 --got=type... 268
12.56 --gnu_linker_defined_syms.. 269
12.57 --help..270
12.58 --import_cmse_lib_in=filename...270
12.59 --import_cmse_lib_out=filename..270
12.60 --info=topic[,topic,…].. 271
12.61 --info_lib_prefix=opt..274
12.62 --init=symbol.. 274
12.63 --inline, --no_inline..275
12.64 --inline_type=type... 275
12.65 --inlineveneer, --no_inlineveneer...276
12.66 input-file-list..277
12.67 --keep=section_id.. 278
12.68 --keep_intermediate..279
12.69 --largeregions, --no_largeregions... 280
12.70 --last=section_id.. 281
12.71 --legacyalign, --no_legacyalign... 282

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

12.72 --libpath=pathlist... 283
12.73 --library=name..283
12.74 --library_type=lib... 284
12.75 --list=filename.. 285
12.76 --list_mapping_symbols, --no_list_mapping_symbols.. 285
12.77 --load_addr_map_info, --no_load_addr_map_info.. 286
12.78 --locals, --no_locals... 286
12.79 --lto, --no_lto..287
12.80 --lto_keep_all_symbols, --no_lto_keep_all_symbols... 289
12.81 --lto_intermediate_filename.. 289
12.82 --lto_level...290
12.83 --lto_relocation_model..291
12.84 --mangled, --unmangled.. 292
12.85 --map, --no_map..292
12.86 --match=crossmangled...293
12.87 --max_er_extension=size..293
12.88 --max_veneer_passes=value... 294
12.89 --max_visibility=type...294
12.90 --merge, --no_merge.. 295
12.91 --merge_litpools, --no_merge_litpools.. 296
12.92 --muldefweak, --no_muldefweak...296
12.93 -o filename, --output=filename..296
12.94 --output_float_abi=option... 297
12.95 --overlay_veneers.. 298
12.96 --override_visibility..299
12.97 -Omax.. 299
12.98 --pad=num.. 300
12.99 --paged...300
12.100 --pagesize=pagesize... 301
12.101 --partial..301
12.102 --pie..301
12.103 --piveneer, --no_piveneer... 302
12.104 --pltgot=type..302
12.105 --pltgot_opts=mode..304
12.106 --predefine="string".. 304
12.107 --preinit, --no_preinit..306

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

12.108 --privacy.. 306
12.109 --ref_cpp_init, --no_ref_cpp_init.. 307
12.110 --ref_pre_init, --no_ref_pre_init..307
12.111 --reloc.. 308
12.112 --remarks...309
12.113 --remove, --no_remove..309
12.114 --ro_base=address...310
12.115 --ropi.. 310
12.116 --rosplit..311
12.117 --rw_base=address..312
12.118 --rwpi... 312
12.119 --scanlib, --no_scanlib..313
12.120 --scatter=filename...313
12.121 --section_index_display=type...315
12.122 --show_cmdline... 316
12.123 --show_full_path..316
12.124 --show_parent_lib... 316
12.125 --show_sec_idx.. 317
12.126 --sort=algorithm.. 317
12.127 --split..319
12.128 --startup=symbol, --no_startup... 320
12.129 --stdlib... 320
12.130 --strict..321
12.131 --strict_enum_size, --no_strict_enum_size.. 322
12.132 --strict_flags, --no_strict_flags..322
12.133 --strict_ph, --no_strict_ph... 323
12.134 --strict_relocations, --no_strict_relocations...323
12.135 --strict_symbols, --no_strict_symbols...324
12.136 --strict_visibility, --no_strict_visibility..325
12.137 --strict_wchar_size, --no_strict_wchar_size...325
12.138 --symbols, --no_symbols... 326
12.139 --symdefs=filename..326
12.140 --symver_script=filename..327
12.141 --symver_soname..327
12.142 --tailreorder, --no_tailreorder... 328
12.143 --tiebreaker=option...328

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Contents

12.144 --unaligned_access, --no_unaligned_access..329
12.145 --undefined=symbol... 330
12.146 --undefined_and_export=symbol...330
12.147 --unresolved=symbol..331
12.148 --use_definition_visibility...332
12.149 --userlibpath=pathlist...332
12.150 --veneerinject, --no_veneerinject..333
12.151 --veneer_inject_type=type..333
12.152 --veneer_pool_size=size.. 334
12.153 --veneershare, --no_veneershare.. 335
12.154 --verbose...335
12.155 --version_number..336
12.156 --via=filename..336
12.157 --vsn...336
12.158 --xo_base=address..337
12.159 --xref, --no_xref...338
12.160 --xrefdbg, --no_xrefdbg... 338
12.161 --xref{from|to}=object(section)... 338
12.162 --zi_base=address... 339

13. Linker Steering File Command Reference... 341
13.1 EXPORT steering file command...341
13.2 HIDE steering file command...342
13.3 IMPORT steering file command...343
13.4 RENAME steering file command... 344
13.5 REQUIRE steering file command...345
13.6 RESOLVE steering file command...346
13.7 SHOW steering file command... 347

14. Via File Syntax..348
14.1 Overview of via files...348
14.2 Via file syntax rules...348

15. armlink User Guide Changes.. 351
15.1 Changes for the armlink User Guide..351

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

List of Figures

List of Figures

Figure 2-1: Integration boundaries in Arm Compiler for Embedded 6....................................28

Figure 4-1: Relationship between sections, regions, and segments...40

Figure 4-2: Load and execution memory maps for an image without an XO section........... 42

Figure 4-3: Load and execution memory maps for an image with an XO section.................43

Figure 4-4: Simple Type 1 image without execute-only code...50

Figure 4-5: Simple Type 2 image without execute-only code...52

Figure 4-6: Simple Type 3 image without execute-only code...54

Figure 8-1: Simple scatter-loaded memory map..117

Figure 8-2: Complex memory map... 118

Figure 8-3: Memory map for fixed execution regions.. 121

Figure 8-4: .ANY contingency.. 149

Figure 8-5: Reserving a region for the stack.. 156

Figure 9-1: Components of a scatter file.. 179

Figure 9-2: Components of a load region description..181

Figure 9-3: Components of an execution region description..188

Figure 9-4: Components of an input section description.. 197

Figure 10-1: BPABI tool flow... 212

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

List of Tables

List of Tables

Table 4-1: Comparing load and execution views... 43

Table 4-2: Comparison of scatter file and equivalent command-line options........................ 45

Table 5-1: Inlining small functions... 81

Table 7-2: Image$$ execution region symbols..96

Table 7-3: Load$$ execution region symbols..97

Table 7-4: Load$$LR$$ load region symbols.. 99

Table 7-5: Image symbols.. 102

Table 7-6: Section-related symbols... 103

Table 7-7: Steering file command summary..108

Table 8-1: Input section properties for placement of .ANY sections.....................................143

Table 8-2: Input section properties for placement of sections with next_fit........................145

Table 8-4: Sort order for descending_size algorithm.. 147

Table 8-5: Sort order for cmdline algorithm... 148

Table 9-1: BNF notation.. 178

Table 9-2: Execution address related functions... 204

Table 9-3: Load address related functions...206

Table 10-1: Symbol visibility... 214

Table 10-2: Turning on BPABI support.. 218

Table 12-1: Supported Arm architectures... 249

Table 12-2: Data compressor algorithms...252

Table 12-3: GNU equivalent of input sections...269

Table 12-4: Link time optimization dependencies... 287

Table 15-1: Changes between 6.6.5 (revision L) and 6.6.4 (revision K)................................ 351

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

List of Tables

Table 15-2: Changes between 6.6.4 (revision K) and 6.6.3 (revision J)................................ 351

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Introduction

1. Introduction
Arm® Compiler armlink User Guide provides user information for the Arm linker, armlink. It
describes the basic linker functionality, image structure, BPABI support, how to access image
symbols, and how to use scatter files.

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 351

https://developer.arm.com/glossary

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Introduction

Convention Use
An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 351

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Overview of the Linker

2. Overview of the Linker
Gives an overview of the Arm linker, armlink.

2.1 About the linker
The linker combines the contents of one or more object files with selected parts of one or more
object libraries to produce executable images, partially linked object files, or shared object files.

2.1.1 Summary of the linker features

The linker has many features for linking input files to generate various types of output files.

The linker can:

• Link A32 and T32 code, or A64 code.

• Generate interworking veneers to switch between A32 and T32 states when required.

• Generate range extension veneers, where required, to extend the range of branch instructions.

• Automatically select the appropriate standard C or C++ library variants to link with, based on
the build attributes of the objects it is linking.

• Position code and data at specific locations within the system memory map, using either a
command-line option or a scatter file.

• Perform RW data compression to minimize ROM size.

• Eliminate unused sections to reduce the size of your output image.

• Control the generation of debug information in the output file.

• Generate a static callgraph and list the stack usage.

• Control the contents of the symbol table in output images.

• Show the sizes of code and data in the output.

• Build images suitable for all states of the Arm®v8-M Security Extension.

Be aware of the following:

• Generated code might be different between two Arm Compiler releases.

• For a feature release, there might be significant code generation differences.

The command-line option descriptions and related information in the individual Arm
Compiler tools documents describe all the features that Arm Compiler supports.
Any features not documented are not supported and are used at your own risk.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Overview of the Linker

You are responsible for making sure that any generated code using Support level
definitions is operating correctly.

Related information
Linker support for creating demand-paged files on page 60
Linking Models Supported by armlink on page 31
Image Structure and Generation on page 38
Linker Optimization Features on page 75
Getting Image Details on page 87
Accessing and Managing Symbols with armlink on page 94
Scatter-loading Features on page 112
BPABI Shared Libraries and Executables on page 212
Features of the Base Platform Linking Model on page 227
Placement of CMSE veneer sections for a Secure image on page 152
Base Platform ABI for the Arm Architecture

2.1.2 What the linker can accept as input

armlink can accept one or more object files from toolchains that support Arm ELF.

Object files must be formatted as Arm® ELF. This format is described in:

• ELF for the Arm Architecture (IHI 0044).

• ELF for the Arm 64-bit Architecture (AArch64) (IHI 0056).

Optionally, the following files can be used as input to armlink:

• One or more libraries created by the librarian, armar.

• A symbol definitions file.

• A scatter file.

• A steering file.

• A Secure code import library when building a Non-secure image that needs to call a Secure
image.

• A Secure code import library when building a Secure image that has to use the entry addresses
in a previously generated import library.

Related information
Scatter-loading Features on page 112
Access symbols in another image on page 103
Linker Steering File Command Reference on page 341
Scatter File Syntax on page 178
--import_cmse_lib_in=filename on page 270
About the Arm librarian

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 351

https://developer.arm.com/documentation/ihi0037/latest
https://developer.arm.com/documentation/dui0806/l/Overview-of-the-Arm-Librarian/About-the-Arm-Librarian

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Overview of the Linker

Building Secure and Non-secure Images Using Armv8-M Security Extensions
ELF for the Arm Architecture (IHI 0044)
ELF for the Arm 64-bit Architecture (AArch64) (IHI 0056)

2.1.3 What the linker outputs

armlink can create executable images and object files.

Output from armlink can be:

• An ELF executable image.

• A partially linked ELF object that can be used as input in a subsequent link step.

• A Secure code import library that is required by developers building a Non-secure image that
needs to call a Secure image.

You can also use fromelf to convert an ELF executable image to other file formats,
or to display, process, and protect the content of an ELF executable image.

Related information
Partial linking model on page 33
Section placement with the linker on page 56
The structure of an Arm ELF image on page 38
--import_cmse_lib_out=filename on page 270
Building Secure and Non-secure Images Using Armv8-M Security Extensions
Overview of the fromelf image converter

2.2 Linker command-line syntax
The armlink command can accept many input files together with options that determine how to
process the files.

The command for invoking the linker is:

armlink options input-file-list

where:

options

Linker command-line options.

input-file-list

A space-separated list of objects, libraries, or symbol definitions (symdefs) files.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 351

https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions
https://developer.arm.com/documentation/ihi0044/latest
https://developer.arm.com/documentation/ihi0056/c
https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions
https://developer.arm.com/documentation/dui0805/l/Overview-of-the-fromelf-Image-Converter

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Overview of the Linker

Some armlink options, such as --keep, require parentheses as values. On
Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,
for example:

--keep="foo.o(Premier*)"

Related information
input-file-list on page 276
armlink Command-line Options on page 232

2.3 What the linker does when constructing an executable
image

armlink performs many operations, depending on the content of the input files and the command-
line options you specify.

When you use the linker to construct an executable image, it:

• Resolves symbolic references between the input object files.

• Extracts object modules from libraries to satisfy otherwise unsatisfied symbolic references.

• Removes unused sections.

• Eliminates duplicate common groups and common code, data, and debug sections.

• Sorts input sections according to their attributes and names, and merges sections with similar
attributes and names into contiguous chunks.

• Organizes object fragments into memory regions according to the grouping and placement
information provided.

• Assigns addresses to relocatable values.

• Generates an executable image.

Related information
Elimination of common debug sections on page 75
Elimination of unused sections on page 76
The structure of an Arm ELF image on page 38

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Overview of the Linker

2.4 Support level definitions
This describes the levels of support for various Arm® Compiler 6 features.

Arm Compiler 6 is built on Clang and LLVM technology. Therefore, it has more functionality than
the set of product features described in the documentation. The following definitions clarify the
levels of support and guarantees on functionality that are expected from these features.

Arm welcomes feedback regarding the use of all Arm Compiler 6 features, and intends to
support users to a level that is appropriate for that feature. You can contact support at https://
developer.arm.com/support.

Identification in the documentation
All features that are documented in the Arm Compiler 6 documentation are product features,
except where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well tested,
and is expected to be stable across feature and update releases.

• Arm intends to give advance notice of significant functionality changes to product features.

• If you have a support and maintenance contract, Arm provides full support for use of all
product features.

• Arm welcomes feedback on product features.

• Any issues with product features that Arm encounters or is made aware of are considered for
fixing in future versions of Arm Compiler.

In addition to fully supported product features, some product features are only alpha or beta
quality.

Beta product features
Beta product features are implementation complete, but have not been sufficiently tested to
be regarded as suitable for use in production environments.

Beta product features are identified with [BETA].

• Arm endeavors to document known limitations on beta product features.

• Beta product features are expected to eventually become product features in a future
release of Arm Compiler 6.

• Arm encourages the use of beta product features, and welcomes feedback on them.

• Any issues with beta product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler.

Alpha product features
Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 351

https://developer.arm.com/support
https://developer.arm.com/support

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Overview of the Linker

Alpha product features are identified with [ALPHA].

• Arm endeavors to document known limitations of alpha product features.

• Arm encourages the use of alpha product features, and welcomes feedback on them.

• Any issues with alpha product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler.

Community features
Arm Compiler 6 is built on LLVM technology and preserves the functionality of that technology
where possible. This means that there are more features available in Arm Compiler that are
not listed in the documentation. These extra features are known as community features. For
information on these community features, see the Clang Compiler User's Manual.

Where community features are referenced in the documentation, they are identified with
[COMMUNITY].

• Arm makes no claims about the quality level or the degree of functionality of these features,
except when explicitly stated in this documentation.

• Functionality might change significantly between feature releases.

• Arm makes no guarantees that community features remain functional across update releases,
although changes are expected to be unlikely.

Some community features might become product features in the future, but Arm provides no
roadmap for such features. Arm is interested in understanding your use of these features, and
welcomes feedback on them. Arm supports customers using these features on a best-effort basis,
unless the features are unsupported. Arm accepts defect reports on these features, but does not
guarantee that these issues are to be fixed in future releases.

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:

• The following figure shows the structure of the Arm Compiler 6 toolchain:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 351

http://clang.llvm.org/docs/UsersManual.html

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Overview of the Linker

Figure 2-1: Integration boundaries in Arm Compiler for Embedded 6.

Arm C library

armasm syntax
assembly

Arm C++ library

LLVM Project
libc++

armasm

C/C++
Source code

GNU syntax
Assembly

armclang

LLVM Project
clang

Source
code

headers

Objects ObjectsObjects

armlink

Image

Scatter/
Steering/

Symdefs file

The dashed boxes are toolchain components, and any interaction between these components
is an integration boundary. Community features that span an integration boundary might have
significant limitations in functionality. The exception to such features is if the interaction is
codified in one of the standards supported by Arm Compiler 6. See Application Binary Interface
(ABI). Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 351

https://developer.arm.com/architectures/system-architectures/software-standards/abi
https://developer.arm.com/architectures/system-architectures/software-standards/abi

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Overview of the Linker

• The Clang implementations of compiler features, particularly those features that have been
present for a long time in other toolchains, are likely to be mature. The functionality of new
features, such as support for new language features, is likely to be less mature and therefore
more likely to have limited functionality.

Deprecated features
A deprecated feature is one that Arm plans to remove from a future release of Arm Compiler.
Arm does not make any guarantee regarding the testing or maintenance of deprecated features.
Therefore, Arm does not recommend using a feature after it is deprecated.

For information on replacing deprecated features with supported features, see the Arm Compiler
documentation and Release Notes. Where appropriate, each Arm Compiler document includes
notes for features that are deprecated, and also provides entries in the changes appendix of that
document.

Unsupported features
With both the product and community feature categories, specific features and use-cases are
known not to function correctly, or are not intended for use with Arm Compiler 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive
list of unsupported features or use-cases for community features. The known limitations on
community features are listed in Community features.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:

• The Clang option -stdlib=libstdc++ is not supported.

• C++ static initialization of local variables is not thread-safe when linked against the standard
C++ libraries. For thread-safety, you must provide your own implementation of thread-safe
functions as described in Standard C++ library implementation definition.

This restriction does not apply to the [ALPHA]-supported multithreaded C++
libraries.

• Use of C11 library features is unsupported.

• Any community feature that is exclusively related to non-Arm architectures is not supported.

• Except for Armv6-M, compilation for targets that implement architectures lower than Armv7 is
not supported.

• The long double data type is not supported for AArch64 state because of limitations in the
current Arm C library.

• C complex arithmetic is not supported, because of limitations in the current Arm C library.

• Complex numbers are defined in C++ as a template, std::complex. Arm Compiler supports
std::complex with the float and double types, but not the long double type because of
limitations in the current Arm C library.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Overview of the Linker

For C code that uses complex numbers, it is not sufficient to recompile with
the C++ compiler to make that code work. How you can use complex numbers
depends on whether you are building for Armv8-M architecture-based
processors.

• You must take care when mixing translation units that are compiled with and without the
[COMMUNITY] -fsigned-char option, and that share interfaces or data structures.

The Arm ABI defines char as an unsigned byte, and this is the interpretation
used by the C libraries supplied with the Arm compilation tools.

Alternatives to C complex numbers not being supported
If you are building for Armv8-M architecture-based processors, consider using the free and Open
Source CMSIS-DSP library that includes a data type and library functions for complex number
support in C. For more information about CMSIS-DSP and complex number support see the
following sections of the CMSIS documentation:

• Complex Math Functions

• Complex Matrix Multiplication

• Complex FFT Functions

If you are not building for Armv8-M architecture-based processors, consider modifying the affected
part of your project to use the C++ standard template library type std::complex instead.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 351

https://arm-software.github.io/CMSIS_5/DSP/html/group__groupCmplxMath.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__CmplxMatrixMult.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__ComplexFFT.html

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linking Models Supported by armlink

3. Linking Models Supported by armlink
Describes the linking models supported by the Arm linker, armlink.

3.1 Overview of linking models
A linking model is a group of command-line options and memory maps that control the behavior of
the linker.

The linking models supported by armlink are:

Bare-metal
This model does not target any specific platform. It enables you to create an image with
your own custom operating system, memory map, and, application code if required. Some
limited dynamic linking support is available. You can specify additional options depending on
whether a scatter file is in use.

Bare-metal Position Independent Executables (PIE)
This model produces a bare-metal Position Independent Executable (PIE). This is an executable
that does not need to be executed at a specific address but can be executed at any suitably
aligned address. All objects and libraries linked into the image must be compiled to be
position independent.

Bare-metal PIE support is deprecated in this release.

Partial linking
This model produces a relocatable ELF object suitable for input to the linker in a subsequent
link step. The partial object can be used as input to another link step. The linker performs
limited processing of input objects to produce a single output object.

BPABI
This model supports the DLL-like Base Platform Application Binary Interface (BPABI). It is
intended to produce applications and DLLs that can run on a platform OS that varies in
complexity. The memory model is restricted according to the Base Platform ABI for the Arm
Architecture (IHI 0037 C).

Not supported for AArch64 state.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linking Models Supported by armlink

Base Platform
This is an extension to the BPABI model to support scatter-loading.

Not supported for AArch64 state.

You can combine related options in each model to tighten control over the output.

Related information
Bare-metal linking model on page 32
Partial linking model on page 33
Base Platform Application Binary Interface (BPABI) linking model on page 34
Base Platform linking model on page 35
BPABI Shared Libraries and Executables on page 212
Base Platform ABI for the Arm Architecture

3.2 Bare-metal linking model
Focuses on the conventional embedded market where the whole program, possibly including a
Real-Time Operating System (RTOS), is linked in one pass.

The linker can make very few assumptions about the memory map of a bare-metal system.
Therefore, you must use the scatter-loading mechanism if you want more precise control. Scatter-
loading allows different regions in an image memory map to be placed at addresses other than
at their natural address. Such an image is a relocatable image, and the linker must adjust program
addresses and resolve references to external symbols.

By default, the linker attempts to resolve all the relocations statically. However, it is also possible to
create a position-independent or relocatable image. Such an image can be executed from different
addresses and have its relocations resolved at load or run-time. You can use a dynamic model to
create relocatable images. A position-independent image does not require a dynamic model.

With the bare-metal model, you can:

• Identify the regions that can be relocated or are position-independent using a scatter file or
command-line options.

• Identify the symbols that can be imported and exported using a steering file.

You can use --scatter=file with this model. You can use the following options when scatter-
loading is not used:

• --reloc (not supported in AArch64 state).

• --ro_base=address.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 351

https://developer.arm.com/documentation/ihi0037/latest

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linking Models Supported by armlink

• --ropi.

• --rosplit.

• --rw_base=address.

• --rwpi.

• --split.

• --xo_base=address.

• --zi_base.

--xo_base cannot be used with --ropi or --rwpi.

Related information
--xo_base=address on page 337
Methods of specifying an image memory map with the linker on page 44
--edit=file_list on page 258
--reloc on page 307
--ro_base=address on page 309
--ropi on page 310
--rosplit on page 311
--rw_base=address on page 311
--rwpi on page 312
--scatter=filename on page 313
--split on page 319
--zi_base=address on page 339
Linker Steering File Command Reference on page 341
Base Platform Application Binary Interface (BPABI) linking model on page 34
Scatter files for the Base Platform linking model on page 229

3.3 Partial linking model
Produces a single output file that can be used as input to a subsequent link step.

Partial linking:

• Eliminates duplicate copies of debug sections.

• Merges the symbol tables into one.

• Leaves unresolved references unresolved.

• Merges common data (COMDAT) groups.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linking Models Supported by armlink

• Generates a single object file that can be used as input to a subsequent link step.

If the linker finds multiple entry points in the input files it generates an error because the single
output file can have only one entry point.

To link with this model, use the --partial command-line option.

If you use partial linking, you cannot refer to the original objects by name in a
scatter file. Therefore, you might have to update your scatter file.

Related information
Edit the symbol tables with a steering file on page 107
Steering file format on page 109
Linker Steering File Command Reference on page 341
--edit=file_list on page 258
--partial on page 301

3.4 Base Platform Application Binary Interface (BPABI)
linking model

The Base Platform Application Binary Interface (BPABI) is a meta-standard for third parties to
generate their own platform-specific image formats.

The BPABI model produces as much dynamic information as possible without focusing on any
specific platform.

BPABI is not supported for AArch64 state.

To link with this model, use the --bpabi command-line option. Other linker command-line options
supported by this model are:

• --dll.

• --force_so_throw, --no_force_so_throw.

• --pltgot=type.

• --ro_base=address.

• --rosplit.

• --rw_base=address.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linking Models Supported by armlink

• --rwpi.

Be aware of the following:

• You cannot use scatter-loading. However, the Base Platform linking model supports scatter-
loading.

• The model by default assumes that shared objects cannot throw a C++ exception (--
no_force_so_throw).

• The default value of the --pltgot option is direct.

• You must use symbol versioning to ensure that all the required symbols are available at load
time.

Related information
Bare-metal linking model on page 32
Symbol versioning on page 222
--bpabi on page 239
--dll on page 255
--force_so_throw, --no_force_so_throw on page 266
--pltgot=type on page 302
--ro_base=address on page 309
--rosplit on page 311
--rw_base=address on page 311
--rwpi on page 312
Base Platform ABI for the Arm Architecture

3.5 Base Platform linking model
Enables you to create dynamically linkable images that do not have the memory map enforced by
the Base Platform Application Binary Interface (BPABI) linking model.

The Base Platform linking model enables you to:

• Create images with a memory map described in a scatter file.

• Have dynamic relocations so the images can be dynamically linked. The dynamic relocations can
also target within the same image.

Base Platform is not supported for AArch64 state.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 351

https://developer.arm.com/documentation/ihi0037/latest

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linking Models Supported by armlink

The BPABI specification places constraints on the memory model that can be
violated using scatter-loading. However, because Base Platform is a superset of
BPABI, it is possible to create a BPABI conformant image with Base Platform.

To link with the Base Platform model, use the --base_platform command-line option.

If you specify this option, the linker acts as if you specified --bpabi, with the following exceptions:

• Scatter-loading is available with --scatter. If you do not specify --scatter, then the standard
BPABI memory model scatter file is used.

• The following options are available:

◦ --dll.

◦ --force_so_throw, --no_force_so_throw.

◦ --pltgot=type.

◦ --rosplit.

• The default value of the --pltgot option is different to that for --bpabi:

◦ For --base_platform, the default is --pltgot=none.

◦ For --bpabi the default is --pltgot=direct.

• Each load region containing code might require a Procedure Linkage Table (PLT) section to
indirect calls from the load region to functions where the address is not known at static link
time. The PLT section for a load region LR must be placed in LR and be accessible at all times to
code within LR.

If you do not use a scatter file, the linker can ensure that the PLT section is placed correctly,
and contains entries for calls only to imported symbols. If you specify a scatter file, the linker
might not be able to find a suitable location to place the PLT.

To ensure calls between relocated load regions use a PLT entry:

◦ Use the --pltgot=direct option to turn on PLT generation.

◦ Use the --pltgot_opts=crosslr option to add entries in the PLT for calls from and to RELOC
load regions. The linker generates a PLT for each load region so that calls do not have to be
extended to reach a distant PLT.

Be aware of the following:

• The model by default assumes that shared objects cannot throw a C++ exception (--
no_force_so_throw).

• You must use symbol versioning to ensure that all the required symbols are available at load
time.

• There are restrictions on the type of scatter files you can use.

Related information
Restrictions on the use of scatter files with the Base Platform model on page 227

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linking Models Supported by armlink

Scatter files for the Base Platform linking model on page 229
Base Platform Application Binary Interface (BPABI) linking model on page 34
Methods of specifying an image memory map with the linker on page 44
Symbol versioning on page 222
--base_platform on page 237
--dll on page 255
--pltgot_opts=mode on page 303
--rosplit on page 311
--scatter=filename on page 313
--pltgot=type on page 302

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4. Image Structure and Generation
Describes the image structure and the functionality available in the Arm linker, armlink, to generate
images.

4.1 The structure of an Arm ELF image
An Arm ELF image contains sections, regions, and segments, and each link stage has a different
view of the image.

The structure of an image is defined by the:

• Number of its constituent regions and output sections.

• Positions in memory of these regions and sections when the image is loaded.

• Positions in memory of these regions and sections when the image executes.

4.1.1 Views of the image at each link stage

Each link stage has a different view of the image.

The image views are:

ELF object file view (linker input)
The ELF object file view comprises input sections. The ELF object file can be:

• A relocatable file that holds code and data suitable for linking with other object files to
create an executable or a shared object file.

• A shared object file that holds code and data.

Linker view
The linker has two views for the address space of a program that become distinct in the
presence of overlaid, position-independent, and relocatable program fragments (code or
data):

• The load address of a program fragment is the target address that the linker expects
an external agent such as a program loader, dynamic linker, or debugger to copy the
fragment from the ELF file. This might not be the address at which the fragment
executes.

• The execution address of a program fragment is the target address where the linker
expects the fragment to reside whenever it participates in the execution of the program.

If a fragment is position-independent or relocatable, its execution address can vary during
execution.

ELF image file view (linker output)
The ELF image file view comprises program segments and output sections:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

• A load region corresponds to a program segment.

• An execution region contains one or more of the following output sections:

◦ RO section.

◦ RW section.

◦ XO section.

◦ ZI section.

One or more execution regions make up a load region.

With armlink, the maximum size of a program segment is 2GB.

When describing a memory view:

• The term root region means a region that has the same load and execution addresses.

• Load regions are equivalent to ELF segments.

The following figure shows the relationship between the views at each link stage:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

Figure 4-1: Relationship between sections, regions, and segments

Linker view ELF object file view

Load Region 1

Section Header Table
(optional)

ELF Header

Load Region 2

Section Header Table

ELF Header

Program Header Table
Program Header Table

(optional)

Input Section 1.1.1

Input Section 1.2.1

Input Section 1.3.1

Input Section 1.1.2

...

...

Execution Region 1

Execution Region 2

Input Section 1.3.2

Input Section n

Input Section 2.1.1

...

Input Section 2.1.2

...

Input Section 2.1.3

...

ELF image file view

Segment 1 (Load Region 1)

Section Header Table
(optional)

ELF Header

Segment 2 (Load Region 2)

Program Header Table

...

Output sections 1.1

Output section 2.1

Output sections 1.2

Output sections 1.3

4.1.2 Input sections, output sections, regions, and program segments

An object or image file is constructed from a hierarchy of input sections, output sections, regions,
and program segments.

Input section
An input section is an individual section from an input object file. It contains code, initialized
data, or describes a fragment of memory that is not initialized or that must be set to zero
before the image can execute. These properties are represented by attributes such as RO,
RW, XO, and ZI. These attributes are used by armlink to group input sections into bigger
building blocks called output sections and regions.

Output section
An output section is a group of input sections that have the same RO, RW, XO, or ZI
attribute, and that are placed contiguously in memory by the linker. An output section has
the same attributes as its constituent input sections. Within an output section, the input
sections are sorted according to the section placement rules.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

Region
A region contains up to three output sections depending on the contents and the number
of sections with different attributes. By default, the output sections in a region are sorted
according to their attributes:

• If no XO output sections are present, then the RO output section is placed first, followed
by the RW output section, and finally the ZI output section.

• If all code in the execution region is execute-only, then an XO output section is placed
first, followed by the RW output section, and finally the ZI output section.

A region typically maps onto a physical memory device, such as ROM, RAM, or peripheral. You can
change the order of output sections using scatter-loading.

Program segment
A program segment corresponds to a load region and contains execution regions. Program
segments hold information such as text and data.

With armlink, the maximum size of a program segment is 2GB.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Considerations when execute-only sections are present
Be aware of the following when execute-only (XO) sections are present:

• You can mix XO and non-XO sections in the same execution region. In this case, the XO section
loses its XO property and results in the output of a RO section.

• If an input file has one or more XO sections then the linker generates a separate XO execution
region if the XO and RO sections are in distinct regions. In the final image, the XO execution
region immediately precedes the RO execution region, unless otherwise specified by a scatter
file or the --xo_base option.

The linker automatically fabricates a separate ER_XO execution region for XO sections when all
the following are true:

◦ You do not specify the --xo_base option or a scatter file.

◦ The input files contain at least one XO section.

Related information
Views of the image at each link stage on page 38
Methods of specifying an image memory map with the linker on page 44
Section placement with the linker on page 56

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.1.3 Load view and execution view of an image

Image regions are placed in the system memory map at load time. The location of the regions in
memory might change during execution.

Before you can execute the image, you might have to move some of its regions to their execution
addresses and create the ZI output sections. For example, initialized RW data might have to be
copied from its load address in ROM to its execution address in RAM.

The memory map of an image has the following distinct views:

Load view
Describes each image region and section in terms of the address where it is located when the
image is loaded into memory, that is, the location before image execution starts.

Execution view
Describes each image region and section in terms of the address where it is located during
image execution.

The following figure shows these views for an image without an execute-only (XO) section:

Figure 4-2: Load and execution memory maps for an image without an XO section

RW section

RO section RO section
0x00000

Execution viewLoad view

RW section

ROM

ZI section

0x08000

0x0FFFF

0x0A000

0x06000

RAM

Memory initialized
to zero

The following figure shows load and execution views for an image with an XO section:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

Figure 4-3: Load and execution memory maps for an image with an XO section

RW section

RO section

XO section
0x00000

Execution viewLoad view

RW section

ROM

ZI section

0x08000

0x0FFFF

0x0A000

0x06000

RAM

Memory
initialized
to zero

XO section

RO section

XOM

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

The following table compares the load and execution views:

Table 4-1: Comparing load and execution views

Load Description Execution Description

Load address The address where a section or
region is loaded into memory
before the image containing
it starts executing. The load
address of a section or a non-
root region can differ from its
execution address.

Execution address The address where a section or
region is located while the image
containing it is being executed.

Load region A load region describes the
layout of a contiguous chunk of
memory in load address space.

Execution region An execution region describes
the layout of a contiguous chunk
of memory in execution address
space.

Related information
Views of the image at each link stage on page 38
Methods of specifying an image memory map with the linker on page 44
Section placement with the linker on page 56
Input sections, output sections, regions, and program segments on page 40

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.1.4 Methods of specifying an image memory map with the linker

An image can consist of any number of regions and output sections. Regions can have different
load and execution addresses.

When constructing the memory map of an image, armlink must have information about:

• How input sections are grouped into output sections and regions.

• Where regions are to be located in the memory map.

Depending on the complexity of the memory map of the image, there are two ways to pass this
information to armlink:

Command-line options for simple memory map descriptions
You can use the following options for simple cases where an image has only one or two load
regions and up to three execution regions:

• --first.

• --last.

• --ro_base.

• --rosplit.

• --rw_base.

• --split.

• --xo_base.

• --zi_base.

These options provide a simplified notation that gives the same settings as a scatter-loading
description for a simple image. However, no limit checking for regions is available when using
these options.

Scatter file for complex memory map descriptions
A scatter file is a textual description of the memory layout and code and data placement. It
is used for more complex cases where you require complete control over the grouping and
placement of image components. To use a scatter file, specify --scatter=filename at the
command-line.

You cannot use --scatter with the other memory map related command-line
options.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

Table 4-2: Comparison of scatter file and equivalent command-line options

Scatter file Equivalent command-line options

LR1 0x0000 0x20000
{

-

ER_RO 0x0 0x2000
{

--ro_base=0x0

 init.o (INIT, +FIRST)
 *(+RO)
}

--first=init.o(init)

ER_RW 0x400000
{
 *(+RW)
}

--rw_base=0x400000

 ER_ZI 0x405000
 {
 *(+ZI)
 }
}

--zi_base=0x405000

LR_XO 0x8000 0x4000
{

-

 ER_XO 0x8000
 {
 *(XO)
 }
}

--xo_base=0x8000

If XO sections are present, a separate load and execution region is created only
when you specify --xo_base. If you do not specify --xo_base, then the ER_XO
region is placed in the LR1 region at the address specified by --ro_base. The ER_RO
region is then placed immediately after the ER_XO region.

Related information
Load view and execution view of an image on page 42
Simple images on page 48
The structure of an Arm ELF image on page 38
Input sections, output sections, regions, and program segments on page 40
--first=section_id on page 264
--last=section_id on page 281
--ro_base=address on page 309
--ropi on page 310
--rosplit on page 311
--rw_base=address on page 311
--rwpi on page 312

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

--scatter=filename on page 313
--split on page 319
--xo_base=address on page 337
--zi_base=address on page 339

4.1.5 Image entry points

An entry point in an image is the location that is loaded into the PC. It is the location where
program execution starts. Although there can be more than one entry point in an image, you can
specify only one when linking.

Not every ELF file has to have an entry point. Multiple entry points in a single ELF file are not
permitted.

For embedded programs targeted at a Cortex®-M-based processor, the program
starts at whatever location is loaded into the PC from the Reset vector. Typically,
the Reset vector points to the CMSIS Reset_Handler function.

Types of entry point
There are two distinct types of entry point:

Initial entry point
The initial entry point for an image is a single value that is stored in the ELF header file. For
programs loaded into RAM by an operating system or boot loader, the loader starts the image
execution by transferring control to the initial entry point in the image.

An image can have only one initial entry point. The initial entry point can be, but is not
required to be, one of the entry points set by the ENTRY directive.

Entry points set by the ENTRY directive
You can select one of many possible entry points for an image. An image can have only one
entry point.

You create entry points in objects with the ENTRY directive in an assembler file. In embedded
systems, typical use of this directive is to mark code that is entered through the processor
exception vectors, such as RESET, IRQ, and FIQ.

The directive marks the output code section with an ENTRY keyword that instructs the linker
not to remove the section when it performs unused section elimination.

For C and C++ programs, the __main() function in the C library is also an entry point.

If an embedded image is to be used by a loader, it must have a single initial entry point
specified in the header. Use the --entry command-line option to select the entry point.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.1.5.1 The initial entry point for an image

There can be only one initial entry point for an image, otherwise linker warning L6305W is output.

The initial entry point must meet the following conditions:

• The image entry point must always lie within an execution region.

• The execution region must not overlay another execution region, and must be a root execution
region. That is, where the load address is the same as the execution address.

If you do not use the --entry option to specify the initial entry point, then:

• If the input objects contain only one entry point set by the ENTRY directive, the linker uses that
entry point as the initial entry point for the image.

• The linker generates an image that does not contain an initial entry point when either:

◦ More than one entry point is specified using the ENTRY directive.

◦ No entry point is specified using the ENTRY directive.

For embedded applications with ROM at address zero use --entry=0, or optionally 0xFFFF0000 for
processors that are using high vectors.

High vectors are not supported in AArch64 state.

Some processors, such as Cortex®-M7, can boot from a different address in some
configurations.

Related information
Root region and the initial entry point on page 119
--entry=location on page 260
ENTRY
List of the armlink error and warning messages

4.1.6 Restrictions on image structure

When an instruction accesses a memory address on an AArch64 target, the data must be within
4GB of the program counter.

For example, consider the following scatter file:

LOAD_REGION 0x0000000000 0x200000
{

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/ENTRY
https://developer.arm.com/documentation/dui0807/l/Linker-Errors-and-Warnings/List-of-the-armlink-error-and-warning-messages

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

 ROOT_REGION +0
 {
 *(Init, +FIRST)
 * (+RO)
 * (+RW, +ZI)
 }
 STACKHEAP 0x1FFFF0 EMPTY -0x18000
 {
 }
}

LOAD_REGION2 0x4000000000 0x200000
{
 ROOT_REGION2 +0
 {
 *(high_mem)
 }
}

LOAD_REGION2 is 16GB away from LOAD_REGION, so data in high_mem is not accessible from code in
LOAD_REGION. This results in a relocation out of range error at link time.

4.2 Simple images
A simple image consists of several input sections of type RO, RW, XO, and ZI. The linker collates
the input sections to form the RO, RW, XO, and ZI output sections.

4.2.1 Types of simple image

The types of simple image the linker can create depends on how the output sections are arranged
within load and execution regions.

The types are:

Type 1
One region in load view, four contiguous regions in execution view. Use the --ro_base option
to create this type of image.

Any XO sections are placed in an ER_XO region at the address specified by --ro_base, with
the ER_RO region immediately following the ER_XO region.

Type 2
One region in load view, four non-contiguous regions in execution view. Use the --ro_base
and --rw_base options to create this type of image.

Type 3
Two regions in load view, four non-contiguous regions in execution view. Use the --ro_base,
--rw_base, and --split options to create this type of image.

For all the simple image types when --xo_base is not specified:

• If any XO sections are present, the first execution region contains the XO output section. The
address specified by --ro_base is used as the base address of this output section.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

• The second execution region contains the RO output section. This output section immediately
follows an XO output.

• The third execution region contains the RW output section, if present.

• The fourth execution region contains the ZI output section, if present.

These execution regions are referred to as, XO, RO, RW, and ZI execution regions.

When you specify --xo_base, then XO sections are placed in a separate load and execution region.

However, you can also use the --rosplit option for a Type 3 image. This option splits the default
load region into two RO output sections, one for code and one for data.

You can also use the --zi_base command-line option to specify the base address of a ZI execution
region for Type 1 and Type 2 images. This option is ignored if you also use the --split command-
line option that is required for Type 3 images.

You can also create simple images with scatter files.

Related information
Equivalent scatter-loading descriptions for simple images on page 164
Type 1 image structure, one load region and contiguous execution regions on page 49
Type 2 image structure, one load region and non-contiguous execution regions on page 51
Type 3 image structure, multiple load regions and non-contiguous execution regions on page 54
--ro_base=address on page 309
--rosplit on page 311
--rw_base=address on page 311
--scatter=filename on page 313
--split on page 319
--xo_base=address on page 337
--zi_base=address on page 339

4.2.2 Type 1 image structure, one load region and contiguous execution
regions

A Type 1 image consists of a single load region in the load view and three default execution
regions, ER_RO, ER_RW, ER_ZI. These are placed contiguously in the memory map. An additional
ER_XO execution region is created only if any input section is execute-only.

This approach is suitable for systems that load programs into RAM, for example, an OS bootloader
or a desktop system. The following figure shows the load and execution view for a Type 1 image
without execute-only (XO) code:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

Figure 4-4: Simple Type 1 image without execute-only code

RO output section

RW output section

RO output section

RW execution
region

Single
load
region

ZI output section

Execution view
Load
view

0x8000

RAM

RW output section

0x0000

--ro-base value

ZI execution
region

RO execution
region

Use the following command for images of this type:

armlink --cpu=8-A.32 --ro_base=0x8000

0x8000 is the default address, so you do not have to specify --ro_base for the
example.

Load view
The single load region consists of the RO and RW output sections, placed consecutively. The RO
and RW execution regions are both root regions. The ZI output section does not exist at load time.
It is created before execution, using the output section description in the image file.

Execution view
The three execution regions containing the RO, RW, and ZI output sections are arranged
contiguously. The execution addresses of the RO and RW regions are the same as their load
addresses, so nothing has to be moved from its load address to its execution address. However, the
ZI execution region that contains the ZI output section is created at run-time.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

Use armlink option --ro_base=address to specify the load and execution address of the region
containing the RO output. The default address is 0x8000.

Use the --zi_base command-line option to specify the base address of a ZI execution region.

Load view for images containing execute-only regions
For images that contain XO sections, the XO output section is placed at the address that is
specified by --ro_base. The RO and RW output sections are placed consecutively and immediately
after the XO section.

Execution view for images containing execute-only regions
For images that contain XO sections, the XO execution region is placed at the address that is
specified by --ro_base. The RO, RW, and ZI execution regions are placed contiguously and
immediately after the XO execution region.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Related information
The structure of an Arm ELF image on page 38
Input sections, output sections, regions, and program segments on page 40
Load view and execution view of an image on page 42
--ro_base=address on page 309
--xo_base=address on page 337
--zi_base=address on page 339

4.2.3 Type 2 image structure, one load region and non-contiguous
execution regions

A Type 2 image consists of a single load region, and three execution regions in execution view. The
RW execution region is not contiguous with the RO execution region.

This approach is used, for example, for ROM-based embedded systems, where RW data is copied
from ROM to RAM at startup. The following figure shows the load and execution view for a Type 2
image without execute-only (XO) code:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

Figure 4-5: Simple Type 2 image without execute-only code

RO output section

RW output section

RW output section

RO output section

RW execution
region

Single
load
region

ZI output section

Execution viewLoad view

RAM

ROM

0x0000
--ro-base value

--rw-base value0xA000

Copy/
decompress

ZI execution
region

RO execution
region

Use the following command for images of this type:

armlink --cpu=8-A.32 --ro_base=0x0 --rw_base=0xA000

Load view
In the load view, the single load region consists of the RO and RW output sections placed
consecutively, for example, in ROM. Here, the RO region is a root region, and the RW region is
non-root. The ZI output section does not exist at load time. It is created at runtime.

Execution view
In the execution view, the first execution region contains the RO output section and the second
execution region contains the RW and ZI output sections.

The execution address of the region containing the RO output section is the same as its load
address, so the RO output section does not have to be moved. That is, it is a root region.

The execution address of the region containing the RW output section is different from its load
address, so the RW output section is moved from its load address (from the single load region) to

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

its execution address (into the second execution region). The ZI execution region, and its output
section, is placed contiguously with the RW execution region.

Use armlink options --ro_base=address to specify the load and execution address for the RO
output section, and --rw_base=address to specify the execution address of the RW output section.
If you do not use the --ro_base option to specify the address, the default value of 0x8000 is used
by armlink. For an embedded system, 0 is typical for the --ro_base value. If you do not use the --
rw_base option to specify the address, the default is to place RW directly above RO (as in a Type 1
image).

Use the --zi_base command-line option to specify the base address of a ZI execution region.

The execution region for the RW and ZI output sections cannot overlap any of the
load regions.

Load view for images containing execute-only regions
For images that contain XO sections, the XO output section is placed at the address specified by --
ro_base. The RO and RW output sections are placed consecutively and immediately after the XO
section.

Execution view for images containing execute-only regions
For images that contain XO sections, the XO execution region is placed at the address specified by
--ro_base. The RO execution region is placed contiguously and immediately after the XO execution
region.

If you use --xo_base address, then the XO execution region is placed in a separate load region at
the specified address.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Related information
The structure of an Arm ELF image on page 38
Input sections, output sections, regions, and program segments on page 40
Load view and execution view of an image on page 42
Type 1 image structure, one load region and contiguous execution regions on page 49
--ro_base=address on page 309
--rw_base=address on page 311
--xo_base=address on page 337
--zi_base=address on page 339

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.2.4 Type 3 image structure, multiple load regions and non-contiguous
execution regions

A Type 3 image is similar to a Type 2 image except that the single load region is split into multiple
root load regions.

The following figure shows the load and execution view for a Type 3 image without execute-only
(XO) code:

Figure 4-6: Simple Type 3 image without execute-only code

RW output section

RO output section
First
load
region

Load view

RAM

--ro-base
value

--rw-base
value

RW output section

RO output section

ZI execution
region

0x8000

ZI output section

Execution view

0x0000

0xE000

RW execution
region

RO execution
region

Second
load
region

Use the following command for images of this type:

armlink --cpu=8-A.32 --split --ro_base=0x8000 --rw_base=0xE000

Load view
In the load view, the first load region consists of the RO output section, and the second load region
consists of the RW output section. The ZI output section does not exist at load time. It is created
before execution, using the description of the output section contained in the image file.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

Execution view
In the execution view, the first execution region contains the RO output section, the second
execution region contains the RW output section, and the third execution region contains the ZI
output section.

The execution address of the RO region is the same as its load address, so the contents of the
RO output section do not have to be moved or copied from their load address to their execution
address.

The execution address of the RW region is also the same as its load address, so the contents of the
RW output section are not moved from their load address to their execution address. However, the
ZI output section is created at run-time and is placed contiguously with the RW region.

Specify the load and execution address using the following linker options:

--ro_base=address

Instructs armlink to set the load and execution address of the region containing the RO
section at a four-byte aligned address, for example, the address of the first location in ROM.
If you do not use the --ro_base option to specify the address, the default value of 0x8000 is
used by armlink.

--rw_base=address

Instructs armlink to set the execution address of the region containing the RW output
section at a four-byte aligned address. If this option is used with --split, this specifies both
the load and execution addresses of the RW region, for example, a root region.

-split
Splits the default single load region, that contains both the RO and RW output sections, into
two root load regions:

• One containing the RO output section.

• One containing the RW output section.

You can then place them separately using --ro_base and --rw_base.

Load view for images containing XO sections
For images that contain XO sections, the XO output section is placed at the address specified by --
ro_base. The RO and RW output sections are placed consecutively and immediately after the XO
section.

If you use --split, then the one load region contains the XO and RO output sections, and the
other contains the RW output section.

Execution view for images containing XO sections
For images that contain XO sections, the XO execution region is placed at the address specified by
--ro_base. The RO execution region is placed contiguously and immediately after the XO execution
region.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

If you specify --split, then the XO and RO execution regions are placed in the first load region,
and the RW and ZI execution regions are placed in the second load region.

If you specify --xo_base address, then the XO execution region is placed at the specified address
in a separate load region from the RO execution region.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Related information
The structure of an Arm ELF image on page 38
Input sections, output sections, regions, and program segments on page 40
Load view and execution view of an image on page 42
Type 2 image structure, one load region and non-contiguous execution regions on page 51
--ro_base=address on page 309
--rw_base=address on page 311
--xo_base=address on page 337
--split on page 319

4.3 Section placement with the linker
The linker places input sections in a specific order by default, but you can specify an alternative
sorting order if required.

4.3.1 Default section placement

By default, the linker places input sections in a specific order within an execution region.

The sections are placed in the following order:

1. By attribute as follows:

a. Read-only code.

b. Read-only data.

c. Read-write code.

d. Read-write data.

e. Zero-initialized data.

2. By input section name if they have the same attributes. Names are considered to be case-
sensitive and are compared in alphabetical order using the ASCII collation sequence for
characters.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

3. By a tie-breaker if they have the same attributes and section names. By default, it is the order
that armlink processes the section. You can override the tie-breaker and sorting by input
section name with the FIRST or LAST input section attribute.

The sorting order is unaffected by ordering of section selectors within execution
regions.

These rules mean that the positions of input sections with identical attributes and names included
from libraries depend on the order the linker processes objects. This can be difficult to predict
when many libraries are present on the command line. The --tiebreaker=cmdline option uses a
more predictable order based on the order the section appears on the command line.

The base address of each input section is determined by the sorting order defined by the linker,
and is correctly aligned within the output section that contains it.

The linker produces one output section for each attribute present in the execution region:

• One execute-only (XO) section if the execution region contains only XO sections.

• One RO section if the execution region contains read-only code or data.

• One RW section if the execution region contains read-write code or data.

• One ZI section if the execution region contains zero-initialized data.

If an attempt is made to place data in an XO only execution region, then the linker
generates an error.

XO sections lose the XO property if mixed with RO code in the same Execution
region.

The XO and RO output sections can be protected at run-time on systems that have memory
management hardware. RO and XO sections can be placed in ROM or Flash.

Alternative sorting orders are available with the --sort=algorithm command-line option. The
linker might change the algorithm to minimize the amount of veneers generated if no algorithm is
chosen.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

Example
The following scatter file shows how the linker places sections:

LoadRegion 0x8000
{
 ExecRegion1 0x0000 0x4000
 {
 *(sections)
 *(moresections)
 }
 ExecRegion2 0x4000 0x2000
 {
 *(evenmoresections)
 }
}

The order of execution regions within the load region is not altered by the linker.

Related information
Handling unassigned sections on page 58

4.3.1.1 Handling unassigned sections

The linker might not be able to place some input sections in any execution region.

When the linker is unable to place some input sections it generates an error message. This might
occur because your current scatter file does not permit all possible module select patterns and
input section selectors.

How you fix this depends on the importance of placing these sections correctly:

• If the sections must be placed at specific locations, then modify your scatter file to include
specific module selectors and input section selectors as required.

• If the placement of the unassigned sections is not important, you can use one or more .ANY
module selectors with optional input section selectors.

4.3.2 Section placement with the FIRST and LAST attributes

You can make sure that a section is placed either first or last in its execution region. For example,
you might want to make sure the section containing the vector table is placed first in the image.

To do this, use one of the following methods:

• If you are not using scatter-loading, use the --first and --last linker command-line options to
place input sections.

• If you are using scatter-loading, use the attributes FIRST and LAST in the scatter file to mark the
first and last input sections in an execution region if the placement order is important.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

FIRST and LAST must not violate the basic attribute sorting order. For example,
FIRST RW is placed after any read-only code or read-only data.

Related information
The structure of an Arm ELF image on page 38
Input sections, output sections, regions, and program segments on page 40
Load view and execution view of an image on page 42
The scatter-loading mechanism on page 112
Syntax of an input section description on page 197
--first=section_id on page 264
--last=section_id on page 281

4.3.3 Section alignment with the linker

The linker ensures each input section starts at an address that is a multiple of the input section
alignment.

When input sections have been ordered and before the base addresses are fixed, armlink inserts
padding, if required, to force each input section to start at an address that is a multiple of the input
section alignment.

armlink supports strict conformance with the ELF specification with the default option --
no_legacyalign. The linker faults the base address of a region if it is not aligned so padding might
be inserted to ensure compliance. With --no_legacyalign, the region alignment is the maximum
alignment of any input section contained by the region.

If you use the option --legacyalign, the linker permits ELF program headers and output sections
to be aligned on a four-byte boundary regardless of the maximum alignment of the input sections.
This enables armlink to minimize the amount of padding that it inserts into the image.

If you are using scatter-loading, you can increase the alignment of a load region or execution region
with the ALIGN attribute. For example, you can change an execution region that is normally four-
byte aligned to be eight-byte aligned. However, you cannot reduce the natural alignment. For
example, you cannot force two-byte alignment on a region that is normally four-byte aligned.

Related information
Load region attributes on page 182
Aligning regions to page boundaries on page 160
--legacyalign, --no_legacyalign on page 282
Example of aligning a base address in execution space but still tightly packed in load space on page
209
Execution region attributes on page 189

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.4 Linker support for creating demand-paged files
The linker provides features for you to create files that are memory mapped.

In operating systems that support virtual memory, an ELF file can be loaded by mapping the ELF
files into the address space of the process loading the file. When a virtual address in a page that is
mapped to the file is accessed, the operating system loads that page from disk. ELF files that are to
be used this way must conform to a certain format.

Use the --paged command-line option to enable demand paging mode. This helps produce ELF
files that can be demand paged efficiently.

The basic constraints for a demand-paged ELF file are:

• There is no difference between the load and execution address for any output section.

• All PT_LOAD Program Headers have a minimum alignment, pt_align, of the page size for the
operating system.

• All PT_LOAD Program Headers have a file offset, pt_offset, that is congruent to the virtual
address (pt_addr) modulo pt_align.

When you specify --paged:

• The linker automatically generates the Program Headers from the execution region base
addresses. The usual situation where one load region generates one Program Header no longer
applies.

• The operating system page size is controlled by the --pagesize command-line option.

• The linker attempts to place the ELF Header and Program Header in the first PT_LOAD
program header, if space is available.

Example
This is an example of a demand paged scatter file:

LR1 GetPageSize() + SizeOfHeaders()
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW +GetPageSize()
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}

Related information
Aligning regions to page boundaries on page 160

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

The scatter-loading mechanism on page 112
--scatter=filename on page 313
GetPageSize() function on page 208
--paged on page 300
--pagesize=pagesize on page 300
SizeOfHeaders() function on page 209

4.5 Linker reordering of execution regions containing T32
code

The linker reorders execution regions containing T32 code only if the size of the T32 code exceeds
the branch range.

If the code size of an execution region exceeds the maximum branch range of a T32 instruction,
then armlink reorders the input sections using a different sorting algorithm. This sorting algorithm
attempts to minimize the amount of veneers generated.

The T32 branch instructions that can be veneered are always encoded as a pair of 16-bit
instructions. Processors that support Thumb®-2 technology have a range of 16MB. Processors that
do not support Thumb-2 technology have a range of 4MB.

To disable section reordering, use the --no_largeregions command-line option.

Related information
Linker-generated veneers on page 61
--largeregions, --no_largeregions on page 280

4.6 Linker-generated veneers
Veneers are small sections of code generated by the linker and inserted into your program.

4.6.1 What is a veneer?

A veneer extends the range of a branch by becoming the intermediate target of the branch
instruction.

The range of a BL instruction depends on the architecture:

• For AArch32 state, the range is 32MB for A32 instructions, 16MB for 32-bit T32 instructions,
and 4MB for 16-bit T32 instructions. A veneer extends the range of the branch by becoming
the intermediate target of the branch instruction. The veneer then sets the PC to the
destination address.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

This enables the veneer to branch anywhere in the 4GB address space. If the veneer is inserted
between A32 and T32 code, the veneer also handles instruction set state change.

• For AArch64 state, the range is 128MB. A veneer extends the range of the branch by
becoming the intermediate target of the branch instruction. The veneer then loads the
destination address and branches to it.

This enables the veneer to branch anywhere in the 0x16EB address space.

There are no state-change veneers in AArch64 state.

The linker can generate the following veneer types depending on what is required:

• Inline veneers.

• Short branch veneers.

• Long branch veneers.

armlink creates one input section called Veneer$$Code for each veneer. A veneer is generated only
if no other existing veneer can satisfy the requirements. If two input sections contain a long branch
to the same destination, only one veneer is generated that is shared by both branch instructions. A
veneer is only shared in this way if it can be reached by both sections.

If execute-only (XO) sections are present, only XO-compliant veneer code is created
in XO regions.

Related information
Veneer sharing on page 62
Veneer types on page 63
Generation of position independent to absolute veneers on page 64
Reuse of veneers when scatter-loading on page 65

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.6.2 Veneer sharing

If multiple objects result in the same veneer being created, the linker creates a single instance of
that veneer. The veneer is then shared by those objects.

You can use the command-line option --no_veneershare to specify that veneers are not shared.
This assigns ownership of the created veneer section to the object that created the veneer and so
enables you to select veneers from a particular object in a scatter file, for example:

LR 0x8000
{
 ER_ROOT +0
 {
 object1.o(Veneer$$Code)
 }
}

Be aware that veneer sharing makes it impossible to assign an owning object. Using --
no_veneershare provides a more consistent image layout. However, this comes at the cost of a
significant increase in code size, because of the extra veneers generated by the linker.

Related information
What is a veneer? on page 61
The scatter-loading mechanism on page 112
Scatter File Syntax on page 178
--veneershare, --no_veneershare on page 335

4.6.3 Veneer types

Veneers have different capabilities and use different code pieces.

The linker selects the most appropriate, smallest, and fastest depending on the branching
requirements:

• Inline veneer:

◦ Performs only a state change.

◦ The veneer must be inserted just before the target section to be in range.

◦ An A32 to T32 interworking veneer has a range of 256 bytes so the function entry point
must appear within 256 bytes of the veneer.

◦ A T32 to A32 interworking veneer has a range of zero bytes so the function entry point
must appear immediately after the veneer.

◦ An inline veneer is always position-independent.

• Short branch veneer:

◦ An interworking T32 to A32 short branch veneer has a range of 32MB, the range for an
A32 instruction. An A64 short branch veneer has a range of 128MB.

◦ A short branch veneer is always position-independent.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

◦ A Range Extension T32 to T32 short branch veneer for processors that support Thumb-2
technology.

• Long branch veneer:

◦ Can branch anywhere in the address space.

◦ All long branch veneers are also interworking veneers.

◦ There are different long branch veneers for absolute or position-independent code.

When you are using veneers be aware of the following:

• The inline veneer limitations mean that you cannot move inline veneers out of an execution
region using a scatter file. Use the command-line option --no_inlineveneer to prevent the
generation of inline veneers.

• All veneers cannot be collected into one input section because the resulting veneer input
section might not be within range of other input sections. If the sections are not within
addressing range, long branching is not possible.

• The linker generates position-independent variants of the veneers automatically. However,
because such veneers are larger than non position-independent variants, the linker only does
this where necessary, that is, where the source and destination execution regions are both
position-independent and are rigidly related.

To optimize the code size of veneers, armlink chooses the variant in the order of preference:

1. Inline veneer.

2. Short branch veneer.

3. Long veneer.

Related information
What is a veneer? on page 61
--max_veneer_passes=value on page 294
--inlineveneer, --no_inlineveneer on page 276

4.6.4 Generation of position independent to absolute veneers

Calling from position independent (PI) code to absolute code requires a veneer.

The normal call instruction encodes the address of the target as an offset from the calling address.
When calling from PI code to absolute code the offset cannot be calculated at link time, so the
linker must insert a long-branch veneer.

The generation of PI to absolute veneers can be controlled using the --piveneer option, that is set
by default. When this option is turned off using --no_piveneer, the linker generates an error when
a call from PI code to absolute code is detected.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

Not supported for AArch64 state.

Related information
What is a veneer? on page 61
--max_veneer_passes=value on page 294
--piveneer, --no_piveneer on page 302

4.6.5 Reuse of veneers when scatter-loading

The linker reuses veneers whenever possible, but there are some limitations on the reuse of
veneers in protected load regions and overlaid execution regions.

A scatter file enables you to create regions that share the same area of RAM:

• If you use the PROTECTED attribute for a load region it prevents:

◦ Overlapping of load regions.

◦ Veneer sharing.

◦ String sharing with the --merge option.

• If you use the AUTO_OVERLAY attribute for a region, no other execution region can reuse a
veneer placed in an overlay execution region.

• If you use the OVERLAY attribute for a region, no other execution region can reuse a veneer
placed in an overlay execution region.

If it is not possible to reuse a veneer, new veneers are created instead. Unless you have instructed
the linker to place veneers somewhere specific using scatter-loading, a veneer is usually placed
in the execution region that contains the call requiring the veneer. However, in some situations
the linker has to place the veneer in an adjacent execution region, either to maximize sharing
opportunities or for a short branch veneer to reach its target.

Related information
What is a veneer? on page 61
Load region attributes on page 182
Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.6.6 Generation of secure gateway veneers

armlink can generate secure gateway veneers for symbols that are present in a Secure image. It
can also output symbols to a specified output import library, when necessary.

armlink generates a secure gateway veneer when it finds in the Secure image an entry function
that has both symbols __acle_se_<entry> and <entry> pointing to the same offset in the same
section.

The secure gateway veneer is a sequence of two instructions:

<entry>:
 SG
 B.W __acle_se_<entry>

The original symbol <entry> is changed to point to the SG instruction of the secure gateway veneer.

You can specify an input import library and output import library with the following command-line
options:

• --import_cmse_lib_in=filename.

• --import_cmse_lib_out=filename.

Placement of secure gateway veneers is controlled by an input import library and by a scatter file
selection. The linker can also output addresses of secure gateways to an output import library.

Example
The following example shows the generation of a secure gateway veneer:

Input code:

 .text
entry:
__acle_se_entry:
 [entry's code]
 BXNS lr

Output code produced by armlink:

 .text
__acle_se_entry:
 [entry's code]
 BXNS lr

 .section Veneer$$CMSE, "ax"
entry:
 SG
 B.W __acle_se_entry

Related information
Placement of CMSE veneer sections for a Secure image on page 152

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

--import_cmse_lib_in=filename on page 270
--import_cmse_lib_out=filename on page 270
Building Secure and Non-secure Images Using Armv8-M Security Extensions

4.7 Command-line options used to control the generation
of C++ exception tables

You can control the generation of C++ exception tables using command-line options.

By default, or if the option --exceptions is specified, the image can contain exception tables.
Exception tables are discarded silently if no code throws an exception. However, if the option --
no_exceptions is specified, the linker generates an error if any exceptions tables are present after
unused sections have been eliminated.

You can use the --no_exceptions option to ensure that your code is exceptions free. The linker
generates an error message to highlight that exceptions have been found and does not produce a
final image.

However, you can use the --no_exceptions option with the --diag_warning option to downgrade
the error message to a warning. The linker produces a final image but also generates a message to
warn you that exceptions have been found.

Related information
--diag_warning=tag[,tag,…] on page 255
--exceptions, --no_exceptions on page 262
-fexceptions, -fno-exceptions compiler option

4.8 Weak references and definitions
Weak references and definitions provide additional flexibility in the way the linker includes various
functions and variables in a build.

Weak references and definitions are typically used in connection with library functions.

Weak references
If the linker cannot resolve normal, non-weak, references to symbols from the content loaded
so far, it attempts to do so by finding the symbol in a library:

• If it is unable to find such a reference, the linker reports an error.

• If such a reference is resolved, a section that is reachable from an entry point by at least
one non-weak reference is marked as used. This ensures the section is not removed by
the linker as an unused section. Each non-weak reference must be resolved by exactly
one definition. If there are multiple definitions, the linker reports an error.

Symbols can be given weak binding by the compiler and assembler.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 351

https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-fexceptions---fno-exceptions

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

The linker does not load an object from a library to resolve a weak reference. It is able to
resolve the weak reference only if the definition is included in the image for other reasons.
The weak reference does not cause the linker to mark the section containing the definition as
used, so it might be removed by the linker as unused. The definition might already exist in the
image for several reasons:

• The symbol has a non-weak reference from somewhere else in the code.

• The symbol definition exists in the same ELF section as a symbol definition that is
included for any of these reasons.

• The symbol definition is in a section that has been specified using --keep, or contains an
ENTRY point.

• The symbol definition is in an object file included in the link and the --no_remove option
is used. The object file is not referenced from a library unless that object file within the
library is explicitly included on the linker command-line.

In summary, a weak reference is resolved if the definition is already included in the image, but
it does not determine if that definition is included.

An unresolved weak function call is replaced with either:

• A no-operation instruction, NOP.

• A branch with link instruction, BL, to the following instruction. That is, the function call
just does not happen.

Weak definitions
You can mark a function or variable definition as weak in a source file. A weak symbol
definition is then present in the created object file.

You can use a weak definition to resolve any reference to that symbol in the same way as a
normal definition. However, if another non-weak definition of that symbol exists in the build,
the linker uses that definition instead of the weak definition, and does not produce an error
because of multiply-defined symbols.

Example of a weak reference
A library contains a function foo(), that is called in some builds of an application but not in others.
If it is used, init_foo() must be called first. You can use weak references to automate the call to
init_foo().

The library can define init_foo() and foo() in the same ELF section. The application initialization
code must call init_foo() weakly. If the application includes foo() for any reason, it also includes
init_foo() and this is called from the initialization code. In any builds that do not include foo(),
the call to init_foo() is removed by the linker.

Typically, the code for multiple functions defined within a single source file is placed into a single
ELF section by the compiler. However, certain build options might alter this behavior, so you
must use them with caution if your build is relying on the grouping of files into ELF sections. The
compiler command-line option -ffunction-sections results in each function being placed in its
own section. In this example, compiling the library with this option results in foo() and init_foo()

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

being placed in separate sections. Therefore init_foo() is not automatically included in the build
due to a call to foo().

In this example, there is no need to rebuild the initialization code between builds that include foo()
and do not include foo(). There is also no possibility of accidentally building an application with a
version of the initialization code that does not call init_foo(), and other parts of the application
that call foo().

An example of foo.c source code that is typically built into a library is:

void init_foo()
{
 // Some initialization code
}
void foo()
{
 // A function that is included in some builds
 // and requires init_foo() to be called first.
}

An example of init.c is:

__attribute__((weak)) void init_foo(void);
int main(void)
{
 init_foo();
 // Rest of code that may make calls to foo() directly or indirectly.
}

An example of a weak reference generated by the assembler is:

init.s:
 main:
 ...
 bl init_foo
 // Rest of code

 .weak init_foo

Example of a weak definition
You can provide a simple or dummy implementation of a function as a weak definition. This enables
you to build software with defined behavior without having to provide a full implementation of the
function. It also enables you to provide a full implementation for some builds if required.

Related information
How the linker performs library searching, selection, and scanning on page 69
How the linker resolves references on page 72

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.9 How the linker performs library searching, selection,
and scanning

The linker always searches user libraries before the Arm libraries.

If you specify the --no_scanlib command-line option, the linker does not search for the default
Arm® libraries and uses only those libraries that are specified in the input file list to resolve
references.

The linker creates an internal list of libraries as follows:

1. Any libraries explicitly specified in the input file list are added to the list.

2. The user-specified search path is examined to identify Arm standard libraries to satisfy requests
embedded in the input objects.

The best-suited library variants are chosen from the searched directories and their
subdirectories. Libraries supplied by Arm have multiple variants that are named according to the
attributes of their members.

Be aware of the following differences between the way the linker adds object files to the image and
the way it adds libraries to the image:

• Each object file in the input list is added to the output image unconditionally, whether or not
anything refers to it. At least one object must be specified.

• A member from a library is included in the output only if:

◦ An object file or an already-included library member makes a non-weak reference to it.

◦ The linker is explicitly instructed to add it.

If a library member is explicitly requested in the input file list, the member
is loaded even if it does not resolve any current references. In this case, an
explicitly requested member is treated as if it is an ordinary object.

Unresolved references to weak symbols do not cause library members to be loaded.

Related information
How the linker searches for the Arm standard libraries on page 70

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.10 How the linker searches for the Arm standard
libraries

The linker searches for the Arm standard libraries using information specified on the command-line,
or by examining environment variables.

By default, the linker searches for the Arm® standard libraries in ../lib, relative to the location of
the armlink executable. Use the --libpath command-line option to specify a different location.

The --libpath command-line option
Use the --libpath command-line option with a comma-separated list of parent directories. This list
must end with the parent directory of the Arm library directories armlib, cpplib, and libcxx.

The sequential nature of the search ensures that armlink chooses the library that appears earlier in
the list if two or more libraries define the same symbol.

Library search order
The linker searches for libraries in the following order:

1. At the location specified with the command-line option --libpath.

2. In ../lib, relative to the location of the armlink executable.

How the linker selects Arm library variants
The Arm Compiler toolchain includes several variants of each of the libraries, that are built using
different build options. For example, architecture versions, endianness, and instruction set. The
variant of the Arm library is coded into the library name. The linker must select the best-suited
variant from each of the directories identified during the library search.

The linker accumulates the attributes of each input object and then selects the library variant best
suited to those attributes. If more than one of the selected libraries are equally suited, the linker
retains the first library selected and rejects all others.

The --no_scanlib option prevents the linker from searching the directories for the Arm standard
libraries.

Related information
--libpath=pathlist on page 283
How the linker performs library searching, selection, and scanning on page 69
C and C++ library naming conventions
The Arm C and C++ Libraries
Toolchain environment variables

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/C-and-C---library-naming-conventions
https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries
https://developer.arm.com/documentation/dui1093/e/Supporting-reference-information/Toolchain-environment-variables

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.11 Specifying user libraries when linking
You can specify your own libraries when linking.

To specify user libraries, either:

• Include them with path information explicitly in the input file list.

• Add the --userlibpath option to the armlink command line with a comma-separated list of
directories, and then specify the names of the libraries as input files.

You can use the --library=name option to specify static libraries, libname.a.

If you do not specify a full path name to a library on the command line, the linker tries to locate
the library in the directories specified by the --userlibpath option. For example, if the directory
/mylib contains my_lib.a and other_lib.a, add /mylib/my_lib.a to the input file list with the
command:

armlink --userlibpath /mylib my_lib.a *.o

If you add a particular member from a library this does not add the library to the list of searchable
libraries used by the linker. To load a specific member and add the library to the list of searchable
libraries include the library filename on its own as well as specifying library(member). For
example, to load strcmp.o and place mystring.lib on the searchable library list add the following
to the input file list:

mystring.lib(strcmp.o) mystring.lib

Any search paths used for the Arm standard libraries specified by the linker
command-line option --libpath are not searched for user libraries.

Related information
How the linker searches for the Arm standard libraries on page 70
--libpath=pathlist on page 283
--userlibpath=pathlist on page 332
The Arm C and C++ Libraries
Toolchain environment variables

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries
https://developer.arm.com/documentation/dui1093/e/Supporting-reference-information/Toolchain-environment-variables

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.12 How the linker resolves references
When the linker has constructed the list of libraries, it repeatedly scans each library in the list to
resolve references.

armlink maintains two separate lists of files. The lists are scanned in the following order to resolve
all dependencies:

1. The list of user files and libraries that have been loaded.

2. List of Arm standard libraries found in a directory relative to the armlink executable, or the
directories specified by --libpath.

Each list is scanned using the following process:

1. Scan each of the libraries to load the required members:

a. For each currently unsatisfied non-weak reference, search sequentially through the list of
libraries for a matching definition. The first definition found is marked for processing in the
next step.

The sequential nature of the search ensures that the linker chooses the library that appears
earlier in the list if two or more libraries define the same symbol. This enables you to
override function definitions from other libraries, for example, the Arm® C libraries, by
adding your libraries to the input file list. However you must be careful to consistently
override all the symbols in a library member. If you do not, you risk the objects from both
libraries being loaded when there is a reference to an overridden symbol and a reference to
a symbol that was not overridden. This results in a multiple symbol definition error L6200E
for each overridden symbol.

b. Load the library members marked in the previous step. As each member is loaded it might
satisfy some unresolved references, possibly including weak ones. Loading a library member
might also create new unresolved weak and non-weak references.

c. Repeat these stages until all non-weak references are either resolved or cannot be resolved
by any library.

2. If any non-weak reference remains unsatisfied at the end of the scanning operation, generate
an error message.

Related information
How the linker performs library searching, selection, and scanning on page 69
How the linker searches for the Arm standard libraries on page 70
Specifying user libraries when linking on page 71
--libpath=pathlist on page 283
Toolchain environment variables
List of the armlink error and warning messages

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 351

https://developer.arm.com/documentation/dui1093/e/Supporting-reference-information/Toolchain-environment-variables
https://developer.arm.com/documentation/dui0807/l/Linker-Errors-and-Warnings/List-of-the-armlink-error-and-warning-messages

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Image Structure and Generation

4.13 The strict family of linker options
The linker provides options to overcome the limitations of the standard linker checks.

The strict options are not directly related to error severity. Usually, you add a strict option because
the standard linker checks are not precise enough or are potentially noisy with legacy objects.

The strict options are:

• --strict.

• --[no_]strict_enum_size.

• --[no_]strict_flags.

• --[no_]strict_ph.

• --[no_]strict_relocations.

• --[no_]strict_symbols.

• --[no_]strict_visibility.

• --[no_]strict_wchar_size.

Related information
--strict on page 321
--strict_enum_size, --no_strict_enum_size on page 321
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

5. Linker Optimization Features
Describes the optimization features available in the Arm linker, armlink.

5.1 Elimination of common debug sections
The linker can detect multiple copies of a debug section, and discard the additional copies.

In DWARF 3 and later, common debug sections are placed in common groups. armlink discards all
but one copy of each group with the same signature.

Related information
Elimination of common groups or sections on page 75
Elimination of unused sections on page 76

5.2 Elimination of common groups or sections
The linker can detect multiple copies of groups and sections, and discard the additional copies.

The Arm® Compiler generates complete objects for linking. Therefore:

• If there are inline functions in C and C++ sources, each object contains the out-of-line copies of
the inline functions that the object requires.

• If templates are used in C++ sources, each object contains the template functions that the
object requires.

When these functions are declared in a common header file, the functions might be defined
many times in separate objects that are later linked together. To eliminate duplicates, the compiler
compiles these functions into separate instances of common code sections or groups.

It is possible that the separate instances of common code sections, or groups, are not identical.
Some of the copies, for example, might be found in a library that has been built with different, but
compatible, build options, different optimization, or debug options.

If the copies are not identical, armlink retains the best available variant of each common code
section, or group, based on the attributes of the input objects. armlink discards the rest.

If the copies are identical, armlink retains the first section or group located.

You control this optimization with the following linker options:

• Use the --bestdebug option to use the largest common data (COMDAT) group (likely to give
the best debug view).

• Use the --no_bestdebug option to use the smallest COMDAT group (likely to give the smallest
code size). This is the default.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

The image changes if you compile all files containing a COMDAT group A with -g, even if you
use --no_bestdebug.

Related information
Elimination of common debug sections on page 75
Elimination of unused sections on page 76

5.3 Elimination of unused sections
Elimination of unused sections is the most significant optimization on image size that the linker
performs.

Unused section elimination:

• Removes unreachable code and data from the final image.

• Is suppressed in cases that might result in the removal of all sections.

To control this optimization, use the --remove, --no_remove, --first, --last, and --keep linker
options.

Unused section elimination requires an entry point. Therefore, if no entry point is specified for
an image, use the --entry linker option to specify an entry point and permit unused section
elimination to work, if it is enabled.

Use the --info unused linker option to instruct the linker to generate a list of the unused sections
that it eliminates.

An input section is retained in the final image when:

• It contains an entry point or an externally accessible symbol, for example, an entry function into
the secure code for Arm®v8-M Security Extensions.

• It is an SHT_INIT_ARRAY, SHT_FINI_ARRAY, or SHT_PREINIT_ARRAY section.

• It is specified as the first or last input section, either by the --first or --last option or by a
scatter-loading equivalent.

• It is marked as unremovable by the --keep option.

• It is referred to, directly or indirectly, by a non-weak reference from an input section retained in
the image.

• Its name matches the name referred to by an input section symbol, and that symbol is
referenced from a section that is retained in the image.

Compilers usually collect functions and data together and emit one section for each
category. The linker can only eliminate a section if it is entirely unused.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

You can also use the -ffunction-sections compiler command-line option to
instruct the compiler to generate one ELF section for each function in the source
file.

Related information
Elimination of common debug sections on page 75
Elimination of common groups or sections on page 75

5.4 Optimization with RW data compression
RW data areas typically contain many repeated values, such as zeros, that makes them suitable for
compression.

RW data compression is enabled by default to minimize ROM size.

The linker compresses the data. This data is then decompressed on the target at run time.

The Arm® libraries contain some decompression algorithms and the linker chooses the optimal one
to add to your image to decompress the data areas when the image is executed. You can override
the algorithm chosen by the linker.

Not supported for AArch64 state.

5.4.1 How the linker chooses a compressor

armlink gathers information about the content of data sections before choosing the most
appropriate compression algorithm to generate the smallest image.

If compression is appropriate, armlink can only use one data compressor for all the compressible
data sections in the image. Different compression algorithms might be tried on these sections to
produce the best overall size. Compression is applied automatically if:

Compressed data size + Size of decompressor < Uncompressed data size

When a compressor has been chosen, armlink adds the decompressor to the code area of your
image. If the final image does not contain any compressed data, no decompressor is added.

Related information
Options available to override the compression algorithm used by the linker on page 78
Optimization with RW data compression on page 77

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

How compression is applied on page 79
Considerations when working with RW data compression on page 79

5.4.2 Options available to override the compression algorithm used by the
linker

The linker has options to disable compression or to specify a compression algorithm to be used.

You can override the compression algorithm used by the linker by either:

• Using the --datacompressor off option to turn off compression.

• Specifying a compression algorithm.

To specify a compression algorithm, use the number of the required compressor on the linker
command line, for example:

armlink --datacompressor 2 ...

Use the command-line option --datacompressor list to get a list of compression algorithms
available in the linker:

armlink --datacompressor list
...
Num Compression algorithm
==
0 Run-length encoding
1 Run-length encoding, with LZ77 on small-repeats
2 Complex LZ77 compression

When choosing a compression algorithm be aware that:

• Compressor 0 performs well on data with large areas of zero-bytes but few nonzero bytes.

• Compressor 1 performs well on data where the nonzero bytes are repeating.

• Compressor 2 performs well on data that contains repeated values.

The linker prefers compressor 0 or 1 where the data contains mostly zero-bytes (>75%).
Compressor 2 is chosen where the data contains few zero-bytes (<10%). If the image is made up
only of A32 code, then A32 decompressors are used automatically. If the image contains any T32
code, T32 decompressors are used. If there is no clear preference, all compressors are tested to
produce the best overall size.

It is not possible to add your own compressors into the linker. The algorithms that
are available, and how the linker chooses to use them, might change in the future.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

Related information
Optimization with RW data compression on page 77
How compression is applied on page 79
How the linker chooses a compressor on page 77
--datacompressor=opt on page 251
Considerations when working with RW data compression on page 79

5.4.3 How compression is applied

The linker applies compression depending on the compression type specified, and might apply
additional compression on repeated phrases.

Run-length compression encodes data as non-repeated bytes and repeated zero-bytes. Non-
repeated bytes are output unchanged, followed by a count of zero-bytes.

Lempel-Ziv 1977 (LZ77) compression keeps track of the last n bytes of data seen. When a phrase is
encountered that has already been seen, it outputs a pair of values corresponding to:

• The position of the phrase in the previously-seen buffer of data.

• The length of the phrase.

Related information
Optimization with RW data compression on page 77
Options available to override the compression algorithm used by the linker on page 78
How the linker chooses a compressor on page 77
Considerations when working with RW data compression on page 79

5.4.4 Considerations when working with RW data compression

There are some considerations to be aware of when working with RW data compression.

When working with RW data compression:

• Use the linker option --map to see where compression has been applied to regions in your
code.

• The linker in RealView Compiler Tools (RVCT) v4.0 and later turns off RW compression if there is
a reference from a compressed region to a linker-defined symbol that uses a load address.

• If you are using an Arm® processor with on-chip cache, enable the cache after decompression
to avoid code coherency problems.

Compressed data sections are automatically decompressed at run time, providing __main is
executed, using code from the Arm libraries. This code must be placed in a root region. This is best
done using InRoot$$Sections in a scatter file.

If you are using a scatter file, you can specify that a load or execution region is not to be
compressed by adding the NOCOMPRESS attribute.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

Related information
Optimization with RW data compression on page 77
How the linker chooses a compressor on page 77
Options available to override the compression algorithm used by the linker on page 78
Load$$ execution region symbols on page 97
Scatter-loading Features on page 112
--map, --no_map on page 292
How compression is applied on page 79
Scatter File Syntax on page 178

5.5 Function inlining with the linker
The linker inlines functions depending on what options you specify and the content of the input
files.

The linker can inline small functions in place of a branch instruction to that function. For the linker
to be able to do this, the function (without the return instruction) must fit in the four bytes of the
branch instruction.

Use the --inline and --no_inline command-line options to control branch inlining. However, --
no_inline only turns off inlining for user-supplied objects. The linker still inlines functions from the
Arm® standard libraries by default.

If branch inlining optimization is enabled, the linker scans each function call in the image and then
inlines as appropriate. When the linker finds a suitable function to inline, it replaces the function
call with the instruction from the function that is being called.

The linker applies branch inlining optimization before any unused sections are eliminated so that
inlined sections can also be removed if they are no longer called.

• For Armv7-A, the linker can inline two 16-bit encoded T32 instructions in place
of the 32-bit encoded T32 BL instruction.

• For Armv8-A and Armv8-M, the linker can inline two 16-bit T32 instructions in
place of the 32-bit T32 BL instruction.

Use the --info=inline command-line option to list all the inlined functions.

The linker does not inline small functions in AArch64 state.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

Related information
Factors that influence function inlining on page 81
--inline_type=type on page 275
Elimination of unused sections on page 76
--info=topic[,topic,…] on page 271
--inline, --no_inline on page 275

5.6 Factors that influence function inlining
There are several factors that influence the linker inlines functions.

The following factors influence the way functions are inlined:

• The linker handles only the simplest cases and does not inline any instructions that read or
write to the PC because this depends on the location of the function.

• If your image contains both A32 and T32 code, functions that are called from the opposite
state must be built for interworking. The linker can inline functions containing up to two 16-bit
T32 instructions. However, an A32 calling function can only inline functions containing either
a single 16-bit encoded T32 instruction or a 32-bit encoded T32 instruction. The action that
the linker takes depends on the size of the function being called. The following table shows the
state of both the calling function and the function being called:

Table 5-1: Inlining small functions

Calling function state Called function state Called function size

A32 A32 4 to 8 bytes

A32 T32 2 to 6 bytes

T32 T32 2 to 6 bytes

The linker can inline in different states if there is an equivalent instruction available. For
example, if a T32 instruction is adds r0, r0 then the linker can inline the equivalent A32
instruction. It is not possible to inline from A32 to T32 because there is less chance of T32
equivalent to an A32 instruction.

• For a function to be inlined, the last instruction of the function must be either:

MOV pc, lr

or

BX lr

A function that consists only of a return sequence can be inlined as a NOP.

• A conditional A32 instruction can only be inlined if either:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

◦ The condition on the BL matches the condition on the instruction being inlined. For
example, BLEQ can only inline an instruction with a matching condition like ADDEQ.

◦ The BL instruction or the instruction to be inlined is unconditional. An unconditional A32 BL
can inline any conditional or unconditional instruction that satisfies all the other criteria. An
instruction that cannot be conditionally executed cannot be inlined if the BL instruction is
conditional.

• A BL that is the last instruction of a T32 If-Then (IT) block cannot inline a 16-bit encoded T32
instruction or a 32-bit MRS, MSR, or CPS instruction. This is because the IT block changes the
behavior of the instructions within its scope so inlining the instruction changes the behavior of
the program.

Related information
About branches that optimize to a NOP on page 82
Conditional instructions
ADD
B
CPS
IT
MOV
MRS (PSR to general-purpose register)
MSR (general-purpose register to PSR)

5.7 About branches that optimize to a NOP
Although the linker can replace branches with a NOP, there might be some situations where you
want to stop this happening.

By default, the linker replaces any branch with a relocation that resolves to the next instruction
with a NOP instruction. This optimization can also be applied if the linker reorders tail calling
sections.

However, there are cases where you might want to disable the option, for example, when
performing verification or pipeline flushes.

To control this optimization, use the --branchnop and --no_branchnop command-line options.

Related information
Linker reordering of tail calling sections on page 82
--branchnop, --no_branchnop on page 240

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 351

https://developer.arm.com/documentation/dui0801/l/Condition-Codes/Conditional-instructions
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/ADD
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/B
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/CPS
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/IT
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/MOV
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/MRS--PSR-to-general-purpose-register-
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/MSR--general-purpose-register-to-PSR-

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

5.8 Linker reordering of tail calling sections
There are some situations when you might want the linker to reorder tail calling sections.

A tail calling section is a section that contains a branch instruction at the end of the section. If the
branch instruction has a relocation that targets a function at the start of another section, the linker
can place the tail calling section immediately before the called section. The linker can then optimize
the branch instruction at the end of the tail calling section to a NOP instruction.

To take advantage of this behavior, use the command-line option --tailreorder to move tail calling
sections immediately before their target.

Use the --info=tailreorder command-line option to display information about any tail call
optimizations performed by the linker.

The linker does not reorder tail calling functions in AArch64 state.

Related information
About branches that optimize to a NOP on page 82
Restrictions on reordering of tail calling sections on page 83
Veneer types on page 63
--info=topic[,topic,…] on page 271
--tailreorder, --no_tailreorder on page 327

5.9 Restrictions on reordering of tail calling sections
There are some restrictions on the reordering of tail calling sections.

The linker:

• Can only move one tail calling section for each tail call target. If there are multiple tail calls to a
single section, the tail calling section with an identical section name is moved before the target.
If no section name is found in the tail calling section that has a matching name, then the linker
moves the first section it encounters.

• Cannot move a tail calling section out of its execution region.

• Does not move tail calling sections before inline veneers.

Related information
Linker reordering of tail calling sections on page 82

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

5.10 Linker merging of comment sections
If input files have any comment sections that are identical, then the linker can merge them.

If input object files have any .comment sections that are identical, then the linker merges them to
produce the smallest .comment section while retaining all useful information.

The linker associates each input .comment section with the filename of the corresponding input
object. If it merges identical .comment sections, then all the filenames that contain the common
section are listed before the section contents, for example:

file1.o
file2.o
.comment section contents.

The linker merges these sections by default. To prevent the merging of identical .comment sections,
use the --no_filtercomment command-line option.

armlink does not preprocess comment sections from armclang. If you do not want
to retain the information in a .comment section, then use the fromelf command with
the --strip=comment option to strip this section from the image.

Related information
--comment_section, --no_comment_section on page 246
--filtercomment, --no_filtercomment on page 263
--strip (fromelf option)

5.11 Merging identical constants
The linker can attempt to merge identical constants in objects targeted at AArch32 state. The
objects must be produced with Arm® Compiler 6. If you compile with the armclang option -
ffunction-sections, the merge is more efficient. This option is the default.

About this task
The following procedure is an example that shows the merging feature.

Procedure
1. Create a C source file, litpool.c, containing the following code:

int f1() {
 return 0xdeadbeef;
}
int f2() {
 return 0xdeadbeef;
}

2. Compile the source with -S to create an assembly file:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 351

https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--strip-option--option---

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

armclang -c -S -target arm-arm-none-eabi -mcpu=cortex-m0 -ffunction-sections

litpool.c -o litpool.s

-ffunction-sections is the default.

Because 0xdeadbeef is a difficult constant to create using instructions, a literal pool is created,
for example:

...
f1:
 .fnstart
@ BB#0:
 ldr r0, __arm_cp.0_0
 bx lr
 .p2align 2
@ BB#1:
__arm_cp.0_0:
 .long 3735928559 @ 0xdeadbeef
...
 .fnend

...
 .code 16 @ @f2
 .thumb_func
f2:
 .fnstart
@ BB#0:
 ldr r0, __arm_cp.1_0
 bx lr
 .p2align 2
@ BB#1:
__arm_cp.1_0:
 .long 3735928559 @ 0xdeadbeef
...
 .fnend
...

There is one copy of the constant for each function, because armclang cannot
share these constants between both functions.

3. Compile the source to create an object:
armclang -c -target arm-arm-none-eabi -mcpu=cortex-m0 litpool.c -o litpool.o

4. Link the object file using the --merge_litpools option:
armlink --cpu=Cortex-M0 --merge_litpools litpool.o -o litpool.axf

--merge_litpools is the default.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Optimization Features

5. Run fromelf to view the image structure:
fromelf -c -d -s -t -v -z litpool.axf

The following example shows the result of the merge:

...
 f1
 0x00008000: 4801 .H LDR r0,[pc,#4] ; [0x8008] =
 0xdeadbeef
 0x00008002: 4770 pG BX lr
 f2
 0x00008004: 4800 .H LDR r0,[pc,#0] ; [0x8008] =
 0xdeadbeef
 0x00008006: 4770 pG BX lr
 $d.4
 __arm_cp.1_0
 0x00008008: deadbeef DCD 3735928559
...

Related information
--merge_litpools, --no_merge_litpools on page 295
-ffunction-sections, -fno-function-sections (armclang option)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 351

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-ffunction-sections---fno-function-sections

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Getting Image Details

6. Getting Image Details
Describes how to get image details from the Arm linker, armlink.

6.1 Options for getting information about linker-generated
files

The linker provides options for getting information about the files it generates.

You can use following options to get information about how your file is generated by the linker, and
about the properties of the files:

--info

Displays information about various topics.

--map

Displays the image memory map, and contains the address and the size of each load region,
execution region, and input section in the image, including linker-generated input sections. It
also shows how RW data compression is applied.

--show_cmdline

Outputs the command-line used by the linker.

--symbols

Displays a list of each local and global symbol used in the link step, and its value.

--verbose

Displays detailed information about the link operation, including the objects that are included
and the libraries that contain them.

--xref

Displays a list of all cross-references between input sections.

--xrefdbg

Displays a list of all cross-references between input debug sections.

The information can be written to a file using the --list=filename option.

Related information
Identifying the source of some link errors on page 87
Example of using the --info linker option on page 88
--info=topic[,topic,…] on page 271

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Getting Image Details

6.2 Identifying the source of some link errors
The linker provides options to help you identify the source of some link errors.

To identify the source of some link errors, use --info inputs. For example, you can search the
output to locate undefined references from library objects or multiply defined symbols caused by
retargeting some library functions and not others. Search backwards from the end of this output to
find and resolve link errors.

You can also use the --verbose option to output similar text with additional information on the
linker operations.

Related information
Options for getting information about linker-generated files on page 87
--info=topic[,topic,…] on page 271
--verbose on page 335

6.3 Example of using the --info linker option
An example of the --info output.

To display the component sizes when linking enter:

armlink --info sizes ...

Here, sizes gives a list of the Code and data sizes for each input object and library member in the
image. Using this option implies --info sizes,totals.

The following example shows the output in tabular format with the totals separated out for easy
reading:

Image component sizes

 Code (inc. data) RO Data RW Data ZI Data Debug Object Name

 30 16 0 0 0 0 foo.o
 56 10 960 0 1024 372 startup_ARMCM7.o

 --
 88 26 992 0 5120 372 Object Totals
 0 0 32 0 4096 0 (incl.
 Generated)
 2 0 0 0 0 0 (incl. Padding)

 --

 Code (inc. data) RO Data RW Data ZI Data Debug Library Member
 Name

 8 0 0 0 0 68 __main.o
 0 0 0 0 0 0 __rtentry.o
 12 0 0 0 0 0 __rtentry2.o

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Getting Image Details

 8 4 0 0 0 0 __rtentry5.o
 52 8 0 0 0 0 __scatter.o
 26 0 0 0 0 0 __scatter_copy.o
 28 0 0 0 0 0 __scatter_zi.o
 10 0 0 0 0 68 defsig_exit.o
 50 0 0 0 0 88 defsig_general.o
 80 58 0 0 0 76
 defsig_rtmem_inner.o
 14 0 0 0 0 80
 defsig_rtmem_outer.o
 52 38 0 0 0 76
 defsig_rtred_inner.o
 14 0 0 0 0 80
 defsig_rtred_outer.o
 18 0 0 0 0 80 exit.o
 76 0 0 0 0 88 fclose.o
 470 0 0 0 0 88 flsbuf.o
 236 4 0 0 0 128 fopen.o
 26 0 0 0 0 68 fputc.o
 248 6 0 0 0 84 fseek.o
 66 0 0 0 0 76 ftell.o
 94 0 0 0 0 80 h1_alloc.o
 52 0 0 0 0 68 h1_extend.o
 78 0 0 0 0 80 h1_free.o
 14 0 0 0 0 84 h1_init.o
 80 6 0 4 0 96 heapauxa.o
 4 0 0 0 0 136 hguard.o
 0 0 0 0 0 0 indicate_semi.o
 138 0 0 0 0 168 init_alloc.o
 312 46 0 0 0 112 initio.o
 2 0 0 0 0 0 libinit.o
 6 0 0 0 0 0 libinit2.o
 16 8 0 0 0 0 libinit4.o
 2 0 0 0 0 0 libshutdown.o
 6 0 0 0 0 0 libshutdown2.o
 0 0 0 0 96 0 libspace.o
 0 0 0 0 0 0
 maybetermalloc1.o
 44 4 0 0 0 84 puts.o
 8 4 0 0 0 68
 rt_errno_addr_intlibspace.o
 8 4 0 0 0 68
 rt_heap_descriptor_intlibspace.o
 78 0 0 0 0 80 rt_memclr_w.o
 2 0 0 0 0 0 rtexit.o
 10 0 0 0 0 0 rtexit2.o
 70 0 0 0 0 80 setvbuf.o
 240 6 0 0 0 156 stdio.o
 0 0 0 12 252 0 stdio_streams.o
 62 0 0 0 0 76 strlen.o
 12 4 0 0 0 68 sys_exit.o
 102 0 0 0 0 240 sys_io.o
 0 0 12 0 0 0 sys_io_names.o
 14 0 0 0 0 76 sys_wrch.o
 2 0 0 0 0 68 use_no_semi.o

 --
 2962 200 14 16 352 3036 Library Totals
 12 0 2 0 4 0 (incl. Padding)

 --

 Code (inc. data) RO Data RW Data ZI Data Debug Library Name

 2950 200 12 16 348 3036 c_wu.l

 --
 2962 200 14 16 352 3036 Library Totals

 --

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Getting Image Details

==

 Code (inc. data) RO Data RW Data ZI Data Debug

 3050 226 1006 16 5472 1948 Grand Totals
 3050 226 1006 16 5472 1948 ELF Image Totals
 3050 226 1006 16 0 0 ROM Totals

==

 Total RO Size (Code + RO Data) 4056 (3.96kB)
 Total RW Size (RW Data + ZI Data) 5488 (5.36kB)
 Total ROM Size (Code + RO Data + RW Data) 4072 (3.98kB)

==

In this example:

Code (inc. data)
The number of bytes occupied by the code. In this image, there are 3050 bytes of code.
This value includes 226 bytes of inline data (inc. data), for example, literal pools, and short
strings.

RO Data
The number of bytes occupied by the RO data. This value is in addition to the inline data
included in the Code (inc. data) column.

RW Data
The number of bytes occupied by the RW data.

ZI Data
The number of bytes occupied by the ZI data.

Debug
The number of bytes occupied by the debug data, for example, debug Input sections and the
symbol and string table.

Object Totals
The number of bytes occupied by the objects when linked together to generate the image.

(incl. Generated)
armlink might generate image contents, for example, interworking veneers, and input
sections such as region tables. If the Object Totals row includes this type of data, it is
shown in this row.

Combined across all of the object files (foo.o and startup_ARMCM7.o), the example shows
that there are 992 bytes of RO data, of which 32 bytes are linker-generated RO data.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Getting Image Details

If the scatter file contains EMPTY regions, the linker might generate ZI data. In
the example, the 4096 bytes of ZI data labeled (incl. Generated) correspond
to an ARM_LIB_STACKHEAP execution region used to set up the stack and heap
in a scatter file as follows:

ARM_LIB_STACKHEAP +0x0 EMPTY 0x1000 {} ; 4KB stack + heap

Library Totals
The number of bytes occupied by the library members that have been extracted and added
to the image as individual objects.

(incl. Padding)
If necessary, armlink inserts padding to force section alignment. If the Object Totals row
includes this type of data, it is shown in the associated (incl. Padding) row. Similarly, if the
Library Totals row includes this type of data, it is shown in its associated row.

In the example, there are 992 bytes of RO data in the object total, of which 0 bytes is linker-
generated padding, and 14 bytes of RO data in the library total, with 2 bytes of padding.

Grand Totals
Shows the true size of the image. In the example, there are 5120 bytes of ZI data (in Object
Totals) and 352 of ZI data (in Library Totals) giving a total of 5472 bytes.

ELF Image Totals
If you are using RW data compression (the default) to optimize ROM size, the size of the final
image changes. This change is reflected in the output from --info. Compare the number of
bytes under Grand Totals and ELF Image Totals to see the effect of compression.

In the example, RW data compression is not enabled. If data is compressed, the RW value
changes.

Not supported for AArch64 state.

ROM Totals
Shows the minimum size of ROM required to contain the image. This size does not include ZI
data and debug information that is not stored in the ROM.

Related information
Options for getting information about linker-generated files on page 87
--info=topic[,topic,…] on page 271

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Getting Image Details

6.4 How to find where a symbol is placed when linking
To find where a symbol is placed when linking you must find the section that defines the symbol,
and ensure that the linker has not removed the section.

About this task
You can do this with the --keep="section_id " and --symbols options. For example, if
object(section) is the section containing the symbol, enter:

armlink --cpu=8-A.32 --keep="object(section)" --symbols s.o --output=s.axf

You can also run fromelf -s on the resultant image.

As an example, do the following:

Procedure
1. Create the file s.c containing the following source code:

long long array[10] __attribute__ ((section ("ARRAY")));

int main(void)
{
 return sizeof(array);
}

2. Compile the source:
armclang --target=arm-arm-none-eabi -march=armv8-a -c s.c -o s.o

3. Link the object s.o, keeping the ARRAY symbol and displaying the symbols:
armlink --cpu=8-A.32 --keep="s.o(ARRAY)" --map --symbols s.o --output=s.axf

4. Locate the ARRAY symbol in the output, for example:
...
Execution Region ER_RW (Base: 0x000083a8, Size: 0x00000028, Max: 0xffffffff,
 ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x000083a8 0x00000028 Data RW 4 ARRAY s.o

...
Execution Region ER_RW (Base: 0x00008360, Size: 0x00000050, Max: 0xffffffff,
 ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00008360 0x00000050 Data RW 3 ARRAY s.o

This shows that the array is placed in execution region ER_RW.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Getting Image Details

Related information
--keep=section_id on page 278
--map, --no_map on page 292
-o filename, --output=filename on page 296
Using fromelf to find where a symbol is placed in an executable ELF image
-c compiler option
-march compiler option
-o compiler option
--target compiler option

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 351

https://developer.arm.com/documentation/dui0805/l/Using-fromelf/Using-fromelf-to-find-where-a-symbol-is-placed-in-an-executable-ELF-image
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-c
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-march
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-o
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/--target

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

7. Accessing and Managing Symbols with
armlink

Describes how to access and manage symbols with the Arm linker, armlink.

7.1 About mapping symbols
Mapping symbols are generated by the compiler and assembler to identify various inline transitions.

For Arm®v7-A, inline transitions can be between:

• Code and data at literal pool boundaries.

• Arm code and Thumb code, such as Arm and Thumb interworking veneers.

For Armv8-A, inline transitions can be between:

• Code and data at literal pool boundaries.

• A32 code and T32 code, such as A32 and T32 interworking veneers.

For Armv6-M, Armv7-M, and Armv8-M, inline transitions can be between code and data at literal
pool boundaries.

The mapping symbols available for each architecture are:

Symbol Description Architecture

$a Start of a sequence of Arm/A32
instructions.

All

$t Start of a sequence of Thumb/T32
instructions.

All

$t.x Start of a sequence of ThumbEE
instructions.

Armv7-A

$d Start of a sequence of data items, such as a
literal pool.

All

$x Start of A64 code. Armv8-A

armlink generates the $d.realdata mapping symbol to communicate to fromelf that the data is
from a non-executable section. Therefore, the code and data sizes output by fromelf -z are the
same as the output from armlink --info sizes, for example:

 Code (inc. data) RO Data

 x y z

In this example, the y is marked with $d, and RO Data is marked with $d.realdata.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

Symbols beginning with the characters $v are mapping symbols related to VFP and
might be output when building for a target with VFP. Avoid using symbols beginning
with $v in your source code.

Be aware that modifying an executable image with the fromelf --elf --strip=localsymbols
command removes all mapping symbols from the image.

Related information
--list_mapping_symbols, --no_list_mapping_symbols on page 285
--strict_symbols, --no_strict_symbols on page 324
Symbol naming rules
--strip=option[,option,…] fromelf option
--text fromelf option
ELF for the Arm Architecture

7.2 Linker-defined symbols
The linker defines some symbols that are reserved by Arm, and that you can access if required.

Symbols that contain the character sequence $$, and all other external names containing the
sequence $$, are names reserved by Arm.

You can import these symbolic addresses and use them as relocatable addresses by your assembly
language programs, or refer to them as extern symbols from your C or C++ source code.

Be aware that:

• Linker-defined symbols are only generated when your code references them.

• If execute-only (XO) sections are present, linker-defined symbols are defined with the following
constraints:

◦ XO linker defined symbols cannot be defined with respect to an empty region or a region
that has no XO sections.

◦ XO linker defined symbols cannot be defined with respect to a region that contains only RO
sections.

◦ RO linker defined symbols cannot be defined with respect to a region that contains only XO
sections.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 351

https://developer.arm.com/documentation/dui0801/l/Symbols--Literals--Expressions--and-Operators/Symbol-naming-rules
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--strip-option--option---
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--text
https://developer.arm.com/documentation/ihi0044/latest

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

Related information
Methods of importing linker-defined symbols in C and C++ on page 100
Methods of importing linker-defined symbols in Arm assembly language on page 100

7.3 Region-related symbols
The linker generates various types of region-related symbols that you can access if required.

7.3.1 Types of region-related symbols

The linker generates the different types of region-related symbols for each region in the image.

The types are:

• Image$$ and Load$$ for each execution region.

• Load$$LR$$ for each load region.

If you are using a scatter file these symbols are generated for each region in the scatter file.

If you are not using scatter-loading, the symbols are generated for the default region names. That
is, the region names are fixed and the same types of symbol are supplied.

Related information
Image$$ execution region symbols on page 96
Load$$ execution region symbols on page 97
Load$$LR$$ load region symbols on page 98
Region name values when not scatter-loading on page 99

7.3.2 Image$$ execution region symbols

The linker generates Image$$ symbols for every execution region present in the image.

The following table shows the symbols that the linker generates for every execution region present
in the image. All the symbols refer to execution addresses after the C library is initialized.

Table 7-2: Image$$ execution region symbols

Symbol Description

Image$$region_name$$Base Execution address of the region.

Image$$region_name$$Length Execution region length in bytes excluding ZI length.

Image$$region_name$$Limit Address of the byte beyond the end of the non-ZI part of the
execution region.

Image$$region_name$$RO$$Base Execution address of the RO output section in this region.

Image$$region_name$$RO$$Length Length of the RO output section in bytes.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

Symbol Description
Image$$region_name$$RO$$Limit Address of the byte beyond the end of the RO output section in the

execution region.

Image$$region_name$$RW$$Base Execution address of the RW output section in this region.

Image$$region_name$$RW$$Length Length of the RW output section in bytes.

Image$$region_name$$RW$$Limit Address of the byte beyond the end of the RW output section in
the execution region.

Image$$region_name$$XO$$Base Execution address of the XO output section in this region.

Image$$region_name$$XO$$Length Length of the XO output section in bytes.

Image$$region_name$$XO$$Limit Address of the byte beyond the end of the XO output section in the
execution region.

Image$$region_name$$ZI$$Base Execution address of the ZI output section in this region.

Image$$region_name$$ZI$$Length Length of the ZI output section in bytes.

Image$$region_name$$ZI$$Limit Address of the byte beyond the end of the ZI output section in the
execution region.

Related information
Types of region-related symbols on page 96

7.3.3 Load$$ execution region symbols

The linker generates Load$$ symbols for every execution region present in the image.

Load$$region_name symbols apply only to execution regions. Load$$LR$
$load_region_name symbols apply only to load regions.

The following table shows the symbols that the linker generates for every execution region present
in the image. All the symbols refer to load addresses before the C library is initialized.

Table 7-3: Load$$ execution region symbols

Symbol Description

Load$$region_name$$Base Load address of the region.

Load$$region_name$$Length Region length in bytes.

Load$$region_name$$Limit Address of the byte beyond the end of the execution region.

Load$$region_name$$RO$$Base Address of the RO output section in this execution region.

Load$$region_name$$RO$$Length Length of the RO output section in bytes.

Load$$region_name$$RO$$Limit Address of the byte beyond the end of the RO output section in the
execution region.

Load$$region_name$$RW$$Base Address of the RW output section in this execution region.

Load$$region_name$$RW$$Length Length of the RW output section in bytes.

Load$$region_name$$RW$$Limit Address of the byte beyond the end of the RW output section in
the execution region.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

Symbol Description
Load$$region_name$$XO$$Base Address of the XO output section in this execution region.

Load$$region_name$$XO$$Length Length of the XO output section in bytes.

Load$$region_name$$XO$$Limit Address of the byte beyond the end of the XO output section in the
execution region.

Load$$region_name$$ZI$$Base Load address of the ZI output section in this execution region.

Load$$region_name$$ZI$$Length Load length of the ZI output section in bytes.

The Load Length of ZI is zero unless region_name has the
ZEROPAD scatter-loading keyword set.

Load$$region_name$$ZI$$Limit Load address of the byte beyond the end of the ZI output section in
the execution region.

All symbols in this table refer to load addresses before the C library is initialized. Be aware of the
following:

• The symbols are absolute because section-relative symbols can only have execution addresses.

• The symbols take into account RW compression.

• References to linker-defined symbols from RW compressed execution regions must be to
symbols that are resolvable before RW compression is applied.

• If the linker detects a relocation from an RW-compressed region to a linker-defined symbol that
depends on RW compression, then the linker disables compression for that region.

• Any zero bytes written to the file are visible. Therefore, the Limit and Length values must take
into account the zero bytes written into the file.

Related information
Types of region-related symbols on page 96
Methods of importing linker-defined symbols in C and C++ on page 100
Methods of importing linker-defined symbols in Arm assembly language on page 100
Region name values when not scatter-loading on page 99
Optimization with RW data compression on page 77
Image$$ execution region symbols on page 96
Load$$LR$$ load region symbols on page 98
Execution region attributes on page 189

7.3.4 Load$$LR$$ load region symbols

The linker generates Load$$LR$$ symbols for every load region present in the image.

A Load$$LR$$ load region can contain many execution regions, so there are no separate $$RO and $
$RW components.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

Load$$LR$$load_region_name symbols apply only to load regions. Load$
$region_name symbols apply only to execution regions.

The following table shows the symbols that the linker generates for every load region present in
the image.

Table 7-4: Load$$LR$$ load region symbols

Symbol Description

Load$$LR$$load_region_name$$Base Address of the load region.

Load$$LR$$load_region_name$$Length Length of the load region.

Load$$LR$$load_region_name$$Limit Address of the byte beyond the end of the load region.

Related information
Types of region-related symbols on page 96
The structure of an Arm ELF image on page 38
Input sections, output sections, regions, and program segments on page 40
Load view and execution view of an image on page 42

7.3.5 Region name values when not scatter-loading

When scatter-loading is not used when linking, the linker uses default region name values.

If you are not using scatter-loading, the linker uses region name values of:

• ER_XO, for an execute-only execution region, if present.

• ER_RO, for the read-only execution region.

• ER_RW, for the read-write execution region.

• ER_ZI, for the zero-initialized execution region.

You can insert these names into the following symbols to obtain the required address:

• Image$$ execution region symbols.

• Load$$ execution region symbols.

For example, Load$$ER_RO$$Base.

Related information
Types of region-related symbols on page 96
Image$$ execution region symbols on page 96
Load$$ execution region symbols on page 97
Section-related symbols on page 101

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

7.3.6 Linker defined symbols and scatter files

When you are using scatter-loading, the names from a scatter file are used in the linker defined
symbols.

The scatter file:

• Names all the load and execution regions in the image, and provides their load and execution
addresses.

• Defines both stack and heap. The linker also generates special stack and heap symbols.

Related information
Scatter-loading Features on page 112
--scatter=filename on page 313

7.3.7 Methods of importing linker-defined symbols in C and C++

You can import linker-defined symbols into your C or C++ source code. They are external symbols
and you must take the address of them.

The only case where the & operator is not required is when the array declaration is used, for
example extern char symbol_name[];.

The following examples show how to obtain the correct value:

Importing a linker-defined symbol
extern int Image$$ER_ZI$$Limit;
heap_base = (uintptr_t)&Image$$ER_ZI$$Limit;

Importing symbols that define a ZI output section
extern int Image$$ER_ZI$$Length;
extern char Image$$ER_ZI$$Base[];
memset(Image$$ER_ZI$$Base, 0, (size_t)&Image$$ER_ZI$$Length);

Related information
Image$$ execution region symbols on page 96

7.3.8 Methods of importing linker-defined symbols in Arm assembly
language

You can import linker-defined symbols into your Arm assembly code.

To import linker-defined symbols into your assembly language source code, use the .global
directive.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

32-bit applications
Create a 32-bit data word to hold the value of the symbol, for example:

 .global Image$$ER_ZI$$Limit
 ...
.zi_limit:
 .word Image$$ER_ZI$$Limit

To load the value into a register, such as r1, use the LDR instruction:

 LDR r1, .zi_limit

The LDR instruction must be able to reach the 32-bit data word. The accessible memory range
varies between A64, A32, and T32, and the architecture you are using.

64-bit applications
Create a 64-bit data word to hold the value of the symbol, for example:

 .global Image$$ER_ZI$$Limit
 ...
.zi_limit:
 .quad Image$$ER_ZI$$Limit

To load the value into a register, such as x1, use the LDR instruction:

 LDR x1, .zi_limit

The LDR instruction must be able to reach the 64-bit data word.

Related information
Image$$ execution region symbols on page 96
A32 and T32 Instructions
IMPORT and EXTERN directives

7.4 Section-related symbols
Section-related symbols are symbols generated by the linker when it creates an image without
scatter-loading.

7.4.1 Types of section-related symbols

The linker generates different types of section-related symbols for output and input sections.

The types of symbols are:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 351

https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions
https://developer.arm.com/documentation/dui0801/l/Directives-Reference/IMPORT-and-EXTERN

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

• Image symbols, if you do not use scatter-loading to create a simple image. A simple image has
up to four output sections (XO, RO, RW, and ZI) that produce the corresponding execution
regions.

• Input section symbols, for every input section present in the image.

The linker sorts sections within an execution region first by attribute RO, RW, or ZI, then by name.
So, for example, all .text sections are placed in one contiguous block. A contiguous block of
sections with the same attribute and name is known as a consolidated section .

Related information
Image symbols on page 102
Input section symbols on page 103

7.4.2 Image symbols

Image symbols are generated by the linker when you do not use scatter-loading to create a simple
image.

The following table shows the image symbols:

Table 7-5: Image symbols

Symbol Section type Description

Image$$RO$$Base Output Address of the start of the RO output
section.

Image$$RO$$Limit Output Address of the first byte beyond the end of
the RO output section.

Image$$RW$$Base Output Address of the start of the RW output
section.

Image$$RW$$Limit Output Address of the byte beyond the end of the
ZI output section. (The choice of the end
of the ZI region rather than the end of the
RW region is to maintain compatibility with
legacy code.)

Image$$ZI$$Base Output Address of the start of the ZI output
section.

Image$$ZI$$Limit Output Address of the byte beyond the end of the
ZI output section.

• Arm recommends that you use region-related symbols in preference to section-
related symbols.

• The ZI output sections of an image are not created statically, but are
automatically created dynamically at runtime.

• There are no load address symbols for RO, RW, and ZI output sections.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

If you are using a scatter file, the image symbols are undefined. If your code accesses any of these
symbols, you must treat them as a weak reference.

The standard implementation of __user_setup_stackheap() uses the value in Image$$ZI$$Limit.
Therefore, if you are using a scatter file you must manually place the stack and heap. You can do
this either:

• In a scatter file using one of the following methods:

◦ Define separate stack and heap regions called ARM_LIB_STACK and ARM_LIB_HEAP.

◦ Define a combined region containing both stack and heap called ARM_LIB_STACKHEAP.

• By re-implementing __user_setup_stackheap() to set the heap and stack boundaries.

Related information
Linker-defined symbols that are not defined when scatter-loading on page 113
Placing the stack and heap with a scatter file on page 114
Simple images on page 48
Weak references and definitions on page 67
__user_setup_stackheap()

7.4.3 Input section symbols

Input section symbols are generated by the linker for every input section present in the image.

The following table shows the input section symbols:

Table 7-6: Section-related symbols

Symbol Section type Description

SectionName$$Base Input Address of the start of the consolidated
section called SectionName.

SectionName$$Length Input Length of the consolidated section called
SectionName (in bytes).

SectionName$$Limit Input Address of the byte beyond the end of the
consolidated section called SectionName.

If your code refers to the input-section symbols, it is assumed that you expect all the input sections
in the image with the same name to be placed contiguously in the image memory map.

If your scatter file places input sections non-contiguously, the linker issues an error. This is because
the use of the base and limit symbols over non-contiguous memory is ambiguous.

Related information
Scatter-loading Features on page 112
Input sections, output sections, regions, and program segments on page 40

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 351

https://developer.arm.com/documentation/dui0808/l/The-C-and-C---Library-Functions-Reference/--user-setup-stackheap--

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

7.5 Access symbols in another image
Use a symbol definitions (symdefs) file if you want one image to know the global symbol values of
another image.

7.5.1 Creating a symdefs file

You can specify a symdefs file on the linker command-line.

You can use a symdefs file, for example, if you have one image that always resides in ROM and
multiple images that are loaded into RAM. The images loaded into RAM can access global functions
and data from the image located in ROM.

Use the armlink option --symdefs=filename to generate a symdefs file.

The linker produces a symdefs file during a successful final link stage. It is not produced for partial
linking or for unsuccessful final linking.

If filename does not exist, the linker creates the file and adds entries for all the
global symbols to that file. If filename exists, the linker uses the existing contents of
filename to select the symbols that are output when it rewrites the file. This means
that only the existing symbols in the filename are updated, and no new symbols
(if any) are added at all. If you do not want this behavior, ensure that any existing
symdefs file is deleted before the link step.

Related information
Outputting a subset of the global symbols on page 104
Symdefs file format on page 105
--symdefs=filename on page 326
Reading a symdefs file on page 105

7.5.2 Outputting a subset of the global symbols

You can use a symdefs file to output a subset of the global symbols to another application.

About this task
By default, all global symbols are written to the symdefs file. When a symdefs file exists, the linker
uses its contents to restrict the output to a subset of the global symbols.

This example uses an application image1 containing symbols that you want to expose to another
application using a symdefs file.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

Procedure
1. Specify --symdefs=filename when you are doing a final link for image1. The linker creates a

symdefs file filename.
2. Open filename in a text editor, remove any symbol entries you do not want in the final list, and

save the file.
3. Specify --symdefs=filename when you are doing a final link for image1.

You can edit filename at any time to add comments and link image1 again. For example, to
update the symbol definitions to create image1 after one or more objects have changed.

You can use the symdefs file to link additional applications.

Related information
Creating a symdefs file on page 104
Symdefs file format on page 105
--symdefs=filename on page 326
Access symbols in another image on page 103

7.5.3 Reading a symdefs file

A symdefs file can be considered as an object file with symbol information but no code or data.

To read a symdefs file, add it to your file list as you do for any object file. The linker reads the
file and adds the symbols and their values to the output symbol table. The added symbols have
ABSOLUTE and GLOBAL attributes.

If a partial link is being performed, the symbols are added to the output object symbol table. If a full
link is being performed, the symbols are added to the image symbol table.

The linker generates error messages for invalid rows in the file. A row is invalid if:

• Any of the columns are missing.

• Any of the columns have invalid values.

The symbols extracted from a symdefs file are treated in the same way as symbols extracted from
an object symbol table. The same restrictions apply regarding multiple symbol definitions.

The same function name or symbol name cannot be defined in both A32 code and
in T32 code.

Related information
Symdefs file format on page 105

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

7.5.4 Symdefs file format

A symdefs file defines symbols and their values.

The file consists of:

Identification line
The identification line in a symdefs file comprises:

• An identifying string, #<SYMDEFS>#, which must be the first 11 characters in the file for
the linker to recognize it as a symdefs file.

• Linker version information, in the format:

ARM Linker, vvvvbbb:

• Date and time of the most recent update of the symdefs file, in the format:

Last Updated: day month date hh:mm:ss year

For example, for version 6.3, build 169:

#<SYMDEFS># ARM Linker, 6030169: Last Updated: Thu Jun 4 12:49:45 2015

The version and update information are not part of the identifying string.

Comments
You can insert comments manually with a text editor. Comments have the following
properties:

• The first line must start with the special identifying comment #<SYMDEFS>#. This comment
is inserted by the linker when the file is produced and must not be manually deleted.

• Any line where the first non-whitespace character is a semicolon (;) or hash (#) is a
comment.

• A semicolon (;) or hash (#) after the first non-whitespace character does not start a
comment.

• Blank lines are ignored and can be inserted to improve readability.

Symbol information
The symbol information is provided on a single line, and comprises:

Symbol value
The linker writes the absolute address of the symbol in fixed hexadecimal format, for
example, 0x00008000. If you edit the file, you can use either hexadecimal or decimal
formats for the address value.

Type flag
A single letter to show symbol type:

X

A64 code (AArch64 only)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

A

A32 code (AArch32 only)

T

T32 code (AArch32 only)

D

Data

N

Number.

Symbol name
The symbol name.

Example
This example shows a typical symdefs file format:

#<SYMDEFS># ARM Linker, 6030169: Last Updated: Date

;value type name, this is an added comment
0x00008000 A __main
0x00008004 A __scatterload
0x000080E0 T main
0x0000814D T _main_arg
0x0000814D T __argv_alloc
0x00008199 T __rt_get_argv
...
 # This is also a comment, blank lines are ignored
...
0x0000A4FC D __stdin
0x0000A540 D __stdout
0x0000A584 D __stderr
0xFFFFFFFD N __SIG_IGN

Related information
Reading a symdefs file on page 105
Creating a symdefs file on page 104

7.6 Edit the symbol tables with a steering file
A steering file is a text file that contains a set of commands to edit the symbol tables of output
objects and the dynamic sections of images.

7.6.1 Specifying steering files on the linker command-line

You can specify one or more steering files on the linker command-line.

Use the option --edit file-list to specify one or more steering files on the linker command-line.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

When you specify more than one steering file, you can use either of the following command-line
formats:

armlink --edit file1 --edit file2 --edit file3

armlink --edit file1,file2,file3

Do not include spaces between the comma and the filenames when using a comma-separated list.

Related information
Steering file command summary on page 108
Steering file format on page 109

7.6.2 Steering file command summary

Steering file commands enable you to manage symbols in the symbol table, control the copying of
symbols from the static symbol table to the dynamic symbol table, and store information about the
libraries that a link unit depends on.

For example, you can use steering files to protect intellectual property, or avoid namespace clashes.

The steering file commands are:

Table 7-7: Steering file command summary

Command Description

EXPORT Specifies that a symbol can be accessed by other shared objects or
executables.

HIDE Makes defined global symbols in the symbol table anonymous.

IMPORT Specifies that a symbol is defined in a shared object at runtime.

RENAME Renames defined and undefined global symbol names.

REQUIRE Creates a DT_NEEDED tag in the dynamic array. DT_NEEDED
tags specify dependencies to other shared objects used by the
application, for example, a shared library.

RESOLVE Matches specific undefined references to a defined global symbol.

SHOW Makes global symbols visible. This command is useful if you want to
make a specific symbol visible that is hidden using a HIDE command
with a wildcard.

The steering file commands control only global symbols. Local symbols are not
affected by any of these commands.

Related information
Specifying steering files on the linker command-line on page 107

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

Steering file format on page 109
--edit=file_list on page 258
EXPORT steering file command on page 341
HIDE steering file command on page 342
IMPORT steering file command on page 343
RENAME steering file command on page 344
REQUIRE steering file command on page 345
RESOLVE steering file command on page 346
SHOW steering file command on page 347

7.6.3 Steering file format

Each command in a steering file must be on a separate line.

A steering file has the following format:

• Lines with a semicolon (;) or hash (#) character as the first non-whitespace character are
interpreted as comments. A comment is treated as a blank line.

• Blank lines are ignored.

• Each non-blank, non-comment line is either a command, or part of a command that is split over
consecutive non-blank lines.

• Command lines that end with a comma (,) as the last non-whitespace character are continued
on the next non-blank line.

Each command line consists of a command, followed by one or more comma-separated operand
groups. Each operand group comprises either one or two operands, depending on the command.
The command is applied to each operand group in the command. The following rules apply:

• Commands are case-insensitive, but are conventionally shown in uppercase.

• Operands are case-sensitive because they must be matched against case-sensitive symbol
names. You can use wildcard characters in operands.

Commands are applied to global symbols only. Other symbols, such as local symbols, are not
affected.

The following example shows a sample steering file:

; Import my_func1 as func1

IMPORT my_func1 AS func1
Rename a very long function name to a shorter name
RENAME a_very_long_function_name AS,
 short_func_name

Related information
Steering file command summary on page 108
Specifying steering files on the linker command-line on page 107

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

EXPORT steering file command on page 341
HIDE steering file command on page 342
IMPORT steering file command on page 343
RENAME steering file command on page 344
REQUIRE steering file command on page 345
RESOLVE steering file command on page 346
SHOW steering file command on page 347

7.6.4 Hide and rename global symbols with a steering file

You can use a steering file to hide and rename global symbol names in output files.

Use the HIDE and RENAME commands as required.

For example, you can use steering files to protect intellectual property, or avoid namespace clashes.

Example of renaming a symbol:

RENAME steering command example
RENAME func1 AS my_func1

Example of hiding symbols:

HIDE steering command example
; Hides all global symbols with the 'internal' prefix
HIDE internal*

Related information
Specifying steering files on the linker command-line on page 107
Edit the symbol tables with a steering file on page 107
Steering file command summary on page 108
Symdefs file format on page 105
HIDE steering file command on page 342
RENAME steering file command on page 344
--edit=file_list on page 258

7.7 Use of $Super$$ and $Sub$$ to patch symbol
definitions

There are special patterns that you can use for situations where an existing symbol cannot be
modified.

An existing symbol cannot be modified if, for example, it is located in an external library or in ROM
code. In such cases you can use the $Super$$ and $Sub$$ patterns to patch an existing symbol.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Accessing and Managing Symbols with armlink

To patch the definition of the function foo(), $Sub$$foo and the original definition of foo() must
be a global or weak definition:

$Super$$foo

Identifies the original unpatched function foo(). Use this pattern to call the original function
directly.

$Sub$$foo

Identifies the new function that is called instead of the original function foo(). Use this
pattern to add processing before or after the original function.

The $Sub$$ and $Super$$ linker mechanism can operate only on symbol definitions and references
that are visible to the tool. For example, the compiler can replace a call to printf("Hello\\n") with
puts("Hello") in a C program. In such cases, only the reference to the symbol puts is visible to the
linker, so defining $Sub$$printf does not redirect this call.

The $Sub$$ and $Super$$ mechanism only works at static link time, $Super$$
references cannot be imported or exported into the dynamic symbol table.

Example
The following example shows how to use $Super$$ and $Sub$$ to insert a call to the function
ExtraFunc() before the call to the legacy function foo().

extern void ExtraFunc(void);
extern void $Super$$foo(void);

/* this function is called instead of the original foo() */
void $Sub$$foo(void)
{
 ExtraFunc(); /* does some extra setup work */
 $Super$$foo(); /* calls the original foo() function */
 /* To avoid calling the original foo() function
 * omit the $Super$$foo(); function call.
 */
}

Related information
ELF for the Arm Architecture

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 351

https://developer.arm.com/documentation/ihi0044/latest

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8. Scatter-loading Features
Describes the scatter-loading features and how you use scatter files with the Arm linker, armlink,
to create complex images.

8.1 The scatter-loading mechanism
The scatter-loading mechanism enables you to specify the memory map of an image to the linker
using a description in a text file.

8.1.1 Overview of scatter-loading

Scatter-loading gives you complete control over the grouping and placement of image components.

You can use scatter-loading to create simple images, but it is generally only used for images that
have a complex memory map. That is, where multiple memory regions are scattered in the memory
map at load and execution time.

An image memory map is made up of regions and output sections. Every region in the memory map
can have a different load and execution address.

To construct the memory map of an image, the linker must have:

• Grouping information that describes how input sections are grouped into output sections and
regions.

• Placement information that describes the addresses where regions are to be located in the
memory maps.

When the linker creates an image using a scatter file, it creates some region-related symbols. The
linker creates these special symbols only if your code references them.

Related information
When to use scatter-loading on page 112
Scatter file to ELF mapping on page 175
The structure of an Arm ELF image on page 38
Region-related symbols on page 96

8.1.2 When to use scatter-loading

Scatter-loading is usually required for implementing embedded systems because these use ROM,
RAM, and memory-mapped peripherals.

Situations where scatter-loading is either required or very useful:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Complex memory maps
Code and data that must be placed into many distinct areas of memory require detailed
instructions on where to place the sections in the memory space.

Different types of memory
Many systems contain a variety of physical memory devices such as flash, ROM, SDRAM,
and fast SRAM. A scatter-loading description can match the code and data with the most
appropriate type of memory. For example, interrupt code might be placed into fast SRAM to
improve interrupt response time but infrequently-used configuration information might be
placed into slower flash memory.

Memory-mapped peripherals
The scatter-loading description can place a data section at a precise address in the memory
map so that memory mapped peripherals can be accessed.

Functions at a constant location
A function can be placed at the same location in memory even though the surrounding
application has been modified and recompiled. This is useful for jump table implementation.

Using symbols to identify the heap and stack
Symbols can be defined for the heap and stack location when the application is linked.

Related information
Overview of scatter-loading on page 112

8.1.3 Linker-defined symbols that are not defined when scatter-loading

When scatter-loading an image, some linker-defined symbols are undefined.

The following symbols are undefined when a scatter file is used:

• Image$$RO$$Base.

• Image$$RO$$Limit.

• Image$$RW$$Base.

• Image$$RW$$Limit.

• Image$$XO$$Base.

• Image$$XO$$Limit.

• Image$$ZI$$Base.

• Image$$ZI$$Limit.

If you use a scatter file but do not use the special region names for stack and heap, or do not re-
implement __user_setup_stackheap(), an error message is generated.

Related information
Linker-defined symbols on page 95
Placing the stack and heap with a scatter file on page 114

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.1.4 Placing the stack and heap with a scatter file

The Arm® C library provides multiple implementations of the function __user_setup_stackheap(),
and can select the correct one for you automatically from information that is given in a scatter file.

About this task
• If you re-implement __user_setup_stackheap(), your version does not get invoked when stack

and heap are defined in a scatter file.

• You might have to update your startup code to use the correct initial stack pointer. Some
processors, such as the Cortex®-M3 processor, require that you place the initial stack pointer
in the vector table. See Stack and heap configuration in AN179 - Cortex-M3 Embedded Software
Development for more details.

• You must ensure correct alignment of the stack and heap:

◦ In AArch32 state, the stack and heap must be 8-byte aligned.

◦ In AArch64 state, the stack and heap must be 16-byte aligned.

Procedure
1. Define two special execution regions in your scatter file that are named ARM_LIB_HEAP and

ARM_LIB_STACK.
2. Assign the EMPTY attribute to both regions.

Because the stack and heap are in separate regions, the library selects the non-default
implementation of __user_setup_stackheap() that uses the value of the symbols:

• Image$$ARM_LIB_STACK$$ZI$$Base.

• Image$$ARM_LIB_STACK$$ZI$$Limit.

• Image$$ARM_LIB_HEAP$$ZI$$Base.

• Image$$ARM_LIB_HEAP$$ZI$$Limit.

You can specify only one ARM_LIB_STACK or ARM_LIB_HEAP region, and you must allocate a size.

LOAD_FLASH ...
{
 ...
 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
 ...
}

3. Alternatively, define a single execution region that is named ARM_LIB_STACKHEAP to use a
combined stack and heap region. Assign the EMPTY attribute to the region.
Because the stack and heap are in the same region, __user_setup_stackheap() uses the value
of the symbols Image$$ARM_LIB_STACKHEAP$$ZI$$Base and Image$$ARM_LIB_STACKHEAP$$ZI$
$Limit.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 351

https://developer.arm.com/documentation/dai0179/latest/cortex-m3-embedded-software-development

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Related information
Region-related symbols on page 96
__user_setup_stackheap()

8.1.5 Scatter-loading command-line options

The command-line options to the linker give some control over the placement of data and code,
but complete control of placement requires more detailed instructions than can be entered on the
command line.

Complex memory maps
Placement of code and data in complex memory maps must be specified in a scatter file. You
specify the scatter file with the option:

--scatter=scatter_file

This instructs the linker to construct the image memory map as described in scatter_file.

You can use --scatter with the --base_platform linking model.

Simple memory maps
For simple memory maps, you can place code and data with with the following memory map
related command-line options:

• --bpabi.

• --dll.

• --partial.

• --ro_base.

• --rw_base.

• --ropi.

• --rwpi.

• --rosplit.

• --split.

• --reloc.

• --xo_base

• --zi_base.

Apart from --dll, you cannot use --scatter with these options.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 351

https://developer.arm.com/documentation/dui0808/l/The-C-and-C---Library-Functions-Reference/--user-setup-stackheap--

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Related information
Base Platform linking model on page 35
The scatter-loading mechanism on page 112
When to use scatter-loading on page 112
Equivalent scatter-loading descriptions for simple images on page 164
--base_platform on page 237
--bpabi on page 239
--dll on page 255
--partial on page 301
--reloc on page 307
--ro_base=address on page 309
--ropi on page 310
--rosplit on page 311
--rw_base=address on page 311
--rwpi on page 312
--scatter=filename on page 313
--split on page 319
--xo_base=address on page 337
--zi_base=address on page 339
Scatter File Syntax on page 178

8.1.6 Scatter-loading images with a simple memory map

For images with a simple memory map, you can specify the memory map using only linker
command-line options, or with a scatter file.

The following figure shows a simple memory map:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Figure 8-1: Simple scatter-loaded memory map

0x0000

0x8000

RO section

RW section

RO section

Execution viewLoad view 0x16000

SRAM

ROM

RW section

ZI sectionZero fill

0x10000

Copy / decompress

The following example shows the corresponding scatter-loading description that loads the
segments from the object file into memory:

LOAD_ROM 0x0000 0x8000 ; Name of load region (LOAD_ROM),
 ; Start address for load region (0x0000),
 ; Maximum size of load region (0x8000)
{
 EXEC_ROM 0x0000 0x8000 ; Name of first exec region (EXEC_ROM),
 ; Start address for exec region (0x0000),
 ; Maximum size of first exec region (0x8000)
 {
 * (+RO) ; Place all code and RO data into
 ; this exec region
 }
 SRAM 0x10000 0x6000 ; Name of second exec region (SRAM),
 ; Start address of second exec region (0x10000),
 ; Maximum size of second exec region (0x6000)
 {
 * (+RW, +ZI) ; Place all RW and ZI data into
 ; this exec region
 }
}

The maximum size specifications for the regions are optional. However, if you include them, they
enable the linker to check that a region does not overflow its boundary.

Apart from the limit checking, you can achieve the same result with the following linker command-
line:

armlink --ro_base 0x0 --rw_base 0x10000

Related information
Scatter file to ELF mapping on page 175

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

The scatter-loading mechanism on page 112
When to use scatter-loading on page 112
--ro_base=address on page 309
--rw_base=address on page 311
--xo_base=address on page 337

8.1.7 Scatter-loading images with a complex memory map

For images with a complex memory map, you cannot specify the memory map using only linker
command-line options. Such images require the use of a scatter file.

The following figure shows a complex memory map:

Figure 8-2: Complex memory map

0x00000

0x08000

RO section#2

RO section#1

ZI section#2

RW section#2

RW section#1

RO section#2

RW section#2

0x18000

ZI section#1

RW section#1

RO section#1

Execution viewLoad view 0x20000

DRAM

SRAM

ROM2

Zero fill

0x0000

0x4000

0x10000

ROM1

The following example shows the corresponding scatter-loading description that loads the
segments from the program1.o and program2.o files into memory:

LOAD_ROM_1 0x0000 ; Start address for first load region (0x0000)
{
 EXEC_ROM_1 0x0000 ; Start address for first exec region (0x0000)
 {
 program1.o (+RO) ; Place all code and RO data from
 ; program1.o into this exec region

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

 }
 DRAM 0x18000 0x8000 ; Start address for this exec region (0x18000),
 ; Maximum size of this exec region (0x8000)
 {
 program1.o (+RW, +ZI) ; Place all RW and ZI data from
 ; program1.o into this exec region
 }
}
LOAD_ROM_2 0x4000 ; Start address for second load region (0x4000)
{
 EXEC_ROM_2 0x4000
 {
 program2.o (+RO) ; Place all code and RO data from
 ; program2.o into this exec region
 }
 SRAM 0x8000 0x8000
 {
 program2.o (+RW, +ZI) ; Place all RW and ZI data from
 ; program2.o into this exec region
 }
}

The scatter-loading description in this example specifies the location for code and
data for program1.o and program2.o only. If you link an additional module, for
example, program3.o, and use this description file, the location of the code and data
for program3.o is not specified.

Unless you want to be very rigorous in the placement of code and data, Arm
recommends that you use the * or .ANY specifier to place leftover code and data.

Related information
The scatter-loading mechanism on page 112
Effect of the ABSOLUTE attribute on a root region on page 120
Effect of the FIXED attribute on a root region on page 121
Scatter files containing relative base address load regions and a ZI execution region on page 210
Scatter file to ELF mapping on page 175
When to use scatter-loading on page 112

8.2 Root region and the initial entry point
The initial entry point of the image must be in a root region.

If the initial entry point is not in a root region, the link fails and the linker gives an error message.

Example
Root region with the same load and execution address.

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; all RO sections (must include section with

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

 ; initial entry point)
 }
 ... ; rest of scatter-loading description
}

Related information
Effect of the ABSOLUTE attribute on a root region on page 120
Effect of the FIXED attribute on a root region on page 121
Methods of placing functions and data at specific addresses on page 123
Placing functions and data in a named section on page 129
Placing __at sections at a specific address on page 131
Restrictions on placing __at sections on page 132
Automatically placing __at sections on page 132
Manually placing __at sections on page 134
Placing a key in flash memory with an __at section on page 135

8.2.1 Effect of the ABSOLUTE attribute on a root region

You can use the ABSOLUTE attribute to specify a root region. This attribute is the default for an
execution region.

To specify a root region, use ABSOLUTE as the attribute for the execution region. You can either
specify the attribute explicitly or permit it to default, and use the same address for the first
execution region and the enclosing load region.

To make the execution region address the same as the load region address, either:

• Specify the same numeric value for both the base address for the execution region and the
base address for the load region.

• Specify a +0 offset for the first execution region in the load region.

If you specify an offset of zero (+0) for all subsequent execution regions in the load region, then
all execution regions not following an execution region containing ZI are also root regions.

Example
The following example shows an implicitly defined root region:

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ABSOLUTE ; load address = execution address
 {
 * (+RO) ; all RO sections (must include the section
 ; containing the initial entry point)
 }
 ... ; rest of scatter-loading description
}

Related information
Root region and the initial entry point on page 119

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Effect of the FIXED attribute on a root region on page 121
Load region descriptions on page 180
Execution region descriptions on page 187
Considerations when using a relative address +offset for a load region on page 186
Considerations when using a relative address +offset for execution regions on page 195
Load region attributes on page 182
Execution region attributes on page 189
Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194
ENTRY directive

8.2.2 Effect of the FIXED attribute on a root region

You can use the FIXED attribute for an execution region in a scatter file to create root regions that
load and execute at fixed addresses.

Use the FIXED execution region attribute to ensure that the load address and execution address of
a specific region are the same.

You can use the FIXED attribute to place any execution region at a specific address in ROM.

For example, the following memory map shows fixed execution regions:

Figure 8-3: Memory map for fixed execution regions

*(RO)

Execution viewLoad view

init.o

0x4000

0x80000

init.o

*(RO)

Empty

Single
load
region

Filled with zeroes or the value
defined using
the --pad option

(FIXED)

(movable)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/ENTRY

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

The following example shows the corresponding scatter-loading description:

LR_1 0x040000 ; load region starts at 0x40000
{ ; start of execution region descriptions
 ER_RO 0x040000 ; load address = execution address
 {
 * (+RO) ; RO sections other than those in init.o
 }
 ER_INIT 0x080000 FIXED ; load address and execution address of this
 ; execution region are fixed at 0x80000
 {
 init.o(+RO) ; all RO sections from init.o
 }
 ... ; rest of scatter-loading description
}

You can use this to place a function or a block of data, such as a constant table or a checksum, at a
fixed address in ROM so that it can be accessed easily through pointers.

If you specify, for example, that some initialization code is to be placed at start of ROM and a
checksum at the end of ROM, some of the memory contents might be unused. Use the * or .ANY
module selector to flood fill the region between the end of the initialization block and the start of
the data block.

To make your code easier to maintain and debug, it is suggested that you use the minimum amount
of placement specifications in scatter files and leave the detailed placement of functions and data
to the linker.

There are some situations where using FIXED and a single load region are not
appropriate. Other techniques for specifying fixed locations are:

• If your loader can handle multiple load regions, place the RO code or data in its
own load region.

• If you do not require the function or data to be at a fixed location in ROM, use
ABSOLUTE instead of FIXED. The loader then copies the data from the load region
to the specified address in RAM. ABSOLUTE is the default attribute.

• To place a data structure at the location of memory-mapped I/O, use two load
regions and specify UNINIT. UNINIT ensures that the memory locations are not
initialized to zero.

Example showing the misuse of the FIXED attribute
The following example shows common cases where the FIXED execution region attribute is
misused:

LR1 0x8000
{
 ER_LOW +0 0x1000
 {
 *(+RO)
 }
; At this point the next available Load and Execution address is 0x8000 + size of
; contents of ER_LOW. The maximum size is limited to 0x1000 so the next available
 Load

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

; and Execution address is at most 0x9000
 ER_HIGH 0xF0000000 FIXED
 {
 *(+RW,+ZI)
 }
; The required execution address and load address is 0xF0000000. The linker inserts
; 0xF0000000 - (0x8000 + size of(ER_LOW)) bytes of padding so that load address
 matches
; execution address
}
; The other common misuse of FIXED is to give a lower execution address than the
 next
; available load address.
LR_HIGH 0x100000000
{
 ER_LOW 0x1000 FIXED
 {
 *(+RO)
 }
; The next available load address in LR_HIGH is 0x10000000. The required Execution
; address is 0x1000. Because the next available load address in LR_HIGH must
 increase
; monotonically the linker cannot give ER_LOW a Load Address lower than 0x10000000
}

Related information
Execution region descriptions on page 187
Load region attributes on page 182
Execution region attributes on page 189
Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194

8.2.3 Methods of placing functions and data at specific addresses

There are various methods available to place functions and data at specific addresses.

8.2.3.1 Placing functions and data at specific addresses

To place a single function or data item at a fixed address, you must enable the linker to process the
function or data separately from the rest of the input files.

Where they are required, the compiler normally produces RO, RW, and ZI sections from a single
source file. These sections contain all the code and data from the source file.

For images targeted at Arm®v7-M or Armv8-M, the compiler might generate
execute-only (XO) sections.

Typically, you create a scatter file that defines an execution region at the required address with a
section description that selects only one section.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

To place a function or variable at a specific address, it must be placed in its own section. There are
several ways to do this:

• Place the function or data item in its own source file.

• Use __attribute__((section("name"))) to place functions and variables in a specially named
section, .ARM.__at_address, where address is the address to place the function or variable. For
example, __attribute__((section(".ARM.__at_0x4000"))).

To place ZI data at a specific address, use the variable attribute
__attribute__((section("name"))) with the special name .bss.ARM.__at_address.

These specially named sections are called __at sections.

• Use the .section directive from assembly language. In assembly code, the smallest locatable
unit is a .section.

• Use the -ffunction-sections compiler option to generate one ELF section for each function in
the source file.

This option results in a small increase in code size for some functions because it reduces the
potential for sharing addresses, data, and string literals between functions. However, this can
help to reduce the final image size overall by enabling the linker to remove unused functions
when you specify armlink --remove.

Related information
Placing __at sections at a specific address on page 131
Example of how to explicitly place a named section with scatter-loading on page 136
Restrictions on placing __at sections on page 132
--autoat, --no_autoat on page 235
--map, --no_map on page 292
--scatter=filename on page 313
-o filename, --output=filename on page 296
AREA directive

8.2.3.2 Placing a variable at a specific address without scatter-loading

This example shows how to modify your source code to place code and data at specific addresses,
and does not require a scatter file.

To place code and data at specific addresses without a scatter file:

1. Create the source file main.c containing the following code:

#include <stdio.h>

extern int sqr(int n1);
const int gValue __attribute__((section(".ARM.__at_0x5000"))) = 3; // Place at
 0x5000
int main(void)
{
 int squared;
 squared=sqr(gValue);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/AREA

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

 printf("Value squared is: %d\n", squared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --map function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.

In this example, __attribute__((section(".ARM.__at_0x5000"))) specifies that the global variable
gValue is to be placed at the absolute address 0x5000. gValue is placed in the execution region ER$
$.ARM.__at_0x5000 and load region LR$$.ARM.__at_0x5000.

The memory map shows:

...
 Load Region LR$$.ARM.__AT_0x5000 (Base: 0x00005000, Size: 0x00000004, Max:
 0x00000004, ABSOLUTE)

 Execution Region ER$$.ARM.__AT_0x5000 (Base: 0x00005000, Size: 0x00000004, Max:
 0x00000004, ABSOLUTE, UNINIT)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00005000 0x00000004 Data RO 18 .ARM.__AT_0x5000 main.o

Related information
--autoat, --no_autoat on page 235
--map, --no_map on page 292
-o filename, --output=filename on page 296

8.2.3.3 Placing a variable in a named section with scatter-loading

This example shows how to modify your source code to place code and data in a specific section
using a scatter file.

To modify your source code to place code and data in a specific section using a scatter file:

1. Create the source file main.c containing the following code:

#include <stdio.h>
extern int sqr(int n1);
int gSquared __attribute__((section("foo"))); // Place in section foo
int main(void)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

{
 gSquared=sqr(3);
 printf("Value squared is: %d\n", gSquared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

3. Create the scatter file scatter.scat containing the following load region:

LR1 0x0000 0x20000
{
 ER1 0x0 0x2000
 {
 *(+RO) ; rest of code and read-only data
 }
 ER2 0x8000 0x2000
 {
 main.o
 }
 ER3 0x10000 0x2000
 {
 function.o
 *(foo) ; Place gSquared in ER3
 }
 ; RW and ZI data to be placed at 0x200000
 RAM 0x200000 (0x1FF00-0x2000)
 {
 *(+RW, +ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

4. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --map --scatter=scatter.scat function.o main.o -o squared.axf

The --map option displays the memory map of the image. Also, --autoat is the default.

In this example, __attribute__((section("foo"))) specifies that the global variable gSquared is to
be placed in a section called foo. The scatter file specifies that the section foo is to be placed in the
ER3 execution region.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

The memory map shows:

 Load Region LR1 (Base: 0x00000000, Size: 0x00001570, Max: 0x00020000, ABSOLUTE)
...
 Execution Region ER3 (Base: 0x00010000, Size: 0x00000010, Max: 0x00002000,
 ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00010000 0x0000000c Code RO 3 .text
 function.o
 0x0001000c 0x00000004 Data RW 15 foo main.o
...

If you omit *(foo) from the scatter file, the section is placed in the region of the
same type. That is RAM in this example.

Related information
--autoat, --no_autoat on page 235
--map, --no_map on page 292
-o filename, --output=filename on page 296
--scatter=filename on page 313

8.2.3.4 Placing a variable at a specific address with scatter-loading

This example shows how to modify your source code to place code and data at a specific address
using a scatter file.

To modify your source code to place code and data at a specific address using a scatter file:

1. Create the source file main.c containing the following code:

#include <stdio.h>
extern int sqr(int n1);
// Place at address 0x10000
const int gValue __attribute__((section(".ARM.__at_0x10000"))) = 3;
int main(void)
{
 int squared;
 squared=sqr(gValue);
 printf("Value squared is: %d\n", squared);
 return 0;
}

2. Create the source file function.c containing the following code:

int sqr(int n1)
{
 return n1*n1;
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

3. Create the scatter file scatter.scat containing the following load region:

LR1 0x0
{
 ER1 0x0
 {
 *(+RO) ; rest of code and read-only data
 }
 ER2 +0
 {
 function.o
 *(.ARM.__at_0x10000) ; Place gValue at 0x10000
 }
 ; RW and ZI data to be placed at 0x200000
 RAM 0x200000 (0x1FF00-0x2000)
 {
 *(+RW, +ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

4. Compile and link the sources:

armclang --target=arm-arm-none-eabi -march=armv8-a -c function.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --no_autoat --scatter=scatter.scat --map function.o main.o -o squared.axf

The --map option displays the memory map of the image.

The memory map shows that the variable is placed in the ER2 execution region at address 0x10000:

...

 Execution Region ER2 (Base: 0x00002a54, Size: 0x0000d5b0, Max: 0xffffffff,
 ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00002a54 0x0000001c Code RO 4 .text.sqr
 function.o
 0x00002a70 0x0000d590 PAD
 0x00010000 0x00000004 Data RO 9 .ARM.__at_0x10000 main.o

In this example, the size of ER1 is unknown. Therefore, gValue might be placed in ER1 or ER2.
To make sure that gValue is placed in ER2, you must include the corresponding selector in ER2
and link with the --no_autoat command-line option. If you omit --no_autoat, gValue is to
placed in a separate load region LR$$.ARM.__at_0x10000 that contains the execution region ER$
$.ARM.__at_0x10000.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Related information
--autoat, --no_autoat on page 235
--map, --no_map on page 292
-o filename, --output=filename on page 296
--scatter=filename on page 313

8.2.4 Placing functions and data in a named section

You can place functions and data by separating them into their own objects without having to use
toolchain-specific pragmas or attributes. Alternatively, you can specify a name of a section using
the function or variable attribute, __attribute__((section("name"))).

About this task
You can use __attribute__((section("name"))) to place a function or variable in a separate ELF
section, where name is a name of your choice. You can then use a scatter file to place the named
sections at specific locations.

You can place ZI data in a named section with __attribute__((section(".bss.name"))).

Use the following procedure to modify your source code to place functions and data in a specific
section using a scatter file.

Procedure
1. Create a C source file file.c to specify a section name foo for a variable and a section name

.bss.mybss for a zero-initialized variable z, for example:
#include "stdio.h"

int variable __attribute__((section("foo"))) = 10;
__attribute__((section(".bss.mybss"))) int z;

int main(void)
{
 int x = 4;
 int y = 7;
 z = x + y;
 printf("%d\n",variable);
 printf("%d\n",z);
 return 0;
}

2. Create a scatter file to place the named section, scatter.scat, for example:
LR_1 0x0
{
 ER_RO 0x0 0x4000
 {
 *(+RO)
 }
 ER_RW 0x4000 0x2000
 {
 *(+RW)
 }
 ER_ZI 0x6000 0x2000
 {
 *(+ZI)
 }

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

 ER_MYBSS 0x8000 0x2000
 {
 *(.bss.mybss)
 }

 ARM_LIB_STACK 0x40000 EMPTY -0x20000 ; Stack region growing down
 { }
 ARM_LIB_HEAP 0x28000000 EMPTY 0x80000 ; Heap region growing up
 { }
}

FLASH 0x24000000 0x4000000
{
 ; rest of code

 ADDER 0x08000000
 {
 file.o (foo) ; select section foo from file.o
 }

}

The ARM_LIB_STACK and ARM_LIB_HEAP regions are required because the program is being linked
with the semihosting libraries.

If you omit file.o (foo) from the scatter file, the linker places the section in
the region of the same type. That is, ER_RW in this example.

3. Compile and link the C source:
armclang --target=arm-arm-eabi-none -march=armv8-a file.c -g -c -O1 -o file.o
armlink --cpu=8-A.32 --scatter=scatter.scat --map file.o --output=file.axf

The --map option displays the memory map of the image.

In this example:

• __attribute__((section("foo"))) specifies that the linker is to place the global variable
variable in a section called foo.

• __attribute__((section(".bss.mybss"))) specifies that the linker is to place the global
variable z in a section called .bss.mybss.

• The scatter file specifies that the linker is to place the section foo in the ADDER execution
region of the FLASH execution region.

The following example shows the output from --map:

...

 Execution Region ER_MYBSS (Base: 0x00008000, Size: 0x00000004, Max:
 0x00002000, ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name
 Object

 0x00008000 0x00000004 Zero RW 7 .bss.mybss
 file.o

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

...
 Load Region FLASH (Base: 0x24000000, Size: 0x00000004, Max: 0x04000000,
 ABSOLUTE)

 Execution Region ADDER (Base: 0x08000000, Size: 0x00000004, Max: 0xffffffff,
 ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name
 Object

 0x08000000 0x00000004 Data RW 5 foo
 file.o
...

• If scatter-loading is not used, the linker places the section foo in the default
ER_RW execution region of the LR_1 load region. It also places the section
.bss.mybss in the default execution region ER_ZI.

• If you have a scatter file that does not include the foo selector, then the
linker places the section in the defined RW execution region.

You can also place a function at a specific address using .ARM.__at_address as the section
name. For example, to place the function sqr at 0x20000, specify:

int sqr(int n1) __attribute__((section(".ARM.__at_0x20000")));

int sqr(int n1)
{
 return n1*n1;
}

For more information, see Placing __at sections at a specific address.

Related information
Placing __at sections at a specific address on page 131
Restrictions on placing __at sections on page 132
--autoat, --no_autoat on page 235
--scatter=filename on page 313

8.2.5 Placing __at sections at a specific address

You can give a section a special name that encodes the address where it must be placed.

To place a section at a specific address, use the function or variable attribute
__attribute__((section("name"))) with the special name .ARM.__at_address.

To place ZI data at a specific address, use the variable attribute
__attribute__((section("name"))) with the special name .bss.ARM.__at_address.

address is the required address of the section. The compiler normalizes this address to eight
hexadecimal digits. You can specify the address in hexadecimal or decimal. Sections in the form of
.ARM.__at_address are referred to by the abbreviation __at.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

The following example shows how to assign a variable to a specific address in C or C++ code:

// place variable1 in a section called .ARM.__at_0x8000
int variable1 __attribute__((section(".ARM.__at_0x8000"))) = 10;

The name of the section is only significant if you are trying to match the section
by name in a scatter file. Without overlays, the linker automatically assigns __at
sections when you use the --autoat command-line option. This option is the
default. If you are using overlays, then you cannot use --autoat to place __at
sections.

Related information
Placing functions and data at specific addresses on page 123
Restrictions on placing __at sections on page 132

8.2.6 Restrictions on placing __at sections

There are restrictions when placing __at sections at specific addresses.

The following restrictions apply:

• __at section address ranges must not overlap, unless the overlapping sections are placed in
different overlay regions.

• __at sections are not permitted in position independent execution regions.

• You must not reference the linker-defined symbols $$Base, $$Limit and $$Length of an __at
section.

• __at sections must not be used in Base Platform Application Binary Interface (BPABI) executables
and BPABI dynamically linked libraries (DLLs).

• __at sections must have an address that is a multiple of their alignment.

• __at sections ignore any +FIRST or +LAST ordering constraints.

Related information
Placing __at sections at a specific address on page 131
Base Platform ABI for the Arm Architecture

8.2.7 Automatically placing __at sections

The linker automatically places __at sections, but you can override this feature.

The automatic placement of __at sections is enabled by default. Use the linker command-line
option, --no_autoat to disable this feature.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 351

https://developer.arm.com/documentation/ihi0037/latest

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

You cannot use __at section placement with position independent execution
regions.

When linking with the --autoat option, the linker does not place __at sections with scatter-loading
selectors. Instead, the linker places the __at section in a compatible region. If no compatible region
is found, the linker creates a load and execution region for the __at section.

All linker execution regions created by --autoat have the UNINIT scatter-loading attribute. If you
require a ZI __at section to be zero-initialized, then it must be placed within a compatible region.
A linker execution region created by --autoat must have a base address that is at least 4 byte-
aligned. If any region is incorrectly aligned, the linker produces an error message.

A compatible region is one where:

• The __at address lies within the execution region base and limit, where limit is the base address
+ maximum size of execution region. If no maximum size is set, the linker sets the limit for
placing __at sections as the current size of the execution region without __at sections plus a
constant. The default value of this constant is 10240 bytes, but you can change the value using
the --max_er_extension command-line option.

• The execution region meets at least one of the following conditions:

◦ It has a selector that matches the __at section by the standard scatter-loading rules.

◦ It has at least one section of the same type (RO or RW) as the __at section.

◦ It does not have the EMPTY attribute.

The linker considers an __at section with type RW compatible with RO.

The following example shows the sections .ARM.__at_0x0000 type RO, .ARM.__at_0x4000 type RW,
and .ARM.__at_0x8000 type RW:

// place the RO variable in a section called .ARM.__at_0x0000
const int foo __attribute__((section(".ARM.__at_0x0000"))) = 10;

// place the RW variable in a section called .ARM.__at_0x4000
int bar __attribute__((section(".ARM.__at_0x4000"))) = 100;

// place "variable" in a section called .ARM.__at_0x00008000
int variable __attribute__((section(".ARM.__at_0x00008000")));

The following scatter file shows how automatically to place these __at sections:

LR1 0x0
{
 ER_RO 0x0 0x4000
 {

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

 *(+RO) ; .ARM.__at_0x0000 lies within the bounds of ER_RO
 }
 ER_RW 0x4000 0x2000
 {
 *(+RW) ; .ARM.__at_0x4000 lies within the bounds of ER_RW
 }
 ER_ZI 0x6000 0x2000
 {
 *(+ZI)
 }
}
; The linker creates a load and execution region for the __at section
; .ARM.__at_0x8000 because it lies outside all candidate regions.

Related information
Placing __at sections at a specific address on page 131
Manually placing __at sections on page 134
Placing a key in flash memory with an __at section on page 135
Execution region descriptions on page 187
Placing functions and data in a named section on page 129
Restrictions on placing __at sections on page 132
--autoat, --no_autoat on page 235
--ro_base=address on page 309
--rw_base=address on page 311
--xo_base=address on page 337
--zi_base=address on page 339
Execution region attributes on page 189
--max_er_extension=size on page 293
__attribute__((section("name"))) variable attribute

8.2.8 Manually placing __at sections

You can have direct control over the placement of __at sections, if required.

You can use the standard section-placement rules to place __at sections when using the --
no_autoat command-line option.

You cannot use __at section placement with position-independent execution
regions.

The following example shows the placement of read-only sections .ARM.__at_0x2000 and the
read-write section .ARM.__at_0x4000. Load and execution regions are not created automatically in
manual mode. An error is produced if an __at section cannot be placed in an execution region.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 351

https://developer.arm.com/documentation/dui0774/l/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----section--name-----variable-attribute

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

The following example shows the placement of the variables in C or C++ code:

// place the RO variable in a section called .ARM.__at_0x2000
const int foo __attribute__((section(".ARM.__at_0x2000"))) = 100;
// place the RW variable in a section called .ARM.__at_0x4000
int bar __attribute__((section(".ARM.__at_0x4000")));

The following scatter file shows how to place __at sections manually:

LR1 0x0
{
 ER_RO 0x0 0x2000
 {
 *(+RO) ; .ARM.__at_0x0000 is selected by +RO
 }
 ER_RO2 0x2000
 {
 *(.ARM.__at_0x02000) ; .ARM.__at_0x2000 is selected by the section named
 ; .ARM.__at_0x2000
 }
 ER2 0x4000
 {
 *(+RW, +ZI) ; .ARM.__at_0x4000 is selected by +RW
 }
}

Related information
Placing __at sections at a specific address on page 131
Automatically placing __at sections on page 132
Placing a key in flash memory with an __at section on page 135
Execution region descriptions on page 187
Placing functions and data in a named section on page 129
Restrictions on placing __at sections on page 132
--autoat, --no_autoat on page 235
Execution region attributes on page 189
__attribute__((section("name"))) variable attribute

8.2.9 Placing a key in flash memory with an __at section

Some flash devices require a key to be written to an address to activate certain features. An __at
section provides a simple method of writing a value to a specific address.

Placing the flash key variable in C or C++ code
Assume that a device has flash memory from 0x8000 to 0x10000 and a key is required in
address 0x8000. To do this with an __at section, you must declare a variable so that the
compiler can generate a section called .ARM.__at_0x8000.

// place flash_key in a section called .ARM.__at_0x8000
long flash_key __attribute__((section(".ARM.__at_0x8000")));

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 351

https://developer.arm.com/documentation/dui0774/l/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----section--name-----variable-attribute

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Manually placing a flash execution region
The following example shows how to manually place a flash execution region with a scatter
file:

ER_FLASH 0x8000 0x2000
{
 *(+RW)
 *(.ARM.__at_0x8000) ; key
}

Use the linker command-line option --no_autoat to enable manual placement.

Automatically placing a flash execution region
The following example shows how to automatically place a flash execution region with a
scatter file. Use the linker command-line option --autoat to enable automatic placement.

LR1 0x0
{
 ER_FLASH 0x8000 0x2000
 {
 *(+RO) ; other code and read-only data, the
 ; __at section is automatically selected
 }
 ER2 0x4000
 {
 *(+RW +ZI) ; Any other RW and ZI variables
 }
}

Related information
Placing __at sections at a specific address on page 131
Automatically placing __at sections on page 132
Manually placing __at sections on page 134
Execution region descriptions on page 187
--autoat, --no_autoat on page 235
Section placement with the FIRST and LAST attributes on page 58

8.3 Example of how to explicitly place a named section
with scatter-loading

This example shows how to place a named section explicitly using scatter-loading.

Consider the following source files:

init.c

int foo() __attribute__((section("INIT")));
int foo() {
 return 1;
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

int bar() {
 return 2;
}

data.c

const long padding=123;
int z=5;

The following scatter file shows how to place a named section explicitly:

LR1 0x0 0x10000
{
 ; Root Region, containing init code
 ER1 0x0 0x2000
 {
 init.o (INIT, +FIRST) ; place init code at exactly 0x0
 *(+RO) ; rest of code and read-only data
 }
 ; RW & ZI data to be placed at 0x400000
 RAM_RW 0x400000 (0x1FF00-0x2000)
 {
 *(+RW)
 }
 RAM_ZI +0
 {
 *(+ZI)
 }
 ; execution region at 0x1FF00
 ; maximum space available for table is 0xFF
 DATABLOCK 0x1FF00 0xFF
 {
 data.o(+RO-DATA) ; place RO data between 0x1FF00 and 0x1FFFE
 }
}

In this example, the scatter-loading description places:

• The initialization code is placed in the INIT section in the init.o file. This example shows that
the code from the INIT section is placed first, at address 0x0, followed by the remainder of the
RO code and all of the RO data except for the RO data in the object data.o.

• All global RW variables in RAM at 0x400000.

• A table of RO-DATA from data.o at address 0x1FF00.

The resulting image memory map is as follows:

Memory Map of the image

 Image entry point : Not specified.

 Load Region LR1 (Base: 0x00000000, Size: 0x00000018, Max: 0x00010000, ABSOLUTE)

 Execution Region ER1 (Base: 0x00000000, Size: 0x00000010, Max: 0x00002000,
 ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00000000 0x00000008 Code RO 4 INIT init.o
 0x00000008 0x00000008 Code RO 1 .text init.o
 0x00000010 0x00000000 Code RO 16 .text data.o

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

 Execution Region DATABLOCK (Base: 0x0001ff00, Size: 0x00000004, Max: 0x000000ff,
 ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x0001ff00 0x00000004 Data RO 19 .rodata data.o

 Execution Region RAM_RW (Base: 0x00400000, Size: 0x00000004, Max: 0x0001df00,
 ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00400000 0x00000000 Data RW 2 .data init.o
 0x00400000 0x00000004 Data RW 17 .data data.o

 Execution Region RAM_ZI (Base: 0x00400004, Size: 0x00000000, Max: 0xffffffff,
 ABSOLUTE)

 Base Addr Size Type Attr Idx E Section Name Object

 0x00400004 0x00000000 Zero RW 3 .bss init.o
 0x00400004 0x00000000 Zero RW 18 .bss data.o

Related information
Effect of the FIXED attribute on a root region on page 121
Load region descriptions on page 180
Execution region descriptions on page 187
Load region attributes on page 182
Execution region attributes on page 189
Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194
ENTRY

8.4 Placement of unassigned sections
The linker attempts to place input sections into specific execution regions. For any input sections
that cannot be resolved, and where the placement of those sections is not important, you can
specify where the linker is to place them.

To place sections that are not automatically assigned to specific execution regions, use the .ANY
module selector in a scatter file.

Usually, a single .ANY selector is equivalent to using the * module selector. However, unlike *, you
can specify .ANY in multiple execution regions.

The linker has default rules for placing unassigned sections when you specify multiple .ANY
selectors. However, you can override the default rules using the following command-line options:

• --any_contingency to permit extra space in any execution regions containing .ANY sections for
linker-generated content such as veneers and alignment padding.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/ENTRY

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

• --any_placement to provide more control over the placement of unassigned sections.

• --any_sort_order to control the sort order of unassigned input sections.

In a scatter file, you can also:

• Assign a priority to a .ANY selector. This gives you more control over how the unassigned
sections are divided between multiple execution regions. You can assign the same priority to
more than one execution region.

• Specify the maximum size for an execution region that the linker can fill with unassigned
sections.

8.4.1 Default rules for placing unassigned sections

The linker has default rules for placing sections when using multiple .ANY selectors.

When more than one .ANY selector is present in a scatter file, the linker sorts sections in
descending size order. It then takes the unassigned section with the largest size and assigns the
section to the most specific .ANY execution region that has enough free space. For example,
.ANY(.text) is judged to be more specific than .ANY(+RO).

If several execution regions are equally specific, then the section is assigned to the execution region
with the most available remaining space.

For example:

• You might have two equally specific execution regions where one has a size limit of 0x2000 and
the other has no limit. In this case, all the sections are assigned to the second unbounded .ANY
region.

• You might have two equally specific execution regions where one has a size limit of 0x2000 and
the other has a size limit of 0x3000. In this case, the first sections to be placed are assigned
to the second .ANY region of size limit 0x3000. This assignment continues until the remaining
size of the second .ANY region is reduced to 0x2000. From this point, sections are assigned
alternately between both .ANY execution regions.

You can specify a maximum amount of space to use for unassigned sections with the execution
region attribute ANY_SIZE.

Related information
How the linker resolves multiple matches when processing scatter files on page 173
--any_placement=algorithm on page 232
--any_contingency on page 232

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.4.2 Command-line options for controlling the placement of unassigned
sections

You can modify how the linker places unassigned input sections when using multiple .ANY selectors
by using a different placement algorithm or a different sort order.

The following command-line options are available:

• --any_placement=algorithm, where algorithm is one of first_fit, worst_fit, best_fit, or
next_fit.

• --any_sort_order=order, where order is one of cmdline or descending_size.

Use first_fit when you want to fill regions in order.

Use best_fit when you want to fill regions to their maximum.

Use worst_fit when you want to fill regions evenly. With equal sized regions and sections
worst_fit fills regions cyclically.

Use next_fit when you need a more deterministic fill pattern.

If the linker attempts to fill a region to its limit, as it does with first_fit and best_fit, it might
overfill the region. This is because linker-generated content such as padding and veneers are
not known until sections have been assigned to .ANY selectors. If this occurs you might see the
following error:

Error: L6220E: Execution region regionname size (size bytes) exceeds limit (limit

bytes).

The --any_contingency option prevents the linker from filling the region up to its maximum.
It reserves a portion of the region's size for linker-generated content and fills this contingency
area only if no other regions have space. It is enabled by default for the first_fit and best_fit
algorithms, because they are most likely to exhibit this behavior.

Related information
Examples of using placement algorithms for .ANY sections on page 143
Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page
145
Examples of using sorting algorithms for .ANY sections on page 147
Behavior when .ANY sections overflow because of linker-generated content on page 148
--any_sort_order=order on page 234
--map, --no_map on page 292
armlink Command-line Options on page 232
--tiebreaker=option on page 328
--any_placement=algorithm on page 232
--any_contingency on page 232

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.4.3 Prioritizing the placement of unassigned sections

You can give a priority ordering when placing unassigned sections with multiple .ANY module
selectors.

To prioritize the order of multiple .ANY sections use the .ANYnum selector, where num is a positive
integer starting at zero.

The highest priority is given to the selector with the highest integer.

The following example shows how to use .ANYnum:

lr1 0x8000 1024
{
 er1 +0 512
 {
 .ANY1(+RO) ; evenly distributed with er3
 }
 er2 +0 256
 {
 .ANY2(+RO) ; Highest priority, so filled first
 }
 er3 +0 256
 {
 .ANY1(+RO) ; evenly distributed with er1
 }
}

Related information
Examples of using placement algorithms for .ANY sections on page 143
Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page
145
Examples of using sorting algorithms for .ANY sections on page 147
Behavior when .ANY sections overflow because of linker-generated content on page 148
--any_sort_order=order on page 234
--map, --no_map on page 292
armlink Command-line Options on page 232
--tiebreaker=option on page 328
How the linker resolves multiple matches when processing scatter files on page 173

8.4.4 Specify the maximum region size permitted for placing unassigned
sections

You can specify the maximum size in a region that armlink can fill with unassigned sections.

Use the execution region attribute ANY_SIZE max_size to specify the maximum size in a region that
armlink can fill with unassigned sections.

Be aware of the following restrictions when using this keyword:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

• max_size must be less than or equal to the region size.

• If you use ANY_SIZE on a region without a .ANY selector, it is ignored by armlink.

When ANY_SIZE is present, armlink does not attempt to calculate contingency and strictly follows
the .ANY priorities.

When ANY_SIZE is not present for an execution region containing a .ANY selector, and you specify
the --any_contingency command-line option, then armlink attempts to adjust the contingency for
that execution region. The aims are to:

• Never overflow a .ANY region.

• Make sure there is a contingency reserved space left in the given execution region. This space is
reserved for veneers and section padding.

If you specify --any_contingency on the command line, it is ignored for regions that have ANY_SIZE
specified. It is used as normal for regions that do not have ANY_SIZE specified.

Example
The following example shows how to use ANY_SIZE:

LOAD_REGION 0x0 0x3000
{
 ER_1 0x0 ANY_SIZE 0xF00 0x1000
 {
 .ANY
 }
 ER_2 0x0 ANY_SIZE 0xFB0 0x1000
 {
 .ANY
 }
 ER_3 0x0 ANY_SIZE 0x1000 0x1000
 {
 .ANY
 }
}

In this example:

• ER_1 has 0x100 reserved for linker-generated content.

• ER_2 has 0x50 reserved for linker-generated content. That is about the same as the automatic
contingency of --any_contingency.

• ER_3 has no reserved space. Therefore, 100% of the region is filled, with no contingency for
veneers. Omitting the ANY_SIZE parameter causes 98% of the region to be filled, with a two
percent contingency for veneers.

Related information
Examples of using placement algorithms for .ANY sections on page 143
Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page
145
Examples of using sorting algorithms for .ANY sections on page 147
Behavior when .ANY sections overflow because of linker-generated content on page 148

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

--any_sort_order=order on page 234
--map, --no_map on page 292
--any_contingency on page 232

8.4.5 Examples of using placement algorithms for .ANY sections

These examples show the operation of the placement algorithms for RO-CODE sections in
sections.o.

The input section properties and ordering are shown in the following table:

Table 8-1: Input section properties for placement of .ANY sections

Name Size

sec1 0x4

sec2 0x4

sec3 0x4

sec4 0x4

sec5 0x4

sec6 0x4

The scatter file used for the examples is:

LR 0x100
{
 ER_1 0x100 0x10
 {
 .ANY
 }
 ER_2 0x200 0x10
 {
 .ANY
 }
}

These examples have --any_contingency disabled.

Example for first_fit, next_fit, and best_fit
This example shows the image memory map where several sections of equal size are assigned to
two regions with one selector. The selectors are equally specific, equivalent to .ANY(+R0) and have
no priority.

Execution Region ER_1 (Base: 0x00000100, Size: 0x00000010, Max: 0x00000010,
 ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

0x00000100 0x00000004 Code RO 1 sec1 sections.o
0x00000104 0x00000004 Code RO 2 sec2 sections.o
0x00000108 0x00000004 Code RO 3 sec3 sections.o
0x0000010c 0x00000004 Code RO 4 sec4 sections.o

Execution Region ER_2 (Base: 0x00000200, Size: 0x00000008, Max: 0x00000010,
 ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00000200 0x00000004 Code RO 5 sec5 sections.o
0x00000204 0x00000004 Code RO 6 sec6 sections.o

In this example:

• For first_fit the linker first assigns all the sections it can to ER_1, then moves on to ER_2
because that is the next available region.

• For next_fit the linker does the same as first_fit. However, when ER_1 is full it is marked
as FULL and is not considered again. In this example, ER_1 is completely full. ER_2 is then
considered.

• For best_fit the linker assigns sec1 to ER_1. It then has two regions of equal priority and
specificity, but ER_1 has less space remaining. Therefore, the linker assigns sec2 to ER_1, and
continues assigning sections until ER_1 is full.

Example for worst_fit
This example shows the image memory map when using the worst_fit algorithm.

Execution Region ER_1 (Base: 0x00000100, Size: 0x0000000c, Max: 0x00000010,
 ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00000100 0x00000004 Code RO 1 sec1 sections.o
0x00000104 0x00000004 Code RO 3 sec3 sections.o
0x00000108 0x00000004 Code RO 5 sec5 sections.o

Execution Region ER_2 (Base: 0x00000200, Size: 0x0000000c, Max: 0x00000010,
 ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00000200 0x00000004 Code RO 2 sec2 sections.o
0x00000204 0x00000004 Code RO 4 sec4 sections.o
0x00000208 0x00000004 Code RO 6 sec6 sections.o

The linker first assigns sec1 to ER_1. It then has two equally specific and priority regions. It assigns
sec2 to the one with the most free space, ER_2 in this example. The regions now have the same
amount of space remaining, so the linker assigns sec3 to the first one that appears in the scatter
file, that is ER_1.

The behavior of worst_fit is the default behavior in this version of the linker, and it
is the only algorithm available in earlier linker versions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Related information
Prioritizing the placement of unassigned sections on page 141
Command-line options for controlling the placement of unassigned sections on page 139
Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page
145
--scatter=filename on page 313
Specify the maximum region size permitted for placing unassigned sections on page 141

8.4.6 Example of next_fit algorithm showing behavior of full regions,
selectors, and priority

This example shows the operation of the next_fit placement algorithm for RO-CODE sections in
sections.o.

The input section properties and ordering are shown in the following table:

Table 8-2: Input section properties for placement of sections with next_fit

Name Size

sec1 0x14

sec2 0x14

sec3 0x10

sec4 0x4

sec5 0x4

sec6 0x4

The scatter file used for the examples is:

LR 0x100
{
 ER_1 0x100 0x20
 {
 .ANY1(+RO-CODE)
 }
 ER_2 0x200 0x20
 {
 .ANY2(+RO)
 }
 ER_3 0x300 0x20
 {
 .ANY3(+RO)
 }
}

This example has --any_contingency disabled.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

The next_fit algorithm is different to the others in that it never revisits a region that is considered
to be full. This example also shows the interaction between priority and specificity of selectors.
This is the same for all the algorithms.

Execution Region ER_1 (Base: 0x00000100, Size: 0x00000014, Max: 0x00000020,
 ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00000100 0x00000014 Code RO 1 sec1 sections.o

Execution Region ER_2 (Base: 0x00000200, Size: 0x0000001c, Max: 0x00000020,
 ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00000200 0x00000010 Code RO 3 sec3 sections.o
0x00000210 0x00000004 Code RO 4 sec4 sections.o
0x00000214 0x00000004 Code RO 5 sec5 sections.o
0x00000218 0x00000004 Code RO 6 sec6 sections.o

Execution Region ER_3 (Base: 0x00000300, Size: 0x00000014, Max: 0x00000020,
 ABSOLUTE)

Base Addr Size Type Attr Idx E Section Name Object

0x00000300 0x00000014 Code RO 2 sec2 sections.o

In this example:

• The linker places sec1 in ER_1 because ER_1 has the most specific selector. ER_1 now has 0x6
bytes remaining.

• The linker then tries to place sec2 in ER_1, because it has the most specific selector, but there
is not enough space. Therefore, ER_1 is marked as full and is not considered in subsequent
placement steps. The linker chooses ER_3 for sec2 because it has higher priority than ER_2.

• The linker then tries to place sec3 in ER_3. It does not fit, so ER_3 is marked as full and the linker
places sec3 in ER_2.

• The linker now processes sec4. This is 0x4 bytes so it can fit in either ER_1 or ER_3. Because
both of these sections have previously been marked as full, they are not considered. The linker
places all remaining sections in ER_2.

• If another section sec7 of size 0x8 exists, and is processed after sec6 the example fails to
link. The algorithm does not attempt to place the section in ER_1 or ER_3 because they have
previously been marked as full.

Related information
Specify the maximum region size permitted for placing unassigned sections on page 141
Prioritizing the placement of unassigned sections on page 141
Command-line options for controlling the placement of unassigned sections on page 139
Examples of using placement algorithms for .ANY sections on page 143
How the linker resolves multiple matches when processing scatter files on page 173
Behavior when .ANY sections overflow because of linker-generated content on page 148
--scatter=filename on page 313

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.4.7 Examples of using sorting algorithms for .ANY sections

These examples show the operation of the sorting algorithms for RO-CODE sections in
sections_a.o and sections_b.o.

The input section properties and ordering are shown in the following table:

sections_a.o sections_b.o

Name Size Name Size

seca_1 0x4 secb_1 0x4

seca_2 0x4 secb_2 0x4

seca_3 0x10 secb_3 0x10

seca_4 0x14 secb_4 0x14

Descending size example
The following linker command-line options are used for this example:

--any_sort_order=descending_size sections_a.o sections_b.o --scatter scatter.txt

The following table shows the order that the sections are processed by the .ANY assignment
algorithm:

Table 8-4: Sort order for descending_size algorithm

Name Size

seca_4 0x14

secb_4 0x14

seca_3 0x10

secb_3 0x10

seca_1 0x4

seca_2 0x4

secb_1 0x4

secb_2 0x4

With --any_sort_order=descending_size, sections of the same size use the creation index as a
tiebreak.

Command-line example
The following linker command-line options are used for this example:

--any_sort_order=cmdline sections_a.o sections_b.o --scatter scatter.txt

The following table shows the order that the sections are processed by the .ANY assignment
algorithm:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Table 8-5: Sort order for cmdline algorithm

Name Size

seca_1 0x4

seca_2 0x4

seca_3 0x10

seca_4 0x14

secb_1 0x4

secb_2 0x4

secb_3 0x10

secb_4 0x14

That is, the input sections are sorted by command-line index.

Related information
Prioritizing the placement of unassigned sections on page 141
Command-line options for controlling the placement of unassigned sections on page 139
--any_sort_order=order on page 234
--scatter=filename on page 313
Specify the maximum region size permitted for placing unassigned sections on page 141

8.4.8 Behavior when .ANY sections overflow because of linker-generated
content

Because linker-generated content might cause .ANY sections to overflow, a contingency algorithm
is included in the linker.

The linker does not know the address of a section until it is assigned to a region. Therefore, when
filling .ANY regions, the linker cannot calculate the contingency space and cannot determine if
calling functions require veneers. The linker provides a contingency algorithm that gives a worst-
case estimate for padding and an additional two percent for veneers. To enable this algorithm use
the --any_contingency command-line option.

The following diagram represents the notional image layout during .ANY placement:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Figure 8-4: .ANY contingency

.ANY
sections

Prospective padding

Base

limit

98%

2%

Image
content

Free
space

Execution region

The downward arrows for prospective padding show that the prospective padding continues to
grow as more sections are added to the .ANY selector.

Prospective padding is dealt with before the two percent veneer contingency.

When the prospective padding is cleared the priority is set to zero. When the two percent is
cleared the priority is decremented again.

You can also use the ANY_SIZE keyword on an execution region to specify the maximum amount of
space in the region to set aside for .ANY section assignments.

You can use the armlink command-line option --info=any to get extra information on where the
linker has placed sections. This can be useful when trying to debug problems.

Example
1. Create the following foo.c program:

#include "stdio.h"
int array[10] __attribute__ ((section ("ARRAY")));

struct S {
 char A[8];
 char B[4];
};

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 149 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

struct S s;

struct S* get()
{
 return &s;
}

int sqr(int n1);

int gSquared __attribute__((section(".ARM.__at_0x5000"))); // Place at 0x5000

int sqr(int n1)
{
 return n1*n1;
}

int main(void) {
 int i;
 for (i=0; i<10; i++) {
 array[i]=i*i;
 printf("%d\n", array[i]);
 }
 gSquared=sqr(i);
 printf("%d squared is: %d\n", i, gSquared);

 return sizeof(array);
}

2. Create the following scatter.scat file:

LOAD_REGION 0x0 0x3000
{
 ER_1 0x0 0x1000
 {
 .ANY
 }
 ER_2 (ImageLimit(ER_1)) 0x1500
 {
 .ANY
 }
 ER_3 (ImageLimit(ER_2)) 0x500
 {
 .ANY
 }
 ER_4 (ImageLimit(ER_3)) 0x1000
 {
 *(+RW,+ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}

3. Compile and link the program as follows:

armclang -c --target=arm-arm-none-eabi -mcpu=cortex-m4 -o foo.o foo.c
armlink --cpu=cortex-m4 --any_contingency --scatter=scatter.scat --info=any -o
 foo.axf foo.o

The following shows an example of the information generated:

==

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Sorting unassigned sections by descending size for .ANY placement.
Using Worst Fit .ANY placement algorithm.
.ANY contingency enabled.

Exec Region Event Idx Size Section Name
 Object
ER_2 Assignment: Worst fit 144 0x0000041a .text
 c_wu.l(_printf_fp_dec.o)
ER_2 Assignment: Worst fit 261 0x00000338 CL$
$btod_div_common c_wu.l(btod.o)
ER_1 Assignment: Worst fit 146 0x000002fc .text
 c_wu.l(_printf_fp_hex.o)
ER_2 Assignment: Worst fit 260 0x00000244 CL$
$btod_mult_common c_wu.l(btod.o)
...
ER_1 Assignment: Worst fit 3 0x00000090 .text
 foo.o
...
ER_3 Assignment: Worst fit 100 0x0000000a
.ARM.Collect$$_printf_percent$$00000007 c_wu.l(_printf_ll.o)
ER_3 Info: .ANY limit reached - - -
 -
ER_1 Assignment: Highest priority 423 0x0000000a .text
 c_wu.l(defsig_exit.o)
...
.ANY contingency summary
Exec Region Contingency Type
ER_1 161 Auto
ER_2 180 Auto
ER_3 73 Auto

==

Sorting unassigned sections by descending size for .ANY placement.
Using Worst Fit .ANY placement algorithm.
.ANY contingency enabled.

Exec Region Event Idx Size Section Name
 Object
ER_2 Info: .ANY limit reached - - -
 -
ER_1 Info: .ANY limit reached - - -
 -
ER_3 Info: .ANY limit reached - - -
 -
ER_2 Assignment: Worst fit 533 0x00000034 !!!scatter
 c_wu.l(__scatter.o)
ER_2 Assignment: Worst fit 535 0x0000001c !!handler_zi
 c_wu.l(__scatter_zi.o)

Related information
--any_contingency on page 232
Prioritizing the placement of unassigned sections on page 141
Command-line options for controlling the placement of unassigned sections on page 139
Specify the maximum region size permitted for placing unassigned sections on page 141
--info=topic[,topic,…] on page 271
Syntax of an input section description on page 197
Execution region attributes on page 189

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.5 Placing veneers with a scatter file
You can place veneers at a specific location with a linker-generated symbol.

About this task
Veneers allow switching between A32 and T32 code or allow a longer program jump than can be
specified in a single instruction.

Procedure
To place veneers at a specific location, include the linker-generated symbol Veneer$$Code in a
scatter file. At most, one execution region in the scatter file can have the *(Veneer$$Code) section
selector.
If it is safe to do so, the linker places veneer input sections into the region identified by the
*(Veneer$$Code) section selector. It might not be possible for a veneer input section to be
assigned to the region because of address range problems or execution region size limitations. If
the veneer cannot be added to the specified region, it is added to the execution region containing
the relocated input section that generated the veneer.

Instances of *(IWV$$Code) in scatter files from earlier versions of Arm tools are
automatically translated into *(Veneer$$Code). Use *(Veneer$$Code) in new
descriptions.

*(Veneer$$Code) is ignored when the amount of code in an execution region
exceeds 4MB of 16-bit T32 code, 16MB of 32-bit T32 code, and 32MB of A32
code.

There are no state-change veneers in A64.

Related information
Linker-generated veneers on page 61

8.6 Placement of CMSE veneer sections for a Secure
image

armlink automatically generates all CMSE veneer sections for a Secure image.

The linker:

• Creates __at sections that are called Veneer$$CMSE_AT_address for secure gateway veneers
that you specify in a user-defined input import library.

• Produces one normal section Veneer$$CMSE to hold all other secure gateway veneers.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Placement of secure gateway veneers generated from input import libraries
The following example shows the placement of secure gateway veneers for functions entry1 and
entry2 that are specified in the input import library:

...

** Section #4 'ER$$Veneer$$CMSE_AT_0x00004000' (SHT_PROGBITS) [SHF_ALLOC +
 SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG ; [0x3e08]
 0x00004004: f004b85a ..Z. B.W __acle_se_entry1 ; 0x80bc
 entry2
 0x00004008: e97fe97f SG ; [0x3e10]
 0x0000400c: f004b868 ..h. B.W __acle_se_entry2 ; 0x80e0

...

The same rules and options that apply to normal __at sections apply to __at sections created for
secure gateway veneers. The same rules and options also apply to the automatic placement of
these sections when you specify --autoat.

Placement of secure gateway veneers that are not specified in the input import library
Secure gateway veneers that do not have their addresses specified in an input import library get
generated in the Veneer$$CMSE input section. You must place this section as required. If you create
a simple image, that is without using a scatter file, the sections get placed in the ER_XO execution
region, and the respective ER_XO output section.

The following example shows the placement of secure gateway veneers for functions entry3 and
entry4 that are not specified in the input import library:

...

** Section #1 'ER_XO' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00008000

 $t
 entry3
 0x00008000: e97fe97f SG
 0x00008004: f000b87e ..~. B.W __acle_se_entry3 ; 0x8104
 entry4
 0x00008008: e97fe97f SG
 0x0000800c: f000b894 B.W __acle_se_entry4 ; 0x8138

...

Placement of secure gateway veneers with a scatter file
To make sure all the secure gateway veneers are in a single section, you must place them using a
scatter file.

Secure gateway veneers that are not specified in the input import library are new veneers.
New veneers get generated in the Veneer$$CMSE input section. You can place this section in

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 153 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

the scatter file as required. Veneers that are already present in the input import library are
placed at the address that is specified in this library. This placement is done by creating Veneer$
$CMSE_AT_address sections for them. These sections use the same facility that is used by other AT
sections. Therefore, if you use --no_autoat, you can place these sections either by using the --
autoat mechanism or by manually placing them using a scatter file.

For a Non-secure callable region of size 0x1000 bytes with a base address of 0x4000 a suitable
example of a scatter file load and execution region to match the veneers is:

LOAD_NSCR 0x4000 0x1000
{
 EXEC_NSCR 0x4000 0x1000
 {
 *(Veneer$$CMSE)
 }
}

The secure gateway veneers are placed as follows:

...

** Section #7 'EXEC_NSCR' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR +
 SHF_ARM_NOREAD]
 Size : 64 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG
 0x00004004: f7fcb850 ..P. B __acle_se_entry1 ; 0xa8
 entry2
 0x00004008: e97fe97f SG
 0x0000400c: f7fcb85e ..^. B __acle_se_entry2 ; 0xcc

...

 entry3
 0x00004020: e97fe97f SG
 0x00004024: f7fcb864 ..d. B __acle_se_entry3 ; 0xf0
 entry4
 0x00004028: e97fe97f SG
 0x0000402c: f7fcb87a ..z. B __acle_se_entry4 ; 0x124

...

Related information
Generation of secure gateway veneers on page 65
Placing __at sections at a specific address on page 131
Restrictions on placing __at sections on page 132
Automatically placing __at sections on page 132
Manually placing __at sections on page 134

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 154 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.7 Reserving an empty block of memory
You can reserve an empty block of memory with a scatter file, such as the area used for the stack.

To reserve an empty block of memory, add an execution region in the scatter file and assign the
EMPTY attribute to that region.

Related information
Characteristics of a reserved empty block of memory on page 155
Example of reserving an empty block of memory on page 155

8.7.1 Characteristics of a reserved empty block of memory

An empty block of memory that is reserved with a scatter-loading description has certain
characteristics.

The block of memory does not form part of the load region, but is assigned for use at execution
time. Because it is created as a dummy ZI region, the linker uses the following symbols to access it:

• Image$$region_name$$ZI$$Base.

• Image$$region_name$$ZI$$Limit.

• Image$$region_name$$ZI$$Length.

If the length is given as a negative value, the address is taken to be the end address of the region.
This address must be an absolute address and not a relative one.

8.7.2 Example of reserving an empty block of memory

This example shows how to reserve and empty block of memory for stack and heap using a scatter-
loading description. It also shows the related symbols that the linker generates.

In the following example, the execution region definition STACK 0x800000 EMPTY -10000 defines a
region that is called STACK. The region starts at address 0x7F0000 and ends at address 0x800000:

LR_1 0x80000 ; load region starts at 0x80000
{
 STACK 0x800000 EMPTY -0x10000 ; region ends at 0x800000 because of the
 ; negative length. The start of the region
 ; is calculated using the length.
 {
 ; Empty region for placing the stack
 }

 HEAP +0 EMPTY 0x10000 ; region starts at the end of previous
 ; region. End of region calculated using
 ; positive length
 {
 ; Empty region for placing the heap
 }
 ... ; rest of scatter-loading description

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 155 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

}

The dummy ZI region that is created for an EMPTY execution region is not initialized
to zero at runtime.

If the address is in relative (+offset) form and the length is negative, the linker generates an error.

The following figure shows a diagrammatic representation for this example.

Figure 8-5: Reserving a region for the stack

Heap

Stack

0x810000

0x800000

0x7F0000

Base
Limit

Base

Limit

In this example, the linker generates the following symbols:

Image$$STACK$$ZI$$Base = 0x7f0000
Image$$STACK$$ZI$$Limit = 0x800000
Image$$STACK$$ZI$$Length = 0x10000
Image$$HEAP$$ZI$$Base = 0x800000
Image$$HEAP$$ZI$$Limit = 0x810000
Image$$HEAP$$ZI$$Length = 0x10000

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

The EMPTY attribute applies only to an execution region. The linker generates a
warning and ignores an EMPTY attribute that is used in a load region definition.

The linker checks that the address space used for the EMPTY region does not
coincide with any other execution region.

8.8 Placement of Arm C and C++ library code
You can place code from the Arm® standard C and C++ libraries using a scatter file.

Use *armlib* or *libcxx* so that the linker can resolve library naming in your scatter file.

Some Arm C and C++ library sections must be placed in a root region, for example __main.o,
__scatter*.o, __dc*.o, and *Region$$Table. This list can change between releases. The linker can
place all these sections automatically in a future-proof way with InRoot$$Sections.

For AArch64, __rtentry*.o is moved to a root region.

8.8.1 Placing code in a root region

Some code must always be placed in a root region. You do this in a similar way to placing a named
section.

To place all sections that must be in a root region, use the section selector InRoot$$Sections. For
example :

ROM_LOAD 0x0000 0x4000
{
 ROM_EXEC 0x0000 0x4000 ; root region at 0x0
 {
 vectors.o (Vect, +FIRST) ; Vector table
 * (InRoot$$Sections) ; All library sections that must be in a
 ; root region, for example, __main.o,
 ; __scatter*.o, __dc*.o, and *Region$$Table
 }
 RAM 0x10000 0x8000
 {
 * (+RO, +RW, +ZI) ; all other sections
 }
}

Related information
Placing Arm C library code on page 158
Placing Arm C++ library code on page 158

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Effect of the ABSOLUTE attribute on a root region on page 120
Effect of the FIXED attribute on a root region on page 121
Root region and the initial entry point on page 119

8.8.2 Placing Arm C library code

You can place C library code using a scatter file.

To place C library code, specify the library path and library name as the module selector. You can
use wildcard characters if required. For example:

LR1 0x0
{
 ROM1 0
 {
 * (InRoot$$Sections)
 * (+RO)
 }
 ROM2 0x1000
 {
 armlib/c_ (+RO) ; all Arm-supplied C library functions
 }
 RAM1 0x3000
 {
 armlib (+RO) ; all other Arm-supplied library code
 ; for example, floating-point libraries
 }
 RAM2 0x4000
 {
 * (+RW, +ZI)
 }
}

The name armlib indicates the Arm® C library files that are located in the directory
install_directory\lib\armlib.

Related information
Placing code in a root region on page 157
Placing Arm C++ library code on page 158
C and C++ library naming conventions

8.8.3 Placing Arm C++ library code

You can place C++ library code using a scatter file.

About this task
To place C++ library code, specify the library path and library name as the module selector. You can
use wildcard characters if required.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/C-and-C---library-naming-conventions

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Procedure
1. Create the following C++ program, foo.cpp:

#include <iostream>

using namespace std;

extern "C" int foo ()
{
 cout << "Hello" << endl;
 return 1;
}

2. To place the C++ library code, define the following scatter file, scatter.scat:
LR 0x8000
{
 ER1 +0
 {
 armlib(+RO)
 }
 ER2 +0
 {
 libcxx(+RO)
 }
 ER3 +0
 {
 *(+RO)

 ; All .ARM.exidx* sections must be coalesced into a single contiguous
 ; .ARM.exidx section because the unwinder references linker-generated
 ; Base and Limit symbols for this section.
 *(0x70000001) ; SHT_ARM_EXIDX sections

 ; All .init_array sections must be coalesced into a single contiguous
 ; .init_array section because the initialization code references
 ; linker-generated Base and Limit for this section.
 *(.init_array)
 }
 ER4 +0
 {
 *(+RW,+ZI)
 }
}

The name *armlib* matches install_directory\lib\armlib, indicating the Arm® C library
files that are located in the armlib directory.

The name *libcxx* matches install_directory\lib\libcxx, indicating the C++ library files
that are located in the libcxx directory.

3. Compile and link the sources:
armclang --target=arm-arm-none-eabi -march=armv8-a -c foo.cpp
armclang --target=arm-arm-none-eabi -march=armv8-a -c main.c
armlink --scatter=scatter.scat --map main.o foo.o -o foo.axf

The --map option displays the memory map of the image.

Related information
Placing code in a root region on page 157
Placing Arm C library code on page 158
C and C++ library naming conventions

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/C-and-C---library-naming-conventions

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.9 Aligning regions to page boundaries
You can produce an ELF file with each execution region starting at a page boundary.

The linker provides the following built-in functions to help create load and execution regions on
page boundaries:

• AlignExpr, to specify an address expression.

• GetPageSize, to obtain the page size for use in AlignExpr. If you use GetPageSize, you must
also use the --paged linker command-line option.

• SizeOfHeaders(), to return the size of the ELF header and Program Header table.

• Alignment on an execution region causes both the load address and execution
address to be aligned.

• The default page size is 0x8000. To change the page size, specify the --pagesize
linker command-line option.

To produce an ELF file with each execution region starting on a new page, and with code starting
on the next page boundary after the header information:

LR1 0x0 + SizeOfHeaders()
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW AlignExpr(+0, GetPageSize())
 {
 *(+RW)
 }
 ER_ZI AlignExpr(+0, GetPageSize())
 {
 *(+ZI)
 }
}

If you set up your ELF file in this way, then you can memory-map it onto an operating system in
such a way that:

• RO and RW data can be given different memory protections, because they are placed in
separate pages.

• The load address everything expects to run at is related to its offset in the ELF file by specifying
SizeOfHeaders() for the first load region.

Related information
Aligning execution regions and input sections on page 161
Linker support for creating demand-paged files on page 60
Expression evaluation in scatter files on page 202
Example of using expression evaluation in a scatter file to avoid padding on page 163

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Example of aligning a base address in execution space but still tightly packed in load space on page
209
AlignExpr(expr, align) function on page 207
GetPageSize() function on page 208
--pagesize=pagesize on page 300
Load region attributes on page 182
Execution region attributes on page 189
--paged on page 300

8.10 Aligning execution regions and input sections
There are situations when you want to align code and data sections. How you deal with them
depends on whether you have access to the source code.

Aligning when it is convenient for you to modify the source and recompile
When it is convenient for you to modify the original source code, you can align at compile
time with the __align(n) keyword, for example.

Aligning when it is not convenient for you to modify the source and recompile
It might not be convenient for you to modify the source code for various reasons. For
example, your build process might link the same object file into several images with different
alignment requirements.

When it is not convenient for you to modify the source code, then you must use the
following alignment specifiers in a scatter file:

ALIGNALL

Increases the section alignment of all the sections in an execution region, for example:

ER_DATA ... ALIGNALL 8
{
 ... ;selectors
}

OVERALIGN

Increases the alignment of a specific section, for example:

ER_DATA ...
{
 *.o(.bar, OVERALIGN 8)
 ... ;selectors
}

armlink does not OVERALIGN some sections where it might be unsafe to do so. For
more information, see Syntax of an input section description.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

Related information
Aligning regions to page boundaries on page 160
Input section descriptions on page 196
Execution region attributes on page 189

8.11 Preprocessing a scatter file
You can pass a scatter file through a C preprocessor. This permits access to all the features of the C
preprocessor.

Use the first line in the scatter file to specify a preprocessor command that the linker invokes to
process the file. The command is of the form:

#! preprocessor [preprocessor_flags]

Most typically the command is #! armclang --target=arm-arm-none-eabi -march=armv8-a -E -x
c. This passes the scatter file through the armclang preprocessor.

You can:

• Add preprocessing directives to the top of the scatter file.

• Use simple expression evaluation in the scatter file.

For example, a scatter file, file.scat, might contain:

#! armclang --target=arm-arm-none-eabi -march=armv8-a -E -x c
#define ADDRESS 0x20000000
#include "include_file_1.h"

LR1 ADDRESS
{
 ...
}

The linker parses the preprocessed scatter file and treats the directives as comments.

You can also use the --predefine command-line option to assign values to constants. For this
example:

1. Modify file.scat to delete the directive #define ADDRESS 20000000.

2. Specify the command:

armlink --predefine="-DADDRESS=0x20000000" --scatter=file.scat

Related information
Default behavior for armclang -E in a scatter file on page 163
Using other preprocessors in a scatter file on page 163

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 162 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.11.1 Default behavior for armclang -E in a scatter file

armlink behaves in the same way as armclang when invoking other Arm tools.

armlink searches for the armclang binary in the following order:

1. The same location as armlink.

2. The PATH locations.

armlink invokes armclang with the -Iscatter_file_path option so that any relative preprocessor
directives work. The linker only adds this option if the full name of the preprocessor tool given is
armclang or armclang.exe. This means that if an absolute path or a relative path is given, the linker
does not give the -Iscatter_file_path option to the preprocessor. This also happens with the --
cpu option.

On Windows, .exe suffixes are handled, so armclang.exe is considered the same as armclang.
Executable names are case insensitive, so armclang is considered the same as armclang. The
portable way to write scatter file preprocessing lines is to use correct capitalization, and omit the
.exe suffix.

8.11.2 Using other preprocessors in a scatter file

You must ensure that the preprocessing command line is appropriate for execution on the host
system.

This means:

• The string must be correctly quoted for the host system. The portable way to do this is to use
double-quotes.

• Single quotes and escaped characters are not supported and might not function correctly.

• The use of a double-quote character in a path name is not supported and might not work.

These rules also apply to any strings passed with the --predefine option.

All preprocessor executables must accept the -o file option to mean output to file and accept the
input as a filename argument on the command line. These options are automatically added to the
user command line by armlink. Any options to redirect preprocessing output in the user-specified
command line are not supported.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.12 Example of using expression evaluation in a scatter
file to avoid padding

This example shows how to use expression evaluation in a scatter file to avoid padding.

Using certain scatter-loading attributes in a scatter file can result in a large amount of padding in
the image.

To remove the padding caused by the ALIGN, ALIGNALL, and FIXED attributes, use expression
evaluation to specify the start address of a load region and execution region. The built-in function
AlignExpr is available to help you specify address expressions.

Example
The following scatter file produces an image with padding:

LR1 0x4000
{
 ER1 +0 ALIGN 0x8000
 {
 ...
 }
}

In this example, the ALIGN keyword causes ER1 to be aligned to a 0x8000 boundary in both the load
and the execution view. To align in the load view, the linker must insert 0x4000 bytes of padding.

The following scatter file produces an image without padding:

LR1 0x4000
{
 ER1 AlignExpr(+0, 0x8000)
 {
 ...
 }
}

Using AlignExpr the result of +0 is aligned to a 0x8000 boundary. This creates an execution region
with a load address of 0x4000 but an Execution Address of 0x8000.

Related information
Example of aligning a base address in execution space but still tightly packed in load space on page
209
AlignExpr(expr, align) function on page 207
Execution region attributes on page 189

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 164 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.13 Equivalent scatter-loading descriptions for simple
images

Although you can use command-line options to scatter-load simple images, you can also use a
scatter file.

8.13.1 Command-line options for creating simple images

The command-line options --reloc, --ro_base, --rw_base, --ropi, --rwpi, --split, and --xo_base
create the simple image types.

The simple image types are:

• Type 1 image, one load region and contiguous execution regions.

• Type 2 image, one load region and non-contiguous execution regions.

• Type 3 image, two load regions and non-contiguous execution regions.

You can create the same image types by using the --scatter command-line option and a file
containing one of the corresponding scatter-loading descriptions.

The option --reloc is not supported for AArch64 state.

Related information
Type 1 image, one load region and contiguous execution regions on page 165
Load region descriptions on page 180
Type 2 image, one load region and non-contiguous execution regions on page 168
Type 3 image, multiple load regions and non-contiguous execution regions on page 170
--reloc on page 307
--ro_base=address on page 309
--ropi on page 310
--rw_base=address on page 311
--rwpi on page 312
--scatter=filename on page 313
--split on page 319
--xo_base=address on page 337
Load region attributes on page 182

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 165 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.13.2 Type 1 image, one load region and contiguous execution regions

A Type 1 image consists of a single load region in the load view and up to four execution regions in
the execution view. The execution regions are placed contiguously in the memory map.

By default, the ER_RO, ER_RW, and ER_ZI execution regions are present. If an image contains any
execute-only (XO) sections, then an ER_XO execution region is also present.

--ro_base address specifies the load and execution address of the region containing the RO
output section. The following example shows the scatter-loading description equivalent to using --
ro_base 0x040000:

LR_1 0x040000 ; Define the load region name as LR_1, the region starts at
 0x040000.
{
 ER_RO +0 ; First execution region is called ER_RO, region starts at end of
 ; previous region. Because there is no previous region, the
 ; address is 0x040000.
 {
 * (+RO) ; All RO sections go into this region, they are placed
 ; consecutively.
 }
 ER_RW +0 ; Second execution region is called ER_RW, the region starts at
 the
 ; end of the previous region.
 ; The address is 0x040000 + size of ER_RO region.
 {
 * (+RW) ; All RW sections go into this region, they are placed
 ; consecutively.
 }
 ER_ZI +0 ; Last execution region is called ER_ZI, the region starts at the
 ; end of the previous region at 0x040000 + the size of the ER_RO
 ; regions + the size of the ER_RW regions.
 {
 * (+ZI) ; All ZI sections are placed consecutively here.
 }
}

In this example:

• This description creates an image with one load region called LR_1 that has a load address of
0x040000.

• The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the RO,
RW, and ZI output sections respectively. RO and RW are root regions. ZI is created dynamically
at runtime. The execution address of ER_RO is 0x040000. All three execution regions are placed
contiguously in the memory map by using the +offset form of the base designator for the
execution region description. This enables an execution region to be placed immediately
following the end of the preceding execution region.

Use the --reloc option to make relocatable images. Used on its own, --reloc makes an image
similar to simple type 1, but the single load region has the RELOC attribute.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

The --reloc option and RELOC attribute are not supported for AArch64 state.

ROPI example variant (AArch32 only)
In this variant, the execution regions are placed contiguously in the memory map. However, --ropi
marks the load and execution regions containing the RO output section as position-independent.

The following example shows the scatter-loading description equivalent to using --ro_base
0x010000 --ropi:

LR_1 0x010000 PI ; The first load region is at 0x010000.
{
 ER_RO +0 ; The PI attribute is inherited from parent.
 ; The default execution address is 0x010000, but the code
 ; can be moved.
 {
 * (+RO) ; All the RO sections go here.
 }
 ER_RW +0 ABSOLUTE ; PI attribute is overridden by ABSOLUTE.
 {
 * (+RW) ; The RW sections are placed next. They cannot be moved.
 }
 ER_ZI +0 ; ER_ZI region placed after ER_RW region.
 {
 * (+ZI) ; All the ZI sections are placed consecutively here.
 }
}

ER_RO, the RO execution region, inherits the PI attribute from the load region LR_1. The next
execution region, ER_RW, is marked as ABSOLUTE and uses the +offset form of base designator. This
prevents ER_RW from inheriting the PI attribute from ER_RO. Also, because the ER_ZI region has an
offset of +0, it inherits the ABSOLUTE attribute from the ER_RW region.

If an image contains execute-only sections, ROPI is not supported. If you use --ropi
to link such an image, armlink gives an error.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Related information
Command-line options for creating simple images on page 165
Load region descriptions on page 180
Considerations when using a relative address +offset for a load region on page 186
Considerations when using a relative address +offset for execution regions on page 195

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 167 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

--ro_base=address on page 309
--ropi on page 310
Load region attributes on page 182
--reloc on page 307

8.13.3 Type 2 image, one load region and non-contiguous execution regions

A Type 2 image consists of a single load region in the load view and three execution regions in
the execution view. It is similar to images of Type 1 except that the RW execution region is not
contiguous with the RO execution region.

--ro_base=address specifies the load and execution address of the region containing the RO
output section. --rw_base=address specifies the execution address for the RW execution region.

For images that contain execute-only (XO) sections, the XO execution region is placed at the
address specified by --ro_base. The RO execution region is placed contiguously and immediately
after the XO execution region.

If you use --xo_base address, then the XO execution region is placed in a separate load region at
the specified address.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Example for single load region and multiple execution regions
The following example shows the scatter-loading description equivalent to using --
ro_base=0x010000 --rw_base=0x040000:

LR_1 0x010000 ; Defines the load region name as LR_1
{
 ER_RO +0 ; The first execution region is called ER_RO and starts at end
 ; of previous region. Because there is no previous region, the
 ; address is 0x010000.
 {
 * (+RO) ; All RO sections are placed consecutively into this region.
 }
 ER_RW 0x040000 ; Second execution region is called ER_RW and starts at
 0x040000.
 {
 * (+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The last execution region is called ER_ZI.
 ; The address is 0x040000 + size of ER_RW region.
 {
 * (+ZI) ; All ZI sections are placed consecutively here.
 }
}

In this example:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 168 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

• This description creates an image with one load region, named LR_1, with a load address of
0x010000.

• The image has three execution regions, named ER_RO, ER_RW, and ER_ZI, that contain the RO,
RW, and ZI output sections respectively. The RO region is a root region. The execution address
of ER_RO is 0x010000.

• The ER_RW execution region is not contiguous with ER_RO. Its execution address is 0x040000.

• The ER_ZI execution region is placed immediately following the end of the preceding execution
region, ER_RW.

RWPI example variant (AArch32 only)
This is similar to images of Type 2 with --rw_base where the RW execution region is separate from
the RO execution region. However, --rwpi marks the execution regions containing the RW output
section as position-independent.

The following example shows the scatter-loading description equivalent to using --
ro_base=0x010000 --rw_base=0x018000 --rwpi:

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_RO +0 ; Default ABSOLUTE attribute is inherited from parent.
 ; The execution address is 0x010000. The code and RO data
 ; cannot be moved.
 {
 * (+RO) ; All the RO sections go here.
 }
 ER_RW 0x018000 PI ; PI attribute overrides ABSOLUTE
 {
 * (+RW) ; The RW sections are placed at 0x018000 and they can be
 ; moved.
 }
 ER_ZI +0 ; ER_ZI region placed after ER_RW region.
 {
 * (+ZI) ; All the ZI sections are placed consecutively here.
 }
}

ER_RO, the RO execution region, inherits the ABSOLUTE attribute from the load region LR_1. The
next execution region, ER_RW, is marked as PI. Also, because the ER_ZI region has an offset of +0, it
inherits the PI attribute from the ER_RW region.

Similar scatter-loading descriptions can also be written to correspond to the usage of other
combinations of --ropi and --rwpi with Type 2 and Type 3 images.

Related information
Load region descriptions on page 180
Considerations when using a relative address +offset for a load region on page 186
Considerations when using a relative address +offset for execution regions on page 195
--ro_base=address on page 309
--rw_base=address on page 311
--xo_base=address on page 337
Load region attributes on page 182

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 169 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.13.4 Type 3 image, multiple load regions and non-contiguous execution
regions

A Type 3 image consists of multiple load regions in load view and multiple execution regions in
execution view. They are similar to images of Type 2 except that the single load region in Type 2 is
now split into multiple load regions.

You can relocate and split load regions using the following linker options:

--reloc

The combination --reloc --split makes an image similar to simple Type 3, but the two load
regions now have the RELOC attribute.

--ro_base=address1

Specifies the load and execution address of the region containing the RO output section.

--rw_base=address2

Specifies the load and execution address for the region containing the RW output section.

--xo_base=address3

Specifies the load and execution address for the region containing the execute-only (XO)
output section, if present.

--split

Splits the default single load region that contains the RO and RW output sections into two
load regions. One load region contains the RO output section and one contains the RW
output section.

For images containing XO sections, and if --xo_base is not used, an XO execution
region is placed at the address specified by --ro_base. The RO execution region is
placed immediately after the XO region.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

Example for multiple load regions
The following example shows the scatter-loading description equivalent to using --
ro_base=0x010000 --rw_base=0x040000 --split:

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_RO +0 ; The address is 0x010000.
 {
 * (+RO)
 }
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

LR_2 0x040000 ; The second load region is at 0x040000.
{
 ER_RW +0 ; The address is 0x040000.
 {
 * (+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The address is 0x040000 + size of ER_RW region.
 {
 * (+ZI) ; All ZI sections are placed consecutively into this region.
 }
}

In this example:

• This description creates an image with two load regions, named LR_1 and LR_2, that have load
addresses 0x010000 and 0x040000.

• The image has three execution regions, named ER_RO, ER_RW and ER_ZI, that contain the RO,
RW, and ZI output sections respectively. The execution address of ER_RO is 0x010000.

• The ER_RW execution region is not contiguous with ER_RO, because its execution address is
0x040000.

• The ER_ZI execution region is placed immediately after ER_RW.

Example for multiple load regions with an XO region
The following example shows the scatter-loading description equivalent to using --
ro_base=0x010000 --rw_base=0x040000 --split when an object file has XO sections:

LR_1 0x010000 ; The first load region is at 0x010000.
{
 ER_XO +0 ; The address is 0x010000.
 {
 * (+XO)
 }
 ER_RO +0 ; The address is 0x010000 + size of ER_XO region.
 {
 * (+RO)
 }
}
LR_2 0x040000 ; The second load region is at 0x040000.
{
 ER_RW +0 ; The address is 0x040000.
 {
 * (+RW) ; All RW sections are placed consecutively into this region.
 }
 ER_ZI +0 ; The address is 0x040000 + size of ER_RW region.
 {
 * (+ZI) ; All ZI sections are placed consecutively into this region.
 }
}

In this example:

• This description creates an image with two load regions, named LR_1 and LR_2, that have load
addresses 0x010000 and 0x040000.

• The image has four execution regions, named ER_XO, ER_RO, ER_RW and ER_ZI, that contain the
XO, RO, RW, and ZI output sections respectively. The execution address of ER_XO is placed at
the address specified by --ro_base, 0x010000. ER_RO is placed immediately after ER_XO.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 171 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

• The ER_RW execution region is not contiguous with ER_RO, because its execution address is
0x040000.

• The ER_ZI execution region is placed immediately after ER_RW.

If you also specify --xo_base, then the ER_XO execution region is placed in a load
region separate from the ER_RO execution region, at the specified address.

Relocatable load regions example variant
This Type 3 image also consists of two load regions in load view and three execution regions
in execution view. However, --reloc specifies that the two load regions now have the RELOC
attribute.

The following example shows the scatter-loading description equivalent to using --ro_base
0x010000 --rw_base 0x040000 --reloc --split:

LR_1 0x010000 RELOC
{
 ER_RO + 0
 {
 * (+RO)
 }
}
LR2 0x040000 RELOC
{
 ER_RW + 0
 {
 * (+RW)
 }
 ER_ZI +0
 {
 * (+ZI)
 }
}

Related information
Load region descriptions on page 180
Considerations when using a relative address +offset for a load region on page 186
Considerations when using a relative address +offset for execution regions on page 195
--reloc on page 307
--ro_base=address on page 309
--rw_base=address on page 311
--split on page 319
--xo_base=address on page 337
Load region attributes on page 182
Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 172 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

8.14 How the linker resolves multiple matches when
processing scatter files

An input section must be unique. In the case of multiple matches, the linker attempts to assign the
input section to a region based on the attributes of the input section description.

The linker assignment of the input section is based on a module_select_pattern and
input_section_selector pair that is the most specific. However, if a unique match cannot be
found, the linker faults the scatter-loading description.

The following variables describe how the linker matches multiple input sections:

• m1 and m2 represent module selector patterns.

• s1 and s2 represent input section selectors.

For example, if input section A matches m1,s1 for execution region R1, and A matches m2,s2 for
execution region R2, the linker:

• Assigns A to R1 if m1,s1 is more specific than m2,s2.

• Assigns A to R2 if m2,s2 is more specific than m1,s1.

• Diagnoses the scatter-loading description as faulty if m1,s1 is not more specific than m2,s2 and
m2,s2 is not more specific than m1,s1.

armlink uses the following strategy to determine the most specific module_select_pattern,
input_section_selector pair:

Resolving the priority of two module_selector, section_selector pairs m1, s1 and m2, s2
The strategy starts with two module_select_pattern, input_section_selector pairs. m1,s1
is more specific than m2,s2 only if any of the following are true:

1. s1 is either a literal input section name, that is it contains no pattern characters, or a
section type and s2 matches input section attributes.

2. m1 is more specific than m2.

3. s1 is more specific than s2.

The conditions are tested in order so condition 1 takes precedence over condition 2 and 3,
and condition 2 takes precedence over condition 3.

Resolving the priority of two module selectors m1 and m2 in isolation
For the module selector patterns, m1 is more specific than m2 if the text string m1 matches
pattern m2 and the text string m2 does not match pattern m1.

Resolving the priority of two section selectors s1 and s2 in isolation
For the input section selectors:

• If one of s1 or s2 matches the input section name or type and the other matches the
input section attributes, s1 and s2 are unordered and the description is diagnosed as
faulty.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 173 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

• If both s1 and s2 match the input section name or type, the following relationships
determine whether s1 is more specific than s2:

◦ Section type is more specific than section name.

◦ If both s1 and s2 match input section type, s1 and s2 are unordered and the
description is diagnosed as faulty.

◦ If s1 and s2 are both patterns matching section names, the same definition as for
module selector patterns is used.

• If both s1 and s2 match input section attributes, the following relationships determine
whether s1 is more specific than s2s:

◦ ENTRY is more specific than RO-CODE, RO-DATA, RW-CODE, or RW-DATA.

◦ RO-CODE is more specific than RO.

◦ RO-DATA is more specific than RO.

◦ RW-CODE is more specific than RW.

◦ RW-DATA is more specific than RW.

◦ There are no other members of the (s1 more specific than s2) relationship between
section attributes.

This matching strategy has the following consequences:

• Descriptions do not depend on the order they are written in the file.

• Generally, the more specific the description of an object, the more specific the description of
the input sections it contains.

• The input_section_selectors are not examined unless:

◦ Object selection is inconclusive.

◦ One selector specifies a literal input section name or a section type and the other selects
by attribute. In this case, the explicit input section name or type is more specific than any
attribute. This is true even if the object selector associated with the input section name is
less specific than that of the attribute.

The .ANY module selector is available to assign any sections that cannot be resolved from the
scatter-loading description.

Example
The following example shows multiple execution regions and pattern matching:

LR_1 0x040000
{
 ER_ROM 0x040000 ; The startup exec region address is the same
 { ; as the load address.
 application.o (+ENTRY) ; The section containing the entry point from
 } ; the object is placed here.
 ER_RAM1 0x048000
 {
 application.o (+RO-CODE) ; Other RO code from the object goes here
 }
 ER_RAM2 0x050000
 {
 application.o (+RO-DATA) ; The RO data goes here

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

 }
 ER_RAM3 0x060000
 {
 application.o (+RW) ; RW code and data go here
 }
 ER_RAM4 +0 ; Follows on from end of ER_R3
 {
 *.o (+RO, +RW, +ZI) ; Everything except for application.o goes here
 }
}

Related information
Placement of unassigned sections on page 138
Input section descriptions on page 196
Syntax of a scatter file on page 178
Syntax of an input section description on page 197

8.15 How the linker resolves path names when processing
scatter files

The linker matches wildcard patterns in scatter files against any combination of forward slashes and
backslashes it finds in path names.

This might be useful where the paths are taken from environment variables or multiple sources, or
where you want to use the same scatter file to build on Windows or Unix platforms.

Use forward slashes in path names to ensure they are understood on Windows and
Unix platforms.

Related information
Syntax of a scatter file on page 178

8.16 Scatter file to ELF mapping
Shows how scatter file components map onto ELF.

ELF executable files contain segments:

• A load region is represented by an ELF program segment with type PT_LOAD.

• An execution region is represented by one or more of the following ELF sections:

◦ XO.

◦ RO.

◦ RW.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 175 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

◦ ZI.

If XO and RO are mixed within an execution region, that execution region is treated
as RO.

For example, you might have a scatter file similar to the following:

LOAD 0x8000
{
 EXEC_ROM +0
 {
 *(+RO)
 }
 RAM +0
 {
 *(+RW,+ZI)
 }
 HEAP +0x100 EMPTY 0x100
 {
 }
 STACK +0 EMPTY 0x400
 {
 }
}

This scatter file creates a single program segment with type PT_LOAD for the load region with
address 0x8000.

A single output section with type SHT_PROGBITS is created to represent the contents
of EXEC_ROM. Two output sections are created to represent RAM. The first has a type
SHT_PROGBITS and contains the initialized read/write data. The second has a type of
SHT_NOBITS and describes the zero-initialized data.

The heap and stack are described in the ELF file by SHT_NOBITS sections.

Enter the following fromelf command to see the scatter-loaded sections in the image:

fromelf --text -v my_image.axf

To display the symbol table, enter the command:

fromelf --text -s -v my_image.axf

The following is an example of the fromelf output showing the LOAD, EXEC_ROM, RAM, HEAP, and
STACK sections:

...
==
** Program header #0
 Type : PT_LOAD (1)
 File Offset : 52 (0x34)
 Virtual Addr : 0x00008000

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter-loading Features

 Physical Addr : 0x00008000
 Size in file : 764 bytes (0x2fc)
 Size in memory: 2140 bytes (0x85c)
 Flags : PF_X + PF_W + PF_R + PF_ARM_ENTRY (0x80000007)
 Alignment : 4
==
** Section #1
 Name : EXEC_ROM
...
 Addr : 0x00008000
 File Offset : 52 (0x34)
 Size : 740 bytes (0x2e4)
...
====================================
** Section #2
 Name : RAM
...
 Addr : 0x000082e4
 File Offset : 792 (0x318)
 Size : 20 bytes (0x14)
...
====================================
** Section #3
 Name : RAM
...
 Addr : 0x000082f8
 File Offset : 812 (0x32c)
 Size : 96 bytes (0x60)
...
====================================
** Section #4
 Name : HEAP
...
 Addr : 0x00008458
 File Offset : 812 (0x32c)
 Size : 256 bytes (0x100)
...
====================================
** Section #5
 Name : STACK
...
 Addr : 0x00008558
 File Offset : 812 (0x32c)
 Size : 1024 bytes (0x400)
..

Related information
Overview of scatter-loading on page 112
Scatter-loading images with a simple memory map on page 116

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 177 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

9. Scatter File Syntax
Describes the format of scatter files.

9.1 BNF notation used in scatter-loading description
syntax

Scatter-loading description syntax uses standard BNF notation.

The following table summarizes the Backus-Naur Form (BNF) symbols that are used for describing
the syntax of scatter-loading descriptions.

Table 9-1: BNF notation

Symbol Description

" Quotation marks indicate that a character that is normally part of
the BNF syntax is used as a literal character in the definition. The
definition B"+";C, for example, can only be replaced by the pattern
B+C. The definition B+C can be replaced by, for example, patterns
BC, BBC, or BBBC.

A ::= B Defines A as B. For example, A::= B"+" | C means that A is
equivalent to either B+ or C. The ::= notation defines a higher
level construct in terms of its components. Each component might
also have a ::= definition that defines it in terms of even simpler
components. For example, A::= B and B::= C | D means that
the definition A is equivalent to the patterns C or D.

[A] Optional element A. For example, A::= B[C]D means that the
definition A can be expanded into either BD or BCD.

A+ Element A can have one or more occurrences. For example, A::= B
+ means that the definition A can be expanded into B, BB, or BBB.

A * Element A can have zero or more occurrences.

A | B Either element A or B can occur, but not both.

(A B) Element A and B are grouped together. This is particularly useful
when the | operator is used or when a complex pattern is repeated.
For example, A::=(B C)+ (D | E) means that the definition A
can be expanded into any of BCD,, BCE, BCBCD, BCBCE, BCBCBCD,
or BCBCBCE.

Related information
Syntax of a scatter file on page 178

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

9.2 Syntax of a scatter file
A scatter file contains one or more load regions. Each load region can contain one or more
execution regions.

The following figure shows the components and organization of a typical scatter file:

Figure 9-1: Components of a scatter file

Load region description

Execution region description

Input section description

Module selector pattern Input section attributes

Load region description

Execution region description

Input section description

Execution region description

Input section description

Execution region description

Input section description

LOAD_ROM_1 0x0000
{

EXEC_ROM_1 0x0000
{

program1.o (+RO)
}

DRAM 0x18000 0x8000
{

program1.o (+RW,+ZI)
}

}

LOAD_ROM_2 0x4000
{

EXEC_ROM_2 0x4000
{

program2.o (+RO)
}

SRAM 0x8000 0x8000
{

program2.o (+RW,+ZI)

}

}

Scatter description

Related information
Load region descriptions on page 180
Execution region descriptions on page 187
Scatter-loading Features on page 112

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 179 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

9.3 Load region descriptions
A load region description specifies the region of memory where its child execution regions are to be
placed.

Related information
Components of a load region description on page 180
Syntax of a load region description on page 181
Load region attributes on page 182
Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Considerations when using a relative address +offset for a load region on page 186

9.3.1 Components of a load region description

The components of a load region description allow you to uniquely identify a load region and to
control what parts of an ELF file are placed in that region.

A load region description has the following components:

• A name (used by the linker to identify different load regions).

• A base address (the start address for the code and data in the load view).

• Attributes that specify the properties of the load region.

• An optional maximum size specification.

• One or more execution regions.

The following figure shows an example of a typical load region description:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 180 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

Figure 9-2: Components of a load region description

A load region description contains
one or more execution region
descriptions

LOAD_ROM_1 0x0000
{

EXEC_ROM_1 0x0000
{

program1.o (+RO)
}

DRAM 0x18000 0x8000

{
program1.o (+RW,+ZI)

}

}

Load region description

Related information
Syntax of a load region description on page 181
Load region attributes on page 182
Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194
Aligning regions to page boundaries on page 160
Scatter-loading Features on page 112
Expression evaluation in scatter files on page 202

9.3.2 Syntax of a load region description

A load region can contain one or more execution region descriptions.

The syntax of a load region description, in Backus-Naur Form (BNF), is:

load_region_description ::=
 load_region_name (base_address | ("+" offset)) [attribute_list] [max_size]
 "{"
 execution_region_description+
 "}"

where:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 181 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

load_region_name

Names the load region. You can use a quoted name. The name is case-sensitive only if you
use any region-related linker-defined symbols.

base_address

Specifies the address where objects in the region are to be linked. base_address must satisfy
the alignment constraints of the load region.

+offset

Describes a base address that is offset bytes beyond the end of the preceding load region.
The value of offset must be zero modulo four. If this is the first load region, then +offset
means that the base address begins offset bytes from zero.

If you use +offset, then the load region might inherit certain attributes from a previous load
region.

attribute_list

The attributes that specify the properties of the load region contents.

max_size

Specifies the maximum size of the load region. This is the size of the load region before any
decompression or zero initialization take place. If the optional max_size value is specified,
armlink generates an error if the region has more than max_size bytes allocated to it.

execution_region_description

Specifies the execution region name, address, and contents.

The BNF definitions contain additional line returns and spaces to improve
readability. They are not required in scatter-loading descriptions and are ignored if
present in a scatter file.

Related information
Components of a load region description on page 180
Load region attributes on page 182
Inheritance rules for the RELOC address attribute on page 185
BNF notation used in scatter-loading description syntax on page 178
Considerations when using a relative address +offset for a load region on page 186
Inheritance rules for load region address attributes on page 184
Syntax of a scatter file on page 178
Expression evaluation in scatter files on page 202
Region-related symbols on page 96

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 182 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

9.3.3 Load region attributes

A load region has attributes that allow you to control where parts of your image are loaded in the
target memory.

The load region attributes are:

ABSOLUTE

The content is placed at a fixed address that does not change after linking. The load address
of the region is specified by the base designator. This is the default, unless you use PI or
RELOC.

ALIGN alignment

Increase the alignment constraint for the load region from 4 to alignment. alignment must
be a positive power of 2. If the load region has a base_address then this must be alignment
aligned. If the load region has a +offset then the linker aligns the calculated base address of
the region to an alignment boundary.

This can also affect the offset in the ELF file. For example, the following causes the data for
FOO to be written out at 4k offset into the ELF file:

FOO +4 ALIGN 4096

NOCOMPRESS

RW data compression is enabled by default. The NOCOMPRESS keyword enables you to specify
that the contents of a load region must not be compressed in the final image.

OVERLAY

The OVERLAY keyword enables you to have multiple load regions at the same address. Arm
tools do not provide an overlay mechanism. To use multiple load regions at the same address,
you must provide your own overlay manager.

The content is placed at a fixed address that does not change after linking. The content might
overlap with other regions designated as OVERLAY regions.

PI

This region is position independent. The content does not depend on any fixed address and
might be moved after linking without any extra processing.

PI is not supported for AArch64 state.

This attribute is not supported if an image contains execute-only sections.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 183 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

PROTECTED

The PROTECTED keyword prevents:

• Overlapping of load regions.

• Veneer sharing.

• String sharing with the --merge option.

RELOC

This region is relocatable. The content depends on fixed addresses. Relocation information is
output to enable the content to be moved to another location by another tool.

RELOC is not supported for AArch64 state.

Related information
--merge, --no_merge on page 295
Components of a load region description on page 180
Syntax of a load region description on page 181
Example of aligning a base address in execution space but still tightly packed in load space on page
209
Section alignment with the linker on page 59
Reuse of veneers when scatter-loading on page 65
Aligning regions to page boundaries on page 160
Considerations when using a relative address +offset for a load region on page 186
Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Veneer sharing on page 62
Generation of position independent to absolute veneers on page 64
Optimization with RW data compression on page 77

9.3.4 Inheritance rules for load region address attributes

A load region can inherit the attributes of a previous load region.

For a load region to inherit the attributes of a previous load region, specify a +offset base address
for that region. A load region cannot inherit attributes if:

• You explicitly set the attribute of that load region.

• The load region immediately before has the OVERLAY attribute.

You can explicitly set a load region with the ABSOLUTE, PI, RELOC, or OVERLAY address attributes.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 184 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

PI and RELOC are not supported for AArch64 state.

The following inheritance rules apply when no address attribute is specified:

• The OVERLAY attribute cannot be inherited. A region with the OVERLAY attribute cannot inherit.

• A base address load or execution region always defaults to ABSOLUTE.

• A +offset load region inherits the address attribute from the previous load region or ABSOLUTE
if no previous load region exists.

Example
This example shows the inheritance rules for setting the address attributes of load regions:

LR1 0x8000 PI
{
 ...
}
LR2 +0 ; LR2 inherits PI from LR1
{
 ...
}
LR3 0x1000 ; LR3 does not inherit because it has no relative base
 address, gets default of ABSOLUTE
{
 ...
}
LR4 +0 ; LR4 inherits ABSOLUTE from LR3
{
 ...
}
LR5 +0 RELOC ; LR5 does not inherit because it explicitly sets RELOC
{
 ...
}
LR6 +0 OVERLAY ; LR6 does not inherit, an OVERLAY cannot inherit
{
 ...
}
LR7 +0 ; LR7 cannot inherit OVERLAY, gets default of ABSOLUTE
{
 ...
}

Related information
Components of a load region description on page 180
Components of an execution region description on page 187
Inheritance rules for execution region address attributes on page 194

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 185 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

9.3.5 Inheritance rules for the RELOC address attribute

You can explicitly set the RELOC attribute for a load region. However, an execution region can only
inherit the RELOC attribute from the parent load region.

RELOC is not supported for AArch64 state.

Example
This example shows the inheritance rules for setting the address attributes with RELOC:

LR1 0x8000 RELOC
{
 ER1 +0 ; inherits RELOC from LR1
 {
 ...
 }
 ER2 +0 ; inherits RELOC from ER1
 {
 ...
 }
 ER3 +0 RELOC ; Error cannot explicitly set RELOC on an execution region
 {
 ...
 }
}

Related information
Components of a load region description on page 180
Syntax of a load region description on page 181
Components of an execution region description on page 187
Restrictions on the use of scatter files with the Base Platform model on page 227
Inheritance rules for load region address attributes on page 184
Inheritance rules for execution region address attributes on page 194
Considerations when using a relative address +offset for execution regions on page 195
Considerations when using a relative address +offset for a load region on page 186
Base Platform linking model on page 35

9.3.6 Considerations when using a relative address +offset for a load region

There are some considerations to be aware of when using a relative address for a load region.

When using +offset to specify a load region base address:

• If the +offset load region LR2 follows a load region LR1 containing ZI data, then LR2 overlaps
the ZI data. To fix this, use the ImageLimit() function to specify the base address of LR2.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 186 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

• A +offset load region LR2 inherits the attributes of the load region LR1 immediately before it,
unless:

◦ LR1 has the OVERLAY attribute.

◦ LR2 has an explicit attribute set.

If a load region is unable to inherit an attribute, then it gets the attribute ABSOLUTE.

• A gap might exist in a ROM image between a +offset load region and a preceding region when
the preceding region has RW data compression applied. This is because the linker calculates the
+offset based on the uncompressed size of the preceding region. However, this gap disappears
when the RW data is decompressed at load time.

Related information
Inheritance rules for load region address attributes on page 184
Execution address built-in functions for use in scatter files on page 204

9.4 Execution region descriptions
An execution region description specifies the region of memory where parts of your image are to
be placed at run-time.

Related information
Components of an execution region description on page 187
Syntax of an execution region description on page 188
Execution region attributes on page 189
Inheritance rules for execution region address attributes on page 194
Considerations when using a relative address +offset for execution regions on page 195

9.4.1 Components of an execution region description

The components of an execution region description allow you to uniquely identify each execution
region and its position in the parent load region, and to control what parts of an ELF file are placed
in that execution region.

An execution region description has the following components:

• A name (used by the linker to identify different execution regions).

• A base address (either absolute or relative).

• Attributes that specify the properties of the execution region.

• An optional maximum size specification.

• One or more input section descriptions (the modules placed into this execution region).

The following figure shows the components of a typical execution region description:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 187 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

Figure 9-3: Components of an execution region description

An execution region description contains
one or more input section descriptions

EXEC_ROM_1 0x0000
{

program1.o (+RO)

}

Execution region description

Related information
Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194
Syntax of an execution region description on page 188
Execution region attributes on page 189

9.4.2 Syntax of an execution region description

An execution region specifies where the input sections are to be placed in target memory at run-
time.

The syntax of an execution region description, in Backus-Naur Form (BNF), is:

execution_region_description ::=
 exec_region_name (base_address | "+" offset) [attribute_list] [max_size | length]
 "{"
 input_section_description*
 "}"

where:

exec_region_name

Names the execution region. You can use a quoted name. The name is case-sensitive only if
you use any region-related linker-defined symbols.

base_address

Specifies the address where objects in the region are to be linked. base_address must be
word-aligned.

Using ALIGN on an execution region causes both the load address and
execution address to be aligned.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 188 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

+offset

Describes a base address that is offset bytes beyond the end of the preceding execution
region. The value of offset must be zero modulo four.

If this is the first execution region in the load region then +offset means that the base
address begins offset bytes after the base of the containing load region.

If you use +offset, then the execution region might inherit certain attributes from the parent
load region, or from a previous execution region within the same load region.

attribute_list

The attributes that specify the properties of the execution region contents.

max_size

For an execution region marked EMPTY or FILL the max_size value is interpreted as the
length of the region. Otherwise the max_size value is interpreted as the maximum size of the
execution region.

[-]length

Can only be used with EMPTY to represent a stack that grows down in memory. If the length is
given as a negative value, the base_address is taken to be the end address of the region.

input_section_description

Specifies the content of the input sections.

The BNF definitions contain additional line returns and spaces to improve
readability. They are not required in scatter-loading descriptions and are ignored if
present in a scatter file.

Related information
Components of an execution region description on page 187
Execution region attributes on page 189
Scatter-loading Features on page 112
Considerations when using a relative address +offset for execution regions on page 195
Expression evaluation in scatter files on page 202
Base Platform linking model on page 35
Region-related symbols on page 96
Aligning regions to page boundaries on page 160
Restrictions on the use of scatter files with the Base Platform model on page 227
Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Input section descriptions on page 196

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 189 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

9.4.3 Execution region attributes

An execution region has attributes that allow you to control where parts of your image are loaded
in the target memory at runtime.

The execution region attributes are:

ABSOLUTE

The content is placed at a fixed address that does not change after linking. A base designator
specifies the execution address of the region.

ALIGN alignment

Increase the alignment constraint for the execution region from 4 to alignment. alignment
must be a positive power of 2. If the execution region has a base_address, then the address
must be alignment aligned. If the execution region has a +offset, then the linker aligns the
calculated base address of the region to an alignment boundary.

ALIGN on an execution region causes both the load address and execution
address to be aligned. This alignment can result in padding being added to the
ELF file. To align only the execution address, use the AlignExpr expression on
the base address.

ALIGNALL value

Increases the alignment of sections within the execution region.

The value must be a positive power of 2 and must be greater than or equal to 4.

ANY_SIZE max_size

Specifies the maximum size within the execution region that armlink can fill with unassigned
sections. You can use a simple expression to specify the max_size. That is, you cannot use
functions such as ImageLimit().

Specifying ANY_SIZE overrides any effects that --any_contingency has on the
region.

Be aware of the following restrictions when using this keyword:

• max_size must be less than or equal to the region size.

• You can use ANY_SIZE on a region without a .ANY selector but armlink ignores it.

AUTO_OVERLAY

Use to indicate regions of memory where armlink assigns the overlay sections for loading
into at runtime. Overlay sections are those named .ARM.overlayN in the input object.

The execution region must not have any section selectors.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 190 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

The addresses that you give for the execution regions are the addresses that armlink expects
the overlaid code to be loaded at when running. The load region containing the execution
regions is where armlink places the overlay contents.

By default, the overlay manager loads overlays by copying them into RAM from some other
memory that is not suitable for direct execution. For example, very slow Flash or memory
from which instruction fetches are not enabled. You can keep your unloaded overlays in
peripheral storage that is not mapped into the address space of the processor. To keep such
overlays in peripheral storage, you must extract the data manually from the linked image.

armlink allocates every overlay to one of the AUTO_OVERLAY execution regions, and has to be
loaded into only that region to run correctly.

You must use the --overlay_veneers command-line option when linking with a scatter file
containing the AUTO_OVERLAY attribute.

With the AUTO_OVERLAY attribute, armlink decides how your code sections get
allocated to overlay regions. With the OVERLAY attribute, you must manually
arrange the allocation of the code sections.

Arm® Compiler does not support using both manual and automatic overlays
within the same program.

EMPTY [-]length

Reserves an empty block of memory of a given size in the execution region, typically used by
a heap or stack. No section can be placed in a region with the EMPTY attribute.

length represents a stack that grows down in memory. If the length is given as a negative
value, the base_address is taken to be the end address of the region.

FILL value

Creates a linker generated region containing a value. If you specify FILL, you must give a
value, for example: FILL 0xFFFFFFFF. The FILL attribute replaces the following combination:
EMPTY ZEROPAD PADVALUE.

In certain situations, such as a simulation, filling a region with a value is preferable to
spending a long time in a zeroing loop.

FIXED

Fixed address. The linker attempts to make the execution address equal the load address. If it
succeeds, then the region is a root region. If it does not succeed, then the linker produces an
error.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 191 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

The linker inserts padding with this attribute.

NOCOMPRESS

RW data compression is enabled by default. The NOCOMPRESS keyword enables you to specify
that RW data in an execution region must not be compressed in the final image.

OVERLAY

Use for sections with overlaying address ranges. If consecutive execution regions have the
same +offset, then they are given the same base address.

The content is placed at a fixed address that does not change after linking. The content might
overlap with other regions designated as OVERLAY regions.

Arm Compiler does not support using both manual and automatic overlays
within the same program.

PADVALUE value

Defines the value to use for padding. If you specify PADVALUE, you must give a value, for
example:

EXEC 0x10000 PADVALUE 0xFFFFFFFF EMPTY ZEROPAD 0x2000

This example creates a region of size 0x2000 full of 0xFFFFFFFF.

PADVALUE must be a word in size. PADVALUE attributes on load regions are ignored.

PI

This region contains only position independent sections. The content does not depend on
any fixed address and might be moved after linking without any extra processing.

PI is not supported for AArch64 state.

This attribute is not supported if an image contains execute-only sections.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 192 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

SORTTYPE algorithm

Specifies the sorting algorithm for the execution region, for example:

ER1 +0 SORTTYPE CallTree

This attribute overrides any sorting algorithm that you specify with the --sort
command-line option.

UNINIT

Use to create execution regions containing uninitialized data or memory-mapped I/O. Only ZI
output sections are affected. For example, in the following ER_RW region only the ZI part is
uninitialized:

LR 0x8000
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW 0x10000 UNINIT
 {
 *(+RW,+ZI)
 }
}

Arm Compiler does not support systems with ECC or parity protection where
the memory is not initialized.

ZEROPAD

Zero-initialized sections are written in the ELF file as a block of zeros and, therefore, do not
have to be zero-filled at runtime.

This attribute sets the load length of a ZI output section to Image$$region_name$$ZI$
$Length.

Only root execution regions can be zero-initialized using the ZEROPAD attribute. Using the
ZEROPAD attribute with a non-root execution region generates a warning and the attribute is
ignored.

In certain situations, such as a simulation, filling a region with a value is preferable to
spending a long time in a zeroing loop.

Related information
Syntax of an execution region description on page 188

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 193 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

Behavior when .ANY sections overflow because of linker-generated content on page 148
Section alignment with the linker on page 59
Load$$ execution region symbols on page 97
Aligning regions to page boundaries on page 160
Aligning execution regions and input sections on page 161
Example of using expression evaluation in a scatter file to avoid padding on page 163
Example of aligning a base address in execution space but still tightly packed in load space on page
209
AlignExpr(expr, align) function on page 207
BNF notation used in scatter-loading description syntax on page 178
--any_contingency on page 232
Considerations when using a relative address +offset for execution regions on page 195
Expression evaluation in scatter files on page 202
Optimization with RW data compression on page 77
Image$$ execution region symbols on page 96
Syntax of an input section description on page 197
Inheritance rules for execution region address attributes on page 194
--overlay_veneers on page 298
--sort=algorithm on page 317
Overlay support in Arm Compiler

9.4.4 Inheritance rules for execution region address attributes

An execution region can inherit the attributes of a previous execution region.

For an execution region to inherit the attributes of a previous execution region, specify a +offset
base address for that region. The first +offset execution region can inherit the attributes of the
parent load region. An execution region cannot inherit attributes if:

• You explicitly set the attribute of that execution region.

• The previous execution region has the AUTO_OVERLAY or OVERLAY attribute.

You can explicitly set an execution region with the ABSOLUTE, AUTO_OVERLAY, PI, or OVERLAY
attributes. However, an execution region can only inherit the RELOC attribute from the parent load
region.

PI and RELOC are not supported for AArch64 state.

The following inheritance rules apply when no address attribute is specified:

• The OVERLAY attribute cannot be inherited. A region with the OVERLAY attribute cannot inherit.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 194 of 351

https://developer.arm.com/documentation/dui0773/l/Overlays/Overlay-support-in-Arm-Compiler

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

• A base address load or execution region always defaults to ABSOLUTE.

• A +offset execution region inherits the address attribute from the previous execution region or
parent load region if no previous execution region exists.

Example
This example shows the inheritance rules for setting the address attributes of execution regions:

LR1 0x8000 PI
{
 ER1 +0 ; ER1 inherits PI from LR1
 {
 ...
 }
 ER2 +0 ; ER2 inherits PI from ER1
 {
 ...
 }
 ER3 0x10000 ; ER3 does not inherit because it has no relative base
 address and gets the default of ABSOLUTE
 {
 ...
 }
 ER4 +0 ; ER4 inherits ABSOLUTE from ER3
 {
 ...
 }
 ER5 +0 PI ; ER5 does not inherit, it explicitly sets PI
 {
 ...
 }
 ER6 +0 OVERLAY ; ER6 does not inherit, an OVERLAY cannot inherit
 {
 ...
 }
 ER7 +0 ; ER7 cannot inherit OVERLAY, gets the default of ABSOLUTE
 {
 ...
 }
}

Related information
Components of a load region description on page 180
Components of an execution region description on page 187
Considerations when using a relative address +offset for a load region on page 186
Inheritance rules for load region address attributes on page 184
Considerations when using a relative address +offset for execution regions on page 195
Syntax of an execution region description on page 188

9.4.5 Considerations when using a relative address +offset for execution
regions

There are some considerations to be aware of when using a relative address for execution regions.

When using +offset to specify an execution region base address:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 195 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

• The first execution region inherits the attributes of the parent load region, unless an attribute is
explicitly set on that execution region.

• A +offset execution region ER2 inherits the attributes of the execution region ER1 immediately
before it, unless:

◦ ER1 has the OVERLAY attribute.

◦ ER2 has an explicit attribute set.

If an execution region is unable to inherit an attribute, then it gets the attribute ABSOLUTE.

• If the parent load region has the RELOC attribute, then all execution regions within that load
region must have a +offset base address.

Related information
Inheritance rules for execution region address attributes on page 194
Inheritance rules for the RELOC address attribute on page 185

9.5 Input section descriptions
An input section description is a pattern that identifies input sections.

9.5.1 Components of an input section description

The components of an input section description allow you to identify the parts of an ELF file that
are to be placed in an execution region.

An input section description identifies input sections by:

• Module name (object filename, library member name, or library filename). The module name
can use wildcard characters.

• Input section name, type, or attributes such as READ-ONLY, or CODE. You can use wildcard
characters for the input section name.

• Symbol name.

The following figure shows the components of a typical input section description.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 196 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

Figure 9-4: Components of an input section description

program2.o

Input section selectorModule select pattern

Input section description
(+RO)

Ordering in an execution region does not affect the ordering of sections in the
output image.

Input section descriptions when linking partially-linked objects
You cannot specify partially-linked objects in an input section description, only the combined object
file.

For example, if you link the partially linked objects obj1.o, obj2.o, and obj3.o together to produce
obj_all.o, the component object names are discarded in the resulting object. Therefore, you
cannot refer to one of the objects by name, for example, obj1.o. You can refer only to the
combined object obj_all.o.

Related information
Syntax of an input section description on page 197
Syntax of a scatter file on page 178
--partial on page 301

9.5.2 Syntax of an input section description

An input section description specifies what input sections are loaded into the parent execution
region.

The syntax of an input section description, in Backus-Naur Form (BNF), is:

input_section_description ::=
 module_select_pattern ["(" input_section_selector (","
 input_section_selector)* ")"]
 input_section_selector ::= "+" input_section_attr |
 input_section_pattern |
 input_section_type |
 input_symbol_pattern |
 section_properties

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 197 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

Where:

module_select_pattern

A pattern that is constructed from literal text. An input section matches a module selector
pattern when module_select_pattern matches one of the following:

• The name of the object file containing the section.

• The name of the library member (without leading path name).

• The full name of the library (including path name) the section is extracted from. If the
names contain spaces, use wild characters to simplify searching. For example, use
*libname.lib to match C:\lib dir\libname.lib.

The wildcard character * matches zero or more characters and ? matches any single
character.

Matching is not case-sensitive, even on hosts with case-sensitive file naming.

Use *.o to match all objects. Use * to match all object files and libraries.

You can use quoted filenames, for example "file one.o".

You cannot have two * selectors in a scatter file. You can, however, use two modified
selectors, for example *A and *B, and you can use a .ANY selector together with a * module
selector. The * module selector has higher precedence than .ANY. If the portion of the file
containing the * selector is removed, the .ANY selector then becomes active.

input_section_attr

An attribute selector that is matched against the input section attributes. Each
input_section_attr follows a +.

The selectors are not case-sensitive. The following selectors are recognized:

• RO-CODE.

• RO-DATA.

• RO, selects both RO-CODE and RO-DATA.

• RW-DATA.

• RW-CODE.

• RW, selects both RW-CODE and RW-DATA.

• XO.

• ZI.

• ENTRY, that is, a section containing an ENTRY point.

The following synonyms are recognized:

• CODE for RO-CODE.

• CONST for RO-DATA.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 198 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

• TEXT for RO.

• DATA for RW.

• BSS for ZI.

The following pseudo-attributes are recognized:

• FIRST.

• LAST.

Use FIRST and LAST to mark the first and last sections in an execution region if the placement
order is important. For example, if a specific input section must be first in the region and an
input section containing a checksum must be last.

FIRST and LAST must not violate the basic attribute sorting order. For example,
FIRST RW is placed after any read-only code or read-only data.

There can be only one FIRST or one LAST attribute for an execution region, and it must follow
a single input_section_selector. For example:

(section, +FIRST)

This pattern is correct.

(+FIRST, section)

This pattern is incorrect and produces an error message.

input_section_pattern

A pattern that is matched, without case sensitivity, against the input section name. It is
constructed from literal text. The wildcard character * matches 0 or more characters, and ?
matches any single character. You can use a quoted input section name.

If you use more than one input_section_pattern, ensure that there are no
duplicate patterns in different execution regions to avoid ambiguity errors.

input_section_type

A number that is compared against the input section type. The number can be decimal or
hexadecimal.

input_symbol_pattern

You can select the input section by the global symbol name that the section defines. The
global name enables you to choose individual sections with the same name from partially
linked objects.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 199 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

The :gdef: prefix distinguishes a global symbol pattern from a section pattern. For example,
use :gdef:mysym to select the section that defines mysym. The following example shows a
scatter file in which ExecReg1 contains the section that defines global symbol mysym1, and the
section that contains global symbol mysym2:

LoadRegion 0x8000
{
 ExecReg1 +0
 {
 *(:gdef:mysym1)
 *(:gdef:mysym2)
 }
 ; rest of scatter-loading description
}

You can use a quoted global symbol pattern. The :gdef: prefix can be inside or outside the
quotes.

If you use more than one input_symbol_pattern, ensure that there are no
duplicate patterns in different execution regions to avoid ambiguity errors.

section_properties

A section property can be +FIRST, +LAST, and OVERALIGN value.

The value for OVERALIGN must be a positive power of 2 and must be greater than or equal to
4.

armlink does not OVERALIGN some sections where it might be unsafe to do so. In particular,
sections that rely on or might rely on control falling through to adjacent sections, or that
expect a table of contiguous sections to step through. For example, programs that generate
a PT_ARM_EXIDX program header that describes the location of the contiguous range of
.arm.exidx sections.

armlink does not OVERALIGN:

• A section with a linker defined $$Base, $$Limit, or $$Length symbol.

• A section with an inline veneer.

• A section with a link-order dependency on another section. That is, an ELF section
header entry for a section that has the SHF_LINK_ORDER flag set. The sh_link field for
such sections holds the index to another section header entry. Therefore, if a Section
S has its SHF_LINK_ORDER flag set, and its sh_link field points to the index of Section L,
then the linker must maintain this relative order between S and L in the output file.

• The order of input section descriptors is not significant.

• Only input sections that match both module_select_pattern and at least one
input_section_attr or input_section_pattern are included in the execution

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

region. If you omit (+input_section_attr) and (input_section_pattern), the
default is +RO.

• Do not rely on input section names that the compiler generates, or that are
used by Arm library code. If, for example, different compiler options are used,
the input section names can change between compilations. In addition, section
naming conventions that are used by the compiler are not guaranteed to remain
constant between releases.

• The BNF definitions contain extra line returns and spaces to improve readability.
If present in a scatter file, they are not required in scatter-loading descriptions
and are ignored.

Related information
Components of an input section description on page 196
Behavior when .ANY sections overflow because of linker-generated content on page 148
Examples of module and input section specifications on page 201
BNF notation used in scatter-loading description syntax on page 178
Syntax of a scatter file on page 178
Examples of using placement algorithms for .ANY sections on page 143
Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page 145
Examples of using sorting algorithms for .ANY sections on page 147
Aligning execution regions and input sections on page 161
Placement of unassigned sections on page 138

9.5.3 Examples of module and input section specifications

Examples of module_select_pattern specifications and input_section_selector specifications.

Examples of module_select_pattern specifications are:

• * matches any module or library.

• *.o matches any object module.

• math.o matches the math.o module.

• *armlib* matches all C libraries supplied by Arm® .

• "file 1.o" matches the file file 1.o.

• *math.lib matches any library path ending with math.lib, for example, C:\apps\lib\math
\satmath.lib.

Examples of input_section_selector specifications are:

• +RO is an input section attribute that matches all RO code and all RO data.

• +RW,+ZI is an input section attribute that matches all RW code, all RW data, and all ZI data.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 201 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

• BLOCK_42 is an input section pattern that matches sections named BLOCK_42. There can be
multiple ELF sections with the same BLOCK_42 name that possess different attributes, for
example +RO-CODE,+RW.

Related information
Components of an input section description on page 196
Syntax of an input section description on page 197

9.6 Expression evaluation in scatter files
Scatter files frequently contain numeric constants. These can be specific values, or the result of an
expression.

9.6.1 Expression usage in scatter files

You can use expressions for various load and execution region attributes.

Expressions can be used in the following places:

• Load and execution region base_address.

• Load and execution region +offset.

• Load and execution region max_size.

• Parameter for the ALIGN, FILL or PADVALUE keywords.

• Parameter for the ScatterAssert function.

Example of specifying the maximum size in terms of an expression
LR1 0x8000 (2 * 1024)
{
 ER1 +0 (1 * 1024)
 {
 *(+RO)
 }
 ER2 +0 (1 * 1024)
 {
 *(+RW,+ZI)
 }
}

Related information
Expression rules in scatter files on page 203
Execution address built-in functions for use in scatter files on page 204
ScatterAssert function and load address related functions on page 205
Symbol related function in a scatter file on page 207
Considerations when using a relative address +offset for a load region on page 186
Considerations when using a relative address +offset for execution regions on page 195

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 202 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

Example of aligning a base address in execution space but still tightly packed in load space on page
209
Syntax of a scatter file on page 178
Syntax of a load region description on page 181
Syntax of an execution region description on page 188

9.6.2 Expression rules in scatter files

Expressions follow the C-Precedence rules.

Expressions are made up of the following:

• Decimal or hexadecimal numbers.

• Arithmetic operators: +, -, /, *, ~, OR, and AND.

The OR and AND operators map to the C operators | and & respectively.

• Logical operators: LOR, LAND, and !.

The LOR and LAND operators map to the C operators || and && respectively.

• Relational operators: <, <=, >, >=, and ==.

Zero is returned when the expression evaluates to false and nonzero is returned when true.

• Conditional operator: Expression ? Expression1 : Expression2.

This matches the C conditional operator. If Expression evaluates to nonzero then Expression1
is evaluated otherwise Expression2 is evaluated.

When using a conditional operator in a +offset context on an execution region
or load region description, the final expression is considered relative only if both
Expression1 and Expression2, are considered relative. For example:

er1 0x8000
{
 ...
}
er2 ((ImageLimit(er1) < 0x9000) ? +0 : +0x1000) ; er2 has a
 relative address
{
 ...
}
er3 ((ImageLimit(er2) < 0x10000) ? 0x0 : +0) ; er3 has an
 absolute address
{
 ...
}

• Functions that return numbers.

All operators match their C counterparts in meaning and precedence.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 203 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

Expressions are not case-sensitive and you can use parentheses for clarity.

Related information
Expression usage in scatter files on page 202
Execution address built-in functions for use in scatter files on page 204
ScatterAssert function and load address related functions on page 205
Symbol related function in a scatter file on page 207
Considerations when using a relative address +offset for a load region on page 186
Considerations when using a relative address +offset for execution regions on page 195
Example of aligning a base address in execution space but still tightly packed in load space on page
209
Syntax of a scatter file on page 178
Syntax of a load region description on page 181
Syntax of an execution region description on page 188

9.6.3 Execution address built-in functions for use in scatter files

Built-in functions are provided for use in scatter files to calculate execution addresses.

The execution address related functions can only be used when specifying a base_address,
+offset value, or max_size. They map to combinations of the linker defined symbols shown in the
following table.

Table 9-2: Execution address related functions

Function Linker defined symbol value

ImageBase(region_name) Image$$region_name$$Base

ImageLength(region_name) Image$$region_name$$Length + Image$$region_name$
$ZI$$Length

ImageLimit(region_name) Image$$region_name$$Base + Image$$region_name$
$Length + Image$$region_name$$ZI$$Length

The parameter region_name can be either a load or an execution region name. Forward references
are not permitted. The region_name can only refer to load or execution regions that have already
been defined.

You cannot use these functions when using the .ANY selector pattern. This is
because a .ANY region uses the maximum size when assigning sections. The
maximum size might not be available at that point, because the size of all regions is
not known until after the .ANY assignment.

The following example shows how to use ImageLimit(region_name) to place one execution region
immediately after another:

LR1 0x8000
{

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 204 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

 ER1 0x100000
 {
 *(+RO)
 }
}
LR2 0x100000
{
 ER2 (ImageLimit(ER1)) ; Place ER2 after ER1 has finished
 {
 *(+RW +ZI)
 }
}

Using +offset with expressions
A +offset value for an execution region is defined in terms of the previous region. You can use this
as an input to other expressions such as AlignExpr. For example:

LR1 0x4000
{
 ER1 AlignExpr(+0, 0x8000)
 {
 ...
 }
}

By using AlignExpr, the result of +0 is aligned to a 0x8000 boundary. This creates an execution
region with a load address of 0x4000 but an execution address of 0x8000.

Related information
Expression usage in scatter files on page 202
Expression rules in scatter files on page 203
ScatterAssert function and load address related functions on page 205
Symbol related function in a scatter file on page 207
Considerations when using a relative address +offset for a load region on page 186
Scatter files containing relative base address load regions and a ZI execution region on page 210
Considerations when using a relative address +offset for execution regions on page 195
Syntax of a scatter file on page 178
Syntax of a load region description on page 181
Syntax of an execution region description on page 188
AlignExpr(expr, align) function on page 207
Image$$ execution region symbols on page 96
Example of aligning a base address in execution space but still tightly packed in load space on page
209

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 205 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

9.6.4 ScatterAssert function and load address related functions

The ScatterAssert function allows you to perform more complex size checks than those permitted
by the max_size attribute.

The ScatterAssert(expression) function can be used at the top level, or within a load region. It is
evaluated after the link has completed and gives an error message if expression evaluates to false.

The load address related functions can only be used within the ScatterAssert function. They map
to the three linker defined symbol values:

Table 9-3: Load address related functions

Function Linker defined symbol value

LoadBase(region_name) Load$$region_name$$Base

LoadLength(region_name) Load$$region_name$$Length

LoadLimit(region_name) Load$$region_name$$Limit

The parameter region_name can be either a load or an execution region name. Forward references
are not permitted. The region_name can only refer to load or execution regions that have already
been defined.

The following example shows how to use the ScatterAssert function to write more complex size
checks than those permitted by the max_size attribute of the region:

LR1 0x8000
{
 ER0 +0
 {
 *(+RO)
 }
 ER1 +0
 {
 file1.o(+RW)
 }
 ER2 +0
 {
 file2.o(+RW)
 }
 ScatterAssert((LoadLength(ER1) + LoadLength(ER2)) < 0x1000)
 ; LoadLength is compressed size
 ScatterAssert((ImageLength(ER1) + ImageLength(ER2)) < 0x2000)
 ; ImageLength is uncompressed size
}
ScatterAssert(ImageLength(LR1) < 0x3000)
 ; Check uncompressed size of load region
 LR1

Related information
Expression usage in scatter files on page 202
Expression rules in scatter files on page 203
Execution address built-in functions for use in scatter files on page 204
Symbol related function in a scatter file on page 207

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 206 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

Example of aligning a base address in execution space but still tightly packed in load space on page
209
Syntax of a scatter file on page 178
Syntax of a load region description on page 181
Syntax of an execution region description on page 188
Load$$ execution region symbols on page 97

9.6.5 Symbol related function in a scatter file

The symbol related function defined allows you to assign different values depending on whether a
global symbol is defined.

The symbol related function, defined(global_symbol_name) returns zero if global_symbol_name is
not defined and nonzero if it is defined.

Example
The following scatter file shows an example of conditionalizing a base address based on the
presence of the symbol version1:

LR1 0x8000
{
 ER1 (defined(version1) ? 0x8000 : 0x10000) ; Base address is 0x8000
 ; if version1 is defined
 ; 0x10000 if not
 {
 *(+RO)
 }
 ER2 +0
 {
 *(+RW +ZI)
 }
}

Related information
Expression usage in scatter files on page 202
Expression rules in scatter files on page 203
Execution address built-in functions for use in scatter files on page 204
ScatterAssert function and load address related functions on page 205
Example of aligning a base address in execution space but still tightly packed in load space on page
209
Syntax of a scatter file on page 178
Syntax of a load region description on page 181
Syntax of an execution region description on page 188

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 207 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

9.6.6 AlignExpr(expr, align) function

Aligns an address expression to a specified boundary.

This function returns:

(expr + (align-1)) & ~(align-1))

Where:

• expr is a valid address expression.

• align is the alignment, and must be a positive power of 2.

It increases expr until:

expr ≡ 0 (mod align)

Example
This example aligns the address of ER2 on an 8-byte boundary:

ER +0
{
 ...
}
ER2 AlignExpr(+0x8000,8)
{
 ...
}

Relationship with the ALIGN keyword
The following relationship exists between ALIGN and AlignExpr:

ALIGN keyword
Load and execution regions already have an ALIGN keyword:

• For load regions the ALIGN keyword aligns the base of the load region in load space and in
the file to the specified alignment.

• For execution regions the ALIGN keyword aligns the base of the execution region in
execution and load space to the specified alignment.

AlignExpr

Aligns the expression it operates on, but has no effect on the properties of the load or
execution region.

Related information
Execution region attributes on page 189

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 208 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

9.6.7 GetPageSize() function

Returns the page size when an image is demand paged, and is useful when used with the AlignExpr
function.

When you link with the --paged command-line option, returns the value of the internal page size
that armlink uses in its alignment calculations. Otherwise, it returns zero.

By default the internal page size is set to 0x8000, but you can change it with the --pagesize
command-line option.

Example
This example aligns the base address of ER to a Page Boundary:

ER AlignExpr(+0, GetPageSize())
{
 ...
}

Related information
Example of aligning a base address in execution space but still tightly packed in load space on page
209
--pagesize=pagesize on page 300
AlignExpr(expr, align) function on page 207

9.6.8 SizeOfHeaders() function

Returns the size of ELF header plus the estimated size of the Program Header table.

This is useful when writing demand paged images to start code and data immediately after the ELF
header and Program Header table.

Example
This example sets the base of LR1 to start immediately after the ELF header and Program Headers:

LR1 SizeOfHeaders()
{
 ...
}

Related information
Example of aligning a base address in execution space but still tightly packed in load space on page
209
Linker support for creating demand-paged files on page 60
Aligning regions to page boundaries on page 160

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 209 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

9.6.9 Example of aligning a base address in execution space but still tightly
packed in load space

This example shows how to use a combination of preprocessor macros and expressions to copy
tightly packed execution regions to execution addresses in a page-boundary.

Using the ALIGN scatter-loading keyword aligns the load addresses of ER2 and ER3 as well as the
execution addresses

Aligning a base address in execution space but still tightly packed in load space
#! armclang -E
#define START_ADDRESS 0x100000
#define PAGE_ALIGNMENT 0x100000

LR1 0x8000
{
 ER0 +0
 {
 *(InRoot$$Sections)
 }
 ER1 START_ADDRESS
 {
 file1.o(*)
 }
 ER2 AlignExpr(ImageLimit(ER1), PAGE_ALIGNMENT)
 {
 file2.o(*)
 }
 ER3 AlignExpr(ImageLimit(ER2), PAGE_ALIGNMENT)
 {
 file3.o(*)
 }
}

Related information
Load region attributes on page 182
Execution region attributes on page 189
GetPageSize() function on page 208
SizeOfHeaders() function on page 209
Syntax of a load region description on page 181
Syntax of an execution region description on page 188
AlignExpr(expr, align) function on page 207

9.6.10 Scatter files containing relative base address load regions and a ZI
execution region

You might want to place zero-initialized (ZI) data in one load region, and use a relative base address
for the next load region.

To place ZI data in load region LR1, and use a relative base address for the next load region LR2, for
example:

LR1 0x8000

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 210 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Scatter File Syntax

{
 er_progbits +0
 {
 *(+RO,+RW) ; Takes space in the Load Region
 }
 er_zi +0
 {
 *(+ZI) ; Takes no space in the Load Region
 }
}
LR2 +0 ; Load Region follows immediately from LR1
{
 er_moreprogbits +0
 {
 file1.o(+RO) ; Takes space in the Load Region
 }
}

Because the linker does not adjust the base address of LR2 to account for ZI data, the execution
region er_zi overlaps the execution region er_moreprogbits. This generates an error when linking.

To correct this, use the ImageLimit() function with the name of the ZI execution region to
calculate the base address of LR2. For example:

LR1 0x8000
{
 er_progbits +0
 {
 *(+RO,+RW) ; Takes space in the Load Region
 }
 er_zi +0
 {
 *(+ZI) ; Takes no space in the Load Region
 }
}
LR2 ImageLimit(er_zi) ; Set the address of LR2 to limit of er_zi
{
 er_moreprogbits +0
 {
 file1.o(+RO) ; Takes space in the Load Region
 }
}

Related information
Expression evaluation in scatter files on page 202
Syntax of a scatter file on page 178
Syntax of a load region description on page 181
Syntax of an execution region description on page 188
Expression usage in scatter files on page 202
Expression rules in scatter files on page 203
Image$$ execution region symbols on page 96
Execution address built-in functions for use in scatter files on page 204

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 211 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

10. BPABI Shared Libraries and Executables
Describes how the Arm linker, armlink, supports the Base Platform Application Binary Interface
(BPABI) shared libraries and executables.

10.1 About the Base Platform Application Binary Interface
(BPABI)

The Base Platform Application Binary Interface (BPABI) is a meta-standard for third parties to
generate their own platform-specific image formats.

Many embedded systems use an operating system (OS) to manage the resources on a device. In
many cases this is a large, single executable with a Real-Time Operating System (RTOS) that tightly
integrates with the applications.

To run an application or use a shared library on a platform OS, you must conform to the Application
Binary Interface (ABI) for the platform and also the ABI for the Arm® architecture. This can involve
substantial changes to the linker output, for example, a custom file format. To support such a wide
variety of platforms, the ABI for the Arm architecture provides the BPABI.

The BPABI provides a base standard from which a platform ABI can be derived. The linker produces
a BPABI conforming ELF image or shared library. A platform specific tool called a post-linker
translates this ELF output file into a platform-specific file format. Post linker tools are provided by
the platform OS vendor. The following figure shows the BPABI tool flow.

Figure 10-1: BPABI tool flow

.c bin/exe.axf.o

Tool: compiler linker postlinker

Language ABI BPABI Platform
binary

Format:

Related information
Platforms supported by the BPABI on page 212

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 212 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

10.2 Platforms supported by the BPABI
The Base Platform Application Binary Interface (BPABI) defines different platform models based on
the type of shared library.

The platform models are:

Bare metal
The bare metal model is designed for an offline dynamic loader or a simple module loader.
References between modules are resolved by the loader directly without any additional
support structures.

DLL-like
The dynamically linked library (DLL) like model sacrifices transparency between the dynamic
and static library in return for better load and run-time efficiency.

The DLL-like model is not supported for AArch64 state.

Linker support for the BPABI
The Arm® linker supports all three BPABI models enabling you to link a collection of objects and
libraries into a:

• Bare metal executable image.

• BPABI DLL shared object.

• BPABI executable file.

Related information
About the Base Platform Application Binary Interface (BPABI) on page 212

10.3 Features common to all BPABI models
Some features are common to all BPABI models.

The linker enables you to build Base Platform Application Binary Interface (BPABI) shared libraries and
to link objects against shared libraries. The following features are common to all BPABI models:

• Symbol importing.

• Symbol exporting.

• Versioning.

• Visibility of symbols.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 213 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

10.3.1 About importing and exporting symbols for BPABI models

How symbols are imported and exported depends on the platform model.

In traditional linking, all symbols must be defined at link time for linking into a single executable
file containing all the required code and data. In platforms that support dynamic linking, symbol
binding can be delayed to load-time or in some cases, run-time. Therefore, the application can be
split into several modules, where a module is either an executable or a shared library. Any symbols
that are defined in modules other than the current module are placed in the dynamic symbol table.
Any functions that are suitable for dynamically linking to at load or runtime are also listed in the
dynamic symbol table.

There are two ways to control the contents of the dynamic symbol table:

• Automatic rules that infer the contents from the ELF symbol visibility property.

• Manual directives that are present in a steering file.

Related information
Automatic import and export for BPABI models on page 215
Symbol visibility for BPABI models on page 214
Manual import and export for BPABI models on page 215
Symbol versioning for BPABI models on page 216
RW compression for BPABI models on page 216
Linker command-line options for bare metal and DLL-like models on page 218
The symbol versioning script file on page 224

10.3.2 Symbol visibility for BPABI models

For Base Platform Application Binary Interface (BPABI) models, each symbol has a visibility property
that can be controlled by compiler switches, a steering file, or attributes in the source code.

If a symbol is a reference, the visibility controls the definitions that the linker can use to define the
symbol.

If a symbol is a definition, the visibility controls whether the symbol can be made visible outside the
current module.

The visibility options defined by the ELF specification are:

Table 10-1: Symbol visibility

Visibility Reference Definition

STV_DEFAULT Symbol can be bound to a definition in a
shared object.

Symbol can be made visible outside the
module. It can be preempted by the
dynamic linker by a definition from another
module.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 214 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

Visibility Reference Definition
STV_PROTECTED Symbol must be resolved within the module. Symbol can be made visible outside the

module. It cannot be preempted at run-time
by a definition from another module.

STV_HIDDEN STV_INTERNAL Symbol must be resolved within the module. Symbol is not visible outside the module.

Symbol preemption can happen in dynamically linked library (DLL) like implementations of the
BPABI. The platform owner defines how this works. See the documentation for your specific
platform for more information.

Related information
Linker command-line options for bare metal and DLL-like models on page 218
Optimization with RW data compression on page 77
The symbol versioning script file on page 224
--max_visibility=type on page 294
--override_visibility on page 299
EXPORT steering file command on page 341
IMPORT steering file command on page 343
REQUIRE steering file command on page 345
--use_definition_visibility on page 331
EXPORT or GLOBAL directives

10.3.3 Automatic import and export for BPABI models

The linker can automatically import and export symbols for BPABI models.

This behavior depends on a combination of the symbol visibility in the input object file, if the
output is an executable or a shared library. This depends on what type of linking model is being
used.

Related information
Features common to all BPABI models on page 213
Linker command-line options for bare metal and DLL-like models on page 218
Symbol versioning on page 222

10.3.4 Manual import and export for BPABI models

You can directly control the import and export of symbols with a linker steering file.

You can use linker steering files to:

• Manually control dynamic import and export.

• Override the automatic rules.

The steering file commands available to control the dynamic symbol table contents are:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 215 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/EXPORT-or-GLOBAL

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

• EXPORT.

• IMPORT.

• REQUIRE.

Related information
Edit the symbol tables with a steering file on page 107
EXPORT steering file command on page 341
IMPORT steering file command on page 343
REQUIRE steering file command on page 345

10.3.5 Symbol versioning for BPABI models

Symbol versioning provides a way to tightly control the interface of a shared library.

When a symbol is imported from a shared library that has versioned symbols, armlink binds to the
most recent (default) version of the symbol. At load or run-time when the platform OS resolves the
symbol version, it always resolves to the version selected by armlink, even if there is a more recent
version available. This process is automatic.

When a symbol is exported from an executable or a shared library, it can be given a version.
armlink supports explicit symbol versioning where you use a script to precisely define the versions.

Related information
Symbol versioning on page 222

10.3.6 RW compression for BPABI models

The decompressor for compressed RW data is tightly integrated into the start-up code in the Arm®

C library.

When running an application on a platform OS, this functionality must be provided by the platform
or platform libraries. Therefore, RW compression is turned off when linking a Base Platform
Application Binary Interface (BPABI) file because there is no decompressor. It is not possible to turn
compression back on again.

Related information
Optimization with RW data compression on page 77

10.4 Bare metal and DLL-like memory models
If you are developing applications or DLLs for a specific platform OS that are based around the
BPABI, there are some features that you must be aware of.

You must use the following information in conjunction with the platform documentation:
Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 216 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

• BPABI standard memory model.

• Mandatory symbol versioning in the BPABI DLL-like model.

• Automatic dynamic symbol table rules in the BPABI DLL-like model.

• Addressing modes in the BPABI DLL-like model.

• C++ initialization in the BPABI DLL-like model.

If you are implementing a platform OS, you must use this information in conjunction with the
BPABI specification.

The DLL-like model is not supported for AArch64 state.

10.4.1 BPABI standard memory model

Base Platform Application Binary Interface (BPABI) files have a standard memory model that is
described in the BPABI specification.

When you use the --bpabi command-line option, the linker automatically applies the standard
memory model and ignores any scatter file that you specify on the command-line. This is
equivalent to the following image layout:

LR_1 <read-only base address>
{
 ER_RO +0
 {
 *(+RO)
 }
}
LR_2 <read-write base address>
{
 ER_RW +0
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}

The BPABI model is also referred to as the bare metal and DLL-like memory model.

The DLL-like model is not supported for AArch64 state.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 217 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

Related information
Customization of the BPABI standard memory model on page 218

10.4.2 Customization of the BPABI standard memory model

You can customize the BPABI standard memory model with the memory map related command-line
options.

If you specify the option --ropi, LR_1 is marked as position-independent. Likewise,
if you specify the option --rwpi, LR_2 is marked as position-independent.

In most cases, you must specify the --ro_base and --rw_base options, because
the default values, 0x8000 and 0 respectively, might not be suitable for your
platform. These addresses do not have to reflect the addresses to which the image
is relocated at run time.

If you require a more complicated memory layout, use the Base Platform linking model, --
base_platform.

Related information
--bpabi on page 239
Base Platform linking model on page 35
--base_platform on page 237
--ro_base=address on page 309
--ropi on page 310
--rosplit on page 311
--rw_base=address on page 311
--rwpi on page 312
--xo_base=address on page 337

10.4.3 Linker command-line options for bare metal and DLL-like models

There are linker command-line options available for building bare metal executables and dynamically
linked library (DLL) like models for a platform OS.

The command-line options are:

Table 10-2: Turning on BPABI support

Command-line options Description

--base_platform To use scatter-loading with Base Platform Application Binary Interface
(BPABI).

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 218 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

Command-line options Description
--bpabi To produce a BPABI executable.

--bpabi --dll To produce a BPABI DLL.

The DLL-like model is not supported for AArch64 state.

Additional linker command-line options for the BPABI DLL-like model
There are additional linker command-line options available for the BPABI DLL-like model.

The additional command-line options are:

• --export_all, --no_export_all.

• --pltgot=type.

• --pltgot_opts=mode.

• --ro_base=address.

• --ropi.

• --rosplit.

• --rw_base=address.

• --rwpi.

• --symver_script=filename.

• --symver_soname.

Related information
BPABI standard memory model on page 217
Automatic dynamic symbol table rules in the BPABI DLL-like model on page 220
Addressing modes in the BPABI DLL-like model on page 221
Mandatory symbol versioning in the BPABI DLL-like model on page 220
--base_platform on page 237
--bpabi on page 239
--dll on page 255
--export_all, --no_export_all on page 262
--pltgot=type on page 302
--pltgot_opts=mode on page 303
--ropi on page 310
--rosplit on page 311
--rw_base=address on page 311
--rwpi on page 312
--symver_script=filename on page 327

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 219 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

--symver_soname on page 327
armlink Command-line Options on page 232
Base Platform ABI for the Arm Architecture

10.4.4 Mandatory symbol versioning in the BPABI DLL-like model

The Base Platform Application Binary Interface (BPABI) DLL-like model requires static binding to
ensure a symbol can be searched for at run-time.

This is because a post-linker might translate the symbolic information in a BPABI DLL to an import
or export table that is indexed by an ordinal. In which case, it is not possible to search for a symbol
at run-time.

Static binding is enforced in the BPABI with the use of symbol versioning. The command-line
option --symver_soname is on by default for BPABI files, this means that all exported symbols are
given a version based on the name of the DLL.

The DLL-like model is not supported for AArch64 state.

Related information
Symbol versioning on page 222
--symver_script=filename on page 327
--symver_soname on page 327

10.4.5 Automatic dynamic symbol table rules in the BPABI DLL-like model

There are rules that apply to dynamic symbol tables for the Base Platform Application Binary
Interface (BPABI) DLL-like model.

The following rules apply:

Executable
An undefined symbol reference is an undefined symbol error.

Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to the dynamic
symbol table.

Global symbols with STV_PROTECTED or STV_DEFAULT visibility are not exported to the dynamic
symbol table unless --export_all or --export_dynamic is set.

DLL
An undefined symbol reference is an undefined symbol error.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 220 of 351

https://developer.arm.com/documentation/ihi0037/latest

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

Global symbols with STV_HIDDEN or STV_INTERNAL visibility are never exported to the dynamic
symbol table.

STV_HIDDEN or STV_INTERNAL global symbols that are required for relocation
can be placed in the dynamic symbol table, however the linker changes them
into local symbols to prevent them from being accessed from outside the
shared library.

Global symbols with STV_PROTECTED or STV_DEFAULT visibility are always exported to the
dynamic symbol table.

The DLL-like model is not supported for AArch64 state.

You can manually export and import symbols using the EXPORT and IMPORT steering file commands.
Use the --edit command-line option to specify a steering file command.

Related information
Edit the symbol tables with a steering file on page 107
Steering file command summary on page 108
Steering file format on page 109
--edit=file_list on page 258
--export_all, --no_export_all on page 262
--export_dynamic, --no_export_dynamic on page 263
EXPORT steering file command on page 341
IMPORT steering file command on page 343

10.4.6 Addressing modes in the BPABI DLL-like model

The main difference between the bare metal and Base Platform Application Binary Interface (BPABI)
DLL-like models is the addressing mode used when accessing imported and own-program code and
data.

There are four options available that correspond to categories in the BPABI specification:

• None.

• Direct references.

• Indirect references.

• Relative static base address references.

You can control the selection of the required addressing mode with the following command-line
options:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 221 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

• --pltgot.

• --pltgot_opts.

The DLL-like model is not supported for AArch64 state.

Related information
--pltgot=type on page 302
--pltgot_opts=mode on page 303

10.4.7 C++ initialization in the BPABI DLL-like model

A dynamically linked library (DLL) supports the initialization of static constructors with a table that
contains references to initializer functions that perform the initialization.

The table is stored in an ELF section with a special section type of SHT_INIT_ARRAY. For each
of these initializers there is a relocation of type R_ARM_TARGET1 to a function that performs the
initialization.

The ELF Application Binary Interface (ABI) specification describes R_ARM_TARGET1 as either a relative
form, or an absolute form.

The Arm® C libraries use the relative form. For example, if the linker detects a definition of the Arm
C library __cpp_initialize__aeabi, it uses the relative form of R_ARM_TARGET1 otherwise it uses
the absolute form.

The DLL-like model is not supported for AArch64 state.

Related information
BPABI standard memory model on page 217
Mandatory symbol versioning in the BPABI DLL-like model on page 220
Automatic dynamic symbol table rules in the BPABI DLL-like model on page 220
Addressing modes in the BPABI DLL-like model on page 221
Linker command-line options for bare metal and DLL-like models on page 218
Initialization of the execution environment and execution of the application
C++ initialization, construction and destruction

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 222 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/Tailoring-the-C-library-to-a-new-execution-environment/Initialization-of-the-execution-environment-and-execution-of-the-application
https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/Tailoring-the-C-library-to-a-new-execution-environment/C---initialization--construction-and-destruction

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

10.5 Symbol versioning
Symbol versioning records extra information about symbols imported from, and exported by, a
dynamic shared object.

A dynamic loader uses this extra information to ensure that all the symbols required by an image
are available at load time.

10.5.1 Overview of symbol versioning

Symbol versioning enables shared object creators to produce new versions of symbols for use by
all new clients, while maintaining compatibility with clients linked against old versions of the shared
object.

Version
Symbol versioning adds the concept of a version to the dynamic symbol table. A version is a name
that symbols are associated with. When a dynamic loader tries to resolve a symbol reference
associated with a version name, it can only match against a symbol definition with the same version
name.

A version might be associated with previous version names to show the revision
history of the shared object.

Default version
While a shared object might have multiple versions of the same symbol, a client of the shared
object can only bind against the latest version.

This is called the default version of the symbol.

Creation of versioned symbols
By default, the linker does not create versioned symbols for a non Base Platform Application Binary
Interface (BPABI) shared object.

Related information
The symbol versioning script file on page 224

10.5.2 Embedded symbols

You can add specially-named symbols to input objects that cause the linker to create symbol
versions.

These symbols are of the form:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 223 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

• name@version for a non-default version of a symbol.

• name@@version for a default version of a symbol.

You must define these symbols, at the address of the function or data, as that you want to export.
The symbol name is divided into two parts, a symbol name name and a version definition version.
The name is added to the dynamic symbol table and becomes part of the interface to the shared
object. Version creates a version called ver if it does not already exist and associates name with the
version called ver.

The following example places the symbols foo@ver1, foo@@ver2, and bar@@ver1 into the object
symbol table:

int old_function(void) __asm__("foo@ver1");
int new_function(void) __asm__("foo@@ver2");
int other_function(void) __asm__("bar@@ver1");

The linker reads these symbols and creates version definitions ver1 and ver2. The symbol foo is
associated with a non-default version of ver1, and with a default version of ver2. The symbol bar is
associated with a default version of ver1.

There is no way to create associations between versions with this method.

Related information
Writing A32/T32 Assembly Language

10.5.3 The symbol versioning script file

You can embed the commands to produce symbol versions in a script file.

You specify a symbol versioning script file with the command-line option --symver_script=file.
Using this option automatically enables symbol versioning.

The script file supports the same syntax as the GNU ld linker.

Using a script file enables you to associate a version with an earlier version.

You can provide a steering file in addition to the embedded symbol method. If you choose to do
this then your script file must match your embedded symbols and use the Backus-Naur Form (BNF)
notation:

version_definition ::=
 version_name "{" symbol_association* "}" [depend_version] ";"

symbol_association ::=
 "local:" | "global:" | symbol_name ";"

Where:

• version_name is a string containing the name of the version.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 224 of 351

https://developer.arm.com/documentation/dui0801/l/Writing-A32-T32-Assembly-Language

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

• depend_version is a string containing the name of a version that this version_name depends on.
This version must have already been defined in the script file.

• "local:" indicates that all subsequent symbol_names in this version definition are local to the
shared object and are not versioned.

• "global:" indicates that all subsequent symbol_names belong to this version definition.

There is an implicit "global:" at the start of every version definition.

• symbol_name is the name of a global symbol in the static symbol table.

Version names have no specific meaning, but they are significant in that they make it into the
output. In the output, they are a part of the version specification of the library and a part of the
version requirements of a program that links against such a library. The following example shows
the use of version names:

VERSION_1
{
 ...
};
VERSION_2
{
 ...
} VERSION_1;

If you use a script file then the version definitions and symbols associated with them
must match. The linker warns you if it detects any mismatch.

Related information
Overview of symbol versioning on page 223

10.5.4 Example of creating versioned symbols

This example shows how to create versioned symbols in code and with a script file.

The following example places the symbols foo@ver1, foo@@ver2, and bar@@ver1 into the object
symbol table:

int old_function(void) __asm__("foo@ver1");
int new_function(void) __asm__("foo@@ver2");
int other_function(void) __asm__("bar@@ver1");

The corresponding script file includes the addition of dependency information so that ver2
depends on ver1 is:

ver1
{
 global:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 225 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

BPABI Shared Libraries and Executables

 foo; bar;
 local:
 *;
};
ver2
{
 global:
 foo;
} ver1;

Related information
Symbol versioning on page 222
Linker options for enabling implicit symbol versioning on page 226
--symver_script=filename on page 327

10.5.5 Linker options for enabling implicit symbol versioning

If you have to version your symbols to force static binding, but you do not care about the version
number that they are given, you can use implicit symbol versioning.

Use the command-line option --symver_soname to turn on implicit symbol versioning.

Where a symbol has no defined version, the linker uses the SONAME of the file being linked.

This option can be combined with embedded symbols or a script file. armlink adds the SONAME
{ *; }; definition to its internal representation of a symbol versioning script.

Related information
The symbol versioning script file on page 224

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 226 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Features of the Base Platform Linking Model

11. Features of the Base Platform Linking
Model

Describes features of the Base Platform linking model supported by the Arm linker, armlink.

The Base Platform linking model is not supported for AArch64 state.

11.1 Restrictions on the use of scatter files with the Base
Platform model

The Base Platform model supports scatter files, with some restrictions.

Although there are no restrictions on the keywords you can use in a scatter file, there are
restrictions on the types of scatter files you can use:

• A load region marked with the RELOC attribute must contain only execution regions with a
relative base address of +offset. The following examples show valid and invalid scatter files
using the RELOC attribute and +offset relative base address:
Valid scatter file example using

This is valid. All execution regions have +offset addresses.
LR1 0x8000 RELOC
{
 ER_RELATIVE +0
 {
 *(+RO)
 }
}

Invalid scatter file example using
This is not valid. One execution region has an absolute base address.
LR1 0x8000 RELOC
{
 ER_RELATIVE +0
 {
 *(+RO)
 }
 ER_ABSOLUTE 0x1000
 {
 *(+RW)
 }
}

• Any load region that requires a PLT section must contain at least one execution region
containing code, that is not marked OVERLAY. This execution region holds the PLT section. An
OVERLAY region cannot be used as the PLT must remain in memory at all times. The following

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 227 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Features of the Base Platform Linking Model

examples show valid and invalid scatter files that define execution regions requiring a PLT
section:
Valid scatter file example for a load region that requires a PLT section

This is valid. ER_1 contains code and is not OVERLAY.
LR_NEEDING_PLT 0x8000
{
 ER_1 +0
 {
 *(+RO)
 }
}

Invalid scatter file example for a load region that requires a PLT section
This is not valid. All execution regions containing code are marked
 OVERLAY.
LR_NEEDING_PLT 0x8000
{
 ER_1 +0 OVERLAY
 {
 *(+RO)
 }
 ER_2 +0
 {
 *(+RW)
 }
}

• If a load region requires a PLT section, then the PLT section must be placed within the load
region. By default, if a load region requires a PLT section, the linker places the PLT section in
the first execution region containing code. You can override this choice with a scatter-loading
selector.

If there is more than one load region containing code, the PLT section for a load region with
name name is .plt_name. If there is only one load region containing code, the PLT section is
called .plt.

The following examples show valid and invalid scatter files that place a PLT section:
Valid scatter file example for placing a PLT section

#This is valid. The PLT section for LR1 is placed in LR1.
LR1 0x8000
{
 ER1 +0
 {
 *(+RO)
 }
 ER2 +0
 {
 *(.plt_LR1)
 }
}
LR2 0x10000
{
 ER1 +0
 {
 *(other_code)
 }
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 228 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Features of the Base Platform Linking Model

Invalid scatter file example for placing a PLT section
#This is not valid. The PLT section of LR1 has been placed in LR2.
LR1 0x8000
{
 ER1 +0
 {
 *(+RO)
 }
}
LR2 0x10000
{
 ER1 +0
 {
 *(.plt_LR1)
 }
}

Related information
Base Platform linking model on page 35
Placement of PLT sequences with the Base Platform model on page 230
Load region attributes on page 182
Execution region attributes on page 189
Inheritance rules for load region address attributes on page 184
Inheritance rules for the RELOC address attribute on page 185
Inheritance rules for execution region address attributes on page 194

11.2 Scatter files for the Base Platform linking model
Scatter files containing relocatable and non-relocatable load regions for the Base Platform linking
model.

Standard BPABI scatter file with relocatable load regions
If you do not specify a scatter file when linking for the Base Platform linking model, the linker uses
a default scatter file defined for the standard Base Platform Application Binary Interface (BPABI)
memory model. This scatter file defines the following relocatable load regions:

LR1 0x8000 RELOC
{
 ER_RO +0
 {
 *(+RO)
 }
}
LR2 0x0 RELOC
{
 ER_RW +0
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 229 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Features of the Base Platform Linking Model

}

This example conforms to the BPABI, because it has the same two-region format as the BPABI
specification.

Scatter file with some load regions that are not relocatable
This example shows two load regions LR1 and LR2 that are not relocatable.

LR1 0x8000
{
 ER_RO +0
 {
 *(+RO)
 }
 ER_RW +0
 {
 *(+RW)
 }
 ER_ZI +0
 {
 *(+ZI)
 }
}
LR2 0x10000
{
 ER_KNOWN_ADDRESS +0
 {
 *(fixedsection)
 }
}
LR3 0x20000 RELOC
{
 ER_RELOCATABLE +0
 {
 *(floatingsection)
 }
}

The linker does not have to generate dynamic relocations between LR1 and LR2 because they have
fixed addresses. However, the RELOC load region LR3 might be widely separated from load regions
LR1 and LR2 in the address space. Therefore, dynamic relocations are required between LR1 and
LR3, and LR2 and LR3.

Use the options --pltgot=direct --pltgot_opts=crosslr to ensure a PLT is generated for each
load region.

Related information
Bare-metal linking model on page 32
Base Platform Application Binary Interface (BPABI) linking model on page 34
Restrictions on the use of scatter files with the Base Platform model on page 227
Load region attributes on page 182

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 230 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Features of the Base Platform Linking Model

11.3 Placement of PLT sequences with the Base Platform
model

The linker supports Procedure Linkage Table (PLT) generation for multiple load regions containing
code when linking in Base Platform mode.

To turn on PLT generation when in Base Platform mode (--base_platform) use --pltgot=option
that generates PLT sequences. You can use the option --pltgot_opts=crosslr to add entries in
the PLT for calls from and to RELOC load-regions. PLT generation for multiple Load Regions is only
supported for --pltgot=direct.

The --pltgot_opts=crosslr option is useful when you have multiple load regions that might be
moved relative to each other when the image is dynamically loaded. The linker generates a PLT for
each load region so that calls do not have to be extended to reach a distant PLT.

Placement of linker generated PLT sections:

• When there is only one load region there is one PLT. The linker creates a section called .plt
with an object anon$$obj.o.

• When there are multiple load regions, a PLT section is created for each load region that requires
one. By default, the linker places the PLT section in the first execution region containing code.
You can override this by specifying the exact PLT section name in the scatter file.

For example, a load region with name LR_NAME the PLT section is called .plt_LR_NAME with an
object of anon$$obj.o. To precisely name this PLT section in a scatter file, use the selector:

anon$$obj.o(.plt_LR_NAME)

Be aware of the following:

• The linker gives an error message if the PLT for load region LR_NAME is moved out of load region
LR_NAME.

• The linker gives an error message if load region LR_NAME contains a mixture of RELOC and
non-RELOC execution regions. This is because it cannot guarantee that the RELOC execution
regions are able to reach the PLT at run-time.

• --pltgot=indirect and --pltgot=sbrel are not supported for multiple load regions.

Related information
Base Platform linking model on page 35
--base_platform on page 237
--pltgot=type on page 302
--pltgot_opts=mode on page 303

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 231 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12. armlink Command-line Options
Describes the command-line options supported by the Arm linker, armlink.

12.1 --any_contingency
Permits extra space in any execution regions containing .ANY sections for linker-generated content
such as veneers and alignment padding.

Usage
Two percent of the extra space in such execution regions is reserved for veneers.

When a region is about to overflow because of potential padding, armlink lowers the priority of
the .ANY selector.

This option is off by default. That is, armlink does not attempt to calculate padding and strictly
follows the .ANY priorities.

Use this option with the --scatter option.

Related information
--info=topic[,topic,…] on page 271
--any_sort_order=order on page 234
--scatter=filename on page 313
Behavior when .ANY sections overflow because of linker-generated content on page 148

12.2 --any_placement=algorithm
Controls the placement of sections that are placed using the .ANY module selector.

Default
The default option is worst_fit.

Syntax
--any_placement=algorithm

where algorithm is one of the following:

best_fit

Place the section in the execution region that currently has the least free space but is also
sufficient to contain the section.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 232 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

first_fit

Place the section in the first execution region that has sufficient space. The execution regions
are examined in the order they are defined in the scatter file.

next_fit

Place the section using the following rules:

• Place in the current execution region if there is sufficient free space.

• Place in the next execution region only if there is insufficient space in the current region.

• Never place a section in a previous execution region.

worst_fit

Place the section in the execution region that currently has the most free space.

Use this option with the --scatter option.

Usage
The placement algorithms interact with scatter files and --any_contingency as follows:

Interaction with normal scatter-loading rules
Scatter-loading with or without .ANY assigns a section to the most specific selector. All
algorithms continue to assign to the most specific selector in preference to .ANY priority or
size considerations.

Interaction with .ANY priority
Priority is considered after assignment to the most specific selector in all algorithms.

worst_fit and best_fit consider priority before their individual placement criteria. For
example, you might have .ANY1 and .ANY2 selectors, with the .ANY1 region having the most
free space. When using worst_fit the section is assigned to . ANY2 because it has higher
priority. Only if the priorities are equal does the algorithm come into play.

first_fit considers the most specific selector first, then priority. It does not introduce any
more placement rules.

next_fit also does not introduce any more placement rules. If a region is marked full during
next_fit, that region cannot be considered again regardless of priority.

Interaction with -any_contingency
The priority of a .ANY selector is reduced to 0 if the region might overflow because of linker-
generated content. This is enabled and disabled independently of the sorting and placement
algorithms.

armlink calculates a worst-case contingency for each section.

For worst_fit, best_fit, and first_fit, when a region is about to overflow because of the
contingency, armlink lowers the priority of the related .ANY selector.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 233 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

For next_fit, when a possible overflow is detected, armlink marks that section as FULL and
does not consider it again. This stays consistent with the rule that when a section is full it can
never be revisited.

Related information
--any_sort_order=order on page 234
--info=topic[,topic,…] on page 271
--scatter=filename on page 313
Examples of using placement algorithms for .ANY sections on page 143
Example of next_fit algorithm showing behavior of full regions, selectors, and priority on page 145
--any_contingency on page 232
Placement of unassigned sections on page 138
Syntax of an input section description on page 197
Behavior when .ANY sections overflow because of linker-generated content on page 148

12.3 --any_sort_order=order
Controls the sort order of input sections that are placed using the .ANY module selector.

Default
The default option is --any_sort_order=descending_size.

Syntax
--any_sort_order=order

where order is one of the following:

descending_size

Sort input sections in descending size order.

cmdline

The order that the section appears on the linker command-line. The command-line order is
defined as File.Object.Section where:

• Section is the section index, sh_idx, of the Section in the Object.

• Object is the order that Object appears in the File.

• File is the order the File appears on the command line.

The order the Object appears in the File is only significant if the file is an ar archive.

By default, sections that have the same properties are resolved using the creation index. The --
tiebreaker command-line option does not have any effect in the context of --any_sort_order.

Use this option with the --scatter option.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 234 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Usage
The sorting governs the order that sections are processed during .ANY assignment. Normal scatter-
loading rules, for example RO before RW, are obeyed after the sections are assigned to regions.

Related information
--info=topic[,topic,…] on page 271
--scatter=filename on page 313
--any_contingency on page 232
Placement of unassigned sections on page 138
Examples of using sorting algorithms for .ANY sections on page 147

12.4 --api, --no_api
Enables and disables API section sorting. API sections are the sections that are called the most
within a region.

Default
The default is --no_api. The linker automatically switches to --api if at least one execution region
contains more code than the smallest inter-section branch. The smallest inter-section branch
depends on the code in the region and the target processor:

128MB
Execution region contains only A64 instructions.

32MB
Execution region contains only A32 instructions.

16MB
Execution region contains 32-bit T32 instructions.

4MB
Execution region contains only 16-bit T32 instructions.

Usage
In large region mode the API sections are extracted from the region and then inserted closest to
the hotspots of the calling sections. This minimises the number of veneers generated.

Related information
--largeregions, --no_largeregions on page 280
Linker-generated veneers on page 61

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 235 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.5 --autoat, --no_autoat
Controls the automatic assignment of __at sections to execution regions.

__at sections are sections that must be placed at a specific address.

Default
The default is --autoat.

Usage
If enabled, the linker automatically selects an execution region for each __at section. If a suitable
execution region does not exist, the linker creates a load region and an execution region to contain
the __at section.

If disabled, the standard scatter-loading section selection rules apply.

Restrictions
You cannot use __at section placement with position independent execution regions.

If you use __at sections with overlays, you cannot use --autoat to place those sections. You must
specify the names of __at sections in a scatter file manually, and specify the --no_autoat option.

Related information
Syntax of a scatter file on page 178
Placing __at sections at a specific address on page 131
Automatically placing __at sections on page 132
Manually placing __at sections on page 134

12.6 --bare_metal_pie
Specifies the bare-metal Position Independent Executable (PIE) linking model.

Not supported for AArch64 state.

Bare-metal PIE support is deprecated in this release.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 236 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Default
The following default settings are automatically specified:

• --fpic.

• --pie.

• --ref_pre_init.

Related information
--fpic on page 267
--pie on page 301
--ref_pre_init, --no_ref_pre_init on page 307

12.7 --base_platform
Specifies the Base Platform linking model. It is a superset of the Base Platform Application Binary
Interface (BPABI) model, --bpabi option.

Not supported for AArch64 state.

Usage
When you specify --base_platform, the linker also acts as if you specified --bpabi with the
following exceptions:

• The full choice of memory models is available, including scatter-loading:

◦ --dll.

◦ --force_so_throw, --no_force_so_throw.

◦ --pltgot=type.

◦ --rosplit.

If you do not specify a scatter file with --scatter, then the standard BPABI
memory model scatter file is used.

• The default value of the --pltgot option is different to that for --bpabi:

◦ For --base_platform, the default is --pltgot=none.

◦ For --bpabi the default is --pltgot=direct.

• If you specify --pltgot_opts=crosslr then calls to and from a load region marked RELOC go by
way of the Procedure Linkage Table (PLT).

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 237 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

To place unresolved weak references in the dynamic symbol table, use the IMPORT steering file
command.

If you are linking with --base_platform, and the parent load region has the RELOC
attribute, then all execution regions within that load region must have a +offset
base address.

Related information
--bpabi on page 239
--pltgot=type on page 302
--pltgot_opts=mode on page 303
--scatter=filename on page 313
--remove, --no_remove on page 309
Scatter files for the Base Platform linking model on page 229
--dll on page 255
--force_so_throw, --no_force_so_throw on page 266
--ro_base=address on page 309
--rosplit on page 311
--rw_base=address on page 311
--rwpi on page 312
Base Platform Application Binary Interface (BPABI) linking model on page 34
Base Platform linking model on page 35
Inheritance rules for the RELOC address attribute on page 185

12.8 --bestdebug, --no_bestdebug
Selects between linking for smallest code and data size or for best debug illusion.

Default
The default is --no_bestdebug. The smallest COMDAT groups are selected when linking, at the
expense of a possibly slightly poorer debug illusion.

Usage
Input objects might contain common data (COMDAT) groups, but these might not be identical
across all input objects because of differences such as objects compiled with different optimization
levels.

Use --bestdebug to select COMDAT groups with the best debug view. Be aware that the code and
data of the final image might not be the same when building with or without debug.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 238 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Example
For two objects compiled with different optimization levels:

armclang --target=arm-arm-none-eabi -march=armv8-a -c -O2 file1.c
armclang --target=arm-arm-none-eabi -march=armv8-a -c -O0 file2.c
armlink --bestdebug file1.o file2.o -o image.axf

Related information
-o filename, --output=filename on page 296
Elimination of common debug sections on page 75
Elimination of common groups or sections on page 75
Elimination of unused sections on page 76

12.9 --blx_arm_thumb, --no_blx_arm_thumb
Enables the linker to use the BLX instruction for A32 to T32 state changes.

Usage
If the linker cannot use BLX it must use an A32 to T32 interworking veneer to perform the state
change.

This option is on by default. It has no effect if the target architecture does not support BLX or when
linking for AArch64 state.

Related information
--blx_thumb_arm, --no_blx_thumb_arm on page 239

12.10 --blx_thumb_arm, --no_blx_thumb_arm
Enables the linker to use the BLX instruction for T32 to A32 state changes.

Usage
If the linker cannot use BLX it must use a T32 to A32 interworking veneer to perform the state
change.

This option is on by default. It has no effect if the target architecture does not support BLX or when
linking for AArch64 state.

Related information
--blx_arm_thumb, --no_blx_arm_thumb on page 239

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 239 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.11 --bpabi
Creates a Base Platform Application Binary Interface (BPABI) ELF file for passing to a platform-
specific post-linker.

Not supported for AArch64 state.

Usage
The BPABI model defines a standard-memory model that enables interoperability of BPABI-
compliant files across toolchains. When you specify this option:

• Procedure Linkage Table (PLT) and Global Offset Table (GOT) generation is supported.

• The default value of the --pltgot option is direct.

• A dynamically linked library (DLL) placed on the command-line can define symbols.

Restrictions
The BPAPI model does not support scatter-loading. However, scatter-loading is supported in the
Base Platform model.

Weak references in the dynamic symbol table are permitted only if the symbol is defined by a
DLL placed on the command-line. You cannot place an unresolved weak reference in the dynamic
symbol table with the IMPORT steering file command.

Related information
--base_platform on page 237
--remove, --no_remove on page 309
--dll on page 255
--pltgot=type on page 302
Base Platform Application Binary Interface (BPABI) linking model on page 34
Base Platform linking model on page 35
BPABI Shared Libraries and Executables on page 212

12.12 --branchnop, --no_branchnop
Enables or disables the replacement of any branch with a relocation that resolves to the next
instruction with a NOP.

Default
The default is --branchnop.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 240 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Usage
The default behavior is to replace any branch with a relocation that resolves to the next instruction
with a NOP. However, there are cases where you might want to use --no_branchnop to disable this
behavior. For example, when performing verification or pipeline flushes.

Related information
--inline, --no_inline on page 275
--tailreorder, --no_tailreorder on page 327
About branches that optimize to a NOP on page 82

12.13 --callgraph, --no_callgraph
Creates a file containing a static callgraph of functions.

The callgraph gives definition and reference information for all functions in the image.

If you use the --partial option to create a partially linked object, then no callgraph
file is created.

Default
The default is --no_callgraph.

Usage
The callgraph file:

• Is saved in the same directory as the generated image.

• Has the name of the linked image with the extension, if any, replaced by the callgraph output
extension, either .htm or .txt. Use the --callgraph_file=filename option to specify a
different callgraph filename.

• Has a default output format of HTML. Use the --callgraph_output=fmt option to control the
output format.

If the linker is to calculate the function stack usage, any functions defined in the
assembler files must have the appropriate:

• .cfi_startproc and .cfi_endproc directives.

• .cfi_sections .debug_frame directive.

The linker lists the following for each function func:

• Instruction set state for which the function is compiled (A32, T32, or A64).

• Set of functions that call func.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 241 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

• Set of functions that are called by func.

• Number of times the address of func is used in the image.

In addition, the callgraph identifies functions that are:

• Called through interworking veneers.

• Defined outside the image.

• Permitted to remain undefined (weak references).

• Called through a Procedure Linkage Table (PLT).

• Not called but still exist in the image.

The static callgraph also gives information about stack usage. It lists the:

• Size of the stack frame used by each function.

• Maximum size of the stack used by the function over any call sequence, that is, over any acyclic
chain of function calls.

If there is a cycle, or if the linker detects a function with no stack size information in the call chain,
+ Unknown is added to the stack usage. A reason is added to indicate why stack usage is unknown.

The linker reports missing stack frame information if there is no debug frame information for the
function.

For indirect functions, the linker cannot reliably determine which function made the indirect call.
This might affect how the maximum stack usage is calculated for a call chain. The linker lists all
function pointers used in the image.

Use frame directives in assembly language code to describe how your code uses the stack.
These directives ensure that debug frame information is present for debuggers to perform stack
unwinding or profiling.

Related information
--callgraph_file=filename on page 242
--callgraph_output=fmt on page 243
--callgraph_subset=symbol[,symbol,…] on page 243
--cgfile=type on page 244
--cgsymbol=type on page 245
--cgundefined=type on page 245

12.14 --callgraph_file=filename
Controls the output filename of the callgraph.

Syntax
--callgraph_file=filename

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 242 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

where filename is the callgraph filename.

The default filename is the name of the linked image with the extension, if any, replaced by the
callgraph output extension, either .htm or .txt.

Related information
--callgraph, --no_callgraph on page 241
--callgraph_output=fmt on page 243
--callgraph_subset=symbol[,symbol,…] on page 243
--cgfile=type on page 244
--cgsymbol=type on page 245
--cgundefined=type on page 245

12.15 --callgraph_output=fmt
Controls the output format of the callgraph.

Default
The default is --callgraph_output=html.

Syntax
--callgraph_output=fmt

Where fmt can be one of the following:

html

Outputs the callgraph in HTML format.

text

Outputs the callgraph in plain text format.

Related information
--callgraph, --no_callgraph on page 241
--callgraph_file=filename on page 242
--callgraph_subset=symbol[,symbol,…] on page 243
--cgfile=type on page 244
--cgsymbol=type on page 245
--cgundefined=type on page 245

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 243 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.16 --callgraph_subset=symbol[,symbol,…]
Creates a file containing a static callgraph for one or more specified symbols.

Syntax
--callgraph_subset={symbol[,symbol,...]}

where symbol is a comma-separated list of symbols.

Usage
The callgraph file:

• Is saved in the same directory as the generated image.

• Has the name of the linked image with the extension, if any, replaced by the callgraph output
extension, either .htm or .txt. Use the --callgraph_file=filename option to specify a
different callgraph filename.

• Has a default output format of HTML. Use the --callgraph_output=fmt option to control the
output format.

Related information
--callgraph, --no_callgraph on page 241
--callgraph_file=filename on page 242
--callgraph_output=fmt on page 243
--cgfile=type on page 244
--cgsymbol=type on page 245
--cgundefined=type on page 245

12.17 --cgfile=type
Controls the type of files to use for obtaining the symbols to be included in the callgraph.

Default
The default is --cgfile=all.

Syntax
--cgfile=type

where type can be one of the following:

all

Includes symbols from all files.

user

Includes only symbols from user defined objects and libraries.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 244 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

system

Includes only symbols from system libraries.

Related information
--callgraph, --no_callgraph on page 241
--callgraph_file=filename on page 242
--callgraph_output=fmt on page 243
--callgraph_subset=symbol[,symbol,…] on page 243
--cgsymbol=type on page 245
--cgundefined=type on page 245

12.18 --cgsymbol=type
Controls what symbols are included in the callgraph.

Default
The default is --cgsymbol=all.

Syntax
--cgsymbol=type

Where type can be one of the following:

all

Includes both local and global symbols.

locals

Includes only local symbols.

globals

Includes only global symbols.

Related information
--callgraph, --no_callgraph on page 241
--callgraph_file=filename on page 242
--callgraph_output=fmt on page 243
--callgraph_subset=symbol[,symbol,…] on page 243
--cgfile=type on page 244
--cgundefined=type on page 245

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 245 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.19 --cgundefined=type
Controls what undefined references are included in the callgraph.

Default
The default is --cgundefined=all.

Syntax
--cgundefined=type

Where type can be one of the following:

all

Includes both function entries and calls to undefined weak references.

entries

Includes function entries for undefined weak references.

calls

Includes calls to undefined weak references.

none

Omits all undefined weak references from the output.

Related information
--callgraph, --no_callgraph on page 241
--callgraph_file=filename on page 242
--callgraph_output=fmt on page 243
--callgraph_subset=symbol[,symbol,…] on page 243
--cgfile=type on page 244
--cgsymbol=type on page 245

12.20 --comment_section, --no_comment_section
Controls the inclusion of a comment section .comment in the final image.

Default
The default is --comment_section.

Usage
Use --no_comment_section to remove the .comment section, to help reduce the image size.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 246 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

You can also use the --filtercomment option to merge comments.

Related information
Linker merging of comment sections on page 83
--filtercomment, --no_filtercomment on page 263

12.21 --compress_debug, --no_compress_debug
Causes the linker to compress .debug_* sections, if it is sensible to do so.

Deprecated in this release.

Not supported for AArch64 state.

Default
The default is --no_compress_debug.

Usage
This removes some redundancy and reduces debug table size. Using --compress_debug can
significantly increase the time required to link an image. Debug compression can only be performed
on DWARF3 debug data, not DWARF2.

This option does not work on DWARF 4. Therefore, you must compile with the armclang option -
gdwarf3, because DWARF 4 is the default for armclang.

Related information
The DWARF Debugging Standard

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 247 of 351

http://dwarfstd.org/

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.22 --cppinit, --no_cppinit
Enables the linker to use alternative C++ libraries with a different initialization symbol if required.

Syntax
--cppinit=symbol

Where symbol is the initialization symbol to use.

Usage
If you do not specify --cppinit=symbol then the default symbol __cpp_initialize__aeabi_ is
assumed.

--no_cppinit does not take a symbol argument.

Effect
The linker adds a non-weak reference to symbol if any static constructor or destructor sections are
detected.

For --cppinit=__cpp_initialize__aeabi_ in AArch32 state, the linker processes
R_ARM_TARGET1 relocations as R_ARM_REL32, because this is required by the
__cpp_initialize__aeabi_ function. In all other cases R_ARM_TARGET1 relocations are processed
as R_ARM_ABS32.

There is no equivalent of R_ARM_TARGET1 in AARCH64 state.

--no_cppinit means do not add a reference.

Related information
--ref_cpp_init, --no_ref_cpp_init on page 307

12.23 --cpu=list
Lists the architecture and processor names that are supported by the --cpu=name option.

Syntax
--cpu=list

Related information
--cpu=name on page 249
--fpu=list on page 267

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 248 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

--fpu=name on page 267

12.24 --cpu=name
Enables code generation for the selected Arm® processor or architecture.

If you do not include the --cpu option, armlink derives an architecture from the combination of the
input objects.

If you include --cpu=name, armlink:

• Faults any input object that is not compatible with the cpu.

• For library selection, acts as if at least one input object is compiled with --cpu=name.

Syntax
--cpu=name

Where name is the name of a processor or architecture:

Processor and architecture names are not case-sensitive.

Wildcard characters are not accepted.

The following table shows the supported architectures. For a complete list of the supported
architecture and processor names, specify the --cpu=list option.

Table 12-1: Supported Arm architectures

Architecture name Description

6-M Armv6 architecture microcontroller profile.

6S-M Armv6 architecture microcontroller profile with OS extensions.

7-A Armv7 architecture application profile.

7-A.security Armv7-A architecture profile with Security Extensions and includes
the SMC instruction (formerly SMI).

7-R Armv7 architecture real-time profile.

7-M Armv7 architecture microcontroller profile.

7E-M Armv7-M architecture profile with DSP extension.

8-A.32 Armv8-A architecture profile, AArch32 state.

8-A.32.crypto Armv8-A architecture profile, AArch32 state with cryptographic
instructions.

8-A.64 Armv8-A architecture profile, AArch64 state.

8-A.64.crypto Armv8-A architecture profile, AArch64 state with cryptographic
instructions.

8.1-A.32 Armv8.1, for Armv8-A architecture profile, AArch32 state.

8.1-A.32.crypto Armv8.1, for Armv8-A architecture profile, AArch32 state with
cryptographic instructions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 249 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Architecture name Description
8.1-A.64 Armv8.1, for Armv8-A architecture profile, AArch64 state.

8.1-A.64.crypto Armv8.1, for Armv8-A architecture profile, AArch64 state with
cryptographic instructions.

8.2-A.32 Armv8.2, for Armv8-A architecture profile, AArch32 state.

8.2-A.32.crypto Armv8.2, for Armv8-A architecture profile, AArch32 state with
cryptographic instructions.

8.2-A.64 Armv8.2, for Armv8-A architecture profile, AArch64 state.

8.2-A.64.crypto Armv8.2, for Armv8-A architecture profile, AArch64 state with
cryptographic instructions.

8.3-A.32 Armv8.3, for Armv8-A architecture profile, AArch32 state.

8.3-A.32.crypto Armv8.3, for Armv8-A architecture profile, AArch32 state with
cryptographic instructions.

8.3-A.64 Armv8.3, for Armv8-A architecture profile, AArch64 state.

8.3-A.64.crypto Armv8.3, for Armv8-A architecture profile, AArch64 state with
cryptographic instructions.

8-R Armv8-R architecture profile.

8-M.Base Armv8-M baseline architecture profile. Derived from the Armv6-M
architecture.

8-M.Main Armv8-M mainline architecture profile. Derived from the Armv7-M
architecture.

8-M.Main.dsp Armv8-M mainline architecture profile with DSP extension.

The full list of supported architectures and processors depends on your license.

Build attribute checking is not supported for AArch64 state.

Usage
If you omit --cpu, the linker auto-detects the processor or architecture from the input object files.

Specify --cpu=list to list the supported processor and architecture names that you can use with
--cpu=name.

The link phase fails if any of the component object files rely on features that are incompatible with
the specified processor. The linker also uses this option to optimize the choice of system libraries
and any veneers that have to be generated when building the final image.

Restrictions
You cannot specify both a processor and an architecture on the same command-line.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 250 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Related information
--cpu=list on page 248
--fpu=list on page 267
--fpu=name on page 267

12.25 --crosser_veneershare, --no_crosser_veneershare
Enables or disables veneer sharing across execution regions.

Usage
The default is --crosser_veneershare, and enables veneer sharing across execution regions.

--no_crosser_veneershare prohibits veneer sharing across execution regions.

Related information
--veneershare, --no_veneershare on page 335

12.26 --datacompressor=opt
Enables you to specify one of the supplied algorithms for RW data compression.

Not supported for AArch64 state.

Default
The default is --datacompressor=on.

Syntax
--datacompressor=opt

Where opt is one of the following:

on

Enables RW data compression to minimize ROM size.

off

Disables RW data compression.

list

Lists the data compressors available to the linker.

id

A data compression algorithm:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 251 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Table 12-2: Data compressor algorithms

id Compression algorithm

0 run-length encoding

1 run-length encoding, with LZ77 on small-repeats

2 complex LZ77 compression

Specifying a compressor adds a decompressor to the code area. If the final image does not
have compressed data, the decompressor is not added.

Usage
If you do not specify a data compression algorithm, the linker chooses the most appropriate one for
you automatically. In general, it is not necessary to override this choice.

Related information
How compression is applied on page 79

12.27 --debug, --no_debug
Controls the generation of debug information in the output file.

Default
The default is --debug.

Usage
Debug information includes debug input sections and the symbol/string table.

Use --no_debug to exclude debug information from the output file. The resulting ELF image is
smaller, but you cannot debug it at source level. The linker discards any debug input section it finds
in the input objects and library members, and does not include the symbol and string table in the
image. This only affects the image size as loaded into the debugger. It has no effect on the size of
any resulting binary image that is downloaded to the target.

If you are using --partial the linker creates a partially-linked object without any debug data.

Do not use the armlink option --no_debug if you want to use the fromelf option
--fieldoffsets on the image. The --fieldoffsets functionality requires that the
object or image file has debug information.

Related information
--fieldoffsets fromelf option

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 252 of 351

https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--fieldoffsets

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.28 --diag_error=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Error severity.

Syntax
--diag_error=tag[,tag,...]

Where tag can be:

• A diagnostic message number to set to error severity. This is the four-digit number, nnnn, with
the tool letter prefix, but without the letter suffix indicating the severity.

• warning, to treat all warnings as errors.

Related information
--diag_remark=tag[,tag,…] on page 253
--diag_style=arm|ide|gnu on page 253
--diag_suppress=tag[,tag,…] on page 254
--diag_warning=tag[,tag,…] on page 255
--strict on page 321

12.29 --diag_remark=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Remark severity.

Remarks are not displayed by default. Use the --remarks option to display these
messages.

Syntax
--diag_remark=tag[,tag,...]

Where tag is a comma-separated list of diagnostic message numbers. This is the four-digit number,
nnnn, with the tool letter prefix, but without the letter suffix indicating the severity.

Related information
--diag_error=tag[,tag,…] on page 252
--diag_style=arm|ide|gnu on page 253
--diag_suppress=tag[,tag,…] on page 254
--diag_warning=tag[,tag,…] on page 255
--remarks on page 308
--strict on page 321

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 253 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.30 --diag_style=arm|ide|gnu
Specifies the display style for diagnostic messages.

Default
The default is --diag_style=arm.

Syntax
--diag_style=string

Where string is one of:

arm

Display messages using the legacy Arm® compiler style.

ide

Include the line number and character count for any line that is in error. These values are
displayed in parentheses.

gnu

Display messages in the format used by gcc.

Usage
--diag_style=gnu matches the format reported by the GNU Compiler, gcc.

--diag_style=ide matches the format reported by Microsoft Visual Studio.

Related information
--diag_error=tag[,tag,…] on page 252
--diag_remark=tag[,tag,…] on page 253
--diag_suppress=tag[,tag,…] on page 254
--diag_warning=tag[,tag,…] on page 255
--remarks on page 308
--strict on page 321

12.31 --diag_suppress=tag[,tag,…]
Suppresses diagnostic messages that have a specific tag.

Syntax
--diag_suppress=tag[,tag,...]

Where tag can be:

• A diagnostic message number to be suppressed. This is the four-digit number, nnnn , with the
tool letter prefix, but without the letter suffix indicating the severity.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 254 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

• error, to suppress all errors that can be downgraded.

• warning, to suppress all warnings.

Example
To suppress the warning messages that have numbers L6314W and L6305W, use the following
command:

armlink --diag_suppress=L6314,L6305 ...

Related information
--diag_error=tag[,tag,…] on page 252
--diag_remark=tag[,tag,…] on page 253
--diag_style=arm|ide|gnu on page 253
--diag_warning=tag[,tag,…] on page 255
--strict on page 321
--remarks on page 308

12.32 --diag_warning=tag[,tag,…]
Sets diagnostic messages that have a specific tag to Warning severity.

Syntax
--diag_warning=tag[,tag,...]

Where tag can be:

• A diagnostic message number to set to warning severity. This is the four-digit number, nnnn,
with the tool letter prefix, but without the letter suffix indicating the severity.

• error, to set all errors that can be downgraded to warnings.

Related information
--diag_error=tag[,tag,…] on page 252
--diag_remark=tag[,tag,…] on page 253
--diag_style=arm|ide|gnu on page 253
--diag_suppress=tag[,tag,…] on page 254
--remarks on page 308

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 255 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.33 --dll
Creates a Base Platform Application Binary Interface (BPABI) dynamically linked library (DLL).

Not supported for AArch64 state.

Usage
The DLL is marked as a shared object in the ELF file header.

You must use --bpabi with --dll to produce a BPABI-compliant DLL.

You can also use --dll with --base_platform.

By default, this option disables unused section elimination. Use the --remove option
to re-enable unused sections when building a DLL.

Related information
--remove, --no_remove on page 309
--bpabi on page 239
BPABI Shared Libraries and Executables on page 212

12.34 --dynamic_linker=name
Specifies the dynamic linker to use to load and relocate the file at runtime.

Not supported for AArch64 state.

Syntax
--dynamic_linker=name

--dynamiclinker=name

Where name is the name of the dynamic linker to store in the executable.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 256 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Usage
When you link with shared objects, the dynamic linker to use is stored in the executable. This
option specifies a particular dynamic linker to use when the file is executed.

Related information
--fini=symbol on page 264
--init=symbol on page 274
--library=name on page 283
BPABI Shared Libraries and Executables on page 212

12.35 --eager_load_debug, --no_eager_load_debug
Manages how armlink loads debug section data.

Usage
The --no_eager_load_debug option causes the linker to remove debug section data from memory
after object loading. This lowers the peak memory usage of the linker at the expense of some linker
performance, because much of the debug data has to be loaded again when the final image is
written.

Using --no_eager_load_debug option does not affect the debug data that is written into the ELF
file.

The default is --eager_load_debug.

If you use some command-line options, such as --map, the resulting image or object
built without debug information might differ by a small number of bytes. This is
because the .comment section contains the linker command line used, where the
options have differed from the default. Therefore --no_eager_load_debug images
are a little larger and contain Program Header and possibly a section header a small
number of bytes later. Use --no_comment_section to eliminate this difference.

Related information
--comment_section, --no_comment_section on page 246

12.36 --eh_frame_hdr
When an AArch64 image contains C++ exceptions, merges all .eh_frame sections into one
.eh_frame section and then creates the .eh_frame_hdr section.

Default
The default is -eh_frame_hdr.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 257 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Usage
The .eh_frame_hdr section contains a binary search table of pointers to the .eh_frame records.
During the merge armlink removes any orphaned records.

Only .eh_frame sections defined by the Linux Standard Base specification are supported. The
.eh_frame_hdr section is created according to the Linux Standard Base specification. If armlink finds
an unexpected .eh_frame section, it stops merging, does not create the .eh_frame_hdr section, and
generates corresponding warnings.

Restrictions
Valid only for AArch64 images.

Related information
Linux Foundation

12.37 --edit=file_list
Enables you to specify steering files containing commands to edit the symbol tables in the output
binary.

Syntax
--edit=file_list

Where file_list can be more than one steering file separated by a comma. Do not include a
space after the comma.

Usage
You can specify commands in a steering file to:

• Hide global symbols. Use this option to hide specific global symbols in object files. The hidden
symbols are not publicly visible.

• Rename global symbols. Use this option to resolve symbol naming conflicts.

Examples
--edit=file1 --edit=file2 --edit=file3

--edit=file1,file2,file3

Related information
Steering file command summary on page 108
Hide and rename global symbols with a steering file on page 110
Linker Steering File Command Reference on page 341

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 258 of 351

http://www.linuxfoundation.org/

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.38 --emit_debug_overlay_relocs
Outputs only relocations of debug sections with respect to overlaid program sections to aid an
overlay-aware debugger.

Not supported for AArch64 state.

Related information
--emit_debug_overlay_section on page 259
--emit_relocs on page 260
--emit_non_debug_relocs on page 260
Manual overlay support
ABI for the Arm Architecture: Support for Debugging Overlaid Programs

12.39 --emit_debug_overlay_section
Emits a special debug overlay section during static linking.

Not supported for AArch64 state.

Usage
In a relocatable file, a debug section refers to a location in a program section by way of a relocated
location. A reference from a debug section to a location in a program section has the following
format:

<debug_section_index, debug_section_offset>, <program_section_index,
 program_section_offset>

During static linking the pair of program values is reduced to single value, the execution address.
This is ambiguous in the presence of overlaid sections.

To resolve this ambiguity, use this option to output a .ARM.debug_overlay section of type
SHT_ARM_DEBUG_OVERLAY = SHT_LOUSER + 4 containing a table of entries as follows:

debug_section_offset, debug_section_index, program_section_index

Related information
--emit_debug_overlay_relocs on page 258

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 259 of 351

https://developer.arm.com/documentation/dui0773/l/Overlays/Manual-overlay-support
https://developer.arm.com/documentation/ihi0049/latest

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

--emit_relocs on page 260
Automatic overlay support
Manual overlay support
ABI for the Arm Architecture: Support for Debugging Overlaid Programs

12.40 --emit_non_debug_relocs
Retains only relocations from non-debug sections in an executable file.

Not supported for AArch64 state.

Related information
--emit_relocs on page 260

12.41 --emit_relocs
Retains all relocations in the executable file. This results in larger executable files.

Not supported for AArch64 state.

Usage
This is equivalent to the GNU ld --emit-relocs option.

Related information
--emit_debug_overlay_relocs on page 258
--emit_non_debug_relocs on page 260
ABI for the Arm Architecture: Support for Debugging Overlaid Programs

12.42 --entry=location
Specifies the unique initial entry point of the image. Although an image can have multiple entry
points, only one can be the initial entry point.

Syntax
--entry=location

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 260 of 351

https://developer.arm.com/documentation/dui0773/l/Overlays/Automatic-overlay-support
https://developer.arm.com/documentation/dui0773/l/Overlays/Manual-overlay-support
https://developer.arm.com/documentation/ihi0049/latest
https://developer.arm.com/documentation/ihi0049/latest

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Where location is one of the following:

entry_address

A numerical value, for example: --entry=0.

symbol

Specifies an image entry point as the address of symbol, for example: --
entry=reset_handler.

offset+object (section)

Specifies an image entry point as an offset inside a section within a particular object , for
example:--entry=8+startup.o(startupseg).

There must be no spaces within the argument to --entry. The input section and object
names are matched without case-sensitivity. You can use the following simplified notation:

• object(section), if offset is zero.

• object, if there is only one input section. armlink generates an error message if there is
more than one code input section in object.

If the entry address of your image is in T32 state, then the least significant bit of the
address must be set to 1. The linker does this automatically if you specify a symbol.
For example, if the entry code starts at address 0x8000 in T32 state you must use --
entry=0x8001.

On Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,
for example:

--entry="8+startup.o(startupseg)"

Usage
The image can contain multiple entry points. Multiple entry points might be specified with the
ENTRY directive in assembler source files. In such cases, a unique initial entry point must be
specified for an image, otherwise the error L6305E is generated. The initial entry point specified
with the --entry option is stored in the executable file header for use by the loader. There can
be only one occurrence of this option on the command line. A debugger typically uses this entry
address to initialize the Program Counter (PC) when an image is loaded. The initial entry point must
meet the following conditions:

• The image entry point must lie within an execution region.

• The execution region must be non-overlay, and must be a root execution region (load address
== execution address).

Related information
--startup=symbol, --no_startup on page 319
ENTRY directive

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 261 of 351

https://developer.arm.com/documentation/dui0801/l/Directives-Reference/ENTRY

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.43 --errors=filename
Redirects the diagnostics from the standard error stream to a specified file.

Syntax
--errors=filename

Usage
The specified file is created at the start of the link stage. If a file of the same name already exists, it
is overwritten.

If filename is specified without path information, the file is created in the current directory.

Related information
--diag_error=tag[,tag,…] on page 252
--diag_remark=tag[,tag,…] on page 253
--diag_style=arm|ide|gnu on page 253
--diag_suppress=tag[,tag,…] on page 254
--diag_warning=tag[,tag,…] on page 255
--remarks on page 308

12.44 --exceptions, --no_exceptions
Controls the generation of exception tables in the final image.

Default
The default is --exceptions.

Usage
Using --no_exceptions generates an error message if any exceptions sections are present in the
image after unused sections have been eliminated. Use this option to ensure that your code is
exceptions free.

12.45 --export_all, --no_export_all
Controls the export of all global, non-hidden symbols to the dynamic symbols table.

Default
The default is --export_all for building shared libraries and dynamically linked libraries (DLLs).

The default is --no_export_all for building applications.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 262 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Usage
Use --export_all to dynamically export all global, non-hidden symbols from the executable or
DLL to the dynamic symbol table. Use --no_export_all to prevent the exporting of symbols to the
dynamic symbol table.

--export_all always exports non-hidden symbols into the dynamic symbol table. The dynamic
symbol table is created if necessary.

You cannot use --export_all to produce a statically linked image because it always exports non-
hidden symbols, forcing the creation of a dynamic segment.

For more precise control over the exporting of symbols, use one or more steering files.

Related information
--export_dynamic, --no_export_dynamic on page 263

12.46 --export_dynamic, --no_export_dynamic
Controls the export of dynamic symbols to the dynamic symbols table.

Not supported for AArch64 state.

Default
--no_export_dynamic is the default.

Usage
If an executable has dynamic symbols, then --export_dynamic exports all externally visible symbols.

--export_dynamic exports non-hidden symbols into the dynamic symbol table only if a dynamic
symbol table already exists.

You can use --export_dynamic to produce a statically linked image if there are no imports or
exports.

Related information
--export_all, --no_export_all on page 262

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 263 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.47 --filtercomment, --no_filtercomment
Controls whether the linker modifies the .comment section to assist merging.

Default
The default is --filtercomment.

Usage
The linker always removes identical comments. The --filtercomment permits the linker to
preprocess the .comment section and remove some information that prevents merging.

Use --no_filtercomment to prevent the linker from modifying the .comment section.

armlink does not preprocess comment sections from armclang.

Related information
Linker merging of comment sections on page 83
--comment_section, --no_comment_section on page 246

12.48 --fini=symbol
Specifies the symbol name to use to define the entry point for finalization code.

Syntax
--fini=symbol

Where symbol is the symbol name to use for the entry point to the finalization code.

Usage
The dynamic linker executes this code when it unloads the executable file or shared object.

Related information
--dynamic_linker=name on page 256
--init=symbol on page 274
--library=name on page 283

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 264 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.49 --first=section_id
Places the selected input section first in its execution region. This can, for example, place the
section containing the vector table first in the image.

Syntax
--first=section_id

Where section_id is one of the following:

symbol

Selects the section that defines symbol. For example: --first=reset.

You must not specify a symbol that has more than one definition, because only one section
can be placed first.

object (section)

Selects section from object. There must be no space between object and the following
open parenthesis. For example: --first=init.o(init).

object

Selects the single input section in object. For example: --first=init.o.

If you use this short form and there is more than one input section in object, armlink
generates an error message.

On Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,
for example:

--first="init.o(init)"

Usage
The --first option cannot be used with --scatter. Instead, use the +FIRST attribute in a scatter
file.

Related information
--last=section_id on page 281
--scatter=filename on page 313
Section placement with the FIRST and LAST attributes on page 58
Section placement with the linker on page 56

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 265 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.50 --force_explicit_attr
Causes the linker to retry the CPU mapping using build attributes constructed when an architecture
is specified with --cpu.

Build attribute compatibility checking is supported only for AArch32 state.

Usage
The --cpu option checks the FPU attributes if the CPU chosen has a built-in FPU.

The error message L6463U: Input Objects contain <archtype> instructions but could not
find valid target for <archtype> architecture based on object attributes. Suggest using

--cpu option to select a specific cpu. is given in the following situations:

• The ELF file contains instructions from architecture archtype yet the build attributes claim that
archtype is not supported.

• The build attributes are inconsistent enough that the linker cannot map them to an existing
CPU.

If setting the --cpu option still fails, use --force_explicit_attr to cause the linker to retry the
CPU mapping using build attributes constructed from --cpu=archtype . This might help if the error
is being given solely because of inconsistent build attributes.

Related information
--cpu=name on page 249
--fpu=name on page 267

12.51 --force_so_throw, --no_force_so_throw
Controls the assumption made by the linker that an input shared object might throw an exception.

Not supported for AArch64 state.

Usage
By default, exception tables are discarded if no code throws an exception.

Use --force_so_throw to specify that all shared objects might throw an exception and so force the
linker to keep the exception tables, regardless of whether the image can throw an exception or not.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 266 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Default
The default is --no_force_so_throw.

12.52 --fpic
Enables you to link Position-Independent Code (PIC), that is, code that has been compiled using the -
fbare-metal-pie or -fpic compiler command-line options.

The --fpic option is implicitly specified when the --bare_metal_pie option is used.

Bare-metal PIE support is deprecated in this release.

Related information
--bare_metal_pie on page 236

12.53 --fpu=list
Lists the FPU architectures that are supported by the --fpu=name option.

Deprecated options are not listed.

Related information
--cpu=list on page 248
--cpu=name on page 249
--fpu=name on page 267

12.54 --fpu=name
Specifies the target FPU architecture.

Default
The default target FPU architecture is derived from use of the --cpu option.

If the processor you specify with --cpu has a VFP coprocessor, the default target FPU architecture
is the VFP architecture for that processor.

Syntax
--fpu=name

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 267 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Where name is the name of the target FPU architecture. Specify --fpu=list to list the supported
FPU architecture names that you can use with --fpu=name.

The default floating-point architecture depends on the target architecture.

Software floating-point linkage is not supported for AArch64 state.

Usage
If you specify this option, it overrides any implicit FPU option that appears on the command line,
for example, where you use the --cpu option.

The linker uses this option to optimize the choice of system libraries. The default is to select an
FPU that is compatible with all of the component object files.

The linker fails if any of the component object files rely on features that are incompatible with the
selected FPU architecture.

Restrictions
Arm® Neon® support is disabled for SoftVFP.

Related information
--cpu=list on page 248
--cpu=name on page 249
--fpu=list on page 267

12.55 --got=type
Generates Global Offset Tables (GOTs) to resolve GOT relocations in bare metal images. armlink
statically resolves the GOT relocations.

Default
The default for AArch32 state is none.

The default for AArch64 state is local.

Syntax
--got=type

Where type is one of the following:

none

Disables GOT generation.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 268 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

local

Creates a local offset table for each execution region.

Not supported for AArch32 state.

global

Creates a single offset table for the whole image.

12.56 --gnu_linker_defined_syms
Enables support for the GNU equivalent of input section symbols.

Deprecated in this release.

Usage
If you want GNU-style behavior when treating the Arm® symbols SectionName$$Base and
SectionName$$Limit, then specify --gnu_linker_defined_syms.

Table 12-3: GNU equivalent of input sections

GNU symbol Arm symbol Description

__start_SectionName SectionName$$Base Address of the start of the consolidated
section called SectionName.

__stop_SectionName SectionName$$Limit Address of the byte beyond the end of the
consolidated section called SectionName

• A reference to SectionName by a GNU input section symbol is sufficient for
armlink to prevent the section from being removed as unused.

• A reference by an Arm input section symbol is not sufficient to prevent the
section from being removed as unused.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 269 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.57 --help
Displays a summary of the main command-line options.

Default
This is the default if you specify armlink without any options or source files.

Related information
--version_number on page 335
--vsn on page 336

12.58 --import_cmse_lib_in=filename
Reads an existing import library and creates gateway veneers with the same address as given in the
import library. This option is useful when producing a new version of a Secure image where the
addresses in the output import library must not change. It is optional for a Secure image.

Syntax
--import_cmse_lib_in=filename

Where filename is the name of the import library file.

Usage
The input import library is an object file that contains only a symbol table. Each symbol specifies
an absolute address of a secure gateway veneer for an entry function of the same name as the
symbol.

armlink places secure gateway veneers generated from an existing import library using the __at
feature. New secure gateway veneers must be placed using a scatter file.

Related information
Generation of secure gateway veneers on page 65
--import_cmse_lib_out=filename on page 270
Building Secure and Non-secure Images Using Armv8-M Security Extensions

12.59 --import_cmse_lib_out=filename
Outputs the secure code import library to the location specified. This option is required for a
Secure image.

Syntax
--import_cmse_lib_out=filename

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 270 of 351

https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Where filename is the name of the import library file.

The output import library is an object file that contains only a symbol table. Each symbol specifies
an absolute address of a secure gateway for an entry function of the same name as the symbol.
Secure gateways include both secure gateway veneers generated by armlink and any other secure
gateways for entry functions found in the image.

Related information
Generation of secure gateway veneers on page 65
--import_cmse_lib_in=filename on page 270
Building Secure and Non-secure Images Using Armv8-M Security Extensions

12.60 --info=topic[,topic,…]
Prints information about specific topics. You can write the output to a text file using -list=file.

Syntax
--info={topic[,topic,...]}

Where topic is a comma-separated list from the following topic keywords:

any

For unassigned sections that are placed using the .ANY module selector, lists:

• The sort order.

• The placement algorithm.

• The sections that are assigned to each execution region in the order that the placement
algorithm assigns them.

• Information about the contingency space and policy that is used for each region.

This keyword also displays additional information when you use the execution region
attribute ANY_SIZE in a scatter file.

architecture

Summarizes the image architecture by listing the processor, FPU, and byte order.

common

Lists all common sections that are eliminated from the image. Using this option implies --
info=common,totals.

compression

Gives extra information about the RW compression process.

debug

Lists all rejected input debug sections that are eliminated from the image as a result of using
--remove. Using this option implies --info=debug,totals.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 271 of 351

https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

exceptions

Gives information on exception table generation and optimization.

inline

If you also specify --inline, lists all functions that the linker inlines, and the total number
inlined.

inputs

Lists the input symbols, objects, and libraries.

libraries

Lists the full path name of every library the link stage automatically selects.

You can use this option with --info_lib_prefix to display information about a specific
library.

merge

Lists the const strings that the linker merges. Each item lists the merged result, the strings
being merged, and the associated object files.

pltgot

Lists the PLT entries that are built for the executable or DLL.

sizes

Lists the code and data (RO Data, RW Data, ZI Data, and Debug Data) sizes for each input
object and library member in the image. Using this option implies --info=sizes,totals.

stack

Lists the stack usage of all functions.

summarysizes

Summarizes the code and data sizes of the image.

summarystack

Summarizes the stack usage of all global symbols.

tailreorder

Lists all the tail calling sections that are moved above their targets, as a result of using --
tailreorder.

totals

Lists the totals of the code and data (RO Data, RW Data, ZI Data, and Debug Data) sizes for
input objects and libraries.

unused

Lists all unused sections that are eliminated from the user code as a result of using --remove.
It does not list any unused sections that are loaded from the Arm® C libraries.

unusedsymbols

Lists all symbols that unused section elimination removes.

veneers

Lists the linker-generated veneers.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 272 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

veneercallers

Lists the linker-generated veneers with additional information about the callers to each
veneer. Use with --verbose to list each call individually.

veneerpools

Displays information on how the linker has placed veneer pools.

visibility

Lists the symbol visibility information. You can use this option with either --info=inputs or
--verbose to enhance the output.

weakrefs

Lists all symbols that are the target of weak references, and whether they were defined.

Usage
The output from --info=sizes,totals always includes the padding values in the totals for input
objects and libraries.

If you are using RW data compression (the default), or if you have specified a compressor using the
--datacompressor=id option, the output from --info=sizes,totals includes an entry under Grand
Totals to reflect the true size of the image.

Spaces are not permitted between topic keywords in the list. For example, you can
enter --info=sizes,totals but not --info=sizes, totals.

Related information
--any_contingency on page 232
--any_sort_order=order on page 234
--info_lib_prefix=opt on page 274
--merge, --no_merge on page 295
--veneer_inject_type=type on page 333
Elimination of unused sections on page 76
Options for getting information about linker-generated files on page 87
Placement of unassigned sections on page 138
--datacompressor=opt on page 251
--inline, --no_inline on page 275
--remove, --no_remove on page 309
--keep_intermediate on page 279
--tailreorder, --no_tailreorder on page 327
Considerations when working with RW data compression on page 79
Optimization with RW data compression on page 77
How the linker chooses a compressor on page 77
How compression is applied on page 79
Execution region attributes on page 189

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 273 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.61 --info_lib_prefix=opt
Specifies a filter for the --info=libraries option. The linker only displays the libraries that have
the same prefix as the filter.

Syntax
--info=libraries --info_lib_prefix=opt

Where opt is the prefix of the required library.

Examples
• Displaying a list of libraries without the filter:

armlink --info=libraries test.o

Produces a list of libraries, for example:

install_directory\lib\armlib\c_4.linstall_directory\lib\armlib
\fz_4s.linstall_directory\lib\armlib\h_4.linstall_directory\lib\armlib
\m_4s.linstall_directory\lib\armlib\vfpsupport.l

• Displaying a list of libraries with the filter:

armlink --info=libraries --info_lib_prefix=c test.o

Produces a list of libraries with the specified prefix, for example:

install_directory\lib\armlib\c_4.l

Related information
--info=topic[,topic,…] on page 271

12.62 --init=symbol
Specifies a symbol name to use for the initialization code. A dynamic linker executes this code
when it loads the executable file or shared object.

Syntax
--init=symbol

Where symbol is the symbol name you want to use to define the location of the initialization code.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 274 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Related information
--dynamic_linker=name on page 256
--fini=symbol on page 264
--library=name on page 283

12.63 --inline, --no_inline
Enables or disables branch inlining to optimize small function calls in your image.

Not supported for AArch64 state.

Default
The default is --no_inline.

This branch optimization is off by default because enabling it changes the image
such that debug information might be incorrect. If enabled, the linker makes no
attempt to correct the debug information.

--no_inline turns off inlining for user-supplied objects only. The linker still inlines
functions from the Arm® standard libraries by default.

Related information
--branchnop, --no_branchnop on page 240
Function inlining with the linker on page 80
--inline_type=type on page 275
--tailreorder, --no_tailreorder on page 327

12.64 --inline_type=type
Inlines functions from all objects, Arm® C Library only, or turns off inlining completely.

Syntax
--inline_type=type

Where type is one of:

all

The linker is permitted to inline functions from all input objects.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 275 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

library

The linker is permitted to inline functions from the Arm standard libraries.

none

The linker is not permitted to inline functions.

This option takes precedence over --inline if both options are present on the command line. The
mapping between the options is:

• --inline maps to --inline_type=all.

• --no_inline maps to --inline_type=library.

To disable linker inlining completely you must use --inline_type=none.

Related information
--inline, --no_inline on page 275
--tailreorder, --no_tailreorder on page 327

12.65 --inlineveneer, --no_inlineveneer
Enables or disables the generation of inline veneers to give greater control over how the linker
places sections.

Default
The default is --inlineveneer.

Related information
--piveneer, --no_piveneer on page 302
--veneershare, --no_veneershare on page 335
Veneer types on page 63
Linker-generated veneers on page 61
Veneer sharing on page 62
Generation of position independent to absolute veneers on page 64
Reuse of veneers when scatter-loading on page 65

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 276 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.66 input-file-list
A space-separated list of objects, libraries, or symbol definitions (symdefs) files.

Usage
The linker sorts through the input file list in order. If the linker is unable to resolve input file
problems then a diagnostic message is produced.

The symdefs files can be included in the list to provide global symbol addresses for previously
generated image files.

You can use libraries in the input file list in the following ways:

• Specify a library to be added to the list of libraries that the linker uses to extract members if
they resolve any non weak unresolved references. For example, specify mystring.lib in the
input file list.

Members from the libraries in this list are added to the image only when they
resolve an unresolved non weak reference.

• Specify particular members to be extracted from a library and added to the image as individual
objects. Members are selected from a comma separated list of patterns that can include wild
characters. Spaces are permitted but if you use them you must enclose the whole input file list
in quotes.

The following shows an example of an input file list both with and without spaces:

mystring.lib(strcmp.o,std*.o)

'mystring.lib(strcmp.o, std*.o)'

The linker automatically searches the appropriate C and C++ libraries to select the best standard
functions for your image. You can use --no_scanlib to prevent automatic searching of the
standard system libraries.

The linker processes the input file list in the following order:

1. Objects are added to the image unconditionally.

2. Members selected from libraries using patterns are added to the image unconditionally, as if
they are objects. For example, to add all a*.o objects and stdio.o from mystring.lib use the
following:

"mystring.lib(stdio.o, a*.o)"

3. Library files listed on the command-line are searched for any unresolved non-weak references.
The standard C or C++ libraries are added to the list of libraries that the linker later uses to
resolve any remaining references.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 277 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Related information
--scanlib, --no_scanlib on page 313
Access symbols in another image on page 103
How the linker performs library searching, selection, and scanning on page 69
--stdlib on page 320

12.67 --keep=section_id
Specifies input sections that must not be removed by unused section elimination.

Syntax
--keep=section_id

Where section_id is one of the following:

symbol

Specifies that an input section defining symbol is to be retained during unused section
elimination. If multiple definitions of symbol exist, armlink generates an error message.

For example, you might use --keep=int_handler.

To keep all sections that define a symbol ending in _handler, use --keep=*_handler.

object (section)

Specifies that section from object is to be retained during unused section elimination. If
a single instance of section is generated, you can omit section, for example, file.o().
Otherwise, you must specify section.

For example, to keep the vect section from the vectors.o object use:

--keep=vectors.o(vect)

To keep all sections from the vectors.o object where the first three characters of the name
of the sections are vec, use:

--keep=vectors.o(vec*)

object

Specifies that the single input section from object is to be retained during unused section
elimination. If you use this short form and there is more than one input section in object, the
linker generates an error message.

For example, you might use --keep=dspdata.o.

To keep the single input section from each of the objects that has a name starting with dsp,
use --keep=dsp*.o.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 278 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

On Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,
for example:

--keep="foo.o(Premier*)"

Usage
All forms of the section_id argument can contain the * and ? wild characters. Matching is case-
insensitive, even on hosts with case-sensitive file naming. For example:

• --keep foo.o(Premier*) causes the entire match for Premier* to be case-insensitive.

• --keep foo.o(Premier) causes a case-insensitive match for the string Premier.

The only case where a case-sensitive match is made is for --keep=symbol when
symbol does not contain any wildcard characters.

Use *.o to match all object files. Use * to match all object files and libraries.

You can specify multiple --keep options on the command line.

Matching a symbol that has the same name as an object
If you name a symbol with the same name as an object, then --keep=symbol_id searches for a
symbol that matches symbol_id:

• If a symbol is found, it matches the symbol.

• If no symbol is found, it matches the object.

You can force --keep to match an object with --keep=symbol_id(). Therefore, to keep both the
symbol and the object, specify --keep foo.o --keep foo.o().

Related information
How the linker performs library searching, selection, and scanning on page 69
The structure of an Arm ELF image on page 38

12.68 --keep_intermediate
Specifies whether the linker preserves the ELF intermediate object file produced by the link time
optimizer.

Default
By default, armlink does not preserve the intermediate object file produced by the link time
optimizer.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 279 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Syntax
--keep_intermediate=option

Where option is:

lto

Preserve an intermediate ELF object file produced by the link time optimizer.

Related information
--lto, --no_lto on page 287
Optimizing across modules with link time optimization

12.69 --largeregions, --no_largeregions
Controls the sorting order of sections in large execution regions to minimize the distance between
sections that call each other.

Default
The default is --no_largeregions. The linker automatically switches to --largeregions if at least
one execution region contains more code than the smallest inter-section branch. The smallest inter-
section branch depends on the code in the region and the target processor:

128MB
Execution region contains only A64 instructions.

32MB
Execution region contains only A32 instructions.

16MB
Execution region contains T32 instructions, 32-bit T32 instructions are supported.

4MB
Execution region contains T32 instructions, no 32-bit T32 instructions are supported.

Usage
If the execution region contains more code than the range of a branch instruction then the linker
switches to large region mode. In this mode the linker sorts according to the approximated average
call depth of each section in ascending order. The linker might also distribute veneers amongst the
code sections to minimize the number of veneers.

Large region mode can result in large changes to the layout of an image even when
small changes are made to the input.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 280 of 351

https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

To disable large region mode and revert to lexical order, use --no_largeregions. Section placement
is then predictable and image comparisons are more predictable. The linker automatically switches
on --veneerinject if it is needed for a branch to reach the veneer.

Large region support enables:

• Average call depth sorting, --sort=AvgCallDepth.

• API sorting, --api.

• Veneer injection, --veneerinject.

The following command lines are equivalent:

armlink --largeregions --no_api --no_veneerinject --sort=Lexical
armlink --no_largeregions

Related information
--api, --no_api on page 235
--sort=algorithm on page 317
--veneer_inject_type=type on page 333
Linker-generated veneers on page 61
Veneer sharing on page 62
Veneer types on page 63
Generation of position independent to absolute veneers on page 64
--veneerinject, --no_veneerinject on page 332

12.70 --last=section_id
Places the selected input section last in its execution region.

Syntax
--last=section_id

Where section_id is one of the following:

symbol

Selects the section that defines symbol. You must not specify a symbol that has more
than one definition because only a single section can be placed last. For example, --
last=checksum.

object (section)

Selects the section from object. There must be no space between object and the following
open parenthesis. For example, --last=checksum.o(check).

object

Selects the single input section from object. For example, --last=checksum.o.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 281 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

If you use this short form and there is more than one input section in object, armlink
generates an error message.

On Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,
for example:

--last="checksum.o(check)"

Usage
The --last option cannot be used with --scatter. Instead, use the +LAST attribute in a scatter file.

Example
This option can force an input section that contains a checksum to be placed last in the RW
section.

Related information
--first=section_id on page 264
--scatter=filename on page 313
Section placement with the FIRST and LAST attributes on page 58
Section placement with the linker on page 56

12.71 --legacyalign, --no_legacyalign
Controls how padding is inserted into the image.

Deprecated in this release.

Default
The default is --no_legacyalign.

Usage
Using --legacyalign, the linker assumes execution regions and load regions to be four-byte
aligned. This option enables the linker to minimize the amount of padding that it inserts into the
image.

The --no_legacyalign option instructs the linker to insert padding to force natural alignment of
execution regions. Natural alignment is the highest known alignment for that region.

Use --no_legacyalign to ensure strict conformance with the ELF specification.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 282 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

You can also use expression evaluation in a scatter file to avoid padding.

Related information
Section placement with the linker on page 56
Load region attributes on page 182
Execution region attributes on page 189
Example of using expression evaluation in a scatter file to avoid padding on page 163

12.72 --libpath=pathlist
Specifies a list of paths that the linker uses to search for the Arm® standard C and C++ libraries.

Syntax
--libpath=pathlist

Where pathlist is a comma-separated list of paths that the linker only uses to search for required
Arm libraries. Do not include spaces between the comma and the path name when specifying
multiple path names, for example, path1,path2,path3,…,pathn.

This option does not affect searches for user libraries. Use --userlibpath instead
for user libraries.

Related information
--userlibpath=pathlist on page 332

12.73 --library=name
Enables the linker to search a static library without you having specifying the full library filename on
the command-line.

Not supported in the Keil® Microcontroller Development Kit (Keil® MDK).

Syntax
--library=name

Links with the static library, libname.a.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 283 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Usage
The order that references are resolved to libraries is the order that you specify the libraries on the
command line.

Example
The following example shows how to search for libfoo.a before libbar.a:

--library=foo --library=bar

Related information
--fpic on page 267

12.74 --library_type=lib
Selects the library to be used at link time.

Default
If you do not specify --library_type at link time and no object file specifies a preference, then the
linker assumes --library_type=standardlib.

Syntax
--library_type=lib

Where lib can be one of:

standardlib

Specifies that the full Arm® Compiler runtime libraries are selected at link time. This is the
default.

microlib

Specifies that the C micro-library (microlib) is selected at link time.

microlib is not supported for AArch64 state.

Usage
Use this option when use of the libraries require more specialized optimizations.

Related information
Building an application with microlib

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 284 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-Micro-library/Building-an-application-with-microlib

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.75 --list=filename
Redirects diagnostic output to a file.

Syntax
--list=filename

Where filename is the file to use to save the diagnostic output. filename can include a path.

Usage
Redirects the diagnostics output by the --info, --map, --symbols, --verbose, --xref, --xreffrom,
and --xrefto options to file.

The specified file is created when diagnostics are output. If a file of the same name already exists, it
is overwritten. However, if diagnostics are not output, a file is not created. In this case, the contents
of any existing file with the same name remain unchanged.

If filename is specified without a path, it is created in the output directory, that is, the directory
where the output image is being written.

Related information
--map, --no_map on page 292
--verbose on page 335
--xref, --no_xref on page 338
--xrefdbg, --no_xrefdbg on page 338
--xref{from|to}=object(section) on page 338
--info=topic[,topic,…] on page 271
--symbols, --no_symbols on page 326

12.76 --list_mapping_symbols, --no_list_mapping_symbols
Enables or disables the addition of mapping symbols in the output produced by --symbols.

The mapping symbols $a, $t, $t.x, $d, and $x flag transitions between A32 code, T32 code,
Thumb® EE code (Arm®v7-A), data, and A64 code.

Default
The default is --no_list_mapping_symbols.

Related information
--symbols, --no_symbols on page 326
About mapping symbols on page 94
ELF for the Arm Architecture

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 285 of 351

https://developer.arm.com/documentation/ihi0044/latest

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.77 --load_addr_map_info, --no_load_addr_map_info
Includes the load addresses for execution regions and the input sections within them in the map
file.

Default
The default is --no_load_addr_map_info.

Usage
If an input section is compressed, then the load address has no meaning and COMPRESSED is
displayed instead.

For sections that do not have a load address, such as ZI data, the load address is blank

Restrictions
You must use --map with this option.

Example
The following example shows the format of the map file output:

 Base Addr Load Addr Size Type Attr Idx E Section Name
 Object
 0x00008000 0x00008000 0x00000008 Code RO 25 * !!!main
 __main.o(c_4.l)
 0x00010000 COMPRESSED 0x00001000 Data RW 2 dataA
 data.o
 0x00003000 - 0x00000004 Zero RW 2 .bss
 test.o

Related information
--map, --no_map on page 292

12.78 --locals, --no_locals
Adds local symbols or removes local symbols depending on whether an image or partial object is
being output.

Default
The default is --locals.

Usage
The --locals option adds local symbols in the output symbol table.

The effect of the --no_locals option is different for images and object files.

When producing an executable image --no_locals removes local symbols from the output symbol
table.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 286 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

For object files built with the --partial option, the --no_locals option:

• Keeps mapping symbols and build attributes in the symbol table.

• Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For these
symbols, the names are removed. These are marked as [Anonymous Symbol] in the fromelf --
text output.

--no_locals is a useful optimization if you want to reduce the size of the output symbol table in
the final image.

Related information
--privacy on page 306
--privacy fromelf option
--strip=option[,option,…] fromelf option

12.79 --lto, --no_lto
Enables link time optimization.

Link Time Optimization performs aggressive optimizations by analyzing the
dependencies between bitcode format objects. This can result in the removal of
unused variables and functions in the source code.

When you specify the -flto option, armclang produces ELF files that contain
bitcode in a .llvmbc section.

With the --no_lto option, armlink gives an error message if it encounters any .llvmbc sections.

Default
The default is --no_lto.

Dependencies
Link time optimization requires the dependent library libLTO.

Table 12-4: Link time optimization dependencies

Dependency Windows filename Linux filename

libLTO LTO.dll libLTO.so

By default, the dependent library libLTO is present in the same directory as armlink.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 287 of 351

https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--privacy
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--strip-option--option---

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

The search order for these dependencies is as follows.

LTO.dll:

1. The same directory as the armlink executable.

2. The directories in the current directory search path.

libLTO.so:

1. The same directory as the armlink executable.

2. The directories in the LD_LIBRARY_PATH environment variable.

3. The cache file /etc/ld.so.cache.

4. The directories /lib and /usr/lib.

These directories might have the suffix 64 on some 64-bit Linux systems. For example, on 64-
bit Red Hat Enterprise Linux the directories are /lib64 and /usr/lib64.

The armclang executables and the libLTO library must come from the same Arm®

Compiler 6 installation. Any use of libLTO other than that supplied with Arm
Compiler 6 is unsupported.

LTO does not honor the armclang option -mexecute-only. If you use the armclang
options -flto or -Omax, then the compiler cannot generate execute-only code.

Related information
--info=topic[,topic,…] on page 271
--keep_intermediate on page 279
--lto_keep_all_symbols, --no_lto_keep_all_symbols on page 288
--lto_intermediate_filename on page 289
--lto_relocation_model on page 291
--lto_level on page 289
-Omax on page 299
-flto, -fno-lto
Optimizing across modules with link time optimization

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 288 of 351

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-flto---fno-lto
https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.80 --lto_keep_all_symbols, --no_lto_keep_all_symbols
Specifies whether link time optimization removes unreferenced global symbols.

Using --lto_keep_all_symbols affects all symbols and largely reduces the usefulness of link time
optimization. If you need to keep only a specific unreferenced symbol, then use the --keep option
instead.

Default
The default is --no_lto_keep_all_symbols.

Related information
--keep=section_id on page 278
--lto, --no_lto on page 287
Optimizing across modules with link time optimization

12.81 --lto_intermediate_filename
Specifies the name of the ELF object file produced by the link time optimizer.

Default
The default is a temporary filename.

Syntax
--lto_intermediate_filename=filename

Where filename is the filename the link time optimizer uses for the ELF object file it produces.

Usage
The purpose of the --lto_intermediate_filename option is so that the intermediate file produced
by the link time optimizer can be named in other inputs to the linker, such as scatter loading files.

The --lto_intermediate_filename option does not cause the linker to keep the
intermediate object file. Use the --keep-intermediate=lto option to keep the
intermediate file.

Related information
--keep_intermediate on page 279
--lto, --no_lto on page 287
Optimizing across modules with link time optimization

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 289 of 351

https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization
https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.82 --lto_level
Sets the optimization level for the link time optimization feature.

Default
If you do not specify Olevel, the linker assumes O2. This level is different from the default armclang
optimization level, -O0. Arm recommends that you always specify a --lto_level=Olevel to match
the optimization level that is used with armclang, instead of relying on the default.

Syntax
--lto_level=O{level}

Where level is one of the following:

0

Minimum optimization for the performance of the compiled binary. Turns off most
optimizations. When debugging is enabled, this option generates code that directly
corresponds to the source code. Therefore, this optimization might result in a significantly
larger image.

1

Restricted optimization. When debugging is enabled, this option selects a good compromise
between image size, performance, and quality of debug view.

Arm recommends -O1 rather than -O0 for the best trade-off between debug view, code size,
and performance.

2

High optimization. When debugging is enabled, the debug view might be less satisfactory
because the mapping of object code to source code is not always clear. The linker might
perform optimizations that the debug information cannot describe.

This optimization is the default optimization level.

3

Very high optimization. When debugging is enabled, this option typically gives a poor debug
view. Arm recommends debugging at lower optimization levels.

fast

Enables all the optimizations from level 3 including those optimizations that are performed
with the armclang

max

Maximum optimization. Specifically targets performance optimization. Enables all the
optimizations from level fast, together with other aggressive optimizations.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 290 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

This option is not guaranteed to be fully standards-compliant for all code
cases.

• Code-size, build-time, and the debug view can each be adversely affected
when using this option.

• Arm cannot guarantee that the best performance optimization is achieved
in all code cases.

s

Performs optimizations to reduce code size, balancing code size against code speed.

z

Performs optimizations to minimize image size.

Related information
--lto, --no_lto on page 287
-Omax on page 299
-O
Optimizing across modules with link time optimization

12.83 --lto_relocation_model
Specifies whether the link time optimizer produces absolute or position independent code.

Default
The default is --lto_relocation_model=static.

Syntax
--lto_relocation_model=model

Where model is one of the following:

static

The link time optimizer produces absolute code.

pic

The link time optimizer produces code that uses GOT relative position independent code.

The --lto_relocation_model=pic option requires the armlink option --bare_metal_pie.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 291 of 351

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-O
https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Bare-metal PIE support is deprecated in this release.

Related information
--bare_metal_pie on page 236
--lto, --no_lto on page 287
Optimizing across modules with link time optimization

12.84 --mangled, --unmangled
Instructs the linker to display mangled or unmangled C++ symbol names in diagnostic messages,
and in listings produced by the --xref, --xreffrom, --xrefto, and --symbols options.

Default
The default is --unmangled.

Usage
If --unmangled is selected, C++ symbol names are displayed as they appear in your source code.

If --mangled is selected, C++ symbol names are displayed as they appear in the object symbol
tables.

Related information
--match=crossmangled on page 293

12.85 --map, --no_map
Enables or disables the printing of a memory map.

Default
The default is --no_map.

Usage
The map contains the address and the size of each load region, execution region, and input section
in the image, including linker-generated input sections. This can be output to a text file using --
list=filename.

Related information
--load_addr_map_info, --no_load_addr_map_info on page 285
--list=filename on page 284

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 292 of 351

https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

--section_index_display=type on page 315

12.86 --match=crossmangled
Instructs the linker to match the combinations of mangled and unmangled symbol references and
definitions.

Deprecated in this release.

Usage
Matches:

• A reference to an unmangled symbol with the mangled definition.

• A reference to a mangled symbol with the unmangled definition.

Libraries and matching combinations operate as follows:

• If the library members define a mangled definition, and there is an unresolved unmangled
reference, the member is loaded to satisfy it.

• If the library members define an unmangled definition, and there is an unresolved mangled
reference, the member is loaded to satisfy it.

This option has no effect if used with partial linking. The partial object contains all
the unresolved references to unmangled symbols, even if the mangled definition
exists. Matching is done only in the final link step.

Related information
--mangled, --unmangled on page 292

12.87 --max_er_extension=size
Specifies a constant value to add to the size of an execution region when no maximum size is
specified for that region. The value is used only when placing __at sections.

Default
The default size is 10240 bytes.

Syntax
--max_er_extension=size

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 293 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Where size is the constant value in bytes to use when calculating the size of the execution region.

Related information
Automatically placing __at sections on page 132

12.88 --max_veneer_passes=value
Specifies a limit to the number of veneer generation passes the linker attempts to make when
certain conditions are met.

Default
The default number of passes is 10.

Syntax
--max_veneer_passes=value

Where value is the maximum number of veneer passes the linker is to attempt. The minimum value
you can specify is one.

Usage
The linker applies this limit when both the following conditions are met:

• A section that is sufficiently large has a relocation that requires a veneer.

• The linker cannot place the veneer close enough to the call site.

The linker attempts to diagnose the failure if the maximum number of veneer generation passes
you specify is exceeded, and displays a warning message. You can downgrade this warning message
using --diag_remark.

Related information
--diag_remark=tag[,tag,…] on page 253
--diag_warning=tag[,tag,…] on page 255

12.89 --max_visibility=type
Controls the visibility of all symbol definitions.

Default
The default is --max_visibility=default.

Syntax
--max_visibility=type

Where type can be one of:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 294 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

default

Default visibility.

protected

Protected visibility.

Usage
Use --max_visibility=protected to limit the visibility of all symbol definitions. Global symbol
definitions that normally have default visibility, are given protected visibility when this option is
specified.

Related information
--override_visibility on page 299

12.90 --merge, --no_merge
Enables or disables the merging of const strings that are placed in shareable sections by the
compiler.

Default
The default is --merge.

Usage
Using --merge can reduce the size of the image if there are similarities between const strings.

Use --info=merge to see a listing of the merged const strings.

By default, merging happens between different load and execution regions. Therefore, code from
one execution or load region might use a string stored in different region. If you do not want this
behavior, then do one of the following:

• Use the PROTECTED load region attribute if you are using scatter-loading.

• Globally disable merging with --no_merge.

Related information
--info=topic[,topic,…] on page 271
Load region attributes on page 182

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 295 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.91 --merge_litpools, --no_merge_litpools
Attempts to merge identical constants in objects targeted at AArch32 state. The objects must be
produced with Arm® Compiler 6.

Default
--merge_litpools is the default.

Related information
Merging identical constants on page 84

12.92 --muldefweak, --no_muldefweak
Enables or disables multiple weak definitions of a symbol.

Default
The default is --muldefweak.

Usage
If enabled, the linker chooses the first definition that it encounters and discards all the other
duplicate definitions. If disabled, the linker generates an error message for all multiply defined weak
symbols.

12.93 -o filename, --output=filename
Specifies the name of the output file. The file can be either a partially-linked object or an
executable image, depending on the command-line options used.

Syntax
--output=filename

-o filename

Where filename is the name of the output file, and can include a path.

Usage
If --output=filename is not specified, the linker uses the following default filenames:

__image.axf
If the output is an executable image.

__object.o
If the output is a partially-linked object.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 296 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

If filename is specified without path information, it is created in the current working directory. If
path information is specified, then that directory becomes the default output directory.

Related information
--callgraph_file=filename on page 242
--partial on page 301

12.94 --output_float_abi=option
Specifies the floating-point procedure call standard to advertise in the ELF header of the
executable.

Not supported for AArch64 state.

Default
The default option is auto.

Syntax
--output_float_abi=option

where option is one of the following:

auto

Checks the object files to determine whether the hard float or soft float bit in the ELF header
flag is set.

hard

The executable file is built to conform to the hardware floating-point procedure-call standard.

soft

Conforms to the software floating-point procedure-call standard.

Usage
When the option is set to auto:

• For multiple object files:

◦ If all the object files specify the same value for the flag, then the executable conforms to
the relevant standard.

◦ If some files have the hard float and soft float bits in the ELF header flag set to different
values from other files, this option is ignored and the hard float and soft float bits in the
executable are unspecified.

• If a file has the build attribute Tag_ABI_VFP_args set to 2, then the hard float and soft float bits
in the ELF header flag in the executable are set to zero.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 297 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

• If a file has the build attribute Tag_ABI_VFP_args set to 3, then armlink ignores this option.

You can use fromelf --text on the image to see whether hard or soft float is set in the ELF
header flag.

Related information
--decode_build_attributes
--text
ELF for the Arm Architecture
Run-time ABI for the Arm Architecture

12.95 --overlay_veneers
When using the automatic overlay mechanism, causes armlink to redirect calls between overlays to
a veneer. The veneer allows an overlay manager to unload and load the correct overlays.

You must use this option if your scatter file includes execution regions with
AUTO_OVERLAY attribute assigned to them.

Arm® Compiler does not support using both manual and automatic overlays within
the same program.

Usage
armlink creates a veneer for a function call when any of the following are true:

• The calling function is in non-overlaid code and the called function is in an overlay.

• The calling function is in an overlay and the called function is in a different overlay.

• The calling function is in an overlay and the called function is in non-overlaid code.

In the last of these cases, an overlay does not have to be loaded immediately, but the overlay
manager typically has to adjust the return address. It does this adjustment so that it can arrange to
check on function return that the overlay of the caller is reloaded before returning to it.

Veneers are not created when calls between two functions are in the same overlay. If the calling
function is running, then the called function is guaranteed to be loaded already, because each
overlay is atomic. This situation is also guaranteed when the called function returns.

A relocation might refer to a function in an overlay and not modify a branch instruction. For
example, the relocations R_ARM_ABS32 or R_ARM_REL32 do not modify a branch instruction. In
this situation, armlink redirects the relocation to point at a veneer for the function regardless of

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 298 of 351

https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--decode-build-attributes
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--text
https://developer.arm.com/documentation/ihi0044/latest
https://developer.arm.com/documentation/ihi0043/latest/

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

where the relocation is. This redirection is done in case the address of the function is passed into
another overlay as an argument.

Related information
Execution region attributes on page 189
Automatic overlay support

12.96 --override_visibility
Enables EXPORT and IMPORT directives in a steering file to override the visibility of a symbol.

Usage
By default:

• Only symbol definitions with STV_DEFAULT or STV_PROTECTED visibility can be exported.

• Only symbol references with STV_DEFAULT visibility can be imported.

When you specify --override_visibility, any global symbol definition can be exported and any
global symbol reference can be imported.

Related information
--undefined_and_export=symbol on page 330
EXPORT steering file command on page 341
IMPORT steering file command on page 343

12.97 -Omax
Enables maximum link time optimization.

-Omax automatically enables the --lto and --lto_level=Omax options.

If you have object files that have been compiled with the armclang option -Omax, then you can link
them using the armlink option -Omax to produce an image with maximum link time optimization.

Related information
--lto_level on page 289
--lto, --no_lto on page 287
-O
Optimizing across modules with link time optimization

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 299 of 351

https://developer.arm.com/documentation/dui0773/l/Overlays/Automatic-overlay-support
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-O
https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.98 --pad=num
Enables you to set a value for padding bytes. The linker assigns this value to all padding bytes
inserted in load or execution regions.

Syntax
--pad=num

Where num is an integer, which can be given in hexadecimal format.

For example, setting num to FF might help to speed up ROM programming time. If num is greater
than FF, then the padding byte is cast to a char, that is (char)num.

Usage
Padding is only inserted:

• Within load regions. No padding is present between load regions.

• Between fixed execution regions (in addition to forcing alignment). Padding is not inserted up to
the maximum length of a load region unless it has a fixed execution region at the top.

• Between sections to ensure that they conform to alignment constraints.

Related information
Input sections, output sections, regions, and program segments on page 40
Load view and execution view of an image on page 42

12.99 --paged
Enables Demand Paging mode to help produce ELF files that can be demand paged efficiently.

Usage
A default page size of 8000 bytes is used. You can change this with the --pagesize command-line
option.

Related information
--pagesize=pagesize on page 300
Linker support for creating demand-paged files on page 60
Aligning regions to page boundaries on page 160

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 300 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.100 --pagesize=pagesize
Allows you to change the page size used when demand paging.

Default
The default value is 0x8000.

Syntax
--pagesize=pagesize

Where pagesize is the page size in bytes.

Related information
--paged on page 300
Linker support for creating demand-paged files on page 60
Aligning regions to page boundaries on page 160

12.101 --partial
Creates a partially-linked object that can be used in a subsequent link step.

Restrictions
You cannot use --partial with --scatter.

Related information
Partial linking model on page 33

12.102 --pie
Species the Position Independent Executable (PIE) linking model.

Bare-metal PIE support is deprecated in this release.

You must use this option with the --fpic and --ref_pre_init options.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 301 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Related information
--fpic on page 267
--bare_metal_pie on page 236
--ref_pre_init, --no_ref_pre_init on page 307

12.103 --piveneer, --no_piveneer
Enables or disables the generation of a veneer for a call from position independent (PI) code to
absolute code.

Default
The default is --piveneer.

Usage
When using --no_piveneer, an error message is produced if the linker detects a call from PI code
to absolute code.

Not supported for AArch64 state.

Related information
--inlineveneer, --no_inlineveneer on page 276
--veneershare, --no_veneershare on page 335
Generation of position independent to absolute veneers on page 64
Linker-generated veneers on page 61
Veneer sharing on page 62
Veneer types on page 63
Reuse of veneers when scatter-loading on page 65

12.104 --pltgot=type
Specifies the type of Procedure Linkage Table (PLT) and Global Offset Table (GOT) to use,
corresponding to the different addressing modes of the Base Platform Application Binary Interface
(BPABI).

This option is supported only when using --base_platform or --bpabi.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 302 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Not supported for AArch64 state.

Default
When the --bpabi or --dll options are used, the default is --pltgot=direct.

When the --base_platform option is used, the default is --pltgot=none.

Syntax
--pltgot=type

Where type is one of the following:

none

References to imported symbols are added as dynamic relocations for processing by a
platform specific post-linker.

direct

References to imported symbols are resolved to read-only pointers to the imported symbols.
These are direct pointer references.

Use this type to turn on PLT generation when using --base_platform.

indirect

The linker creates a GOT and possibly a PLT entry for the imported symbol. The reference
refers to PLT or GOT entry.

This type is not supported if you have multiple load regions.

sbrel

Same referencing as indirect, except that GOT entries are stored as offsets from the static
base address for the segment held in R9 at runtime.

This type is not supported if you have multiple load regions.

Related information
--base_platform on page 237
--bpabi on page 239
--pltgot_opts=mode on page 303
Base Platform linking model on page 35
--dll on page 255
Base Platform Application Binary Interface (BPABI) linking model on page 34

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 303 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.105 --pltgot_opts=mode
Controls the generation of Procedure Linkage Table (PLT) entries for weak references and function
calls to relocatable targets within the same file.

Not supported for AArch64 state.

Default
The default is --pltgot_opts=nocrosslr,noweakrefs.

Syntax
--pltgot_opts=mode[,mode,...]

Where mode is one of the following:

crosslr

Calls to and from a load region marked RELOC go by way of the PLT.

nocrosslr

Calls to and from a load region marked RELOC do not generate PLT entries.

noweakrefs

Generates a NOP for a function call, or zero for data. No PLT entry is generated. Weak
references to imported symbols remain unresolved.

weakrefs

Weak references produce a PLT entry. These references must be resolved at a later link stage.

Related information
--base_platform on page 237
--pltgot=type on page 302

12.106 --predefine="string"
Enables commands to be passed to the preprocessor when preprocessing a scatter file.

You specify a preprocessor on the first line of the scatter file.

Syntax
--predefine= "string"

You can use more than one --predefine option on the command-line.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 304 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

You can also use the synonym --pd="string".

Restrictions
Use this option with --scatter.

Example scatter file before preprocessing
The following example shows the scatter file contents before preprocessing.

#! armclang -E
lr1 BASE
{
 er1 BASE
 {
 *(+RO)
 }
 er2 BASE2
 {
 *(+RW+ZI)
 }
}

Use armlink with the command-line options:

--predefine="-DBASE=0x8000" --predefine="-DBASE2=0x1000000" --scatter=filename

This passes the command-line options: -DBASE=0x8000 -DBASE2=0x1000000 to the compiler to
preprocess the scatter file.

Example scatter file after preprocessing
The following example shows how the scatter file looks after preprocessing:

lr1 0x8000
{
 er1 0x8000
 {
 *(+RO)
 }
 er2 0x1000000
 {
 *(+RW+ZI)
 }
}

Related information
Preprocessing a scatter file on page 162
--scatter=filename on page 313

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 305 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.107 --preinit, --no_preinit
Enables the linker to use a different image pre-initialization routine if required.

Syntax
--preinit=symbol

If --preinit=symbol is not specified then the default symbol __arm_preinit_ is assumed.

--no_preinit does not take a symbol argument.

Effect
The linker adds a non-weak reference to symbol if a .preinit_array section is detected.

For --preinit=__arm_preinit_ or --cppinit=__cpp_initialize_aeabi_, the linker processes
R_ARM_TARGET1 relocations as R_ARM_REL32, because this is required by the __arm_preinit
and __cpp_initialize_aeabi_ functions. In all other cases R_ARM_TARGET1 relocations are
processes as R_ARM_ABS32.

Related information
--fpic on page 267
--ref_pre_init, --no_ref_pre_init on page 307
--bare_metal_pie on page 236

12.108 --privacy
Modifies parts of an image to help protect your code.

Usage
The effect of this option is different for images and object files.

When producing an executable image it removes local symbols from the output symbol table.

For object files built with the --partial option, this option:

• Changes section names to a default value, for example, changes code section names to .text.

• Keeps mapping symbols and build attributes in the symbol table.

• Removes those local symbols that can be removed without loss of functionality.

Symbols that cannot be removed, such as the targets for relocations, are kept. For these
symbols, the names are removed. These are marked as [Anonymous Symbol] in the fromelf --
text output.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 306 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

To help protect your code in images and objects that are delivered to third parties,
use the fromelf --privacy command.

Related information
--locals, --no_locals on page 286
--partial on page 301
--privacy fromelf option
--strip=option[,option,…] fromelf option
Options to protect code in object files with fromelf

12.109 --ref_cpp_init, --no_ref_cpp_init
Enables or disables the adding of a reference to the C++ static object initialization routine in the
Arm® libraries.

Default
The default is --ref_cpp_init.

Usage
The default reference added is __cpp_initialize__aeabi_. To change this you can use --cppinit.

Use --no_ref_cpp_init if you are not going to use the Arm libraries.

Related information
--cppinit, --no_cppinit on page 247

12.110 --ref_pre_init, --no_ref_pre_init
Allows the linker to add or not add references to the image pre-initialization routine in the Arm®

libraries. The default reference added is __arm_preinit_. To change this you can use --preinit.

Default
The default is --no_ref_pre_init.

Related information
--fpic on page 267
--preinit, --no_preinit on page 305
--bare_metal_pie on page 236

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 307 of 351

https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--privacy
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--strip-option--option---
https://developer.arm.com/documentation/dui0805/l/Using-fromelf/Options-to-protect-code-in-object-files-with-fromelf

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.111 --reloc
Creates a single relocatable load region with contiguous execution regions.

Not supported for AArch64 state.

Usage
Only use this option for legacy systems with the type of relocatable ELF images that conform to
the ELF for the Arm Architecture specification. The generated image might not be compliant with the
ELF for the Arm® Architecture specification.

When relocated MOVT and MOVW instructions are encountered in an image being linked with --reloc,
armlink produces the following additional dynamic tags:

DT_RELA

The address of a relocation table.

DT_RELASZ

The total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT

The size, in bytes, of the DT_RELA relocation entry.

Restrictions
You cannot use --reloc with --scatter.

You cannot use this option with --xo_base.

Related information
Type 1 image, one load region and contiguous execution regions on page 165
Type 3 image structure, multiple load regions and non-contiguous execution regions on page 54
Base Platform ABI for the Arm Architecture
ELF for the Arm Architecture

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 308 of 351

https://developer.arm.com/documentation/ihi0037/latest
https://developer.arm.com/documentation/ihi0044/latest

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.112 --remarks
Enables the display of remark messages, including any messages redesignated to remark severity
using --diag_remark.

The linker does not issue remarks by default.

Related information
--diag_remark=tag[,tag,…] on page 253
--errors=filename on page 262

12.113 --remove, --no_remove
Enables or disables the removal of unused input sections from the image.

Default
The default is --remove.

The default is --no_remove only if you specify --base_platform or --bpabi with --dll.

Usage
An input section is considered used if it contains an entry point, or if it is referred to from a used
section.

By default, unused section elimination is disabled when building dynamically linked libraries (DLLs)
or shared objects, Use --remove to re-enable unused section elimination.

Use --remove with the --keep option to retain specific sections in a normal build.

Related information
--base_platform on page 237
--bpabi on page 239
Elimination of unused sections on page 76
--dll on page 255
How the linker performs library searching, selection, and scanning on page 69
--keep=section_id on page 278
Elimination of common debug sections on page 75
Elimination of common groups or sections on page 75

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 309 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.114 --ro_base=address
Sets both the load and execution addresses of the region containing the RO output section at a
specified address.

Default
If this option is not specified, and no scatter file is specified, the default is --ro_base=0x8000. If XO
sections are present, then this is the default value used to place the ER_XO region.

Syntax
--ro_base={address}

Where {address} must be word-aligned.

Usage
If execute-only (XO) sections are present, and you specify --ro_base without --xo_base, then an
ER_XO execution region is created at the address specified by --ro_base. The ER_RO execution
region immediately follows the ER_XO region.

Restrictions
You cannot use --ro_base with:

--scatter.

Related information
--ropi on page 310
--rosplit on page 311
--rw_base=address on page 311
--xo_base=address on page 337
--zi_base=address on page 339

12.115 --ropi
Makes the load and execution region containing the RO output section position-independent.

Not supported for AArch64 state.

Usage
If this option is not used, the region is marked as absolute. Usually each read-only input section
must be Read-Only Position-Independent (ROPI). If this option is selected, the linker:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 310 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

• Checks that relocations between sections are valid.

• Ensures that any code generated by the linker itself, such as interworking veneers, is ROPI.

The linker gives a downgradable error if --ropi is used without --rwpi or --
rw_base.

Restrictions
You cannot use --ropi:

• With --fpic, --scatter, or --xo_base.

• When an object file contains execute-only sections.

Related information
--ro_base=address on page 309
--rosplit on page 311
--rw_base=address on page 311
--xo_base=address on page 337
--zi_base=address on page 339

12.116 --rosplit
Splits the default RO load region into two RO output sections.

The RO load region is split into the RO output sections:

• RO-CODE.

• RO-DATA.

Restrictions
You cannot use --rosplit with:

--scatter.

Related information
--ro_base=address on page 309
--ropi on page 310
--rw_base=address on page 311
--xo_base=address on page 337
--zi_base=address on page 339

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 311 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.117 --rw_base=address
Sets the execution addresses of the region containing the RW output section at a specified
address.

Syntax
--rw_base=address

Where address must be word-aligned.

This option does not affect the placement of execute-only sections.

Restrictions
You cannot use --rw_base with:

--scatter.

Related information
--ro_base=address on page 309
--ropi on page 310
--rosplit on page 311
--xo_base=address on page 337
--zi_base=address on page 339

12.118 --rwpi
Makes the load and execution region containing the RW and ZI output section position-
independent.

Not supported for AArch64 state.

Usage
If this option is not used the region is marked as absolute. This option requires a value for --
rw_base. If --rw_base is not specified, --rw_base=0 is assumed. Usually each writable input section
must be Read-Write Position-Independent (RWPI).

If this option is selected, the linker:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 312 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

• Checks that the PI attribute is set on input sections to any read-write execution regions.

• Checks that relocations between sections are valid.

• Generates entries relative to the static base in the table Region$$Table.

This is used when regions are copied, decompressed, or initialized.

Restrictions
You cannot use --rwpi:

• With --fpic, --scatter, or --xo_base.

• When an object file contains execute-only sections.

Related information
--split on page 319
--scatter=filename on page 313

12.119 --scanlib, --no_scanlib
Enables or disables scanning of the Arm libraries to resolve references.

Use --no_scanlib if you want to link your own libraries.

Default
The default is --scanlib.

Related information
--stdlib on page 320

12.120 --scatter=filename
Creates an image memory map using the scatter-loading description that is contained in the
specified file.

The description provides grouping and placement details of the various regions and sections in the
image.

Syntax
--scatter=filename

Where filename is the name of a scatter file.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 313 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Usage
To modify the placement of any unassigned input sections when .ANY selectors are present, use the
following command-line options with --scatter:

• --any_contingency.

• --any_placement.

• --any_sort_order.

You cannot use the --scatter option with:

• --bpabi.

• --first.

• --last.

• --partial.

• --reloc.

• --ro_base.

• --ropi.

• --rosplit.

• --rw_base.

• --rwpi.

• --split.

• --xo_base.

• --zi_base.

You can use --dll when specified with --base_platform.

Related information
--any_contingency on page 232
--any_sort_order=order on page 234
Examples of using placement algorithms for .ANY sections on page 143
--base_platform on page 237
Preprocessing a scatter file on page 162
--first=section_id on page 264
--last=section_id on page 281
--ro_base=address on page 309
--ropi on page 310
--rosplit on page 311
--rw_base=address on page 311
--rwpi on page 312
--split on page 319
--xo_base=address on page 337

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 314 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

--zi_base=address on page 339
--bpabi on page 239
--dll on page 255
--partial on page 301
--reloc on page 307
Scatter-loading Features on page 112
Behavior when .ANY sections overflow because of linker-generated content on page 148

12.121 --section_index_display=type
Changes the display of the index column when printing memory map output.

Default
The default is --section_index_display=internal.

Syntax
--section_index_display=type

Where type is one of the following:

cmdline

Alters the display of the map file to show the order that a section appears on the command-
line. The command-line order is defined as File.Object.Section where:

• Section is the section index, sh_idx, of the Section in the Object.

• Object is the order that Object appears in the File.

• File is the order the File appears on the command line.

The order the Object appears in the File is only significant if the file is an ar archive.

internal

The index value represents the order in which the linker creates the section.

input

The index value represents the section index of the section in the original input file. This is
useful when you want to find the exact section in an input object.

Usage
Use this option with --map.

Related information
--map, --no_map on page 292
--tiebreaker=option on page 328

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 315 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.122 --show_cmdline
Outputs the command line used by the linker.

Usage
Shows the command line after processing by the linker, and can be useful to check:

• The command line a build system is using.

• How the linker is interpreting the supplied command line, for example, the ordering of
command-line options.

The commands are shown normalized, and the contents of any via files are expanded.

The output is sent to the standard error stream (stderr).

Related information
--help on page 269
--via=filename on page 336

12.123 --show_full_path
Displays the full path name of an object in any diagnostic messages.

Usage
If the file representing object obj has full path name path/to/obj then the linker displays path/to/
obj instead of obj in any diagnostic message.

Related information
--show_parent_lib on page 316
--show_sec_idx on page 316

12.124 --show_parent_lib
Displays the library name containing an object in any diagnostic messages.

Usage
If an object obj comes from library lib, then this option displays lib(obj) instead of obj in any
diagnostic messages.

Related information
--show_full_path on page 316
--show_sec_idx on page 316

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 316 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.125 --show_sec_idx
Displays the section index, sh_idx, of section in the originating object.

Example
If section sec has section index 3 then it is displayed as sec:3 in all diagnostic messages.

Related information
--show_full_path on page 316
--show_parent_lib on page 316

12.126 --sort=algorithm
Specifies the sorting algorithm used by the linker to determine the order of sections in an output
image.

Default
The default algorithm is --sort=Lexical. In large region mode, the default algorithm is --
sort=AvgCallDepth.

Syntax
--sort=algorithm

where algorithm is one of the following:

Alignment

Sorts input sections by ascending order of alignment value.

AlignmentLexical

Sorts input sections by ascending order of alignment value, then sorts lexically.

AvgCallDepth

Sorts all T32 code before A32 code and then sorts according to the approximated average
call depth of each section in ascending order.

Use this algorithm to minimize the number of long branch veneers.

The approximation of the average call depth depends on the order of input
sections. Therefore, this sorting algorithm is more dependent on the order of
input sections than using, say, RunningDepth.

BreadthFirstCallTree

This is similar to the CallTree algorithm except that it uses a breadth-first traversal when
flattening the Call Tree into a list.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 317 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

CallTree

The linker flattens the call tree into a list containing the read-only code sections from all
execution regions that have CallTree sorting enabled.

Sections in this list are copied back into their execution regions, followed by all the non read-
only code sections, sorted lexically. Doing this ensures that sections calling each other are
placed close together.

This sorting algorithm is less dependent on the order of input sections than
using either RunningDepth or AvgCallDepth.

Lexical

Sorts according to the name of the section and then by input order if the names are the
same.

LexicalAlignment

Sorts input sections lexically, then according to the name of the section, and then by input
order if the names are the same.

LexicalState

Sorts T32 code before A32 code, then sorts lexically.

List

Provides a list of the available sorting algorithms. The linker terminates after displaying the
list.

ObjectCode

Sorts code sections by tiebreaker. All other sections are sorted lexically. This is most useful
when used with --tiebreaker=cmdline because it attempts to group all the sections from
the same object together in the memory map.

RunningDepth

Sorts all T32 code before A32 code and then sorts according to the running depth of the
section in ascending order. The running depth of a section S is the average call depth of all
the sections that call S, weighted by the number of times that they call S.

Use this algorithm to minimize the number of long branch veneers.

Usage
The sorting algorithms conform to the standard rules, placing input sections in ascending order by
attributes.

You can also specify sort algorithms in a scatter file for individual execution regions. Use the
SORTTYPE keyword to do this.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 318 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

The SORTTYPE execution region attribute overrides any sorting algorithm that you
specify with this option.

Related information
--tiebreaker=option on page 328
--largeregions, --no_largeregions on page 280
Execution region attributes on page 189
Section placement with the linker on page 56
Execution region descriptions on page 187

12.127 --split
Splits the default load region, that contains the RO and RW output sections, into separate load
regions.

Usage
The default load region is split into the following load regions:

• One region containing the RO output section. The default load address is 8000, but you can
specify a different address with the --ro_base option.

• One region containing the RW and ZI output sections. The default load address is 0, but you
can specify a different address with the --rw_base option.

Both regions are root regions.

Considerations when execute-only sections are present
For images containing execute-only (XO) sections, an XO execution region is placed at the address
specified by --ro_base. The RO execution region is placed immediately after the XO region.

If you specify --xo_base address, then the XO execution region is placed at the specified address
in a separate load region from the RO execution region.

Restrictions
You cannot use --split with --scatter.

Related information
--scatter=filename on page 313
The structure of an Arm ELF image on page 38

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 319 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.128 --startup=symbol, --no_startup
Enables the linker to use alternative C libraries with a different startup symbol if required.

Default
The default is --startup=__main.

Syntax
--startup =symbol

By default, symbol is set to __main.

--no_startup does not take a argument.

Usage
The linker includes the C library startup code if there is a reference to a symbol that is defined by
the C library startup code. This symbol reference is called the startup symbol. It is automatically
created by the linker when it sees a definition of main(). The --startup option enables you to
change this symbol reference.

• If the linker finds a definition of main() and does not find a definition of symbol, then it
generates an error.

• If the linker finds a definition of main() and a definition of symbol, but no entry point is
specified, then it generates a warning.

--no_startup does not add a reference.

Related information
--entry=location on page 260

12.129 --stdlib
Specifies the C++ library to use.

This topic includes descriptions of [ALPHA] features. See Support level definitions.

Syntax
--stdlib=library_option

where library_option is one of the following:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 320 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

libc++

The standard C++ library.

threaded_libc++ [ALPHA]
The threaded standard C++ library.

Usage
C++ objects compiled with armclang and linked with armlink use libc++ by default.

Related information
Arm C++ libraries and multithreading [ALPHA]

12.130 --strict
Instructs the linker to perform additional conformance checks, such as reporting conditions that
might result in failures.

Usage
--strict causes the linker to check for taking the address of:

• A non-interworking location from a non-interworking location in a different state.

• A RW location from a location that uses the static base register R9.

• A STKCKD function in an image that contains USESV7 functions.

• A ~STKCKD function in an image that contains STKCKD functions.

STKCKD functions reserve register r10 for Stack Checking, ~STKCKD functions use
register r10 as variable register v7 and USESV7 functions use register r10 as v7. See
the Procedure Call Standard for the Arm Architecture (AAPCS) for more information
about v7.

An example of a condition that might result in failure is taking the address of an interworking
function from a non-interworking function.

Related information
--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322
--strict_ph, --no_strict_ph on page 323
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 321 of 351

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/Multithreaded-support-in-Arm-C-libraries/Arm-C-libraries-and-multithreading

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.131 --strict_enum_size, --no_strict_enum_size
Checks whether the enum size is consistent across all inputs.

Deprecated in this release.

Usage
Use --strict_enum_size to force the linker to display an error message if the enum size is not
consistent across all inputs. This is the default.

Use --no_strict_enum_size for compatibility with objects built using RVCT v3.1 and earlier.

Related information
--strict on page 321
--strict_flags, --no_strict_flags on page 322
--strict_ph, --no_strict_ph on page 323
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

12.132 --strict_flags, --no_strict_flags
Prevent or allow the generation of the EF_ARM_HASENTRY flag.

Default
The default is --no_strict_flags.

Usage
The option --strict_flags prevents the EF_ARM_HASENTRY flag from being generated.

Related information
--strict on page 321
--strict_enum_size, --no_strict_enum_size on page 321
--strict_ph, --no_strict_ph on page 323
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 322 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.133 --strict_ph, --no_strict_ph
Enables or disables the sorting of the Program Header Table entries.

Default
The default is --strict_ph.

Usage
The linker writes the contents of load regions into the output ELF file in the order that load regions
are written in the scatter file. Each load region is represented by one ELF program segment. In
RVCT v2.2 the Program Header table entries describing the program segments are given the same
order as the program segments in the ELF file. To be more compliant with the ELF specification,
in RVCT v3.0 and later the Program Header table entries are sorted in ascending virtual address
order.

Use the --no_strict_ph command-line option to switch off the sorting of the Program Header
table entries.

Related information
--strict on page 321
--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

12.134 --strict_relocations, --no_strict_relocations
Enables you to ensure Application Binary Interface (ABI) compliance of legacy or third party objects.

Default
The default is --no_strict_relocations.

Usage
This option checks that branch relocation applies to a branch instruction bit-pattern. The linker
generates an error if there is a mismatch.

Use --strict_relocations to instruct the linker to report instances of obsolete and deprecated
relocations.

Relocation errors and warnings are most likely to occur if you are linking object files built with
previous versions of the Arm tools.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 323 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Related information
--strict on page 321
--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322
--strict_ph, --no_strict_ph on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

12.135 --strict_symbols, --no_strict_symbols
Checks whether a mapping symbol type matches an ABI symbol type.

Default
The default is --no_strict_symbols.

Usage
The option --strict_symbols checks that the mapping symbol type matches ABI symbol type. The
linker displays a warning if the types do not match.

A mismatch can occur only if you have hand-coded your own assembler.

Example
In the following assembler code the symbol sym has type STT_FUNC and is A32:

 .section mycode,"x"
 .word sym + 4
 .code 32
 .type sym, "function"
sym:
 mov r0, r0
 .code 16
 mov r0, r0
 .end

The difference in behavior is the meaning of .word sym + 4:

• In pre-ABI linkers the state of the symbol is the state of the mapping symbol at that location. In
this example, the state is T32.

• In ABI linkers the type of the symbol is the state of the location of symbol plus the offset.

Related information
--strict on page 321
--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322
--strict_ph, --no_strict_ph on page 323

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 324 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

--strict_relocations, --no_strict_relocations on page 323
--strict_visibility, --no_strict_visibility on page 325
--strict_wchar_size, --no_strict_wchar_size on page 325

12.136 --strict_visibility, --no_strict_visibility
Prevents or allows a hidden visibility reference to match against a shared object.

Default
The default is --strict_visibility.

Usage
A linker is not permitted to match a symbol reference with STT_HIDDEN visibility to a dynamic
shared object. Some older linkers might permit this.

Use --no_strict_visibility to permit a hidden visibility reference to match against a shared
object.

Related information
--strict on page 321
--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322
--strict_ph, --no_strict_ph on page 323
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_wchar_size, --no_strict_wchar_size on page 325

12.137 --strict_wchar_size, --no_strict_wchar_size
Checks whether the wide character size is consistent across all inputs.

Deprecated in this release.

Usage
The option --strict_wchar_size causes the linker to display an error message if the wide
character size is not consistent across all inputs. This is the default.

Use --no_strict_wchar_size for compatibility with objects built using RVCT v3.1 and earlier.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 325 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Related information
--strict on page 321
--strict_enum_size, --no_strict_enum_size on page 321
--strict_flags, --no_strict_flags on page 322
--strict_ph, --no_strict_ph on page 323
--strict_relocations, --no_strict_relocations on page 323
--strict_symbols, --no_strict_symbols on page 324
--strict_visibility, --no_strict_visibility on page 325

12.138 --symbols, --no_symbols
Enables or disables the listing of each local and global symbol used in the link step, and its value.

This does not include mapping symbols output to stdout. Use --
list_mapping_symbols to include mapping symbols in the output.

Default
The default is --no_symbols.

Related information
--list_mapping_symbols, --no_list_mapping_symbols on page 285

12.139 --symdefs=filename
Creates a file containing the global symbol definitions from the output image.

Default
By default, all global symbols are written to the symdefs file. If a symdefs file called filename
already exists, the linker restricts its output to the symbols already listed in this file.

If you do not want this behavior, be sure to delete any existing symdefs file before
the link step.

Syntax
--symdefs=filename

where filename is the name of the text file to contain the global symbol definitions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 326 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Usage
If filename is specified without path information, the linker searches for it in the directory where
the output image is being written. If it is not found, it is created in that directory.

You can use the symbol definitions file as input when linking another image.

Related information
Access symbols in another image on page 103

12.140 --symver_script=filename
Enables implicit symbol versioning.

Syntax
--symver_script=filename

where filename is a symbol version script.

12.141 --symver_soname
Enables implicit symbol versioning to force static binding.

Not supported for AArch64 state.

Default
This is the default if you are generating a Base Platform Application Binary Interface (BPABI)
compatible executable file but where you do not specify a version script with the option --
symver_script.

Usage
Where a symbol has no defined version, the linker uses the shared object name (SONAME) contained
in the file being linked.

Related information
Symbol versioning on page 222
Application Binary Interface (ABI)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 327 of 351

https://developer.arm.com/Architectures/Application%20Binary%20Interface

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.142 --tailreorder, --no_tailreorder
Moves tail calling sections immediately before their target, if possible, to optimize the branch
instruction at the end of a section.

Not supported for AArch64 state.

Default
The default is --no_tailreorder.

Usage
A tail calling section is a section that contains a branch instruction at the end of the section. The
branch must have a relocation that targets a function at the start of a section.

Restrictions
The linker:

• Can only move one tail calling section for each tail call target. If there are multiple tail calls to a
single section, the tail calling section with an identical section name is moved before the target.
If no section name is found in the tail calling section that has a matching name, then the linker
moves the first section it encounters.

• Cannot move a tail calling section out of its execution region.

• Does not move tail calling sections before inline veneers.

Related information
Linker reordering of tail calling sections on page 82
--branchnop, --no_branchnop on page 240
About branches that optimize to a NOP on page 82

12.143 --tiebreaker=option
A tiebreaker is used when a sorting algorithm requires a total ordering of sections. It is used by the
linker to resolve the order when the sorting criteria results in more than one input section with
equal properties.

Default
The default option is creation.

Syntax
--tiebreaker=option

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 328 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

where option is one of:

creation

The order that the linker creates sections in its internal section data structure.

When the linker creates an input section for each ELF section in the input objects, it
increments a global counter. The value of this counter is stored in the section as the creation
index.

The creation index of a section is unique apart from the special case of inline veneers.

cmdline

The order that the section appears on the linker command-line. The command-line order is
defined as File.Object.Section where:

• Section is the section index, sh_idx, of the Section in the Object.

• Object is the order that Object appears in the File.

• File is the order the File appears on the command line.

The order the Object appears in the File is only significant if the file is an ar archive.

This option is useful if you are doing a binary difference between the results of different
links, link1 and link2. If link2 has only small changes from link1, then you might want the
differences in one source file to be localized. In general, creation index works well for objects,
but because of the multiple pass selection of members from libraries, a small difference such
as calling a new function can result in a different order of objects and therefore a different
tiebreaker. The command-line index is more stable across builds.

Use this option with the --scatter option.

Related information
--sort=algorithm on page 317
--map, --no_map on page 292
--any_sort_order=order on page 234

12.144 --unaligned_access, --no_unaligned_access
Enable or disable unaligned accesses to data on Arm architecture-based processors.

Usage
When using --no_unaligned_access, the linker:

• Does not select objects from the Arm® C library that allow unaligned accesses.

• Gives an error message if any input object allows unaligned accesses.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 329 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

This error message can be downgraded.

Default
The default is --unaligned_access.

12.145 --undefined=symbol
Prevents the removal of a specified symbol if it is undefined.

Syntax
--undefined=symbol

Usage
Causes the linker to:

1. Create a symbol reference to the specified symbol name.

2. Issue an implicit --keep=symbol to prevent any sections brought in to define that symbol from
being removed.

Related information
--undefined_and_export=symbol on page 330
--keep=section_id on page 278

12.146 --undefined_and_export=symbol
Prevents the removal of a specified symbol if it is undefined, and pushes the symbol into the
dynamic symbol table.

Syntax
--undefined_and_export=symbol

Usage
Causes the linker to:

1. Create a symbol reference to the specified symbol name.

2. Issue an implicit --keep=symbol to prevent any sections brought in to define that symbol from
being removed.

3. Add an implicit EXPORT symbol to push the specified symbol into the dynamic symbol table.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 330 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Considerations
Be aware of the following when using this option:

• It does not change the visibility of a symbol unless you specify the --override_visibility
option.

• A warning is issued if the visibility of the specified symbol is not high enough.

• A warning is issued if the visibility of the specified symbol is overridden because you also
specified the --override_visibility option.

• Hidden symbols are not exported unless you specify the --override_visibility option.

Related information
--override_visibility on page 299
--undefined=symbol on page 330
--keep=section_id on page 278
EXPORT steering file command on page 341

12.147 --unresolved=symbol
Takes each reference to an undefined symbol and matches it to the global definition of the
specified symbol.

Syntax
--unresolved=symbol

symbol must be both defined and global, otherwise it appears in the list of undefined symbols and
the link step fails.

Usage
This option is particularly useful during top-down development, because it enables you to test
a partially-implemented system by matching each reference to a missing function to a dummy
function.

Related information
--undefined=symbol on page 330
--undefined_and_export=symbol on page 330

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 331 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.148 --use_definition_visibility
Enables the linker to use the visibility of the definition in preference to the visibility of a reference
when combining symbols.

Usage
When the linker combines global symbols the visibility of the symbol is set with the strictest
visibility of the symbols being combined. Therefore, a symbol reference with STV_HIDDEN visibility
combined with a definition with STV_DEFAULT visibility results in a definition with STV_HIDDEN
visibility.

For example, a symbol reference with STV_HIDDEN visibility combined with a definition with
STV_DEFAULT visibility results in a definition with STV_DEFAULT visibility.

This can be useful when you want a reference to not match a Shared Library, but you want to
export the definition.

This option is not ELF-compliant and is disabled by default. To create ELF-compliant
images, you must use symbol references with the appropriate visibility.

12.149 --userlibpath=pathlist
Specifies a list of paths that the linker is to use to search for user libraries.

Syntax
--userlibpath=pathlist

Where pathlist is a comma-separated list of paths that the linker is to use to search for the
required libraries. Do not include spaces between the comma and the path name when specifying
multiple path names, for example, path1,path2,path3,…,pathn.

Related information
--libpath=pathlist on page 283

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 332 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.150 --veneerinject, --no_veneerinject
Enables or disables the placement of veneers outside of the sorting order for the Execution Region.

Default
The default is --no_veneerinject. The linker automatically switches to large region mode if it is
required to successfully link the image. If large region mode is turned off with --no_largeregions
then only --veneerinject is turned on if it is required to successfully link the image.

--veneerinject is the default for large region mode.

Usage
Use --veneerinject to allow the linker to place veneers outside of the sorting order for the
Execution Region. This option is a subset of the --largeregions command. Use --veneerinject if
you want to allow the veneer placement behavior described, but do not want to implicitly set the
--api and --sort=AvgCallDepth.

Use --no_veneerinject to allow the linker use the sorting order for the Execution Region.

Use --veneer_inject_type to control the strategy the linker uses to place injected veneers.

The following command-line options allow stable veneer placement with large Execution Regions:

--veneerinject --veneer_inject_type=pool --sort=lexical

Related information
--largeregions, --no_largeregions on page 280
--veneer_inject_type=type on page 333
--api, --no_api on page 235
--sort=algorithm on page 317

12.151 --veneer_inject_type=type
Controls the veneer layout when -largeregions mode is on.

Syntax
--veneer_inject_type=type

Where type is one of:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 333 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

individual

The linker places veneers to ensure they can be reached by the largest amount of sections
that use the veneer. Veneer reuse between execution regions is permitted. This type
minimizes the number of veneers that are required but disrupts the structure of the image
the most.

pool

The linker:

1. Collects veneers from a contiguous range of the execution region.

2. Places all the veneers generated from that range into a pool.

3. Places that pool at the end of the range.

A large execution region might have more than one range and therefore more than one pool.
Although this type has much less impact on the structure of image, it has fewer opportunities
for reuse. This is because a range of code cannot reuse a veneer in another pool. The linker
calculates the range based on the presence of branch instructions that the linker predicts
might require veneers. A branch is predicted to require a veneer when either:

• A state change is required.

• The distance from source to target plus a contingency greater than the branch range.

You can set the size of the contingency with the --veneer_pool_size=size option. By default
the contingency size is set to 102400 bytes. The --info=veneerpools option provides
information on how the linker has placed veneer pools.

Restrictions
You must use --largeregions with this option.

Related information
--info=topic[,topic,…] on page 271
--veneerinject, --no_veneerinject on page 332
--veneer_pool_size=size on page 334
--largeregions, --no_largeregions on page 280

12.152 --veneer_pool_size=size
Sets the contingency size for the veneer pool in an execution region.

Default
The default size is 102400 bytes.

Syntax
--veneer_pool_size=pool

where pool is the size in bytes.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 334 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Related information
--veneer_inject_type=type on page 333

12.153 --veneershare, --no_veneershare
Enables or disables veneer sharing. Veneer sharing can cause a significant decrease in image size.

Default
The default is --veneershare.

Related information
--inlineveneer, --no_inlineveneer on page 276
--piveneer, --no_piveneer on page 302
Veneer sharing on page 62
Linker-generated veneers on page 61
Veneer types on page 63
Generation of position independent to absolute veneers on page 64
--crosser_veneershare, --no_crosser_veneershare on page 251

12.154 --verbose
Prints detailed information about the link operation, including the objects that are included and the
libraries from which they are taken.

Usage
This output is particular useful for tracing undefined symbols reference or multiply defined symbols.
Because this output is typically quite long, you might want to use this command with the --
list=filename command to redirect the information to filename.

Use --verbose to output diagnostics to stdout.

Related information
--list=filename on page 284
--muldefweak, --no_muldefweak on page 296
--unresolved=symbol on page 331

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 335 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

12.155 --version_number
Displays the version of armlink you are using.

Usage
The linker displays the version number in the format Mmmuuxx, where:

• M is the major version number, 6.

• mm is the minor version number.

• uu is the update number.

• xx is reserved for Arm internal use. You can ignore this for the purposes of checking whether
the current release is a specific version or within a range of versions.

Related information
--help on page 269
--vsn on page 336

12.156 --via=filename
Reads an additional list of input filenames and linker options from filename.

Syntax
--via=filename

Where filename is the name of a via file containing options to be included on the command line.

Usage
You can enter multiple --via options on the linker command line. The --via options can also be
included within a via file.

Related information
Overview of via files on page 348
Via file syntax rules on page 348

12.157 --vsn
Displays the version information and the license details.

--vsn is intended to report the version information for manual inspection. The
Component line indicates the release of Arm® Compiler you are using. If you need
to access the version in other tools or scripts, for example in build scripts, use the
output from --version_number.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 336 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Example
> armlink --vsn

Product: ARM Compiler N.n
Component: ARM Compiler N.n
Tool: armlink [tool_id]
license_type
Software supplied by: ARM Limited

Related information
--help on page 269
--version_number on page 335

12.158 --xo_base=address
Specifies the base address of an execute-only (XO) execution region.

Syntax
--xo_base=address

Where address must be word-aligned.

Usage
When you specify --xo_base:

• XO sections are placed in a separate load and execution region, at the address specified.

• No ER_XO region is created when no XO sections are present.

Restrictions
You can use --xo_base only with the bare-metal linking model.

XO memory is supported only for Arm®v7-M and Armv8-M architectures.

You cannot use --xo_base with:

• --reloc.

• --ropi.

• --rwpi.

• --scatter.

Related information
--ro_base=address on page 309

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 337 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

--ropi on page 310
--rosplit on page 311
--rw_base=address on page 311
--zi_base=address on page 339

12.159 --xref, --no_xref
Lists to stdout all cross-references between input sections.

Default
The default is --no_xref.

Related information
--xrefdbg, --no_xrefdbg on page 338
--xref{from|to}=object(section) on page 338

12.160 --xrefdbg, --no_xrefdbg
Lists to stdout all cross-references between input debug sections.

Default
The default is --no_xrefdbg.

Related information
--xref, --no_xref on page 338
--xref{from|to}=object(section) on page 338

12.161 --xref{from|to}=object(section)
Lists to stdout cross-references from and to input sections.

Syntax
--xref{from|to}=object(section)

On Unix systems your shell typically requires the parentheses to be escaped with
backslashes. Alternatively, enclose the complete section specifier in double quotes,
for example:

--xreffrom="init.o(init)"

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 338 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

Usage
This option lists to stdout cross-references:

• From input section in object to other input sections.

• To input section in object from other input sections.

This is a useful subset of the listing produced by the --xref linker option if you are interested in
references from or to a specific input section. You can have multiple occurrences of this option to
list references from or to more than one input section.

Related information
--xref, --no_xref on page 338
--xrefdbg, --no_xrefdbg on page 338

12.162 --zi_base=address
Specifies the base address of an ER_ZI execution region.

Syntax
--zi_base=address

Where address must be word-aligned.

This option does not affect the placement of execute-only sections.

Restrictions
The linker ignores --zi_base if one of the following options is also specified:

• --bpabi.

• --base_platform.

• --reloc.

• --rwpi.

• --split.

You cannot use --zi_base with --scatter.

Related information
--ro_base=address on page 309
--ropi on page 310
--rosplit on page 311

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 339 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink Command-line Options

--rw_base=address on page 311
--xo_base=address on page 337

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 340 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Steering File Command Reference

13. Linker Steering File Command
Reference

Describes the steering file commands supported by the Arm linker, armlink.

13.1 EXPORT steering file command
Specifies that a symbol can be accessed by other shared objects or executables.

A symbol can be exported only if the definition has STV_DEFAULT or STV_PROTECTED
visibility. You must use the --override_visibility command-line option to enable
the linker to override symbol visibility to STV_DEFAULT.

Syntax
EXPORT pattern AS replacement_pattern[,pattern AS replacement_pattern]

where:

pattern

is a string, optionally including wildcard characters (either * or ?), that matches zero or more
defined global symbols. If pattern does not match any defined global symbol, the linker
ignores the command. The operand can match only defined global symbols.

If the symbol is not defined, the linker issues:

Warning: L6331W: No eligible global symbol matches pattern symbol

replacement_pattern

is a string, optionally including wildcard characters (either * or ?), to which the defined global
symbol is to be renamed. Wild characters must have a corresponding wildcard in pattern.
The characters matched by the replacement_pattern wildcard are substituted for the
pattern wildcard.

For example:

EXPORT my_func AS func1

renames and exports the defined symbol my_func as func1.

Usage
You cannot export a symbol to a name that already exists. Only one wildcard character (either * or
?) is permitted in EXPORT.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 341 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Steering File Command Reference

The defined global symbol is included in the dynamic symbol table (as replacement_pattern if
given, otherwise as pattern), if a dynamic symbol table is present.

Related information
IMPORT steering file command on page 343
Edit the symbol tables with a steering file on page 107
--override_visibility on page 299

13.2 HIDE steering file command
Makes defined global symbols in the symbol table anonymous.

Syntax
HIDE pattern[,pattern]

where:

pattern

is a string, optionally including wildcard characters, that matches zero or more defined
global symbols. If pattern does not match any defined global symbol, the linker ignores the
command. You cannot hide undefined symbols.

Usage
You can use HIDE and SHOW to make certain global symbols anonymous in an output image or
partially linked object. Hiding symbols in an object file or library can be useful as a means of
protecting intellectual property, as shown in the following example:

; steer.txt
; Hides all global symbols
HIDE *
; Shows all symbols beginning with 'os_'
SHOW os_*

This example produces a partially linked object with all global symbols hidden, except those
beginning with os_.

Link this example with the command:

armlink --partial input_object.o --edit steer.txt -o partial_object.o

You can link the resulting partial object with other objects, provided they do not contain references
to the hidden symbols. When symbols are hidden in the output object, SHOW commands in
subsequent link steps have no effect on them. The hidden references are removed from the output
symbol table.

Related information
SHOW steering file command on page 347

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 342 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Steering File Command Reference

--edit=file_list on page 258
--partial on page 301
Edit the symbol tables with a steering file on page 107

13.3 IMPORT steering file command
Specifies that a symbol is defined in a shared object at runtime.

A symbol can be imported only if the reference has STV_DEFAULT visibility. You
must use the --override_visibility command-line option to enable the linker to
override symbol visibility to STV_DEFAULT.

Syntax
IMPORT pattern AS replacement_pattern[,pattern AS replacement_pattern]

where:

pattern

is a string, optionally including wildcard characters (either * or ?), that matches zero or more
undefined global symbols. If pattern does not match any undefined global symbol, the linker
ignores the command. The operand can match only undefined global symbols.

replacement_pattern

is a string, optionally including wildcard characters (either * or ?), to which the symbol is to
be renamed. Wild characters must have a corresponding wildcard in pattern. The characters
matched by the pattern wildcard are substituted for the replacement_pattern wildcard.

For example:

IMPORT my_func AS func

imports and renames the undefined symbol my_func as func.

Usage
You cannot import a symbol that has been defined in the current shared object or executable. Only
one wildcard character (either * or ?) is permitted in IMPORT.

The undefined symbol is included in the dynamic symbol table (as replacement_pattern if given,
otherwise as pattern), if a dynamic symbol table is present.

The IMPORT command only affects undefined global symbols. Symbols that have
been resolved by a shared library are implicitly imported into the dynamic symbol
table. The linker ignores any IMPORT directive that targets an implicitly imported
symbol.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 343 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Steering File Command Reference

Related information
--override_visibility on page 299
EXPORT steering file command on page 341
Edit the symbol tables with a steering file on page 107

13.4 RENAME steering file command
Renames defined and undefined global symbol names.

Syntax
RENAME pattern AS replacement_pattern[,pattern AS replacement_pattern]

where:

pattern

is a string, optionally including wildcard characters (either * or ?), that matches zero or
more global symbols. If pattern does not match any global symbol, the linker ignores the
command. The operand can match both defined and undefined symbols.

replacement_pattern

is a string, optionally including wildcard characters (either * or ?), to which the symbol is to be
renamed. Wildcard characters must have a corresponding wildcard in pattern. The characters
matched by the pattern wildcard are substituted for the replacement_pattern wildcard.

For example, for a symbol named func1:

RENAME f* AS my_f*

renames func1 to my_func1.

Usage
You cannot rename a symbol to a global symbol name that already exists, even if the target symbol
name is being renamed itself.

You cannot rename a symbol to the same name as another symbol. For example, you cannot do the
following:

RENAME foo1 AS bar
RENAME foo2 AS bar

Error: L6281E: Cannot rename both foo2 and foo1 to bar.

Renames only take effect at the end of the link step. Therefore, renaming a symbol does not
remove its original name. For example, given an image containing the symbols func1 and func2, you
cannot do the following:

RENAME func1 AS func2

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 344 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Steering File Command Reference

RENAME func2 AS func3

Error: L6282E: Cannot rename func1 to func2 as a global symbol of that name exists

Only one wildcard character (either * or ?) is permitted in RENAME.

Example
Given an image containing the symbols func1, func2, and func3, you might have a steering file
containing the following commands:

; invalid, func2 already exists
RENAME func1 AS func2

; valid
RENAME func3 AS b2

; invalid, func3 still exists because the link step is not yet complete
RENAME func2 AS func3

Related information
Edit the symbol tables with a steering file on page 107

13.5 REQUIRE steering file command
Creates a DT_NEEDED tag in the dynamic array.

DT_NEEDED tags specify dependencies to other shared objects used by the application, for example,
a shared library.

Syntax
REQUIRE pattern[,pattern]

where:

pattern

is a string representing a filename. No wild characters are permitted.

Usage
The linker inserts a DT_NEEDED tag with the value of pattern into the dynamic array. This tells the
dynamic loader that the file it is currently loading requires pattern to be loaded.

DT_NEEDED tags inserted as a result of a REQUIRE command are added after
DT_NEEDED tags generated from shared objects or dynamically linked libraries (DLLs)
placed on the command line.

Related information
Edit the symbol tables with a steering file on page 107

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 345 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Steering File Command Reference

13.6 RESOLVE steering file command
Matches specific undefined references to a defined global symbol.

Syntax
RESOLVE pattern AS defined_pattern

where:

pattern

is a string, optionally including wildcard characters (either * or ?), that matches zero or more
undefined global symbols. If pattern does not match any undefined global symbol, the linker
ignores the command. The operand can match only undefined global symbols.

defined_pattern

is a string, optionally including wildcard characters, that matches zero or more defined global
symbols. If defined_pattern does not match any defined global symbol, the linker ignores the
command. You cannot match an undefined reference to an undefined symbol.

Usage
RESOLVE is an extension of the existing armlink command-line option --unresolved. The difference
is that --unresolved enables all undefined references to match one single definition, whereas
RESOLVE enables more specific matching of references to symbols.

The undefined references are removed from the output symbol table.

RESOLVE works when performing partial-linking and when linking normally.

Example
You might have two files file1.c and file2.c, as shown in the following example:

file1.c
extern int foo;
extern void MP3_Init(void);
extern void MP3_Play(void);
int main(void)
{
 int x = foo + 1;
 MP3_Init();
 MP3_Play();
 return x;
}

file2.c:
int foobar;
void MyMP3_Init()
{
}
void MyMP3_Play()
{
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 346 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Linker Steering File Command Reference

Create a steering file, ed.txt, containing the line:

RESOLVE MP3* AS MyMP3*

Enter the following command:

armlink file1.o file2.o --edit ed.txt --unresolved foobar

This command has the following effects:

• The references from file1.o (foo, MP3_Init() and MP3_Play()) are matched to the definitions
in file2.o (foobar, MyMP3_Init() and MyMP3_Play() respectively), as specified by the steering
file ed.txt.

• The RESOLVE command in ed.txt matches the MP3 functions and the --unresolved option
matches any other remaining references, in this case, foo to foobar.

• The output symbol table, whether it is an image or a partial object, does not contain the
symbols foo, MP3_Init or MP3_Play.

Related information
--edit=file_list on page 258
--unresolved=symbol on page 331
Edit the symbol tables with a steering file on page 107

13.7 SHOW steering file command
Makes global symbols visible.

The SHOW command is useful if you want to make a specific symbol visible that is hidden using a
HIDE command with a wildcard.

Syntax
SHOW pattern[,pattern]

where:

pattern

is a string, optionally including wildcard characters, that matches zero or more global symbols.
If pattern does not match any global symbol, the linker ignores the command.

Usage
The usage of SHOW is closely related to that of HIDE.

Related information
HIDE steering file command on page 342
Edit the symbol tables with a steering file on page 107

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 347 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Via File Syntax

14. Via File Syntax
Describes the syntax of via files accepted by the armasm, armlink, fromelf, and armar tools.

14.1 Overview of via files
Via files are plain text files that allow you to specify command-line arguments and options for the
armasm, armlink, fromelf, and armar tools.

Typically, you use a via file to overcome the command-line length limitations. However, you might
want to create multiple via files that:

• Group similar arguments and options together.

• Contain different sets of arguments and options to be used in different scenarios.

In general, you can use a via file to specify any command-line option to a tool,
including --via. Therefore, you can call multiple nested via files from within a via
file.

Via file evaluation
When you invoke the armasm, armlink, fromelf, or armar, the tool:

1. Replaces the first specified --via via_file argument with the sequence of argument
words that are extracted from the via file, including recursively processing any nested --via
commands in the via file.

2. Processes any subsequent --via via_file arguments in the same way, in the order they are
presented.

That is, via files are processed in the order that you specify them. Each via file is processed
completely, including any nested via files contained in that file, before processing the next via file.

Related information
Via file syntax rules on page 348
--via=filename on page 336

14.2 Via file syntax rules
Via files must conform to some syntax rules.

• A via file is a text file containing a sequence of words. Each word in the text file is converted
into an argument string and passed to the tool.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 348 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Via File Syntax

• Words are separated by whitespace, or the end of a line, except in delimited strings, for
example:

--paged --pagesize=0x4000 (two words)

--paged--pagesize=0x4000 (one word)

• The end of a line is treated as whitespace, for example:

--paged
--pagesize=0x4000

This is equivalent to:

--paged --pagesize=0x4000

• Strings enclosed in quotation marks ("), or apostrophes (') are treated as a single word. Within a
quoted word, an apostrophe is treated as an ordinary character. Within an apostrophe delimited
word, a quotation mark is treated as an ordinary character.

Use quotation marks to delimit filenames or path names that contain spaces, for example:

--errors C:\\My Project\\errors.txt (three words)

--errors "C:\\My Project\\errors.txt " (two words)

Use apostrophes to delimit words that contain quotes, for example:

-DNAME='"Arm Compiler"' (one word)

• Characters enclosed in parentheses are treated as a single word, for example:

--option(x, y, z) (one word)

--option (x, y, z) (two words)

• Within quoted or apostrophe delimited strings, you can use a backslash (\\) character to escape
the quote, apostrophe, and backslash characters.

• A word that occurs immediately next to a delimited word is treated as a single word, for
example:

--errors "C:\\Project\\errors.txt "

This is treated as the single word:

--errorsC:\\Project\\errors.txt

• Lines beginning with a semicolon (;) or a hash (#) character as the first nonwhitespace character
are comment lines. A semicolon or hash character that appears anywhere else in a line is not
treated as the start of a comment, for example:

-o objectname.axf ;this is not a comment

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 349 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

Via File Syntax

A comment ends at the end of a line, or at the end of the file. There are no multi-line
comments, and there are no part-line comments.

Related information
Overview of via files on page 348
--via=filename on page 336

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 350 of 351

Arm® Compiler armlink User Guide Document ID: DUI0803_l_en
Version 6.6

armlink User Guide Changes

15. armlink User Guide Changes
Describes the technical changes that have been made to the armlink User Guide.

15.1 Changes for the armlink User Guide
Changes that have been made to the armlink User Guide are listed with the latest version first.

Table 15-1: Changes between 6.6.5 (revision L) and 6.6.4 (revision K)

Change Topics affected

[SDCOMP-58428] Added notes about build attribute compatibility
checking being supported only for AArch32.

• --force_explicit_attr.

[SDCOMP-57878] Added a note that, in a Linux environment,
armlink requires quotation marks around options that accept
parentheses as values.

• Linker command-line syntax.

• --entry=location.

• --first=section_id.

• --keep=section_id.

• --last=section_id.

• --xref{from|to}=object(section).

[SDCOMP-57039] Clarify that armlink does not OVERALIGN
some sections where it might be unsafe to do so.

• Aligning execution regions and input sections.

• Syntax of an input section description.

Added a note that using manual and automatic overlays within the
same program is not supported.

• --overlay_veneers.

• Execution region attributes.

Table 15-2: Changes between 6.6.4 (revision K) and 6.6.3 (revision J)

Change Topics affected

[SDCOMP-54472] The note no longer states that a warning is
emitted when using -mexecute-only with -flto.

• --lto, --no_lto.

[SDCOMP-53622] Added a statement to the note about stack and
heap alignment for AArch32 and AArch64.

• Placing the stack and heap with a scatter file.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 351 of 351

	Arm® Compiler armlink User Guide
	Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Conventions
	1.2 Other information

	2. Overview of the Linker
	2.1 About the linker
	2.1.1 Summary of the linker features
	2.1.2 What the linker can accept as input
	2.1.3 What the linker outputs

	2.2 Linker command-line syntax
	2.3 What the linker does when constructing an executable image
	2.4 Support level definitions

	3. Linking Models Supported by armlink
	3.1 Overview of linking models
	3.2 Bare-metal linking model
	3.3 Partial linking model
	3.4 Base Platform Application Binary Interface (BPABI) linking model
	3.5 Base Platform linking model

	4. Image Structure and Generation
	4.1 The structure of an Arm ELF image
	4.1.1 Views of the image at each link stage
	4.1.2 Input sections, output sections, regions, and program segments
	4.1.3 Load view and execution view of an image
	4.1.4 Methods of specifying an image memory map with the linker
	4.1.5 Image entry points
	4.1.5.1 The initial entry point for an image

	4.1.6 Restrictions on image structure

	4.2 Simple images
	4.2.1 Types of simple image
	4.2.2 Type 1 image structure, one load region and contiguous execution regions
	4.2.3 Type 2 image structure, one load region and non-contiguous execution regions
	4.2.4 Type 3 image structure, multiple load regions and non-contiguous execution regions

	4.3 Section placement with the linker
	4.3.1 Default section placement
	4.3.1.1 Handling unassigned sections

	4.3.2 Section placement with the FIRST and LAST attributes
	4.3.3 Section alignment with the linker

	4.4 Linker support for creating demand-paged files
	4.5 Linker reordering of execution regions containing T32 code
	4.6 Linker-generated veneers
	4.6.1 What is a veneer?
	4.6.2 Veneer sharing
	4.6.3 Veneer types
	4.6.4 Generation of position independent to absolute veneers
	4.6.5 Reuse of veneers when scatter-loading
	4.6.6 Generation of secure gateway veneers

	4.7 Command-line options used to control the generation of C++ exception tables
	4.8 Weak references and definitions
	4.9 How the linker performs library searching, selection, and scanning
	4.10 How the linker searches for the Arm standard libraries
	4.11 Specifying user libraries when linking
	4.12 How the linker resolves references
	4.13 The strict family of linker options

	5. Linker Optimization Features
	5.1 Elimination of common debug sections
	5.2 Elimination of common groups or sections
	5.3 Elimination of unused sections
	5.4 Optimization with RW data compression
	5.4.1 How the linker chooses a compressor
	5.4.2 Options available to override the compression algorithm used by the linker
	5.4.3 How compression is applied
	5.4.4 Considerations when working with RW data compression

	5.5 Function inlining with the linker
	5.6 Factors that influence function inlining
	5.7 About branches that optimize to a NOP
	5.8 Linker reordering of tail calling sections
	5.9 Restrictions on reordering of tail calling sections
	5.10 Linker merging of comment sections
	5.11 Merging identical constants

	6. Getting Image Details
	6.1 Options for getting information about linker-generated files
	6.2 Identifying the source of some link errors
	6.3 Example of using the --info linker option
	6.4 How to find where a symbol is placed when linking

	7. Accessing and Managing Symbols with armlink
	7.1 About mapping symbols
	7.2 Linker-defined symbols
	7.3 Region-related symbols
	7.3.1 Types of region-related symbols
	7.3.2 Image$$ execution region symbols
	7.3.3 Load$$ execution region symbols
	7.3.4 Load$$LR$$ load region symbols
	7.3.5 Region name values when not scatter-loading
	7.3.6 Linker defined symbols and scatter files
	7.3.7 Methods of importing linker-defined symbols in C and C++
	7.3.8 Methods of importing linker-defined symbols in Arm assembly language

	7.4 Section-related symbols
	7.4.1 Types of section-related symbols
	7.4.2 Image symbols
	7.4.3 Input section symbols

	7.5 Access symbols in another image
	7.5.1 Creating a symdefs file
	7.5.2 Outputting a subset of the global symbols
	7.5.3 Reading a symdefs file
	7.5.4 Symdefs file format

	7.6 Edit the symbol tables with a steering file
	7.6.1 Specifying steering files on the linker command-line
	7.6.2 Steering file command summary
	7.6.3 Steering file format
	7.6.4 Hide and rename global symbols with a steering file

	7.7 Use of $Super$$ and $Sub$$ to patch symbol definitions

	8. Scatter-loading Features
	8.1 The scatter-loading mechanism
	8.1.1 Overview of scatter-loading
	8.1.2 When to use scatter-loading
	8.1.3 Linker-defined symbols that are not defined when scatter-loading
	8.1.4 Placing the stack and heap with a scatter file
	8.1.5 Scatter-loading command-line options
	8.1.6 Scatter-loading images with a simple memory map
	8.1.7 Scatter-loading images with a complex memory map

	8.2 Root region and the initial entry point
	8.2.1 Effect of the ABSOLUTE attribute on a root region
	8.2.2 Effect of the FIXED attribute on a root region
	8.2.3 Methods of placing functions and data at specific addresses
	8.2.3.1 Placing functions and data at specific addresses
	8.2.3.2 Placing a variable at a specific address without scatter-loading
	8.2.3.3 Placing a variable in a named section with scatter-loading
	8.2.3.4 Placing a variable at a specific address with scatter-loading

	8.2.4 Placing functions and data in a named section
	8.2.5 Placing __at sections at a specific address
	8.2.6 Restrictions on placing __at sections
	8.2.7 Automatically placing __at sections
	8.2.8 Manually placing __at sections
	8.2.9 Placing a key in flash memory with an __at section

	8.3 Example of how to explicitly place a named section with scatter-loading
	8.4 Placement of unassigned sections
	8.4.1 Default rules for placing unassigned sections
	8.4.2 Command-line options for controlling the placement of unassigned sections
	8.4.3 Prioritizing the placement of unassigned sections
	8.4.4 Specify the maximum region size permitted for placing unassigned sections
	8.4.5 Examples of using placement algorithms for .ANY sections
	8.4.6 Example of next_fit algorithm showing behavior of full regions, selectors, and priority
	8.4.7 Examples of using sorting algorithms for .ANY sections
	8.4.8 Behavior when .ANY sections overflow because of linker-generated content

	8.5 Placing veneers with a scatter file
	8.6 Placement of CMSE veneer sections for a Secure image
	8.7 Reserving an empty block of memory
	8.7.1 Characteristics of a reserved empty block of memory
	8.7.2 Example of reserving an empty block of memory

	8.8 Placement of Arm C and C++ library code
	8.8.1 Placing code in a root region
	8.8.2 Placing Arm C library code
	8.8.3 Placing Arm C++ library code

	8.9 Aligning regions to page boundaries
	8.10 Aligning execution regions and input sections
	8.11 Preprocessing a scatter file
	8.11.1 Default behavior for armclang -E in a scatter file
	8.11.2 Using other preprocessors in a scatter file

	8.12 Example of using expression evaluation in a scatter file to avoid padding
	8.13 Equivalent scatter-loading descriptions for simple images
	8.13.1 Command-line options for creating simple images
	8.13.2 Type 1 image, one load region and contiguous execution regions
	8.13.3 Type 2 image, one load region and non-contiguous execution regions
	8.13.4 Type 3 image, multiple load regions and non-contiguous execution regions

	8.14 How the linker resolves multiple matches when processing scatter files
	8.15 How the linker resolves path names when processing scatter files
	8.16 Scatter file to ELF mapping

	9. Scatter File Syntax
	9.1 BNF notation used in scatter-loading description syntax
	9.2 Syntax of a scatter file
	9.3 Load region descriptions
	9.3.1 Components of a load region description
	9.3.2 Syntax of a load region description
	9.3.3 Load region attributes
	9.3.4 Inheritance rules for load region address attributes
	9.3.5 Inheritance rules for the RELOC address attribute
	9.3.6 Considerations when using a relative address +offset for a load region

	9.4 Execution region descriptions
	9.4.1 Components of an execution region description
	9.4.2 Syntax of an execution region description
	9.4.3 Execution region attributes
	9.4.4 Inheritance rules for execution region address attributes
	9.4.5 Considerations when using a relative address +offset for execution regions

	9.5 Input section descriptions
	9.5.1 Components of an input section description
	9.5.2 Syntax of an input section description
	9.5.3 Examples of module and input section specifications

	9.6 Expression evaluation in scatter files
	9.6.1 Expression usage in scatter files
	9.6.2 Expression rules in scatter files
	9.6.3 Execution address built-in functions for use in scatter files
	9.6.4 ScatterAssert function and load address related functions
	9.6.5 Symbol related function in a scatter file
	9.6.6 AlignExpr(expr, align) function
	9.6.7 GetPageSize() function
	9.6.8 SizeOfHeaders() function
	9.6.9 Example of aligning a base address in execution space but still tightly packed in load space
	9.6.10 Scatter files containing relative base address load regions and a ZI execution region

	10. BPABI Shared Libraries and Executables
	10.1 About the Base Platform Application Binary Interface (BPABI)
	10.2 Platforms supported by the BPABI
	10.3 Features common to all BPABI models
	10.3.1 About importing and exporting symbols for BPABI models
	10.3.2 Symbol visibility for BPABI models
	10.3.3 Automatic import and export for BPABI models
	10.3.4 Manual import and export for BPABI models
	10.3.5 Symbol versioning for BPABI models
	10.3.6 RW compression for BPABI models

	10.4 Bare metal and DLL-like memory models
	10.4.1 BPABI standard memory model
	10.4.2 Customization of the BPABI standard memory model
	10.4.3 Linker command-line options for bare metal and DLL-like models
	10.4.4 Mandatory symbol versioning in the BPABI DLL-like model
	10.4.5 Automatic dynamic symbol table rules in the BPABI DLL-like model
	10.4.6 Addressing modes in the BPABI DLL-like model
	10.4.7 C++ initialization in the BPABI DLL-like model

	10.5 Symbol versioning
	10.5.1 Overview of symbol versioning
	10.5.2 Embedded symbols
	10.5.3 The symbol versioning script file
	10.5.4 Example of creating versioned symbols
	10.5.5 Linker options for enabling implicit symbol versioning

	11. Features of the Base Platform Linking Model
	11.1 Restrictions on the use of scatter files with the Base Platform model
	11.2 Scatter files for the Base Platform linking model
	11.3 Placement of PLT sequences with the Base Platform model

	12. armlink Command-line Options
	12.1 --any_contingency
	12.2 --any_placement=algorithm
	12.3 --any_sort_order=order
	12.4 --api, --no_api
	12.5 --autoat, --no_autoat
	12.6 --bare_metal_pie
	12.7 --base_platform
	12.8 --bestdebug, --no_bestdebug
	12.9 --blx_arm_thumb, --no_blx_arm_thumb
	12.10 --blx_thumb_arm, --no_blx_thumb_arm
	12.11 --bpabi
	12.12 --branchnop, --no_branchnop
	12.13 --callgraph, --no_callgraph
	12.14 --callgraph_file=filename
	12.15 --callgraph_output=fmt
	12.16 --callgraph_subset=symbol[,symbol,…]
	12.17 --cgfile=type
	12.18 --cgsymbol=type
	12.19 --cgundefined=type
	12.20 --comment_section, --no_comment_section
	12.21 --compress_debug, --no_compress_debug
	12.22 --cppinit, --no_cppinit
	12.23 --cpu=list
	12.24 --cpu=name
	12.25 --crosser_veneershare, --no_crosser_veneershare
	12.26 --datacompressor=opt
	12.27 --debug, --no_debug
	12.28 --diag_error=tag[,tag,…]
	12.29 --diag_remark=tag[,tag,…]
	12.30 --diag_style=arm|ide|gnu
	12.31 --diag_suppress=tag[,tag,…]
	12.32 --diag_warning=tag[,tag,…]
	12.33 --dll
	12.34 --dynamic_linker=name
	12.35 --eager_load_debug, --no_eager_load_debug
	12.36 --eh_frame_hdr
	12.37 --edit=file_list
	12.38 --emit_debug_overlay_relocs
	12.39 --emit_debug_overlay_section
	12.40 --emit_non_debug_relocs
	12.41 --emit_relocs
	12.42 --entry=location
	12.43 --errors=filename
	12.44 --exceptions, --no_exceptions
	12.45 --export_all, --no_export_all
	12.46 --export_dynamic, --no_export_dynamic
	12.47 --filtercomment, --no_filtercomment
	12.48 --fini=symbol
	12.49 --first=section_id
	12.50 --force_explicit_attr
	12.51 --force_so_throw, --no_force_so_throw
	12.52 --fpic
	12.53 --fpu=list
	12.54 --fpu=name
	12.55 --got=type
	12.56 --gnu_linker_defined_syms
	12.57 --help
	12.58 --import_cmse_lib_in=filename
	12.59 --import_cmse_lib_out=filename
	12.60 --info=topic[,topic,…]
	12.61 --info_lib_prefix=opt
	12.62 --init=symbol
	12.63 --inline, --no_inline
	12.64 --inline_type=type
	12.65 --inlineveneer, --no_inlineveneer
	12.66 input-file-list
	12.67 --keep=section_id
	12.68 --keep_intermediate
	12.69 --largeregions, --no_largeregions
	12.70 --last=section_id
	12.71 --legacyalign, --no_legacyalign
	12.72 --libpath=pathlist
	12.73 --library=name
	12.74 --library_type=lib
	12.75 --list=filename
	12.76 --list_mapping_symbols, --no_list_mapping_symbols
	12.77 --load_addr_map_info, --no_load_addr_map_info
	12.78 --locals, --no_locals
	12.79 --lto, --no_lto
	12.80 --lto_keep_all_symbols, --no_lto_keep_all_symbols
	12.81 --lto_intermediate_filename
	12.82 --lto_level
	12.83 --lto_relocation_model
	12.84 --mangled, --unmangled
	12.85 --map, --no_map
	12.86 --match=crossmangled
	12.87 --max_er_extension=size
	12.88 --max_veneer_passes=value
	12.89 --max_visibility=type
	12.90 --merge, --no_merge
	12.91 --merge_litpools, --no_merge_litpools
	12.92 --muldefweak, --no_muldefweak
	12.93 -o filename, --output=filename
	12.94 --output_float_abi=option
	12.95 --overlay_veneers
	12.96 --override_visibility
	12.97 -Omax
	12.98 --pad=num
	12.99 --paged
	12.100 --pagesize=pagesize
	12.101 --partial
	12.102 --pie
	12.103 --piveneer, --no_piveneer
	12.104 --pltgot=type
	12.105 --pltgot_opts=mode
	12.106 --predefine="string"
	12.107 --preinit, --no_preinit
	12.108 --privacy
	12.109 --ref_cpp_init, --no_ref_cpp_init
	12.110 --ref_pre_init, --no_ref_pre_init
	12.111 --reloc
	12.112 --remarks
	12.113 --remove, --no_remove
	12.114 --ro_base=address
	12.115 --ropi
	12.116 --rosplit
	12.117 --rw_base=address
	12.118 --rwpi
	12.119 --scanlib, --no_scanlib
	12.120 --scatter=filename
	12.121 --section_index_display=type
	12.122 --show_cmdline
	12.123 --show_full_path
	12.124 --show_parent_lib
	12.125 --show_sec_idx
	12.126 --sort=algorithm
	12.127 --split
	12.128 --startup=symbol, --no_startup
	12.129 --stdlib
	12.130 --strict
	12.131 --strict_enum_size, --no_strict_enum_size
	12.132 --strict_flags, --no_strict_flags
	12.133 --strict_ph, --no_strict_ph
	12.134 --strict_relocations, --no_strict_relocations
	12.135 --strict_symbols, --no_strict_symbols
	12.136 --strict_visibility, --no_strict_visibility
	12.137 --strict_wchar_size, --no_strict_wchar_size
	12.138 --symbols, --no_symbols
	12.139 --symdefs=filename
	12.140 --symver_script=filename
	12.141 --symver_soname
	12.142 --tailreorder, --no_tailreorder
	12.143 --tiebreaker=option
	12.144 --unaligned_access, --no_unaligned_access
	12.145 --undefined=symbol
	12.146 --undefined_and_export=symbol
	12.147 --unresolved=symbol
	12.148 --use_definition_visibility
	12.149 --userlibpath=pathlist
	12.150 --veneerinject, --no_veneerinject
	12.151 --veneer_inject_type=type
	12.152 --veneer_pool_size=size
	12.153 --veneershare, --no_veneershare
	12.154 --verbose
	12.155 --version_number
	12.156 --via=filename
	12.157 --vsn
	12.158 --xo_base=address
	12.159 --xref, --no_xref
	12.160 --xrefdbg, --no_xrefdbg
	12.161 --xref{from|to}=object(section)
	12.162 --zi_base=address

	13. Linker Steering File Command Reference
	13.1 EXPORT steering file command
	13.2 HIDE steering file command
	13.3 IMPORT steering file command
	13.4 RENAME steering file command
	13.5 REQUIRE steering file command
	13.6 RESOLVE steering file command
	13.7 SHOW steering file command

	14. Via File Syntax
	14.1 Overview of via files
	14.2 Via file syntax rules

	15. armlink User Guide Changes
	15.1 Changes for the armlink User Guide

