
Arm® Compiler
Version 6.6

armclang Reference Guide

Non-Confidential
Copyright © 2014–2017, 2019–2020, 2023 Arm
Limited (or its affiliates).
All rights reserved.

Issue
DUI0774_l_en

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Arm® Compiler
armclang Reference Guide

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential Arm Compiler v6.00 Release

B 15 December 2014 Non-Confidential Arm Compiler v6.01 Release

C 30 June 2015 Non-Confidential Arm Compiler v6.02 Release

D 18 November 2015 Non-Confidential Arm Compiler v6.3 Release

E 24 February 2016 Non-Confidential Arm Compiler v6.4 Release

F 29 June 2016 Non-Confidential Arm Compiler v6.5 Release

G 4 November 2016 Non-Confidential Arm Compiler v6.6 Release

H 8 May 2017 Non-Confidential Arm Compiler v6.6.1 Release

I 29 November 2017 Non-Confidential Arm Compiler v6.6.2 Release

J 28 August 2019 Non-Confidential Arm Compiler v6.6.3 Release

K 26 August 2020 Non-Confidential Arm Compiler v6.6.4 Release

L 31 January 2023 Non-Confidential Arm Compiler v6.6.5 Release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 241

https://www.arm.com/company/policies/trademarks

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 241

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Contents

Contents

List of Figures...13

List of Tables.. 14

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Contents

1. Introduction..16
1.1 Conventions... 16
1.2 Other information...17

2. Compiler Command-line Options...18
2.1 Support level definitions...18
2.2 Summary of armclang command-line options... 22
2.3 -c...27
2.4 -D... 28
2.5 -E.. 29
2.6 -e...29
2.7 -faggressive-jump-threading, -fno-aggressive-jump-threading...30
2.8 -fbare-metal-pie.. 30
2.9 -fbracket-depth=N..31
2.10 -fcommon, -fno-common... 31
2.11 -fdata-sections, -fno-data-sections..32
2.12 -ffast-math, -fno-fast-math..33
2.13 -ffp-mode... 34
2.14 -ffunction-sections, -fno-function-sections... 36
2.15 @file...37
2.16 -fldm-stm, -fno-ldm-stm...38
2.17 -fno-builtin... 39
2.18 -fno-inline-functions..40
2.19 -flto, -fno-lto... 40
2.20 -fexceptions, -fno-exceptions..41
2.21 -fomit-frame-pointer, -fno-omit-frame-pointer...42
2.22 -fropi, -fno-ropi...43
2.23 -fropi-lowering, -fno-ropi-lowering.. 44
2.24 -frwpi, -fno-rwpi...44
2.25 -frwpi-lowering, -fno-rwpi-lowering.. 45
2.26 -fshort-enums, -fno-short-enums.. 45
2.27 -fshort-wchar, -fno-short-wchar...47
2.28 -fstack-protector, -fstack-protector-all, -fstack-protector-strong, -fno-stack-protector.............48
2.29 -fstrict-aliasing, -fno-strict-aliasing...50
2.30 -ftrapv... 51
2.31 -fvectorize, -fno-vectorize..51

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Contents

2.32 -fwrapv..52
2.33 -g, -gdwarf-2, -gdwarf-3, -gdwarf-4..52
2.34 -I... 53
2.35 -include... 54
2.36 -L.. 54
2.37 -l... 55
2.38 -M, -MM.. 55
2.39 -MD, -MMD.. 56
2.40 -MF..57
2.41 -MG... 58
2.42 -MP..59
2.43 -MT..60
2.44 -march...61
2.45 -marm..63
2.46 -mbig-endian... 63
2.47 -mcmse... 64
2.48 -mcpu.. 65
2.49 -mexecute-only...68
2.50 -mfloat-abi..69
2.51 -mfpu...70
2.52 -mimplicit-it..73
2.53 -mlittle-endian...73
2.54 -mthumb...74
2.55 -munaligned-access, -mno-unaligned-access...75
2.56 -nostdlib..75
2.57 -nostdlibinc.. 77
2.58 -o..77
2.59 -O (armclang)...78
2.60 -pedantic.. 80
2.61 -pedantic-errors.. 81
2.62 -Rpass..81
2.63 -S..83
2.64 -save-temps... 83
2.65 -std...84
2.66 --target..85
2.67 -U... 86

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Contents

2.68 -u..87
2.69 -v.. 88
2.70 --version... 88
2.71 --version_number... 88
2.72 --vsn.. 89
2.73 -W..89
2.74 -Wl...90
2.75 -Xlinker..91
2.76 -x.. 91
2.77 -###...93

3. Compiler-specific Keywords and Operators..94
3.1 Keyword extensions...94
3.2 __alignof__.. 94
3.3 __asm... 96
3.4 __declspec attributes... 97
3.5 __declspec(noinline)..98
3.6 __declspec(noreturn).. 98
3.7 __declspec(nothrow)...99
3.8 __inline.. 100
3.9 __promise... 100
3.10 __unaligned..101

4. Compiler-specific Function, Variable, and Type Attributes... 102
4.1 Function attributes.. 102
4.2 __attribute__((always_inline)) function attribute.. 104
4.3 __attribute__((cmse_nonsecure_call)) function attribute..104
4.4 __attribute__((cmse_nonsecure_entry)) function attribute.. 105
4.5 __attribute__((const)) function attribute..106
4.6 __attribute__((constructor(priority))) function attribute..106
4.7 __attribute__((format_arg(string-index))) function attribute.. 107
4.8 __attribute__((interrupt("type"))) function attribute...108
4.9 __attribute__((malloc)) function attribute.. 110
4.10 __attribute__((naked)) function attribute.. 110
4.11 __attribute__((noinline)) function attribute...111
4.12 __attribute__((nonnull)) function attribute..111
4.13 __attribute__((noreturn)) function attribute... 112

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Contents

4.14 __attribute__((nothrow)) function attribute..112
4.15 __attribute__((pcs("calling_convention"))) function attribute...112
4.16 __attribute__((pure)) function attribute... 113
4.17 __attribute__((section("name"))) function attribute... 113
4.18 __attribute__((used)) function attribute...114
4.19 __attribute__((unused)) function attribute..114
4.20 __attribute__((value_in_regs)) function attribute... 115
4.21 __attribute__((visibility("visibility_type"))) function attribute... 116
4.22 __attribute__((weak)) function attribute..117
4.23 __attribute__((weakref("target"))) function attribute...117
4.24 Type attributes... 118
4.25 __attribute__((aligned)) type attribute... 118
4.26 __attribute__((packed)) type attribute..119
4.27 __attribute__((transparent_union)) type attribute... 120
4.28 Variable attributes... 120
4.29 __attribute__((alias)) variable attribute...121
4.30 __attribute__((aligned)) variable attribute... 122
4.31 __attribute__((deprecated)) variable attribute..122
4.32 __attribute__((packed)) variable attribute..123
4.33 __attribute__((section("name"))) variable attribute.. 124
4.34 __attribute__((used)) variable attribute..124
4.35 __attribute__((unused)) variable attribute... 125
4.36 __attribute__((weak)) variable attribute...126
4.37 __attribute__((weakref("target"))) variable attribute.. 126

5. Compiler-specific Intrinsics..127
5.1 __breakpoint intrinsic...127
5.2 __current_pc intrinsic...128
5.3 __current_sp intrinsic...128
5.4 __disable_fiq intrinsic...128
5.5 __disable_irq intrinsic...129
5.6 __enable_fiq intrinsic... 130
5.7 __enable_irq intrinsic... 130
5.8 __force_stores intrinsic..131
5.9 __memory_changed intrinsic..131
5.10 __schedule_barrier intrinsic... 131

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Contents

5.11 __semihost intrinsic... 132
5.12 __vfp_status intrinsic...133

6. Compiler-specific Pragmas...135
6.1 #pragma clang system_header..135
6.2 #pragma clang diagnostic...135
6.3 #pragma clang section..137
6.4 #pragma once... 139
6.5 #pragma pack(…).. 139
6.6 #pragma unroll[(n)], #pragma unroll_completely...141
6.7 #pragma weak symbol, #pragma weak symbol1 = symbol2..142

7. Other Compiler-specific Features..143
7.1 ACLE support..143
7.2 Predefined macros... 143
7.3 Inline functions... 149
7.4 Volatile variables...150
7.5 Half-precision floating-point number format...150
7.6 TT instruction intrinsics.. 152
7.7 Non-secure function pointer intrinsics... 155

8. Standard C Implementation Definition...157
8.1 C Implementation definition..157
8.2 Translation..157
8.3 Translation limits...158
8.4 Environment.. 159
8.5 Identifiers..161
8.6 Characters..161
8.7 Integers... 163
8.8 Floating-point.. 164
8.9 Arrays and pointers... 165
8.10 Hints..165
8.11 Structures, unions, enumerations, and bitfields..166
8.12 Qualifiers..167
8.13 C Preprocessing directives.. 167
8.14 Library functions..168
8.15 Architecture...174

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Contents

9. Standard C++ Implementation Definition..179
9.1 C++ Implementation definition...179
9.2 General... 179
9.3 Lexical conventions..180
9.4 Basic concepts.. 181
9.5 Standard conversions.. 182
9.6 Expressions.. 182
9.7 Declarations...184
9.8 Declarators...184
9.9 Templates... 185
9.10 Exception handling.. 185
9.11 C++ Preprocessing directives... 185
9.12 Library introduction...186
9.13 Language support library... 187
9.14 General utilities library... 187
9.15 Strings library..188
9.16 Localization library...188
9.17 Containers library.. 189
9.18 Input/output library...190
9.19 Regular expressions library..190
9.20 Atomic operations library.. 191
9.21 Thread support library..191
9.22 Implementation quantities... 192

10. armclang Integrated Assembler... 195
10.1 Syntax of assembly files for integrated assembler...195
10.2 Assembly expressions...196
10.3 Alignment directives..201
10.4 Data definition directives...203
10.5 String definition directives...205
10.6 Floating-point data definition directives.. 206
10.7 Section directives...207
10.8 Conditional assembly directives...212
10.9 Macro directives...213
10.10 Symbol binding directives... 215
10.11 Org directive...216

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Contents

10.12 AArch32 Target selection directives...217
10.13 AArch64 Target selection directives...219
10.14 Space-filling directives..220
10.15 Type directive...220

11. armclang Inline Assembler.. 222
11.1 Inline Assembly.. 222
11.2 File-scope inline assembly...223
11.3 Inline assembly statements within a function...224
11.3.1 Assembly string.. 224
11.3.2 Output and input operands...225
11.3.3 Clobber list.. 227
11.3.4 volatile...228
11.4 Inline assembly constraint strings..228
11.4.1 Constraint modifiers.. 229
11.4.2 Constraint codes.. 229
11.4.3 Constraint codes common to AArch32 state and AArch64 state.. 230
11.4.4 Constraint codes for AArch32 state..231
11.4.5 Constraint codes for AArch64 state..232
11.4.6 Using multiple alternative operand constraints...233
11.5 Inline assembly template modifiers... 234
11.5.1 Template modifiers common to AArch32 state and AArch64 state...234
11.5.2 Template modifiers for AArch32 state..234
11.5.3 Template modifiers for AArch64 state..236
11.6 Forcing inline assembly operands into specific registers..236
11.7 Symbol references and branches into and out of inline assembly... 237
11.8 Duplication of labels in inline assembly statements..238

12. armclang Reference Guide Changes... 240
12.1 Changes for the armclang Reference Guide... 240

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

List of Figures

List of Figures

Figure 2-1: Integration boundaries in Arm Compiler for Embedded 6....................................20

Figure 6-1: Nonpacked structure S...140

Figure 6-2: Packed structure SP.. 141

Figure 7-1: IEEE half-precision floating-point format... 151

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

List of Tables

List of Tables

Table 2-1: armclang command-line options...23

Table 2-2: Floating-point library variants..33

Table 2-3: Floating-point library variant selection..35

Table 2-4: Compiling without the -o option..78

Table 4-1: Function attributes that the compiler supports, and their equivalents.............. 102

Table 5-1: Modifying the FPSCR flags... 134

Table 7-1: Predefined macros...144

Table 7-2: __SOFTFP__ predefined macro.. 149

Table 8-1: Translation limits...158

Table 10-1: Modifiers..197

Table 10-2: Unary operators...198

Table 10-3: Binary operators.. 198

Table 10-4: Binary logical operators... 198

Table 10-5: Binary bitwise operators..198

Table 10-6: Binary comparison operators..198

Table 10-7: Relocation specifiers for AArch32 state...199

Table 10-8: Relocation specifiers for AArch64 state...199

Table 10-9: Data definition directives.. 204

Table 10-10: Expression types supported by the data definition directives........................ 204

Table 10-11: Aliases for the data definition directives... 205

Table 10-12: Escape characters for the string definition directives.......................................206

Table 10-13: Aliases for the floating-point data definition directives....................................207

Table 10-14: Section flags...208

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

List of Tables

Table 10-15: Section Type.. 209

Table 10-16: Sections with implicit flags and default types..210

Table 10-17: .if condition modifiers..212

Table 10-18: Macro parameter qualifier.. 214

Table 11-1: Constraint modifiers... 229

Table 12-1: Changes between 6.6.5 (revision L) and 6.6.4 (revision K)................................ 240

Table 12-2: Changes between 6.6.4 (revision K) and 6.6.3 (revision J)................................ 240

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Introduction

1. Introduction
The Arm® Compiler armclang Reference Guide provides user information for the Arm compiler,
armclang. armclang is an optimizing C and C++ compiler that compiles Standard C and Standard C+
+ source code into machine code for Arm architecture-based processors.

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 241

https://developer.arm.com/glossary

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Introduction

Convention Use
An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 241

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2. Compiler Command-line Options
This chapter summarizes the supported options used with armclang.

armclang provides many command-line options, including most Clang command-line options in
addition to various Arm-specific options. Extra information about community feature command-line
options is available in the Clang and LLVM documentation on the LLVM Compiler Infrastructure
Project web site, http://llvm.org.

Be aware of the following:

• Generated code might be different between two Arm® Compiler releases.

• For a feature release, there might be significant code generation differences.

2.1 Support level definitions
This describes the levels of support for various Arm® Compiler 6 features.

Arm Compiler 6 is built on Clang and LLVM technology. Therefore, it has more functionality than
the set of product features described in the documentation. The following definitions clarify the
levels of support and guarantees on functionality that are expected from these features.

Arm welcomes feedback regarding the use of all Arm Compiler 6 features, and intends to
support users to a level that is appropriate for that feature. You can contact support at https://
developer.arm.com/support.

Identification in the documentation
All features that are documented in the Arm Compiler 6 documentation are product features,
except where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well tested,
and is expected to be stable across feature and update releases.

• Arm intends to give advance notice of significant functionality changes to product features.

• If you have a support and maintenance contract, Arm provides full support for use of all
product features.

• Arm welcomes feedback on product features.

• Any issues with product features that Arm encounters or is made aware of are considered for
fixing in future versions of Arm Compiler.

In addition to fully supported product features, some product features are only alpha or beta
quality.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 241

http://llvm.org
https://developer.arm.com/support
https://developer.arm.com/support

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Beta product features
Beta product features are implementation complete, but have not been sufficiently tested to
be regarded as suitable for use in production environments.

Beta product features are identified with [BETA].

• Arm endeavors to document known limitations on beta product features.

• Beta product features are expected to eventually become product features in a future
release of Arm Compiler 6.

• Arm encourages the use of beta product features, and welcomes feedback on them.

• Any issues with beta product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler.

Alpha product features
Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Alpha product features are identified with [ALPHA].

• Arm endeavors to document known limitations of alpha product features.

• Arm encourages the use of alpha product features, and welcomes feedback on them.

• Any issues with alpha product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler.

Community features
Arm Compiler 6 is built on LLVM technology and preserves the functionality of that technology
where possible. This means that there are more features available in Arm Compiler that are
not listed in the documentation. These extra features are known as community features. For
information on these community features, see the Clang Compiler User's Manual.

Where community features are referenced in the documentation, they are identified with
[COMMUNITY].

• Arm makes no claims about the quality level or the degree of functionality of these features,
except when explicitly stated in this documentation.

• Functionality might change significantly between feature releases.

• Arm makes no guarantees that community features remain functional across update releases,
although changes are expected to be unlikely.

Some community features might become product features in the future, but Arm provides no
roadmap for such features. Arm is interested in understanding your use of these features, and
welcomes feedback on them. Arm supports customers using these features on a best-effort basis,
unless the features are unsupported. Arm accepts defect reports on these features, but does not
guarantee that these issues are to be fixed in future releases.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 241

http://clang.llvm.org/docs/UsersManual.html

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:

• The following figure shows the structure of the Arm Compiler 6 toolchain:

Figure 2-1: Integration boundaries in Arm Compiler for Embedded 6.

Arm C library

armasm syntax
assembly

Arm C++ library

LLVM Project
libc++

armasm

C/C++
Source code

GNU syntax
Assembly

armclang

LLVM Project
clang

Source
code

headers

Objects ObjectsObjects

armlink

Image

Scatter/
Steering/

Symdefs file

The dashed boxes are toolchain components, and any interaction between these components
is an integration boundary. Community features that span an integration boundary might have
significant limitations in functionality. The exception to such features is if the interaction is
codified in one of the standards supported by Arm Compiler 6. See Application Binary Interface

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 241

https://developer.arm.com/architectures/system-architectures/software-standards/abi

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

(ABI). Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

• The Clang implementations of compiler features, particularly those features that have been
present for a long time in other toolchains, are likely to be mature. The functionality of new
features, such as support for new language features, is likely to be less mature and therefore
more likely to have limited functionality.

Deprecated features
A deprecated feature is one that Arm plans to remove from a future release of Arm Compiler.
Arm does not make any guarantee regarding the testing or maintenance of deprecated features.
Therefore, Arm does not recommend using a feature after it is deprecated.

For information on replacing deprecated features with supported features, see the Arm Compiler
documentation and Release Notes. Where appropriate, each Arm Compiler document includes
notes for features that are deprecated, and also provides entries in the changes appendix of that
document.

Unsupported features
With both the product and community feature categories, specific features and use-cases are
known not to function correctly, or are not intended for use with Arm Compiler 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive
list of unsupported features or use-cases for community features. The known limitations on
community features are listed in Community features.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:

• The Clang option -stdlib=libstdc++ is not supported.

• C++ static initialization of local variables is not thread-safe when linked against the standard
C++ libraries. For thread-safety, you must provide your own implementation of thread-safe
functions as described in Standard C++ library implementation definition.

This restriction does not apply to the [ALPHA]-supported multithreaded C++
libraries.

• Use of C11 library features is unsupported.

• Any community feature that is exclusively related to non-Arm architectures is not supported.

• Except for Armv6-M, compilation for targets that implement architectures lower than Armv7 is
not supported.

• The long double data type is not supported for AArch64 state because of limitations in the
current Arm C library.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 241

https://developer.arm.com/architectures/system-architectures/software-standards/abi
https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

• C complex arithmetic is not supported, because of limitations in the current Arm C library.

• Complex numbers are defined in C++ as a template, std::complex. Arm Compiler supports
std::complex with the float and double types, but not the long double type because of
limitations in the current Arm C library.

For C code that uses complex numbers, it is not sufficient to recompile with
the C++ compiler to make that code work. How you can use complex numbers
depends on whether you are building for Armv8-M architecture-based
processors.

• You must take care when mixing translation units that are compiled with and without the
[COMMUNITY] -fsigned-char option, and that share interfaces or data structures.

The Arm ABI defines char as an unsigned byte, and this is the interpretation
used by the C libraries supplied with the Arm compilation tools.

Alternatives to C complex numbers not being supported
If you are building for Armv8-M architecture-based processors, consider using the free and Open
Source CMSIS-DSP library that includes a data type and library functions for complex number
support in C. For more information about CMSIS-DSP and complex number support see the
following sections of the CMSIS documentation:

• Complex Math Functions

• Complex Matrix Multiplication

• Complex FFT Functions

If you are not building for Armv8-M architecture-based processors, consider modifying the affected
part of your project to use the C++ standard template library type std::complex instead.

2.2 Summary of armclang command-line options
This provides a summary of the armclang command-line options that Arm® Compiler 6 supports.

The command-line options either affect both compilation and assembly, or only affect compilation.
The command-line options that only affect compilation without affecting armclang integrated
assembler are shown in the table as Compilation only. The command-line options that affect both
compilation and assembly are shown in the table as Compilation and assembly.

The command-line options that affect assembly are for the armclang integrated
assembler, and do not apply to armasm. These options affect both inline assembly
and assembly language source files.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 241

https://arm-software.github.io/CMSIS_5/DSP/html/group__groupCmplxMath.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__CmplxMatrixMult.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__ComplexFFT.html

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Assembly language source files are assembled using the armclang integrated
assembler. C and C++ language source files, which can contain inline assembly code,
are compiled using the armclang compiler. Command-line options that are shown
as Compilation only do not affect the integrated assembler, but they can affect inline
assembly code.

Table 2-1: armclang command-line options

Option Description Compilation or Assembly

-c Only perform the compile step, do not
invoke armlink.

Compilation and assembly.

-D Defines a preprocessor macro. Compilation and assembly.

-E Only perform the preprocess step, do not
compile or link.

Compilation and assembly.

-e Specifies the unique initial entry point of the
image.

Compilation and assembly.

-fbare-metal-pie Generates position-independent code. Compilation only.

-faggressive-jump-threading,

-fno-aggressive-jump-threading

Enables or disables the Aggressive Jump
Threading (AJT) optimization.

Compilation only.

-fbracket-depth Sets the limit for nested parentheses,
brackets, and braces.

Compilation and assembly.

-fcommon,

-fno-common

Generates common zero-initialized values
for tentative definitions.

Compilation only.

-fdata-sections,

-fno-data-sections

Enables or disables the generation of one
ELF section for each variable in the source
file.

Compilation only.

-ffast-math,

-fno-fast-math

Enables or disables the use of aggressive
floating-point optimizations.

Compilation only.

-ffp-mode Specifies floating-point standard
conformance.

Compilation only.

-ffunction-sections,

-fno-function-sections

Enables or disables the generation of one
ELF section for each function in the source
file.

Compilation only.

@file Reads a list of command-line options from a
file.

Compilation and assembly.

-fldm-stm,

-fno-ldm-stm

Enable or disable the generation of LDM and
STM instructions. AArch32 only.

Compilation only.

-fno-inline-functions Disables the automatic inlining of functions
at optimization levels -O2 and -O3.

Compilation only.

-flto Enables link time optimization, and outputs
bitcode wrapped in an ELF file for link time
optimization.

Compilation only.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Option Description Compilation or Assembly
-fexceptions,

-fno-exceptions

Enables or disables the generation of code
needed to support C++ exceptions.

Compilation only.

-fomit-frame-pointer,

-fno-omit-frame-pointer

Enables or disables the storage of stack
frame pointers during function calls.

Compilation only.

-fno-builtin Disables special handling and optimizations
of standard C library functions.

Compilation only.

-fropi,

-fno-ropi

Enables or disables the generation of Read-
Only Position-Independent (ROPI) code.

Compilation only.

-fropi-lowering,

-fno-ropi-lowering

Enables or disables runtime static
initialization when generating ROPI code.

Compilation only.

-frwpi,

-fno-rwpi

Enables or disables the generation of Read-
Write Position-Independent (RWPI) code.

Compilation only.

-frwpi-lowering,

-fno-rwpi-lowering

Enables or disables runtime static
initialization when generating RWPI code.

Compilation only.

-fshort-enums,

-fno-short-enums

Allows or disallows the compiler to set the
size of an enumeration type to the smallest
data type that can hold all enumerator
values.

Compilation only.

-fshort-wchar,

-fno-short-wchar

Sets the size of wchar_t to 2 or 4 bytes. Compilation only.

-fstack-protector, -fstack-
protector-strong, -fstack-
protector-all, -fno-stack-
protector

Inserts a guard variable onto the stack
frame for each vulnerable function or for all
functions.

Compilation only.

-fstrict-aliasing,

-fno-strict-aliasing

Instructs the compiler to apply or not apply
the strictest aliasing rules available.

Compilation only.

-fvectorize,

-fno-vectorize

Enables or disables the generation of
Advanced SIMD vector instructions directly
from C or C++ code at optimization levels -
O1 and higher.

Compilation only.

-ftrapv Instructs the compiler to generate traps
for signed arithmetic overflow on addition,
subtraction, and multiplication operations.

Compilation only.

-fwrapv Instructs the compiler to assume that signed
arithmetic overflow of addition, subtraction,
and multiplication, wraps using two's-
complement representation.

Compilation only.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Option Description Compilation or Assembly
-g,

-gdwarf-2,

-gdwarf-3,

-gdwarf-4

Adds debug tables for source-level
debugging.

Compilation and assembly.

-I Adds the specified directory to the list of
places that are searched to find include files.

Compilation and assembly.

-include Includes the source code of the specified file
at the beginning of the compilation.

Compilation only.

-L Specifies a list of paths that the linker
searches for user libraries.

Compilation only.

-l Add the specified library to the list of
searched libraries.

Compilation only.

-M,

-MM

Produces a list of makefile dependency rules
suitable for use by a make utility.

Compilation and assembly.

-MD,

-MMD

Compiles or assembles source files and
produces a list of makefile dependency rules
suitable for use by a make utility.

Compilation and assembly.

-MF Specifies a filename for the makefile
dependency rules produced by the -M and -
MD options.

Compilation only.

-MG Prints dependency lines for header files
even if the header files are missing.

Compilation only.

-MP Emits dummy dependency rules that work
around make errors that are generated
if you remove header files without a
corresponding update to the makefile.

Compilation only.

-MT Changes the target of the makefile
dependency rule produced by dependency
generating options.

Compilation and assembly.

-march Targets an architecture profile, generating
generic code that runs on any processor of
that architecture.

Compilation and assembly.

-marm Requests that the compiler targets the A32
instruction set.

Compilation only.

-mbig-endian Generates code suitable for an Arm
processor using byte-invariant big-endian
(BE-8) data.

Compilation and assembly.

-mcmse Enables the generation of code for the
Secure state of the Armv8-M Security
Extensions.

Compilation only.

-mcpu Targets a specific processor, generating
optimized code for that specific processor.

Compilation and assembly.

-mexecute-only Generates execute-only code, and prevents
the compiler from generating any data
accesses to code sections.

Compilation only.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Option Description Compilation or Assembly
-mfloat-abi Specifies whether to use hardware

instructions or software library functions
for floating-point operations, and which
registers are used to pass floating-point
parameters and return values.

Compilation and assembly.

-mfpu Specifies the target FPU architecture, that is
the floating-point hardware available on the
target.

Compilation and assembly.

-mimplicit-it Specifies the behavior of the integrated
assembler if there are conditional
instructions outside IT blocks.

Compilation and assembly.

-mlittle-endian Generates code suitable for an Arm
processor using little-endian data.

Compilation and assembly.

-munaligned-access,

-mno-unaligned-access

Enables or disables unaligned accesses to
data on Arm processors.

Compilation only.

-mthumb Requests that the compiler targets the T32
instruction set.

Compilation only.

-nostdlib Tells the compiler to not use the Arm
standard C and C++ libraries.

Compilation only.

-nostdlibinc Tells the compiler to exclude the Arm
standard C and C++ library header files.

Compilation only.

-o Specifies the name of the output file. Compilation and assembly.

-O Specifies the level of optimization to use
when compiling source files.

Compilation only.

-pedantic Generate warnings if code violates strict ISO
C and ISO C++.

Compilation only.

-pedantic-errors Generate errors if code violates strict ISO C
and ISO C++.

Compilation only.

-Rpass [COMMUNITY] Outputs remarks from the optimization
passes made by armclang. You can output
remarks for all optimizations, or remarks for
a specific optimization.

Compilation only.

-S Outputs the disassembly of the machine
code generated by the compiler.

Compilation only.

-save-temps Instructs the compiler to generate
intermediate assembly files from the
specified C/C++ file.

Compilation only.

-std Specifies the language standard to compile
for.

Compilation only.

--target Generate code for the specified target triple. Compilation and assembly.

-U Removes any initial definition of the
specified preprocessor macro.

Compilation only.

-u Prevents the removal of a specified symbol
if it is undefined.

Compilation and assembly.

-v Displays the commands that invoke the
compiler and sub-tools, such as armlink,
and executes those commands.

Compilation and assembly.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Option Description Compilation or Assembly
--version Displays the same information as --vsn. Compilation and assembly.

--version_number Displays the version of armclang you are
using.

Compilation and assembly.

--vsn Displays the version information and the
license details.

Compilation and assembly.

-W Controls diagnostics. Compilation only.

-Wl Specifies linker command-line options to
pass to the linker when a link step is being
performed after compilation.

Compilation only.

-Xlinker Specifies linker command-line options to
pass to the linker when a link step is being
performed after compilation.

Compilation only.

-x Specifies the language of source files. Compilation and assembly.

-### Displays the commands that invoke the
compiler and sub-tools, such as armlink,
without executing those commands.

Compilation and assembly.

2.3 -c
Instructs the compiler to perform the compilation step, but not the link step.

Usage
Arm recommends using the -c option in projects with more than one source file.

The compiler creates one object file for each source file, with a .o file extension replacing the file
extension on the input source file. For example, the following creates object files test1.o, test2.o,
and test3.o:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -c test1.c test2.c test3.c

If you specify multiple source files with the -c option, the -o option results in an
error. For example:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -c test1.c
 test2.c -o test.o
armclang: error: cannot specify -o when generating multiple output
 files

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.4 -D
Defines a macro name.

Syntax
-Dname[(parm-list)][=def]

Where:

name

Is the name of the macro to be defined.

parm-list

Is an optional list of comma-separated macro parameters. By appending a macro parameter
list to the macro name, you can define function-style macros.

The parameter list must be enclosed in parentheses. When specifying multiple parameters,
do not include spaces between commas and parameter names in the list.

Parentheses might require escaping on UNIX systems.

def

Is an optional macro definition.

If def is omitted, the compiler defines name as the value 1.

To include characters recognized as tokens on the command line, enclose the macro
definition in double quotes.

Usage
Specifying -Dname has the same effect as placing the text #define name at the head of each source
file.

Example
Specifying this option:

-DMAX(X,Y)="((X > Y) ? X : Y)"

is equivalent to defining the macro:

#define MAX(X, Y) ((X > Y) ? X : Y)

at the head of each source file.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Related information
-include on page 54
-U on page 86
-x on page 91
Preprocessing assembly code

2.5 -E
Executes the preprocessor step only.

Operation
By default, output from the preprocessor is sent to the standard output stream and can be
redirected to a file using standard UNIX and MS-DOS notation.

You can also use the -o option to specify a file for the preprocessed output.

By default, comments are stripped from the output. Use the -C option to keep comments in the
preprocessed output.

Examples
Use -E -dD to generate interleaved macro definitions and preprocessor output:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -E -dD source.c > raw.c

Use -E -dM to list all the macros that are defined at the end of the translation unit, including the
predefined macros:

armclang --target=arm-arm-none-eabi -mcpu=cortex-m3 -E -dM source.c

Related information
--target on page 85

2.6 -e
Specifies the unique initial entry point of the image.

Operation
If linking, armclang translates this option to --entry and passes it to armlink. If the link step is not
being performed, this option is ignored.

See the Arm Compiler toolchain Linker Reference for information about the --entry linker options.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 241

https://developer.arm.com/documentation/dui0773/l/Assembling-Assembly-Code/Preprocessing-assembly-code

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Related information
armlink User Guide

2.7 -faggressive-jump-threading, -fno-aggressive-jump-
threading

Enables or disables the Aggressive Jump Threading (AJT) optimization.

Default
-faggressive-jump-threading is the default when compiling at optimization levels -O3, -Ofast, and
-Omax.

-fno-aggressive-jump-threading is the default when compiling at optimization levels -O0, -O1, -
O2, -Os, -Oz, and -Omin.

Operation
AJT is an optimization that the compiler runs in addition to other optimizations that the compiler
can perform. AJT is an extension to LLVM's Jump Threading Pass. For example,it can potentially
optimize code that contains a series of switch statements inside a loop.

2.8 -fbare-metal-pie
Generates position independent code.

Operation
This option causes the compiler to invoke armlink with the --bare_metal_pie option when
performing the link step.

• This option is unsupported for AArch64 state.

• Bare-metal PIE support is deprecated in this release.

Related information
Bare-metal Position Independent Executables

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 241

https://developer.arm.com/documentation/dui0803/l
https://llvm.org/docs/Passes.html#jump-threading-jump-threading
https://developer.arm.com/documentation/dui0773/l/Compiling-C-and-C---Code/Bare-metal-Position-Independent-Executables

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.9 -fbracket-depth=N
Sets the limit for nested parentheses, brackets, and braces to N in blocks, declarators, expressions,
and struct or union declarations.

Default
The default depth limit is 256.

Syntax
-fbracket-depth=N

Usage
You can increase the depth limit N.

Related information
Translation limits on page 158

2.10 -fcommon, -fno-common
Generates common zero-initialized values for tentative definitions.

Operation
Tentative definitions are declarations of variables with no storage class and no initializer.

The -fcommon option places the tentative definitions in a common block. This common definition
is not associated with any particular section or object, so multiple definitions resolve to a single
symbol definition at link time.

The -fno-common option generates individual zero-initialized definitions for tentative definitions.
These zero-initialized definitions are placed in a ZI section in the generated object. Multiple
definitions of the same symbol in different files can cause a L6200E: Symbol multiply defined
linker error, because the individual definitions clash with each other.

Default
The default is -fno-common.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.11 -fdata-sections, -fno-data-sections
Enables or disables the generation of one ELF section for each variable in the source file. The
default is -fdata-sections.

If you want to place specific data items or structures in separate sections, mark
them individually with __attribute__((section("name"))).

Example
volatile int a = 9;
volatile int c = 10;
volatile int d = 11;

int main(void){
 static volatile int b = 2;
 return a == b;
}

Compile this code with:

armclang --target=arm-arm-none-eabi -march=armv8-a -fdata-sections -c -O3 main.c

Use fromelf to see the data sections:

fromelf -cds main.o

...

 Symbol table .symtab (17 symbols, 11 local)

 # Symbol Name Value Bind Sec Type Vis Size
 ==

 10 .L_MergedGlobals 0x00000000 Lc 10 Data De 0x8
 11 main.b 0x00000004 Lc 10 Data De 0x4
 12 ...
 13 ...
 14 a 0x00000000 Gb 10 Data De 0x4
 15 c 0x00000000 Gb 7 Data Hi 0x4
 16 d 0x00000000 Gb 8 Data Hi 0x4
...

If you compile this code with -fno-data-sections, you get:

 Symbol table .symtab (15 symbols, 10 local)

 # Symbol Name Value Bind Sec Type Vis Size
 ==

 8 .L_MergedGlobals 0x00000008 Lc 7 Data De 0x8
 9 main.b 0x0000000c Lc 7 Data De 0x4
 10 ...
 11 ...
 12 a 0x00000008 Gb 7 Data De 0x4

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

 13 c 0x00000000 Gb 7 Data Hi 0x4
 14 d 0x00000004 Gb 7 Data Hi 0x4
...

If you compare the two Sec columns, you can see that when -fdata-sections is used, the variables
are put into different sections. When -fno-data-sections is used, all the variables are put into the
same section.

Related information
-ffunction-sections, -fno-function-sections on page 36
__attribute__((section("name"))) variable attribute on page 124

2.12 -ffast-math, -fno-fast-math
-ffast-math tells the compiler to perform more aggressive floating-point optimizations.

Operation
-ffast-math results in behavior that is not fully compliant with the ISO C or C++ standard.
However, numerically robust floating-point programs are expected to behave correctly. Arm
recommends that you use the alias option -ffp-mode=fast instead of -ffast-math.

Using -fno-fast-math disables aggressive floating-point optimizations. Arm recommends that you
use the alias option -ffp-mode=full instead of -fno-fast-math.

Arm® Compiler 6 uses neither -ffast-math nor -fno-fast-math by default. For the
default behavior, specify -ffp-mode=std.

These options control which floating-point library the compiler uses. For more information, see the
library variants in Arm C and C++ Libraries and Floating-Point Support User Guide.

Table 2-2: Floating-point library variants

armclang option Floating-point library variant Description

Default fz IEEE-compliant except that denormals
are flushed to zero and no exceptions are
supported.

-ffast-math fz IEEE-compliant with the following
exceptions:

• Denormals are flushed to zero and no
exceptions are supported.

• armclang performs aggressive
floating-point optimizations that might
cause a small loss of accuracy.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 241

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/C-and-C---library-naming-conventions

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

armclang option Floating-point library variant Description

-fno-fast-math g IEEE-compliant library with configurable
rounding mode and support for all IEEE
exceptions, and flushing to zero. This library
is a software floating-point implementation,
and can result in extra code size and lower
performance.

Related information
-ffp-mode on page 34

2.13 -ffp-mode
-ffp-mode specifies floating-point standard conformance. This option controls which floating-point
optimizations the compiler can perform, and also influences library selection.

Default
The default is -ffp-mode=std.

Syntax
-ffp-mode=model

Where model is one of the following:

std

IEEE finite values with denormals flushed to zero, Round to Nearest, and no exceptions. This
model is compatible with standard C and C++ and is the default option.

Normal finite values are as predicted by the IEEE standard. However:

• NaNs and infinities might not be produced in all circumstances defined by the IEEE
model. When they are produced, they might not have the same sign.

• The sign of zero might not be that predicted by the IEEE model.

• Using NaNs in arithmetic operations with -ffp-mode=std causes undefined behavior.

fast

Perform more aggressive floating-point optimizations that might cause a small loss of
accuracy to provide a significant performance increase. This option defines the symbol
__ARM_FP_FAST.

This option results in behavior that is not fully compliant with the ISO C or C++ standard.
However, numerically robust floating-point programs are expected to behave correctly.
Various transformations might be performed, including:

• Double-precision floating-point expressions that are narrowed to single-precision are
evaluated in single-precision when it is beneficial to do so. For example, float y =
(float)(x + 1.0) is evaluated as float y = (float)x + 1.0f.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

• Division by a floating-point constant is replaced by multiplication with its reciprocal. For
example, x / 3.0 is evaluated as x * (1.0 / 3.0).

• It is not guaranteed that the value of errno is compliant with the ISO C or C++ standard
after math functions have been called. This enables the compiler to inline the VFP square
root instructions in place of calls to sqrt() or sqrtf().

Using a NaN with -ffp-mode=fast can produce undefined behavior.

full

All facilities, operations, and representations, except for floating-point exceptions, are
available in single and double-precision. Modes of operation can be selected dynamically at
runtime.

These options control which floating-point library the compiler uses. For more information, see the
library variants in the Arm C and C++ Libraries and Floating-Point Support User Guide.

When using the std or fast modes, the binary representation of a floating-point
number that cannot be represented exactly by its type can differ depending on
whether it is evaluated by the compiler at compile time or generated at run time
using one of the following string to floating-point conversion functions:

• atof().

• strtod().

• strtof().

• strtold().

• A member of the scanf() family of functions using a floating-point conversion
specifier.

Table 2-3: Floating-point library variant selection

armclang option Floating-point library variant Description

-ffp-mode=std fz IEEE-compliant except that denormals
are flushed to zero and no exceptions are
supported.

-ffp-mode=fast fz IEEE-compliant with the following
exceptions:

• Denormals are flushed to zero and no
exceptions are supported.

• armclang performs aggressive
floating-point optimizations that might
cause a small loss of accuracy.

-ffp-mode=full g IEEE-compliant library with configurable
rounding mode and support for all IEEE
exceptions, and flushing to zero. This library
is a software floating-point implementation,
and can result in extra code size and lower
performance.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 241

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/C-and-C---library-naming-conventions

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.14 -ffunction-sections, -fno-function-sections
-ffunction-sections generates a separate ELF section for each function in the source file. The
unused section elimination feature of the linker can then remove unused functions at link time.

Default
The default is -ffunction-sections.

Operation
The output section for each function has the same name as the function that generates the
section, but with a .text. prefix. To prevent each function being placed in separate sections, use -
fno-function-sections.

If you want to place specific data items or structures in separate sections, mark
them individually with __attribute__((section("name"))).

Post-conditions
-ffunction-sections reduces the potential for sharing addresses, data, and string literals between
functions. Therefore, there might be a slight increase in code size for some functions.

Example
int function1(int x)
{
 return x+1;
}

int function2(int x)
{
 return x+2;
}

Compiling this code with -ffunction-sections produces:

armclang --target=arm-arm-none-eabi -march=armv8-a -ffunction-sections -S -O3 -o-
 main.c

...
 .section .text.function1,"ax",%progbits
 .globl function1
 .p2align 2
 .type function1,%function
function1: @ @function1
 .fnstart
@ BB#0:
 add r0, r0, #1
 bx lr
.Lfunc_end0:
 .size function1, .Lfunc_end0-function1
 .cantunwind
 .fnend

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

 .section .text.function2,"ax",%progbits
 .globl function2
 .p2align 2
 .type function2,%function
function2: @ @function2
 .fnstart
@ BB#0:
 add r0, r0, #2
 bx lr
.Lfunc_end1:
 .size function2, .Lfunc_end1-function2
 .cantunwind
 .fnend
...

Related information
__attribute__((section("name"))) function attribute on page 113
-fdata-sections, -fno-data-sections on page 31

2.15 @file
Reads a list of armclang options from a file.

Syntax
@file

Where file is the name of a file containing armclang options to include on the command line.

Usage
The options in the specified file are inserted in place of the @file option.

Use whitespace or new lines to separate options in the file. Enclose strings in single or double
quotes to treat them as a single word.

You can specify multiple @file options on the command line to include options from multiple files.
Files can contain more @file options.

If any @file option specifies a non-existent file or circular dependency, armclang exits with an
error.

To use Windows-style file paths on the command-line, you must escape the
backslashes. For example: -I"..\\my libs\\".

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Example
Consider a file options.txt with the following content:

-I"../my libs/"
--target=aarch64-arm-none-eabi -mcpu=cortex-a57

Compile a source file main.c with the following command line:

armclang @options.txt main.c

This command is equivalent to the following:

armclang -I"../my libs/" --target=aarch64-arm-none-eabi -mcpu=cortex-a57 main.c

2.16 -fldm-stm, -fno-ldm-stm
Enable or disable the generation of LDM and STM instructions. AArch32 only.

Default
The default is -fldm-stm. That is, by default armclang can generate LDM and STM instructions.

Usage
The -fno-ldm-stm option can reduce interrupt latency on systems that:

• Do not have a cache or a write buffer.

• Use zero-wait-state, 32-bit memory.

Using -fno-ldm-stm might slightly increase code size and decrease performance.

Restrictions
Existing LDM and STM instructions (for example, in assembly code you are assembling with armclang)
are not removed.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.17 -fno-builtin
Disables special handling and optimization of standard C library functions, for example for
printf(), strlen(), and malloc().

Default
-fno-builtin is disabled by default.

Operation
When compiling without -fno-builtin, the compiler can replace calls to certain standard C library
functions with inline code or with calls to other library functions. Then, your re-implementations of
the standard C library functions might not be used, and might be removed by the linker. Run-time
ABI for the Arm Architecture lists the library functions available.

Example
This example shows the result of compiling the following program with and without -fno-builtin:

#include "stdio.h"

void foo(void)
{
 printf("Hello\n");
}

1. Compile without -fno-builtin:

armclang -c -O2 -g --target=arm-arm-none-eabi -mcpu=cortex-a9 -mfpu=none -
nostdlib foo.c -o foo.o

2. Run the following fromelf command to show the disassembled output:

fromelf --disassemble foo.o -o foo.s
...
||foo|| PROC
 ADR r0,|L3.8|
 B puts
|L3.8|
 DCD 0x6c6c6548
 DCD 0x0000006f
 ENDP
...

The compiler has replaced the printf() function with the puts() function.

3. Compile with -fno-builtin:

armclang -c -O2 -g --target=arm-arm-none-eabi -mcpu=cortex-a9 -mfpu=none -
nostdlib -fno-builtin foo.c -o foo.o

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

4. Run the following fromelf command to show the disassembled output:

fromelf --disassemble foo.o -o foo.s
...
||foo|| PROC
 ADR r0,|L3.8|
 B printf
|L3.8|
 DCD 0x6c6c6548
 DCD 0x00000a6f
 ENDP
...

The compiler has not replaced the printf() function with the puts() function
when using the -fno-builtin option.

Related information
-nostdlib on page 75
-nostdlibinc on page 76

2.18 -fno-inline-functions
Disabling the inlining of functions can help to improve the debug experience.

Operation
The compiler attempts to automatically inline functions at optimization levels -O2 and -O3. When
these levels are used with -fno-inline-functions, automatic inlining is disabled.

When optimization levels -O0 and -O1 are used with -fno-inline-functions, no automatic inlining
is attempted, and only functions that are tagged with __attribute__((always_inline)) are inlined.

Related information
-O (armclang) on page 78
Inline functions on page 149

2.19 -flto, -fno-lto
Enables or disables link time optimization. -flto outputs bitcode wrapped in an ELF file for link
time optimization.

Default
The default is -fno-lto, except when you specify the optimization level -Omax.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Usage
The primary use for files containing bitcode is for link time optimization. See Optimizing across
modules with link time optimization in the Software Development Guide for more information
about link time optimization.

The compiler creates one file for each source file, with a .o file extension replacing the file
extension on theinput source file.

The -flto option passes the --lto option to armlink to enable link time optimization, unless the -c
option is specified.

-flto is automatically enabled when you specify the armclang option -Omax.

Object files produced with -flto contain bitcode, which cannot be disassembled
into meaningful disassembly using the -S option or the fromelf tool.

Object files generated using the -flto option are not suitable for creating static
libraries, or ROPI or RWPI images.

Link Time Optimization performs aggressive optimizations by analyzing the
dependencies between bitcode format objects. This can result in the removal of
unused variables and functions in the source code.

LTO does not honor the armclang -mexecute-only option. If you use the armclang
options -flto or -Omax, then the compiler cannot generate execute-only code.

Related information
-c on page 27

2.20 -fexceptions, -fno-exceptions
Enables or disables the generation of code needed to support C++ exceptions.

Default
The default is -fexceptions for C++ sources. The default is -fno-exceptions for C sources.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 241

https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization
https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization
https://developer.arm.com/documentation/dui0773/l

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Usage
Compiling with -fno-exceptions disables exceptions support and uses the variant of C++ libraries
without exceptions. Use of try, catch, or throw results in an error message.

Linking objects that have been compiled with -fno-exceptions automatically selects the libraries
without exceptions. You can use the linker option --no_exceptions to diagnose whether the
objects being linked contain exceptions.

If an exception propagates into a function that has been compiled without
exceptions support, then the program terminates.

Related information
Standard C++ library implementation definition

2.21 -fomit-frame-pointer, -fno-omit-frame-pointer
-fomit-frame-pointer omits the storing of stack frame pointers during function calls.

Default
The default is -fomit-frame-pointer.

Operation
The -fomit-frame-pointer option instructs the compiler to not store stack frame pointers if the
function does not need it. You can use this option to reduce the code image size.

The -fno-omit-frame-pointer option instructs the compiler to store the stack frame pointer in a
register. In AArch32, the frame pointer is stored in register R11 for A32 code or register R7 for T32
code. In AArch64, the frame pointer is stored in register X29. The register that is used as a frame
pointer is not available for use as a general-purpose register. It is available as a general-purpose
register if you compile with -fomit-frame-pointer.

Frame pointer limitations for stack unwinding
Frame pointers enable the compiler to insert code to remove the automatic variables from the
stack when C++ exceptions are thrown. This is called stack unwinding. However, there are
limitations on how the frame pointers are used:

• By default, there are no guarantees on the use of the frame pointers.

• There are no guarantees about the use of frame pointers in the C or C++ libraries.

• If you specify -fno-omit-frame-pointer, then any function which uses space on the stack
creates a frame record, and changes the frame pointer to point to it. There is a short time
period at the beginning and end of a function where the frame pointer points to the frame
record in the caller's frame.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 241

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

• If you specify -fno-omit-frame-pointer, then the frame pointer always points to the lowest
address of a valid frame record. A frame record consists of two words:

◦ the value of the frame pointer at function entry in the lower-addressed word.

◦ the value of the link register at function entry in the higher-addressed word.

• A function that does not use any stack space does not need to create a frame record, and
leaves the frame pointer pointing to the caller's frame.

• In AArch32 state, there is currently no reliable way to unwind mixed A32 and T32 code using
frame pointers.

• The behavior of frame pointers in AArch32 state is not part of the ABI and therefore might
change in the future. The behavior of frame pointers in AArch64 state is part of the ABI and is
therefore unlikely to change.

2.22 -fropi, -fno-ropi
Enables or disables the generation of Read-Only Position-Independent (ROPI) code.

Default
The default is -fno-ropi.

Usage
When generating ROPI code, the compiler:

• Addresses read-only code and data PC-relative.

• Sets the Position Independent (PI) attribute on read-only output sections.

• This option is independent from -frwpi, meaning that these two options can be
used individually or together.

• When using -fropi, -fropi-lowering is automatically enabled.

Restrictions
The following restrictions apply:

• This option is not supported in AArch64 state.

• This option cannot be used with C++ code.

• This option is not compatible with -fpic, -fpie, or -fbare-metal-pie options.

Related information
-frwpi, -fno-rwpi on page 44
-frwpi-lowering, -fno-rwpi-lowering on page 45
-fropi-lowering, -fno-ropi-lowering on page 43

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.23 -fropi-lowering, -fno-ropi-lowering
Enables or disables runtime static initialization when generating Read-Only Position-Independent
(ROPI) code.

If you compile with -fropi-lowering, then the static initialization is done at runtime. It is done
by the same mechanism that is used to call the constructors of static C++ objects that must run
before main(). This enables these static initializations to work with ROPI code.

Default
The default is -fno-ropi-lowering. If -fropi is used, then the default is -fropi-lowering. If -frwpi
is used without -fropi, then the default is -fropi-lowering.

2.24 -frwpi, -fno-rwpi
Enables or disables the generation of Read-Write Position-Independent (RWPI) code.

Default
The default is -fno-rwpi.

Usage
When generating RWPI code, the compiler:

• Addresses the writable data using offsets from the static base register sb. This means that:

◦ The base address of the RW data region can be fixed at runtime.

◦ Data can have multiple instances.

◦ Data can be, but does not have to be, position-independent.

• Sets the PI attribute on read/write output sections.

• This option is independent from -fropi, meaning that these two options can be
used individually or together.

• When using -frwpi, -frwpi-lowering and -fropi-lowering are automatically
enabled.

Restrictions
The following restrictions apply:

• This option is not supported in AArch64 state.

• This option is not compatible with -fpic, -fpie, or -fbare-metal-pie options.

Related information
-fropi, -fno-ropi on page 43
-fropi-lowering, -fno-ropi-lowering on page 43

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

-frwpi-lowering, -fno-rwpi-lowering on page 45

2.25 -frwpi-lowering, -fno-rwpi-lowering
Enables or disables runtime static initialization when generating Read-Write Position-Independent
(RWPI) code.

Default
The default is -fno-rwpi-lowering. If -frwpi is used, then the default is -frwpi-lowering.

Operation
If you compile with -frwpi-lowering, then the static initialization is done at runtime by the C++
constructor mechanism for both C and C++ code. This enables these static initializations to work
with RWPI code.

2.26 -fshort-enums, -fno-short-enums
Allows the compiler to set the size of an enumeration type to the smallest data type that can hold
all enumerator values.

Default
The default is -fno-short-enums. That is, the size of an enumeration type is at least 32 bits
regardless of the size of the enumerator values.

Operation
The -fshort-enums option can improve memory usage, but might reduce performance because
narrow memory accesses can be less efficient than full register-width accesses.

All linked objects, including libraries, must make the same choice. It is not possible
to link an object file compiled with -fshort-enums, with another object file that is
compiled without -fshort-enums.

The -fshort-enums option is not supported for AArch64. The Procedure Call
Standard for the Arm 64-bit Architecture states that the size of enumeration types
must be at least 32 bits.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Example
This example shows the size of four different enumeration types: 8-bit, 16-bit, 32-bit, and 64-bit
integers.

#include <stdio.h>

// Largest value is 8-bit integer
enum int8Enum {int8Val1 =0x01, int8Val2 =0x02, int8Val3 =0xF1 };

// Largest value is 16-bit integer
enum int16Enum {int16Val1=0x01, int16Val2=0x02, int16Val3=0xFFF1 };

// Largest value is 32-bit integer
enum int32Enum {int32Val1=0x01, int32Val2=0x02, int32Val3=0xFFFFFFF1 };

// Largest value is 64-bit integer
enum int64Enum {int64Val1=0x01, int64Val2=0x02, int64Val3=0xFFFFFFFFFFFFFFF1 };

int main(void)
{
 printf("size of int8Enum is %zd\n", sizeof (enum int8Enum));
 printf("size of int16Enum is %zd\n", sizeof (enum int16Enum));
 printf("size of int32Enum is %zd\n", sizeof (enum int32Enum));
 printf("size of int64Enum is %zd\n", sizeof (enum int64Enum));
}

When compiled without the -fshort-enums option, all enumeration types are 32 bits (4 bytes)
except for int64Enum which requires 64 bits (8 bytes):

armclang --target=arm-arm-none-eabi -march=armv8-a enum_test.cpp

size of int8Enum is 4
size of int16Enum is 4
size of int32Enum is 4
size of int64Enum is 8

When compiled with the -fshort-enums option, each enumeration type has the smallest size
possible to hold the largest enumerator value:

armclang -fshort-enums --target=arm-arm-none-eabi -march=armv8-a enum_test.cpp

size of int8Enum is 1
size of int16Enum is 2
size of int32Enum is 4
size of int64Enum is 8

ISO C restricts enumerator values to the range of int. By default armclang does not
issue warnings about enumerator values that are too large, but with -Wpedantic a
warning is displayed.

Related information
Procedure Call Standard for the Arm 64-bit Architecture (AArch64)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 241

https://developer.arm.com/documentation/ihi0055/latest

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.27 -fshort-wchar, -fno-short-wchar
-fshort-wchar sets the size of wchar_t to 2 bytes. -fno-short-wchar sets the size of wchar_t to 4
bytes.

Default
The default is -fno-short-wchar.

Operation
The -fshort-wchar option can improve memory usage, but might reduce performance because
narrow memory accesses can be less efficient than full register-width accesses.

All linked objects must use the same wchar_t size, including libraries. It is not
possible to link an object file compiled with -fshort-wchar, with another object file
that is compiled without -fshort-wchar.

Example
This example shows the size of the wchar_t type:

#include <stdio.h>
#include <wchar.h>

int main(void)
{
 printf("size of wchar_t is %zd\n", sizeof (wchar_t));
 return 0;
}

When compiled without the -fshort-wchar option, the size of wchar_t is 4 bytes:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 wchar_test.c

size of wchar_t is 4

When compiled with the -fshort-wchar option, the size of wchar_t is 2 bytes:

armclang -fshort-wchar --target=aarch64-arm-none-eabi -mcpu=cortex-a53 wchar_test.c

size of wchar_t is 2

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.28 -fstack-protector, -fstack-protector-all, -fstack-
protector-strong, -fno-stack-protector

Inserts a guard variable onto the stack frame for each vulnerable function or for all functions.

Default
The default is -fno-stack-protector.

Syntax
-fstack-protector

-fstack-protector-all

-fstack-protector-strong

-fno-stack-protector

Parameters
None

Operation
The prologue of a function stores a guard variable onto the stack frame. Before returning from
the function, the function epilogue checks the guard variable to make sure that it has not been
overwritten. A guard variable that is overwritten indicates a buffer overflow, and the checking code
alerts the run-time environment.

-fno-stack-protector disables stack protection.

-fstack-protector enables stack protection for vulnerable functions that contain:

• A character array larger than 8 bytes.

• An 8-bit integer array larger than 8 bytes.

• A call to alloca() with either a variable size or a constant size bigger than 8 bytes.

-fstack-protector-all adds stack protection to all functions regardless of their vulnerability.

-fstack-protector-strong enables stack protection for vulnerable functions that contain:

• An array of any size and type.

• A call to alloca().

• A local variable that has its address taken.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

If you specify more than one of these options, the last option that is specified takes
effect.

When a vulnerable function is called with stack protection enabled, the initial value of its guard
variable is taken from a global variable:

void *__stack_chk_guard;

You must provide this variable with a suitable value. For example, a suitable implementation might
set this variable to a random value when the program is loaded, and before the first protected
function is entered. The value must remain unchanged during the life of the program.

When the checking code detects that the guard variable on the stack has been modified, it notifies
the run-time environment by calling the function:

void __stack_chk_fail(void);

You must provide a suitable implementation for this function. Normally, such a function terminates
the program, possibly after reporting a fault.

Optimizations can affect the stack protection. The following are simple examples:

• Inlining can affect whether a function is protected.

• Removal of an unused variable can prevent a function from being protected.

Example: Stack protection
Create the following main.c and get.c files:

// main.c
#include <stdio.h>
#include <stdlib.h>

void *__stack_chk_guard = (void *)0xdeadbeef;

void __stack_chk_fail(void)
{
 fprintf(stderr, "Stack smashing detected.\n");
 exit(1);
}

void get_input(char *data);

int main(void)
{
 char buffer[9];
 get_input(buffer);
 return buffer[0];
}

// get.c

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

#include <string.h>

void get_input(char *data)
{
 strcpy(data, "012345678");
}

When main.c and get.c are compiled with -fstack-protector, the array buffer is considered
vulnerable and stack protection gets applied the function main(). The checking code recognizes the
overflow of buffer that occurs in get_input():

armclang --target=arm-arm-none-eabi -march=armv8-a -fstack-protector main.c get.c

Running the image displays the following message:

Stack smashing detected.

Related information
-Rpass on page 81

2.29 -fstrict-aliasing, -fno-strict-aliasing
Instructs the compiler to apply the strictest aliasing rules available.

Operation
-fstrict-aliasing is implicitly enabled at -O1 or higher. It is disabled at -O0, or when no
optimization level is specified.

When optimizing at -O1 or higher, this option can be disabled with -fno-strict-aliasing.

Specifying -fstrict-aliasing on the command-line has no effect, since it is either
implicitly enabled, or automatically disabled, depending on the optimization level
that is used.

Examples
In the following example, -fstrict-aliasing is enabled:

armclang --target=aarch64-arm-none-eabi -O2 -c hello.c

In the following example, -fstrict-aliasing is disabled:

armclang --target=aarch64-arm-none-eabi -O2 -fno-strict-aliasing -c hello.c

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

In the following example, -fstrict-aliasing is disabled:

armclang --target=aarch64-arm-none-eabi -c hello.c

2.30 -ftrapv
Instructs the compiler to generate traps for signed arithmetic overflow on addition, subtraction, and
multiplication operations.

Usage
Where an overflow is detected, an undefined instruction is inserted into the assembly code. In
order for the overflow to get caught, an undefined instruction handler must be provided.

When both -fwrapv and -ftrapv are used in a single command, the furthest-right
option overrides the other.

For example, here -ftrapv overrides -fwrapv:

armclang --target=aarch64-arm-none-eabi -fwrapv -c -ftrapv hello.c

2.31 -fvectorize, -fno-vectorize
Enables or disables the generation of Advanced SIMD vector instructions directly from C or C++
code at optimization levels -O1 and higher.

Default
The default depends on the optimization level in use.

• At optimization level -O0 (the default optimization level), armclang never performs automatic
vectorization. The -fvectorize and -fno-vectorize options are ignored.

• At optimization level -O1, the default is -fno-vectorize. Use -fvectorize to enable automatic
vectorization. When using -fvectorize with -O1, vectorization might be inhibited in the
absence of other optimizations which might be present at -O2 or higher.

• At optimization level -O2 and above, the default is -fvectorize. Use -fno-vectorize to disable
automatic vectorization.

Using -fno-vectorize does not necessarily prevent the compiler from emitting Advanced SIMD
instructions. The compiler or linker might still introduce Advanced SIMD instructions, such as when
linking libraries that contain these instructions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Examples
This example enables automatic vectorization with optimization level -O1:

armclang --target=arm-arm-none-eabi -march=armv8-a -fvectorize -O1 -c file.c

To prevent the compiler from emitting Advanced SIMD instructions for AArch64 targets, specify
+nosimd using -march or -mcpu. For example:

armclang --target=aarch64-arm-none-eabi -march=armv8-a+nosimd -O2 file.c -c -S -o
 file.s

To prevent the compiler from emitting Advanced SIMD instructions for AArch32 targets, set the
option -mfpu to the correct value that does not include Advanced SIMD, for example fp-armv8:

armclang --target=aarch32-arm-none-eabi -march=armv8-a -mfpu=fp-armv8 -O2 file.c -c
 -S -o file.s

Related information
-c on page 27
-O (armclang) on page 78

2.32 -fwrapv
Instructs the compiler to assume that signed arithmetic overflow of addition, subtraction, and
multiplication, wraps using two's-complement representation.

When both -fwrapv and -ftrapv are used in a single command, the furthest-right
option overrides the other.

For example, here -fwrapv overrides -ftrapv:

armclang --target=aarch64-arm-none-eabi -ftrapv -c -fwrapv hello.c

2.33 -g, -gdwarf-2, -gdwarf-3, -gdwarf-4
Adds debug tables for source-level debugging.

Default
By default, armclang does not produce debug information. When using -g, the default level is
DWARF 4.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Syntax
-g

-gdwarf-version

Where:

version

is the DWARF format to produce. Valid values are 2, 3, and 4.

The -g option is a synonym for -gdwarf-4.

Usage
The compiler produces debug information that is compatible with the specified DWARF standard.

Use a compatible debugger to load, run, and debug images. For example, Arm® Development
Studio Debugger is compatible with DWARF 4. Compile with the -g or -gdwarf-4 options to debug
with Arm Development Studio Debugger.

Legacy and third-party tools might not support DWARF 4 debug information. In this case you can
specify the level of DWARF conformance required using the -gdwarf-2 or -gdwarf-3 options.

Because the DWARF 4 specification supports language features that are not available in earlier
versions of DWARF, the -gdwarf-2 and -gdwarf-3 options must only be used for backwards
compatibility.

Examples
If you specify multiple options, the last option specified takes precedence. For example:

• -gdwarf-3 -gdwarf-2 produces DWARF 2 debug, because -gdwarf-2 overrides -gdwarf-3.

• -g -gdwarf-2 produces DWARF 2 debug, because -gdwarf-2 overrides the default DWARF
level implied by -g.

• -gdwarf-2 -g produces DWARF 4 debug, because -g (a synonym for -gdwarf-4) overrides -
gdwarf-2.

2.34 -I
Adds the specified directory to the list of places that are searched to find include files.

If you specify more than one directory, the directories are searched in the same order as the -I
options specifying them.

Syntax
-I dir

Where:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

dir

is a directory to search for included files.

Use multiple -I options to specify multiple search directories.

2.35 -include
Includes the source code of the specified file at the beginning of the compilation.

Syntax
-include filename

Where filename is the name of the file whose source code is to be included.

Any -D, -I, and -U options on the command line are always processed before -
include filename.

Related information
-D on page 27
-I on page 53
-U on page 86

2.36 -L
Specifies a list of paths that the linker searches for user libraries.

Syntax
-L dir[,dir,...]

Where:

dir[,dir,...]

is a comma-separated list of directories to be searched for user libraries.

At least one directory must be specified.

When specifying multiple directories, do not include spaces between commas and directory
names in the list.

armclang translates this option to --userlibpath and passes it to armlink.

See the Arm Compiler armlink User Guide for information about the --userlibpath linker option.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

The -L option has no effect when used with the -c option, that is when not linking.

Related information
armlink User Guide

2.37 -l
Add the specified library to the list of searched libraries.

Syntax
-l name

Where name is the name of the library.

armclang translates this option to --library and passes it to armlink.

See the Arm Compiler toolchain Linker Reference for information about the --library linker option.

The -l option has no effect when used with the -c option, that is when not linking.

Related information
armlink User Guide

2.38 -M, -MM
Produces a list of makefile dependency rules suitable for use by a make utility.

armclang executes only the preprocessor step of the compilation or assembly. By default, output is
on the standard output stream.

If you specify multiple source files, a single dependency file is created.

-M lists both system header files and user header files.

-MM lists only user header files.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 241

https://developer.arm.com/documentation/dui0803/l
https://developer.arm.com/documentation/dui0803/l

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

The -MT option lets you override the target name in the dependency rules.

To compile or assemble the source files and produce makefile dependency rules, use
the -MD or -MMD option instead of the -M or -MM option respectively.

Example
You can redirect output to a file using standard UNIX and MS-DOS notation, the -o option, or the -
MF option. For example:

armclang --target=arm-arm-none-eabi -march=armv8-a -M source.c > deps.mk
armclang --target=arm-arm-none-eabi -march=armv8-a -M source.c -o deps.mk
armclang --target=arm-arm-none-eabi -march=armv8-a -M source.c -MF deps.mk

Related information
-o on page 77

2.39 -MD, -MMD
Compiles or assembles source files and produces a list of makefile dependency rules suitable for
use by a make utility.

Operation
armclang creates a makefile dependency file for each source file, using a .d suffix. Unlike -M and -
MM, that cause compilation or assembly to stop after the preprocessing stage, -MD and -MMD allow for
compilation or assembly to continue.

-MD lists both system header files and user header files.

-MMD lists only user header files.

Example
The following example creates makefile dependency lists test1.d and test2.d and compiles the
source files to an image with the default name, a.out:

armclang --target=arm-arm-none-eabi -march=armv8-a -MD test1.c test2.c

Related information
-M, -MM on page 55
-MF on page 57

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

-MT on page 59

2.40 -MF
Specifies a filename for the makefile dependency rules produced by the -M and -MD options.

Syntax
-MF filename

Where:

filename

Specifies the filename for the makefile dependency rules.

The -MF option only has an effect when used in conjunction with one of the -M, -MM,
-MD, or -MMD options.

The -MF option overrides the default behavior of sending dependency generation output to the
standard output stream, and sends output to the specified filename instead.

armclang -MD sends output to a file with the same name as the source file by default, but with a .d
suffix. The -MF option sends output to the specified filename instead. Only use a single source file
with armclang -MD -MF.

Examples
This example sends makefile dependency rules to standard output, without compiling the source:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -M source.c

This example saves makefile dependency rules to deps.mk, without compiling the source:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -M source.c -MF deps.mk

This example compiles the source and saves makefile dependency rules to source.d (using the
default file naming rules):

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -MD source.c

This example compiles the source and saves makefile dependency rules to deps.mk:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -MD source.c -MF deps.mk

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Related information
-M, -MM on page 55
-MD, -MMD on page 56
-MT on page 59

2.41 -MG
Prints dependency lines for header files even if the header files are missing.

Warning and error messages on missing header files are suppressed, and compilation continues.

The -MG option only has an effect when used with one of the following options: -M
or -MM.

Example
source.c contains a reference to a missing header file header.h:

#include <stdio.h>
#include "header.h"

int main(void){
 puts("Hello world\n");
 return 0;
}

This first example is compiled without the -MG option, and results in an error:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -M source.c

source.c:2:10: fatal error: 'header.h' file not found
#include "header.h"
 ^
1 error generated.

This second example is compiled with the -MG option, and the error is suppressed:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -M -MG source.c

source.o: source.c \
 /include/stdio.h \
 header.h

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.42 -MP
Emits dummy dependency rules.

These rules work around make errors that are generated if you remove header files without a
corresponding update to the makefile.

The -MP option only has an effect when used in conjunction with the -M, -MD, -MM, or
-MMD options.

Examples
This example sends dependency rules to standard output, without compiling the source.

source.c includes a header file:

#include <stdio.h>

int main(void){
 puts("Hello world\n");
 return 0;
}

This first example is compiled without the -MP option, and results in a dependency rule for
source.o:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -M source.c

source.o: source.c \
 /include/stdio.h

This second example is compiled with the -MP option, and results in a dependency rule for
source.o and a dummy rule for the header file:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -M -MP source.c

source.o: source.c \
 /include/stdio.h

/include/stdio.h:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.43 -MT
Changes the target of the makefile dependency rule produced by dependency generating options.

The -MT option only has an effect when used in conjunction with either the -M, -MM,
-MD, or -MMD options.

Operation
By default, armclang -M creates makefile dependencies rules based on the source filename:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -M test.c
test.o: test.c header.h

The -MT option renames the target of the makefile dependency rule:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -M test.c -MT foo
foo: test.c header.h

The compiler executes only the preprocessor step of the compilation. By default, output is on the
standard output stream.

If you specify multiple source files, the -MT option renames the target of all dependency rules:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -M test1.c test2.c -MT foo
foo: test1.c header.h
foo: test2.c header.h

Specifying multiple -MT options creates multiple targets for each rule:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -M test1.c test2.c -MT foo
 -MT bar
foo bar: test1.c header.h
foo bar: test2.c header.h

Related information
-M, -MM on page 55
-MD, -MMD on page 56
-MF on page 57

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.44 -march
Targets an architecture profile, generating generic code that runs on any processor of that
architecture.

Default
For AArch64 targets (--target=aarch64-arm-none-eabi), unless you target a particular processor
using -mcpu, the compiler defaults to -march=armv8-a, generating generic code for Arm®v8-A in
AArch64 state.

For AArch32 targets (--target=arm-arm-none-eabi), there is no default. You must specify either -
march (to target an architecture) or -mcpu (to target a processor).

Syntax
To specify a target architecture, use:

-march=name

-march=name[+[no]feature+...] (for architectures with optional extensions)

Where:

name

Specifies the architecture.

To view a list of all the supported architectures, use:

-march=list

The following are valid -march values:

armv8-a

Armv8 application architecture profile. Valid with both --target=aarch64-arm-none-
eabi and --target=arm-arm-none-eabi.

armv8.1-a

Armv8.1 application architecture profile. Valid with both --target=aarch64-arm-none-
eabi and --target=arm-arm-none-eabi.

armv8.2-a

Armv8.2 application architecture profile. Valid with both --target=aarch64-arm-none-
eabi and --target=arm-arm-none-eabi.

armv8.3-a

Armv8.3 application architecture profile. Valid with both --target=aarch64-arm-none-
eabi and --target=arm-arm-none-eabi.

armv8-r

Armv8 real-time architecture profile. Only valid with --target=arm-arm-none-eabi.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

armv8-m.base

Armv8 microcontroller architecture profile without the Main Extension. Derived from
the Armv6-M architecture. Only valid with --target=arm-arm-none-eabi.

armv8-m.main

Armv8 microcontroller architecture profile with the Main Extension. Derived from the
Armv7-M architecture. Only valid with --target=arm-arm-none-eabi.

armv7-a

Armv7 application architecture profile. Only valid with --target=arm-arm-none-eabi.

armv7-r

Armv7 real-time architecture profile. Only valid with --target=arm-arm-none-eabi.

armv7-m

Armv7 microcontroller architecture profile. Only valid with --target=arm-arm-none-
eabi.

armv7e-m

Armv7 microcontroller architecture profile with DSP extension. Only valid with --
target=arm-arm-none-eabi.

armv6-m

Armv6 microcontroller architecture profile. Only valid with --target=arm-arm-none-
eabi.

feature

Enables or disables an optional architectural feature. See the documentation for -mcpu.

There are no software floating-point libraries for AArch64 targets. At link time
armlink links against AArch64 library code that can use floating-point and SIMD
instructions and registers. This still applies if you compile the source with -
march=name+nofp+nosimd to prevent the compiler from using floating-point and
SIMD instructions and registers.

To prevent the use of any floating-point instruction or register, either re-implement
the library functions or create your own library that does not use floating-point
instructions or registers.

Related information
-mcpu on page 65
-marm on page 62
-mthumb on page 74
--target on page 85

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.45 -marm
Requests that the compiler targets the A32 instruction set.

Default
The default for all targets that support A32 instructions is -marm.

Operation
Most Arm®v7-A (and earlier) processors support two instruction sets. These are the A32
instruction set (formerly ARM), and the T32 instruction set (formerly Thumb®). Armv8-A
processors in AArch32 state continue to support these two instruction sets, but with extra
instructions. The Armv8-A processors also provide the A64 instruction set, used in the AArch64
execution state.

Different architectures support different instruction sets:

• Armv8-A processors in AArch64 state execute A64 instructions.

• Armv8-A processors in AArch32 state, in addition to Armv7 and earlier A- and R- profile
processors execute A32 and T32 instructions.

• M-profile processors execute T32 instructions.

This option is only valid for targets that support the A32 instruction set. For
example, the -marm option is not valid for targets in AArch64 state. The compiler
ignores the -marm option and generates a warning when compiling for a target in
AArch64 state.

Related information
-mthumb on page 74
--target on page 85
-mcpu on page 65

2.46 -mbig-endian
Generates code suitable for an Arm® processor using byte-invariant big-endian (BE-8) data.

Default
The default is -mlittle-endian.

Related information
-mlittle-endian on page 73

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.47 -mcmse
Enables the generation of code for the Secure state of the Arm®v8-M Security Extension. This
option is required when creating a Secure image.

• The Armv8-M Security Extension is not supported when building Read-Only
Position-Independent (ROPI) and Read-Write Position-Independent (RWPI) images.

• Mixing objects compiled for Armv8-M.baseline and Armv8-M.mainline, could
potentially leak sensitive data, because Armv8-M.baseline does not support the
Floating-Point Extension. Therefore, the compiler cannot generate code to clear
the Secure floating-point registers when performing a Non-secure call. If any
object is compiled for the Armv8-M.mainline architecture, all files containing
CMSE attributes must be compiled for the Armv8-M.mainline architecture.

Usage
Specifying -mcmse targets the Secure state of the Armv8-M Security Extension. When compiling
with -mcmse, the following are available:

• The Test Target, TT, instruction.

• TT instruction intrinsics.

• Non-secure function pointer intrinsics.

• __attribute__((cmse_nonsecure_call)) and __attribute__((cmse_nonsecure_entry))
function attributes.

• The value of the __ARM_FEATURE_CMSE predefined macro indicates what Armv8-
M Security Extension features are supported.

• Compile Secure code with the maximum capabilities for the target. For
example, if you compile with no FPU then the Secure functions do not
clear floating-point registers when returning from functions declared as
__attribute__((cmse_nonsecure_entry)). Therefore, the functions could
potentially leak sensitive data.

• Structs with undefined bits caused by padding and half-precision floating-point
members are currently unsupported as arguments and return values for Secure
functions. Using such structs might leak sensitive information. Structs that are
large enough to be passed by reference are also unsupported and produce an
error.

• The following cases are not supported when compiling with -mcmse and produce
an error:

◦ Variadic entry functions.

◦ Entry functions with arguments that do not fit in registers, because there are
either many arguments or the arguments have large values.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

◦ Non-secure function calls with arguments that do not fit in registers,
because there are either many arguments or the arguments have large
values.

Example
This example shows how to create a Secure image using an input import library, oldimportlib.o,
and a scatter file, secure.scat:

armclang --target=arm-arm-none-eabi -march=armv8m.main -mcmse secure.c -o secure.o
armlink secure.o -o secure.axf --import-cmse-lib-out importlib.o --import-cmse-lib-
in oldimportlib.o --scatter secure.scat

armlink also generates the Secure code import library, importlib.o that is required for a Non-
secure image to call the Secure image.

Related information
-march on page 60
-mfpu on page 70
--target on page 85
__attribute__((cmse_nonsecure_call)) function attribute on page 104
__attribute__((cmse_nonsecure_entry)) function attribute on page 105
Predefined macros on page 143
TT instruction intrinsics on page 152
Non-secure function pointer intrinsics on page 155
Building Secure and Non-secure Images Using Armv8-M Security Extension
TT, TTT, TTA, TTAT instruction
--fpu linker option
--import_cmse_lib_in linker option
--import_cmse_lib_out linker option
--scatter linker option

2.48 -mcpu
Enables code generation for a specific Arm® processor.

Default
For AArch64 targets (--target=aarch64-arm-none-eabi), the compiler generates generic code for
the Armv8-A architecture in AArch64 state by default.

For AArch32 targets (--target=arm-arm-none-eabi) there is no default. You must specify either -
march (to target an architecture) or -mcpu (to target a processor).

To see the default floating-point configuration for your processor:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 241

https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/TT--TTT--TTA--TTAT
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--fpu-name
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--import-cmse-lib-in-filename
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--import-cmse-lib-out-filename
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--scatter-filename

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

1. Compile with -mcpu=name -S to generate the assembler file.

2. Open the assembler file and check that the value for the .fpu directive corresponds to one of
the -mfpu options. No .fpu directive implies -mfpu=none.

Syntax
To specify a target processor, use:

-mcpu=name

-mcpu=name[+[no]feature+...] (for architectures with optional extensions)

Where:

name

Specifies the processor.

To view a list of all supported processors for your target, use:

-mcpu=list

feature

Is an optional architecture feature that might be enabled or disabled by default depending on
the architecture or processor.

In general, if an architecture supports the optional feature, then this optional
feature is enabled by default. To determine whether the optional feature is
enabled, use fromelf --decode_build_attributes.

+feature enables the feature if it is disabled by default. +feature has no effect if the feature
is already enabled by default.

+nofeature disables the feature if it is enabled by default. +nofeature has no effect if the
feature is already disabled by default.

Use +feature or +nofeature to explicitly enable or disable an optional architecture feature.

For AArch64 targets you can specify one or more of the following features if the architecture
supports it:

• crc - CRC extension.

• crypto - Cryptographic extension, which enables AES, SHA1, and SHA256.

• fp - Floating-point extension.

• fp16 - Armv8.2-A half-precision floating-point extension.

• profile - Armv8.2-A statistical profiling extension.

• ras - Reliability, Availability, and Serviceability extension.

• simd - Advanced SIMD extension.
Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 66 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

• rcpc - Release Consistent Processor Consistent extension. This extension applies to
Armv8.2 and later Application profile architectures.

For AArch32 targets, you can specify one or more of the following features if the architecture
supports it:

• crc - CRC extension for architectures Armv8 and above.

• dsp - DSP extension for the Armv8-M.mainline architecture.

• fp16 - Armv8.2-A half-precision floating-point extension.

• ras - Reliability, Availability, and Serviceability extension.

• For AArch32 targets, you can use -mfpu to specify the support for
floating-point, Advanced SIMD, and cryptographic extensions.

• To write code that generates instructions for these extensions, use the
intrinsics described in the Arm C Language Extensions.

• Arm Compiler 6.6 does not support the optional extensions to Armv8.2-A:

◦ SHA3, SHA512, SM3, and SM4 cryptographic instructions.

◦ SDOT, UDOT, VSDOT, and VUDOT dot product instructions.

◦ Half-precision floating-point multiply with add or multiply with
subtract arithmetic instructions.

Usage
You can use -mcpu option to enable and disable specific architecture features.

To disable a feature, prefix with no, for example cortex-a57+nocrypto.

To enable or disable multiple features, chain multiple feature modifiers. For example, to enable CRC
instructions and disable all other extensions:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a57+nocrypto+nofp+nosimd+crc

If you specify conflicting feature modifiers with -mcpu, the rightmost feature is used. For example,
the following command enables the floating-point extension:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a57+nofp+fp

You can prevent the use of floating-point instructions or floating-point registers for AArch64
targets with the -mcpu=name+nofp+nosimd option. Subsequent use of floating-point data types in
this mode is unsupported.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 241

https://developer.arm.com/documentation/ihi0053/c

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

There are no software floating-point libraries for AArch64 targets. When linking
for AArch64 targets, armlink uses AArch64 libraries that contain floating-point
and Advanced SIMD instructions and registers. This applies even if you compile
the source with -mcpu=name+nofp+nosimd to prevent the compiler from using
floating-point and Advanced SIMD instructions and registers. Therefore, there is no
guarantee that the linked image for AArch64 targets is entirely free of floating-point
and Advanced SIMD instructions and registers.

You can prevent the use of floating-point and Advanced SIMD instructions and
registers in images that are linked for AArch64 targets. To do this, re-implement the
library functions or create your own library that does not use floating-point and
Advanced SIMD instructions and registers.

Examples
To list the processors that target the AArch64 state:

armclang --target=aarch64-arm-none-eabi -mcpu=list

To target the AArch64 state of a Cortex®-A57 processor:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a57 test.c

To target the AArch32 state of a Cortex-A53 processor, generating A32 instructions:

armclang --target=arm-arm-none-eabi -mcpu=cortex-a53 -marm test.c

To target the AArch32 state of a Cortex-A53 processor, generating T32 instructions:

armclang --target=arm-arm-none-eabi -mcpu=cortex-a53 -mthumb test.c

Related information
-marm on page 62
-mthumb on page 74
--target on page 85
-mfpu on page 70

2.49 -mexecute-only
Generates execute-only code, and prevents the compiler from generating any data accesses to
code sections.

To keep code and data in separate sections, the compiler disables literal pools and branch tables
when using the -mexecute-only option.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Restrictions
Execute-only code must be T32 code.

Execute-only code is only supported for:

• Processors that support the Arm®v8-M architecture, with or without the Main Extension.

• Processors that support the Armv7-M architecture, such as the Cortex®-M3.

If your application calls library functions, the library objects included in the image are not execute-
only compliant. You must ensure these objects are not assigned to an execute-only memory region.

Arm does not provide libraries that are built without literal pools. The libraries still
use literal pools, even when you use the -mexecute-only option.

LTO does not honor the armclang -mexecute-only option. If you use the armclang
-flto or -Omax options, then the compiler cannot generate execute-only code.

Related information
Building applications for execute-only memory

2.50 -mfloat-abi
Specifies whether to use hardware instructions or software library functions for floating-point
operations, and which registers are used to pass floating-point parameters and return values.

Default
The default for --target=arm-arm-none-eabi is softfp.

Syntax
-mfloat-abi=value

Where value is one of:

soft

Software library functions for floating-point operations and software floating-point linkage.

softfp

Hardware floating-point instructions and software floating-point linkage.

hard

Hardware floating-point instructions and hardware floating-point linkage.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 241

https://developer.arm.com/documentation/dui0773/l/Compiling-C-and-C---Code/Building-applications-for-execute-only-memory

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

The -mfloat-abi option is not valid with AArch64 targets. AArch64 targets use
hardware floating-point instructions and hardware floating-point linkage. However,
you can prevent the use of floating-point instructions or floating-point registers
for AArch64 targets with the -mcpu=name+nofp+nosimd option. Subsequent use of
floating-point data types in this mode is unsupported.

In AArch32 state, if you specify -mfloat-abi=soft, then specifying the -mfpu option
does not have an effect.

Related information
-mfpu on page 70

2.51 -mfpu
Specifies the target FPU architecture, that is the floating-point hardware available on the target.

Default
The default FPU option depends on the target processor.

Syntax
To view a list of all the supported FPU architectures, use:

-mfpu=list

-mfpu=list is rejected when targeting AArch64 state.

Alternatively, to specify a target FPU architecture, use:

-mfpu=name

Where name is one of the following:

none

Prevents the compiler from using hardware-based floating-point functions. If the compiler
encounters floating-point types in the source code, it uses software-based floating-point
library functions. This is similar to the -mfloat-abi=soft option.

vfpv3

Enable the Arm®v7 VFPv3 floating-point extension. Disable the Advanced SIMD extension.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

vfpv3-d16

Enable the Armv7 VFPv3-D16 floating-point extension. Disable the Advanced SIMD
extension.

vfpv3-fp16

Enable the Armv7 VFPv3 floating-point extension, including the optional half-precision
extensions. Disable the Advanced SIMD extension.

vfpv3-d16-fp16

Enable the Armv7 VFPv3-D16 floating-point extension, including the optional half-precision
extensions. Disable the Advanced SIMD extension.

vfpv3xd

Enable the Armv7 VFPv3XD floating-point extension. Disable the Advanced SIMD extension.

vfpv3xd-fp16

Enable the Armv7 VFPv3XD floating-point extension, including the optional half-precision
extensions. Disable the Advanced SIMD extension.

neon

Enable the Armv7 VFPv3 floating-point extension and the Advanced SIMD extension.

neon-fp16

Enable the Armv7 VFPv3 floating-point extension, including the optional half-precision
extensions, and the Advanced SIMD extension.

vfpv4

Enable the Armv7 VFPv4 floating-point extension. Disable the Advanced SIMD extension.

vfpv4-d16

Enable the Armv7 VFPv4-D16 floating-point extension. Disable the Advanced SIMD
extension.

neon-vfpv4

Enable the Armv7 VFPv4 floating-point extension and the Advanced SIMD extension.

fpv4-sp-d16

Enable the Armv7 FPv4-SP-D16 floating-point extension.

fpv5-d16

Enable the Armv7 FPv5-D16 floating-point extension.

fpv5-sp-d16

Enable the Armv7 FPv5-SP-D16 floating-point extension.

fp-armv8

Enable the Armv8 floating-point extension. Disable the cryptographic extension and the
Advanced SIMD extension.

neon-fp-armv8

Enable the Armv8 floating-point extension and the Advanced SIMD extensions. Disable the
cryptographic extension.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

crypto-neon-fp-armv8

Enable the Armv8 floating-point extension, the cryptographic extension. and the Advanced
SIMD extension.

The -mfpu option overrides the default FPU option implied by the target architecture.

• The -mfpu option is ignored with AArch64 targets, for example aarch64-arm-
none-eabi. Use the -mcpu option to override the default FPU for aarch64-arm-
none-eabi targets. For example, to prevent the use of floating-point instructions
or floating-point registers for the aarch64-arm-none-eabi target use the -
mcpu=name+nofp+nosimd option. Subsequent use of floating-point data types in
this mode is unsupported.

• In Armv7, the Advanced SIMD extension was called the Arm® Neon® Advanced
SIMD extension.

There are no software floating-point libraries for AArch64 targets. When linking
for AArch64 targets, armlink uses AArch64 libraries that contain floating-point
and Advanced SIMD instructions and registers. This applies even if you compile
the source with -mcpu=name+nofp+nosimd to prevent the compiler from using
floating-point and Advanced SIMD instructions and registers. Therefore, there is no
guarantee that the linked image for AArch64 targets is entirely free of floating-point
and Advanced SIMD instructions and registers.

You can prevent the use of floating-point and Advanced SIMD instructions and
registers in images that are linked for AArch64 targets. To do this, re-implement the
library functions or create your own library that does not use floating-point and
Advanced SIMD instructions and registers.

In AArch32 state, if you specify -mfloat-abi=soft, then specifying the -mfpu option
does not have an effect.

Related information
-mcpu on page 65
-mfloat-abi on page 69
--target on page 85

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.52 -mimplicit-it
Specifies the behavior of the integrated assembler if there are conditional instructions outside IT
blocks.

Default
The default is -mimplicit-it=arm.

Syntax
-mimplicit-it=name

Where name is one of the following:

never

In A32 code, the integrated assembler gives a warning when there is a conditional instruction
without an enclosing IT block. In T32 code, the integrated assembler gives an error, when
there is a conditional instruction without an enclosing IT block.

always

In A32 code, the integrated assembler accepts all conditional instructions without giving an
error or warning. In T32 code, the integrated assembler outputs an implicit IT block when
there is a conditional instruction without an enclosing IT block. The integrated assembler
does not give an error or warning about this.

arm

This is the default. In A32 code, the integrated assembler accepts all conditional instructions
without giving an error or warning. In T32 code, the integrated assembler gives an error,
when there is a conditional instruction without an enclosing IT block.

thumb

In A32 code, the integrated assembler gives a warning when there is a conditional instruction
without an enclosing IT block. In T32 code, the integrated assembler outputs an implicit IT
block when there is a conditional instruction without an enclosing IT block. The integrated
assembler does not give an error or warning about this in T32 code.

This option has no effect for targets in AArch64 state because the A64 instruction
set does not include the IT instruction. The integrated assembler gives a warning if
you use the -mimplicit-it option with A64 code.

2.53 -mlittle-endian
Generates code suitable for an Arm® processor using little-endian data.

Default
The default is -mlittle-endian.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Related information
-mbig-endian on page 63

2.54 -mthumb
Requests that the compiler targets the T32 instruction set.

Default
The default for all targets that support A32 instructions is -marm.

Operation
Most Arm®v7-A (and earlier) processors support two instruction sets. These are the A32
instruction set (formerly ARM), and the T32 instruction set (formerly Thumb®). Armv8-A
processors in AArch32 state continue to support these two instruction sets, but with extra
instructions. The Armv8-A processors also provide the A64 instruction set, used in the AArch64
execution state.

Different architectures support different instruction sets:

• Armv8-A processors in AArch64 state execute A64 instructions.

• Armv8-A processors in AArch32 state, in addition to Armv7 and earlier A- and R- profile
processors execute A32 and T32 instructions.

• M-profile processors execute T32 instructions.

• The -mthumb option is not valid for targets in AArch64 state, for example --
target=aarch64-arm-none-eabi. The compiler ignores the -mthumb option and
generates a warning when compiling for a target in AArch64 state.

• The -mthumb option is recognized when using armclang as a compiler, but not
when using it as an assembler. To request armclang to assemble using the T32
instruction set for your assembly source files, you must use the .thumb or .code
16 directive in the assembly files.

Example
armclang -c --target=arm-arm-none-eabi -march=armv8-a -mthumb test.c

Related information
-marm on page 62
--target on page 85
-mcpu on page 65

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.55 -munaligned-access, -mno-unaligned-access
Enables or disables unaligned accesses to data on Arm processors.

Default
-munaligned-access is the default for architectures that support unaligned accesses to data. This
applies to all architectures supported by Arm® Compiler 6, except Armv6-M, and Armv8-M without
the Main Extension.

Operation
The compiler defines the __ARM_FEATURE_UNALIGNED macro when -munaligned-access is enabled.

The libraries include special versions of certain library functions designed to exploit unaligned
accesses. When unaligned access support is enabled, using -munaligned-access, the compilation
tools use these library functions to take advantage of unaligned accesses. When unaligned access
support is disabled, using -mno-unaligned-access, these special versions are not used.

-munaligned-access

Use this option on processors that support unaligned accesses to data, to speed up accesses
to packed structures.

Compiling with this option generates an error for the following architectures:

• Armv6-M.

• Armv8-M without the Main Extension.

-mno-unaligned-access

If unaligned access is disabled, any unaligned data that is wider than 8-bit is accessed one
byte at a time. For example, fields wider than 8-bit, in packed data structures, are always
accessed one byte at a time even if they are aligned.

Related information
Predefined macros on page 143
Arm C Language Extensions 2.0

2.56 -nostdlib
Tells the compiler to not use the Arm® standard C and C++ libraries.

Default
-nostdlib is disabled by default.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 241

https://developer.arm.com/documentation/ihi0053/c

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Operation
If you use the -nostdlib option, armclang does not collude with the Arm standard library and only
emits calls to functions that the C Standard or the AEABI defines. The output from armclang works
with any ISO C library that is compliant with AEABI.

The armclang option -nostdlib, passes the --no_scanlib linker option to armlink. Therefore you
must specify the location of the libraries you want to use as input objects to armlink, or with the
armlink option --userlibpath.

If you want to use your own libraries instead of the Arm standard libraries or if
you want to re-implement the standard library functions, then you must use the
armclang option -nostdlib. Your libraries must be compliant with the ISO C library
and with the AEABI specification.

Example
#include "math.h"

double foo(double d)
{
 return sqrt(d + 1.0);
}
int main(int argc, char *argv[])
{
 return foo(argc);
}

Compiling this code with -nostdlib generates a call to sqrt, which is AEABI compliant.

armclang --target=arm-arm-none-eabi -mcpu=Cortex-A9 -O0 -S -o- file.c -mfloat-
abi=hard -nostdlib

Compiling this code without -nostdlib generates a call to __hardfp_sqrt (from the Arm standard
library), which the C Standard and the AEABI do not define.

armclang --target=arm-arm-none-eabi -mcpu=Cortex-A9 -O0 -S -o- file.c -mfloat-
abi=hard

Related information
-nostdlibinc on page 76
Run-time ABI for the Arm Architecture
C Library ABI for the Arm Architecture

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 241

https://developer.arm.com/documentation/ihi0043/latest/
https://developer.arm.com/documentation/ihi0039/d/c-library-abi-for-the-arm-architecture-abi-r210

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.57 -nostdlibinc
Tells the compiler to exclude the Arm standard C and C++ library header files.

This option still searches the lib/clang/*/include directory.

If you want to disable the use of the Arm® standard library, then use both the armclang options -
nostdlibinc and -nostdlib.

Default
-nostdlibinc is disabled by default.

Example
#include "math.h"

double foo(double d)
{
 return sqrt(d + 1.0);
}
int main(int argc, char *argv[])
{
 return foo(argc);
}

Compiling this code without -nostdlibinc generates a call to __hardfp_sqrt, from the Arm
standard library.

armclang --target=arm-arm-none-eabi -mcpu=Cortex-A9 -O0 -S -o- file.c -mfloat-
abi=hard

Compiling this code with -nostdlibinc and -nostdlib generates an error because the compiler
cannot include the standard library header file math.h.

armclang --target=arm-arm-none-eabi -mcpu=Cortex-A9 -O0 -S -o- file.c -mfloat-
abi=hard -nostdlibinc -nostdlib

Related information
-nostdlib on page 75

2.58 -o
Specifies the name of the output file.

The option -o filename specifies the name of the output file produced by the compiler.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

The option -o- redirects output to the standard output stream when used with the -c or -S
options.

Default
If you do not specify a -o option, the compiler names the output file according to the conventions
described by the following table.

Table 2-4: Compiling without the -o option

Compiler option Action Usage notes

-c Produces an object file whose name defaults
to filename.o in the current directory.
filename is the name of the source file
stripped of any leading directory names.

-

-S Produces an assembly file whose name
defaults to filename.s in the current
directory. filename is the name of the
source file stripped of any leading directory
names.

-

-E Writes output from the preprocessor to the
standard output stream

-

(No option) Produces temporary object files, then
automatically calls the linker to produce an
executable image with the default name of
a.out

None of -o, -c, -E or -S is specified on the
command line

2.59 -O (armclang)
Specifies the level of optimization to use when compiling source files.

Default
If you do not specify -Olevel, the compiler assumes -O0.

Syntax
-Olevel

Where level is one of the following:

0

Minimum optimization for the performance of the compiled binary. Turns off most
optimizations. When debugging is enabled, this option generates code that directly
corresponds to the source code. Therefore, this optimization might result in a significantly
larger image.

1

Restricted optimization. When debugging is enabled, this option selects a good compromise
between image size, performance, and quality of debug view.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Arm recommends -O1 rather than -O0 for the best trade-off between debug view, code size,
and performance.

2

High optimization. When debugging is enabled, the debug view might be less satisfactory
because the mapping of object code to source code is not always clear. The compiler might
perform optimizations that the debug information cannot describe.

3

Very high optimization. When debugging is enabled, this option typically gives a poor debug
view. Arm recommends debugging at lower optimization levels.

fast

Enables all the optimizations from level 3 including those optimizations that are performed
with the armclang option -ffp-mode=fast. This level also performs other aggressive
optimizations that might violate strict compliance with language standards.

max

Maximum optimization. Specifically targets performance optimization. Enables all the
optimizations from level fast, together with other aggressive optimizations.

This option is not guaranteed to be fully standards-compliant for all code
cases.

-Omax automatically enables the armclang option -flto and the generated
object files are not suitable for creating static libraries. When -flto is enabled,
you cannot build ROPI or RWPI images.

When using -Omax:

• Code-size, build-time, and the debug view can each be adversely affected.

• Arm cannot guarantee that the best performance optimization is achieved
in all code cases.

• It is not possible to output meaningful disassembly when the -flto option
is enabled. The reason is because the -flto option is turned on by default
at -Omax, and that option generates files containing bitcode.

• If you are trying to compile at -Omax and have separate compile and link
steps, then also include -Omax on your armlink command line.

LTO does not honor the armclang option -mexecute-only. If you use the
armclang options -flto or -Omax, then the compiler cannot generate execute-
only code.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

s

Performs optimizations to reduce code size, balancing code size against code speed.

z

Performs optimizations to minimize image size.

Related information
-flto, -fno-lto on page 40
-fropi, -fno-ropi on page 43
-frwpi, -fno-rwpi on page 44
Restrictions with link time optimization

2.60 -pedantic
Generate warnings if code violates strict ISO C and ISO C++.

If you use the -pedantic option, the compiler generates warnings if your code uses any language
feature that conflicts with strict ISO C or ISO C++.

Default
-pedantic is disabled by default.

Example
void foo(void)
{
 long long i; /* okay in nonstrict C90 */
}

Compiling this code with -pedantic generates a warning.

armclang --target=arm-arm-none-eabi -march=armv8-a file.c -c -std=c90 -pedantic

The -pedantic option is stricter than the -Wpedantic option.

Related information
-std on page 84
-W on page 89
-pedantic-errors on page 80

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 241

https://developer.arm.com/documentation/dui0773/l/Optimization-Techniques/Optimizing-across-modules-with-link-time-optimization/Restrictions-with-Link-Time-Optimization

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.61 -pedantic-errors
Generate errors if code violates strict ISO C and ISO C++.

If you use the -pedantic-errors option, the compiler does not use any language feature that
conflicts with strict ISO C or ISO C++. The compiler generates an error if your code violates strict
ISO language standard.

Default
-pedantic-errors is disabled by default.

Example
void foo(void)
{
 long long i; /* okay in nonstrict C90 */
}

Compiling this code with -pedantic-errors generates an error:

armclang --target=arm-arm-none-eabi -march=armv8-a file.c -c -std=c90 -pedantic-
errors

Related information
-std on page 84
-W on page 89
-pedantic on page 80

2.62 -Rpass
Outputs remarks from the optimization passes made by armclang. You can output remarks for all
optimizations, or remarks for a specific optimization.

This topic describes a [COMMUNITY] feature. See Support level definitions.

Syntax
-Rpass={.*|optimization}

-Rpass-missed={.*|optimization} [COMMUNITY]

Parameters
Where:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

.*

Indicates that remarks for all major optimizations such as inlining, vectorization, and loop
optimizations are to be reported. However, not all optimization passes support this feature.

optimization

Is a specific optimization for which remarks are to be output. See the Clang Compiler User's
Manual for more information about the optimization values you can specify.

Example
The following examples use the file:

// test.c

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void *__stack_chk_guard = (void *)0xdeadbeef;

void __stack_chk_fail(void) {
 printf("Stack smashing detected.\n");
 exit(1);
}

static void copy(const char *p) {
 char buf[9];
 strcpy(buf, p);
 printf("Copied: %s\n", buf);
}

int main(void) {
 const char *t = "Hello World!";
 copy(t);
 printf("%s\n", t);
 return 0;
}

• To display the inlining remarks, specify:

armclang -c --target=arm-arm-none-eabi -march=armv8-a -O2 -Rpass=inline test.c
test.c:22:3: remark: 'copy' inlined into 'main' with (cost=-14980, threshold=337)
 at callsite main:2:3; [-Rpass=inline]
 copy(t);
 ^

• To display the stack protection remarks, specify:

armclang -c --target=arm-arm-none-eabi -march=armv8-a -O0 -fstack-protector -
Rpass=stack-protector test.c
test.c:20:5: remark: Stack protection applied to function main due to a stack
 allocated buffer or struct containing a
 buffer [-Rpass=stack-protector]
static void main(void) {
 ^

Related information
-fstack-protector, -fstack-protector-all, -fstack-protector-strong, -fno-stack-protector on page
47

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 241

http://clang.llvm.org/docs/UsersManual.html
http://clang.llvm.org/docs/UsersManual.html

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.63 -S
Outputs the disassembly of the machine code generated by the compiler.

Operation
Object modules are not generated. The name of the assembly output file defaults to filename.s
in the current directory, where filename is the name of the source file stripped of any leading
directory names. The default filename can be overridden with the -o option.

It is not possible to output meaningful disassembly when the -flto option is
enabled, which is turned on by default at -Omax, because this generates files
containing bitcode.

Related information
-o on page 77
-O (armclang) on page 78
-flto, -fno-lto on page 40

2.64 -save-temps
Instructs the compiler to generate intermediate assembly files from the specified C/C++ file.

It is similar to disassembling object code that has been compiled from C/C++.

Example
armclang --target=aarch64-arm-none-eabi -save-temps -c hello.c

Executing this command outputs the following files, that are listed in the order they are created:

• hello.i (or hello.ii for C++): the C or C++ file after pre-processing.

• hello.bc: the llvm-ir bitcode file.

• hello.s: the assembly file.

• hello.o: the output object file.

• Specifying -c means that the compilation process stops after the compilation
step, and does not do any linking.

• Specifying -S means that the compilation process stops after the disassembly
step, and does not create an object file.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Related information
-c on page 27
-S on page 83

2.65 -std
Specifies the language standard to compile for.

This topic includes descriptions of [COMMUNITY] features. See Support level
definitions.

Arm® does not guarantee the compatibility of C++ compilation units compiled with
different major or minor versions of Arm Compiler and linked into a single image.
Therefore, Arm recommends that you always build your C++ code from source with
a single version of the toolchain.

You can mix C++ with C code or C libraries.

Syntax
-std=name

Where:

name

Specifies the language mode. Valid values include:

c90

C as defined by the 1990 C standard.

gnu90

C as defined by the 1990 C standard, with additional GNU extensions.

c99

C as defined by the 1999 C standard.

gnu99

C as defined by the 1999 C standard, with additional GNU extensions.

c11

[COMMUNITY] C as defined by the 2011 C standard.

gnu11

[COMMUNITY] C as defined by the 2011 C standard, with additional GNU extensions.

c++98

C++ as defined by the 1998 standard.
Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 84 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

gnu++98

C++ as defined by the 1998 standard, with additional GNU extensions.

c++03

C++ as defined by the 2003 standard.

c++11

C++ as defined by the 2011 standard.

gnu++11

C++ as defined by the 2011 standard, with additional GNU extensions.

c++14 [BETA]
C++ as defined by the 2014 C++ standard.

gnu++14 [BETA]
C++ as defined by the 2014 C++ standard, with additional GNU extensions.

For C++ code, the default is gnu++98. For more information about C++ support, see C++ Status on
the Clang web site.

For C code, the default is gnu11. For more information about C support, see Language Compatibility
on the Clang web site.

Use of C11 library features is unsupported.

armclang always applies the rules for type auto-deduction for copy-list-initialization
and direct-list-initialization from C++17, regardless of which C++ source language
mode a program is compiled for. For example, the compiler always deduces the type
of foo as int instead of std::initializer_list<int> in the following code:

auto foo{ 1 };

Related information
Language Compatibility

2.66 --target
Generate code for the specified target triple.

Default
The --target option is mandatory and has no default. You must always specify a target triple.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 241

http://clang.llvm.org/compatibility.html

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Syntax
--target=triple

Where:

triple

has the form architecture-vendor-OS-abi.

Supported target triples are as follows:

aarch64-arm-none-eabi
Generates A64 instructions for AArch64 state. Implies -march=armv8-a unless -mcpu or -
march is specified.

arm-arm-none-eabi
Generates A32/T32 instructions for AArch32 state. Must be used in conjunction with -march
(to target an architecture) or -mcpu (to target a processor).

• The target triples are case-sensitive.

• The --target option is an armclang option. For all of the other tools, such
as armasm and armlink, use the --cpu and --fpu options to specify target
processors and architectures.

Related information
-marm on page 62
-mthumb on page 74
-mcpu on page 65
-mfpu on page 70

2.67 -U
Removes any initial definition of the specified macro.

Syntax
-Uname

where:

name

is the name of the macro to be undefined.

The macro name can be either:

• A predefined macro.

• A macro specified using the -D option.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

Not all compiler predefined macros can be undefined.

Usage
Specifying -Uname has the same effect as placing the text #undef name at the head of each source
file.

Restrictions
The compiler defines and undefines macros in the following order:

1. Compiler predefined macros.

2. Macros defined explicitly, using -Dname.

3. Macros explicitly undefined, using -Uname.

Related information
-D on page 27
Predefined macros on page 143
-include on page 54

2.68 -u
Prevents the removal of a specified symbol if it is undefined.

Syntax
-u symbol

Where symbol is the symbol to keep.

armclang translates this option to --undefined and passes it to armlink.

See the Arm Compiler armlink User Guide for information about the --undefined linker option.

Related information
armlink User Guide

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 241

https://developer.arm.com/documentation/dui0803/l

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.69 -v
Displays the commands that invoke the compiler and sub-tools, such as armlink, and executes
those commands.

Usage
The -v compiler option produces diagnostic output showing exactly how the compiler and linker
are invoked, displaying the options for each tool. The -v compiler option also displays version
information.

With the -v option, armclang displays this diagnostic output and executes the commands.

To display the diagnostic output without executing the commands, use the -###
option.

Related information
-### on page 92

2.70 --version
Displays the same information as --vsn.

Related information
--vsn on page 89

2.71 --version_number
Displays the version of armclang you are using.

Usage
The compiler displays the version number in the format Mmmuuxx, where:

• M is the major version number, 6.

• mm is the minor version number.

• uu is the update number.

• xx is reserved for Arm internal use. You can ignore this for the purposes of checking whether
the current release is a specific version or within a range of versions.

Related information
Predefined macros on page 143

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.72 --vsn
Displays the version information and the license details.

--vsn is intended to report the version information for manual inspection. The
Component line indicates the release of Arm® Compiler you are using. If you need
to access the version in other tools or scripts, for example in build scripts, use the
output from --version_number.

Example
Example output:

> armclang --vsn
Product: ARM Compiler N.n.p
Component: ARM Compiler N.n.p
Tool: armclang [tool_id]

Target: target_name

Related information
--version on page 88
--version_number on page 88

2.73 -W
Controls diagnostics.

Syntax
-Wname

Where common values for name include:

-Wc11-extensions

Warns about any use of C11-specific features.

-Werror

Turn warnings into errors.

-Werror=foo

Turn warning foo into an error.

-Wno-error=foo

Leave warning foo as a warning even if -Werror is specified.

-Wfoo

Enable warning foo.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

-Wno-foo

Suppress warning foo.

-Weverything

Enable all warnings.

-Wpedantic

Generate warnings if code violates strict ISO C and ISO C++.

See Controlling Errors and Warnings in the Clang Compiler User's Manual for full details about
controlling diagnostics with armclang.

Related information
-pedantic-errors on page 80
-pedantic on page 80

2.74 -Wl
Specifies linker command-line options to pass to the linker when a link step is being performed
after compilation.

See the Arm Compiler armlink User Guide for information about available linker options.

Syntax
-Wl,opt,[opt[,...]]

Where:

opt

is a linker command-line option to pass to the linker.

You can specify a comma-separated list of options or option=argument pairs.

Restrictions
The linker generates an error if -Wl passes unsupported options.

Examples
The following examples show the different syntax usages. They are equivalent because armlink
treats the single option --list=diag.txt and the two options --list diag.txt equivalently:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 hello.c -Wl,--split,--
list,diag.txt
armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 hello.c -Wl,--split,--
list=diag.txt

Related information
-Xlinker on page 91

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 241

http://clang.llvm.org/docs/UsersManual.html#options-to-control-error-and-warning-messages
http://clang.llvm.org/docs/UsersManual.html

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.75 -Xlinker
Specifies linker command-line options to pass to the linker when a link step is being performed
after compilation.

See the Arm Compiler armlink User Guide for information about available linker options.

Syntax
-Xlinker opt

Where:

opt

is a linker command-line option to pass to the linker.

If you want to pass multiple options, use multiple -Xlinker options.

Restrictions
The linker generates an error if -Xlinker passes unsupported options.

Examples
This example passes the option --split to the linker:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 hello.c -Xlinker --split

This example passes the options --list diag.txt to the linker:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 hello.c -Xlinker --list -
Xlinker diag.txt

Related information
-Wl on page 90

2.76 -x
Specifies the language of source files.

Default
By default the compiler determines the source file language from the filename suffix, as follows:

• .cpp, .cxx, .c++, .cc, and .CC indicate C++, equivalent to -x c++.

• .c indicates C, equivalent to -x c.

• .s (lower-case) indicates assembly code that does not require preprocessing, equivalent to -x
assembler.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

• .S (upper-case) indicates assembly code that requires preprocessing, equivalent to -x
assembler-with-cpp.

Syntax
-xlanguage

Where:

language

Specifies the language of subsequent source files, one of the following:

c

C code.

c++

C++ code.

assembler-with-cpp

Assembly code containing C directives that require the C preprocessor.

assembler

Assembly code that does not require the C preprocessor.

Usage
-x overrides the default language standard for the subsequent input files that follow it on the
command-line. For example:

armclang inputfile1.s -xc inputfile2.s inputfile3.s

In this example, armclang treats the input files as follows:

• inputfile1.s appears before the -xc option, so armclang treats it as assembly code because of
the .s suffix.

• inputfile2.s and inputfile3.s appear after the -xc option, so armclang treats them as C
code.

Use -std to set the default language standard.

Related information
-D on page 27
Preprocessing assembly code

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 241

https://developer.arm.com/documentation/dui0773/l/Assembling-Assembly-Code/Preprocessing-assembly-code

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler Command-line Options

2.77 -###
Displays the commands that invoke the compiler and sub-tools, such as armlink, without executing
those commands.

Usage
The -### compiler option produces diagnostic output showing exactly how the compiler and linker
are invoked, displaying the options for each tool. The -### compiler option also displays version
information.

With the -### option, armclang only displays this diagnostic output. armclang does not compile
source files or invoke armlink.

To display the diagnostic output and execute the commands, use the -v option.

Related information
-v on page 87

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Keywords and Operators

3. Compiler-specific Keywords and
Operators

Summarizes the compiler-specific keywords and operators that are extensions to the C and C++
Standards.

3.1 Keyword extensions
The Arm® Compiler armclang provides keywords that are extensions to the C and C++ Standards.

Standard C and Standard C++ keywords that do not have behavior or restrictions specific to the
Arm compiler are not documented.

Keyword extensions that the Arm compiler supports:

• __alignof__

• __asm

• __declspec

• __inline

Related information
__alignof__ on page 94
__asm on page 96
__declspec attributes on page 97
__inline on page 100

3.2 __alignof__
The __alignof__ keyword enables you to inquire about the alignment of a type or variable.

This keyword is a GNU compiler extension that the Arm® compiler supports.

Syntax
__alignof__(type)

__alignof__(expr)

where:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Keywords and Operators

type

is a type

expr

is an lvalue.

Return value
__alignof__(type) returns the alignment requirement for the type, or 1 if there is no alignment
requirement.

__alignof__(expr) returns the alignment requirement for the type of the lvalue expr , or 1 if there
is no alignment requirement.

Example
The following example displays the alignment requirements for a variety of data types, first directly
from the data type, then from an lvalue of the corresponding data type:

#include <stdio.h>

int main(void)
{
 int var_i;
 char var_c;
 double var_d;
 float var_f;
 long var_l;
 long long var_ll;

 printf("Alignment requirement from data type:\n");
 printf(" int : %d\n", __alignof__(int));
 printf(" char : %d\n", __alignof__(char));
 printf(" double : %d\n", __alignof__(double));
 printf(" float : %d\n", __alignof__(float));
 printf(" long : %d\n", __alignof__(long));
 printf(" long long : %d\n", __alignof__(long long));
 printf("\n");
 printf("Alignment requirement from data type of lvalue:\n");
 printf(" int : %d\n", __alignof__(var_i));
 printf(" char : %d\n", __alignof__(var_c));
 printf(" double : %d\n", __alignof__(var_d));
 printf(" float : %d\n", __alignof__(var_f));
 printf(" long : %d\n", __alignof__(var_l));
 printf(" long long : %d\n", __alignof__(var_ll));
}

Compiling with the following command produces the following output:

armclang --target=arm-arm-none-eabi -march=armv8-a alignof_test.c -o alignof.axf

Alignment requirement from data type:
 int : 4
 char : 1
 double : 8
 float : 4
 long : 4
 long long : 8

Alignment requirement from data type of lvalue:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Keywords and Operators

 int : 4
 char : 1
 double : 8
 float : 4
 long : 4
 long long : 8

3.3 __asm
This keyword passes information to the armclang assembler.

The precise action of this keyword depends on its usage.

Usage
Inline assembly

The __asm keyword can incorporate inline GCC syntax assembly code into a function. For
example:

#include <stdio.h>

int add(int i, int j)
{
 int res = 0;
 __asm (
 "ADD %[result], %[input_i], %[input_j]"
 : [result] "=r" (res)
 : [input_i] "r" (i), [input_j] "r" (j)
);
 return res;
}

int main(void)
{
 int a = 1;
 int b = 2;
 int c = 0;

 c = add(a,b);

 printf("Result of %d + %d = %d\n", a, b, c);
}

The general form of an __asm inline assembly statement is:

__asm(code [: output_operand_list [: input_operand_list [:

clobbered_register_list]]]);

code is the assembly code. In our example, this is "ADD %[result], %[input_i],
%[input_j]".

output_operand_list is an optional list of output operands, separated by commas. Each
operand consists of a symbolic name in square brackets, a constraint string, and a C
expression in parentheses. In our example, there is a single output operand: [result]
"=r" (res).

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Keywords and Operators

input_operand_list is an optional list of input operands, separated by commas. Input
operands use the same syntax as output operands. In our example there are two input
operands: [input_i] "r" (i), [input_j] "r" (j).

clobbered_register_list is an optional list of clobbered registers. In our example, this is
omitted.

Embedded assembly
For embedded assembly, you cannot use the __asm keyword on the function declaration.
Use the __attribute__((naked)) function attribute on the function declaration. For more
information, see __attribute__((naked)) function attribute. For example:

__attribute__((naked)) void foo (int i);

Naked functions with the __attribute__((naked)) function attribute only support assembler
instructions in the basic format:

__asm(code);

Assembly labels
The __asm keyword can specify an assembly label for a C symbol. For example:

int count __asm__("count_v1"); // export count_v1, not count

Related information
__attribute__((naked)) function attribute on page 110

3.4 __declspec attributes
The __declspec keyword enables you to specify special attributes of objects and functions.

The __declspec keyword must prefix the declaration specification. For example:

__declspec(noreturn) void overflow(void);

The available __declspec attributes are as follows:

• __declspec(noinline)

• __declspec(noreturn)

• __declspec(nothrow)

__declspec attributes are storage class modifiers. They do not affect the type of a function or
variable.

Related information
__declspec(noinline) on page 98

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Keywords and Operators

__declspec(noreturn) on page 98
__declspec(nothrow) on page 99

3.5 __declspec(noinline)
The __declspec(noinline) attribute suppresses the inlining of a function at the call points of the
function.

__declspec(noinline) can also be applied to constant data, to prevent the compiler from using the
value for optimization purposes, without affecting its placement in the object. This is a feature that
can be used for patchable constants, that is, data that is later patched to a different value. It is an
error to try to use such constants in a context where a constant value is required. For example, an
array dimension.

This __declspec attribute has the function attribute equivalent
__attribute__((noinline)).

Example
/* Prevent y being used for optimization */
__declspec(noinline) const int y = 5;
/* Suppress inlining of foo() wherever foo() is called */
__declspec(noinline) int foo(void);

3.6 __declspec(noreturn)
The __declspec(noreturn) attribute asserts that a function never returns.

This __declspec attribute has the function attribute equivalent
__attribute__((noreturn)).

Usage
Use this attribute to reduce the cost of calling a function that never returns, such as exit(). If a
noreturn function returns to its caller, the behavior is undefined.

Restrictions
The return address is not preserved when calling the noreturn function. This limits the ability of a
debugger to display the call stack.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Keywords and Operators

Example
__declspec(noreturn) void overflow(void); // never return on overflow
int negate(int x)
{
 if (x == 0x80000000) overflow();
 return -x;
}

3.7 __declspec(nothrow)
The __declspec(nothrow) attribute asserts that a call to a function never results in a C++
exception being propagated from the callee into the caller.

The Arm® library headers automatically add this qualifier to declarations of C functions that,
according to the ISO C Standard, can never throw an exception. However, there are some
restrictions on the unwinding tables produced for the C library functions that might throw an
exception in a C++ context, for example, bsearch and qsort.

This __declspec attribute has the function attribute equivalent
__attribute__((nothrow)).

Usage
If the compiler knows that a function can never throw an exception, it might be able to generate
smaller exception-handling tables for callers of that function.

Restrictions
If a call to a function results in a C++ exception being propagated from the callee into the caller, the
behavior is undefined.

This modifier is ignored when not compiling with exceptions enabled.

Example
struct S
{
 ~S();
};
__declspec(nothrow) extern void f(void);
void g(void)
{
 S s;
 f();
}

Related information
Standard C++ library implementation definition

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 241

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Keywords and Operators

3.8 __inline
The __inline keyword suggests to the compiler that it compiles a C or C++ function inline, if it is
sensible to do so.

__inline can be used in C90 code, and serves as an alternative to the C99 inline keyword.

Both __inline and __inline__ are supported in armclang.

Example
static __inline int f(int x){
 return x*5+1;
}

int g(int x, int y){
 return f(x) + f(y);
}

Related information
Inline functions on page 149

3.9 __promise
__promise represents a promise you make to the compiler that a given expression always has a
nonzero value. This enables the compiler to perform more aggressive optimization when vectorizing
code.

Syntax
__promise(expr)

Where expr is an expression that evaluates to nonzero.

Usage
You must #include <assert.h> to use __promise(expr) .

If assertions are enabled (by not defining NDEBUG) and the macro
__DO_NOT_LINK_PROMISE_WITH_ASSERT is not defined, then the promise is checked at runtime by
evaluating expr as part of assert(expr) .

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Keywords and Operators

3.10 __unaligned
The __unaligned keyword is a type qualifier that tells the compiler to treat the pointer or variable
as an unaligned pointer or variable.

Members of packed structures might be unaligned. Use the __unaligned keyword on pointers that
you use for accessing packed structures or members of packed structures.

Example
typedef struct __attribute__((packed)) S{
 char c;
 int x;
};

int f1_load(__unaligned struct S *s)
{
 return s->x;
}

The compiler generates an error if you assign an unaligned pointer to a regular pointer without
type casting.

Example
struct __attribute__((packed)) S { char c; int x; };
void foo(__unaligned struct S *s2)
{
 int *p = &s2->x; // compiler error because &s2->x is an unaligned
 pointer but p is a regular pointer.
 __unaligned int *q = &s2->x; // No error because q and &s2->x are both unaligned
 pointers.
}

Related information
-munaligned-access, -mno-unaligned-access on page 74

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

4. Compiler-specific Function, Variable, and
Type Attributes

Summarizes the compiler-specific function, variable, and type attributes that are extensions to the
C and C++ Standards.

4.1 Function attributes
The __attribute__ keyword enables you to specify special attributes of variables, structure fields,
functions, and types.

The keyword format is either of the following:

__attribute__((attribute1, attribute2, ...))
__attribute__((__attribute1__, __attribute2__, ...))

For example:

int my_function(int b) __attribute__((const));
static int my_variable __attribute__((__unused__));

The following table summarizes the available function attributes.

Table 4-1: Function attributes that the compiler supports, and their equivalents

Function attribute Non-attribute equivalent

__attribute__((alias)) -

__attribute__((always_inline)) -

__attribute__((const)) -

__attribute__((constructor(priority))) -

__attribute__((deprecated)) -

__attribute__((format_arg(string-index))) -

__attribute__((malloc)) -

__attribute__((noinline)) __declspec(noinline)

__attribute__((nomerge)) -

__attribute__((nonnull)) -

__attribute__((noreturn)) __declspec(noreturn))

__attribute__((nothrow)) __delspec(nothrow)

__attribute__((notailcall)) -

__attribute__((pcs("calling_convention"))) -

__attribute__((pure)) -

__attribute__((section("name"))) -

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

Function attribute Non-attribute equivalent
__attribute__((unused)) -

__attribute__((used)) -

__attribute__((visibility("visibility_type"))) -

__attribute__((weak)) -

__attribute__((weakref("target"))) -

Usage
You can set these function attributes in the declaration, the definition, or both. For example:

void AddGlobals(void) __attribute__((always_inline));
__attribute__((always_inline)) void AddGlobals(void) {...}

When function attributes conflict, the compiler uses the safer or stronger one. For example,
__attribute__((used)) is safer than __attribute__((unused)), and __attribute__((noinline))
is safer than __attribute__((always_inline)).

Related information
__attribute__((always_inline)) function attribute on page 103
__attribute__((const)) function attribute on page 105
__attribute__((constructor(priority))) function attribute on page 106
__attribute__((format_arg(string-index))) function attribute on page 107
__attribute__((malloc)) function attribute on page 109
__attribute__((nonnull)) function attribute on page 111
__attribute__((naked)) function attribute on page 110
__attribute__((pcs("calling_convention"))) function attribute on page 112
__attribute__((noinline)) function attribute on page 110
__attribute__((nothrow)) function attribute on page 112
__attribute__((section("name"))) function attribute on page 113
__attribute__((pure)) function attribute on page 113
__attribute__((noreturn)) function attribute on page 111
__attribute__((unused)) function attribute on page 114
__attribute__((used)) function attribute on page 113
__attribute__((visibility("visibility_type"))) function attribute on page 116
__attribute__((weak)) function attribute on page 117
__attribute__((weakref("target"))) function attribute on page 117
__alignof__ on page 94
__asm on page 96
__declspec attributes on page 97

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

4.2 __attribute__((always_inline)) function attribute
This function attribute indicates that a function must be inlined.

The compiler attempts to inline the function, regardless of the characteristics of the function.

In some circumstances, the compiler might choose to ignore __attribute__((always_inline)),
and not inline the function. For example:

• A recursive function is never inlined into itself.

• Functions that use alloca() might not be inlined.

Example
static int max(int x, int y) __attribute__((always_inline));
static int max(int x, int y)
{
 return x > y ? x : y; // always inline if possible
}

4.3 __attribute__((cmse_nonsecure_call)) function attribute
Declares a non-secure function type

A call to a function that switches state from Secure to Non-secure is called a non-secure function
call. A non-secure function call can only happen through function pointers. This is a consequence
of separating secure and non-secure code into separate executable files.

A non-secure function type must only be used as a base type of a pointer.

Example
#include <arm_cmse.h>
typedef void __attribute__((cmse_nonsecure_call)) nsfunc(void);

void default_callback(void) { ... }

// fp can point to a secure function or a non-secure function
nsfunc *fp = (nsfunc *) default_callback; // secure function pointer

void __attribute__((cmse_nonsecure_entry)) entry(nsfunc *callback) {
 fp = cmse_nsfptr_create(callback); // non-secure function pointer
}

void call_callback(void) {
 if (cmse_is_nsfptr(fp)){
 fp(); // non-secure function call
 }
 else {
 ((void (*)(void)) fp)(); // normal function call
 }
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

Related information
__attribute__((cmse_nonsecure_entry)) function attribute on page 105
Non-secure function pointer intrinsics on page 155
Building Secure and Non-secure Images Using Armv8-M Security Extension

4.4 __attribute__((cmse_nonsecure_entry)) function
attribute

Declares an entry function that can be called from Non-secure state or Secure state.

Syntax
C linkage:

void __attribute__((cmse_nonsecure_entry)) entry_func(int val)

C++ linkage:
extern "C" void __attribute__((cmse_nonsecure_entry)) entry_func(int val)

Compile Secure code with the maximum capabilities for the target. For
example, if you compile with no FPU then the Secure functions do not
clear floating-point registers when returning from functions declared as
__attribute__((cmse_nonsecure_entry)). Therefore, the functions could
potentially leak sensitive data.

Example
#include <arm_cmse.h>
void __attribute__((cmse_nonsecure_entry)) entry_func(int val) {
 int state = cmse_nonsecure_caller();

 if (state)
 { // called from non-secure
 // do non-secure work
 ...
 } else
 { // called from within secure
 // do secure work
 ...
 }
}

Related information
__attribute__((cmse_nonsecure_call)) function attribute on page 104
Non-secure function pointer intrinsics on page 155
Building Secure and Non-secure Images Using Armv8-M Security Extension

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 241

https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions
https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

4.5 __attribute__((const)) function attribute
The const function attribute specifies that a function examines only its arguments, and has no
effect except for the return value. That is, the function does not read or modify any global memory.

If a function is known to operate only on its arguments then it can be subject to common sub-
expression elimination and loop optimizations.

This attribute is stricter than __attribute__((pure)) because functions are not permitted to read
global memory.

Example
#include <stdio.h>

// __attribute__((const)) functions do not read or modify any global memory
int my_double(int b) __attribute__((const));
int my_double(int b) {
 return b*2;
}

int main(void) {
 int i;
 int result;
 for (i = 0; i < 10; i++)
 {
 result = my_double(i);
 printf (" i = %d ; result = %d \n", i, result);
 }
}

4.6 __attribute__((constructor(priority))) function attribute
This attribute causes the function it is associated with to be called automatically before main() is
entered.

Syntax
__attribute__((constructor(priority)))

Where priority is an optional integer value denoting the priority. A constructor with a low integer
value runs before a constructor with a high integer value. A constructor with a priority runs before
a constructor without a priority.

Priority values up to and including 100 are reserved for internal use.

Usage
You can use this attribute for start-up or initialization code.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

Example
In the following example, the constructor functions are called before execution enters main(), in
the order specified:

#include <stdio.h>
void my_constructor1(void) __attribute__((constructor));
void my_constructor2(void) __attribute__((constructor(102)));
void my_constructor3(void) __attribute__((constructor(103)));
void my_constructor1(void) /* This is the 3rd constructor */
{ /* function to be called */
 printf("Called my_constructor1()\n");
}
void my_constructor2(void) /* This is the 1st constructor */
{ /* function to be called */
 printf("Called my_constructor2()\n");
}
void my_constructor3(void) /* This is the 2nd constructor */
{ /* function to be called */
 printf("Called my_constructor3()\n");
}
int main(void)
{
 printf("Called main()\n");
}

This example produces the following output:

Called my_constructor2()
Called my_constructor3()
Called my_constructor1()
Called main()

4.7 __attribute__((format_arg(string-index))) function
attribute

This attribute specifies that a function takes a format string as an argument. Format strings can
contain typed placeholders that are intended to be passed to printf-style functions such as
printf(), scanf(), strftime(), or strfmon().

This attribute causes the compiler to perform placeholder type checking on the specified argument
when the output of the function is used in calls to a printf-style function.

Syntax
__attribute__((format_arg(string-index)))

Where string-index specifies the argument that is the format string argument (starting from one).

Example
The following example declares two functions, myFormatText1() and myFormatText2(), that provide
format strings to printf().

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

The first function, myFormatText1(), does not specify the format_arg attribute. The compiler does
not check the types of the printf arguments for consistency with the format string.

The second function, myFormatText2(), specifies the format_arg attribute. In the subsequent calls
to printf(), the compiler checks that the types of the supplied arguments a and b are consistent
with the format string argument to myFormatText2(). The compiler produces a warning when a
float is provided where an int is expected.

#include <stdio.h>

// Function used by printf. No format type checking.
extern char *myFormatText1 (const char *);

// Function used by printf. Format type checking on argument 1.
extern char *myFormatText2 (const char *) __attribute__((format_arg(1)));

int main(void) {
 int a;
 float b;

 a = 5;
 b = 9.099999;

 printf(myFormatText1("Here is an integer: %d\n"), a); // No type checking. Types
 match anyway.
 printf(myFormatText1("Here is an integer: %d\n"), b); // No type checking. Type
 mismatch, but no warning

 printf(myFormatText2("Here is an integer: %d\n"), a); // Type checking. Types
 match.
 printf(myFormatText2("Here is an integer: %d\n"), b); // Type checking. Type
 mismatch results in warning
}

$ armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53 -c format_arg_test.c
format_arg_test.c:21:53: warning: format specifies type 'int' but the argument has
 type 'float' [-Wformat]
 printf(myFormatText2("Here is an integer: %d\n"), b); // Type checking. Type
 mismatch results in warning
 ~~ ^
 %f
1 warning generated.

4.8 __attribute__((interrupt("type"))) function attribute
This attribute instructs the compiler to generate a function in a manner that is suitable for use as
an exception handler.

Syntax
__attribute__((interrupt(" type ")))

Where type is one of the following:

• IRQ.

• FIQ.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

• SWI.

• ABORT.

• UNDEF.

Operation
This attribute affects the code generation of a function as follows:

• If the function is AAPCS, the stack is realigned to 8 bytes on entry.

• For processors that are not based on the M-profile, preserves all processor registers, rather
than only the registers that the AAPCS requires to be preserved. Floating-point registers are
not preserved.

• For processors that are not based on the M-profile, the function returns using an instruction
that is architecturally defined as a return from exception.

Restrictions
When using __attribute__((interrupt("type"))) functions:

• No arguments or return values can be used with the functions.

• The functions are incompatible with -frwpi.

In Arm®v6-M, Armv7-M, and Armv8-M, the architectural exception handling
mechanism preserves all processor registers, and a standard function return can
cause an exception return. Therefore, specifying this attribute does not affect the
behavior of the compiled output. However, Arm recommends using this attribute on
exception handlers for clarity and easier software porting.

• For architectures that support A32 and T32 instructions, functions specified
with this attribute compile to A32 or T32 code depending on whether the
compile option specifies A32 code or T32 code.

• For T32 only architectures, for example the Armv6-M architecture, functions
specified with this attribute compile to T32 code.

• This attribute is not available for A64 code.

• When targeting the R-profile or A-profile, the type UNDEF can only handle
UNDEFINED A32 instructions and UNDEFINED 2-byte sized T32 instructions.
Assembly language is required to handle 4-byte sized T32 UNDEFINED
instructions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

4.9 __attribute__((malloc)) function attribute
This function attribute indicates that the function can be treated like malloc and the compiler can
perform the associated optimizations.

Example
void * foo(int b) __attribute__((malloc));

4.10 __attribute__((naked)) function attribute
This attribute tells the compiler that the function is an embedded assembly function. You can write
the body of the function entirely in assembly code using __asm statements.

The compiler does not generate prologue and epilogue sequences for functions with
__attribute__((naked)).

The compiler only supports basic __asm statements in __attribute__((naked)) functions. Using
extended assembly, parameter references or mixing C code with __asm statements might not work
reliably.

Examples
__attribute__((naked)) int add(int i, int j); /* Declaring a function with
 __attribute__((naked)). */

__attribute__((naked)) int add(int i, int j)
{
 __asm("ADD r0, r1, #1"); /* Basic assembler statements are supported. */

/* Parameter references are not supported inside naked functions: */
/* __asm (
 "ADD r0, %[input_i], %[input_j]" /* Assembler statement with parameter
 references */
 : /* Output operand parameter */
 : [input_i] "r" (i), [input_j] "r" (j) /* Input operand parameter */
);
*/

/* Mixing C code is not supported inside naked functions: */
/* int res = 0;
 return res;
*/

}

Related information
__asm on page 96

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

4.11 __attribute__((noinline)) function attribute
This attribute suppresses the inlining of a function at the call points of the function.

__attribute__((noinline)) can also be applied to constant data, to prevent the compiler from
using the value for optimization purposes, without affecting its placement in the object. This is a
feature that can be used for patchable constants, that is, data that is later patched to a different
value. It is an error to try to use such constants in a context where a constant value is required.

Example
/* Prevent y being used for optimization */
const int y = 5 __attribute__((noinline));
/* Suppress inlining of foo() wherever foo() is called */
int foo(void) __attribute__((noinline));

4.12 __attribute__((nonnull)) function attribute
This function attribute specifies function parameters that are not supposed to be null pointers. This
enables the compiler to generate a warning on encountering such a parameter.

Syntax
__attribute__((nonnull[(arg-index, …)]))

Where [(arg-index, …)] denotes an optional argument index list.

If no argument index list is specified, all pointer arguments are marked as nonnull.

The argument index list is 1-based, rather than 0-based.

Examples
The following declarations are equivalent:

void * my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull
 (1, 2)));

void * my_memcpy (void *dest, const void *src, size_t len) __attribute__((nonnull));

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

4.13 __attribute__((noreturn)) function attribute
This attribute asserts that a function never returns.

Usage
Use this attribute to reduce the cost of calling a function that never returns, such as exit(). If a
noreturn function returns to its caller, the behavior is undefined.

Restrictions
The return address is not preserved when calling the noreturn function. This limits the ability of a
debugger to display the call stack.

4.14 __attribute__((nothrow)) function attribute
This attribute asserts that a call to a function never results in a C++ exception being sent from the
callee to the caller.

The Arm library headers automatically add this qualifier to declarations of C functions that,
according to the ISO C Standard, can never throw an exception. However, there are some
restrictions on the unwinding tables produced for the C library functions that might throw an
exception in a C++ context, for example, bsearch and qsort.

If the compiler knows that a function can never throw an exception, it might be able to generate
smaller exception-handling tables for callers of that function.

4.15 __attribute__((pcs("calling_convention"))) function
attribute

This function attribute specifies the calling convention on targets with hardware floating-point.

Syntax
__attribute__((pcs(" calling_convention ")))

Where calling_convention is one of the following:

aapcs

uses integer registers.

aapcs-vfp

uses floating-point registers.

Example
double foo (float) __attribute__((pcs("aapcs")));

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

4.16 __attribute__((pure)) function attribute
Many functions have no effects except to return a value, and their return value depends only on
the parameters and global variables. Functions of this kind can be subject to data flow analysis and
might be eliminated.

Example
int bar(int b) __attribute__((pure));
int bar(int b)
{
 return b++;
}
int foo(int b)
{
 int aLocal=0;
 aLocal += bar(b);
 aLocal += bar(b);
 return 0;
}

The call to bar in this example might be eliminated because its result is not used.

4.17 __attribute__((section("name"))) function attribute
The section function attribute enables you to place code in different sections of the image.

Example
In the following example, the function foo is placed into an RO section named new_section rather
than .text.

int foo(void) __attribute__((section ("new_section")));
int foo(void)
{
 return 2;
}

Section names must be unique. You must not use the same section name for
different section types. If you use the same section name for different section types,
then the compiler merges the sections into one and gives the section the type of
whichever function or variable is first allocated to that section.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

4.18 __attribute__((used)) function attribute
This function attribute informs the compiler that a static function is to be retained in the object file,
even if it is unreferenced.

Functions marked with __attribute__((used)) can still be removed by linker unused section
removal. To prevent the linker from removing these sections use the --keep armlink option, or use
the --no_remove linker option to disable unused section elimination.

Static variables can also be marked as used, by using __attribute__((used)).

Example
static int lose_this(int);
static int keep_this(int) __attribute__((used)); // retained in object file
static int keep_this_too(int) __attribute__((used)); // retained in object file

Related information
--keep

4.19 __attribute__((unused)) function attribute
The unused function attribute prevents the compiler from generating warnings if the function is
not referenced. This does not change the behavior of the unused function removal process.

By default, the compiler does not warn about unused functions. Use -Wunused-
function to enable this warning specifically, or use an encompassing -W value such
as -Wall.

The __attribute__((unused)) attribute can be useful if you usually want to
warn about unused functions, but want to suppress warnings for a specific set of
functions.

Example
static int unused_no_warning(int b) __attribute__((unused));
static int unused_no_warning(int b)
{
 return b++;
}

static int unused_with_warning(int b);
static int unused_with_warning(int b)
{
 return b++;

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 241

https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--keep-section-id

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

}

Compiling this example with -Wall results in the following warning:

armclang --target=aarch64-arm-none-eabi -c test.c -Wall

test.c:10:12: warning: unused function 'unused_with_warning' [-Wunused-function]
static int unused_with_warning(int b)
 ^
1 warning generated.

Related information
__attribute__((unused)) variable attribute on page 125

4.20 __attribute__((value_in_regs)) function attribute
The value_in_regs function attribute is compatible with functions whose return type is a structure.
It alters the calling convention of a function so that the returned structure is stored in the argument
registers rather than being written to memory using an implicit pointer argument.

When using __attribute__((value_in_regs)), the calling convention only uses
integer registers.

Syntax
__attribute__((value_in_regs)) return-type function-name([argument-list]);

Where:

return-type

is the type of structure that conforms to certain restrictions.

Usage
Declaring a function __attribute__((value_in_regs)) can be useful when calling functions that
return more than one result.

Restrictions
When targeting AArch32, the structure can be up to 16 bytes in order to fit in four 32-bit
argument registers. When targeting AArch64, the structure can be up to 64 bytes in order
to fit in eight 64-bit argument registers. If the structure returned by a function qualified by
__attribute__((value_in_regs)) is too big, the compiler generates an error.

Each field of the structure has to fit exactly in one integer register. Therefore, the fields can only
be pointers or pointer-sized integers. Anything else, including bitfields, is incompatible. Nested

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

structures are allowed if they contain a single field whose type is pointer or pointer-sized integer.
Unions can have more that one field. If the type of the return structure violates any of the above
rules, then the compiler generates the corresponding error.

If a virtual function declared as __attribute__((value_in_regs)) is to be overridden, the
overriding function must also be declared as __attribute__((value_in_regs)). If the functions do
not match, the compiler generates an error.

A function declared as __attribute__((value_in_regs)) is not function-pointer-compatible
with a normal function of the same type signature. If a pointer to a function that is declared as
__attribute__((value_in_regs)) is initialized with a pointer to a function that is not declared as
__attribute__((value_in_regs)), then the compiler generates a warning.

Example
typedef struct ReturnType
{
 long a;
 char *b;
 union U
 {
 int *c;
 struct S1 {short *d;} s1;
 } u;
 struct S2 {double *e;} s2;
} my_struct;

extern __attribute__((value_in_regs)) my_struct foo(long x);

4.21 __attribute__((visibility("visibility_type"))) function
attribute

This function attribute affects the visibility of ELF symbols.

Syntax
__attribute__((visibility(" visibility_type ")))

Where visibility_type is one of the following:

default

The assumed visibility of symbols can be changed by other options. Default visibility
overrides such changes. Default visibility corresponds to external linkage.

hidden

The symbol is not placed into the dynamic symbol table, so no other executable or shared
library can directly reference it. Indirect references are possible using function pointers.

protected

The symbol is placed into the dynamic symbol table, but references within the defining
module bind to the local symbol. That is, the symbol cannot be overridden by another
module.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

Usage
Except when specifying default visibility, this attribute is intended for use with declarations that
would otherwise have external linkage.

You can apply this attribute to functions and variables in C and C++. In C++, it can also be applied
to class, struct, union, and enum types, and namespace declarations.

In the case of namespace declarations, the visibility attribute applies to all function and variable
definitions.

Example
void __attribute__((visibility("protected"))) foo()
{
 ...
}

4.22 __attribute__((weak)) function attribute
Functions defined with __attribute__((weak)) export their symbols weakly.

Functions declared with __attribute__((weak)) and then defined without __attribute__((weak))
behave as weak functions.

Example
extern int Function_Attributes_weak_0 (int b) __attribute__((weak));

4.23 __attribute__((weakref("target"))) function attribute
This function attribute marks a function declaration as an alias that does not by itself require a
function definition to be given for the target symbol.

Syntax
__attribute__((weakref("target")))

Where target is the target symbol.

Example
In the following example, foo() calls y() through a weak reference:

extern void y(void);
static void x(void) __attribute__((weakref("y")));
void foo (void)
{
 ...
 x();

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

 ...
}

Restrictions
This attribute can only be used on functions with static linkage.

4.24 Type attributes
The __attribute__ keyword enables you to specify special attributes of variables or structure
fields, functions, and types.

The keyword format is either of the following:

__attribute__((attribute1, attribute2, ...))
__attribute__((__attribute1__, __attribute2__, ...))

For example:

typedef union { int i; float f; } U __attribute__((transparent_union));

The available type attributes are as follows:

• __attribute__((aligned))

• __attribute__((packed))

• __attribute__((transparent_union))

Related information
__attribute__((aligned)) type attribute on page 118
__attribute__((transparent_union)) type attribute on page 119
__attribute__((packed)) type attribute on page 118

4.25 __attribute__((aligned)) type attribute
The aligned type attribute specifies a minimum alignment for the type.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

4.26 __attribute__((packed)) type attribute
The packed type attribute specifies that a type must have the smallest possible alignment. This
attribute only applies to struct and union types.

You must access a packed member of a struct or union directly from a variable
of the containing type. Taking the address of such a member produces a normal
pointer which might be unaligned. The compiler assumes that the pointer is aligned.
Dereferencing such a pointer can be unsafe even when unaligned accesses are
supported by the target, because certain instructions always require word-aligned
addresses.

If you take the address of a packed member, in most cases, the compiler generates a
warning.

When you specify __attribute__((packed)) to a structure or union, it applies to all members
of the structure or union. If a packed structure has a member that is also a structure, then this
member structure has an alignment of 1-byte. However, the packed attribute does not apply to the
members of the member structure. The members of the member structure continue to have their
natural alignment.

Examples
struct __attribute__((packed)) foobar
{
 char x;
 short y;
};

short get_y(struct foobar *s)
{
 // Correct usage: the compiler does not use unaligned accesses
 // unless they are allowed.
 return s->y;
}

short get2_y(struct foobar *s)
{
 short *p = &s->y; // Incorrect usage: 'p' might be an unaligned pointer.
 return *p; // This might cause an unaligned access.
}

Related information
-munaligned-access, -mno-unaligned-access on page 74

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

4.27 __attribute__((transparent_union)) type attribute
The transparent_union type attribute enables you to specify a transparent union type.

When a function is defined with a parameter having transparent union type, a call to the function
with an argument of any type in the union results in the initialization of a union object whose
member has the type of the passed argument and whose value is set to the value of the passed
argument.

When a union data type is qualified with __attribute__((transparent_union)), the transparent
union applies to all function parameters with that type.

Example
typedef union { int i; float f; } U __attribute__((transparent_union));
void foo(U u)
{
 static int s;
 s += u.i; /* Use the 'int' field */
}
void caller(void)
{
 foo(1); /* u.i is set to 1 */
 foo(1.0f); /* u.f is set to 1.0f */
}

4.28 Variable attributes
The __attribute__ keyword enables you to specify special attributes of variables or structure
fields, functions, and types.

The keyword format is either of the following:

__attribute__((attribute1, attribute2, ...))
__attribute__((__attribute1__, __attribute2__, ...))

For example:

static int b __attribute__((__unused__));

The available variable attributes are as follows:

• __attribute__((alias))

• __attribute__((aligned))

• __attribute__((deprecated))

• __attribute__((packed))

• __attribute__((section("name")))

• __attribute__((unused))

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

• __attribute__((used))

• __attribute__((weak))

• __attribute__((weakref("target")))

Related information
__attribute__((alias)) variable attribute on page 121
__attribute__((aligned)) variable attribute on page 122
__attribute__((deprecated)) variable attribute on page 122
__attribute__((packed)) variable attribute on page 123
__attribute__((section("name"))) variable attribute on page 124
__attribute__((unused)) variable attribute on page 125
__attribute__((used)) variable attribute on page 124
__attribute__((weak)) variable attribute on page 125
__attribute__((weakref("target"))) variable attribute on page 126

4.29 __attribute__((alias)) variable attribute
This variable attribute enables you to specify multiple aliases for a variable.

Aliases must be declared in the same translation unit as the definition of the original variable.

Aliases cannot be specified in block scope. The compiler ignores aliasing attributes
attached to local variable definitions and treats the variable definition as a normal
local definition.

In the output object file, the compiler replaces alias references with a reference to the original
variable name, and emits the alias alongside the original name. For example:

int oldname = 1;
extern int newname __attribute__((alias("oldname")));

This code compiles to:

 .type oldname,%object @ @oldname
 .data
 .globl oldname
 .align 2
oldname:
 .long 1 @ 0x1
 .size oldname, 4
 ...
 .globl newname
newname = oldname

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

Function names can also be aliased using the corresponding function attribute
__attribute__((alias)).

Syntax
type newname __attribute__((alias("oldname")));

Where:

oldname

is the name of the variable to be aliased

newname

is the new name of the aliased variable.

Example
#include <stdio.h>
int oldname = 1;
extern int newname __attribute__((alias("oldname"))); // declaration
void foo(void){
 printf("newname = %d\n", newname); // prints 1
}

4.30 __attribute__((aligned)) variable attribute
The aligned variable attribute specifies a minimum alignment for the variable or structure field,
measured in bytes.

Example
/* Aligns on 16-byte boundary */
int x __attribute__((aligned (16)));

/* In this case, the alignment used is the maximum alignment for a scalar data type.
 For ARM, this is 8 bytes. */
short my_array[3] __attribute__((aligned));

4.31 __attribute__((deprecated)) variable attribute
The deprecated variable attribute enables the declaration of a deprecated variable without any
warnings or errors being issued by the compiler. However, any access to a deprecated variable
creates a warning but still compiles.

The warning gives the location where the variable is used and the location where it is defined. This
helps you to determine why a particular definition is deprecated.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

Example
extern int deprecated_var __attribute__((deprecated));
void foo()
{
 deprecated_var=1;
}

Compiling this example generates a warning:

armclang --target=aarch64-arm-none-eabi -c test_deprecated.c

test_deprecated.c:4:3: warning: 'deprecated_var' is deprecated [-Wdeprecated-
declarations]
 deprecated_var=1;
 ^
test_deprecated.c:1:12: note: 'deprecated_var' has been explicitly marked deprecated
 here
 extern int deprecated_var __attribute__((deprecated));
 ^
1 warning generated.

4.32 __attribute__((packed)) variable attribute
You can specify the packed variable attribute on fields that are members of a structure or union. It
specifies that a member field has the smallest possible alignment. That is, one byte for a variable
field, and one bit for a bitfield, unless you specify a larger value with the aligned attribute.

Example
struct
{
 char a;
 int b __attribute__((packed));
} Variable_Attributes_packed_0;

You must access a packed member of a structure or union directly from a variable
of the structure or union. Taking the address of such a member produces a normal
pointer which might be unaligned. The compiler assumes that the pointer is aligned.
Dereferencing such a pointer can be unsafe even when unaligned accesses are
supported by the target, because certain instructions always require word-aligned
addresses.

If you take the address of a packed member, in most cases, the compiler generates a
warning.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

Related information
__attribute__((aligned)) variable attribute on page 122

4.33 __attribute__((section("name"))) variable attribute
The section attribute specifies that a variable must be placed in a particular data section.

Normally, the Arm® compiler places the data it generates in sections like .data and .bss. However,
you might require more data sections or you might want a variable to appear in a special section,
for example, to map to special hardware.

If you use the section attribute, read-only variables are placed in RO data sections, writable
variables are placed in RW data sections.

To place ZI data in a named section, the section must start with the prefix .bss.. Non-ZI data
cannot be placed in a section named .bss.

Example
/* in RO section */
const int descriptor[3] __attribute__((section ("descr"))) = { 1,2,3 };
/* in RW section */
long long rw_initialized[10] __attribute__((section ("INITIALIZED_RW"))) = {5};
/* in RW section */
long long rw[10] __attribute__((section ("RW")));
/* in ZI section */
int my_zi __attribute__((section (".bss.my_zi_section")));

Section names must be unique. You must not use the same section name for
different section types. If you use the same section name for different section types,
then the compiler merges the sections into one and gives the section the type of
whichever function or variable is first allocated to that section.

4.34 __attribute__((used)) variable attribute
This variable attribute informs the compiler that a static variable is to be retained in the object file,
even if it is unreferenced.

Data marked with __attribute__((used)) is tagged in the object file to avoid removal by linker
unused section removal.

Static functions can also be marked as used, by using __attribute__((used)).

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

Example
static int lose_this = 1;
static int keep_this __attribute__((used)) = 2; // retained in object file
static int keep_this_too __attribute__((used)) = 3; // retained in object file

4.35 __attribute__((unused)) variable attribute
The compiler can warn if a variable is declared but is never referenced. The
__attribute__((unused)) attribute informs the compiler to expect an unused variable, and tells it
not to issue a warning.

By default, the compiler does not warn about unused variables. Use -Wunused-
variable to enable this warning specifically, or use an encompassing -W value such
as -Weverything.

The __attribute__((unused)) attribute can be used to warn about most unused
variables, but suppress warnings for a specific set of variables.

Example
void foo()
{
 static int aStatic =0;
 int aUnused __attribute__((unused));
 int bUnused;
 aStatic++;
}

When compiled with a suitable -W setting, the compiler warns that bUnused is declared but never
referenced, but does not warn about aUnused:

armclang --target=aarch64-arm-none-eabi -c test_unused.c -Wall

test_unused.c:5:7: warning: unused variable 'bUnused' [-Wunused-variable]
 int bUnused;
 ^
1 warning generated.

Related information
__attribute__((unused)) function attribute on page 114

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Function, Variable, and Type Attributes

4.36 __attribute__((weak)) variable attribute
Generates a weak symbol for a variable, rather than the default symbol.

extern int foo __attribute__((weak));

At link time, strong symbols override weak symbols. This attribute replaces a weak symbol with a
strong symbol, by choosing a particular combination of object files to link.

4.37 __attribute__((weakref("target"))) variable attribute
This variable attribute marks a variable declaration as an alias that does not by itself require a
definition to be given for the target symbol.

Syntax
__attribute__((weakref("target")))

Where target is the target symbol.

Example
In the following example, a is assigned the value of y through a weak reference:

extern int y;
static int x __attribute__((weakref("y")));
void foo (void)
{
 int a = x;
 ...
}

Restrictions
This attribute can only be used on variables that are declared as static.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Intrinsics

5. Compiler-specific Intrinsics
Summarizes the Arm® Compiler-specific intrinsics that are extensions to the C and C++ Standards.

To use these intrinsics, your source file must contain #include <arm_compat.h>.

5.1 __breakpoint intrinsic
This intrinsic inserts a BKPT instruction into the instruction stream generated by the compiler.

To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

It enables you to include a breakpoint instruction in your C or C++ code.

Syntax
void __breakpoint(int val)

Where:

val

is a compile-time constant integer whose range is:

0 ... 65535

if you are compiling source as A32 code

0 ... 255

if you are compiling source as T32 code.

Errors
The __breakpoint intrinsic is not available when compiling for a target that does not support the
BKPT instruction. The compiler generates an error in this case.

Example
void func(void)
{
 ...
 __breakpoint(0xF02C);
 ...
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Intrinsics

5.2 __current_pc intrinsic
This intrinsic enables you to determine the current value of the program counter at the point in
your program where the intrinsic is used.

To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

Syntax
unsigned int __current_pc(void)

Return value
The __current_pc intrinsic returns the current value of the program counter at the point in the
program where the intrinsic is used.

5.3 __current_sp intrinsic
This intrinsic returns the value of the stack pointer at the current point in your program.

To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

Syntax
unsigned int __current_sp(void)

Return value
The __current_sp intrinsic returns the current value of the stack pointer at the point in the
program where the intrinsic is used.

5.4 __disable_fiq intrinsic
This intrinsic disables FIQ interrupts.

To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

Typically, this intrinsic disables FIQ interrupts by setting the F-bit in the CPSR.
However, for v7-M and v8-M.mainline, it sets the fault mask register (FAULTMASK).
This intrinsic is not supported for v6-M and v8-M.baseline.

Syntax
{int} __disable_fiq({void})

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Intrinsics

Usage
int __disable_fiq(void); disables fast interrupts and returns the value the FIQ interrupt mask
has in the PSR before disabling interrupts.

Return value
int __disable_fiq(void); returns the value the FIQ interrupt mask has in the PSR before disabling
FIQ interrupts.

Restrictions
The __disable_fiq intrinsic can only be executed in privileged modes, that is, in non-user modes.
In User mode this intrinsic does not change the interrupt flags in the CPSR.

Example
void foo(void)
{
 int was_masked = __disable_fiq();
 /* ... */
 if (!was_masked)
 __enable_fiq();
}

5.5 __disable_irq intrinsic
This intrinsic disables IRQ interrupts.

To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

Typically, this intrinsic disables IRQ interrupts by setting the I-bit in the CPSR.
However, for Cortex®-M profile it sets the exception mask register (PRIMASK).

Syntax
{int} __disable_irq({void})

Usage
int __disable_irq(void); disables interrupts and returns the value the IRQ interrupt mask has in
the PSR before disabling interrupts.

Return value
int __disable_irq(void); returns the value the IRQ interrupt mask has in the PSR before disabling
IRQ interrupts.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Intrinsics

Example
void foo(void)
{
 int was_masked = __disable_irq();
 /* ... */
 if (!was_masked)
 __enable_irq();
}

Restrictions
The __disable_irq intrinsic can only be executed in privileged modes, that is, in non-user modes.
In User mode this intrinsic does not change the interrupt flags in the CPSR.

5.6 __enable_fiq intrinsic
This intrinsic enables FIQ interrupts.

To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

Typically, this intrinsic enables FIQ interrupts by clearing the F-bit in the
CPSR. However, for v7-M and v8-M.mainline, it clears the fault mask register
(FAULTMASK). This intrinsic is not supported in v6-M and v8-M.baseline.

Syntax
void __enable_fiq(void)

Restrictions
The __enable_fiq intrinsic can only be executed in privileged modes, that is, in non-user modes. In
User mode this intrinsic does not change the interrupt flags in the CPSR.

5.7 __enable_irq intrinsic
This intrinsic enables IRQ interrupts.

To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

Typically, this intrinsic enables IRQ interrupts by clearing the I-bit in the CPSR.
However, for Cortex®-M profile processors, it clears the exception mask register
(PRIMASK).

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Intrinsics

Syntax
void __enable_irq(void)

Restrictions
The __enable_irq intrinsic can only be executed in privileged modes, that is, in non-user modes. In
User mode this intrinsic does not change the interrupt flags in the CPSR.

5.8 __force_stores intrinsic
This intrinsic causes all variables that are visible outside the current function, such as variables that
have pointers to them passed into or out of the function, to be written back to memory if they
have been changed.

To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

This intrinsic also acts as a __schedule_barrier intrinsic.

Syntax
void __force_stores(void)

5.9 __memory_changed intrinsic
This intrinsic causes the compiler to behave as if all C objects had their values both read and
written at that point in time.

To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

The compiler ensures that the stored value of each C object is correct at that point in time and
treats the stored value as unknown afterwards.

This intrinsic also acts as a __schedule_barrier intrinsic.

Syntax
void __memory_changed(void)

5.10 __schedule_barrier intrinsic
This intrinsic creates a special sequence point that prevents operations with side effects from
moving past it under all circumstances. Normal sequence points allow operations with side effects
past if they do not affect program behavior. Operations without side effects are not restricted by
the intrinsic, and the compiler can move them past the sequence point.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Intrinsics

Operations with side effects cannot be reordered above or below the __schedule_barrier intrinsic.
To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

Unlike the __force_stores intrinsic, the __schedule_barrier intrinsic does not cause memory to
be updated. The __schedule_barrier intrinsic is similar to the __nop intrinsic, only differing in that
it does not generate a NOP instruction.

Syntax
void __schedule_barrier(void)

5.11 __semihost intrinsic
This intrinsic inserts an SVC or BKPT instruction into the instruction stream generated by the
compiler. It enables you to make semihosting calls from C or C++ that are independent of the
target architecture.

To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

Syntax
int __semihost(int val, const void *ptr)

Where:

val

Is the request code for the semihosting request.

ptr

Is a pointer to an argument/result block.

Return value
The results of semihosting calls are passed either as an explicit return value or as a pointer to a data
block.

Usage
Use this intrinsic from C or C++ to generate the appropriate semihosting call for your target and
instruction set:

SVC 0x123456

In A32 state, excluding M-profile architectures.

SVC 0xAB

In T32 state, excluding M-profile architectures. This behavior is not guaranteed on all debug
targets from Arm® or from third parties.

HLT 0xF000

In A32 state, excluding M-profile architectures.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Intrinsics

HLT 0x3C

In T32 state, excluding M-profile architectures.

BKPT 0xAB

For M-profile architectures (T32 only).

Implementation
For Arm processors that are not Cortex®-M profile, semihosting is implemented using the SVC
or HLT instruction. For Cortex-M profile processors, semihosting is implemented using the BKPT
instruction.

To use HLT-based semihosting, you must define the pre-processor macro __USE_HLT_SEMIHOSTING
before #include <arm_compat.h>. By default, Arm Compiler emits SVC instructions rather than
HLT instructions for semihosting calls. If you define this macro, __USE_HLT_SEMIHOSTING, then Arm
Compiler emits HLT instructions rather than SVC instructions for semihosting calls.

The presence of this macro, __USE_HLT_SEMIHOSTING, does not affect the M-profile architectures
that still use BKPT for semihosting.

Example
char buffer[100];
...
void foo(void)
{
 __semihost(0x01, (const void *)buffer);
}

Compiling this code with the option -mthumb shows the generated SVC instruction:

foo:
 ...
 MOVW r0, :lower16:buffer
 MOVT r0, :upper16:buffer
 ...
 SVC #0xab
 ...

buffer:
 .zero 100
 .size buffer, 100

Related information
Using the C and C++ libraries with an application in a semihosting environment

5.12 __vfp_status intrinsic
This intrinsic reads or modifies the FPSCR.

To use this intrinsic, your source file must contain #include <arm_compat.h>. This is only available
for targets in AArch32 state.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 241

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/Support-for-building-an-application-with-the-C-library/Using-the-C-and-C---libraries-with-an-application-in-a-semihosting-environment

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Intrinsics

Syntax
unsigned int __vfp_status(unsigned int mask, unsigned int flags)

Usage
Use this intrinsic to read or modify the flags in FPSCR.

The intrinsic returns the value of FPSCR, unmodified, if mask and flags are 0.

You can clear, set, or toggle individual flags in FPSCR using the bits in mask and flags, as shown
in the following table. The intrinsic returns the modified value of FPSCR if mask and flags are not
both 0.

Table 5-1: Modifying the FPSCR flags

mask bit flags bit Effect on FPSCR flag

0 0 Does not modify the flag

0 1 Toggles the flag

1 1 Sets the flag

1 0 Clears the flag

If you want to read or modify only the exception flags in FPSCR, then Arm
recommends that you use the standard C99 features in <fenv.h>.

Errors
The compiler generates an error if you attempt to use this intrinsic when compiling for a target that
does not have VFP.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Pragmas

6. Compiler-specific Pragmas
Summarizes the Arm® Compiler-specific pragmas that are extensions to the C and C++ Standards.

6.1 #pragma clang system_header
Causes subsequent declarations in the current file to be marked as if they occur in a system header
file.

This pragma suppresses the warning messages that the file produces, from the point after which it
is declared.

6.2 #pragma clang diagnostic
Allows you to suppress, enable, or change the severity of specific diagnostic messages from within
your code.

For example, you can suppress a particular diagnostic message when compiling one specific
function.

Alternatively, you can use the command-line option, -Wname, to suppress or change
the severity of messages, but the change applies for the entire compilation.

#pragma clang diagnostic ignored
#pragma clang diagnostic ignored "-Wname"

This pragma disables the diagnostic message specified by name.

#pragma clang diagnostic warning
#pragma clang diagnostic warning "-Wname"

This pragma sets the diagnostic message specified by name to warning severity.

#pragma clang diagnostic error
#pragma clang diagnostic error "-Wname"

This pragma sets the diagnostic message specified by name to error severity.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Pragmas

#pragma clang diagnostic fatal
#pragma clang diagnostic fatal "-Wname"

This pragma sets the diagnostic message specified by name to fatal error severity. Fatal error causes
compilation to fail without processing the rest of the file.

#pragma clang diagnostic push, #pragma clang diagnostic pop
#pragma clang diagnostic push
#pragma clang diagnostic pop

#pragma clang diagnostic push saves the current pragma diagnostic state so that it can restored
later.

#pragma clang diagnostic pop restores the diagnostic state that was previously saved using
#pragma clang diagnostic push.

Examples of using pragmas to control diagnostics
The following example shows four identical functions, foo1(), foo2(), foo3(), and foo4(). All these
functions would normally provoke diagnostic message warning: multi-character character
constant [-Wmultichar] on the source lines char c = (char) 'ab';

Using pragmas, you can suppress or change the severity of these diagnostic messages for individual
functions.

For foo1(), the current pragma diagnostic state is pushed to the stack and #pragma clang
diagnostic ignored suppresses the message. The diagnostic message is then re-enabled by
#pragma clang diagnostic pop.

For foo2(), the diagnostic message is not suppressed because the original pragma diagnostic state
has been restored.

For foo3(), the message is initially suppressed by the preceding #pragma clang diagnostic
ignored "-Wmultichar", however, the message is then re-enabled as an error, using #pragma clang
diagnostic error "-Wmultichar". The compiler therefore reports an error in foo3().

For foo4(), the pragma diagnostic state is restored to the state saved by the preceding #pragma
clang diagnostic push. This state therefore includes #pragma clang diagnostic ignored "-
Wmultichar" and therefore the compiler does not report a warning in foo4().

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wmultichar"
void foo1(void)
{
 /* Here we do not expect a diagnostic message, because it is suppressed by
 #pragma clang diagnostic ignored "-Wmultichar". */
 char c = (char) 'ab';
}
#pragma clang diagnostic pop

void foo2(void)
{

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Pragmas

 /* Here we expect a warning, because the suppression was inside push and then
 the diagnostic message was restored by pop. */
 char c = (char) 'ab';
}

#pragma clang diagnostic ignored "-Wmultichar"
#pragma clang diagnostic push
void foo3(void)
{
 #pragma clang diagnostic error "-Wmultichar"
 /* Here, the diagnostic message is elevated to error severity. */
 char c = (char) 'ab';
}
#pragma clang diagnostic pop

void foo4(void)
{
 /* Here, there is no diagnostic message because the restored diagnostic state
 only includes the #pragma clang diagnostic ignored "-Wmultichar".
 It does not include the #pragma clang diagnostic error "-Wmultichar" that is
 within the push and pop pragmas. */
 char c = (char) 'ab';
}

Diagnostic messages use the pragma state that is present at the time they are generated. If you
use pragmas to control a diagnostic message in your code, you must be aware of when, in the
compilation process, that diagnostic message is generated.

If a diagnostic message for a function, functionA, is only generated after all the functions have
been processed, then the compiler controls this diagnostic message using the pragma diagnostic
state that is present after processing all the functions. This diagnostic state might be different from
the diagnostic state immediately before or within the definition of functionA.

Related information
-W on page 89

6.3 #pragma clang section
Specifies names for one or more section types. The compiler places subsequent functions, global
variables, or static variables in the named section depending on the section type. The names only
apply within the compilation unit.

Syntax
#pragma clang section [section_type_list]

Where:

section_type_list

specifies an optional list of section names to be used for subsequent functions, global
variables, or static variables. The syntax of section_type_list is:

section_type="name"[section_type="name"]

You can revert to the default section name by specifying an empty string, "", for name .

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Pragmas

Valid section types are:

• bss.

• data.

• rodata.

• text.

Usage
Use #pragma clang section [section_type_list] to place functions and variables in separate
named sections. You can then use the scatter-loading description file to locate these at a particular
address in memory.

• If you specify a section name with _attribute_((section("myname"))), then the attribute
name has priority over any applicable section name that you specify with #pragma clang
section.

• #pragma clang section has priority over the -ffunction-section and -fdata-section
command-line options.

• Global variables, including basic types, arrays, and struct that are initialized to zero are placed in
the .bss section. For example, int x = 0;.

• armclang does not try to infer the type of section from the name. For example, assigning a
section .bss.mysec does not mean it is placed in a .bss section.

• If you specify the -ffunction-section and -fdata-section command-line options, then each
global variable is in a unique section.

Example
int x1 = 5; // Goes in .data section (default)
int y1; // Goes in .bss section (default)
const int z1 = 42; // Goes in .rodata section (default)
char *s1 = "abc1"; // s1 goes in .data section (default). String "abc1"
 goes in .conststring section.

#pragma clang section bss="myBSS" data="myData" rodata="myRodata"
int x2 = 5; // Goes in myData section.
int y2; // Goes in myBss section.
const int z2 = 42; // Goes in myRodata section.
char *s2 = "abc2"; // s2 goes in myData section. String "abc2" goes
 in .conststring section.

#pragma clang section rodata="" // Use default name for rodata section.
int x3 = 5; // Goes in myData section.
int y3; // Goes in myBss section.
const int z3 = 42; // Goes in .rodata section (default).
char *s3 = "abc3"; // s3 goes in myData section. String "abc3" goes
 in .conststring section.

#pragma clang section text="myText"
int add1(int x) // Goes in myText section.
{
 return x+1;
}
#pragma clang section bss="" data="" text="" // Use default name for bss, data, and
 text sections.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Pragmas

6.4 #pragma once
Enable the compiler to skip subsequent includes of that header file.

#pragma once is accepted for compatibility with other compilers, and enables you to use other
forms of header guard coding. However, Arm recommends using #ifndef and #define coding
because this is more portable.

Example
The following example shows the placement of a #ifndef guard around the body of the file, with a
#define of the guard variable after the #ifndef.

#ifndef FILE_H
#define FILE_H
#pragma once // optional
 ... body of the header file ...
#endif

The #pragma once is marked as optional in this example. This is because the compiler recognizes
the #ifndef header guard coding and skips subsequent includes even if #pragma once is absent.

6.5 #pragma pack(…)
This pragma aligns members of a structure to the minimum of n and their natural alignment.
Packed objects are read and written using unaligned accesses. You can optionally push and restore
alignment settings to an internal stack.

This pragma is a GNU compiler extension that the Arm compiler supports.

Syntax
#pragma pack([n])

#pragma pack(push[, n])

#pragma pack(pop)

Where:

n

Is the alignment in bytes, valid alignment values are 1, 2, 4, and 8. If omitted, sets the
alignment to the one that was in effect when compilation started.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Pragmas

push[,n]

Pushes the current alignment setting on an internal stack and then optionally sets the new
alignment.

pop

Restores the alignment setting to the one saved at the top of the internal stack, then
removes that stack entry.

#pragma pack([n]) does not influence this internal stack. Therefore, it
is possible to have #pragma pack(push) followed by multiple #pragma
pack([n]) instances, then finalized by a single #pragma pack(pop).

Default
The default is the alignment that was in effect when compilation started.

Example
This example shows how pack(2) aligns integer variable b to a 2-byte boundary.

typedef struct
{
 char a;
 int b;
} S;

#pragma pack(2)

typedef struct
{
 char a;
 int b;
} SP;

S var = { 0x11, 0x44444444 };
SP pvar = { 0x11, 0x44444444 };

The layout of S is:

Figure 6-1: Nonpacked structure S

a

b

0 1 2 3

bb b
4

padding

5 6 7

The layout of SP is:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Pragmas

Figure 6-2: Packed structure SP

a

b

0 1 2 3

b
4 5

x b b

In this layout, x denotes one byte of padding.

SP is a 6-byte structure. There is no padding after b.

6.6 #pragma unroll[(n)], #pragma unroll_completely
Instructs the compiler to unroll a loop by n iterations.

Syntax
#pragma unroll

#pragma unroll_completely

#pragma unroll n

#pragma unroll(n)

Where:

n

is an optional value indicating the number of iterations to unroll.

Default
If you do not specify a value for n, the compiler attempts to fully unroll the loop. The compiler can
only fully unroll loops where it can determine the number of iterations.

#pragma unroll_completely does not unroll a loop if the number of iterations is not known at
compile time.

Usage
This pragma only has an effect with optimization level -O2 and higher.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Compiler-specific Pragmas

When compiling with -O3, the compiler automatically unrolls loops where it is beneficial to do
so. This pragma can be used to ask the compiler to unroll a loop that has not been unrolled
automatically.

#pragma unroll[(n)] can be used immediately before a for loop, a while loop, or a do … while
loop.

Restrictions
This pragma is a request to the compiler to unroll a loop that has not been unrolled automatically. It
does not guarantee that the loop is unrolled.

6.7 #pragma weak symbol, #pragma weak symbol1 =
symbol2

This pragma is a language extension to mark symbols as weak or to define weak aliases of symbols.

Example
In the following example, weak_fn is declared as a weak alias of __weak_fn:

extern void weak_fn(int a);
#pragma weak weak_fn = __weak_fn
void __weak_fn(int a)
{
 ...
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

7. Other Compiler-specific Features
Summarizes compiler-specific features that are extensions to the C and C++ Standards, such as
predefined macros.

7.1 ACLE support
Arm® Compiler 6 supports the Arm C Language Extensions 2.0 with a few exceptions.

Arm Compiler 6 does not support:

• __attribute__((target("arm"))) attribute.

• __attribute__((target("thumb"))) attribute.

• __ARM_ALIGN_MAX_PWR macro.

• __ARM_ALIGN_MAX_STACK_PWR macro.

• __cls intrinsic.

• __clsl intrinsic.

• __clsll intrinsic.

• __saturation_occurred intrinsic.

• __set_saturation_occurred intrinsic.

• __ignore_saturation intrinsic.

• Patchable constants.

• 16-bit multiplication intrinsics.

• Floating-point data-processing intrinsics.

• Intrinsics for the 32-bit SIMD instructions introduced in the Armv6 architecture.

Arm Compiler 6 does not model the state of the Q (saturation) flag correctly in all situations.

Related information
Arm C Language Extensions

7.2 Predefined macros
The Arm® Compiler predefines various macros. These macros provide information about toolchain
version numbers and compiler options.

In general, the predefined macros generated by the compiler are compatible with those generated
by GCC. See the GCC documentation for more information.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 241

https://developer.arm.com/documentation/ihi0053/c

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

The following table lists Arm-specific macro names predefined by Arm Compiler for C and C++,
together with the most commonly used macro names. Where the value field is empty, the symbol is
only defined.

Use -E -dM to see the values of predefined macros.

Macros beginning with __ARM_ are defined by the Arm C Language Extensions 2.0 (ACLE 2.0).

armclang does not fully implement ACLE 2.0.

Table 7-1: Predefined macros

Name Value When defined

__APCS_ROPI 1 Set when you specify the -fropi option.

__APCS_RWPI 1 Set when you specify the -frwpi option.

__ARM_64BIT_STATE 1 Set for targets in AArch64 state only.

Set to 1 if code is for 64-bit state.

__ARM_ALIGN_MAX_STACK_PWR 4 Set for targets in AArch64 state only.

The log of the maximum alignment of the
stack object.

__ARM_ARCH ver Specifies the version of the target
architecture, for example 8.

__ARM_ARCH_EXT_IDIV__ 1 Set for targets in AArch32 state only.

Set to 1 if hardware divide instructions are
available.

__ARM_ARCH_ISA_A64 1 Set for targets in AArch64 state only.

Set to 1 if the target supports the A64
instruction set.

__ARM_ARCH_PROFILE ver Specifies the profile of the target
architecture, for example 'A'.

__ARM_BIG_ENDIAN - Set if compiling for a big-endian target.

__ARM_FEATURE_CLZ 1 Set to 1 if the CLZ (count leading zeroes)
instruction is supported in hardware.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

Name Value When defined
__ARM_FEATURE_CMSE num Indicates the availability of the Armv8-M

Security Extension related extensions:

0 The Armv8-M TT instruction is not
available.

1 The TT instruction is available. It is not
part of Armv8-M Security Extension, but is
closely related.

3 The Armv8-M Security Extension for
secure executable files is available. This
implies that the TT instruction is available.

See TT instruction intrinsics for more
information.

__ARM_FEATURE_CRC32 1 Set to 1 if the target has CRC extension.

__ARM_FEATURE_CRYPTO 1 Set to 1 if the target has cryptographic
extension.

__ARM_FEATURE_DIRECTED_ROUNDING 1 Set to 1 if the directed rounding
and conversion vector instructions
are supported.Only available when
__ARM_ARCH >= 8.

__ARM_FEATURE_DSP 1 Set for targets in AArch32 state only.

Set to 1 if DSP instructions are supported.
This feature also implies support for the Q
flag.

Note:
This macro is deprecated in ACLE 2.0 for
A-profile. It is fully supported for M and R-
profiles.

__ARM_FEATURE_IDIV 1 Set to 1 if the target supports 32-bit signed
and unsigned integer division in all available
instruction sets.

__ARM_FEATURE_FMA 1 Set to 1 if the target supports fused
floating-point multiply-accumulate.

__ARM_FEATURE_NUMERIC_MAXMIN 1 Set to 1 if the target supports floating-point
maximum and minimum instructions.

Only available when __ARM_ARCH >= 8.

__ARM_FEATURE_QBIT 1 Set for targets in AArch32 state only.

Set to 1 if the Q (saturation) flag exists.

Note:
This macro is deprecated in ACLE 2.0 for
A-profile.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

Name Value When defined
__ARM_FEATURE_SAT 1 Set for targets in AArch32 state only.

Set to 1 if the SSAT and USAT instructions
are supported. This feature also implies
support for the Q flag.

Note:
This macro is deprecated in ACLE 2.0 for
A-profile.

__ARM_FEATURE_SIMD32 1 Set for targets in AArch32 state only.

Set to 1 if the target supports 32-bit SIMD
instructions.

Note:
This macro is deprecated in ACLE 2.0
for A-profile, use Arm® Neon® intrinsics
instead.

__ARM_FEATURE_UNALIGNED 1 Set to 1 if the target supports unaligned
access in hardware.

__ARM_FP val Set if hardware floating-point is available.

Bits 1-3 indicate the supported floating-
point precision levels. The other bits are
reserved.

• Bit 1 - half precision (16-bit).

• Bit 2 - single precision (32-bit).

• Bit 3 - double precision (64-bit).

These bits can be bitwise or-ed together.
Permitted values include:

• 0x04 for single-support.

• 0x0C for single- and double-support.

• 0x0E for half-, single-, and double-
support.

__ARM_FP_FAST 1 Set if -ffast-math or -ffp-mode=fast
is specified.

__ARM_NEON 1 Set to 1 when the compiler is targeting an
architecture or processor with Advanced
SIMD available.

Use this macro to conditionally include
arm_neon.h, to permit the use of
Advanced SIMD intrinsics.

__ARM_NEON_FP val This is the same as __ARM_FP, except
that the bit to indicate double-precision
is not set for targets in AArch32 state.
Double-precision is always set for targets in
AArch64 state.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

Name Value When defined
__ARM_PCS 1 Set for targets in AArch32 state only.

Set to 1 if the default procedure calling
standard for the translation unit conforms to
the base PCS.

__ARM_PCS_VFP 1 Set for targets in AArch32 state only.

Set to 1 if the default procedure calling
standard for the translation unit conforms
to the VFP PCS. That is, -mfloat-
abi=hard.

__ARM_SIZEOF_MINIMAL_ENUM value Specifies the size of the minimal
enumeration type. Set to either 1 or 4
depending on whether -fshort-enums is
specified or not.

__ARM_SIZEOF_WCHAR_T value Specifies the size of wchar in bytes.

Set to 2 if -fshort-wchar is specified, or
4 if -fno-short-wchar is specified.

Note:
The default size is 4, because -fno-
short-wchar is set by default.

__ARMCOMPILER_VERSION Mmmuuxx Always set. Specifies the version number
of the compiler, armclang. The format is
Mmmuuxx, where:

M is the major version number, 6.

mm is the minor version number.

uu is the update number.

xx is reserved for Arm internal use. You can
ignore this for the purposes of checking
whether the current release is a specific
version or within a range of versions. For
example, version 6.3 update 1 is displayed
as 6030154, where 54 is a number for Arm
internal use.

__ARMCC_VERSION Mmmuuxx A synonym for
__ARMCOMPILER_VERSION.

__arm__ 1 Defined when targeting AArch32 state with
--target=arm-arm-none-eabi.

See also __aarch64__.

__aarch64__ 1 See also __arm__.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

Name Value When defined
__cplusplus ver Defined when compiling C++ code, and set

to a value that identifies the targeted C++
standard. For example, when compiling with
-xc++ -std=gnu++98, the compiler sets
this macro to 199711L.

You can use the __cplusplus macro to
test whether a file was compiled by a C
compiler or a C++ compiler.

__CHAR_UNSIGNED__ 1 Defined if and only if char is an unsigned
type.

__EXCEPTIONS 1 Defined when compiling a C++ source file
with exceptions enabled.

__GNUC__ ver Always set. An integer that specifies the
major version of the compatible GCC
version. This macro indicates that the
compiler accepts GCC compatible code. The
macro does not indicate whether the -std
option has enabled GNU C extensions. For
detailed Arm Compiler version information,
use the __ARMCOMPILER_VERSION
macro.

__INTMAX_TYPE__ type Always set. Defines the correct underlying
type for the intmax_t typedef.

__NO_INLINE__ 1 Defined if no functions have been
inlined. The macro is always defined with
optimization level -O0 or if the -fno-
inline option is specified.

__OPTIMIZE__ 1 Defined when -O1, -O2, -O3, -Ofast, -
Oz, or -Os is specified.

__OPTIMIZE_SIZE__ 1 Defined when -Os or -Oz is specified.

__PTRDIFF_TYPE__ type Always set. Defines the correct underlying
type for the ptrdiff_t typedef.

__SIZE_TYPE__ type Always set. Defines the correct underlying
type for the size_t typedef.

__SOFTFP__ 1 Defined depending on the -mfloat-abi
value and whether a target has hardware
floating-point support. See When the
__SOFTFP__ predefined macro is defined.

__STDC__ 1 Always set. Signifies that the compiler
conforms to ISO Standard C.

__STRICT_ANSI__ 1 Defined if you specify the --ansi option
or specify one of the --std=c* options.

__thumb__ 1 Defined if you specify the -mthumb option.

__UINTMAX_TYPE__ type Always set. Defines the correct underlying
type for the uintmax_t typedef.

__VERSION__ ver Always set. A string that shows the
underlying Clang version.

__WCHAR_TYPE__ type Always set. Defines the correct underlying
type for the wchar_t typedef.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

Name Value When defined
__WINT_TYPE__ type Always set. Defines the correct underlying

type for the wint_t typedef.

When the __SOFTFP__ predefined macro is defined
__SOFTFP__ is defined as follows:

Table 7-2: __SOFTFP__ predefined macro

-mfloat-abi=value Targets with hardware floating-point
support

Targets without hardware floating-point
support

Default __SOFTFP__ not defined __SOFTFP__ defined and set to 1

hard __SOFTFP__ not defined __SOFTFP__ not defined

soft __SOFTFP__ defined and set to 1 __SOFTFP__ defined and set to 1

softfp __SOFTFP__ not defined __SOFTFP__ defined and set to 1

Related information
Compiler Command-line Options on page 18

7.3 Inline functions
Inline functions offer a trade-off between code size and performance. By default, the compiler
decides whether to inline functions.

With regards to optimization, by default the compiler optimizes for performance with respect to
time. If the compiler decides to inline a function, it makes sure to avoid large code growth. When
compiling to restrict code size, through the use of -Oz or -Os, the compiler makes sensible decisions
about inlining and aims to keep code size to a minimum.

In most circumstances, the decision to inline a particular function is best left to the compiler.
Qualifying a function with the __inline__ or inline keywords suggests to the compiler that it
inlines that function, but the final decision rests with the compiler. Qualifying a function with
__attribute__((always_inline)) forces the compiler to inline the function.

The linker is able to apply some degree of function inlining to short functions.

The default semantic rules for C-source code follow C99 rules. For inlining, it means
that when you suggest a function is inlined, the compiler expects to find another,
non-qualified, version of the function elsewhere in the code, to use when it decides
not to inline. If the compiler cannot find the non-qualified version, it fails with the
following error:

"Error: L6218E: Undefined symbol <symbol> (referred from <file>)"

To avoid this problem, there are several options:

• Provide an equivalent, non-qualified version of the function.
Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 149 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

• Change the qualifier to static inline.

• Remove the inline keyword, because it is only acting as a suggestion.

• Compile your program using the GNU C90 dialect, using the -std=gnu90 option.

Related information
__inline on page 100
-std on page 84
__attribute__((always_inline)) function attribute on page 103

7.4 Volatile variables
Arm® Compiler does not guarantee that a single-copy atomic instruction is used to access a volatile
variable that is larger than the natural architecture data size, even when one is available for the
target processor.

When compiling for AArch64 state, the natural architecture data size is 64-bits. Targets such as
the Cortex®-A53 processor support single-copy atomic instructions for 128-bit data types. In this
case, you might expect the compiler to generate an instruction with single-copy atomicity to access
a volatile 128-bit variable. However, the architecture does not guarantee single-copy atomicity
access. Therefore, the compiler does not support it.

When compiling for AArch32 state, the natural architecture data size is 32-bits. In this case,
you might expect the compiler to generate an instruction with single-copy atomicity to access
a volatile 64-bit variable. However, the architecture does not guarantee single-copy atomicity
access. Therefore, the compiler does not support it.

Related information
Effect of the volatile keyword on compiler optimization
Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile

7.5 Half-precision floating-point number format
Arm® Compiler supports the half-precision floating-point __fp16 type.

Half-precision is a floating-point format that occupies 16 bits. Architectures that support half-
precision floating-point numbers include:

• The Armv8 architecture.

• The Armv7 FPv5 architecture.

• The Armv7 VFPv4 architecture.

• The Armv7 VFPv3 architecture (as an optional extension).

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 241

https://developer.arm.com/documentation/dui0773/l/Coding-Considerations/Effect-of-the-volatile-keyword-on-compiler-optimization
https://developer.arm.com/documentation/ddi0487/latest

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

If the target hardware does not support half-precision floating-point numbers, the compiler uses
the floating-point library fplib to provide software support for half-precision.

The __fp16 type is a storage format only. For purposes of arithmetic and other
operations, __fp16 values in C or C++ expressions are automatically promoted to
float.

Half-precision floating-point format
Arm Compiler uses the half-precision binary floating-point format defined by IEEE 754r, a revision
to the IEEE 754 standard:

Figure 7-1: IEEE half-precision floating-point format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

S E T

Where:

S (bit[15]): Sign bit
E (bits[14:10]): Biased exponent
T (bits[9:0]): Mantissa.

The meanings of these fields are as follows:

IF E==31:
 IF T==0: Value = Signed infinity
 IF T!=0: Value = Nan
 T[9] determines Quiet or Signaling:
 0: Quiet NaN
 1: Signaling NaN
IF 0<E<31:
 Value = (-1)^S x 2^(E-15) x (1 + (2^(-10) x T))
IF E==0:
 IF T==0: Value = Signed zero
 IF T!=0: Value = (-1)^S x 2^(-14) x (0 + (2^(-10) x T))

See the Arm C Language Extensions for more information.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

Related information
Arm C Language Extensions

7.6 TT instruction intrinsics
Intrinsics are available to support TT instructions depending on the value of the predefined macro
__ARM_FEATURE_CMSE.

TT intrinsics
The following table describes the TT intrinsics that are available when __ARM_FEATURE_CMSE is set to
either 1 or 3:

Intrinsic Description

cmse_address_info_t cmse_TT(void *p) Generates a TT instruction.

cmse_address_info_t cmse_TT_fptr(p) Generates a TT instruction. The argument p can be any function
pointer type.

cmse_address_info_t cmse_TTT(void *p) Generates a TT instruction with the T flag.

cmse_address_info_t cmse_TTT_fptr(p) Generates a TT instruction with the T flag. The argument p can be
any function pointer type.

When __ARM_BIG_ENDIAN is not set, the result of the intrinsics is returned in the following C type:

typedef union {
 struct cmse_address_info {
 unsigned mpu_region:8;
 unsigned :8;
 unsigned mpu_region_valid:1;
 unsigned :1;
 unsigned read_ok:1;
 unsigned readwrite_ok:1;
 unsigned :12;
 } flags;
 unsigned value;
} cmse_address_info_t;

When __ARM_BIG_ENDIAN is set, the bit-fields in the type are reversed such that they have the same
bit-offset as little-endian systems following the rules specified by Procedure Call Standard for the
Arm Architecture.

TT intrinsics for Armv8-M Security Extension
The following table describes the TT intrinsics for Arm®v8-M Security Extension that are available
when __ARM_FEATURE_CMSE is set to 3:

Intrinsic Description

cmse_address_info_t cmse_TTA(void *p) Generates a TT instruction with the A flag.

cmse_address_info_t cmse_TTA_fptr(p) Generates a TT instruction with the A flag. The argument p can be
any function pointer type.

cmse_address_info_t cmse_TTAT(void *p) Generates a TT instruction with the T and A flag.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 241

https://developer.arm.com/documentation/ihi0053/c

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

Intrinsic Description
cmse_address_info_t cmse_TTAT_fptr(p) Generates a TT instruction with the T and A flag. The argument p

can be any function pointer type.

When __ARM_BIG_ENDIAN is not set, the result of the intrinsics is returned in the following C type:

typedef union {
 struct cmse_address_info {
 unsigned mpu_region:8;
 unsigned sau_region:8;
 unsigned mpu_region_valid:1;
 unsigned sau_region_valid:1;
 unsigned read_ok:1;
 unsigned readwrite_ok:1;
 unsigned nonsecure_read_ok:1;
 unsigned nonsecure_readwrite_ok:1;
 unsigned secure:1;
 unsigned idau_region_valid:1;
 unsigned idau_region:8;
 } flags;
 unsigned value;
} cmse_address_info_t;

When __ARM_BIG_ENDIAN is set, the bit-fields in the type are reversed such that they have the same
bit-offset as little-endian systems following the rules specified by Procedure Call Standard for the
Arm Architecture.

In Secure state, the TT instruction returns the Security Attribute Unit (SAU) and Implementation
Defined Attribute Unit (IDAU) configuration and recognizes the A flag.

Address range check intrinsic
Checking the result of the TT instruction on an address range is essential for programming in C. It
is needed to check permissions on objects larger than a byte. You can use the address range check
intrinsic to perform permission checks on C objects.

The syntax of this intrinsic is:

void *cmse_check_address_range(void *p, size_t size, int flags)

The intrinsic checks the address range from p to p + size - 1.

The address range check fails if p + size - 1 < p.

Some SAU, IDAU and MPU configurations block the efficient implementation of an address range
check. This intrinsic operates under the assumption that the configuration of the SAU, IDAU, and
MPU is constrained as follows:

• An object is allocated in a single region.

• A stack is allocated in a single region.

These points imply that a region does not overlap other regions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 153 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

The TT instruction returns an SAU, IDAU and MPU region number. When the region numbers of
the start and end of the address range match, the complete range is contained in one SAU, IDAU,
and MPU region. In this case two TT instructions are executed to check the address range.

Regions are aligned at 32-byte boundaries. If the address range fits in one 32-byte address line, a
single TT instruction suffices. This is the case when the following constraint holds:

(p mod 32) + size <= 32

The address range check intrinsic fails if the range crosses any MPU region boundary.

The flags parameter of the address range check consists of a set of values defined by the macros
shown in the following table:

Macro Value Description

(No macro) 0 The TT instruction without any flag is used
to retrieve the permissions of an address,
returned in a cmse_address_info_t
structure.

CMSE_MPU_UNPRIV 4 Sets the T flag on the TT instruction used
to retrieve the permissions of an address.
Retrieves the unprivileged mode access
permissions.

CMSE_MPU_READWRITE 1 Checks if the permissions have the
readwrite_ok field set.

CMSE_MPU_READ 8 Checks if the permissions have the
read_ok field set.

The address range check intrinsic returns p on a successful check, and NULL on a failed check.
The check fails if any other value is returned that is not one of those listed in the table, or is not a
combination of those listed.

Arm recommends that you use the returned pointer to access the checked memory range. This
generates a data dependency between the checked memory and all its subsequent accesses and
prevents these accesses from being scheduled before the check.

The following intrinsic is defined when the __ARM_FEATURE_CMSE macro is set to 1:

Intrinsic Description

cmse_check_pointed_object(p, f) Returns the same value as

cmse_check_address_range(p, sizeof(*p), f)

Arm recommends that the return type of this intrinsic is identical to the type of parameter p.

Address range check intrinsic for Armv8-M Security Extension
The semantics of the intrinsic cmse_check_address_range() are extended to handle the extra flag
and fields introduced by the Armv8-M Security Extension.

The address range check fails if the range crosses any SAU or IDAU region boundary.
Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 154 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

If the macro __ARM_FEATURE_CMSE is set to 3, the values accepted by the flags parameter are
extended with the values defined in the following table:

Macro Value Description

CMSE_AU_NONSECURE 2 Checks if the permissions have the secure
field unset.

CMSE_MPU_NONSECURE 16 Sets the A flag on the TT instruction used to
retrieve the permissions of an address.

CMSE_NONSECURE 18 Combination of CMSE_AU_NONSECURE and
CMSE_MPU_NONSECURE.

Related information
Predefined macros on page 143

7.7 Non-secure function pointer intrinsics
A non-secure function pointer is a function pointer that has its LSB unset.

The following table describes the non-secure function pointer intrinsics that are available when
__ARM_FEATURE_CMSE is set to 3:

Intrinsic Description

cmse_nsfptr_create(p) Returns the value of p with its LSB cleared. The argument p can be
any function pointer type. Arm recommends that the return type of
this intrinsic is identical to the type of its argument.

cmse_is_nsfptr(p) Returns non-zero if p has LSB unset, zero otherwise. The argument
p can be any function pointer type.

Example
The following example shows how to use these intrinsics:

#include <arm_cmse.h>
typedef void __attribute__((cmse_nonsecure_call)) nsfunc(void);
void default_callback(void) { ... }

// fp can point to a secure function or a non-secure function
nsfunc *fp = (nsfunc *) default_callback; // secure function pointer

void __attribute__((cmse_nonsecure_entry)) entry(nsfunc *callback) {
 fp = cmse_nsfptr_create(callback); // non-secure function pointer
}

void call_callback(void) {
 if (cmse_is_nsfptr(fp)) fp(); // non-secure function call
 else ((void (*)(void)) fp)(); // normal function call
}

Related information
__attribute__((cmse_nonsecure_call)) function attribute on page 104
__attribute__((cmse_nonsecure_entry)) function attribute on page 105

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 155 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Other Compiler-specific Features

Building Secure and Non-secure Images Using Armv8-M Security Extension

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 241

https://developer.arm.com/documentation/dui0773/l/Building-Secure-and-Non-secure-Images-Using-Armv8-M-Security-Extensions

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

8. Standard C Implementation Definition
Provides information required by the ISO C standard for conforming C implementations.

8.1 C Implementation definition
Appendix J of the ISO C standard (ISO/IEC 9899:2011 (E)) contains information about portability
issues. Sub-clause J3 lists the behavior that each implementation must document. The following
topics correspond to the relevant sections of sub-clause J3. They describe aspects of the Arm
C Compiler and C library, not defined by the ISO C standard, that are implementation-defined.
Whenever the implementation-defined behavior of the Arm C compiler or the C library can be
altered and tailored to the execution environment by reimplementing certain functions, that
behavior is described as "depends on the environment".

Related information
Translation on page 157
Translation limits on page 158
Environment on page 159
Identifiers on page 160
Characters on page 161
Integers on page 163
Floating-point on page 163
Arrays and pointers on page 165
Hints on page 165
Structures, unions, enumerations, and bitfields on page 166
Qualifiers on page 166
C Preprocessing directives on page 167
Library functions on page 168
Architecture on page 173

8.2 Translation
Describes implementation-defined aspects of the Arm C compiler and C library relating to
translation, as required by the ISO C standard.

How a diagnostic is identified (3.10, 5.1.1.3).
Diagnostic messages that the compiler produces are of the form:

source-file:line-number:char-number: description [diagnostic-flag]

Here:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

description

Is a text description of the error.

diagnostic-flag

Is an optional diagnostic flag of the form -Wflag, only for messages that can be
suppressed.

Whether each nonempty sequence of white-space characters other than new-line is retained or
replaced by one space character in translation phase 3 (5.1.1.2).

Each nonempty sequence of white-space characters, other than new-line, is replaced by one
space character.

8.3 Translation limits
Describes implementation-defined aspects of the Arm C compiler and C library relating to
translation, as required by the ISO C standard.

Section 5.2.4.1 Translation limits of the ISO/IEC 9899:2011 standard requires minimum translation
limits that a conforming compiler must accept. The following table gives a summary of these limits.
In this table, a limit of memory indicates that Arm® Compiler 6 imposes no limit, other than that
imposed by the available memory.

Table 8-1: Translation limits

Description Translation limit

Nesting levels of block. 256 (can be increased using the -fbracket-depth option.)

Nesting levels of conditional inclusion. memory

Pointer, array, and function declarators (in any combination)
modifying an arithmetic, structure, union, or void type in a
declaration.

memory

Nesting levels of parenthesized declarators within a full declarator. 256 (can be increased using the -fbracket-depth option.)

Nesting levels of parenthesized expressions within a full expression. 256 (can be increased using the -fbracket-depth option.)

Significant initial characters in an internal identifier or a macro name. memory

Significant initial characters in an external identifier. memory

External identifiers in one translation unit. memory

Identifiers with block scope declared in one block. memory

Macro identifiers simultaneously defined in one preprocessing
translation unit.

memory

Parameters in one function definition. memory

Arguments in one function call. memory

Parameters in one macro definition. memory

Arguments in one macro invocation. memory

Characters in a logical source line. memory

Characters in a string literal. memory

Bytes in an object. SIZE_MAX

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

Description Translation limit
Nesting levels for #include files. memory

Case labels for a switch statement. memory

Members in a single structure or union. memory

Enumeration constants in a single enumeration. memory

Levels of nested structure or union definitions in a single struct-
declaration-list.

256 (can be increased using the -fbracket-depth option.)

Related information
-fbracket-depth=N on page 30

8.4 Environment
Describes implementation-defined aspects of the Arm C compiler and C library relating to
environment, as required by the ISO C standard.

The mapping between physical source file multibyte characters and the source character set in
translation phase 1 (5.1.1.2).

The compiler interprets the physical source file multibyte characters as UTF-8.

The name and type of the function called at program startup in a freestanding environment
(5.1.2.1).

When linking with microlib, the function main() must be declared to take no arguments and
must not return.

The effect of program termination in a freestanding environment (5.1.2.1).
The function exit() is not supported by microlib and the function main() must not return.

An alternative manner in which the main function can be defined (5.1.2.2.1).
The main function can be defined in one of the following forms:

int main(void)
int main()
int main(int)
int main(int, char **)
int main(int, char **, char **)

The values given to the strings pointed to by the argv argument to main (5.1.2.2.1).
In the generic Arm® library the arguments given to main() are the words of the command
line not including input/output redirections, delimited by whitespace, except where the
whitespace is contained in double quotes.

What constitutes an interactive device (5.1.2.3).
What constitutes an interactive device depends on the environment and the _sys_istty
function. The standard I/O streams stdin, stdout, and stderr are assumed to be interactive
devices. They are line-buffered at program startup, regardless of what _sys_istty reports for
them. An exception is if they have been redirected on the command line.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

Whether a program can have more than one thread of execution in a freestanding environment
(5.1.2.4).

Depends on the environment. The microlib C library is not thread-safe.

The set of signals, their semantics, and their default handling (7.14).
The <signal.h> header defines the following signals:

Signal Value Semantics

SIGABRT 1 Abnormal termination

SIGFPE 2 Arithmetic exception

SIGILL 3 Illegal instruction execution

SIGINT 4 Interactive attention signal

SIGSEGV 5 Bad memory access

SIGTERM 6 Termination request

SIGSTAK 7 Stack overflow (obsolete)

SIGRTRED 8 Run-time redirection error

SIGRTMEM 9 Run-time memory error

SIGUSR1 10 Available for the user

SIGUSR2 11 Available for the user

SIGPVFN 12 Pure virtual function called

SIGCPPL 13 Not normally used

SIGOUTOFHEAP 14 ::operator new or ::operator
new[] cannot allocate memory

The default handling of all recognized signals is to print a diagnostic message and call exit().

Signal values other than SIGFPE, SIGILL, and SIGSEGV that correspond to a computational
exception (7.14.1.1).

No signal values other than SIGFPE, SIGILL, and SIGSEGV correspond to a computational
exception.

Signals for which the equivalent of signal(sig, SIG_IGN); is executed at program startup
(7.14.1.1).

No signals are ignored at program startup.

The set of environment names and the method for altering the environment list used by the
getenv function (7.22.4.6).

The default implementation returns NULL, indicating that no environment information is
available.

The manner of execution of the string by the system function (7.22.4.8).
Depends on the environment. The default implementation of the function uses semihosting.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

8.5 Identifiers
Describes implementation-defined aspects of the Arm C compiler and C library relating to
identifiers, as required by the ISO C standard.

Which additional multibyte characters may appear in identifiers and their correspondence to
universal character names (6.4.2).

Multibyte characters, whose UTF-8 decoded value falls within one of the ranges in Appendix
D of ISO/IEC 9899:2011 are allowed in identifiers and correspond to the universal character
name with the short identifier (as specified by ISO/IEC 10646) having the same numeric
value.

The dollar character $ is allowed in identifiers.

The number of significant initial characters in an identifier (5.2.4.1, 6.4.2).
There is no limit on the number of significant initial characters in an identifier.

8.6 Characters
Describes implementation-defined aspects of the Arm C compiler and C library relating to
characters, as required by the ISO C standard.

The number of bits in a byte (3.6).
The number of bits in a byte is 8.

The values of the members of the execution character set (5.2.1).
The values of the members of the execution character set are all the code points defined by
ISO/IEC 10646.

The unique value of the member of the execution character set produced for each of the
standard alphabetic escape sequences (5.2.2).

Character escape sequences have the following values in the execution character set:

Escape sequence Char value Description

\a 7 Attention (bell)

\b 8 Backspace

\t 9 Horizontal tab

\n 10 New line (line feed)

\v 11 Vertical tab

\f 12 Form feed

\r 13 Carriage return

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

The value of a char object into which has been stored any character other than a member of the
basic execution character set (6.2.5).

The value of a char object into which has been stored any character other than a member of
the basic execution character set is the least significant 8 bits of that character, interpreted as
unsigned.

Which of signed char or unsigned char has the same range, representation, and behavior as
plain char (6.2.5, 6.3.1.1).

Data items of type char are unsigned by default. The type unsigned char has the same
range, representation, and behavior as char.

The mapping of members of the source character set (in character constants and string literals) to
members of the execution character set (6.4.4.4, 5.1.1.2).

The execution character set is identical to the source character set.

The value of an integer character constant containing more than one character or containing a
character or escape sequence that does not map to a single-byte execution character (6.4.4.4).

In C all character constants have type int. Up to four characters of the constant are
represented in the integer value. The last character in the constant occupies the lowest-order
byte of the integer value. Up to three preceding characters are placed at higher-order bytes.
Unused bytes are filled with the NULL (\0) character.

The value of a wide-character constant containing more than one multibyte character or a single
multibyte character that maps to multiple members of the extended execution character set, or
containing a multibyte character or escape sequence not represented in the extended execution
character set (6.4.4.4).

If a wide-character constant contains more than one multibyte character, all but the last such
character are ignored.

The current locale used to convert a wide-character constant consisting of a single multibyte
character that maps to a member of the extended execution character set into a corresponding
wide-character code (6.4.4.4).

Mapping of wide-character constants to the corresponding wide-character code is locale
independent.

Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the
treatment of the resulting multibyte character sequence (6.4.5).

Differently prefixed wide string literal tokens cannot be concatenated.

The current locale used to convert a wide string literal into corresponding wide-character codes
(6.4.5).

Mapping of the wide-characters in a wide string literal into the corresponding wide-character
codes is locale independent.

The value of a string literal containing a multibyte character or escape sequence not represented
in the execution character set (6.4.5).

The compiler does not check if the value of a multibyte character or an escape sequence
is a valid ISO/IEC 10646 code point. Such a value is encoded like the values of the valid
members of the execution character set, according to the kind of the string literal (character
or wide-character).

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 162 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

The encoding of any of wchar_t, char16_t, and char32_t where the corresponding standard
encoding macro (__STDC_ISO_10646__, __STDC_UTF_16__, or __STDC_UTF_32__) is not defined
(6.10.8.2).

The symbol __STDC_ISO_10646__ is not defined. Nevertheless every character in the Unicode
required set, when stored in an object of type wchar_t, has the same value as the short
identifier of that character.

The symbols __STDC_UTF_16__ and __STDC_UTF_32__ are defined.

8.7 Integers
Describes implementation-defined aspects of the Arm C compiler and C library relating to integers,
as required by the ISO C standard.

Any extended integer types that exist in the implementation (6.2.5).
No extended integer types exist in the implementation.

Whether signed integer types are represented using sign and magnitude, two's complement, or
ones' complement, and whether the extraordinary value is a trap representation or an ordinary
value (6.2.6.2).

Signed integer types are represented using two's complement with no padding bits. There is
no extraordinary value.

The rank of any extended integer type relative to another extended integer type with the same
precision (6.3.1.1).

No extended integer types exist in the implementation.

The result of, or the signal raised by, converting an integer to a signed integer type when the
value cannot be represented in an object of that type (6.3.1.3).

When converting an integer to a N-bit wide signed integer type and the value cannot be
represented in the destination type, the representation of the source operand is truncated to
N-bits and the resulting bit patters is interpreted a value of the destination type. No signal is
raised.

The results of some bitwise operations on signed integers (6.5).
In the bitwise right shift E1 >> E2, if E1 has a signed type and a negative value, the value of
the result is the integral part of the quotient of E1 / 2^E2, except that shifting the value -1
yields result -1.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

8.8 Floating-point
Describes implementation-defined aspects of the Arm C compiler and C library relating to floating-
point operations, as required by the ISO C standard.

The accuracy of the floating-point operations and of the library functions in <math.h> and
<complex.h> that return floating-point results (5.2.4.2.2).

Floating-point quantities are stored in IEEE format:

• float values are represented by IEEE single-precision values

• double values are represented by IEEE double-precision values.

• long double values in AArch32 are represented by IEEE double-precision values.

• long double values in AArch64 are represented by IEEE quadruple-precision values.

The long double data type is not supported for AArch64 state because of
limitations in the current Arm® C library.

The accuracy of the conversions between floating-point internal representations and string
representations performed by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>
(5.2.4.2.2).

The accuracy of the conversions between floating-point internal representations and string
representations performed by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>
is unknown.

The rounding behaviors characterized by non-standard values of FLT_ROUNDS (5.2.4.2.2).
Arm Compiler does not define non-standard values for FLT_ROUNDS.

The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD
(5.2.4.2.2).

Arm Compiler does not define non-standard values for FLT_EVAL_METHOD.

The direction of rounding when an integer is converted to a floating-point number that cannot
exactly represent the original value (6.3.1.4).

The direction of rounding when an integer is converted to a floating point number is "round
to nearest even".

The direction of rounding when a floating-point number is converted to a narrower floating-point
number (6.3.1.5).

When a floating-point number is converted to a different floating-point type and the value
is within the range of the destination type, but cannot be represented exactly, the rounding
mode is "round to nearest even", by default.

How the nearest representable value or the larger or smaller representable value immediately
adjacent to the nearest representable value is chosen for certain floating constants (6.4.4.2).

When a floating-point literal is converted to a floating-point value, the rounding mode is
"round to nearest even".

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 164 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

Whether and how floating expressions are contracted when not disallowed by the FP_CONTRACT
pragma (6.5).

If -ffp-mode=fast, -ffast-math, or -ffp-contract=fast options are in effect, a floating-point
expression can be contracted.

The default state for the FENV_ACCESS pragma (7.6.1).
The default state of the FENV_ACCESS pragma is OFF. The state ON is not supported.

Additional floating-point exceptions, rounding classifications, and their macro names (7.6, 7.12),
modes, environments, and the default state for the FP_CONTRACT pragma (7.12.2).

No additional floating-point exceptions, rounding classifications, modes, or environments are
defined.

The default state of FP_CONTRACT pragma is OFF.

8.9 Arrays and pointers
Describes implementation-defined aspects of the Arm C compiler and C library relating to arrays
and pointers, as required by the ISO C standard.

The result of converting a pointer to an integer or vice versa (6.3.2.3).
Converting a pointer to an integer type with smaller bit width discards the most significant
bits of the pointer. Converting a pointer to an integer type with greater bit width zero-
extends the pointer. Otherwise the bits of the representation are unchanged.

Converting an unsigned integer to pointer with a greater bit-width zero-extends the integer.
Converting a signed integer to pointer with a greater bit-width sign-extends the integer.
Otherwise the bits of the representation are unchanged.

The size of the result of subtracting two pointers to elements of the same array (6.5.6).
The size of the result of subtracting two pointers to elements of the same array is 4 bytes for
AArch32 state, and 8 bytes for AArch64 state.

8.10 Hints
Describes implementation-defined aspects of the Arm C compiler and C library relating to registers,
as required by the ISO C standard.

The extent to which suggestions made by using the register storage-class specifier are effective
(6.7.1).

The register storage-class specifier is ignored as a means to control how fast the access to
an object is. For example, an object might be allocated in register or allocated in memory
regardless of whether it is declared with register storage-class.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 165 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

The extent to which suggestions made by using the inline function specifier are effective (6.7.4).
The inline function specifier is ignored as a means to control how fast the calls to the
function are made. For example, a function might be inlined or not regardless of whether it is
declared inline.

8.11 Structures, unions, enumerations, and bitfields
Describes implementation-defined aspects of the Arm C compiler and C library relating to
structures, unions, enumerations, and bitfields, as required by the ISO C standard.

Whether a plain int bit-field is treated as a signed int bit-field or as an unsigned int bit-field
(6.7.2, 6.7.2.1).

Plain int bitfields are signed.

Allowable bit-field types other than _Bool, signed int, and unsigned int (6.7.2.1).
Enumeration types, long and long long (signed and unsigned) are allowed as bitfield types.

Whether atomic types are permitted for bit-fields (6.7.2.1).
Atomic types are not permitted for bitfields.

Whether a bit-field can straddle a storage-unit boundary (6.7.2.1).
A bitfield cannot straddle a storage-unit boundary.

The order of allocation of bit-fields within a unit (6.7.2.1).
Within a storage unit, successive bit-fields are allocated from low-order bits towards high-
order bits when compiling for little-endian, or from the high-order bits towards low-order bits
when compiling for big-endian.

The alignment of non-bit-field members of structures (6.7.2.1). This should present no problem
unless binary data written by one implementation is read by another.

The non-bitfield members of structures of a scalar type are aligned to their size. The non-
bitfield members of an aggregate type are aligned to the maximum of the alignments of each
top-level member.

The integer type compatible with each enumerated type (6.7.2.2).
An enumerated type is compatible with int or unsigned int. If both the signed and the
unsigned integer types can represent the values of the enumerators, the unsigned variant is
chosen. If a value of an enumerator cannot be represented with int or unsigned int, then
long long or unsigned long long is used.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

8.12 Qualifiers
Describes implementation-defined aspects of the Arm C compiler and C library relating to
qualifiers, as required by the ISO C standard.

What constitutes an access to an object that has volatile-qualified type (6.7.3).
Modifications of an object that has a volatile qualified type constitutes an access to that
object. Value computation of an lvalue expression with a volatile qualified type constitutes an
access to the corresponding object, even when the value is discarded.

8.13 C Preprocessing directives
Describes implementation-defined aspects of the Arm C compiler and C library relating to
preprocessing directives, as required by the ISO C standard.

The locations within #pragma directives where header name preprocessing tokens are recognized
(6.4, 6.4.7).

The compiler does not support pragmas that refer to headers.

How sequences in both forms of header names are mapped to headers or external source file
names (6.4.7).

In both forms of the #include directive, the character sequences are mapped to external
header names.

Whether the value of a character constant in a constant expression that controls conditional
inclusion matches the value of the same character constant in the execution character set
(6.10.1).

The value of a character constant in conditional inclusion expression is the same as the value
of the same constant in the execution character set.

Whether the value of a single-character character constant in a constant expression that controls
conditional inclusion may have a negative value (6.10.1).

Single-character constants in conditional inclusion expressions have non-negative values.

The places that are searched for an included < > delimited header, and how the places are
specified or the header is identified (6.10.2).

If the character sequence begins with the / character, it is interpreted as an absolute file path
name.

Otherwise, the character sequence is interpreted as a file path, relative to one of the
following directories:

• The sequence of the directories, given via the -I command line option, in the command
line order.

• The include subdirectory in the compiler installation directory.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 167 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

How the named source file is searched for in an included " " delimited header (6.10.2).
If the character sequence begins with the / character, it is interpreted as an absolute file path
name.

Otherwise, the character sequence interpreted as a file path, relative to the parent directory
of the source file, which contains the #include directive.

The method by which preprocessing tokens (possibly resulting from macro expansion) in a
#include directive are combined into a header name (6.10.2).

After macro replacement, the sequence of preprocessing tokens must be in one of the
following two forms:

• A single string literal. The escapes in the string are not processed and adjacent string
literals are not concatenated. Then the rules for double-quoted includes apply.

• A sequence of preprocessing tokens, starting with < and terminating with >. Sequences
of whitespace characters, if any, are replaced by a single space. Then the rules for angle-
bracketed includes apply.

The nesting limit for #include processing (6.10.2).
There is no limit to the nesting level of files included with #include.

Whether the # operator inserts a \ character before the \ character that begins a universal
character name in a character constant or string literal (6.10.3.2).

A \ character is inserted before the \ character that begins a universal character name.

The behavior on each recognized non-standard C #pragma directive (6.10.6).
For the behavior of each non-standard C #pragma directive, see Compiler-specific Pragmas.

The definitions for __DATE__ and __TIME__ when respectively, the date and time of translation are
not available (6.10.8.1).

The date and time of the translation are always available on all supported platforms.

8.14 Library functions
Describes implementation-defined aspects of the Arm C compiler and C library relating to library
functions, as required by the ISO C standard.

Any library facilities available to a freestanding program, other than the minimal set required by
clause 4 (5.1.2.1).

The Arm® Compiler provides the Arm C Micro-library. For information about facilities,
provided by this library, see The Arm C Micro-library in the Arm C and C++ Libraries and
Floating-Point Support User Guide.

The format of the diagnostic printed by the assert macro (7.2.1.1). The assert macro prints a
diagnostic in the format:

*** assertion failed: expression, filename, line number

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 168 of 241

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-Micro-library

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

The representation of the floating-points status flags stored by the fegetexceptflag function
(7.6.2.2).

The fegetexceptflag function stores the floating-point status flags as a bit set as follows:

• Bit 0 (0x01) is for the Invalid Operation exception.

• Bit 1 (0x02) is for the Divide by Zero exception.

• Bit 2 (0x04) is for the Overflow exception.

• Bit 3 (0x08) is for the Underflow exception.

• Bit 4 (0x10) is for the Inexact Result exception.

Whether the feraiseexcept function raises the Inexact floating-point exception in addition to
the Overflow or Underflow floating-point exception (7.6.2.3).

The feraiseexcept function does not raise by itself the Inexact floating-point exception
when it raises either an Overflow or Underflow exception.

Strings other than "C" and "" that can be passed as the second argument to the setlocale
function (7.11.1.1).

What other strings can be passed as the second argument to the setlocale function
depends on which __use_X_ctype symbol is imported (__use_iso8859_ctype,
__use_sjis_ctype, or __use_utf8_ctype), and on user-defined locales.

The types defined for float_t and double_t when the value of the FLT_EVAL_METHOD macro is less
than 0 (7.12).

The types defined for float_t and double_t are float and double, respectively, for all the
supported values of FLT_EVAL_METHOD.

Domain errors for the mathematics functions, other than those required by this International
Standard (7.12.1).

The following functions return additional domain errors under the specified conditions, the
function name refers to all the variants of the function. For example, the acos entry applies to
acos, ascof, and acosl functions:

Function Condition Return value Error

acos(x) abs(x) > 1 NaN EDOM

asin(x) abs(x) > 1 NaN EDOM

cos(x) X == Inf NaN EDOM

sin(x) x == Inf NaN EDOM

tan(x) x == Inf NaN EDOM

atanh(x) abs(x) == 1 Inf ERANGE

ilogb(x) x == 0.0 -INT_MAX EDOM

ilogb(x) x == Inf INT_MAX EDOM

ilogb(x) x == NaN FP_ILOGBNAN EDOM

log(x) x < 0 NaN EDOM

log(x) x == 0 -Inf ERANGE

log10(x) x < 0 NaN EDOM

log10(x) x == 0 -Inf ERANGE

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 169 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

Function Condition Return value Error
log1p(x) x < -1 NaN EDOM

log1p(x) x == -1 -Inf ERANGE

log2(x) x < 0 NaN EDOM

log2(x) x == 0 -Inf ERANGE

logb(x) x == 0 -Inf EDOM

logb(x) x == Inf +Inf EDOM

pow(x, y) y < 0 and (x == +0 or y is
even)

+Inf ERANGE

pow(x, y) y < 0 and x == -0 and y is
odd

-Inf ERANGE

pow(x, y) y < 0 and x == -0 and y is
non-integer

+Inf ERANGE

pow(x,y) x < 0 and y is non-integer NaN EDOM

sqrt(x) x < 0 NaN EDOM

lgamma(x) x <= 0 Inf ERANGE

tgamma(x) x < 0 and x is integer NaN EDOM

tgamma(x) x == 0 Inf ERANGE

fmod(x,y) x == Inf NaN EDOM

fmod(x,y) y == 0 NaN EDOM

remainder(x, y) y == 0 NaN EDOM

remquo(x, y, q) y == 0 NaN EDOM

The values returned by the mathematics functions on domain errors or pole errors (7.12.1).
See previous table.

The values returned by the mathematics functions on underflow range errors, whether errno
is set to the value of the macro ERANGE when the integer expression math_errhandling &
MATH_ERRNO is nonzero, and whether the Underflow floating-point exception is raised when the
integer expression math_errhandling & MATH_ERREXCEPT is nonzero. (7.12.1).

On underflow, the mathematics functions return 0.0, the errno is set to ERANGE, and the
Underflow and Inexact exceptions are raised.

Whether a domain error occurs or zero is returned when an fmod function has a second
argument of zero (7.12.10.1).

When the second argument of fmod is zero, a domain error occurs.

Whether a domain error occurs or zero is returned when a remainder function has a second
argument of zero (7.12.10.2).

When the second argument of the remainder function is zero, a domain error occurs and the
function returns NaN.

The base-2 logarithm of the modulus used by the remquo functions in reducing the quotient
(7.12.10.3).

The base-2 logarithm of the modulus used by the remquo functions in reducing the quotient
is 4.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

Whether a domain error occurs or zero is returned when a remquo function has a second
argument of zero (7.12.10.3).

When the second argument of the remquo function is zero, a domain error occurs.

Whether the equivalent of signal(sig, SIG_DFL); is executed prior to the call of a signal
handler, and, if not, the blocking of signals that is performed (7.14.1.1).

The equivalent of signal(sig, SIG_DFL) is executed before the call to a signal handler.

The null pointer constant to which the macro NULL expands (7.19).
The macro NULL expands to 0.

Whether the last line of a text stream requires a terminating new-line character (7.21.2).
The last line of text stream does not require a terminating new-line character.

Whether space characters that are written out to a text stream immediately before a new-line
character appear when read in (7.21.2).

Space characters, written out to a text stream immediately before a new-line character,
appear when read back.

The number of null characters that may be appended to data written to a binary stream (7.21.2).
No null characters are appended at the end of a binary stream.

Whether the file position indicator of an append-mode stream is initially positioned at the
beginning or end of the file (7.21.3).

The file position indicator of an append-mode stream is positioned initially at the end of the
file.

Whether a write on a text stream causes the associated file to be truncated beyond that point
(7.21.3).

A write to a text stream causes the associated file to be truncated beyond the point where
the write occurred if this is the behavior of the device category of the file.

The characteristics of file buffering (7.21.3).
The C Library supports unbuffered, fully buffered, and line buffered streams.

Whether a zero-length file actually exists (7.21.3).
A zero-length file exists, even if no characters are written by an output stream.

The rules for composing valid file names (7.21.3).
Valid file names depend on the execution environment.

Whether the same file can be simultaneously open multiple times (7.21.3).
A file can be opened many times for reading, but only once for writing or updating.

The nature and choice of encodings used for multibyte characters in files (7.21.3).
The character input and output functions on wide-oriented streams interpret the multibyte
characters in the associated files according to the current chosen locale.

The effect of the remove function on an open file (7.21.4.1).
Depends on the environment.

The effect if a file with the new name exists prior to a call to the rename function (7.21.4.2).
Depends on the environment.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 171 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

Whether an open temporary file is removed upon abnormal program termination (7.21.4.3).
Depends on the environment.

Which changes of mode are permitted (if any), and under what circumstances (7.21.5.4)
No changes of mode are permitted.

The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar sequence
printed for a NaN (7.21.6.1, 7.29.2.1).

A double argument to the printf family of functions, representing an infinity is converted
to [-]inf. A double argument representing a NaN is converted to [-]nan. The F conversion
specifier, produces [-]INF or [-]NAN, respectively.

The output for %p conversion in the fprintf or fwprintf function (7.21.6.1, 7.29.2.1).
The fprintf and fwprintf functions print %p arguments in lowercase hexadecimal format
as if a precision of 8 (16 for 64-bit) had been specified. If the variant form (%#p) is used, the
number is preceded by the character @.

Using the # character with the p format specifier is undefined behavior in
C11. armclang issues a warning.

The interpretation of a - character that is neither the first nor the last character, nor the second
where a ^ character is the first, in the scanlist for %[conversion in the fscanf or fwscanf function
(7.21.6.2, 7.29.2.1).

fscanf and fwscanf always treat the character - in a %...[...] argument as a literal
character.

The set of sequences matched by a %p conversion and the interpretation of the corresponding
input item in the fscanf or fwscanf function (7.21.6.2, 7.29.2.2).

fscanf and fwscanf treat %p arguments the same as %x arguments.

The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on failure
(7.21.9.1, 7.21.9.3, 7.21.9.4).

On failure, the functions fgetpos, fsetpos, and ftell set the errno to EDOM.

The meaning of any n-char or n-wchar sequence in a string representing a NaN that is converted
by the strtod, strtof, strtold, wcstod, wcstof, or wcstold function (7.22.1.3, 7.29.4.1.1).

Any n-char or n-wchar sequence in a string, representing a NaN, that is converted by the
strtod, strtof, strtold, wcstod, wcstof, or wcstold functions, is ignored.

Whether or not the strtod, strtof, strtold, wcstod, wcstof, or wcstold function sets errno to
ERANGE when underflow occurs (7.22.1.3, 7.29.4.1.1).

The strtod, strtold, wcstod, wcstof, or wcstold functions set errno to ERANGE when
underflow occurs.

The strtof function sets the errno to ERANGE by default (equivalent to compiling with -ffp-
mode=std) and does not, when compiling with -ffp-mode=full or -fno-fast-math.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 172 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

Whether the calloc, malloc, and realloc functions return a null pointer or a pointer to an
allocated object when the size requested is zero (7.22.3).

If the size of area requested is zero, malloc() and calloc() return a pointer to a zero-size
block.

If the size of area requested is zero, realloc() returns NULL.

Whether open streams with unwritten buffered data are flushed, open streams are closed, or
temporary files are removed when the abort or _Exit function is called (7.22.4.1, 7.22.4.5).

The function _Exit flushes the streams, closes all open files, and removes the temporary files.

The function abort() does not flush the streams and does not remove temporary files.

The termination status returned to the host environment by the abort, exit, _Exit(), or
quick_exit function (7.22.4.1, 7.22.4.4, 7.22.4.5, 7.22.4.7).

The function abort() returns termination status 1 to the host environment. The functions
exit() and _Exit() return the same value as the argument that was passed to them.

The value returned by the system function when its argument is not a null pointer (7.22.4.8).
The value returned by the system function when its argument is not a null pointer depends
on the environment.

The range and precision of times representable in clock_t and time_t (7.27).
The types clock_t and time_t can represent integers in the range [0, 4294967295].

The local time zone and Daylight Saving Time (7.27.1).
Depends on the environment.

The era for the clock function (7.27.2.1).
Depends on the environment.

The TIME_UTC epoch (7.27.2.5).
TIME_UTC and timespec_get are not implemented.

The replacement string for the %Z specifier to the strftime and wcsftime functions in the "C"
locale (7.27.3.5, 7.29.5.1).

The functions strftime and wcsftime replace %Z with an empty string.

Whether the functions in <math.h> honor the rounding direction mode in an IEC 60559
conformant implementation, unless explicitly specified otherwise (F.10).

Arm Compiler does not declare __STDC_IEC_559__ and does not support Annex F of ISO/IEC
9899:2011.

Related information
The Arm C and C++ Libraries

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 173 of 241

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

8.15 Architecture
Describes implementation-defined aspects of the Arm C compiler and C library relating to
architecture, as required by the ISO C standard.

The values or expressions assigned to the macros specified in the headers <float.h>, <limits.h>,
and <stdint.h> (5.2.4.2, 7.20.2, 7.20.3).

If the value column is empty, this means no value is assigned to the
corresponding macro.

The values of the macros in <float.h> are:

Macro name Value

FLT_ROUNDS 1

FLT_EVAL_METHOD 0

FLT_HAS_SUBNORM -

DBL_HAS_SUBNORM -

LDBL_HAS_SUBNORM -

FLT_RADIX 2

FLT_MANT_DIG 24

DBL_MANT_DIG 53

LDBL_MANT_DIG (AArch32) 53

LDBL_MANT_DIG (AArch64) 113

FLT_DECIMAL_DIG -

DBL_DECIMAL_DIG -

LDBL_DECIMAL_DIG (AArch32) -

LDBL_DECIMAL_DIG (AArch64) 36

DECIMAL_DIG 17

FLT_DIG 6

DBL_DIG 15

LDBL_DIG (AArch32) 15

LDBL_DIG (AArch64) 33

FLT_MIN_EXP (-125)

DBL_MIN_EXP (-1021)

LDBL_MIN_EXP (AArch32) (-1021)

LDBL_MIN_EXP (AArch64) 16381

FLT_MIN_10_EXP (-37)

DBL_MIN_10_EXP (-307)

LDBL_MIN_10_EXP (AArch32) (-307)

LDBL_MIN_10_EXP (AArch64) 4931

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

Macro name Value
FLT_MAX_EXP 128

DBL_MAX_EXP 1024

LDBL_MAX_EXP (AArch32) 1024

LDBL_MAX_EXP (AArch64) 16384

FLT_MAX_10_EXP 38

DBL_MAX_10_EXP 308

LDBL_MAX_10_EXP (AArch32) 308

LDBL_MAX_10_EXP (AArch64) 4932

FLT_MAX 3.40282347e+38F

DBL_MAX 1.79769313486231571e+308

LDBL_MAX (AArch32) 1.79769313486231571e+308L

LDBL_MAX (AArch64) 1.18973149535723176508575932662800702e+4932L

FLT_EPSILON 1.19209290e-7F

DBL_EPSILON 2.2204460492503131e-16

LDBL_EPSILON (AArch32) 2.2204460492503131e-16L

LDBL_EPSILON (AArch64) 1.92592994438723585305597794258492732e-34L

FLT_MIN 1.175494351e-38F

DBL_MIN 2.22507385850720138e-308

LDBL_MIN (AArch32) 2.22507385850720138e-308L

LDBL_MIN (AArch64) 3.36210314311209350626267781732175260e-4932L

FLT_TRUE_MIN -

DBL_TRUE_MIN -

LDBL_TRUE_MIN (AArch32) -

LDBL_TRUE_MIN (AArch64) -

The values of the macros in <limits.h> are:

Macro name Value

CHAR_BIT 8

SCHAR_MIN (-128)

SCHAR_MAX 127

UCHAR_MAX 255

CHAR_MIN 0

CHAR_MAX 255

MB_LEN_MAX 6

SHRT_MIN (-0x8000)

SHRT_MAX 0x7fff

USHRT_MAX 65535

INT_MIN (~0x7fffffff)

INT_MAX 0x7fffffff

UINT_MAX 0xffffffffU

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 175 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

Macro name Value
LONG_MIN (~0x7fffffffL)

LONG_MIN (64-bit) (~0x7fffffffffffffffL)

LONG_MAX 0x7fffffffL

LONG_MAX (64-bit) 0x7fffffffffffffffL

ULONG_MAX 0xffffffffUL

ULONG_MAX (64-bit) 0xffffffffffffffffUL

LLONG_MIN (~0x7fffffffffffffffLL)

LLONG_MAX 0x7fffffffffffffffLL

ULLONG_MAX 0xffffffffffffffffULL

The values of the macros in <stdint.h> are:

Macro name Value

INT8_MIN -128

INT8_MAX 127

UINT8_MAX 255

INT16_MIN -32768

INT16_MAX 32767

UINT16_MAX 65535

INT32_MIN (~0x7fffffff)

INT32_MAX 2147483647

UINT32_MAX 4294967295u

INT64_MIN (~0x7fffffffffffffffLL)

INT32_MAX 2147483647

UINT32_MAX 4294967295u

INT64_MIN (64-bit) (~0x7fffffffffffffffL)

INT64_MAX (64-bit) (9223372036854775807L)

UINT64_MAX (64-bit) (18446744073709551615uL)

INT_LEAST8_MIN -128

INT_LEAST8_MAX 127

UINT_LEAST8_MAX 255

INT_LEAST16_MIN -32768

INT_LEAST16_MAX 32767

UINT_LEAST16_MAX 65535

INT_LEAST32_MIN (~0x7fffffff)

INT_LEAST32_MAX 2147483647

UINT_LEAST32_MAX 4294967295u

INT_LEAST64_MIN (~0x7fffffffffffffffLL)

INT_LEAST64_MAX (9223372036854775807LL)

UINT_LEAST64_MAX (18446744073709551615uLL)

INT_LEAST64_MIN (64-bit) (~0x7fffffffffffffffL)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

Macro name Value
INT_LEAST64_MAX (64-bit) (9223372036854775807L)

UINT_LEAST64_MAX (64-bit) (18446744073709551615uL)

INT_FAST8_MIN (~0x7fffffff)

INT_FAST8_MAX 2147483647

UINT_FAST8_MAX 4294967295u

INT_FAST16_MIN (~0x7fffffff)

INT_FAST16_MAX 2147483647

UINT_FAST16_MAX 4294967295u

INT_FAST32_MIN (~0x7fffffff)

INT_FAST32_MAX 2147483647

UINT_FAST32_MAX 4294967295u

INT_FAST64_MIN (~0x7fffffffffffffffLL)

INT_FAST64_MAX (9223372036854775807LL)

UINT_FAST64_MAX (18446744073709551615uLL)

INT_FAST64_MIN (64-bit) (~0x7fffffffffffffffL)

INT_FAST64_MAX (64-bit) (9223372036854775807L)

UINT_FAST64_MAX (64-bit) (18446744073709551615uL)

INTPTR_MIN (~0x7fffffff)

INTPTR_MIN (64-bit) (~0x7fffffffffffffffLL)

INTPTR_MAX 2147483647

INTPTR_MAX (64-bit) (9223372036854775807LL)

UINTPTR_MAX 4294967295u

UINTPTR_MAX (64-bit) (18446744073709551615uLL)

INTMAX_MIN (~0x7fffffffffffffffll)

INTMAX_MAX (9223372036854775807ll)

UINTMAX_MAX (18446744073709551615ull)

PTRDIFF_MIN (~0x7fffffff)

PTRDIFF_MIN (64-bit) (~0x7fffffffffffffffLL)

PTRDIFF_MAX 2147483647

PTRDIFF_MAX (64-bit) (9223372036854775807LL)

SIG_ATOMIC_MIN (~0x7fffffff)

SIG_ATOMIC_MAX 2147483647

SIZE_MAX 4294967295u

SIZE_MAX (64-bit) (18446744073709551615uLL)

WCHAR_MIN 0

WCHAR_MAX 0xffffffffU

WINT_MIN (~0x7fffffff)

WINT_MAX 2147483647

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 177 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C Implementation Definition

The result of attempting to indirectly access an object with automatic or thread storage duration
from a thread other than the one with which it is associated (6.2.4).

Access to automatic or thread storage duration objects from a thread other than the one with
which the object is associated proceeds normally.

The number, order, and encoding of bytes in any object (when not explicitly specified in this
International Standard) (6.2.6.1).

Defined in the Arm® EABI.

Whether any extended alignments are supported and the contexts in which they are supported,
and valid alignment values other than those returned by an _Alignof expression for fundamental
types, if any (6.2.8).

Alignments, including extended alignments, that are a power of 2 and less than or equal to
0x10000000, are supported.

The value of the result of the sizeof and _Alignof operators (6.5.3.4).

Type sizeof _Alignof

char 1 1

short 2 2

int 4 4

long (AArch32 state) 4 4

long (AArch64 state) 8 8

long long 8 8

float 4 4

double 8 8

long double (AArch32 state) 8 8

long double (AArch64 state) 16 16

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

9. Standard C++ Implementation Definition
Provides information required by the ISO C++ Standard for conforming C++ implementations.

9.1 C++ Implementation definition
The ISO C++ Standard (ISO/IEC 14882:2014) defines the concept of implementation-defined
behavior as the "behavior, for a well-formed program construct and correct data, that depends on
the implementation and that each implementation documents".

The following topics document the behavior in the implementation of Arm® Compiler 6 of
the implementation-defined features of the C++ language. Each topic provides information
from a single chapter in the C++ Standard. The C++ Standard section number relevant to each
implementation-defined aspect is provided in parentheses.

9.2 General
Describes general implementation-defined aspects of the Arm C++ compiler and C++ library, as
required by the ISO C++ Standard.

How a diagnostic is identified (1.3.6).
Diagnostic messages that the compiler produces are of the form:

source-file:line-number:char-number: description [diagnostic-flag]

Here:

description

Is a text description of the error.

diagnostic-flag

Is an optional diagnostic flag of the form -Wname, only for messages that can be
suppressed.

Libraries in a freestanding implementation (1.4).
Arm® Compiler supports the C99 and the C++11 standard libraries.

Bits in a byte (1.7).
The number of bits in a byte is 8.

What constitutes an interactive device (1.9).
What constitutes an interactive device depends on the environment and what the
_sys_istty function reports. The standard I/O streams stdin, stdout, and stderr are
assumed to be interactive devices. They are line-buffered at program startup, regardless

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 179 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

of what _sys_istty reports for them. An exception is if they have been redirected on the
command line.

Related information
-W on page 89

9.3 Lexical conventions
Describes the lexical conventions of implementation-defined aspects of the Arm C++ compiler and
C++ library, as required by the ISO C++ Standard.

Mapping of the physical source file characters to the basic source character set (2.2).
The input files are encoded in UTF-8. Due to the design of UTF-8 encoding, the basic source
character set is represented in the source file in the same way as the ASCII encoding of the
basic character set.

Physical source file characters (2.2).
The source file characters are encoded in UTF-8.

Conversion of characters from source character set to execution character set (2.2).
The source character set and the execution character set are the same.

Requirement of source for translation units when locating template definitions (2.2).
When locating the template definitions related to template instantiations, the source of the
translation units that define the template definitions is not required.

Values of execution character sets (2.3).
Both the execution character set and the wide execution character set consist of all the code
points defined by ISO/IEC 10646.

Mapping the header name to external source files (2.8).
In both forms of the #include preprocessing directive, the character sequences that specify
header names are mapped to external header source file names.

Semantics of non-standard escape sequences (2.13.3).
The following non-standard escape sequences are accepted for compatibility with GCC:

Escape sequence Code point

\e U+001B

\E U+001B

Value of wide-character literals containing multiple characters (2.13.3).
If a wide-character literal contains more than one character, only the right-most character in
the literal is used.

Value of an ordinary character literal outside the range of its corresponding type (2.13.3).
This case is diagnosed and rejected.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 180 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

Floating literals (2.13.4).
For a floating literal whose scaled value cannot be represented as a floating-point value, the
nearest even floating-point value is chosen.

String literal concatenation (2.13.5).
Differently prefixed string literal tokens cannot be concatenated, except for the ones
specified by the ISO C++ Standard.

9.4 Basic concepts
Describes basic concepts relating to implementation-defined aspects of the Arm C++ compiler and
C++ library, as required by the ISO C++ Standard.

Start-up and termination in a freestanding environment (3.6.1).
The Arm® Compiler Arm C and C++ Libraries and Floating-Point Support User Guide describes
the start-up and termination of programs.

Definition of main in a freestanding environment (3.6.1).
The main function must be defined.

Linkage of the main function (3.6.1).
The main function has external linkage.

Parameters of main (3.6.1).
The only permitted parameters for definitions of main of the form int main(parameters) are
void and int, char**.

Dynamic initialization of static objects (3.6.2).
Static objects are initialized before the first statement of main.

Dynamic initialization of thread-local objects (3.6.2).
Thread-local objects are initialized at the first odr-use.

Pointer safety (3.7.4.3).
This implementation has relaxed pointer safety.

Extended signed integer types (3.9.1).
No extended integer types exist in the implementation.

Representation and signedness of the char type (3.9.1).
The char type is unsigned and has the same values as unsigned char.

Representation of the values of floating-point types (3.9.1).
The values of floating-point types are represented using the IEEE format as follows:

• float values are represented by IEEE single-precision values.

• double values are represented by IEEE double-precision values.

• long double values in AArch32 are represented by IEEE double-precision values.

• long double values in AArch64 are represented by IEEE quadruple-precision values.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 181 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

The long double data type is not supported for AArch64 state because of
limitations in the current Arm C library.

Representation of values of pointer type (3.9.2).
Values of pointer type are represented as 32-bit addresses in AArch32 state and 64-bit
addresses in AArch64 state.

Support of extended alignments (3.11).
Alignments, including extended alignments, that are a power of two and are less than or
equal to 0x10000000 are supported.

Related information
Arm C and C++ Libraries and Floating-Point Support User Guide

9.5 Standard conversions
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to
standard conversions, as required by the ISO C++ Standard.

Conversion to signed integer (4.7).
When an integer value is converted to a value of signed integer type, but cannot be
represented by the destination type, the value is truncated to the number of bits of the
destination type and then reinterpreted as a value of the destination type.

Result of inexact floating-point conversions (4.8).
When a floating-point value is converted to a value of a different floating-point type, and the
value is within the range of the destination type but cannot be represented exactly, the value
is rounded to the nearest floating-point value by default.

Result of inexact integer to floating-point conversion (4.9).
When an integer value is converted to a value of floating-point type, and the value is within
the range of the destination type but cannot be represented exactly, the value is rounded to
the nearest floating-point value by default.

9.6 Expressions
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to
expressions, as required by the ISO C++ Standard.

Passing an argument of class type in a function call through ellipsis (5.2.2).
For ellipsis arguments, passing an argument of class type having a non-trivial copy
constructor, a non-trivial move constructor, or a non-trivial destructor, with no corresponding
parameter, results in an abort at run time. A diagnostic is reported for this case.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 182 of 241

https://developer.arm.com/documentation/dui0808/l

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

Result type of typeid expression (5.2.8).
The type of a typeid expression is an expression with dynamic type std::type_info.

Incrementing a bit-field that cannot represent the incremented value (5.2.6).
The incremented value is truncated to the number of bits in the bit-field. The bit-field is
updated with the bits of the truncated value.

Conversions between pointers and integers (5.2.10).
Converting a pointer to an integer type with a smaller bit width than the pointer, truncates
the pointer to the number of bits of the destination type. Converting a pointer to an integer
type with a greater bit width than the pointer, zero-extends the pointer. Otherwise, the bits
of the representation are unchanged.

Converting an unsigned integer to a pointer type with a greater bit-width than the unsigned
integer zero-extends the integer. Converting a signed integer to a pointer type with a
greater bit-width than the signed integer sign-extends the integer. Otherwise, the bits of the
representation are unchanged.

Conversions from function pointers to object pointers (5.2.10).
Such conversions are supported.

sizeof applied to fundamental types other than char, signed char, and unsigned char (5.3.3).

Type sizeof

bool 1

char 1

wchar_t 4

char16_t 2

char32_t 4

short 2

int 4

long (AArch32 state) 4

long (AArch64 state) 8

long long 8

float 4

double 8

long double (AArch32 state) 8

long double (AArch64 state) 16

Support for over-aligned types in new expressions (5.3.4).
Over-aligned types are not supported in new expressions. The pointer for the allocated type
does not fulfill the extended alignment.

Type of ptrdiff_t (5.7).
The type of ptrdiff_t is signed int for AArch32 state and signed long for AArch64 state.

Type of size_t (5.7).
The type of size_t is unsigned int for AArch32 state and unsigned long for AArch64 state.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 183 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

Result of right shift of negative value (5.8).
In a bitwise right shift operation of the form E1 >> E2, if E1 is of signed type and has a
negative value, the value of the result is the integral part of the quotient of E1 / (2 ** E2),
except when E1 is -1, then the result is -1.

Assignment of a value to a bit-field that the bit-field cannot represent (5.18).
When assigning a value to a bit-field that the bit-field cannot represent, the value is
truncated to the number of bits of the bit-field. A diagnostic is reported in some cases.

9.7 Declarations
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to
declarations, as required by the ISO C++ Standard.

Meaning of attribute declaration (7).
Arm® Compiler 6 is based on LLVM and Clang technology. Clang defines several attributes as
specified by the Clang documentation at https://clang.llvm.org/docs/AttributeReference.html.

From these attributes, Arm Compiler 6 supports attributes that are scoped with gnu:: (for
compatibility with GCC) and clang::.

Underlying type for enumeration (7.2).
The underlying type for enumerations without a fixed underlying type is int or unsigned
int, depending on the values of the enumerators. The -fshort-enums command-line option
uses the smallest unsigned integer possible, or the smallest signed integer possible if any
enumerator is negative, starting with char.

Meaning of an asm declaration (7.4).
An asm declaration enables the direct use of T32, A32, or A64 instructions.

Semantics of linkage specifiers (7.5).
Only the string-literals "C" and "C++" can be used in a linkage specifier.

9.8 Declarators
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to
declarators, as required by the ISO C++ Standard.

String resulting from __func__ (8.4.1).
The value of __func__ is the same as in C99.

Initialization of a bit-field with a value that the bit-field cannot represent (8.5).
When initializing a bit-field with a value that the bit-field cannot represent, the value is
truncated to the number of bits of the bit-field. A diagnostic is reported in some cases.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 184 of 241

https://clang.llvm.org/docs/AttributeReference.html

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

Allocation of bit-fields within a class (9.6).
Within a storage unit, successive bit-fields are allocated from low-order bits towards high-
order bits when compiling for little-endian, or from the high-order bits towards low-order bits
when compiling for big-endian.

Alignment of bit-fields within a class (9.6).
The storage unit containing the bit-fields is aligned to the alignment of the type of the bit-
field.

9.9 Templates
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to
templates, as required by the ISO C++ Standard.

Linkage specification in templates (14).
Only the linkage specifiers "C" and "C++" can be used in template declarations.

9.10 Exception handling
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to
exception handling, as required by the ISO C++ Standard.

Stack unwinding before calling std::terminate when no suitable catch handler is found (15.3).
The stack is not unwound in this case.

Stack unwinding before calling std::terminate when a noexcept specification is violated (15.5.1).
The stack is unwound in this case.

9.11 C++ Preprocessing directives
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to
preprocessing directives, as required by the ISO C++ Standard.

Numeric values of character literals in #if preprocessing directives (16.1).
Numeric values of character literals match the values that they have in expressions other
than the #if or #elif preprocessing directives.

Sign of character literals in #if preprocessing directives (16.1).
Character literals in #if preprocessing directives are never negative.

Manner in which #include <...> source files are searched (16.2).
• If the character sequence begins with the / character, it is interpreted as an absolute file

path.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 185 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

• Otherwise, the character sequence is interpreted as a file path relative to one of the
following directories:

◦ The sequence of the directories specified using the -I command-line option, in the
command-line order.

◦ The include subdirectory in the compiler installation directory.
Manner in which #include "..." source files are searched (16.2).

• If the character sequence begins with the / character, it is interpreted as an absolute file
path.

• Otherwise, the character sequence is interpreted as a file path relative to the parent
directory of the source file that contains the #include preprocessing directive.

Nesting limit for #include preprocessing directives (16.2).
Limited only by the memory available at translation time.

Meaning of pragmas (16.6).
Arm® Compiler 6 is based on LLVM and Clang technology. Clang defines several pragmas as
specified by the Clang documentation at http://clang.llvm.org/docs/LanguageExtensions.html.

Definition and meaning of __STDC__ (16.8).
__STDC__ is predefined as #define __STDC__ 1.

Definition and meaning of __STDC_VERSION__ (16.8).
This macro is not predefined.

Text of __DATE__ and __TIME__ when the date or time of a translation is not available (16.8).
The date and time of the translation are always available on all supported platforms.

9.12 Library introduction
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to the
library introduction, as required by the ISO C++ Standard.

Linkage of names from the Standard C library (17.6.2.3).
Declarations from the C library have "C" linkage.

Library functions that can be recursively reentered (17.6.5.8).
Functions can be recursively reentered, unless specified otherwise by the ISO C++ Standard.

Exceptions thrown by C++ Standard Library functions that do not have an exception specification
(17.6.5.12).

These functions do not throw any additional exceptions.

Errors category for errors originating from outside the operating system (17.6.5.14).
There is no additional error category.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 186 of 241

http://clang.llvm.org/docs/LanguageExtensions.html

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

9.13 Language support library
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to the
language support library, as required by the ISO C++ Standard.

Exit status (18.5).
Control is returned to the host environment using the _sys_exit function of the Arm® C
Library.

Returned value of std::bad_alloc::what (18.6.2.1).
The returned value is std::bad_alloc.

Returned value of std::type_info::name (18.7.1).
The returned value is a string containing the mangled name of the type that is used in the
typeid expression. The name is mangled following the Itanium C++ ABI specification.

Returned value of std::bad_cast::what (18.7.2).
The returned value is std::bad_cast.

Returned value of std::bad_typeid::what (18.7.3).
The returned value is std::bad_typeid.

Returned value of std::bad_exception::what (18.8.1).
The returned value is std::bad_exception.

Returned value of std::exception::what (18.8.1).
The returned value is std::exception.

Use of non-POFs as signal handlers (18.10).
Non Plain Old Functions (POFs) can be used as signal handlers if no uncaught exceptions are
thrown in the handler, and the execution of the signal handler does not trigger undefined
behavior. For example, the signal handler may have to call std::_Exit instead of std::exit.

9.14 General utilities library
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to the
general utilities library, as required by the ISO C++ Standard.

Return value of std::get_pointer_safety (20.7.4).
This function always returns std::pointer_safety::relaxed.

Support for over-aligned types by the allocator (20.7.9.1).
The allocator does not support over-aligned types.

Support for over-aligned types by get_temporary_buffer (20.7.11).
Function std::get_temporary_buffer does not support over-aligned types.

Returned value of std::bad_weak_ptr::what (20.8.2.2.1).
The returned value is bad_weak_ptr.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 187 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

Exception type when the constructor of std::shared_ptr fails (20.8.2.2.1).
std::bad_alloc is the only exception that the std::shared_ptr constructor throws that
receives a pointer.

Placeholder types (20.9.10.4).
Placeholder types, such as std::placeholders::_1, are not CopyAssignable.

Over-aligned types and type traits std::aligned_storage and std::aligned_union (20.10.7.6).
These two traits support over-aligned types.

Conversion between time_t and time_point (20.12.7.1).
The values are truncated in either case.

9.15 Strings library
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to the
strings library, as required by the ISO C++ Standard.

Type of std::streamoff (21.2.3.1).
Type std::streamoff has type long long.

Type of std::streampos (21.2.3.2).
Type of std::streampos is fpos<mbstate_t>.

Returned value of char_traits<char16_t>::eof (21.2.3.2).
This function returns uint_least16_t(0xFFFF).

Type of std::u16streampos (21.2.3.3).
Type of std::u16streampos is fpos<mbstate_t>.

Returned value of char_traits<char32_t>::eof (21.2.3.3).
This function returns uint_least32_t(0xFFFFFFFF).

Type of std::u32streampos (21.2.3.3).
Type of std::u32streampos is fpos<mbstate_t>.

Type of std::wstreampos (21.2.3.4).
Type of std::wstreampos is fpos<mbstate_t>.

Supported multibyte character encoding rules (21.2.3.4).
UTF-8 and Shift-JIS are supported as multibyte character encodings.

9.16 Localization library
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to the
localization library, as required by the ISO C++ Standard.

Locale object (22.3.1.2).
There is one global locale object for the entire program.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 188 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

Permitted locale names (22.3.1.2).
Valid locale values depend on which __use_X_ctype symbols are imported
(__use_iso8859_ctype, __use_sjis_ctype, __use_utf8_ctypte), and on user-defined locales.

Effect on C locale of calling locale::global (22.3.1.5).
Calling this function with an unnamed locale has no effect.

Value of ctype<char>::table_size (22.4.1.3.1).
The value of ctype<char>::table_size is 256.

Two-digit year numbers in the function std::time_get::do_get_year (22.4.5.1.2).
Two-digit year numbers are accepted. Years from 00 to 68 are assumed to mean years 2000
to 2068, while years from 69 to 99 are assumed to mean 1969 to 1999.

Additional formats for std::time_get::do_get_date (22.4.5.1.2).
No additional formats are defined.

Formatted character sequence that std::time_put::do_put generates in the C locale (22.4.5.3.2).
The behavior is the same as that of the Arm C library function strftime.

Mapping from name to catalog when calling std::messages::do_open (22.4.7.1.2).
No mapping happens as this function does not open any catalog.

Mapping to message when calling std::messages::do_get (22.4.7.1.2).
No mapping happens and dflt is always returned.

9.17 Containers library
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to the
containers library, as required by the ISO C++ Standard.

Type of std::array::iterator and std::array::const_iterator (23.3.2.1).
The types of std::array<T>::iterator and std::array<T>::const_iterator are T* and
const T* respectively.

Default number of buckets in std::unordered_map (23.5.4.2).
When constructing a container with an iterator range and without specifying the number of
buckets, the number of buckets that are used is equal to the size of the iterator range. Every
element of the iterator range is inserted in an empty container.

Default number of buckets in std::unordered_multimap (23.5.4.2).
When constructing a container with an iterator range and without specifying the number of
buckets, the number of buckets that are used is equal to the size of the iterator range. Every
element of the iterator range is inserted in an empty container.

Default number of buckets in std::unordered_set (23.5.6.2).
When constructing a container with an iterator range and without specifying the number of
buckets, the number of buckets that are used is equal to the size of the iterator range. Every
element of the iterator range is inserted in an empty container.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 189 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

Default number of buckets in std::unordered_multiset (23.5.7.2).
When constructing a container with an iterator range and without specifying the number of
buckets, the number of buckets that are used is equal to the size of the iterator range. Every
element of the iterator range is inserted in an empty container.

9.18 Input/output library
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to the
input/output library, as required by the ISO C++ Standard.

Behavior of iostream classes when traits::pos_type is not streampos or when
traits::off_type is not streamoff (27.2.1).

There is no specific behavior implemented for this case.

Effect of calling std::ios_base::sync_with_stdio after any input or output operation on
standard streams (27.5.3.4).

Previous input/output is not handled in any special way.

Exception thrown by basic_ios::clear (27.5.5.4).
When basic_ios::clear throws as exception, it throws an exception of type
basic_ios::failure constructed with "ios_base::clear".

Move constructor of std::basic_stringbuf (27.8.2.1).
The constructor copies the sequence pointers.

Effect of calling std::basic_filebuf::setbuf with nonzero arguments (27.9.1.2).
The provided buffer replaces the internal buffer. The object can use up to the provided
number of bytes of the buffer.

Effect of calling std::basic_filebuf::sync when a get area exists (27.9.1.5).
The get area is emptied and the current file position is moved back the corresponding
number of bytes.

9.19 Regular expressions library
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to the
regular expressions library, as required by the ISO C++ Standard.

Type of std::regex_constants::error_type
The enum std::regex_constants::error_type is defined as follows:

enum error_type
{
 error_collate = 1,
 error_ctype,
 error_escape,
 error_backref,
 error_brack,
 error_paren,

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 190 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

 error_brace,
 error_badbrace,
 error_range,
 error_space,
 error_badrepeat,
 error_complexity,
 error_stack,
 __re_err_grammar,
 __re_err_empty,
 __re_err_unknown
};

9.20 Atomic operations library
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to the
atomic operations library, as required by the ISO C++ Standard. These macros are defined in the
include/libcxx/atomic header file.

Values of ATOMIC_...LOCK_FREE macros (29.4)

Macro Value

ATOMIC_BOOL_LOCK_FREE 2

ATOMIC_CHAR_LOCK_FREE 2

ATOMIC_CHAR16_T_LOCK_FREE 2

ATOMIC_CHAR32_T_LOCK_FREE 2

ATOMIC_WCHAR_T_LOCK_FREE 2

ATOMIC_SHORT_LOCK_FREE 2

ATOMIC_INT_LOCK_FREE 2

ATOMIC_LONG_LOCK_FREE 2

ATOMIC_LLONG_LOCK_FREE 2

ATOMIC_POINTER_LOCK_FREE 2

9.21 Thread support library
Describes implementation-defined aspects of the Arm C++ compiler and C++ library relating to the
thread support library, as required by the ISO C++ Standard.

Presence and meaning of native_handle_type and native_handle.
The library uses the following native handles as part of the thread portability mechanism,
which is described elsewhere.

__ARM_TPL_mutex_t used in std::mutex and std::recursive_mutex

__ARM_TPL_condvar_t used in std::condition_variable

__ARM_TPL_thread_id used in std::thread

__ARM_TPL_thread_t used in std::thread

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 191 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

9.22 Implementation quantities
Describes limits in C++ implementations.

This topic includes descriptions of [COMMUNITY] features. See Support level
definitions.

Where a specific number is provided, this value is the recommended minimum
quantity.

Nesting levels of compound statements, iteration control structures, and selection control
structures.

256. Can be increased using the -fbracket-depth command-line option.

Nesting levels of conditional inclusion
Limited by memory.

Pointer, array, and function declarators (in any combination) modifying a class, arithmetic, or
incomplete type in a declaration.

Limited by memory.

Nesting levels of parenthesized expressions within a full-expression.
256. Can be increased using the -fbracket-depth command-line option.

Number of characters in an internal identifier or macro name.
Limited by memory.

Number of characters in an external identifier.
Limited by memory.

External identifiers in one translation unit.
Limited by memory.

Identifiers with block scope declared in one block.
Limited by memory.

Macro identifiers that are simultaneously defined in one translation unit.
Limited by memory.

Parameters in one function definition.
Limited by memory.

Arguments in one function call.
Limited by memory.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 192 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

Parameters in one macro definition.
Limited by memory.

Arguments in one macro invocation.
Limited by memory.

Characters in one logical source line.
Limited by memory.

Characters in a string literal (after concatenation).
Limited by memory.

Size of an object.
SIZE_MAX

Nesting levels for #include files.
Limited by memory.

Case labels for a switch statement (excluding case labels for any nested switch statements).
Limited by memory.

Data members in a single class.
Limited by memory.

Enumeration constants in a single enumeration.
Limited by memory.

Levels of nested class definitions in a single member-specification.
256. Can be increased using the -fbracket-depth command-line option.

Functions that are registered by atexit().
Limited by memory.

Direct and indirect base classes.
Limited by memory.

Direct base classes for a single class.
Limited by memory.

Members declared in a single class.
Limited by memory.

Final overriding virtual functions in a class, accessible or not.
Limited by memory.

Direct and indirect virtual bases of a class.
Limited by memory.

Static members of a class.
Limited by memory.

Friend declarations in a class.
Limited by memory.

Access control declarations in a class.
Limited by memory.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 193 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

Standard C++ Implementation Definition

Member initializers in a constructor definition.
Limited by memory.

Scope qualifications of one identifier.
Limited by memory.

Nested external specifications.
Limited by memory.

Recursive constexpr function invocations.
512. Can be changed using the [COMMUNITY] command-line option, -fconstexpr-depth.

Full-expressions that are evaluated within a core constant expression.
Limited by memory.

Template arguments in a template declaration.
Limited by memory.

Recursively nested template instantiations, including substitution during template argument
deduction (14.8.2).

1024. Can be changed using the [COMMUNITY] command-line option, -ftemplate-depth.

Handlers per try block.
Limited by memory.

Throw specifications on a single function declaration.
Limited by memory.

Number of placeholders (20.9.10.4).
Ten placeholders from _1 to _10.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 194 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

10. armclang Integrated Assembler
Provides information on integrated assembler features, such as the directives you can use when
writing assembly language source files in the armclang integrated assembler syntax.

10.1 Syntax of assembly files for integrated assembler
Assembly statements can include labels, instructions, directives, or macros.

Syntax
label:
 instruction[;]
 directive[;]
 macro_invocation[;]

Description
label

For label statements, the statement ends after the : character. For the other forms of
assembler statements, the statement ends at the first newline or ; character. This means that
any number of labels can be defined on the same source line, and multiple of any other types
of statements can be present in one source line if separated by ;.

Label names without double quotes:

• Must start with a period (.), _, a-z or A-Z.

• Can also contain numbers, _, $.

• Must not contain white spaces.

You can have white spaces in label names by surrounding them with double quotes. Escape
sequences are not interpreted within label names. It is also not possible to have double
quotes as part of the label name.

instruction

The optional ; can be used to end the statement and start a new statement on the same line.

directive

The optional ; can be used to end the statement and start a new statement on the same line.

macro_invocation

The optional ; can be used to end the statement and start a new statement on the same line.

Comments
Comments are treated as equivalent to whitespace, their contents are ignored by the assembler.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 195 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

There are two ways to include comments in an assembly file:

// single-line comment
@ single-line comment in AArch32 state only
/* multi-line
 comment */

In single-line comments, the // marker starts a comment that runs to the end of the source line.
Unlike when compiling C and C++ source, the end of the line cannot be escaped with \ to continue
the comment.

@ starts a single-line comment in AArch32 state. @ is not a comment character in AArch64 state.

In multi-line comments, the /* marker starts a comment that runs to the first occurrence of */,
even if that is on a later line. Like in C and C++ source, the comment always ends at the first */,
so comments cannot be nested. This style of comments can be used anywhere within an assembly
statement where whitespace is valid.

Examples
 // Instruction on it's own line:
 add r0, r1, r2

 // Label and directive:
lab: .word 42

 // Multiple labels on one line:
lab1: lab2:

 /* Multiple instructions, directives or macro-invocations
 must be separated by ';' */
 add r0, r1, r2; bx lr

 // Multi-line comments can be used anywhere whitespace can:
 add /*dst*/r0, /*lhs*/r1, /*rhs*/r2

10.2 Assembly expressions
Expressions consist of one or more integer literals or symbol references, combined using operators.

You can use an expression when an instruction operand or directive argument expects an integer
value or label.

Not all instruction operands and directive arguments accept all possible expressions. For example,
the alignment directives require an absolute expression for the boundary to align to. Therefore,
alignment directives cannot accept expressions involving labels, but can accept expressions
involving only integer constants.

On the other hand, the data definition directives can accept a wider range of expressions, including
references to defined or undefined symbols. However, the types of expressions accepted is still
limited by the ELF relocations available to describe expressions involving undefined symbols. For
example, it is not possible to describe the difference between two symbols defined in different

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 196 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

sections. The assembler reports an error when an expression is not valid in the context in which it
is used.

Expressions involving integer constants are evaluated as signed 64-bit values internally to the
assembler. If an intermediate value in a calculation cannot be represented in 64 bits, the behavior is
undefined. The assembler does not currently emit a diagnostic when this happens.

Constants
Numeric literals are accepted in the following formats:

• Decimal integer in range 0 to (264)-1.

• Hexadecimal integer in range 0 to (264)-1, prefixed with 0x.

• Octal integer in range 0 to (264)-1, prefixed with 0.

• Binary integer in range 0 to (264)-1, prefixed with 0b.

Some directives accept values larger than (264)-1. These directives only accept simple integer
literals, not expressions.

These ranges do not include negative numbers. Negative numbers can instead be
represented using the unary operator, -.

Symbol References
References to symbols are accepted as expressions. Symbols do not need to be defined in the same
assembly language source file, to be referenced in expressions.

The period symbol (.) is a special symbol that can be used to reference the current location in the
output file.

For AArch32 targets, a symbol reference might optionally be followed by a modifier in parentheses.
The following modifiers are supported:

Table 10-1: Modifiers

Modifier Meaning

None Do not relocate this value.

got_pre1 Offset from this location to the GOT entry of the symbol.

target1 Defined by platform ABI.

target2 Defined by platform ABI.

plel31 Offset from this location to the symbol. Bit 31 is not modified.

sbrel Offset to symbol from addressing origin of its output segment.

got Address of the GOT entry for the symbol.

gotoff Offset from the base of the GOT to the symbol.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 197 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

Operators
The following operators are valid expressions:

Table 10-2: Unary operators

Unary operator Meaning

-expr Arithmetic negation of expr.

+expr Arithmetic addition of expr.

~expr Bitwise negation of expr.

Table 10-3: Binary operators

Binary operator Meaning

expr1 - expr2 Subtraction.

expr1 + expr2 Addition.

expr1 * expr2 Multiplication.

expr1 / expr2 Division.

expr1 % expr2 Modulo.

Table 10-4: Binary logical operators

Binary logical operator Meaning

expr1 && expr2 Logical and. 1 if both operands non-zero, 0 otherwise.

expr1 || expr2 Logical or. 1 if either operand is non-zero, 0 otherwise.

Table 10-5: Binary bitwise operators

Binary bitwise operator Meaning

expr1 & expr2 expr1 bitwise and expr2.

expr1 | expr2 expr1 bitwise or expr2.

expr1 ^ expr2 expr1 bitwise exclusive-or expr2.

expr1 >> expr2 Logical shift right expr1 by expr2 bits.

expr1 << expr2 Logical shift left expr1 by expr2 bits.

Table 10-6: Binary comparison operators

Binary comparison operator Meaning

expr1 == expr2 expr1 equal to expr2.

expr1 != expr2 expr1 not equal to expr2.

expr1 < expr2 expr1 less than expr2.

expr1 > expr2 expr1 greater than expr2.

expr1 <= expr2 expr1 less than or equal to expr2.

expr1 >= expr2 expr1 greater than or equal to expr2.

The order of precedence for binary operators is as follows, with highest precedence operators
listed first:

1. *, /, %, >>, <<

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 198 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

2. |, ^, &

3. +, -

4. ==, !=, <, >, <=, >=

5. &&

6. ||

Operators listed on the same line have equal precedence, and are evaluated from left to right. All
unary operators have higher precedence than any binary operators.

The precedence rules for assembler expressions are not identical to those for C.

Relocation specifiers
For some instruction operands, a relocation specifier might be used to specify which bits of the
expression must be used for the operand, and which type of relocation must be used.

These relocation specifiers can only be used at the start of an expression. They can only be used in
operands of instructions that support them.

In AArch32 state, the following relocation specifiers are available:

Table 10-7: Relocation specifiers for AArch32 state

Relocation specifier Meaning

:lower16: Use the lower 16 bits of the expression value.

:upper16: Use the upper 16 bits of the expression value.

These relocation specifiers are only valid for the operands of the movw and movt instructions.
They can be combined with an expression involving the current place to create a place-relative
relocation, and with the sbrel symbol modifier to create a static-base-relative relocation. The
current place is the location that the assembler is emitting code or data at. A place-relative
relocation is a relocation that generates the offset from the relocated data to the symbol it
references.

In AArch64 state, the following relocation specifiers are available:

Table 10-8: Relocation specifiers for AArch64 state

Relocation specifier Relocation type Bits to use Overflow checked

:lo12: Absolute [11:0] No

:abs_g3: Absolute [63:48] Yes

:abs_g2: Absolute [47:32] Yes

:abs_g2_s: Absolute, signed [47:32] Yes

:abs_g2_nc: Absolute [47:32] No

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 199 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

Relocation specifier Relocation type Bits to use Overflow checked
:abs_g1: Absolute [31:16] Yes

:abs_g1_s: Absolute, signed [31:16] Yes

:abs_g1_nc: Absolute [31:16] No

:abs_g0: Absolute [15:0] Yes

:abs_g0_s: Absolute, signed [15:0] Yes

:abs_g0_nc: Absolute [15:0] No

:got: Global Offset Table Entry [32:12] Yes

:got_lo12: Global Offset Table Entry [11:0] No

These relocation specifiers can only be used in the operands of instructions that have matching
relocations defined in ELF for the Arm 64-bit Architecture (AArch64). They can be combined with
an expression involving the current place to create a place-relative relocation.

Examples
 // Using an absolute expression in an instruction operand:
 orr r0, r0, #1<<23

 // Using an expression in the memory operand of an LDR instruction to
 // reference an offset from a symbol.
func:
 ldr r0, #data+4 // Loads 2 into r0
 bx lr
data:
 .word 1
 .word 2

 // Creating initialized data that contains the distance between two
 // labels:
size:
 .word end - start
start:
 .word 123
 .word 42
 .word 4523534
end:

 // Load the base-relative address of 'sym' (used for 'RWPI'
 // position-independent code) into r0 using movw and movt:
 movw r0, #:lower16:sym(sbrel)
 movt r0, #:upper16:sym(sbrel)

 // Load the address of 'sym' from the GOT using ADRP and LDR (used for
 // position-independent code on AArch64):
 adrp x0, #:got:sym
 ldr x0, [x0, #:got_lo12:sym]

 // Constant pool entry containing the offset between the location and a
 // symbol defined elsewhere. The address of the symbol can be calculated
 // at runtime by adding the value stored in the location of the address
 // of the location. This is one technique for writing position-
 // independent code, which can be executed from an address chosen at
 // runtime without re-linking it.
 adr r0, address
 ldr r1, [r0]
 add r0, r0, r1
address:
 .word extern_symbol - .

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 200 of 241

https://developer.arm.com/documentation/ihi0056/c

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

10.3 Alignment directives
The alignment directives align the current location in the file to a specified boundary.

Syntax
 .balign num_bytes [, fill_value]

 .balignl num_bytes [, fill_value]

 .balignw num_bytes [, fill_value]

 .p2align exponent [, fill_value]

 .p2alignl exponent [, fill_value]

 .p2alignw exponent [, fill_value]

 .align exponent [, fill_value]

Description
num_bytes

This specifies the number of bytes that must be aligned to. This must be a power of 2.

exponent

This specifies the alignment boundary as an exponent. The actual alignment boundary is
2exponent.

fill_value

The value to fill any inserted padding bytes with. This value is optional.

Operation
The alignment directives align the current location in the file to a specified boundary. The unused
space between the previous and the new current location are filled with:

• Copies of fill_value, if it is specified. The width of fill_value can be controlled with the w
and l suffixes, see below.

• NOP instructions appropriate to the current instruction set, if all the following conditions are
specified:

◦ The fill_value argument is not specified.

◦ The w or l suffix is not specified.

◦ The alignment directive follows an instruction.

• Zeroes otherwise.

The .balign directive takes an absolute number of bytes as its first argument, and the .p2align
directive takes a power of 2. For example, the following directives align the current location to the
next multiple of 16 bytes:

• .balign 16

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 201 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

• .p2align 4

• .align 4

The w and l suffixes modify the width of the padding value that is inserted.

• By default, the fill_value is a 1-byte value.

• If the w suffix is specified, the fill_value is a 2-byte value.

• If the l suffix is specified, the fill_value is a 4-byte value.

If either of these suffixes are specified, the padding values are emitted as data (defaulting to a value
of zero), even if following an instruction.

The .align directive is an alias for .p2align, but it does not accept the w and l suffixes.

Alignment is relative to the start of the section in which the directive occurs. If the current
alignment of the section is lower than the alignment requested by the directive, the alignment of
the section is increased.

Usage
Use the alignment directives to ensure that your data and code are aligned to appropriate
boundaries. This is typically required in the following circumstances:

• In T32 code, the ADR instruction and the PC-relative version of the LDR instruction can only
reference addresses that are 4-byte aligned, but a label within T32 code might only be 2-byte
aligned. Use .balign 4 to ensure 4-byte alignment of an address within T32 code.

• Use alignment directives to take advantage of caches on some Arm® processors. For example,
many processors have an instruction cache with 16-byte lines. Use .p2align 4 or .balign 16
to align function entry points on 16-byte boundaries to maximize the efficiency of the cache.

Examples
Aligning a constant pool value to a 4-byte boundary in T32 code:

get_val:
 ldr r0, value
 adds r0, #1
 bx lr
 // The above code is 6 bytes in size.
 // Therefore the data defined by the .word directive below must be manually
 aligned
 // to a 4-byte boundary to be able to use the LDR instruction.
 .p2align 2
value:
 .word 42

Ensuring that the entry points to functions are on 16-byte boundaries, to better utilize caches:

 .p2align 4
 .type func1, "function"
func1:
 // code

 .p2align 4

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 202 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

 .type func2, "function"
func2:
 // code

In both of the examples above, it is important that the directive comes before the
label that is to be aligned. If the label came first, then it would point at the padding
bytes, and not the function or data it is intended to point to.

10.4 Data definition directives
These directives allocate memory in the current section, and define the initial contents of that
memory.

Syntax
 .byte expr[, expr]...

 .hword expr[, expr]...

 .word expr[, expr]...

 .quad expr[, expr]...

 .octa expr[, expr]...

Description
expr

An expression that has one of the following forms:

• A absolute value, or expression (not involving labels) which evaluates to one. For example:

 .word (1<<17) | (1<<6)
 .word 42

• An expression involving one label, which may or not be defined in the current file, plus an
optional constant offset. For example:

 .word label
 .word label + 0x18

• A place-relative expression, involving the current location in the file (or a label in the
current section) subtracted from a label which may either be defined in another section in
the file, or undefined in the file. For example:

foo:
 .word label - .
 .word label - foo

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 203 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

• A difference between two labels, both of which are defined in the same section in the
file. The section containing the labels need not be the same as the one containing the
directive. For example:

 .word end - start
start:
 // ...
end:

The number of bytes allocated by each directive is as follows:

Table 10-9: Data definition directives

Directive Size in bytes

.byte 1

.hword 2

.word 4

.quad 8

.octa 16

If multiple arguments are specified, multiple memory locations of the specified size are allocated
and initialized to the provided values in order.

The following table shows which expression types are accepted for each directive. In some cases,
this varies between AArch32 and AArch64. This is because the two architectures have different
relocation codes available to describe expressions involving symbols defined elsewhere. For
absolute expressions, the table gives the range of values that are accepted (inclusive on both ends).

Table 10-10: Expression types supported by the data definition directives

Directive Absolute Label Place-relative Difference

.byte Within the range
[-128,255] only

AArch32 only Not supported AArch64 and AArch32

.hword Within the range
[-0x8000,0xffff]
only

AArch64 and AArch32 AArch64 only AArch64 and AArch32

.word Within the range
[-2^31,2^32-1] only

AArch64 and AArch32 AArch64 and AArch32 AArch64 and AArch32

.quad Within the range
[-2^63,2^64-1] only

AArch64 only AArch64 only AArch64 only

.octa Within the range
[0,2^128-1] only

Not supported Not supported Not supported

While most directives accept expressions, the .octa directive only accepts literal
values. In the armclang inline assembler and integrated assembler, negative values
are expressions (the unary negation operator and a positive integer literal), so
negative values are not accepted by the .octa directive. If negative 16-byte values
are needed, you can rewrite them using two's complement representation instead.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 204 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

These directives do not align the start of the memory allocated. If this is required you must use one
of the alignment directives.

The following aliases for these directives are also accepted:

Table 10-11: Aliases for the data definition directives

Directive Aliases

.byte .1byte, .dc.b

.hword .2byte, .dc, .dc.w, .short, .value

.word .4byte, .long, .int, .dc.l, .dc.a (AArch32 only)

.quad .8byte, .xword (AArch64 only), .dc.a (AArch64 only)

Examples
 // 8-bit memory location, initialized to 42:
 .byte 42

 // 32-bit memory location, initialized to 15532:
 .word 15532

 // 32-bit memory location, initailized to the address of an externally defined
 symbol:
 .word extern_symbol

 // 16-bit memory location, initialized to the difference between the 'start' and
 // 'end' labels. They must both be defined in this assembly file, and must be
 // in the same section as each other, but not necessarily the same section as
 // this directive:
 .hword end - start

 // 32-bit memory location, containing the offset between the current location in
 the file and an externally defined symbol.
 .word extern_symbol - .

10.5 String definition directives
Allocates one or more bytes of memory in the current section, and defines the initial contents of
the memory from a string literal.

Syntax
 .ascii "string"

 .asciz "string"

 .string "string"

Description
.ascii

The .ascii directive does not append a null byte to the end of the string.

.asciz

The .asciz directive appends a null byte to the end of the string.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 205 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

The .string directive is an alias for .asciz.

string

The following escape characters are accepted in the string literal:

Table 10-12: Escape characters for the string definition directives

Escape character Meaning

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\& Quote (&)

\\ Backslash (\)

{Octal_Escape_Code} Three digit octal escape code for each ASCII character

Examples
Using a null-terminated string in a constant pool:

 .text
hello:
 adr r0, str_hello
 b printf
str_hello:
 .asciz "Hello, world!\n"

Generating pascal-style strings (which are prefixed by a length byte, and have no null terminator),
using a macro to avoid repeated code. See also Macro directives and temporary numeric labels.

 .macro pascal_string, str
 .byte 2f - 1f
1:
 .ascii "\str"
2:
 .endm

 .data
hello:
 pascal_string "Hello"
goodbye:
 pascal_string "Goodbye"

10.6 Floating-point data definition directives
These directives allocate memory in the current section of the file, and define the initial contents of
that memory using a floating-point value.

Syntax
 .float value [, value]...

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 206 of 241

https://developer.arm.com/documentation/dui0742/l/Migrating-from-armasm-to-the-armclang-Integrated-Assembler/Numeric-literals

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

 .double value [, value]...

Description
.float

The .float directive allocates 4 bytes of memory per argument, and stores the values in
IEEE754 single-precision format.

.double

The .double directive allocates 8 bytes of memory per argument, and stores the values in
IEEE754 double-precision format.

value

value is a floating-point literal.

Operation
If a floating-point value cannot be exactly represented by the storage format, it is rounded to the
nearest representable value using the round to nearest, ties to even rounding mode.

The following aliases for these directives are also accepted:

Table 10-13: Aliases for the floating-point data definition directives

Directive Alias

.float .single, .dc.s

.double .dc.d

Examples
float_pi:
 .float 3.14159265359
double_pi:
 .double 3.14159265359

10.7 Section directives
The section directives instruct the assembler to change the ELF section that code and data are
emitted into.

Syntax
.section name [, "flags" [, %type [, entry_size] [, group_name [, linkage]] [,

link_order_symbol] [, unique, unique_id]]]

.pushsection .section name [, "flags" [, %type [, entry_size] [, group_name [,

linkage]] [, link_order_symbol] [, unique, unique_id]]]

.popsection

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 207 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

.text

.data

.rodata

.bss

Description
name

The name argument gives the name of the section to switch to.

By default, if the name is identical to a previous section, or one of the built-in sections, the
assembler switches back to that section. Any code or data that is assembled is appended to
the end of that section. The unique-id argument can be used to override this behavior.

flags

The optional flags argument is a quoted string containing any of the following characters,
which correspond to the sh_flags field in the ELF section header.

Table 10-14: Section flags

Flag Meaning

a SHF_ALLOC: the section is allocatable.

w SHF_WRITE: the section is writable.

y SHF_ARM_PURECODE: the section is not readable.

x SHF_EXECINSTR: the section is executable.

o SHF_LINK_ORDER: the section has a link-order restriction.

M SHF_MERGE: the section can be merged.

S SHF_STRINGS: the section contains null-terminated string.

T SHF_TLS: the section is thread-local storage.

G SHF_GROUP: the section is a member of a section group.

? if the previous section was part of a group, this section is in the
same group, otherwise ignored.

The flags can be specified as a numeric value, with the same encoding as the sh_flags field in
the ELF section header. This cannot be combined with the flag characters listed above. When
using this syntax, the quotes around the flags value are still required.

Certain flags need extra arguments, as described in the respective arguments.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 208 of 241

http://www.sco.com/developers/gabi/latest/ch4.sheader.html#sh_flags

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

type

The optional type argument is accepted with two different syntaxes: %type and "type". It
corresponds to the sh_type field in the ELF section header. The following values for the type
argument are accepted:

Table 10-15: Section Type

Argument ELF type Meaning

%progbits SHT_PROGBITS Section contains initialized data and/or
instructions.

%nobits SHT_NOBITS Section consists only of zero-initialized
data.

%note SHT_NOTE Section contains information that
the linker or loader use to check
compatibility.

%init_array SHT_INIT_ARRAY Section contains an array of pointers to
initialization functions.

%fini_array SHT_FINI_ARRAY Section contains an array of pointers to
termination functions.

%preinit_array SHT_PREINIT_ARRAY Section contains an array of pointers to
pre-initialization functions.

The type can be specified as a numeric value, with the same encoding as the sh_type field
in the ELF section header. When using this syntax, the quotes around the type value are still
required.

entry_size

If the M flag is specified, the entry_size argument is required. This argument must be an
integer value, which is the size of the records that are contained within this section, that the
linker can merge.

group_name

If the G flag is specified, the group_name argument is required. This argument is a symbol
name to be used as the signature to identify the section group. All sections in the same
object file and with the same group_name are part of the same section group.

If the ? flag is specified, the section is implicitly in the same group as the previous section,
and the group_name and linkage options are not accepted.

It is an error to specify both the G and ? flags on the same section.

linkage

If the G flag is specified, the optional linkage argument is allowed. The only valid value for this
argument is comdat, which has the same effect as not providing the linkage argument. If any
arguments after the group_name and linkage arguments are to be provided, then the linkage
argument must be provided.

If the ? flag is specified, the section is implicitly in the same group as the previous section,
and the group_name and linkage options are not accepted.

It is an error to specify both the G and ? flags on the same section.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 209 of 241

http://www.sco.com/developers/gabi/latest/ch4.sheader.html#sh_type

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

link_order_symbol

If the o flag is specified, the link_order_symbol argument is required. This argument must
be a symbol which is defined earlier in the same file. If multiple sections with the o flag are
present at link time, the linker ensures that they are in the same order in the image as the
sections that define the symbols they reference.

unique and unique_id

If the optional unique argument is provided, then the unique_id argument must also be
provided. This argument must be a constant expression which evaluates to a positive integer.
If a section has previously been created with the same name and unique ID, then the
assembler switches to the existing section, appending content to it. Otherwise, a new section
is created. Sections without a unique ID specified is never merged with sections that do
have one. This allows creating multiple sections with the same name. The exact value of the
unique ID is not important, and it has no effect on the generated object file.

Operation
The .section directive switches the current target section to the one described by its arguments.
The .pushsection directive pushes the current target section onto a stack, and switches to the
section described by its arguments. The .popsection directive takes no arguments, and reverts the
current target section to the previous one on the stack. The rest of the directives (.text, .data,
.rodata, .bss) switch to one of the built-in sections.

If continuing a previous section, and the flags, type, or other arguments do not match the previous
definition of the section, then the arguments of the current .section directive has no effect on
the section. Instead, the assembler uses the arguments from the previous .section directive. The
assembler does not currently emit a diagnostic when this happens.

Default
Some section names and section name prefixes implicitly have some flags set. Extra flags can be set
using the flags argument, but it is not possible to clear these implicit flags. The section names that
have implicit flags are listed in the table here. For sections names not mentioned in the table, the
default is to have no flags.

If the %type argument is not provided, the type is inferred from the section name. For sections
names not mentioned in the table here, the default section type is %progbits.

Table 10-16: Sections with implicit flags and default types

Section name Implicit Flags Default Type

.rodata a %progbits

.text ax %progbits

.init ax %progbits

.fini ax %progbits

.data aw %progbits

.bss aw %nobits

.init_array No default %init_array

.fini_array No default %fini_array

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 210 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

Section name Implicit Flags Default Type
.preinit_array No default %preinit_array

.tdata awT %progbits

.tbss awT %nobits

.note* No default %note

Examples
• Splitting code and data into the built-in .text and .data sections. The linker can place these

sections independently, for example to place the code in flash memory, and the writable data in
RAM.

 .text
get_value:
 movw r0, #:lower16:value
 movt r0, #:upper16:value
 ldr r0, [r0]
 bx lr

 .data
value:
 .word 42

• Creating a section containing constant, mergeable records. This section contains a series of 8-
byte records, where the linker is allowed to merge two records with identical content (possibly
coming from different object files) into one record to reduce the image size.

 .section mergable, "aM", %progbits, 8
entry1:
 .word label1
 .word 42
entry2:
 .word label2
 .word 0x1234

• Creating two sections with the same name:

 .section .data, "aw", %progbits, unique, 1
 .word 1
 .section .data, "aw", %progbits, unique, 2
 .word 2

• Creating a section group containing two sections. Here, the G flag is used for the first section,
using the group_signature symbol. The second section uses the ? flag to simplify making it
part of the same group. Any further sections in this file using the G flag and group_signature
symbol are placed in the same group.

 .section foo, "axG", %progbits, group_signature
get_value:
 movw r0, #:lower16:value
 movt r0, #:upper16:value
 ldr r0, [r0]
 bx lr

 .section bar, "aw?"
 .local value
value:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 211 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

 .word 42

10.8 Conditional assembly directives
These directives allow you to conditionally assemble sequences of instructions and directives.

Syntax
.if[modifier] expression
 // ...
 [.elseif expression
 // ...]
 [.else
 // ...]
.endif

Operation
There are several different forms of the .if directive that check different conditions. Each .if
directive must have a matching .endif directive. A .if directive can optionally have one associated
.else directive, and can optionally have any number of .elseif directives.

You can nest these directives, with the maximum nesting depth limited only by the amount of
memory in your computer.

The following forms if the .if directive are available, which check different conditions:

Table 10-17: .if condition modifiers

.if condition modifier Meaning

.if expr Assembles the following code if expr evaluates to non zero.

.ifne expr Assembles the following code if expr evaluates to non zero.

.ifeq expr Assembles the following code if expr evaluates to zero.

.ifge expr Assembles the following code if expr evaluates to a value greater
than or equal to zero.

.ifle expr Assembles the following code if expr evaluates to a value less than
or equal to zero.

.ifgt expr Assembles the following code if expr evaluates to a value greater
than zero.

.iflt expr Assembles the following code if expr evaluates to a value less than
zero.

.ifb text Assembles the following code if the argument is blank.

.ifnb text Assembles the following code if the argument is not blank.

.ifc string1 string2 Assembles the following code if the two strings are the same. The
strings may be optionally surrounded by double quote characters (").
If the strings are not quoted, the first string ends at the first comma
character, and the second string ends at the end of the statement
(newline or semicolon).

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 212 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

.if condition modifier Meaning

.ifnc string1 string2 Assembles the following code if the two strings are not the
same. The strings may be optionally surrounded by double quote
characters ("). If the strings are not quoted, the first string ends at
the first comma character, and the second string ends at the end of
the statement (newline or semicolon).

.ifeqs string1 string2 Assembles the following code if the two strings are the same. Both
strings must be quoted.

.ifnes string1 string2 Assembles the following code if the two strings are not the same.
Both strings must be quoted.

.ifdef expr Assembles the following code if symbol was defined earlier in this
file.

.ifndef expr Assembles the following code if symbol was not defined earlier in
this file.

The .elseif directive takes an expression argument but does not take a condition modifier, and
therefore always behaves the same way as .if, assembling the subsequent code if the expression
is not zero, and if no previous conditions in the same .if .elseif chain were true.

The .else directive takes no argument, and the subsequent block of code is assembled if none of
the conditions in the same .if .elseif chain were true.

Examples
 // A macro to load an immediate value into a register. This expands to one or
 // two instructions, depending on the value of the immediate operand.
 .macro get_imm, reg, imm
 .if \imm >= 0x10000
 movw \reg, #\imm & 0xffff
 movt \reg, #\imm >> 16
 .else
 movw \reg, #\imm
 .endif
 .endm

 // The first of these macro invocations expands to one movw instruction,
 // the second expands to a movw and a movt instruction.
get_constants:
 get_imm r0, 42
 get_imm r1, 0x12345678
 bx lr

10.9 Macro directives
The .macro directive defines a new macro.

Syntax
 .macro macro_name [, parameter_name]...
 // ...
 [.exitm]
 .endm

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 213 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

Description
macro_name

The name of the macro.

parameter_name

Inside the body of a macro, the parameters can be referred to by their name, prefixed with
\. When the macro is instantiated, parameter references are expanded to the value of the
argument.

Parameters can be qualified in these ways:

Table 10-18: Macro parameter qualifier

Parameter qualifier Meaning

<name>:req This marks the parameter as required, it is an error to instantiate
the macro with a blank value for this parameter.

<name>:varag This parameter consumes all remaining arguments in the
instantiation. If used, this must be the last parameter.

<name>=<value> Sets the default value for the parameter. If the argument in the
instantiation is not provided or left blank, then the default value
is used.

Operation
The .macro directive defines a new macro with name macro_name, and zero or more named
parameters. The body of the macro extends to the matching .endm directive.

Once a macro is defined, it can be instantiated by using it like an instruction mnemonic:

<macro_name> argument[, argument]...

Inside a macro body, \@ expands to a counter value which is unique to each macro instantiation.
This can be used to create unique label names, which do not interfere with other instantiations of
the same macro.

The .exitm directive allows exiting a macro instantiation before reaching the end.

Examples
 // Macro for defining global variables, with the symbol binding, type and
 // size set appropriately. The 'value' parameter can be omitted, in which
 // case the variable gets an initial value of 0. It is an error to not
 // provide the 'name' argument.
 .macro global_int, name:req, value=0
 .global \name
 .type \name, %object
 .size \name, 4
\name:
 .word \value
 .endm

 .data
 global_int foo
 global_int bar, 42

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 214 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

10.10 Symbol binding directives
These directives modify the ELF binding of one or more symbols.

Syntax
 .global symbol[, symbol]...

 .local symbol[, symbol]...

 .weak symbol[, symbol]...

Description
.global

The .global directive sets the symbol binding to STB_GLOBAL. These symbols are visible to all
object files being linked, so a definition in one object file can satisfy a reference in another.

.local

The .local directive sets the symbol binding in the symbol table to STB_LOCAL. These
symbols are not visible outside the object file they are defined or referenced in, so multiple
object files can use the same symbol names without interfering with each other.

.weak

The .weak directive sets the symbol binding to STB_WEAK. These symbols behave similarly to
global symbols, with these differences:

• If a reference to a symbol with weak binding is not satisfied (no definition of the symbol is
found), this is not an error.

• If multiple definitions of a weak symbol are present, this is not an error. If a definition of
the symbol with strong binding is present, that one satisfies all references to the symbol,
otherwise one of the weak references are chosen.

Operation
The symbol binding directive can be at any point in the assembly file, before or after any references
or definitions of the symbol.

If the binding of a symbol is not specified using one of these directives, the default binding is:

• If a symbol is not defined in the assembly file, it has global visibility by default.

• If a symbol is defined in the assembly file, it has local visibility by default.

.local and .L are different directives. Symbols starting with .L are not put into the
symbol table.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 215 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

Examples
 // This function has global binding, so can be referenced from other object
 // files. The symbol 'value' defaults to local binding, so other object
 // files can use the symbol name 'value' without interfering with this
 // definition and reference.
 .global get_val
get_val:
 ldr r0, value
 bx lr
value:
 .word 0x12345678

 // The symbol 'printf' is not defined in this file, so defaults to global
 // binding, so the linker searches other object files and libraries to
 // find a definition of it.
 bl printf

 // The debug_trace symbol is a weak reference. If a definition of it is
 // found by the linker, this call is relocated to point to it. If a
 // definition is not found (e.g. in a release build, which does not include
 // the debug code), the linker points the bl instruction at the next
 // instruction, so it has no effect.
 .weak debug_trace
 bl debug_trace

10.11 Org directive
The .org directive advances the location counter in the current section to new-location.

Syntax
.org new_location [, fill_value]

Description
new_location

The new_location argument must be one of:

• An absolute integer expression, in which case it is treated as the number of bytes from
the start of the section.

• An expression which evaluates to a location in the current section. This could use a
symbol in the current section, or the current location ('.').

fill_value

This is an optional 1-byte value.

Operation
The .org directive can only move the location counter forward, not backward.

By default, the .org directive inserts zero bytes in any locations that it skips over. This can be
overridden using the optional fill_value argument, which sets the 1-byte value that is repeated in
each skipped location.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 216 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

Examples
 // Macro to create one AArch64 exception vector table entry. Each entry
 // must be 128 bytes in length. If the code is shorter than that, padding
 // is inserted. If the code is longer than that, the .org directive
 // reports an error, as this would require the location counter to move
 // backwards.
 .macro exc_tab_entry, num
1:
 mov x0, #\num
 b unhandled_exception
 .org 1b + 0x80
 .endm

 // Each of these macro instantiations emits 128 bytes of code and padding.
 .section vectors, "ax"
 exc_tab_entry 0
 exc_tab_entry 1
 // More table entries...

10.12 AArch32 Target selection directives
The AArch32 target selection directives specify code generation parameters for AArch32 targets.

Syntax
 .arm

 .thumb

 .arch arch_name

 .cpu cpu_name

 .fpu fpu_name

 .arch_extension extension_name

 .eabi_attribute tag, value

Description
.arm

The .arm directive instructs the assembler to interpret subsequent instructions as A32
instructions, using the UAL syntax.

The .code 32 directive is an alias for .arm.

.thumb

The .thumb directive instructs the assembler to interpret subsequent instructions as T32
instructions, using the UAL syntax.

The .code 16 directive is an alias for .thumb.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 217 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

.arch

The .arch directive changes the architecture that the assembler is generating instructions for.
The arch_name argument accepts the same names as the -march option, but does not accept
the optional architecture extensions accepted by the command-line option.

.cpu

The .cpu directive changes the CPU that the assembler is generating instructions for. The
cpu_name argument accepts the same names as the -mcpu option, but does not accept the
optional architecture extensions accepted by the command-line option.

.fpu

The .fpu directive changes the FPU that the assembler is generating instructions for. The
fpu_name argument accepts the same names as the -mfpu option.

.arch_extension

The .arch_extension enables or disables optional extensions to the architecture or CPU
that the assembler is generating instructions for. It accepts the following optional extensions,
which can be prefixed with no to disable them:

• crc

• fp16

• ras

.eabi_attribute

The .eabi_attribute directive sets a build attribute in the output file. Build attributes are
used by armlink to check for co-compatibility between object files, and to select suitable
libraries.

The .eabi_attribute directive does not have any effect on which instructions the
assembler accepts. It is recommended that the .arch, .cpu, .fpu and .arch_extension
directives are used where possible, as they also check that no instructions not valid for the
selected architecture are valid. These directives also set the relevant build attributes, so the
.eabi_attribute directive is only needed for attributes not covered by them.

tag

The tag argument specifies the tag that is to be set. This can either be the tag name or
tag number, but not both.

value

The value argument specifies the value to set for the tag. The value can either be of
integer or string type. The type must match exactly the type expected for that tag.

Tag_compatibility is a special tag that requires both an integer value and a
string value:

.eabi_attribute Tag_compatibility, integer_value, string_value

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 218 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

Examples
// Generate code for the Armv7-M architecture:
.arch armv7-m

// Generate code for the Cortex-R5, without an FPU:
.cpu cortex-r5
.fpu none

// Generate code for Armv8.2-A with the FP16 extension:
.arch armv8.2-a
.fpu neon-fp-armv8
.arch_extension fp16

10.13 AArch64 Target selection directives
The AArch64 target selection directives specify code generation parameters for AArch64 targets.

Syntax
 .arch arch_name[+[no]extension]...

 .cpu cpu_name[+[no]extension]...

Description
.arch

The .arch directive changes the architecture that the assembler is generating instructions for.

The arch_name argument accepts the same names as the -march option, and accepts certain
optional architecture extensions (extension) separated by +. The extension can be prefixed
with no to disable it.

.cpu

The .cpu directive changes the CPU that the assembler is generating instructions for.

The cpu_name argument accepts the same names as the -mcpu option, and accepts certain
optional architecture extensions (extension) separated by +. The extension can be prefixed
with no to disable it.

extension

Optional architecture extensions. The accepted architecture extensions are:

• crc

• crypto

• fp

• ras

• simd

Examples
// Generate code for Armv8-A without a floating-point unit. The assembler

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 219 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

// reports an error if any instructions following this directive require
// the floating-point unit.
.arch armv8-a+nofp

10.14 Space-filling directives
The .space directive emits count bytes of data, each of which has value value. If the value argument
is omitted, it defaults to zero.

Syntax
 .space count [, value]

 .fill count [, size [, value]]

Description
.space

The .space directive emits count bytes of data, each of which has value value . If the value
argument is omitted, its default value is zero.

The .skip and .zero directives are aliases for the .space directive.

.fill

The .fill directive emits count data values, each with length size bytes and value value . If
size is greater than 8, it is truncated to 8. If the size argument is omitted, its default value is
one. If the value argument is omitted, its defaults value is zero.

The .fill directive always interprets the value argument as a 32-bit value.

• If the size argument is less than or equal to 4, the value argument is truncated to size
bytes, and emitted with the appropriate endianness for the target. The assembler does
not emit a diagnostic if value is truncated in this case.

• If the size argument is greater than 4, the value is emitted as a 4-byte value with the
appropriate endianness. The value is emitted in the 4 bytes of the allocated memory with
the lowest addresses. The remaining bytes in the allocated memory are then filled with
zeroes. In this case, the assembler does emit a diagnostic if the value is truncated.

10.15 Type directive
The .type directive sets the type of a symbol.

Syntax
 .type symbol, %type

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 220 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Integrated Assembler

Description
.type

The .type directive sets the type of a symbol.

symbol

The symbol name to set the type for.

%type

The following types are accepted:

• %function

• %object

• %tls_object

Examples
 // 'func' is a function
 .type func, %function
func:
 bx lr

 // 'value' is a data object:
 .type value, %object
value:
 .word 42

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 221 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

11. armclang Inline Assembler
Provides reference information on writing inline assembly.

11.1 Inline Assembly
armclang provides an inline assembler that enables you to write assembly language sequences in C
and C++ language source files. The inline assembler also provides access to features of the target
processor that are not available from C or C++.

You can use inline assembly in two contexts:

• File-scope inline assembly statements.

__asm(".global __use_realtime_heap");

• Inline assembly statement within a function.

void set_translation_table(void *table) {
 __asm("msr TTBR0_EL1, %0"
 :
 : "r" (table));
}

Both syntaxes accept assembly code as a string. Write your assembly code in the syntax that the
integrated assembler accepts. For both syntaxes, the compiler inserts the contents of the string into
the assembly code that it generates. All assembly directives that the integrated assembler accepts
are available to use in inline assembly. However, the state of the assembler is not reset after each
block of inline assembly. Therefore, avoid using directives in a way that affects the rest of the
assembly file, for example by switching the instruction set between A32 and T32. See armclang
Integrated Assembler.

Implications for inline assembly with optimizations
You can write complex inline assembly that appears to work at some optimization levels, but the
assembly is not correct. The following examples describe some situations when inline assembly is
not guaranteed to work:

• Including an instruction that generates a literal pool. There is no guarantee that the compiler
can place the literal pool in the range of the instruction.

• Using or referencing a function only from the inline assembly without telling the compiler that
it is used. The compiler treats the assembly as text. Therefore, the compiler can remove the
function that results in an unresolved reference during linking. The removal of the function is
especially visible for LTO, because LTO performs whole program optimization and is able to
remove more functions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 222 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

For file-scope inline assembly, you can use the __attribute((used)) function attribute to tell
the compiler that a function is used. For inline assembly statements, use the input and output
operands.

For large blocks of assembly code where the overhead of calling between C or C++ and assembly
is not significant, Arm recommends using a separate assembly file, which does not have these
limitations.

Related information
File-scope inline assembly on page 223
Output and input operands on page 225

11.2 File-scope inline assembly
Inline assembly can be used at file-scope to insert assembly into the output of the compiler.

All file-scope inline assembly code is inserted into the output of the compiler before the code
for any functions or variables declared in the file, regardless of where they appear in the input. If
multiple blocks of file-scope inline assembly code are present in one file, they are emitted in the
same order as they appear in the source code.

Compiling multiple files containing file-scope inline assembly with the -flto option does not
affect the ordering of the blocks within each file, but the ordering of blocks in different files is not
defined.

Syntax
__asm("assembly code");

If you include multiple assembly statements in one file-scope inline assembly block, you must
separate them by newlines or semicolons. The assembly string does not have to end in a new-line
or semicolon.

Examples
// Simple file-scope inline assembly.
__asm(".global __use_realtime_heap");

// Multiple file-scope inline assembly statements in one block:
__asm("add_ints:\n"
 " add r0, r0, r1\n"
 " bx lr");

// C++11 raw string literals can be used for long blocks, without needing to
// include escaped newlines in the assembly string (requires C++11):
__asm(R"(
 sub_ints:
 sub r0, r0, r1
 bx lr
)");

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 223 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

11.3 Inline assembly statements within a function
Inline assembly statements can be used inside a function to insert assembly code into the body of a
C or C++ function.

Inline assembly code allows for passing control-flow and values between C/C++ and assembly at a
fine-grained level. The values that are used as inputs to and outputs from the assembly code must
be listed. Special tokens in the assembly string are replaced with the registers that contain these
values.

As with file-scope inline assembly, you can use any instructions or directives that are available in
the integrated assembler in the assembly string. Use multiple assembly statements in the string of
one inline assembly statement by separating them with newlines or semicolons. If you use multiple
instructions in this way, the optimizer treats them as a complete unit. It does not split them up,
reorder them, or omit some of them.

The compiler does not guarantee that the ordering of multiple inline assembly statements are
preserved. It might also do the following:

• Merge two identical inline assembly statements into one inline assembly statement.

• Split one inline assembly statement into two inline assembly statements.

• Remove an inline assembly statement that has no apparent effect on the result of the program.

To prevent the compiler from doing any of these operations, you must use the input and output
operands and the volatile keyword to indicate to the compiler which optimizations are valid.

The compiler does not parse the contents of the assembly string, except for replacing template
strings, until code-generation is complete. It relies on the input and output operands, and clobbers
to tell it about the requirements of the assembly code, and constraints on the surrounding
generated code. Therefore the input and output operands, and clobbers must be accurate.

Syntax
__asm [volatile] (
 "<assembly string>"
 [: <output operands>
 [: <input operands>
 [: <clobbers>]]]
);

11.3.1 Assembly string

An assembly string is a string literal that contains the assembly code.

The assembly string can contain template strings, starting with %, which the compiler replaces. The
main use of these strings is to use registers that the compiler allocates to hold the input and output
operands.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 224 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

Syntax
Template strings for operands can take one of the following forms:

"%<modifier><number>"
"%<modifier>[<name>]"

<modifier> is an optional code that modifies the format of the operand in the final assembly string.
You can use the same operand multiple times with different modifiers in one assembly string. See
Inline assembly template modifiers.

For numbered template strings, the operands of the inline assembly statement are numbered,
starting from zero, in the order they appear in the operand lists. Output operands appear before
input operands.

If an operand has a name in the operand lists, you can use this name in the template string instead
of the operand number. Square brackets must surround the name. Using names makes larger blocks
of inline assembly easier to read and modify.

The %% template string emits a % character into the final assembly string.

The %= template string emits a number that is unique to the instance of the inline assembly
statement. See Duplication of labels in inline assembly statements.

11.3.2 Output and input operands

The inline assembly statement can optionally accept two lists of operand specifiers, the first for
outputs and the second for inputs. These lists are used to pass values between the assembly code
and the enclosing C/C++ function.

Syntax
Each list is a comma-separated list of operand specifiers. Each operand specifier can take one of
the following two forms:

[<name>] "<constraint>" (<value>)
 "<constraint>" (<value>)

Where:

<name>

Is a name for referring to the operand in templates inside the inline assembly string. If the
name for an operand is omitted, it must be referred to by number instead.

<constraint>

Is a string that tells the compiler how the value is used in the assembly string, including:

• For output operands, whether it is only written to, or both read from and written to. Also
whether it can be allocated to the same register as an input operand. See Constraint
modifiers.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 225 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

• Whether to store the value in a register or memory, or whether it is a compile-time
constant. See Constraint codes.

<value>

Is a C/C++ value that the operand corresponds to. For output operands, this value must be a
writable value.

Example
// foo.c

int saturating_add(int a, int b) {
 int result;
 __asm(
 // The assembly string uses templates for the registers which hold output
 // and input values. These are replaced with the names of the
 // registers that the compiler chooses to hold the output and input
 // values.

 "qadd %0, %[lhs], %[rhs]"

 // The output operand, which corresponds to the "result" variable. This
 // does not have a name assigned, so must be referred to in the assembly
 // string by its number ("%0").
 // The "=" character in the constraint string tells the compiler that the
 // register chosen to hold the result does not need to have any
 // particular value at the start of the inline assembly.
 // The "r" character in the constraint tells the compiler that the value
 // should be placed in a general-purpose register (r0-r12 or r14).

 : "=r" (result)

 // The two input operands also use the "r" character in their
 // constraints, so the compiler places them in general-purpose
 // registers.
 // These have names specified, which can be used to refer to them in
 // the assembly string ("%[lhs]" and "%[rhs]").

 : [lhs] "r" (a), [rhs] "r" (b)
);

 return result;
}

Build this example with the following command:

armclang --target=arm-arm-none-eabi -march=armv7-a -O2 -c -S foo.c -o foo.s

The assembly language source file foo.s that is generated contains:

 .section .text.saturating_add,"ax",%progbits
 .hidden saturating_add @ -- Begin function saturating_add
 .globl saturating_add
 .p2align 2
 .type saturating_add,%function
 .code 32 @ @saturating_add
saturating_add:
 .fnstart
@ %bb.0: @ %entry
 @APP
 qadd r0,r0,r1
 @NO_APP
 bx lr

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 226 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

.Lfunc_end0:
 .size saturating_add, .Lfunc_end0-saturating_add
 .cantunwind
 .fnend

In this example:

• The compiler places the C function saturating_add() in a section that is called
.text.saturating_add.

• Within the body of the function, the compiler expands the inline assembly statement into
the qadd r0, r0, r1 instruction between the comments @APP and @NO_APP. In -S output, the
compiler always places code that it expands from inline assembly statements within a function
between a pair of @APP and @NO_APP comments.

• The compiler uses the general-purpose register R0 for:

◦ The int a parameter of the saturating_add() function.

◦ The inline assembly input operand %[lhs].

◦ The inline assembly output operand %0.

◦ The return value of the saturating_add() function.

• The compiler uses the general-purpose register R1 for:

◦ The int b parameter of the saturating_add() function.

◦ The inline assembly input operand %[rhs].

11.3.3 Clobber list

The clobber list is a comma-separated list of strings. Each string is the name of a register that the
assembly code potentially modifies, but for which the final value is not important. To prevent the
compiler from using a register for a template string in an inline assembly string, add the register to
the clobber list.

For example, if a register holds a temporary value, include it in the clobber list. The compiler avoids
using a register in this list as an input or output operand, or using it to store another value when
the assembly code is executed.

In addition to register names, you can use two special names in the clobber list:

"memory"
This string tells the compiler that the assembly code might modify any memory, not just
variables that are included in the output constraints.

"cc"
This string tells the compiler that the assembly code might modify any of the condition flags
N, Z, C, or V. In AArch64 state, these condition flags are in the NZCV register. In AArch32
state, these condition flags are in the CPSR register.

Example
void enable_aarch64() {

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 227 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

 // Set bit 10 of SCR_EL3, to enale AArch64 at EL2.
 __asm volatile(R"(
 mrs x0, SCR_EL3
 orr x0, x0, #(1<<10)
 msr SCR_EL3, x0
)" : /* no outputs */ : /* no inputs */
 // We used x0 as a temporary register, so we need to mark it as
 // clobbered, to prevent the compiler from storing a value in it.
 : "x0");
}

11.3.4 volatile

The optional volatile keyword tells the compiler that the assembly code has side-effects that
the output, input, and clobber lists do not represent. For example, use this keyword with inline
assembly code that sets the value of a system register.

The compiler assumes that any inline assembly statement with no output operands is volatile,
even if the keyword is not present. However, Arm recommends that you still use it for clarity, and
to avoid a behavior change if an output is added later.

Example
// Example where the volatile keyword is required. If the volatile keyword
// was omitted, this appears to still work. However, if the compiler were to
// inline it into a function that does not use the return value (old_table),
// then the inline assembly statement would appear to be unnecessary, and
// could get optimized out. The "volatile" keyword lets the compiler know
// that the assembly has an effect other than providing the output value, so
// that this does not happen.
void *swap_ttbr0(void *new_table) {
 void *old_table;
 __asm volatile (
 "mrs %[old], TTBR0_EL1\n"
 "msr TTBR0_EL1, %[new]\n"
 : [old] "=&r" (old_table)
 : [new] "r" (new_table));
 return old_table;
}

11.4 Inline assembly constraint strings
A constraint string is a string literal, the contents of which are composed of two parts.

The contents of the constraint string are:

• A constraint modifier if the constraint string is for an output operand.

• One or more constraint codes.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 228 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

11.4.1 Constraint modifiers

All output operands require a constraint modifier. There are currently no supported constraint
modifiers for input operands.

Table 11-1: Constraint modifiers

Modifier Meaning

= This operand is only written to, and only after all input operands
have been read for the last time. Therefore the compiler can
allocate this operand and an input to the same register or memory
location.

+ This operand is both read from and written to.

=& This operand is only written to. It might be modified before the
assembly block finishes reading the input operands. Therefore the
compiler cannot use the same register to store this operand and an
input operand. Operands with the =& constraint modifier are known
as early-clobber operands.

Note:
In the case where a register constraint operand and a memory
constraint operand are used together, you must use the =&
constraint modifier on the register constraint operand to prevent
the register from being used in the code generated to access the
memory.

11.4.2 Constraint codes

Constraint codes define how to pass an operand between assembly code and the surrounding C or
C++ code.

There are three categories of constraint codes:

Constant operands
You can only use these operands as input operands, and they must be compile-time
constants. Use where a value is used as an immediate operand to an instruction. There
are target-specific constraints that accept the immediate ranges suitable for different
instructions.

Register operands
You can use these operands as both input and output operands. The compiler allocates a
register to store the value. As there are a limited number of registers, it is possible to write an
inline assembly statement for which there are not enough available registers. In this case, the
compiler reports an error. The exact number of available registers varies depending on the
target architecture and the optimization level.

Memory operands
You can use these operands as both input and output operands. Use them with load and
store instructions. Usually a register is allocated to hold a pointer to the operand. As there
are a limited number of registers, it is possible to write an inline assembly statement for

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 229 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

which there are not enough available registers. In this case, the compiler reports an error. The
exact number of available registers can vary depending on the target architecture and the
optimization level.

There are some common constraints, which can be used in both AArch32 state and AArch64 state.
Other constraints are specific to AArch32 state or AArch64 state. In AArch32 state, there are some
constraints that vary depending on the selected instruction set.

11.4.3 Constraint codes common to AArch32 state and AArch64 state

The following constraint codes are common to both AArch32 state and AArch64 state.

Constants

i A constant integer, or the address of a global variable or function.
n A constant integer.

The immediate constraints only check that their operand is constant after
optimizations have been applied. Therefore it is possible to write code that you can
only compile at higher optimization levels. Arm recommends that you test your code
at multiple optimization levels to ensure it compiles.

Memory

m A memory reference. This constraint causes a general-purpose register to
be allocated to hold the address of the value instead of the value itself.
By default, this register is printed as the name of the register surrounded
by square brackets, suitable for use as a memory operand. For example,
[r4] or [x7]. In AArch32 state only, you can print the register without the
surrounding square brackets by using the m template modifier. See Template
modifiers for AArch32 state.

Other

X If the operand is a constant after optimizations have been performed, this
constraint is equivalent to the i constraint. Otherwise, it is equivalent to the r
or w constraints, depending on the type of the operand.

Arm recommends that you use more precise constraints where possible. The X
constraint does not perform any of the range checking or register restrictions that
the other constraints perform.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 230 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

11.4.4 Constraint codes for AArch32 state

The following constraint codes are specific to AArch32 state.

Registers
r

Operand must be an integer or floating-point type.

For targets that do not support Thumb®-2 technology, the compiler can use R0-R7.

For all other targets, the compiler can use R0-R12, or R14.

l
Operand must be an integer or floating-point type.

For T32 state, the compiler can use R0-R7.

For A32 state, the compiler can use R0-R12, or R14.

h
Operand must be an integer or floating-point type.

For T32 state, the compiler can use R8-R12, or R14.

Not valid for A32 state.

w
Operand must be a floating-point or vector type, or a 64-bit integer.

The compiler can use S0-S31, D0-D31, or Q0-Q15, depending on the size of the operand
type.

t
Operand must be a 32-bit floating-point or integer type.

The compiler can use S0-S31.

The compiler never selects a register that is not available for register allocation. Similarly, R9 is
reserved when compiling with -frwpi, and is not selected. The compiler may also reserve one or
two registers to use as a frame pointer and a base pointer. The number of registers available for
inline assembly operands therefore may be less than the number implied by the ranges above. This
number may also vary with the optimization level.

If you use a 64-bit value as an operand to an inline assembly statement in A32 or 32-bit T32
instructions, and you use the r constraint code, then an even/odd pair of general purpose registers
is allocated to hold it. This register allocation is not guaranteed for the l or h constraints.

Using the r constraint code enables the use of instructions like LDREXD/STREXD, which require an
even/odd register pair. You can reference the registers holding the most and least significant halves

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 231 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

of the value with the Q and R template modifiers. For an example of using template modifiers, see
Template modifiers for AArch32 state.

Constants
The constant constraints accept different ranges depending on the selected instruction set.
These ranges correspond to the ranges of immediate operands that are available for the different
instruction sets. You can use them with a register constraint (see Using multiple alternative operand
constraints) to write inline assembly that emits optimal code for multiple architectures without
having to change the assembly code. The emitted code uses immediate operands when possible.

Constraint code 16-bit T32 instructions 32-bit T32 instructions A32 instructions

I [0, 255] Modified immediate value for
32-bit T32 instructions.

Modified immediate value for
A32 instructions.

J [-255, -1] [-4095, 4095] [-4095, 4095]

K 8-bit value shifted left any
amount.

Bitwise inverse of a modified
immediate value for a 32-bit T32
instruction.

Bitwise inverse of a modified
immediate value for an A32
instruction.

L [-7, 7] Arithmetic negation of a
modified immediate value for a
32-bit T32 instruction.

Arithmetic negation of a
modified immediate value for an
A32 instruction.

11.4.5 Constraint codes for AArch64 state

The following constraint codes are specific to AArch64 state.

Registers

r The compiler can use a 64-bit general purpose register, X0-X30.

If you want the compiler to use the 32-bit general purpose registers W0-W31
instead, use the w template modifier.

w The compiler can use a SIMD or floating-point register, V0-V31.

The b, h, s, d, and q template modifiers can override this behavior.
x Operand must be a 128-bit vector type.

The compiler can use a low SIMD register, V0-V15.

Constants

z A constant with value zero, printed as the zero register (XZR or WZR). Useful
when combined with r (see Using multiple alternative operand constraints) to
represent an operand that can be either a general-purpose register or the zero
register.

I [0, 4095], with an optional left shift by 12. The range that the ADD and SUB
instructions accept.

J [-4095, 0], with an optional left shift by 12.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 232 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

K An immediate that is valid for 32-bit logical instructions. For example, AND,
ORR, EOR.

L An immediate that is valid for 64-bit logical instructions. For example, AND,
ORR, EOR.

M An immediate that is valid for a MOV instruction with a destination of a 32-
bit register. Valid values are all values that the K constraint accepts, plus the
values that the MOVZ, MOVN, and MOVK instructions accept.

N An immediate that is valid for a MOV instruction with a destination of a 64-
bit register. Valid values are all values that the L constraint accepts, plus the
values that the MOVZ, MOVN, and MOVK instructions accept.

Related information
Inline assembly template modifiers on page 233

11.4.6 Using multiple alternative operand constraints

There are many instructions that can take either an immediate value with limited range or a register
as one of their operands.

To generate optimal code for an instruction, use the immediate version of the instruction where
possible. Using an immediate value avoids needing a register to hold the operand, and any extra
instructions to load the operand into that register. However, you can only use an immediate value if
the operand is a compile-time constant, and is in the appropriate range.

To generate the best possible code, you can provide multiple constraint codes for an operand. The
compiler selects the most restrictive one that it can use.

Example
int add(int a, int b) {
 int r;
 // Here, the "Ir" constraint string tells the compiler that operand b can be
 // an immediate, but if it is not a constant, or not in the appropriate
 // range for an arithmetic instruction, it can be placed in a register.
 __asm("add %[r], %[a], %[b]"
 : [r] "=r" (r)
 : [a] "r" (a),
 [b] "Ir" (b));
 return r;
}

// At -O2 or above, the call to add is inlined and optimized, so that the
// immediate form of the add instruction can be used.
int add_42(int a) {
 return add(a, 42);
}

// Here, the immediate is not usable by the add instruction, so the compiler
// emits a movw instruction to load the value 12345 into a register.
int add_12345(int a) {
 return add(a, 12345);
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 233 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

11.5 Inline assembly template modifiers
Template modifiers are characters that you can insert into the assembly string, between the %
character and the name or number of an operand reference. For example, %c1, where c is the
template modifier, and 1 is the number of the operand reference. They change the way that the
operand is printed in the string. This change is sometimes required so the operand is in the form
that some instructions or directives expect.

11.5.1 Template modifiers common to AArch32 state and AArch64 state

Template modifiers that are common to both AArch32 state and AArch64 state.

These modiifiers are:

c
Valid for an immediate operand. Prints it as a plain value without a preceding #. Use this
template modifier when using the operand in .word, or another data-generating directive,
which needs an integer without the #.

n
Valid for an immediate operand. Prints the arithmetic negation of the value without a
preceding #.

Example
// This uses an operand as the value in the .word directive. The .word
// directive does not accept numbers with a preceding #, so we use the 'c'
// template modifier to print just the value.
int foo() {
 int val;
 __asm (R"(
 ldr %0, 1f
 b 2f
 1:
 .word %c1
 2:
)"
 : "=r" (val)
 : "i" (0x12345678));
 return val;
}

11.5.2 Template modifiers for AArch32 state

Template modifiers that are specific to AArch32 state.

These modiifiers are:

a If the operand uses a register constraint, it is printed surrounded by square
brackets. If it uses a constant constraint, it is printed as a plain immediate, with
no preceding #.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 234 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

y The operand must be a 32-bit floating-point type, using a register constraint.
It is printed as the equivalent D register with an index. For example, the
register S2 is printed as d1[0], and the register S3 is printed as d1[1].

B The operand must use a constant constraint, and is printed as the bitwise
inverse of the value, without a preceding #.

L The operand must use a constant constraint, and is printed as the least-
significant 16 bits of the value, without a preceding #.

Q The operand must use the r constraint, and must be a 64-bit integer or
floating-point type. The operand is printed as the register holding the least-
significant half of the value.

R The operand must use the r constraint, and must be a 64-bit integer or
floating-point type. The operand is printed as the register holding the most-
significant half of the value.

H The operand must use the r constraint, and must be a 64-bit integer or
floating-point type. The operand is printed as the highest-numbered register
holding half of the value.

e The operand must be a 128-bit vector type, using the w or x constraint. The
operand is printed as the D register that overlaps the low half of the allocated
Q register.

f The operand must be a 128-bit vector type, using the w or x constraint. The
operand is printed as the D register that overlaps the high half of the allocated
Q register.

m The operand must use the m constraint, and is printed as a register without the
surrounding square brackets.

Example
// In AArch32 state, the 'Q' and 'R' template modifiers can be used to print
// the registers holding the least- and most-significant half of a 64-bit
// operand.
uint64_t atomic_swap(uint64_t new_val, uint64_t *addr) {
 uint64_t old_val;
 unsigned temp;
 __asm volatile(
 "dmb ish\n"
 "1:\n"
 "ldrexd %Q[old], %R[old], %[addr]\n"
 "strexd %[temp], %Q[new], %R[new], %[addr]\n"
 "cmp %[temp], #0\n"
 "bne 1b\n"
 "dmb ish\n"
 : [new] "+&r" (old_val),
 [temp] "=&r" (temp)
 : [old] "r" (new_val),
 [addr] "m" (*addr));
 return old_val;
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 235 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

11.5.3 Template modifiers for AArch64 state

Template modifiers that are specific to AArch64 state.

In AArch64 state, register operands are printed as X registers for integer types and V registers for
floating-point and vector types by default. You can use the template modifiers to override this
behavior.

The modiifiers are:

w Operand constraint must be r. Prints the register using its 32-bit W name.
x Operand constraint must be r. Prints the register using its 64-bit X name.
b Operand constraint must be w or x. Prints the register using its 8-bit B name.
h Operand constraint must be w or x. Prints the register using its 16-bit H name.
s Operand constraint must be w or x. Prints the register using its 32-bit S name.
d Operand constraint must be w or x. Prints the register using its 64-bit D name.
q Operand constraint must be w or x. Prints the register using its 128-bit Q

name.

Example
// In AArch64 state, the 's' template modifiers cause these operands to be
// printed as S registers, instead of the default of V registers.
float add(float a, float b) {
 float result;
 __asm("fadd %s0, %s1, %s2"
 : "=w" (result)
 : "w" (a), "w" (b));
 return result;
}

11.6 Forcing inline assembly operands into specific
registers

Sometimes specifying the exact register that is used for an operand is preferable to letting the
compiler allocate a register automatically.

For example, the inline assembly block may contain a call to a function or system call that expects
an argument or return value in a particular register.

To specify the register to use, the operand of the inline assembly statement must be a local register
variable, which you declare as follows:

register int foo __asm("r2");
register float bar __asm("s4") = 3.141;

A local register variable is guaranteed to be held in the specified register in an inline assembly
statement where it is used as an operand. Elsewhere it is treated as a normal variable, and can
be stored in any register or in memory. Therefore a function can contain multiple local register

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 236 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

variables that use the same register if only one local register variable is in any single inline assembly
statement.

Example
// This function uses named register variables to make a Linux 'read' system call.
// The three arguments to the system call are held in r0-r2, and the system
// call number is placed in r7.
int syscall_read(register int fd, void *buf, unsigned count) {
 register unsigned r0 __asm("r0") = fd;
 register unsigned r1 __asm("r1") = buf;
 register unsigned r2 __asm("r2") = count;
 register unsigned r7 __asm("r7") = 0x900003;
 __asm("svc #0"
 : "+r" (r0)
 : "r" (r1), "r" (r2), "r" (r7));
 return r0;
}

11.7 Symbol references and branches into and out of
inline assembly

Symbols that are defined in an inline assembly statement can only be referred to from the same
inline assembly statement.

The compiler can optimize functions containing inline assembly, which can result in the removal
or duplication of the inline assembly statements. To define symbols in assembly and use them
elsewhere, use file-scope inline assembly, or a separate assembly language source file.

Except for function calls, it is not permitted to branch out of an inline assembly block, including
branching to other inline assembly blocks. The optimization passes of the compiler assume that
inline assembly statements only exit by reaching the end of the assembly block, and optimize the
surrounding function accordingly.

It is valid to call a function from inside inline assembly, as that function returns control-flow back to
the inline assembly code.

Arm does not recommend directly referencing global data or functions from inside an assembly
block by using their names in the assembly string. Often such references appear to work, but the
compiler does not know about the reference.

If the global data or functions are only referenced inside inline assembly statements, then the
compiler might remove these global data or functions.

To prevent the compiler from removing global data or functions which are referenced from inline
assembly statements, you can:

• use __attribute__((used)) with the global data or functions.

• pass the reference to global data or functions as operands to inline assembly statements.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 237 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

Arm recommends passing the reference to global data or functions as operands to inline assembly
statements so that if the final image does not require the inline assembly statements and the
referenced global data or function, then they can be removed.

Example
static void foo(void) { /* ... */ }
// This function attempts to call the function foo from inside inline assembly.
// In some situations this may appear to work, but if foo is not referenced
// anywhere else (including if all calls to it from C got inlined), the
// compiler could remove the definition of foo, so this would fail to link.
void bar() {
 __asm volatile(
 "bl foo"
 : /* no outputs */
 : /* no inputs */
 : "r0", "r1", "r2", "r3", "r12", "lr");
}

// This function is the same as above, except it passes a reference to foo into
// the inline assembly as an operand. This lets the compiler know about the
// reference, so the definition of foo is not removed (unless, the
// definition of bar_fixed can also be removed). In C++, this has the
// additional advantage that the operand uses the source name of the function,
// not the mangled name (_ZL3foov) which would have to be used if writing the
// symbol name directly in the assembly string.
void bar_fixed() {
 __asm volatile(
 "bl %[foo]"
 : /* no outputs */
 : [foo] "i" (foo)
 : "r0", "r1", "r2", "r3", "r12", "lr");
}

11.8 Duplication of labels in inline assembly statements
You can use labels inside inline assembly, for example as the targets of branches or PC-relative load
instructions. However, you must ensure that the labels that you create are valid if the compiler
removes or duplicates an inline assembly statement.

Duplication can happen when a function containing an inline assembly statement is inlined in
multiple locations. Removal can happen if an inline assembly statement is not reachable, or its
result is unused and it has no side-effects.

If regular labels are used inside inline assembly, then duplication of the assembly could lead to
multiple definitions of the same symbol, which is invalid. Multiple definitions can be avoided
either by using numeric local labels , or using the %= template string. The %= template string is
expanded to a number that is unique to each instance of an inline assembly statement. Duplicated
statements have different numbers. All uses of %= in an instance of the inline assembly statement
have the same value. You can therefore create label names that can be referenced in the same
inline assembly statement, but which do not conflict with other copies of the same statement.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 238 of 241

https://developer.arm.com/documentation/dui0742/l/Migrating-from-armasm-to-the-armclang-Integrated-Assembler/Numeric-literals

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Inline Assembler

Unique numbers from the %= template string might still result in the creation
of duplicate labels. For example, label names loop%= and loop1%= can result in
duplicate labels. The label for instance number 0 of loop1%= evaluates to loop10.
The label for instance number 10 of loop%= also evaluates to loop10.

To avoid such duplicate labels, choose the label names carefully.

Example
void memcpy_words(int *src, int *dst, int len) {
 assert((len % 4) == 0);
 int tmp;
 // This uses the "%=" template string to create a label which can be used
 // elsewhere inside the assembly block, but which does not conflict with
 // inlined copies of it.
 // R is a C++11 raw string literal.
 __asm(R"(
 .Lloop%=:
 ldr %[tmp], %[src], #4
 str %[tmp], %[dst], #4
 subs %[len], #4
 bne .Lloop%=)"
 : [dst] "=&m" (*dst),
 [tmp] "=&r" (tmp),
 [len] "+r" (len)
 : [src] "m" (*src));
}

See the example in File-scope inline assembly.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 239 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Reference Guide Changes

12. armclang Reference Guide Changes
Describes the technical changes that have been made to the armclang Reference Guide.

12.1 Changes for the armclang Reference Guide
Changes that have been made to the armclang Reference Guide are listed with the latest version
first.

Table 12-1: Changes between 6.6.5 (revision L) and 6.6.4 (revision K)

Change Topics affected

[SDCOMP-56827] Changed Restrictions section title to Post-
conditions, and slightly reworded the text.

• -ffunction-sections, -fno-function-sections.

[SDCOMP-57610] Added a description for the armclang options
-faggressive-jump-threading and -fno-aggressive-
jump-threading.

• -faggressive-jump-threading, -fno-aggressive-jump-threading.

• Summary of armclang command-line options.

[SDCOMP-58966] Added note about using attribute UNDEFINED for
an undefined instruction handler.

• __attribute__((interrupt("type"))) function attribute.

[SDCOMP-59492] Corrected long double IEEE precision
statements for AArch64.

• Architecture.

• Floating-point.

• Basic concepts.

• Expressions.

• Support level definitions.

[SDCOMP-57521] Added a note that armclang always applies the
rules for type auto-deduction from C++17, regardless of which C++
source language mode a program is compiled for.

• -std

[SDCOMP-57264] Added note on mixing objects compiled with
different C/C++ standards.

• -std.

[SDCOMP-57811] Corrected the IEEE compliance statements for
fz libraries.

• -ffast-math, -fno-fast-math.

• -ffp-mode.

[SDCOMP-62125] Corrected the information for when the
__SOFTFP__ predefined macro is defined.

• Predefined macros.

Added the syntax for -Rpass-missed as a [COMMUNITY] option. • -Rpass

Table 12-2: Changes between 6.6.4 (revision K) and 6.6.3 (revision J)

Change Topics affected

[SDCOMP-54472] The note no longer states that a warning is
emitted when using -mexecute-only with -flto.

• -flto, -fno-lto.

• -mexecute-only.

• -O (armclang).

[SDCOMP-54519] Modified the text for -fno-fast-math and
corrected the IEEE compliance statements in the table.

• -ffast-math, -fno-fast-math.

[SDCOMP-54519] Modified the description of full and corrected
the IEEE compliance statements in the table.

• -ffp-mode.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 240 of 241

Arm® Compiler armclang Reference Guide Document ID: DUI0774_l_en
Version 6.6

armclang Reference Guide Changes

Change Topics affected
[SDCOMP-51119] Removed the text that states the compiler issues
a warning for priority values up to and including 100.

• __attribute__((constructor(priority))) function attribute.

[SDCOMP-54804] Added the Volatile variables topic. • Volatile variables.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 241 of 241

	Arm® Compiler armclang Reference Guide
	Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Conventions
	1.2 Other information

	2. Compiler Command-line Options
	2.1 Support level definitions
	2.2 Summary of armclang command-line options
	2.3 -c
	2.4 -D
	2.5 -E
	2.6 -e
	2.7 -faggressive-jump-threading, -fno-aggressive-jump-threading
	2.8 -fbare-metal-pie
	2.9 -fbracket-depth=N
	2.10 -fcommon, -fno-common
	2.11 -fdata-sections, -fno-data-sections
	2.12 -ffast-math, -fno-fast-math
	2.13 -ffp-mode
	2.14 -ffunction-sections, -fno-function-sections
	2.15 @file
	2.16 -fldm-stm, -fno-ldm-stm
	2.17 -fno-builtin
	2.18 -fno-inline-functions
	2.19 -flto, -fno-lto
	2.20 -fexceptions, -fno-exceptions
	2.21 -fomit-frame-pointer, -fno-omit-frame-pointer
	2.22 -fropi, -fno-ropi
	2.23 -fropi-lowering, -fno-ropi-lowering
	2.24 -frwpi, -fno-rwpi
	2.25 -frwpi-lowering, -fno-rwpi-lowering
	2.26 -fshort-enums, -fno-short-enums
	2.27 -fshort-wchar, -fno-short-wchar
	2.28 -fstack-protector, -fstack-protector-all, -fstack-protector-strong, -fno-stack-protector
	2.29 -fstrict-aliasing, -fno-strict-aliasing
	2.30 -ftrapv
	2.31 -fvectorize, -fno-vectorize
	2.32 -fwrapv
	2.33 -g, -gdwarf-2, -gdwarf-3, -gdwarf-4
	2.34 -I
	2.35 -include
	2.36 -L
	2.37 -l
	2.38 -M, -MM
	2.39 -MD, -MMD
	2.40 -MF
	2.41 -MG
	2.42 -MP
	2.43 -MT
	2.44 -march
	2.45 -marm
	2.46 -mbig-endian
	2.47 -mcmse
	2.48 -mcpu
	2.49 -mexecute-only
	2.50 -mfloat-abi
	2.51 -mfpu
	2.52 -mimplicit-it
	2.53 -mlittle-endian
	2.54 -mthumb
	2.55 -munaligned-access, -mno-unaligned-access
	2.56 -nostdlib
	2.57 -nostdlibinc
	2.58 -o
	2.59 -O (armclang)
	2.60 -pedantic
	2.61 -pedantic-errors
	2.62 -Rpass
	2.63 -S
	2.64 -save-temps
	2.65 -std
	2.66 --target
	2.67 -U
	2.68 -u
	2.69 -v
	2.70 --version
	2.71 --version_number
	2.72 --vsn
	2.73 -W
	2.74 -Wl
	2.75 -Xlinker
	2.76 -x
	2.77 -###

	3. Compiler-specific Keywords and Operators
	3.1 Keyword extensions
	3.2 __alignof__
	3.3 __asm
	3.4 __declspec attributes
	3.5 __declspec(noinline)
	3.6 __declspec(noreturn)
	3.7 __declspec(nothrow)
	3.8 __inline
	3.9 __promise
	3.10 __unaligned

	4. Compiler-specific Function, Variable, and Type Attributes
	4.1 Function attributes
	4.2 __attribute__((always_inline)) function attribute
	4.3 __attribute__((cmse_nonsecure_call)) function attribute
	4.4 __attribute__((cmse_nonsecure_entry)) function attribute
	4.5 __attribute__((const)) function attribute
	4.6 __attribute__((constructor(priority))) function attribute
	4.7 __attribute__((format_arg(string-index))) function attribute
	4.8 __attribute__((interrupt("type"))) function attribute
	4.9 __attribute__((malloc)) function attribute
	4.10 __attribute__((naked)) function attribute
	4.11 __attribute__((noinline)) function attribute
	4.12 __attribute__((nonnull)) function attribute
	4.13 __attribute__((noreturn)) function attribute
	4.14 __attribute__((nothrow)) function attribute
	4.15 __attribute__((pcs("calling_convention"))) function attribute
	4.16 __attribute__((pure)) function attribute
	4.17 __attribute__((section("name"))) function attribute
	4.18 __attribute__((used)) function attribute
	4.19 __attribute__((unused)) function attribute
	4.20 __attribute__((value_in_regs)) function attribute
	4.21 __attribute__((visibility("visibility_type"))) function attribute
	4.22 __attribute__((weak)) function attribute
	4.23 __attribute__((weakref("target"))) function attribute
	4.24 Type attributes
	4.25 __attribute__((aligned)) type attribute
	4.26 __attribute__((packed)) type attribute
	4.27 __attribute__((transparent_union)) type attribute
	4.28 Variable attributes
	4.29 __attribute__((alias)) variable attribute
	4.30 __attribute__((aligned)) variable attribute
	4.31 __attribute__((deprecated)) variable attribute
	4.32 __attribute__((packed)) variable attribute
	4.33 __attribute__((section("name"))) variable attribute
	4.34 __attribute__((used)) variable attribute
	4.35 __attribute__((unused)) variable attribute
	4.36 __attribute__((weak)) variable attribute
	4.37 __attribute__((weakref("target"))) variable attribute

	5. Compiler-specific Intrinsics
	5.1 __breakpoint intrinsic
	5.2 __current_pc intrinsic
	5.3 __current_sp intrinsic
	5.4 __disable_fiq intrinsic
	5.5 __disable_irq intrinsic
	5.6 __enable_fiq intrinsic
	5.7 __enable_irq intrinsic
	5.8 __force_stores intrinsic
	5.9 __memory_changed intrinsic
	5.10 __schedule_barrier intrinsic
	5.11 __semihost intrinsic
	5.12 __vfp_status intrinsic

	6. Compiler-specific Pragmas
	6.1 #pragma clang system_header
	6.2 #pragma clang diagnostic
	6.3 #pragma clang section
	6.4 #pragma once
	6.5 #pragma pack(…)
	6.6 #pragma unroll[(n)], #pragma unroll_completely
	6.7 #pragma weak symbol, #pragma weak symbol1 = symbol2

	7. Other Compiler-specific Features
	7.1 ACLE support
	7.2 Predefined macros
	7.3 Inline functions
	7.4 Volatile variables
	7.5 Half-precision floating-point number format
	7.6 TT instruction intrinsics
	7.7 Non-secure function pointer intrinsics

	8. Standard C Implementation Definition
	8.1 C Implementation definition
	8.2 Translation
	8.3 Translation limits
	8.4 Environment
	8.5 Identifiers
	8.6 Characters
	8.7 Integers
	8.8 Floating-point
	8.9 Arrays and pointers
	8.10 Hints
	8.11 Structures, unions, enumerations, and bitfields
	8.12 Qualifiers
	8.13 C Preprocessing directives
	8.14 Library functions
	8.15 Architecture

	9. Standard C++ Implementation Definition
	9.1 C++ Implementation definition
	9.2 General
	9.3 Lexical conventions
	9.4 Basic concepts
	9.5 Standard conversions
	9.6 Expressions
	9.7 Declarations
	9.8 Declarators
	9.9 Templates
	9.10 Exception handling
	9.11 C++ Preprocessing directives
	9.12 Library introduction
	9.13 Language support library
	9.14 General utilities library
	9.15 Strings library
	9.16 Localization library
	9.17 Containers library
	9.18 Input/output library
	9.19 Regular expressions library
	9.20 Atomic operations library
	9.21 Thread support library
	9.22 Implementation quantities

	10. armclang Integrated Assembler
	10.1 Syntax of assembly files for integrated assembler
	10.2 Assembly expressions
	10.3 Alignment directives
	10.4 Data definition directives
	10.5 String definition directives
	10.6 Floating-point data definition directives
	10.7 Section directives
	10.8 Conditional assembly directives
	10.9 Macro directives
	10.10 Symbol binding directives
	10.11 Org directive
	10.12 AArch32 Target selection directives
	10.13 AArch64 Target selection directives
	10.14 Space-filling directives
	10.15 Type directive

	11. armclang Inline Assembler
	11.1 Inline Assembly
	11.2 File-scope inline assembly
	11.3 Inline assembly statements within a function
	11.3.1 Assembly string
	11.3.2 Output and input operands
	11.3.3 Clobber list
	11.3.4 volatile

	11.4 Inline assembly constraint strings
	11.4.1 Constraint modifiers
	11.4.2 Constraint codes
	11.4.3 Constraint codes common to AArch32 state and AArch64 state
	11.4.4 Constraint codes for AArch32 state
	11.4.5 Constraint codes for AArch64 state
	11.4.6 Using multiple alternative operand constraints

	11.5 Inline assembly template modifiers
	11.5.1 Template modifiers common to AArch32 state and AArch64 state
	11.5.2 Template modifiers for AArch32 state
	11.5.3 Template modifiers for AArch64 state

	11.6 Forcing inline assembly operands into specific registers
	11.7 Symbol references and branches into and out of inline assembly
	11.8 Duplication of labels in inline assembly statements

	12. armclang Reference Guide Changes
	12.1 Changes for the armclang Reference Guide

