
Arm® Compiler
Version 6.6

Software Development Guide

Non-Confidential
Copyright © 2014–2017, 2019–2020, 2023 Arm
Limited (or its affiliates).
All rights reserved.

Issue
DUI0773_l_en

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Arm® Compiler
Software Development Guide

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

A 14 March 2014 Non-Confidential Arm Compiler v6.00 Release

B 15 December 2014 Non-Confidential Arm Compiler v6.01 Release

C 30 June 2015 Non-Confidential Arm Compiler v6.02 Release

D 18 November 2015 Non-Confidential Arm Compiler v6.3 Release

E 24 February 2016 Non-Confidential Arm Compiler v6.4 Release

F 29 June 2016 Non-Confidential Arm Compiler v6.5 Release

G 4 November 2016 Non-Confidential Arm Compiler v6.6 Release

H 8 May 2017 Non-Confidential Arm Compiler v6.6.1 Release

I 29 November 2017 Non-Confidential Arm Compiler v6.6.2 Release

J 28 August 2019 Non-Confidential Arm Compiler v6.6.3 Release

K 26 August 2020 Non-Confidential Arm Compiler v6.6.4 Release

L 31 January 2023 Non-Confidential Arm Compiler v6.6.5 Release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 96

https://www.arm.com/company/policies/trademarks

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 96

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Contents

Contents

List of Figures...8

List of Tables...9

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Contents

1. Introduction..10
1.1 Conventions... 10
1.2 Other information...11

2. Introducing the Toolchain...12
2.1 Toolchain overview...12
2.2 Support level definitions...13
2.3 LLVM component versions and language compatibility.. 17
2.4 Common Arm Compiler toolchain options...19
2.5 "Hello world" example...22
2.6 Passing options from the compiler to the linker...23

3. Diagnostics... 25
3.1 Understanding diagnostics... 25
3.2 Options for controlling diagnostics with armclang... 27
3.3 Pragmas for controlling diagnostics with armclang.. 28
3.4 Options for controlling diagnostics with the other tools.. 29

4. Compiling C and C++ Code... 30
4.1 Specifying a target architecture, processor, and instruction set..30
4.2 Using inline assembly code..33
4.3 Using intrinsics.. 34
4.4 Preventing the use of floating-point instructions and registers...36
4.5 Bare-metal Position Independent Executables.. 37
4.6 Execute-only memory..40
4.7 Building applications for execute-only memory..40

5. Assembling Assembly Code...42
5.1 Assembling armasm and GNU syntax assembly code...42
5.2 Preprocessing assembly code..43

6. Linking Object Files to Produce an Executable.. 45
6.1 Linking object files to produce an executable...45

7. Optimization Techniques.. 46
7.1 Optimizing for code size or performance...46
7.2 Optimizing across modules with link time optimization.. 47
7.2.1 Enabling link time optimization..48

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Contents

7.2.2 Restrictions with Link-Time Optimization... 49
7.3 How optimization affects the debug experience..51

8. Coding Considerations.. 52
8.1 Optimization of loop termination in C code..52
8.2 Loop unrolling in C code.. 53
8.3 Effect of the volatile keyword on compiler optimization.. 55
8.4 Stack use in C and C++..58
8.5 Methods of minimizing function parameter passing overhead..60
8.6 Inline functions..60
8.7 Integer division-by-zero errors in C code...61
8.8 Floating-point division-by-zero errors in C and C++ code... 61
8.9 Infinite Loops... 63
8.10 C library structure..63
8.11 Reimplementing C library functions.. 64

9. Overlays.. 67
9.1 Overlay support in Arm Compiler..67
9.2 Automatic overlay support...68
9.2.1 Automatically placing code sections in overlay regions...68
9.2.2 Overlay veneer.. 70
9.2.3 Overlay data tables...71
9.2.4 Limitations of automatic overlay support... 72
9.2.5 About writing an overlay manager for automatically placed overlays.. 73
9.3 Manual overlay support.. 74
9.3.1 Manually placing code sections in overlay regions... 74
9.3.2 Writing an overlay manager for manually placed overlays..76

10. Building Secure and Non-secure Images Using Armv8-M Security Extensions..........................83
10.1 Overview of building Secure and Non-secure images.. 83
10.2 Building a Secure image using the Armv8-M Security Extensions...86
10.3 Building a Non-secure image that can call a Secure image... 90
10.4 Building a Secure image using a previously generated import library..91

11. Software Development Guide Changes... 96
11.1 Changes for the Software Development Guide... 96

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

List of Figures

List of Figures

Figure 2-1: Compiler toolchain...12

Figure 2-2: Integration boundaries in Arm Compiler for Embedded 6....................................15

Figure 7-1: Link time optimization...47

Figure 8-1: C library structure..64

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

List of Tables

List of Tables

Table 2-1: LLVM component versions.. 18

Table 2-2: Language support levels...18

Table 2-3: armclang common options...19

Table 2-4: armlink common options..20

Table 2-5: armar common options...21

Table 2-6: fromelf common options..21

Table 2-7: armasm common options...22

Table 2-8: armclang linker control options...23

Table 4-1: Compiling for different combinations of architecture, processor, and
instruction set... 32

Table 8-1: C code for incrementing and decrementing loops... 52

Table 8-2: C disassembly for incrementing and decrementing loops.......................................53

Table 8-3: C code for rolled and unrolled bit-counting loops... 54

Table 8-4: Disassembly for rolled and unrolled bit-counting loops.. 54

Table 8-5: C code for nonvolatile and volatile buffer loops...57

Table 8-6: Disassembly for nonvolatile and volatile buffer loop... 57

Table 9-1: Using relative offset in overlays... 75

Table 11-1: Changes between 6.6.5 (revision L) and 6.6.4 (revision K).................................. 96

Table 11-2: Changes between 6.6.4 (revision K) and 6.6.3 (revision J)...................................96

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introduction

1. Introduction
The Arm® Compiler Software Development Guide provides tutorials and examples to develop code
for various Arm architecture-based processors.

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 96

https://developer.arm.com/glossary

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introduction

Convention Use
An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 96

https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

2. Introducing the Toolchain
Provides an overview of the Arm® Compiler tools, and shows how to compile a simple code
example.

2.1 Toolchain overview
The Arm® Compiler 6 compilation tools allow you to build executable images, partially linked object
files, and shared object files, and to convert images to different formats.

Figure 2-1: Compiler toolchain

Flash format

.s

armclang

armasm
or

armclang

C/C++ A32
and T32

Assembly
code

armlink fromelf

ImageObject codeSource code

code

data

debug

Plain binary
Intel Hex

Motorola-S

.o data

.o data

.c
code

debug

code

debug

The Arm Compiler toolchain comprises the following tools:

armclang

The armclang compiler and assembler. armclang compiles C and C++ code, and assembles
A64, A32, and T32 GNU syntax assembly code.

armasm

The legacy assembler. armasm assembles A32, A64, and T32 assembly code, using armasm
syntax.

Only use armasm for legacy armasm assembler syntax code. Use the armclang integrated
assembler and GNU syntax for all new assembly files.

armlink

The linker. armlink combines the contents of one or more object files with selected parts of
one or more object libraries to produce an executable program.

armar

The librarian. armar enables sets of ELF object files to be collected together and maintained
in archives or libraries. You can pass such a library or archive to the linker in place of several

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

ELF files. You can also use the archive for distribution to a third party for further application
development.

fromelf

The image conversion utility. fromelf can also generate textual information about the input
image, such as its disassembly and its code and data size.

Disassembly is generated in armasm assembler syntax and not GNU assembler
syntax.

Related information
Common Arm Compiler toolchain options on page 19
"Hello world" example on page 22

2.2 Support level definitions
This describes the levels of support for various Arm® Compiler 6 features.

Arm Compiler 6 is built on Clang and LLVM technology. Therefore, it has more functionality than
the set of product features described in the documentation. The following definitions clarify the
levels of support and guarantees on functionality that are expected from these features.

Arm welcomes feedback regarding the use of all Arm Compiler 6 features, and intends to
support users to a level that is appropriate for that feature. You can contact support at https://
developer.arm.com/support.

Identification in the documentation
All features that are documented in the Arm Compiler 6 documentation are product features,
except where explicitly stated. The limitations of non-product features are explicitly stated.

Product features
Product features are suitable for use in a production environment. The functionality is well tested,
and is expected to be stable across feature and update releases.

• Arm intends to give advance notice of significant functionality changes to product features.

• If you have a support and maintenance contract, Arm provides full support for use of all
product features.

• Arm welcomes feedback on product features.

• Any issues with product features that Arm encounters or is made aware of are considered for
fixing in future versions of Arm Compiler.

In addition to fully supported product features, some product features are only alpha or beta
quality.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 96

https://developer.arm.com/support
https://developer.arm.com/support

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

Beta product features
Beta product features are implementation complete, but have not been sufficiently tested to
be regarded as suitable for use in production environments.

Beta product features are identified with [BETA].

• Arm endeavors to document known limitations on beta product features.

• Beta product features are expected to eventually become product features in a future
release of Arm Compiler 6.

• Arm encourages the use of beta product features, and welcomes feedback on them.

• Any issues with beta product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler.

Alpha product features
Alpha product features are not implementation complete, and are subject to change in future
releases, therefore the stability level is lower than in beta product features.

Alpha product features are identified with [ALPHA].

• Arm endeavors to document known limitations of alpha product features.

• Arm encourages the use of alpha product features, and welcomes feedback on them.

• Any issues with alpha product features that Arm encounters or is made aware of are
considered for fixing in future versions of Arm Compiler.

Community features
Arm Compiler 6 is built on LLVM technology and preserves the functionality of that technology
where possible. This means that there are more features available in Arm Compiler that are
not listed in the documentation. These extra features are known as community features. For
information on these community features, see the Clang Compiler User's Manual.

Where community features are referenced in the documentation, they are identified with
[COMMUNITY].

• Arm makes no claims about the quality level or the degree of functionality of these features,
except when explicitly stated in this documentation.

• Functionality might change significantly between feature releases.

• Arm makes no guarantees that community features remain functional across update releases,
although changes are expected to be unlikely.

Some community features might become product features in the future, but Arm provides no
roadmap for such features. Arm is interested in understanding your use of these features, and
welcomes feedback on them. Arm supports customers using these features on a best-effort basis,
unless the features are unsupported. Arm accepts defect reports on these features, but does not
guarantee that these issues are to be fixed in future releases.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 96

http://clang.llvm.org/docs/UsersManual.html

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

Guidance on use of community features
There are several factors to consider when assessing the likelihood of a community feature being
functional:

• The following figure shows the structure of the Arm Compiler 6 toolchain:

Figure 2-2: Integration boundaries in Arm Compiler for Embedded 6.

Arm C library

armasm syntax
assembly

Arm C++ library

LLVM Project
libc++

armasm

C/C++
Source code

GNU syntax
Assembly

armclang

LLVM Project
clang

Source
code

headers

Objects ObjectsObjects

armlink

Image

Scatter/
Steering/

Symdefs file

The dashed boxes are toolchain components, and any interaction between these components
is an integration boundary. Community features that span an integration boundary might have
significant limitations in functionality. The exception to such features is if the interaction is
codified in one of the standards supported by Arm Compiler 6. See Application Binary Interface

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 96

https://developer.arm.com/architectures/system-architectures/software-standards/abi

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

(ABI). Community features that do not span integration boundaries are more likely to work as
expected.

• Features primarily used when targeting hosted environments such as Linux or BSD might have
significant limitations, or might not be applicable, when targeting bare-metal environments.

• The Clang implementations of compiler features, particularly those features that have been
present for a long time in other toolchains, are likely to be mature. The functionality of new
features, such as support for new language features, is likely to be less mature and therefore
more likely to have limited functionality.

Deprecated features
A deprecated feature is one that Arm plans to remove from a future release of Arm Compiler.
Arm does not make any guarantee regarding the testing or maintenance of deprecated features.
Therefore, Arm does not recommend using a feature after it is deprecated.

For information on replacing deprecated features with supported features, see the Arm Compiler
documentation and Release Notes. Where appropriate, each Arm Compiler document includes
notes for features that are deprecated, and also provides entries in the changes appendix of that
document.

Unsupported features
With both the product and community feature categories, specific features and use-cases are
known not to function correctly, or are not intended for use with Arm Compiler 6.

Limitations of product features are stated in the documentation. Arm cannot provide an exhaustive
list of unsupported features or use-cases for community features. The known limitations on
community features are listed in Community features.

List of known unsupported features
The following is an incomplete list of unsupported features, and might change over time:

• The Clang option -stdlib=libstdc++ is not supported.

• C++ static initialization of local variables is not thread-safe when linked against the standard
C++ libraries. For thread-safety, you must provide your own implementation of thread-safe
functions as described in Standard C++ library implementation definition.

This restriction does not apply to the [ALPHA]-supported multithreaded C++
libraries.

• Use of C11 library features is unsupported.

• Any community feature that is exclusively related to non-Arm architectures is not supported.

• Except for Armv6-M, compilation for targets that implement architectures lower than Armv7 is
not supported.

• The long double data type is not supported for AArch64 state because of limitations in the
current Arm C library.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 96

https://developer.arm.com/architectures/system-architectures/software-standards/abi
https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

• C complex arithmetic is not supported, because of limitations in the current Arm C library.

• Complex numbers are defined in C++ as a template, std::complex. Arm Compiler supports
std::complex with the float and double types, but not the long double type because of
limitations in the current Arm C library.

For C code that uses complex numbers, it is not sufficient to recompile with
the C++ compiler to make that code work. How you can use complex numbers
depends on whether you are building for Armv8-M architecture-based
processors.

• You must take care when mixing translation units that are compiled with and without the
[COMMUNITY] -fsigned-char option, and that share interfaces or data structures.

The Arm ABI defines char as an unsigned byte, and this is the interpretation
used by the C libraries supplied with the Arm compilation tools.

Alternatives to C complex numbers not being supported
If you are building for Armv8-M architecture-based processors, consider using the free and Open
Source CMSIS-DSP library that includes a data type and library functions for complex number
support in C. For more information about CMSIS-DSP and complex number support see the
following sections of the CMSIS documentation:

• Complex Math Functions

• Complex Matrix Multiplication

• Complex FFT Functions

If you are not building for Armv8-M architecture-based processors, consider modifying the affected
part of your project to use the C++ standard template library type std::complex instead.

2.3 LLVM component versions and language compatibility
armclang is based on LLVM components and provides different levels of support for different
source language standards.

This topic includes descriptions of [ALPHA], [BETA], and [COMMUNITY] features.
See Support level definitions.

Base LLVM components
Arm® Compiler 6 is based on the following LLVM components:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 96

https://arm-software.github.io/CMSIS_5/DSP/html/group__groupCmplxMath.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__CmplxMatrixMult.html
https://arm-software.github.io/CMSIS_5/DSP/html/group__ComplexFFT.html

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

Table 2-1: LLVM component versions

Component Version More information

Clang 3.9 http://clang.llvm.org

Language support levels
Arm Compiler 6 in conjunction with libc++ provides varying levels of support for different source
language standards:

Table 2-2: Language support levels

Language standard Support level

C90 Supported.

C99 Supported, except for complex numbers.

C11 [COMMUNITY] The base Clang component provides C11 language functionality.
However, Arm has performed no independent testing of these
features and therefore these features are [COMMUNITY] features.
Use of C11 library features is unsupported. C11 is the default
language standard for C code. Use the -std option to restrict the
language standard if necessary. Use the -Wc11-extensions
option to warn about any use of C11-specific features.

C++98 Supported, including the use of C++ exceptions.

Support for -fno-exceptions is limited.

See Standard C++ library implementation definition in the Arm C
and C++ Libraries and Floating-Point Support User Guide for more
information about support for exceptions.

C++11 Supported, with the following exceptions:

• Concurrency constructs available through the following
standard library headers are [ALPHA] supported:

◦ <thread>

◦ <mutex>

◦ <shared_mutex>

◦ <condition_variable>

◦ <future>

◦ <chrono>

◦ <atomic>

• The thread_local keyword is not supported.

See Standard C++ library implementation definition in the Arm C
and C++ Libraries and Floating-Point Support User Guide for more
information.

C++14 [BETA] The base Clang and libc++ components provide C++14 language
functionality. However, Arm has not thoroughly tested these
features and therefore they are [BETA] features.

Other information
See the armclang Reference Guide for information about Arm-specific language extensions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 96

http://clang.llvm.org
https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition
https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

For more information about libc++ support, see Standard C++ library implementation definition, in
the Arm C and C++ Libraries and Floating-Point Support User Guide.

The Clang documentation provides other information about language compatibility:

• Language compatibility:

http://clang.llvm.org/compatibility.html

• Language extensions:

http://clang.llvm.org/docs/LanguageExtensions.html

• C++ status:

http://clang.llvm.org/cxx_status.html

Related information
armclang Reference Guide

2.4 Common Arm Compiler toolchain options
Lists the most commonly used command-line options for each of the tools in the Arm® Compiler
toolchain.

armclang common options
See the armclang Reference Guide for more information about armclang command-line options.

Common armclang options include the following:

Table 2-3: armclang common options

Option Description

-c Performs the compilation step, but not the link step.

-x Specifies the language of the subsequent source files, -xc
inputfile.s or -xc++ inputfile.s for example.

-std Specifies the language standard to compile for, -std=c90 for
example.

--target=arch-vendor-os-abi Generates code for the selected execution state (AArch32 or
AArch64), for example --target=aarch64-arm-none-eabi or
--target=arm-arm-none-eabi.

-march=name Generates code for the specified architecture, for example -
mcpu=armv8-a or -mcpu=armv7-a.

-march=list Displays a list of all the supported architectures for your target.

-mcpu=name Generates code for the specified processor, for example -
mcpu=cortex-a53, -mcpu=cortex-a57, or -mcpu=cortex-
a15.

-mcpu=list Displays a list of all the supported processors for your target.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 96

https://developer.arm.com/documentation/dui0808/l/The-Arm-C-and-C---Libraries/ISO-C-library-implementation-definition/Standard-C---library-implementation-definition
http://clang.llvm.org/compatibility.html
http://clang.llvm.org/docs/LanguageExtensions.html
http://clang.llvm.org/cxx_status.html
https://developer.arm.com/documentation/dui0774/l

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

Option Description
-marm Requests that the compiler targets the A32 instruction set, --

target=arm-arm-none-eabi -march=armv7-a -marm for
example.

The -marm option is not valid with AArch64 targets. The compiler
ignores the -marm option and generates a warning with AArch64
targets.

-mthumb Requests that the compiler targets the T32 instruction set, --
target=arm-arm-none-eabi -march=armv8-a -mthumb
for example.

The -mthumb option is not valid with AArch64 targets. The
compiler ignores the -mthumb option and generates a warning with
AArch64 targets.

-g Generates DWARF debug tables.

-E Executes only the preprocessor step.

-I Adds the specified directories to the list of places that are searched
to find included files.

-o Specifies the name of the output file.

-Onum Specifies the level of performance optimization to use when
compiling source files.

-Os Balances code size against code speed.

-Oz Optimizes for code size.

-S Outputs the disassembly of the machine code generated by the
compiler.

-### Displays diagnostic output showing the options that would be used
to invoke the compiler and linker. Neither the compilation nor the
link steps are performed.

armlink common options
See the armlink User Guide for more information about armlink command-line options.

Common armlink options include the following:

Table 2-4: armlink common options

Option Description

--ro_base Sets the load and execution addresses of the region containing the
RO output section to a specified address.

--rw_base Sets the execution address of the region containing the RW output
section to a specified address.

--scatter Creates an image memory map using the scatter-loading description
contained in the specified file.

--split Splits the default load region containing the RO and RW output
sections, into separate regions.

--entry Specifies the unique initial entry point of the image.

--info Displays information about linker operation, for example --
info=exceptions displays information about exception table
generation and optimization.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

Option Description
--list=filename Redirects diagnostics output from options including --info and --

map to the specified file.

--map Displays a memory map containing the address and the size of
each load region, execution region, and input section in the image,
including linker-generated input sections.

--symbols Lists each local and global symbol used in the link step, and their
values.

armar common options
See the armar User Guide for more information about armar command-line options.

Common armar options include the following:

Table 2-5: armar common options

Option Description

--debug_symbols Includes debug symbols in the library.

-a pos_name Places new files in the library after the file pos_name.

-b pos_name Places new files in the library before the file pos_name.

-d file_list Deletes the specified files from the library.

--sizes Lists the Code, RO Data, RW Data, ZI Data, and Debug sizes of
each member in the library.

-t Prints a table of contents for the library.

fromelf common options
See the fromelf User Guide for more information about fromelf command-line options.

Common fromelf options include the following:

Table 2-6: fromelf common options

Option Description

--elf Selects ELF output mode.

--text [options] Displays image information in text format.

The optional options specify extra information to include in the
image information. Valid options include -c to disassemble code,
and -s to print the symbol and versioning tables.

--info Displays information about specific topics, for example --
info=totals lists the Code, RO Data, RW Data, ZI Data, and
Debug sizes for each input object and library member in the image.

armasm common options
See the armasm User Guide for more information about armasm command-line options.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

Only use armasm to assemble armasm assembly code. Use GNU syntax for new
assembly files, and assemble with the armclang integrated assembler.

Common armasm options include the following:

Table 2-7: armasm common options

Option Description

--cpu=name Sets the target processor.

-g Generates DWARF debug tables.

--fpu=name Selects the target floating-point unit (FPU) architecture.

-o Specifies the name of the output file.

2.5 "Hello world" example
This example shows how to build a simple C program hello_world.c with armclang and armlink.

Procedure
1. Create a C file hello_world.c with the following content:

#include <stdio.h>
int main()
{
 printf("Hello World\n");
 return 0;
}

2. Compile the C file hello_world.c with the following command:
armclang --target=aarch64-arm-none-eabi -march=armv8-a -c hello_world.c

The -c option tells the compiler to perform the compilation step only. The -march=armv8-a
option tells the compiler to target the Arm®v8-A architecture, and --target=aarch64-arm-
none-eabi targets AArch64 state.

The compiler creates an object file hello_world.o.
3. Link the file:

armlink -o hello_world.axf hello_world.o

The -o option tells the linker to name the output image hello_world.axf, rather than using the
default image name __image.axf.

4. Use a DWARF 4 compatible debugger to load and run the image.
The compiler produces debug information that is compatible with the DWARF 4 standard.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

2.6 Passing options from the compiler to the linker
By default, when you run armclang the compiler automatically invokes the linker, armlink.

Various armclang options control the behavior of the linker. These options are translated to
equivalent armlink options.

Table 2-8: armclang linker control options

armclang Option armlink Option Description

-e --entry Specifies the unique initial entry point of the
image.

-L --userlibpath Specifies a list of paths that the linker
searches for user libraries.

-l --library Add the specified library to the list of
searched libraries.

-u --undefined Prevents the removal of a specified symbol
if it is undefined.

In addition, the -Xlinker and -Wl options let you pass options directly to the linker from the
compiler command line. These options perform the same function, but use different syntaxes:

• The -Xlinker option specifies a single option, a single argument, or a single option=argument
pair. If you want to pass multiple options, use multiple -Xlinker options.

• The -Wl, option specifies a comma-separated list of options and arguments or
option=argument pairs.

For example, the following are all equivalent because armlink treats the single option --
list=diag.txt and the two options --list diag.txt equivalently:

-Xlinker --list -Xlinker diag.txt -Xlinker --split -Xlinker --list=diag.txt -Xlinker --
split -Wl,--list,diag.txt,--split -Wl,--list=diag.txt,--split

The -### compiler option produces diagnostic output showing exactly how the
compiler and linker are invoked, displaying the options for each tool. With the -###
option, armclang only displays this diagnostic output. It does not compile source
files or invoke armlink.

The following example shows how to use the -Xlinker option to pass the --split option to the
linker, splitting the default load region containing the RO and RW output sections into separate
regions:

armclang hello.c --target=aarch64-arm-none-eabi -Xlinker --split

You can use fromelf --text to compare the differences in image content:

armclang hello.c --target=aarch64-arm-none-eabi -o hello_DEFAULT.axf
armclang hello.c --target=aarch64-arm-none-eabi -o hello_SPLIT.axf -Xlinker --split

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Introducing the Toolchain

fromelf --text hello_DEFAULT.axf > hello_DEFAULT.txt
fromelf --text hello_SPLIT.axf > hello_SPLIT.txt

Use a file comparison tool, such as the UNIX diff tool, to compare the files hello_DEFAULT.txt
and hello_SPLIT.txt.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6
Diagnostics

3. Diagnostics
Describes the format of compiler toolchain diagnostic messages and how to control the diagnostic
output.

3.1 Understanding diagnostics
All the tools in the Arm® Compiler 6 toolchain produce detailed diagnostic messages, and let you
control how much or how little information is output.

The format of diagnostic messages and the mechanisms for controlling diagnostic output are
different for armclang than for the other tools in the toolchain.

Message format for armclang
armclang produces messages in the following format:

file:line:col: type: message

where:

file

The filename that generated the message.

line

The line number that generated the message.

col

The column number that generated the message.

type

The type of the message, for example error or warning.

message

The message text.

For example:

hello.c:7:3: error: use of undeclared identifier 'i'
i++;
^
1 error generated.

Message format for other tools
The other tools in the toolchain (such as armasm and armlink) produce messages in the following
format:

type: prefix id suffix: message_text

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6
Diagnostics

Where:

type

is one of:

Internal fault

Internal faults indicate an internal problem with the tool. Contact your supplier with
feedback.

Error

Errors indicate problems that cause the tool to stop.

Warning

Warnings indicate unusual conditions that might indicate a problem, but the tool
continues.

Remark

Remarks indicate common, but sometimes unconventional, tool usage. These
diagnostics are not displayed by default. The tool continues.

prefix

indicates the tool that generated the message, one of:

• A - armasm

• L - armlink or armar

• Q - fromelf

id

a unique numeric message identifier.

suffix

indicates the type of message, one of:

• E - Error

• W - Warning

• R - Remark

message_text

the text of the message.

For example:

Error: L6449E: While processing /home/scratch/a.out: I/O error writing file '/home/
scratch/a.out': Permission denied

Related information
Options for controlling diagnostics with armclang on page 26
Options for controlling diagnostics with the other tools on page 28

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6
Diagnostics

3.2 Options for controlling diagnostics with armclang
Various options control the output of diagnostics with the armclang compiler.

See Controlling Errors and Warnings in the Clang Compiler User's Manual for full details about
controlling diagnostics with armclang.

The following are some of the common options that control diagnostics:

-Werror

Turn warnings into errors.

-Werror=foo

Turn warning foo into an error.

-Wno-error=foo

Leave warning foo as a warning even if -Werror is specified.

-Wfoo

Enable warning foo .

-Wno-foo

Suppress warning foo .

-w

Suppress all warnings.

-Weverything

Enable all warnings.

-Wpedantic

Generate warnings if code violates strict ISO C and ISO C++.

-pedantic

Generate warnings if code violates strict ISO C and ISO C++.

-pedantic-errors

Generate errors if code violates strict ISO C and ISO C++.

Where a message can be suppressed, the compiler provides the appropriate suppression flag in the
diagnostic output.

For example, by default armclang checks the format of printf() statements to ensure that
the number of % format specifiers matches the number of data arguments. The following code
generates a warning:

printf("Result of %d plus %d is %d\n", a, b);

armclang --target=aarch64-arm-none-eabi -c hello.c
hello.c:25:36: warning: more '%' conversions than data arguments [-Wformat]
 printf("Result of %d plus %d is %d\n", a, b);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 96

http://clang.llvm.org/docs/UsersManual.html#options-to-control-error-and-warning-messages
http://clang.llvm.org/docs/UsersManual.html

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6
Diagnostics

To suppress this warning, use -Wno-format:

armclang --target=aarch64-arm-none-eabi -c hello.c -Wno-format

Related information
Coding Considerations on page 52
The LLVM Compiler Infrastructure Project

3.3 Pragmas for controlling diagnostics with armclang
Pragmas within your source code can control the output of diagnostics from the armclang compiler.

See Controlling Errors and Warnings in the Clang Compiler User's Manual for full details about
controlling diagnostics with armclang.

The following are some of the common options that control diagnostics:

#pragma clang diagnostic ignored "-Wname"

Ignores the diagnostic message specified by name .

#pragma clang diagnostic warning "-Wname"

Sets the diagnostic message specified by name to warning severity.

#pragma clang diagnostic error "-Wname"

Sets the diagnostic message specified by name to error severity.

#pragma clang diagnostic fatal "-Wname"

Sets the diagnostic message specified by name to fatal error severity.

#pragma clang diagnostic push

Saves the diagnostic state so that it can be restored.

#pragma clang diagnostic pop

Restores the last saved diagnostic state.

The compiler provides appropriate diagnostic names in the diagnostic output.

Alternatively, you can use the command-line option, -Wname, to suppress or change
the severity of messages, but the change applies for the entire compilation.

Related information
-W

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 96

http://llvm.org
http://clang.llvm.org/docs/UsersManual.html#controlling-diagnostics-via-pragmas
http://clang.llvm.org/docs/UsersManual.html
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-W

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6
Diagnostics

3.4 Options for controlling diagnostics with the other tools
Various options control diagnostics with the armasm, armlink, armar, and fromelf tools.

The following options control diagnostics:

--brief_diagnostics

armasm only. Uses a shorter form of the diagnostic output. In this form, the original source
line is not displayed and the error message text is not wrapped when it is too long to fit on a
single line.

--diag_error=tag[,tag]...

Sets the specified diagnostic messages to Error severity. Use --diag_error=warning to treat
all warnings as errors.

--diag_remark=tag[,tag]...

Sets the specified diagnostic messages to Remark severity.

--diag_style=arm|ide|gnu

Specifies the display style for diagnostic messages.

--diag_suppress=tag[,tag]...

Suppresses the specified diagnostic messages. Use --diag_suppress=error to suppress all
errors that can be downgraded, or --diag_suppress=warning to suppress all warnings.

--diag_warning=tag[,tag]...

Sets the specified diagnostic messages to Warning severity. Use --diag_warning=error to
set all errors that can be downgraded to warnings.

--errors=filename

Redirects the output of diagnostic messages to the specified file.

--remarks

armlink only. Enables the display of remark messages (including any messages redesignated
to remark severity using --diag_remark).

tag is the four-digit diagnostic number, nnnn, with the tool letter prefix, but without the letter suffix
indicating the severity.

For example, to downgrade a warning message to Remark severity:

$ armasm test.s --cpu=8-A.32
"test.s", line 55: Warning: A1313W: Missing END directive at end of file
0 Errors, 1 Warning

$ armasm test.s --cpu=8-A.32 --diag_remark=A1313
"test.s", line 55: Missing END directive at end of file

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

4. Compiling C and C++ Code
Describes how to compile C and C++ code with armclang.

4.1 Specifying a target architecture, processor, and
instruction set

When compiling code, the compiler must know which architecture or processor to target, which
optional architectural features are available, and which instruction set to use.

Overview
If you only want to run code on one particular processor, you can target that specific processor.
Performance is optimized, but code is only guaranteed to run on that processor.

If you want your code to run on a wide range of processors, you can target an architecture. The
code runs on any processor implementation of the target architecture, but performance might be
impacted.

The options for specifying a target are as follows:

1. Specify the execution state using the --target option.

The execution state can be AArch64 or AArch32 depending on the processor.

2. Target one of the following:

• an architecture using the -march option.

• a specific processor using the -mcpu option.

3. (AArch32 targets only) Specify the floating-point hardware available using the -mfpu option, or
omit to use the default for the target.

4. (AArch32 targets only) For processors that support both A32 (formerly ARM) and T32 (formerly
Thumb), specify the instruction set using -marm or -mthumb, or omit to default to -marm.

Specifying the target execution state
To specify a target execution state with armclang, use the --target command-line option:

--target=arch-vendor-os-abi

Supported targets are as follows:

aarch64-arm-none-eabi
Generates A64 instructions for AArch64 state. Implies -march=armv8-a unless -mcpu is
specified.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

arm-arm-none-eabi
Generates A32/T32 instructions for AArch32 state. Must be used in conjunction with -march
(to target an architecture) or -mcpu (to target a processor).

The --target option is an armclang option. For all of the other tools, such as armasm
and armlink, use the --cpu and --fpu options to specify target processors and
architectures.

The --target option is mandatory. You must always specify a target execution state.

Specifying the target architecture
Targeting an architecture with --target and -march generates generic code that runs on any
processor with that architecture.

Use the -march=list option to see all supported architectures.

The -march option is an armclang option. For all of the other tools, such as armasm
and armlink, use the --cpu and --fpu options to specify target processors and
architectures.

Specifying a particular processor
Targeting a processor with --target and -mcpu optimizes code for the specified processor.

Use the -mcpu=list option to see all supported processors.

You can specify feature modifiers with -mcpu and -march. For example -mcpu=cortex-a57+nocrypto.

Specifying the floating-point hardware available on the target
The -mfpu option overrides the default FPU option implied by the target architecture or processor.

The -mfpu option is ignored with Arm®v8-A AArch64 targets. Use the -mcpu option
to override the default FPU for AArch64 targets. For example, to prevent the use
of the cryptographic extensions for AArch64 targets use the -mcpu=name+nocrypto
option.

Specifying the instruction set
Different architectures support different instruction sets:

• Armv8-A processors in AArch64 state execute A64 instructions.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

• Armv8-A processors in AArch32 state, as well as Armv7 and earlier A- and R- profile processors
execute A32 and T32 instructions.

• M-profile processors execute T32 instructions.

To specify the target instruction set, use the following command-line options:

• -marm targets the A32 instruction set. This is the default for all targets that support A32
instructions.

• -mthumb targets the T32 instruction set. This is the default for all targets that only support T32
instructions.

The -marm and -mthumb options are not valid with AArch64 targets. The compiler
ignores the -marm and -mthumb options and generates a warning with AArch64
targets.

Command-line examples
The following examples show how to compile for different combinations of architecture, processor,
and instruction set:

Table 4-1: Compiling for different combinations of architecture, processor, and instruction set

Architecture Processor Instruction set armclang command

Armv8-A AArch64 state Generic A64 armclang --
target=aarch64-arm-
none-eabi test.c

Armv8-A AArch64 state Cortex®-A57 A64 armclang --
target=aarch64-arm-
none-eabi -mcpu=cortex-
a57 test.c

Armv8-A AArch32 state Generic A32 armclang --target=arm-
arm-none-eabi -
march=armv8-a test.c

Armv8-A AArch32 state Cortex-A53 A32 armclang --target=arm-
arm-none-eabi -
mcpu=cortex-a53 test.c

Armv8-A AArch32 state Cortex-A57 T32 armclang --target=arm-
arm-none-eabi -
mcpu=cortex-a57 -mthumb
test.c

Armv7-A Generic A32 armclang --target=arm-
arm-none-eabi -
march=armv7-a test.c

Armv7-A Cortex-A9 A32 armclang --target=arm-
arm-none-eabi -
mcpu=cortex-r7 test.c

Armv7-A Cortex-A15 T32 armclang --target=arm-
arm-none-eabi -
mcpu=cortex-r7 -mthumb
test.c

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

Architecture Processor Instruction set armclang command
Armv7-R Cortex-R7 A32 armclang --target=arm-

arm-none-eabi -
mcpu=cortex-r7 test.c

Armv7-R Cortex-R7 T32 armclang --target=arm-
arm-none-eabi -
mcpu=cortex-r7 -mthumb
test.c

Armv7-M Generic T32 armclang --target=arm-
arm-none-eabi -
march=armv7-m test.c

Armv6-M Cortex-M0 T32 armclang --target=arm-
arm-none-eabi -
mcpu=cortex-m0 test.c

Armv8-M.Mainline Generic T32 armclang --target=arm-
arm-none-eabi -
march=armv8-m.main
test.c

Armv8-M.Baseline Generic T32 armclang --target=arm-
arm-none-eabi -
march=armv8-m.base
test.c

Related information
-march
-mcpu
-mthumb
--target

4.2 Using inline assembly code
The compiler provides an inline assembler that enables you to write optimized assembly language
routines, and to access features of the target processor not available from C or C++.

The __asm keyword can incorporate inline GCC syntax assembly code into a function. For example:

#include <stdio.h>

int add(int i, int j)
{
 int res = 0;
 __asm (
 "ADD %[result], %[input_i], %[input_j]"
 : [result] "=r" (res)
 : [input_i] "r" (i), [input_j] "r" (j)
);
 return res;
}

int main(void)
{
 int a = 1;
 int b = 2;

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 96

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-march
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-mcpu
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-mthumb
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/--target

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

 int c = 0;

 c = add(a,b);

 printf("Result of %d + %d = %d\n", a, b, c);
}

The inline assembler does not support legacy assembly code written in armasm
assembler syntax. See the Migration and Compatibility Guide for more information
about migrating armasm assembler syntax code to GCC syntax.

The general form of an __asm inline assembly statement is:

__asm(code [: output_operand_list [: input_operand_list [: clobbered_register_list]]]);

code is the assembly code. In this example, this is "ADD %[result], %[input_i], %[input_j]".

output_operand_list is an optional list of output operands, separated by commas. Each operand
consists of a symbolic name in square brackets, a constraint string, and a C expression in
parentheses. In this example, there is a single output operand: [result] "=r" (res).

input_operand_list is an optional list of input operands, separated by commas. Input operands
use the same syntax as output operands. In this example there are two input operands: [input_i]
"r" (i), [input_j] "r" (j).

clobbered_register_list is an optional list of clobbered registers. In this example, this is omitted.

Related information
Migrating armasm syntax assembly code to GNU syntax

4.3 Using intrinsics
Compiler intrinsics are functions provided by the compiler. They enable you to easily
incorporate domain-specific operations in C and C++ source code without resorting to complex
implementations in assembly language.

The C and C++ languages are suited to a wide variety of tasks but they do not provide in-built
support for specific areas of application, for example, Digital Signal Processing (DSP).

Within a given application domain, there is usually a range of domain-specific operations that have
to be performed frequently. However, often these operations cannot be efficiently implemented in
C or C++. A typical example is the saturated add of two 32-bit signed two's complement integers,
commonly used in DSP programming. The following example shows a C implementation of a
saturated add operation:

#include <limits.h>
int L_add(const int a, const int b)

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 96

https://developer.arm.com/documentation/dui0742/l/Migrating-from-armasm-to-the-armclang-Integrated-Assembler

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

{
 int c;
 c = a + b;
 if (((a ^ b) & INT_MIN) == 0)
 {
 if ((c ^ a) & INT_MIN)
 {
 c = (a < 0) ? INT_MIN : INT_MAX;
 }
 }
 return c;
}

Using compiler intrinsics, you can achieve more complete coverage of target architecture
instructions than you would from the instruction selection of the compiler.

An intrinsic function has the appearance of a function call in C or C++, but is replaced during
compilation by a specific sequence of low-level instructions. The following example shows how to
access the __qadd saturated add intrinsic:

#include <arm_acle.h> /* Include ACLE intrinsics */

int foo(int a, int b)
{
 return __qadd(a, b); /* Saturated add of a and b */
}

The use of compiler intrinsics offers several performance benefits:

• The low-level instructions substituted for an intrinsic might be more efficient than
corresponding implementations in C or C++, resulting in both reduced instruction and cycle
counts. To implement the intrinsic, the compiler automatically generates the best sequence of
instructions for the specified target architecture. For example, the __qadd intrinsic maps directly
to the A32 assembly language instruction qadd:

QADD r0, r0, r1 /* Assuming r0 = a, r1 = b on entry */

• More information is given to the compiler than the underlying C and C++ language is able
to convey. This information enables the compiler to perform optimizations and to generate
instruction sequences that it could not otherwise have performed.

These performance benefits can be significant for real-time processing applications. However, care
is required because the use of intrinsics can decrease code portability.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

4.4 Preventing the use of floating-point instructions and
registers

You can instruct the compiler to prevent the use of floating-point instructions and floating-point
registers.

Floating-point computations and linkage
Floating-point computations can be performed by:

• Floating-point instructions, executed by a hardware coprocessor. The resulting code can only
be run on processors with Vector Floating Point (VFP) coprocessor hardware.

• Software library functions, through the floating-point library fplib. This library provides
functions that can be called to implement floating-point operations without using hardware.

Code that uses hardware floating-point instructions is more compact and offers better performance
than code that performs floating-point arithmetic in software. However, hardware floating-point
instructions require a VFP coprocessor.

Floating-point linkage controls which registers are used to pass floating-point parameters and
return values:

• Software floating-point linkage means that the parameters and return values for functions
are passed using the AArch32 integer registers r0 to r3 and the stack. The benefits of using
software floating-point linkage include:

◦ Code can run on a processor with or without a VFP coprocessor.

◦ Code can link against libraries compiled for software floating-point linkage.

• Hardware floating-point linkage uses the VFP coprocessor registers to pass the arguments and
return value. The benefit of using hardware floating-point linkage is that it is more efficient than
software floating-point linkage, but you must have a VFP coprocessor

Configuring the use of floating-point instructions and registers
When compiling for AArch64 state:

• By default, the compiler uses hardware floating-point instructions and hardware floating-point
linkage.

• Use the -mcpu=name+nofp+nosimd option to prevent the use of both floating-point instructions
and floating-point registers:

armclang --target=aarch64-arm-none-eabi -mcpu=cortex-a53+nofp+nosimd test.c

Subsequent use of floating-point data types in this mode is unsupported.

When compiling for AArch32 state:

• When using --target=arm-arm-none-eabi, the compiler uses hardware floating-point
instructions and software floating-point linkage. This corresponds to the option -mfloat-
abi=softfp.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

• Use the -mfloat-abi=soft option to use software library functions for floating-point operations
and software floating-point linkage:

armclang --target=arm-arm-none-eabi -march=armv8-a -mfloat-abi=soft test.c

• Use the -mfloat-abi=hard option to use hardware floating-point instructions and hardware
floating-point linkage:

armclang --target=arm-arm-none-eabi -march=armv8-a -mfloat-abi=hard test.c

Related information
-mcpu
-mfloat-abi
-mfpu
About floating-point support

4.5 Bare-metal Position Independent Executables
A bare-metal Position Independent Executable (PIE) is an executable that does not need to be
executed at a specific address but can be executed at any suitably aligned address.

• Bare-metal PIE support is deprecated.

• There is support for -fropi and -frwpi in armclang. You can use these options
to create bare-metal position-independent executables.

Position independent code uses PC-relative addressing modes where possible and otherwise
accesses global data via the Global Offset Table (GOT). The address entries in the GOT and
initialized pointers in the data area are updated with the executable load address when the
executable runs for the first time.

All objects and libraries linked into the image must be compiled to be position independent.

Compiling and linking a bare-metal PIE
Consider the following simple example code:

#include <stdio.h>

int main(void)
{
 printf('hello\n');
 return 0;
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 96

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-mcpu
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-mfloat-abi
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-mfpu
https://developer.arm.com/documentation/dui0808/l/Floating-point-Support/About-floating-point-support

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

To compile and automatically link this code for bare-metal PIE, use the -fbare-metal-pie option
with armclang:

armclang -fbare-metal-pie --target=arm-arm-none-eabi -march=armv8-a hello.c -o hello

Alternatively, you can compile with armclang -fbare-metal-pie and link with armlink --
bare_metal_pie as separate steps:

armclang -fbare-metal-pie --target=arm-arm-none-eabi -march=armv8-a -c hello.c
armlink --bare_metal_pie hello.o -o hello

The resulting executable hello is a bare-metal PIE.

Legacy code that is compiled with armcc to be included in a bare-metal PIE must
be compiled with either the option --apcs=/fpic, or if it contains no references to
global data it may be compiled with the option --apcs=/ropi.

If you are using link time optimization, use the armlink --lto_relocation_model=pic option to tell
the link time optimizer to produce position independent code:

armclang -flto -fbare-metal-pie --target=arm-arm-none-eabi -march=armv8-a -c hello.c
 -o hello.bc
armlink --lto --lto_relocation_model=pic --bare_metal_pie hello.bc -o hello

Restrictions
A bare-metal PIE executable must conform to the following:

• AArch32 state only.

• The .got section must be placed in a writable region.

• All references to symbols must be resolved at link time.

• The image must be linked as a PIE with a base address of 0x0.

• The code and data must be linked at a fixed offset from each other.

• The stack must be set up before the runtime relocation routine __arm_relocate_pie_ is called.
This means that the stack initialization code must only use PC-relative addressing if it is part of
the image code.

• It is the responsibility of the target platform that loads the PIE to ensure that the ZI region is
zero-initialized.

• When writing assembly code for position independence, be aware that some instructions (LDR,
for example) let you specify a PC-relative address in the form of a label. For example:

 LDR r0,=__main

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

This causes the link step to fail when building with --bare-metal-pie, because the symbol is in
a read-only section. The workaround is to specify symbols indirectly in a writable section, for
example:

 LDR r0, __main_addr
 ...
 AREA WRITE_TEST, DATA, READWRITE
__main_addr DCD __main
 END

Using a scatter file
An example scatter file is:

LR 0x0 PI
{
 er_ro +0 { *(+RO) }
 DYNAMIC_RELOCATION_TABLE +0 { *(DYNAMIC_RELOCATION_TABLE) }

 got +0 { *(.got) }
 er_rw +0 { *(+RW) }
 er_zi +0 { *(+ZI) }

 ; Add any stack and heap section required by the user supplied
 ; stack/heap initialization routine here
}

The linker generates the DYNAMIC_RELOCATION_TABLE section. This section must be placed in an
execution region called DYNAMIC_RELOCATION_TABLE. This allows the runtime relocation routine
__arm_relocate_pie_ that is provided in the C library to locate the start and end of the table using
the symbols Image$$DYNAMIC_RELOCATION_TABLE$$Base and Image$$DYNAMIC_RELOCATION_TABLE$
$Limit.

When using a scatter file and the default entry code supplied by the C library the linker requires
that the user provides their own routine for initializing the stack and heap. This user supplied stack
and heap routine is run before the routine __arm_relocate_pie_ so it is necessary to ensure that
this routine only uses PC relative addressing.

Related information
--fpic
--bare-metal-pie
--lto_relocation_model

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 96

https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--fpic
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--bare-metal-pie
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--lto-relocation-model

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

4.6 Execute-only memory
Execute-only memory (XOM) allows only instruction fetches. Read and write accesses are not
allowed.

XOM allows you to protect your intellectual property by preventing users from reading executable
code. For example, you can place firmware in XOM and load user code and drivers separately.
Placing the firmware in XOM prevents users from trivially reading the code.

The Arm® architecture does not directly support XOM. XOM is supported at the
memory device level.

4.7 Building applications for execute-only memory
Placing code in execute-only memory prevents users from trivially reading that code.

About this task

LTO does not honor the armclang option -mexecute-only. If you use the armclang
options -flto or -Omax, then the compiler cannot generate execute-only code.

To build an application with code in execute-only memory:

Procedure
1. Compile your C or C++ code using the -mexecute-only option

armclang --target=arm-arm-none-eabi -march=armv7-m -mexecute-only -c test.c -o

test.o

The -mexecute-only option prevents the compiler from generating any data accesses to the
code sections.

To keep code and data in separate sections, the compiler disables the placement of literal pools
inline with code.

Compiled execute-only code sections in the ELF object file are marked with the
SHF_ARM_NOREAD flag.

2. Specify the memory map to the linker using either of the following:

• The +XO selector in a scatter file.

• The armlink option --xo-base on the command-line, for example:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Compiling C and C++ Code

armlink --xo-base=0x8000 test.o -o test.axf

The XO execution region is placed in a separate load region from the RO, RW, and ZI execution
regions.

If you do not specify --xo-base, then by default:

• The XO execution region is placed immediately before the RO execution
region, at address 0x8000.

• All execution regions are in the same load region.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Assembling Assembly Code

5. Assembling Assembly Code
Describes how to assemble assembly source code with armclang and armasm.

5.1 Assembling armasm and GNU syntax assembly code
The Arm® Compiler 6 toolchain can assemble both armasm and GNU syntax assembly language
source code.

armasm and GNU are two different syntaxes for assembly language source code. They are similar,
but have several differences. For example, armasm syntax identifies labels by their position at the
start of a line, while GNU syntax identifies them by the presence of a colon.

The GNU Binutils - Using as documentation provides complete information about
GNU syntax assembly code.

The Migration and Compatibility Guide contains detailed information about the
differences between armasm syntax and GNU syntax assembly to help you migrate
legacy assembly code.

The following examples show equivalent armasm and GNU syntax assembly code for incrementing a
register in a loop.

armasm assembler syntax:

; Simple armasm syntax example
;
; Iterate round a loop 10 times, adding 1 to a register each time.

 AREA ||.text||, CODE, READONLY, ALIGN=2

main PROC
 MOV w5,#0x64 ; W5 = 100
 MOV w4,#0 ; W4 = 0
 B test_loop ; branch to test_loop
loop
 ADD w5,w5,#1 ; Add 1 to W5
 ADD w4,w4,#1 ; Add 1 to W4
test_loop
 CMP w4,#0xa ; if W4 < 10, branch back to loop
 BLT loop
 ENDP

 END

You might have legacy assembly source files that use the armasm syntax. Use armasm to assemble
legacy armasm syntax assembly code. Typically, you invoke the armasm assembler as follows:

armasm --cpu=8-A.64 -o file.o file.s

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Assembling Assembly Code

GNU assembler syntax:

// Simple GNU syntax example
//
// Iterate round a loop 10 times, adding 1 to a register each time.

 .section .text,"x"
 .balign 4

main:
 MOV w5,#0x64 // W5 = 100
 MOV w4,#0 // W4 = 0
 B test_loop // branch to test_loop
loop:
 ADD w5,w5,#1 // Add 1 to W5
 ADD w4,w4,#1 // Add 1 to W4
test_loop:
 CMP w4,#0xa // if W4 < 10, branch back to loop
 BLT loop
 .end

Use GNU syntax for newly created assembly files. Use the armclang assembler to assemble GNU
assembly language source code. Typically, you invoke the armclang assembler as follows:

armclang --target=aarch64-arm-none-eabi -c -o file.o file.s

Related information
GNU Binutils - Using as

5.2 Preprocessing assembly code
The C preprocessor must resolve assembly code that contains C directives, for example #include
or #define, before assembling.

By default, armclang uses the assembly code source file suffix to determine whether to run the C
preprocessor:

• The .s (lowercase) suffix indicates assembly code that does not require preprocessing.

• The .S (uppercase) suffix indicates assembly code that requires preprocessing.

The -x option lets you override the default by specifying the language of the subsequent source
files, rather than inferring the language from the file suffix. Specifically, -x assembler-with-cpp
indicates that the assembly code contains C directives and armclang must run the C preprocessor.
The -x option only applies to input files that follow it on the command line.

Do not confuse the .ifdef assembler directive with the preprocessor #ifdef
directive:

• The preprocessor #ifdef directive checks for the presence of preprocessor
macros, These macros are defined using the #define preprocessor directive or
the armclang command-line option -D.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 96

https://sourceware.org/binutils/docs-2.24/as/index.html

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Assembling Assembly Code

• The armclang integrated assembler .ifdef directive checks for code symbols.
These symbols are defined using labels or the .set directive.

The preprocessor runs first and performs textual substitutions on the source
code. This stage is when the #ifdef directive is processed. The source code is
then passed onto the assembler, when the .ifdef directive is processed.

To preprocess an assembly code source file, do one of the following:

• Ensure that the assembly code filename has a .S suffix.

For example:

armclang --target=arm-arm-none-eabi -march=armv8-a -E test.S

• Use the -x assembler-with-cpp option to tell armclang that the assembly source file requires
preprocessing. This option is useful when you have existing source files with the lowercase
extension .s.

For example:

armclang --target=arm-arm-none-eabi -march=armv8-a -E -x assembler-with-cpp
 test.s

The -E option specifies that armclang only executes the preprocessor step.

Related information
Command-line options for preprocessing assembly source code
-E armclang option
-x armclang option

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 96

https://developer.arm.com/documentation/dui0742/l/Migrating-from-armcc-to-armclang/Command-line-options-for-preprocessing-assembly-source-code
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-E
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-x

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Linking Object Files to Produce an Executable

6. Linking Object Files to Produce an
Executable

Describes how to link object files to produce an executable image with armlink.

6.1 Linking object files to produce an executable
The linker combines the contents of one or more object files with selected parts of any required
object libraries to produce executable images, partially linked object files, or shared object files.

The command for invoking the linker is:

armlink options input-file-list

where:

options

are linker command-line options.

input-file-list

is a space-separated list of objects, libraries, or symbol definitions (symdefs) files.

For example, to link the object file hello_world.o into an executable image hello_world.axf:

armlink -o hello_world.axf hello_world.o

Compatibility of object files
Arm does not guarantee the compatibility of C++ compilation units compiled with different major
or minor versions of Arm® Compiler and linked into a single image. Therefore, Arm recommends
that you always build your C++ code from source with a single version of the toolchain.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Optimization Techniques

7. Optimization Techniques
Describes how to use armclang to optimize for either code size or performance, and the impact of
the optimization level when debugging.

7.1 Optimizing for code size or performance
The compiler and associated tools use numerous techniques for optimizing your code. Some of
these techniques improve the performance of your code, while other techniques reduce the size of
your code.

These optimizations often work against each other. That is, techniques for improving code
performance might result in increased code size, and techniques for reducing code size might
reduce performance. For example, the compiler can unroll small loops for higher performance, with
the disadvantage of increased code size.

By default, armclang does not perform optimization. That is, the default optimization level is -O0.

The following armclang options help you optimize for code performance:

-O0|-O1|-O2|-O3

Specify the level of optimization to be used when compiling source files, where -O0 is the
minimum and -O3 is the maximum.

-Ofast

Enables all the optimizations from -O3 along with other aggressive optimizations that might
violate strict compliance with language standards.

The following armclang options help you optimize for code size:

-Os

Performs optimizations to reduce the image size at the expense of a possible increase in
execution time. This option balances code size against performance.

-Oz

Optimizes for smaller code size.

You can also set the optimization level with the armlink option --lto_level. The
levels correspond to the armclang optimization levels.

The following armclang option helps you optimize for both code size and code performance:

-flto

Enables link time optimization, which lets the linker make other optimizations across multiple
source files.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Optimization Techniques

Also, choices you make during coding can affect optimization. For example:

• Optimizing loop termination conditions can improve both code size and performance. In
particular, loops with counters that decrement to zero usually produce smaller, faster code than
loops with incrementing counters.

• Manually unrolling loops by reducing the number of loop iterations, but increasing the amount
of work done in each iteration can improve performance at the expense of code size.

• Reducing debug information in objects and libraries reduces the size of your image.

• Using inline functions offers a trade-off between code size and performance.

• Using intrinsics can improve performance.

7.2 Optimizing across modules with link time optimization
Extra optimization opportunities are available at link time, because source code from different
modules can be optimized together.

By default, the compiler optimizes each source module independently, translating C or C++ source
code into an ELF file containing object code. At link time the linker combines all the ELF object
files into an executable by resolving symbol references and relocations. Compiling each source file
separately means the compiler might miss some optimization opportunities, such as cross-module
inlining.

When link time optimization is enabled, the compiler translates source code into an intermediate
form called LLVM bitcode. At link time, the linker collects all files containing bitcode together and
sends them to the link time optimizer (libLTO). Collecting modules together means the link time
optimizer can perform more optimizations because it has more information about the dependencies
between modules. The link time optimizer then sends a single ELF object file back to the linker.
Finally, the linker combines all object and library code to create an executable.

Figure 7-1: Link time optimization

C/C++ Source
.c

ELF Object
containing

Bitcode
.o

C/C++ Source
.c

ELF Object
.o

armclang
-flto

armclang

Libraries

armlink --lto

Link-time optimizer
libLTO

ELF
Executable

ELF Object
.o

ELF Object
containing

Bitcode
.o

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Optimization Techniques

In this figure, ELF Object containing Bitcode is an ELF file that does not contain
normal code and data. Instead, it contains a section called .llvmbc that holds LLVM
bitcode.

Section .llvmbc is reserved. You must not create an .llvmbc section with, for
example __attribute__((section(".llvmbc"))).

Link Time Optimization performs aggressive optimizations by analyzing the
dependencies between bitcode format objects. This can result in the removal of
unused variables and functions in the source code.

7.2.1 Enabling link time optimization

You must enable link time optimization in both armclang and armlink.

To enable link time optimization:

1. At compilation time, use the armclang option -flto to produce ELF files suitable for link time
optimization. These ELF files contain bitcode in a .llvmbc section.

2. At link time, use the armlink option --lto to enable link time optimization for the specified
bitcode files.

armclang automatically passes the --lto option to armlink if the -flto option is
used without the -c option.

Example 1: Optimizing all source files
The following example performs link time optimization across all source files:

armclang --target=arm-arm-none-eabi -march=armv8-a -flto src1.c src2.c src3.c -o
 output.axf

This example does the following:

1. armclang compiles the C source files src1.c, src2.c, and src3.c to the ELF files src1.o,
src2.o, and src3.o. These ELF files contain bitcode.

2. armclang automatically invokes armlink with the --lto option.

3. armlink passes the bitcode files src1.o, src2.o, and src3.o to the link time optimizer to
produce a single optimized ELF object file.

4. armlink creates the executable output.axf from the ELF object file.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Optimization Techniques

Example 2: Optimizing a subset of source files
The following example performs link time optimization for a subset of source files.

armclang --target=arm-arm-none-eabi -march=armv8-a -c src1.c -o src1.o
armclang --target=arm-arm-none-eabi -march=armv8-a -c -flto src2.c -o src2.o
armclang --target=arm-arm-none-eabi -march=armv8-a -c -flto src3.c -o src3.o
armlink --lto src1.o src2.o src3.o -o output.axf

This example does the following:

1. armclang compiles the C source file src1.c to the ELF object file src1.o.

2. armclang compiles the C source files src2.c and src3.c to the ELF files src2.o and src3.o.
These ELF files contain bitcode.

3. armlink passes the bitcode files src2.o and src3.o to the link time optimizer to produce a
single optimized ELF object file.

4. armlink combines the ELF object file src1.o with the object file produced by the link time
optimizer to create the executable output.axf.

Related information
Restrictions with Link-Time Optimization on page 49
-flto, -fno-lto
--lto, --no_lto

7.2.2 Restrictions with Link-Time Optimization

Link-Time Optimization (LTO) has a few restrictions in Arm® Compiler 6. Future releases might have
fewer restrictions and more features. The user interface to link time optimization might change in
future releases.

No bitcode libraries
armlink only supports bitcode objects on the command line. It does not support bitcode
objects coming from libraries. armlink gives an error message if it encounters a file
containing bitcode while loading from a library.

Although armar silently accepts ELF files that are produced with armclang -flto, these files
currently do not have a proper symbol table. Therefore, the generated archive has incorrect
index information and armlink cannot find any symbols in this archive.

Partial linking
The armlink option --partial only works with ELF files. If the linker detects a file containing
bitcode, it gives an error message.

Scatter-loading
The output of the link-time optimizer is a single ELF object file that by default is given a
temporary filename. This ELF object file contains sections and symbols just like any other ELF
object file, and Input section selectors match the sections and symbols as normal.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 96

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-flto---fno-lto
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--lto----no-lto

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Optimization Techniques

Use the armlink option --lto_intermediate_filename to name the ELF object file output.
You can reference this ELF file name in the scatter file. Arm recommends that LTO is only
performed on code and data that does not require precise placement in the scatter file, with
general Input section selectors such as

*(+RO)

and

.ANY(+RO)

used to select sections that LTO generates.

It is not possible to match bitcode in .llvmbc sections by name in a scatter file.

The scatter-loading interface is subject to change in future versions of Arm
Compiler 6.

Executable and library compatibility
The armclang executable and the libLTO library must come from the same Arm Compiler 6
installation. Any use of libLTO other than that supplied with Arm Compiler 6 is unsupported.

Other restrictions
• You cannot currently use LTO for building ROPI/RWPI images.

• Object files that LTO produces contain build attributes that are the default for the target
architecture. If you use the armlink options --cpu or --fpu when LTO is enabled, armlink
can incorrectly report that the attributes in the file that the link-time optimizer produces
are incompatible with the provided attributes.

Build attribute compatibility checking is supported only for AArch32 state.

• LTO does not honor armclang options -ffunction-sections and -fdata-sections.

• LTO does not honor the armclang option -mexecute-only. If you use the armclang
options -flto or -Omax, then the compiler cannot generate execute-only code.

• LTO does not work correctly when two bitcode files are compiled for different targets.

Related information
Enabling link time optimization on page 48

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Optimization Techniques

7.3 How optimization affects the debug experience
There is a trade-off between optimizing code and the debug experience.

The precise optimizations performed by the compiler depend both on the level of optimization
chosen, and whether you are optimizing for performance or code size.

The lowest optimization level, -O0, provides the best debug experience because the structure of
the generated code directly corresponds to the source code.

Higher optimization levels result in an increasingly degraded debug view because the mapping
of object code to source code is not always clear. The compiler might perform optimizations that
cannot be described by debug information.

Related information
-O

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 96

https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-O

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

8. Coding Considerations
Describes how you can use programming practices and techniques to increase the portability,
efficiency and robustness of your C and C++ source code.

8.1 Optimization of loop termination in C code
Loops are a common construct in most programs. Because a significant amount of execution time is
often spent in loops, it is worthwhile paying attention to time-critical loops.

The loop termination condition can cause significant overhead if written without caution. Where
possible:

• Use simple termination conditions.

• Write count-down-to-zero loops.

• Use counters of type unsigned int.

• Test for equality against zero.

Following any or all of these guidelines, separately or in combination, is likely to result in better
code.

The following table shows two sample implementations of a routine to calculate n! that together
show the loop termination overhead. The first implementation calculates n! using an incrementing
loop, while the second routine calculates n! using a decrementing loop.

Table 8-1: C code for incrementing and decrementing loops

Incrementing loop Decrementing loop

int fact1(int n)
{
 int i, fact = 1;
 for (i = 1; i <= n; i++)
 fact *= i;
 return (fact);
}

int fact2(int n)
{
 unsigned int i, fact = 1;
 for (i = n; i != 0; i--)
 fact *= i;
 return (fact);
}

The following table shows the corresponding disassembly of the machine code produced
by armclang -Os -S --target=arm-arm-none-eabi -march=armv8-a for each of the sample
implementations in the previous table.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

Table 8-2: C disassembly for incrementing and decrementing loops

Incrementing loop Decrementing loop

fact1:
 mov r1, r0
 mov r0, #1
 cmp r1, #1
 bxlt lr
 mov r2, #0
.LBB0_1:
 add r2, r2, #1
 mul r0, r0, r2
 cmp r1, r2
 bne .LBB0_1
 bx lr

fact2:
 mov r1, r0
 mov r0, #1
 cmp r1, #0
 bxeq lr
.LBB1_1:
 mul r0, r0, r1
 subs r1, r1, #1
 bne .LBB1_1
 bx lr

Comparing the disassemblies shows that the ADD and CMP instruction pair in the incrementing loop
disassembly has been replaced with a single SUBS instruction in the decrementing loop disassembly.
Because the SUBS instruction updates the status flags, including the Z flag, there is no requirement
for an explicit CMP r1,r2 instruction.

In addition to saving an instruction in the loop, the variable n does not have to be available for
the lifetime of the loop, reducing the number of registers that have to be maintained. This eases
register allocation. It is even more important if the original termination condition involves a function
call. For example:

for (...; i < get_limit(); ...);

The technique of initializing the loop counter to the number of iterations required, and then
decrementing down to zero, also applies to while and do statements.

8.2 Loop unrolling in C code
Loops are a common construct in most programs. Because a significant amount of execution time is
often spent in loops, it is worthwhile paying attention to time-critical loops.

Small loops can be unrolled for higher performance, with the disadvantage of increased code size.
When a loop is unrolled, the loop counter requires updating less often and fewer branches are
executed. If the loop iterates only a few times, it can be fully unrolled so that the loop overhead
completely disappears. The compiler unrolls loops automatically at -O3. Otherwise, any unrolling
must be done in source code.

Manual unrolling of loops might hinder the automatic re-rolling of loops and other
loop optimizations by the compiler.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

The advantages and disadvantages of loop unrolling can be illustrated using the two sample
routines shown in the following table. Both routines efficiently test a single bit by extracting the
lowest bit and counting it, after which the bit is shifted out.

The first implementation uses a loop to count bits. The second routine is the first implementation
unrolled four times, with an optimization applied by combining the four shifts of n into one shift.

Unrolling frequently provides new opportunities for optimization.

Table 8-3: C code for rolled and unrolled bit-counting loops

Bit-counting loop Unrolled bit-counting loop

int countbit1(unsigned int n)
{
 int bits = 0;
 while (n != 0)
 {
 if (n & 1) bits++;
 n >>= 1;
 }
 return bits;
}

int countbit2(unsigned int n)
{
 int bits = 0;
 while (n != 0)
 {
 if (n & 1) bits++;
 if (n & 2) bits++;
 if (n & 4) bits++;
 if (n & 8) bits++;
 n >>= 4;
 }
 return bits;
}

The following table shows the corresponding disassembly of the machine code produced
by the compiler for each of the sample implementations above, where the C code for each
implementation has been compiled using armclang -Os -S --target=arm-arm-none-eabi -
march=armv8-a.

Table 8-4: Disassembly for rolled and unrolled bit-counting loops

Bit-counting loop Unrolled bit-counting loop

countbit1:
 mov r1, r0
 mov r0, #0
 cmp r1, #0
 bxeq lr
 mov r2, #0
.LBB0_1:
 and r3, r1, #1
 cmp r2, r1, lsr #1
 add r0, r0, r3
 lsr r3, r1, #1
 mov r1, r3
 bne .LBB0_1
 bx lr

countbit2:
 mov r1, r0
 mov r0, #0
 cmp r1, #0
 bxeq lr
 mov r2, #0
.LBB1_1:
 and r3, r1, #1
 cmp r2, r1, lsr #4
 add r0, r0, r3
 ubfx r3, r1, #1, #1
 add r0, r0, r3
 ubfx r3, r1, #2, #1
 add r0, r0, r3
 ubfx r3, r1, #3, #1
 add r0, r0, r3
 lsr r3, r1, #4
 mov r1, r3
 bne .LBB1_1
 bx lr

The unrolled version of the bit-counting loop is faster than the original version, but has a larger
code size.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

8.3 Effect of the volatile keyword on compiler optimization
Use the volatile keyword when declaring variables that the compiler must not optimize. If you do
not use the volatile keyword where it is needed, then the compiler might optimize accesses to
the variable and generate unintended code or remove intended functionality.

What volatile means
The declaration of a variable as volatile tells the compiler that the variable can be modified at any
time by another entity that is external to the implementation, for example:

• By the operating system.

• By hardware.

This declaration ensures that the compiler does not optimize any use of the variable on the
assumption that this variable is unused or unmodified.

You can also use volatile to tell the compiler that a block containing inline assembly code has
side-effects that the output, input, and clobber lists do not represent.

Arm® Compiler does not guarantee that a single-copy atomic instruction is used to
access a volatile variable that is larger than the natural architecture data size, even
when one is available for the target processor. For more information, see Volatile
variables and Atomicity in the Arm architecture in the following documents:

• Arm Architecture Reference Manual for A-profile architecture.

• ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition.

When to use volatile
Use the volatile keyword for variables that might be modified from outside the scope where they
are defined. Some examples are:

• If the program uses a global variable in some computation, the compiler generates code to load
the value of the variable into a register to perform that computation. If the same global variable
is then used in another computation, the compiler might reuse the existing value in the register
instead of generating another load. This reuse is because the optimizer assumes that non-
volatile variables cannot be modified externally, and this assumption is not correct for memory-
mapped peripherals. See Example of infinite loop when not using the volatile keyword.

• A variable might be used to implement a sleep or timer delay. If the variable appears unused,
the compiler might remove the timer delay code, unless the variable is declared as volatile.

• In C++, an interrupt function might be defined in a class scope but is called by hardware
asynchronously. A buffer, buffer_full, is modified in an interrupt and is in a scope but must
still be declared as volatile, for example:

class myclass
{
 public:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 96

https://developer.arm.com/documentation/dui0774/l/Other-Compiler-specific-Features/Volatile-variables
https://developer.arm.com/documentation/dui0774/l/Other-Compiler-specific-Features/Volatile-variables
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0406/latest

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

 int check_stream();
 void async_interrupt();

 private:
 bool buffer_full; // must be declared as volatile
};

int myclass::check_stream()
{
 int count = 0;
 while (!buffer_full)
 {
 count++;
 }
 return count;
}

void myclass::async_interrupt()
{
 buffer_full = !buffer_full;
}

In practice:

• You must declare a variable as volatile when accessing memory-mapped peripherals. Even at
-O0, there is no guarantee that every variable is assigned as volatile.

• volatile is not a means of inter-thread communication or synchronization, and atomics must
be used for this purpose instead. That is:

◦ The _Atomic qualifier and <stdatomic.h> functions in C.

◦ The <atomic> library functions and templates in C++.

• Interrupt and signal handlers must use either atomics or variables of the type volatile
sig_atomic_t, but not arbitrary volatile-qualified types, to synchronize with other threads of
execution.

Also consider using volatile before any inline assembly code.

Potential problems when not using volatile
When a volatile variable is not declared as volatile, the compiler assumes that its value cannot
be modified from outside the scope that it is defined in. Therefore, the compiler might perform
unwanted optimizations. This problem can manifest itself in various ways:

• Code might become stuck in a loop while polling hardware.

• Optimization might result in the removal of code that implements deliberate timing delays.

Forcing the use of a specific instruction to access memory
Specifying a variable as volatile does not guarantee that any particular machine instruction is
used to access it. For example, the AXI peripheral port on Cortex®-R7 and Cortex-R8 is a 64-bit
peripheral register. This register must be written to using a two-register STM instruction, and not
by either an STRD instruction or a pair of STR instructions. There is no guarantee that the compiler
selects the access method required by that register in response to a volatile modifier on the
associated variable or pointer type.

If you are writing code that must access the AXI port, or any other memory-mapped location
that requires a particular access strategy, then declaring the location as a volatile variable is

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

not enough. You must also perform your accesses to the register using an __asm__ statement
containing the load or store instructions you need. For example:

__asm__ volatile("stm %1,{%Q0,%R0}" : : "r"(val), "r"(ptr));
__asm__ volatile("ldm %1,{%Q0,%R0}" : "=r"(val) : "r"(ptr));

Example of infinite loop when not using the volatile keyword
The use of the volatile keyword is illustrated in the two example routines in the following table.

Table 8-5: C code for nonvolatile and volatile buffer loops

Nonvolatile version of buffer loop Volatile version of buffer loop

int buffer_full;
int read_stream(void)
{
 int count = 0;
 while (!buffer_full)
 {
 count++;
 }
 return count;
}

volatile int buffer_full;
int read_stream(void)
{
 int count = 0;
 while (!buffer_full)
 {
 count++;
 }
 return count;
}

Both of these routines increment a counter in a loop until a status flag buffer_full is set to true.
The state of buffer_full can change asynchronously with program flow.

The example on the left does not declare the variable buffer_full as volatile and is therefore
wrong. The example on the right does declare the variable buffer_full as volatile.

The following table shows the corresponding disassembly of the machine code that the compiler
produces for each of the examples in C code for nonvolatile and volatile buffer loops. The C code
for each example is compiled using:

armclang --target=arm-arm-none-eabi -march=armv8-a -Os -S

Table 8-6: Disassembly for nonvolatile and volatile buffer loop

Nonvolatile version of buffer loop Volatile version of buffer loop

read_stream:
 movw r0, :lower16:buffer_full
 movt r0, :upper16:buffer_full
 ldr r1, [r0]
 mvn r0, #0
.LBB0_1:
 add r0, r0, #1
 cmp r1, #0
 beq .LBB0_1 ; infinite loop
 bx lr

read_stream:
 movw r1, :lower16:buffer_full
 mvn r0, #0
 movt r1, :upper16:buffer_full
.LBB1_1:
 ldr r2, [r1] ; buffer_full
 add r0, r0, #1
 cmp r2, #0
 beq .LBB1_1
 bx lr

In the disassembly of the nonvolatile example, the statement LDR r1, [r0] loads the value of
buffer_full into register r1 outside the loop labeled .LBB0_1. Because buffer_full is not declared
as volatile, the compiler assumes that its value cannot be modified outside the program. Having
already read the value of buffer_full into r0, the compiler omits reloading the variable when

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

optimizations are enabled, because its value cannot change. The result is the infinite loop labeled
.LBB0_1.

In the disassembly of the volatile example, the compiler assumes that the value of buffer_full can
change outside the program and performs no optimization. Therefore, the value of buffer_full
is loaded into register r2 inside the loop labeled .LBB1_1. As a result, the assembly code that is
generated for loop .LBB1_1 is correct.

Related information
Floating-point division-by-zero errors in C and C++ code on page 61
Volatile variables
armclang Inline Assembler
Arm Cortex-R7 MPCore Technical Reference Manual
Arm Cortex-R8 MPCore Processor Technical Reference Manual

8.4 Stack use in C and C++
C and C++ both use the stack intensively.

For example, the stack holds:

• The return address of functions.

• Registers that must be preserved, as determined by the Arm Architecture Procedure Call Standard
for the Arm 64-bit Architecture (AAPCS64), for instance, when register contents are saved on
entry into subroutines.

• Local variables, including local arrays, structures, unions, and in C++, classes.

Some stack usage is not obvious, such as:

• Local integer or floating point variables are allocated stack memory if they are spilled (that is,
not allocated to a register).

• Structures are normally allocated to the stack. A space equivalent to sizeof(struct) padded
to a multiple of 16 bytes is reserved on the stack. The compiler tries to allocate structures to
registers instead.

• If the size of an array is known at compile time, the compiler allocates memory on the stack.
Again, a space equivalent to sizeof(array) padded to a multiple of 16 bytes is reserved on the
stack.

Memory for variable length arrays is allocated at runtime, on the heap.

• Several optimizations can introduce new temporary variables to hold intermediate results. The
optimizations include:

◦ CSE elimination
Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 58 of 96

https://developer.arm.com/documentation/dui0774/l/Other-Compiler-specific-Features/Volatile-variables
https://developer.arm.com/documentation/dui0774/l/armclang-Inline-Assembler
https://developer.arm.com/documentation/ddi0458/latest
https://developer.arm.com/documentation/100400/latest

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

◦ Live range splitting

◦ Structure splitting.

The compiler tries to allocate these temporary variables to registers. If not, it spills them to the
stack.

• Generally, code compiled for processors that support only 16-bit encoded T32 instructions
makes more use of the stack than A64 code, A32 code, and code compiled for processors that
support 32-bit encoded T32 instructions. This extra stack use is because 16-bit encoded T32
instructions have only eight registers available for allocation, compared to 14 registers for A32
code and 32-bit encoded T32 instructions.

• The AAPCS64 requires that some function arguments are passed through the stack instead of
the registers, depending on their type, size, and order.

Methods of estimating stack usage
Stack use is difficult to estimate because it is code dependent, and can vary between runs
depending on the code path that the program takes on execution. However, it is possible to
manually estimate the extent of stack utilization using the following methods:

• Link with --callgraph to produce a static callgraph. This callgraph shows information on all
functions, including stack use.

This option uses DWARF frame information from the .debug_frame section. Compile with the -
g option to generate the necessary DWARF information.

• Link with --info=stack or --info=summarystack to list the stack usage of all global symbols.

• Use a debugger to set a watchpoint on the last available location in the stack and see if
the watchpoint is ever hit. Compile with the -g option to generate the necessary DWARF
information.

• Use a debugger, and:

1. Allocate space in memory for the stack that is much larger than you expect to require.

2. Fill the stack space with copies of a known value, for example, 0xDEADDEAD.

3. Run your application, or a fixed portion of it. Aim to use as much of the stack space as
possible in the test run. For example, try to execute the most deeply nested function calls
and the worst case path found by the static analysis. Try to generate interrupts where
appropriate, so that they are included in the stack trace.

4. After your application has finished executing, examine the stack space of memory to see
how many of the known values have been overwritten. The space has garbage in the used
part and the known values in the remainder.

5. Count the number of garbage values and multiply by sizeof(value), to give their size, in
bytes.

The result of the calculation shows how the size of the stack has grown, in bytes.

• Use Fixed Virtual Platforms (FVP), and define a region of memory where access is not allowed
directly below your stack in memory, with a map file. If the stack overflows into the forbidden
region, a data abort occurs, which a debugger can trap.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

Methods of reducing stack usage
In general, you can lower the stack requirements of your program by:

• Writing small functions that only require a few variables.

• Avoiding the use of large local structures or arrays.

• Avoiding recursion, for example, by using an alternative algorithm.

• Minimizing the number of variables that are in use at any given time at each point in a function.

• Using C block scope and declaring variables only where they are required, so overlapping the
memory used by distinct scopes.

8.5 Methods of minimizing function parameter passing
overhead

There are several ways in which you can minimize the overhead of passing parameters to functions.

For example:

• In AArch64 state, 8 integer and 8 floating point arguments (16 in total) can be passed
efficiently. In AArch32 state, ensure that functions take four or fewer arguments if each
argument is a word or less in size. In C++, ensure that nonstatic member functions take no
more than one less argument than the efficient limit, because of the implicit this pointer
argument that is usually passed in R0.

• Ensure that a function does a significant amount of work if it requires more than the efficient
limit of arguments, so that the cost of passing the stacked arguments is outweighed.

• Put related arguments in a structure, and pass a pointer to the structure in any function call.
Passing a pointer reduces the number of parameters and increases readability.

• For 32-bit architectures, minimize the number of long long parameters, because these take
two argument words that have to be aligned on an even register index.

• For 32-bit architectures, minimize the number of double parameters when using software
floating-point.

8.6 Inline functions
Inline functions offer a trade-off between code size and performance. By default, the compiler
decides for itself whether to inline code or not.

See the Clang documentation for more information about inline functions.

Related information
Language Compatibility

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 96

http://clang.llvm.org/compatibility.html

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

8.7 Integer division-by-zero errors in C code
Integer division-by-zero in C code is undefined behavior, and the compiler does not guarantee a
specific behavior for such code.

For targets that do not support hardware division instructions, such as the SDIV and UDIV
instructions, you cannot rely on the C library helper function __aeabi_idiv0() to trap and identify
integer division-by-zero errors. Instead, you must manually test the denominator before the
division operation takes place. For example:

#include <signal.h>

int divide(const int numerator, const int denominator)
{
 if (denominator == 0)
 {
 return raise(SIGFPE);
 }
 else
 {
 return numerator / denominator;
 }
}

8.8 Floating-point division-by-zero errors in C and C++
code

The floating-point division by zero behavior that results from assumptions made by armclang might
be undesirable.

AArch64 state behavior
The Floating-point Control Register, FPCR, and Floating-point Status Register, FPSR, are AArch64
registers. For AArch64 state, setting the FPCR.DZE (Divide by Zero floating-point exception
trap enable) bit to 1 tells the processor that a floating-point divide-by-zero operation causes a
synchronous exception within the processor instead of updating the FPSR.DZC (Divide by Zero
cumulative floating-point exception) bit. The exception handler routine can then decide whether to
set the FPSR.DZC to 1 to indicate that a divide-by-zero operation occurred.

If the Arm®v8-A implementation does not support floating-point exception
trapping, then the processor ignores any attempt to set FPCR.DZE to 1.

armclang assumes that the FPCR.DZE bit is never set to 1, and also incorrectly assumes that a
processor always automatically sets FPSR.DZC to 1 to indicate that a divide-by-zero operation
occurred. Therefore, armclang can move a comparison with 0.0f after a potential divide-by-zero
operation, because it assumes a divide-by-zero operation does not affect program flow. However,
if the implementation supports floating-point exception trapping and your code sets FPCR.DZE to 1,

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

a divide-by-zero operation would affect the program flow and could cause a processor exception. If
the processor does not support floating-point exception trapping, then setting FPCR.DZE to 1 could
result in unexpected runtime behavior. Therefore, write your code in a way that ensures armclang
avoids placing the division before the comparison.

AArch32 state behavior
For AArch32, both fields DZE and DZC are in the combined register Floating-point Status and Control
Register, FPSCR. For AArch32 state, armclang makes the same assumption as in AArch64 state, that
a divide-by-zero operation does not affect program flow.

Example: Common code pattern to guard against division by zero
A common code pattern is to guard against division by zero, as shown in the following C code
example:

float func(float x, float y)
{
 if (y != 0.0f) {
 return x/y;
 }
 return x;
}

However, because of the assumptions armclang makes about floating-point instructions, it might
compile the example C code for AArch64 state as follows:

 fdiv s2, s0, s1
 fcmp s1, #0.0
 fcsel s0, s2, s0, ne
 ret

This example shows that the division is performed before the comparison, and executed
unconditionally, which might be undesirable.

The following examples show how to work around the division by zero behavior in source code.

Example: Work around by declaring the divisor as volatile
By declaring the divisor as volatile, armclang expects that the value of y might change between
reads. volatile forces armclang to produce more conservative code, where the comparison
necessarily comes before the division:

float func(float x, volatile float y)
{
 if (y != 0.0f) {
 return x/y;
 }
 return x;
}

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

Example: Work around by using inline assembly
An alternative solution is to perform the division operation using an inline assembly block.
Declaring the inline assembly block as volatile prevents armclang from optimizing that block. For
example, for AArch64 state:

float func(float x, float y)
{
 float ret;
 if (y != 0.0f) {
 __asm volatile ("fdiv %s0, %s1, %s2"
 :"=w"(ret)
 :"w"(x), "w"(y)
 :);
 } else {
 ret = x;
 }
 return ret;
}

8.9 Infinite Loops
armclang considers infinite loops with no side-effects to be undefined behavior, as stated in the
C11 and C++11 standards. In certain situations armclang deletes or moves infinite loops, resulting
in a program that eventually terminates, or does not behave as expected.

How to write an infinite loop in armclang
To ensure that a loop executes for an infinite length of time, Arm recommends writing infinite loops
in the following way:

void infinite_loop(void) {
 while (1)
 asm volatile(""); // this line is considered to have side-effects
}

armclang does not delete or move the loop, because it has side-effects.

8.10 C library structure
Conceptually, the C library can be divided into functions that are part of the ISO C standard, for
example printf(), and functions that provide support to the ISO C standard.

For example, the following figure shows the C library implementing the function printf() by
writing to the debugger console window. This implementation is provided by calling _sys_write(),
a support function that executes a semihosting call, resulting in the default behavior using the
debugger instead of target peripherals.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

Figure 8-1: C library structure

ISO C

input/
output

error
handling

stack and
heap
setup

other

Semihosting Support
Debug
Agent

C Library

Functions called by
your application,
for example, printf()

Device driver level.
Use semihosting,
for example,

Implemented by
the debugging
environment

_sys_write()

Related information
Reimplementing C library functions on page 64

8.11 Reimplementing C library functions
This provides information for building applications without the Arm® standard C library.

To build applications without the Arm standard C library, you must provide an alternative library
that reimplements the ISO standard C library functions that your application might need, such as
printf(). Your reimplemented library must be compliant with the Arm Embedded Application Binary
Interface (AEABI).

To instruct armclang to not use the Arm standard C library, you must use the armclang options -
nostdlib and -nostdlibinc. You must also use the armlink option --no_scanlib if you invoke the
linker separately.

You must also use the armlink option -fno-builtin to ensure that the compiler does not perform
any transformations of built-in functions. Without -fno-builtin, armclang might recognize calls to
certain standard C library functions, such as printf(), and replace them with calls to more efficient
alternatives in specific cases.

This example reimplements the printf() function to simply return 1 or 0.

//my_lib.c:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

int printf(const char *c, ...)
{
 if(!c)
 {
 return 1;
 }
 else
 {
 return 0;
 }
}

Use armclang and armar to create a library from your reimplemented printf() function:

armclang --target=arm-arm-none-eabi -c -O2 -march=armv7-a -mfpu=none mylib.c -o
 mylib.o
armar --create mylib.a mylib.o

An example application source file foo.c contains:

//foo.c:
extern int printf(const char *c, ...);

void foo(void)
{
 printf("Hello, world!\n");
}

Use armclang to build the example application source file using the -nostdlib, -nostdlibinc and
-fno-builtin options. Then use armlink to link the example reimplemented library using the --
no_scanlib option.

armclang --target=arm-arm-none-eabi -c -O2 -march=armv7-a -mfpu=none -nostdlib -
nostdlibinc -fno-builtin foo.c -o foo.o
armlink foo.o mylib.a -o image.axf --no_scanlib

If you do not use the -fno-builtin option, then the compiler transforms the printf() function to
the puts() function, and the linker generates an error because it cannot find the puts() function in
the reimplemented library.

armclang --target=arm-arm-none-eabi -c -O2 -march=armv7-a -mfpu=none -nostdlib -
nostdlibinc foo.c -o foo.o
armlink foo.o mylib.a -o image.axf --no_scanlib

Error: L6218E: Undefined symbol puts (referred from foo.o).

If the linker sees a definition of main(), it automatically creates a reference to a
startup symbol called __main. The Arm standard C library defines __main to provide
startup code. If you use your own library instead of the Arm standard C library, then
you must provide your implementation of __main or change the startup symbol
using the linker --startup option.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Coding Considerations

Related information
C library structure on page 63
--startup, --no_startup
Run-time ABI for the Arm Architecture
C Library ABI for the Arm Architecture

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 96

https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--startup-symbol----no-startup
https://developer.arm.com/documentation/ihi0043/latest/
https://developer.arm.com/documentation/ihi0039/d/c-library-abi-for-the-arm-architecture-abi-r210

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

9. Overlays
Describes the Arm® Compiler support for overlays to enable you to have multiple load regions at
the same address.

Arm Compiler does not support using both manual and automatic overlays within
the same program.

9.1 Overlay support in Arm Compiler
There are situations when you might want to load some code in memory, then replace it with
different code. For example, your system might have memory constraints that mean you cannot
load all code into memory at the same time.

The solution is to create an overlay region where each piece of overlaid code is unloaded and
loaded by an overlay manager. Arm® Compiler supports:

• An automatic overlay mechanism, where the linker decides how your code sections get
allocated to overlay regions.

• A manual overlay mechanism, where you manually arrange the allocation of the code sections.

Arm Compiler does not support using both manual and automatic overlays within
the same program.

Related information
Automatic overlay support on page 67
Manual overlay support on page 74

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

9.2 Automatic overlay support
For the linker to automatically allocate code sections to overlay regions, you must modify your C or
assembly code to identify the parts to be overlaid. You must also set up a scatter file to locate the
overlays.

Arm® Compiler does not support using both manual and automatic overlays within
the same program.

The automatic overlay mechanism consists of:

• Special section names that you can use in your object files to mark code as overlaid.

• The AUTO_OVERLAY execution region attribute. Use this in a scatter file to indicate regions of
memory where the linker assigns the overlay sections for loading into at runtime.

• The command-line option --overlay-veneers to make the linker redirect calls between overlays
to a veneer that lets an overlay manager unload and load the correct overlays.

• A set of data tables and symbol names provided by the linker that you can use to write the
overlay manager.

• The armlink command-line option --emit_debug_overlay_section to add extra debug
information to the image. This option permits an overlay-aware debugger to track which
overlay is currently active.

Related information
__attribute__((section("name"))) function attribute
AREA
Execution region attributes
--emit_debug_overlay_section linker option
--overlay_veneers linker option

9.2.1 Automatically placing code sections in overlay regions

Arm® Compiler can automatically place code sections into overlay regions.

About this task
You identify the sections in your code that are to become overlays by giving them names of the
form .ARM.overlayN, where N is an integer identifier. You then use a scatter file to indicate those
regions of memory where armlink is to assign the overlays for loading at runtime.

Each overlay region corresponds to an execution region that has the attribute AUTO_OVERLAY
assigned in the scatter file. armlink allocates one set of integer identifiers to each of these overlay
regions. It allocates another set of integer identifiers to each overlaid section with the name
.ARM.overlayN that is defined in the object files.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 96

https://developer.arm.com/documentation/dui0774/l/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----section--name-----function-attribute
https://developer.arm.com/documentation/dui0801/l/Directives-Reference/AREA
https://developer.arm.com/documentation/dui0803/l/Scatter-File-Syntax/Execution-region-descriptions/Execution-region-attributes
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--emit-debug-overlay-section
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--overlay-veneers

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

The numbers assigned to the overlay sections in your object files do not match up
to the numbers that you put in the .ARM.overlayN section names.

Procedure
1. Declare the functions that you want the armlink automatic overlay mechanism to process.

• In C, use a function attribute, for example:

__attribute__((section(".ARM.overlay1"))) void foo(void) { ... }
__attribute__((section(".ARM.overlay2"))) void bar(void) { ... }

• In the armclang integrated assembler syntax, use the .section directive, for example:

 .section .ARM.overlay1,"ax",%progbits
 .globl foo
 .p2align 2
 .type foo,%function
foo: @ @foo
 ...
 .fnend

 .section .ARM.overlay2,"ax",%progbits
 .globl bar
 .p2align 2
 .type bar,%function
bar: @ @bar
 ...
 .fnend

• In Arm legacy assembler syntax, use the AREA directive, for example:

 AREA |.ARM.overlay1|,CODE
foo PROC
 ...
 ENDP

 AREA |.ARM.overlay2|,CODE
bar PROC
 ...
 ENDP

You can choose to overlay or not overlay code sections. Data sections must
never be overlaid.

2. Specify the locations to load the code sections from and to in a scatter file. Use the
AUTO_OVERLAY keyword on one or more execution regions.
The execution regions must not have any section selectors. For example:

OVERLAY_LOAD_REGION 0x10000000
{
 OVERLAY_EXECUTE_REGION_A 0x20000000 AUTO_OVERLAY 0x10000 { }
 OVERLAY_EXECUTE_REGION_B 0x20010000 AUTO_OVERLAY 0x10000 { }

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

}

In this example, armlink emits a program header table entry that loads all the overlay data
starting at address 0x10000000. Also, each overlay is relocated so that it runs correctly if copied
to address 0x20000000 or 0x20010000. armlink chooses one of these addresses for each
overlay.

3. When linking, specify the --overlay_veneers command-line option. This option causes armlink
to arrange function calls between two overlays, or between non-overlaid code and an overlay,
to be diverted through the entry point of an overlay manager.
To permit an overlay-aware debugger to track the overlay that is active, specify the --
emit_debug_overlay_section command-line option.

Related information
__attribute__((section("name"))) function attribute
AREA
Execution region attributes
--emit_debug_overlay_section linker option
--overlay_veneers linker option

9.2.2 Overlay veneer

armlink can generate an overlay veneer for each function call between two overlays, or between
non-overlaid code and an overlay.

A function call or return can transfer control between two overlays or between non-overlaid code
and an overlay. If the target function is not already present at its intended execution address, then
the target overlay has to be loaded.

To detect whether the target overlay is present, armlink can arrange for all such function calls
to be diverted through the overlay manager entry point, __ARM_overlay_entry. To enable this
feature, use the armlink command-line option --overlay_veneers. This option causes a veneer to
be generated for each affected function call, so that the call instruction, typically a BL instruction,
points at the veneer instead of the target function. The veneer in turn saves some registers on the
stack, loads some information about the target function and the overlay that it is in, and transfers
control to the overlay manager entry point. The overlay manager must then:

• Ensure that the correct overlay is loaded and then transfer control to the target function.

• Restore the stack and registers to the state they were left in by the original BL instruction.

• If the function call originated inside an overlay, make sure that returning from the called
function reloads the overlay being returned to.

Related information
--overlay_veneers linker option

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 96

https://developer.arm.com/documentation/dui0774/l/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----section--name-----function-attribute
https://developer.arm.com/documentation/dui0801/l/Directives-Reference/AREA
https://developer.arm.com/documentation/dui0803/l/Scatter-File-Syntax/Execution-region-descriptions/Execution-region-attributes
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--emit-debug-overlay-section
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--overlay-veneers
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--overlay-veneers

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

9.2.3 Overlay data tables

armlink provides various symbols that point to a piece of read-only data, mostly arrays. This data
describes the collection of overlays and overlay regions in the image.

The symbols are:

Region$$Table$$AutoOverlay

This symbol points to an array containing two 32-bit pointers per overlay region. For each
region, the two pointers give the start address and end address of the overlay region. The
start address is the first byte in the region. The end address is the first byte beyond the end
of the region. The overlay manager can use this symbol to identify when the return address
of a calling function is in an overlay region. In this case, a return thunk might be required.

The regions are always sorted in ascending order of start address.

Region$$Count$$AutoOverlay

This symbol points to a single 16-bit integer (an unsigned short) giving the total number of
overlay regions. That is, the number of entries in the arrays Region$$Table$$AutoOverlay
and CurrLoad$$Table$$AutoOverlay.

Overlay$$Map$$AutoOverlay

This symbol points to an array containing a 16-bit integer (an unsigned short) per overlay. For
each overlay, this table indicates which overlay region the overlay expects to be loaded into
to run correctly.

Size$$Table$$AutoOverlay

This symbol points to an array containing a 32-bit word per overlay. For each overlay, this
table gives the exact size of the data for the overlay. This size might be less than the size of
its containing overlay region, because overlays typically do not fill their regions exactly.

In addition to the read-only tables, armlink also provides one piece of read/write memory:

CurrLoad$$Table$$AutoOverlay

This symbol points to an array containing a 16-bit integer (an unsigned short) for each
overlay region. The array is intended for the overlay manager to store the identifier of the
currently loaded overlay in each region. The overlay manager can then avoid reloading an
already-loaded overlay.

All these data tables are optional. If your code does not refer to any particular table, then it is
omitted from the image.

Related information
Automatic overlay support on page 67

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

9.2.4 Limitations of automatic overlay support

There are some limitations when using the automatic overlay feature.

The following limitations apply:

• The automatic overlay feature does not support C++.

• If you assign multiple functions to the same named section .ARM.overlayN, then armlink treats
them as different overlays. armlink assigns a different integer ID to each overlay.

• The armlink command-line option --any_placement is currently ignored for the automatic
overlay sections.

• The overlay system automatically generates veneers for direct calls between overlays, and
between non-overlaid code and overlaid code. It automatically arranges that indirect calls
through function pointers to functions in overlays work. However, there is one type of indirect
function call that is not correctly fixed up, namely the case where you take a pointer to a non-
overlaid function and pass that pointer into an overlay that calls it. In that situation, armlink
has no way to insert a call to the overlay veneer. Therefore, the overlay manager has no
opportunity to arrange to reload the overlay on behalf of the calling function on return.

In simple cases, this can still work. However, if the non-overlaid function calls something in
a second overlay that conflicts with the overlay of its calling function, then a runtime failure
occurs. For example:

__attribute__((section(".ARM.overlay1"))) void innermost(void)
{
 // do something
}

void non_overlaid(void)
{
 innermost();
}

typedef void (*function_pointer)(void);

__attribute__((section('.ARM.overlay2'))) void call_via_ptr(function_pointer f)
{
 f();
}

int main(void)
{
 // Call the overlaid function call_via_ptr() and pass it a pointer
 // to non_overlaid(). non_overlaid() then calls the function
 // innermost() in another overlay. If call_via_ptr() and innermost()
 // are allocated to the same overlay region by the linker, then there
 // is no way for call_via_ptr to have been reloaded by the time control
 // has to return to it from non_overlaid().

 call_via_ptr(non_overlaid);
}

Related information
Automatic overlay support on page 67

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

9.2.5 About writing an overlay manager for automatically placed overlays

To write an overlay manager to handle loading and unloading of overlays, you must provide an
implementation of the overlay manager entry point.

The overlay manager entry point __ARM_overlay_entry is the location that the linker-generated
veneers expect to jump to. The linker also provides some tables of data to enable the overlay
manager to find the overlays and the overlay regions to load.

The entry point is called by the linker overlay veneers as follows:

• r0 contains the integer identifier of the overlay containing the target function.

• r1 contains the execution address of the target function. That is, the address that the function
appears at when its overlay is loaded.

• The overlay veneer pushes six 32-bit words onto the stack. These words comprise the values
of the r0, r1, r2, r3, r12, and lr registers of the calling function. If the call instruction is a BL, the
value of lr is the one written into lr by the BL instruction, not the one before the BL.

The overlay manager has to:

1. Load the target overlay.

2. Restore all six of the registers from the stack.

3. Transfer control to the address of the target function that is passed in r1.

The overlay manager might also have to modify the value it passes to the calling function in lr to
point at a return thunk routine. This routine would reload the overlay of the calling function and
then return control to the original value of the lr of the calling function.

There is no sensible place already available to store the original value of lr for the return thunk to
use. For example, there is nowhere on the stack that can contain the value. Therefore, the overlay
manager has to maintain its own stack-organized data structure. The data structure contains the
saved lr value and the corresponding overlay ID for each time the overlay manager substitutes a
return thunk during a function call, and keeps it synchronized with the main call stack.

Because this extra parallel stack has to be maintained, then you cannot use stack
manipulations such as cooperative or preemptive thread switching, coroutines, and
setjmp/longjmp, unless it is customized to keep the parallel stack of the overlay
manager consistent.

The armlink option --info=auto_overlays causes the linker to write out a text summary of the
overlays in the image it outputs. The summary consists of the integer ID, start address, and size of
each overlay. You can use this information to extract the overlays from the image, perhaps from the
fromelf --bin output. You can then put them in a separate peripheral storage system. Therefore,
you still know which chunk of data goes with which overlay ID when you have to load one of them
in the overlay manager.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

Related information
Automatic overlay support on page 67

9.3 Manual overlay support
To manually allocate code sections to overlay regions, you must set up a scatter file to locate the
overlays.

Arm® Compiler does not support using both manual and automatic overlays within
the same program.

The manual overlay mechanism consists of:

• The OVERLAY attribute for load regions and execution regions. Use this attribute in a scatter file
to indicate regions of memory where the linker assigns the overlay sections for loading into at
runtime.

• The following armlink command-line options to add extra debug information to the image:

◦ --emit_debug_overlay_relocs.

◦ --emit_debug_overlay_section.

This extra debug information permits an overlay-aware debugger to track which overlay is
active.

Related information
Overlay support in Arm Compiler on page 67
Execution region attributes
--emit_debug_overlay_relocs linker option
--emit_debug_overlay_section linker option

9.3.1 Manually placing code sections in overlay regions

You can place multiple execution regions at the same address with overlays.

The OVERLAY attribute allows you to place multiple execution regions at the same address. An
overlay manager is required to make sure that only one execution region is instantiated at a time.
Arm® Compiler does not provide an overlay manager.

The following example shows the definition of a static section in RAM followed by a series of
overlays. Here, only one of these sections is instantiated at a time.

EMB_APP 0x8000
{
 ...

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 96

https://developer.arm.com/documentation/dui0803/l/Scatter-File-Syntax/Execution-region-descriptions/Execution-region-attributes
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--emit-debug-overlay-relocs
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--emit-debug-overlay-section

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

 STATIC_RAM 0x0 ; contains most of the RW and ZI code/data
 {
 * (+RW,+ZI)
 }
 OVERLAY_A_RAM 0x1000 OVERLAY ; start address of overlay ...
 {
 module1.o (+RW,+ZI)
 }
 OVERLAY_B_RAM 0x1000 OVERLAY
 {
 module2.o (+RW,+ZI)
 }
 ... ; rest of scatter-loading description
}

The C library at startup does not initialize a region that is marked as OVERLAY. The contents of the
memory that is used by the overlay region is the responsibility of an overlay manager. If the region
contains initialized data, use the NOCOMPRESS attribute to prevent RW data compression.

You can use the linker defined symbols to obtain the addresses that are required to copy the code
and data.

You can use the OVERLAY attribute on a single region that is not at the same address as a different
region. Therefore, you can use an overlay region as a method to prevent the initialization of
particular regions by the C library startup code. As with any overlay region, you must manually
initialize them in your code.

An overlay region can have a relative base. The behavior of an overlay region with a +offset base
address depends on the regions that precede it and the value of +offset. If they have the same
+offset value, the linker places consecutive +offset regions at the same base address.

When a +offset execution region ER follows a contiguous overlapping block of overlay execution
regions the base address of ER is:

limit address of the overlapping block of overlay execution regions +offset

The following table shows the effect of +offset when used with the OVERLAY attribute. REGION1
appears immediately before REGION2 in the scatter file:

Table 9-1: Using relative offset in overlays

REGION1 is set with OVERLAY +offset REGION2 Base Address

NO offset REGION1 Limit + offset

YES +0 REGION1 Base Address

YES non-zero offset REGION1 Limit + non-zero offset

The following example shows the use of relative offsets with overlays and the effect on execution
region addresses:

EMB_APP 0x8000
{
 CODE 0x8000
 {
 *(+RO)
 }

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

 # REGION1 Base = CODE limit
 REGION1 +0 OVERLAY
 {
 module1.o(*)
 }
 # REGION2 Base = REGION1 Base
 REGION2 +0 OVERLAY
 {
 module2.o(*)
 }
 # REGION3 Base = REGION2 Base = REGION1 Base
 REGION3 +0 OVERLAY
 {
 module3.o(*)
 }
 # REGION4 Base = REGION3 Limit + 4
 Region4 +4 OVERLAY
 {
 module4.o(*)
 }
}

If the length of the non-overlay area is unknown, you can use a zero relative offset to specify the
start address of an overlay so that it is placed immediately after the end of the static section.

Related information
Load region descriptions
Load region attributes
Inheritance rules for load region address attributes
Considerations when using a relative address +offset for a load region
Considerations when using a relative address +offset for execution regions
--emit_debug_overlay_relocs linker option
--emit_debug_overlay_section linker option
ABI for the Arm Architecture: Support for Debugging Overlaid Programs

9.3.2 Writing an overlay manager for manually placed overlays

Overlays are not automatically copied to their runtime location when a function within the overlay
is called. Therefore, you must write an overlay manager to copy overlays.

About this task
The overlay manager copies the required overlay to its execution address, and records the overlay
that is in use at any one time. The overlay manager runs throughout the application, and is called
whenever overlay loading is required. For instance, the overlay manager can be called before every
function call that might require a different overlay segment to be loaded.

The overlay manager must ensure that the correct overlay segment is loaded before calling any
function in that segment. If a function from one overlay is called while a different overlay is loaded,
then some kind of runtime failure occurs. If such a failure is a possibility, the linker and compiler do
not warn you because it is not statically determinable. The same is true for a data overlay.

The central component of this overlay manager is a routine to copy code and data from the load
address to the execution address. This routine is based around the following linker defined symbols:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 96

https://developer.arm.com/documentation/dui0803/l/Scatter-File-Syntax/Load-region-descriptions
https://developer.arm.com/documentation/dui0803/l/Scatter-File-Syntax/Load-region-descriptions/Load-region-attributes
https://developer.arm.com/documentation/dui0803/l/Scatter-File-Syntax/Load-region-descriptions/Inheritance-rules-for-load-region-address-attributes
https://developer.arm.com/documentation/dui0803/l/Scatter-File-Syntax/Load-region-descriptions/Considerations-when-using-a-relative-address--offset-for-a-load-region
https://developer.arm.com/documentation/dui0803/l/Scatter-File-Syntax/Execution-region-descriptions/Considerations-when-using-a-relative-address--offset-for-execution-regions
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--emit-debug-overlay-relocs
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--emit-debug-overlay-section
https://developer.arm.com/documentation/ihi0049/latest

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

• Load$$execution_region_name$$Base, the load address.

• Image$$execution_region_name$$Base, the execution address.

• Image$$execution_region_name$$Length, the length of the execution region.

The implementation of the overlay manager depends on the system requirements. This procedure
shows a simple method of implementing an overlay manager. The downloadable example contains
a Readme.txt file that describes details of each source file.

The copy routine that is called load_overlay() is implemented in overlay_manager.c. The routine
uses memcpy() and memset() functions to copy CODE and RW data overlays, and to clear ZI data
overlays.

For RW data overlays, it is necessary to disable RW data compression for the
whole project. You can disable compression with the linker command-line option
--datacompressor off, or you can mark the execution region with the attribute
NOCOMPRESS.

The assembly file overlay_list.s lists all the required symbols. This file defines and exports two
common base addresses and a RAM space that is mapped to the overlay structure table:

code_base
data_base
overlay_regions

As specified in the scatter file, the two functions, func1() and func2(), and their corresponding
data are placed in CODE_ONE, CODE_TWO, DATA_ONE, DATA_TWO regions, respectively. armlink has a
special mechanism for replacing calls to functions with stubs. To use this mechanism, write a small
stub for each function in the overlay that might be called from outside the overlay.

In this example, two stub functions $Sub$$func1() and $Sub$$func2() are created for the two
functions func1() and func2() in overlay_stubs.c. These stubs call the overlay-loading function
load_overlay() to load the corresponding overlay. After the overlay manager finishes its overlay
loading task, the stub function can then call $Super$$func1 to call the loaded function func1() in
the overlay.

Procedure
1. Create the overlay_manager.c program to copy the correct overlay to the runtime addresses.

// overlay_manager.c
/* Basic overlay manager */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* Number of overlays present */
#define NUM_OVERLAYS 2

/* struct to hold addresses and lengths */
typedef struct overlay_region_t_struct
{

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

 void* load_ro_base;
 void* load_rw_base;
 void* exec_zi_base;
 unsigned int ro_length;
 unsigned int zi_length;
} overlay_region_t;

/* Record for current overlay */
int current_overlay = 0;

/* Array describing the overlays */
extern const overlay_region_t overlay_regions[NUM_OVERLAYS];

/* execution bases of the overlay regions - defined in overlay_list.s */
extern void * const code_base;
extern void * const data_base;

void load_overlay(int n)
{
 const overlay_region_t * selected_region;

 if(n == current_overlay)
 {
 printf("Overlay %d already loaded.\n", n);
 return;
 }

 /* boundary check */
 if(n<1 || n>NUM_OVERLAYS)
 {
 printf("Error - invalid overlay number %d specified\n", n);
 exit(1);
 }

 /* Load the corresponding overlay */
 printf("Loading overlay %d...\n", n);

 /* set selected region */
 selected_region = &overlay_regions[n-1];

 /* load code overlay */
 memcpy(code_base, selected_region->load_ro_base, selected_region->ro_length);

 /* load data overlay */
 memcpy(data_base, selected_region->load_rw_base,
 (unsigned int)selected_region->exec_zi_base - (unsigned
 int)data_base);

 /* Comment out the next line if your overlays have any static ZI variables
 * and are not to be reinitialized each time, and move them out of the
 * overlay region in your scatter file */
 memset(selected_region->exec_zi_base, 0, selected_region->zi_length);

 /* update record of current overlay */
 current_overlay=n;

 printf("...Done.\n");

}

2. Create a separate source file for each of the functions func1() and func2().
// func1.c
#include <stdio.h>
#include <stdlib.h>

extern void foo(int x);

// Some RW and ZI data
char* func1_string = "func1 called\n";
int func1_values[20];

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

void func1(void)
{
 unsigned int i;
 printf("%s\n", func1_string);
 for(i = 19; i; i--)
 {
 func1_values[i] = rand();
 foo(i);
 printf("%d ", func1_values[i]);
 }
 printf("\n");
}

// func2.c
#include <stdio.h>

extern void foo(int x);

// Some RW and ZI data
char* func2_string = "func2 called\n";
int func2_values[10];

void func2(void)
{
 printf("%s\n", func2_string);
 foo(func2_values[9]);
}

3. Create the main.c program to demonstrate the overlay mechanism.
// main.c
#include <stdio.h>

/* Functions provided by the overlays */
extern void func1(void);
extern void func2(void);

int main(void)
{
 printf("Start of main()...\n");
 func1();
 func2();

 /*
 * Call func2() again to demonstrate that we don't need to
 * reload the overlay
 */
 func2();

 func1();
 printf("End of main()...\n");

 return 0;
}

void foo(int x)
{
 return;
}

4. Create overlay_stubs.c to provide two stub functions $Sub$$func1() and $Sub$$func2() for
the two functions func1() and func2().
// overlay_stub.c
extern void $Super$$func1(void);
extern void $Super$$func2(void);

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

extern void load_overlay(int n);

void $Sub$$func1(void)
{
 load_overlay(1);
 $Super$$func1();
}

void $Sub$$func2(void)
{
 load_overlay(2);
 $Super$$func2();
}

5. Create overlay_list.s that lists all the required symbols.
; overlay_list.s
 AREA overlay_list, DATA, READONLY

 ; Linker-defined symbols to use

 IMPORT ||Load$$CODE_ONE$$Base||
 IMPORT ||Load$$CODE_TWO$$Base||
 IMPORT ||Load$$DATA_ONE$$Base||
 IMPORT ||Load$$DATA_TWO$$Base||

 IMPORT ||Image$$CODE_ONE$$Base||
 IMPORT ||Image$$DATA_ONE$$Base||
 IMPORT ||Image$$DATA_ONE$$ZI$$Base||
 IMPORT ||Image$$DATA_TWO$$ZI$$Base||

 IMPORT ||Image$$CODE_ONE$$Length||
 IMPORT ||Image$$CODE_TWO$$Length||

 IMPORT ||Image$$DATA_ONE$$ZI$$Length||
 IMPORT ||Image$$DATA_TWO$$ZI$$Length||

 ; Symbols to export

 EXPORT code_base
 EXPORT data_base
 EXPORT overlay_regions

; Common base execution addresses of the two OVERLAY regions

code_base DCD ||Image$$CODE_ONE$$Base||
data_base DCD ||Image$$DATA_ONE$$Base||

; Array of details for each region -
; see overlay_manager.c for structure layout

overlay_regions
; overlay 1
 DCD ||Load$$CODE_ONE$$Base||
 DCD ||Load$$DATA_ONE$$Base||
 DCD ||Image$$DATA_ONE$$ZI$$Base||
 DCD ||Image$$CODE_ONE$$Length||
 DCD ||Image$$DATA_ONE$$ZI$$Length||

; overlay 2
 DCD ||Load$$CODE_TWO$$Base||
 DCD ||Load$$DATA_TWO$$Base||
 DCD ||Image$$DATA_TWO$$ZI$$Base||
 DCD ||Image$$CODE_TWO$$Length||
 DCD ||Image$$DATA_TWO$$ZI$$Length||

 END

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

6. Create retarget.c to retarget the __user_initial_stackheap function.
// retarget.c
#include <rt_misc.h>

extern unsigned int Image$$HEAP$$ZI$$Base;
extern unsigned int Image$$STACKS$$ZI$$Limit;

__value_in_regs struct __initial_stackheap __user_initial_stackheap(
 unsigned R0, unsigned SP, unsigned R2, unsigned SL)
{
 struct __initial_stackheap config;

 config.heap_base = (unsigned int)&Image$$HEAP$$ZI$$Base;
 config.stack_base = (unsigned int)&Image$$STACKS$$ZI$$Limit;

 return config;
}

7. Create the scatter file, embedded_scat.scat.
; embedded_scat.scat
;;; Copyright Arm Limited 2002. All rights reserved.

;; Embedded scatter file

ROM_LOAD 0x24000000 0x04000000
{
 ROM_EXEC 0x24000000 0x04000000
 {
 * (InRoot$$Sections) ; All library sections that must be in a root
 region
 ; e.g. __main.o, __scatter*.o, * (Region$
$Table)
 * (+RO) ; All other code
 }

 RAM_EXEC 0x10000
 {
 * (+RW, +ZI)
 }

 HEAP +0 EMPTY 0x3000
 {
 }

 STACKS 0x20000 EMPTY -0x3000
 {
 }

 CODE_ONE 0x08400000 OVERLAY 0x4000
 {
 overlay_one.o (+RO)
 }

 CODE_TWO 0x08400000 OVERLAY 0x4000
 {
 overlay_two.o (+RO)
 }

 DATA_ONE 0x08700000 OVERLAY 0x4000
 {
 overlay_one.o (+RW,+ZI)
 }

 DATA_TWO 0x08700000 OVERLAY 0x4000
 {
 overlay_two.o (+RW,+ZI)
 }

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Overlays

}

8. Build the example application:
armclang -c -g -target arm-arm-none-eabi -mcpu=cortex-a9 -O0 main.c
 overlay_stubs.c overlay_manager.c retarget.c
armclang -c -g -target arm-arm-none-eabi -mcpu=cortex-a9 -O0 func1.c -o
 overlay_one.o
armclang -c -g -target arm-arm-none-eabi -mcpu=cortex-a9 -O0 func2.c -o
 overlay_two.o
armasm --debug --cpu=cortex-a9 --keep overlay_list.s
armlink --cpu=cortex-a9 --datacompressor=off --scatter embedded_scat.scat main.o
 overlay_one.o overlay_two.o overlay_stubs.o overlay_manager.o overlay_list.o
 retarget.o -o image.axf

Related information
Manual overlay support on page 74
Use of $Super$$ and $Sub$$ to patch symbol definitions

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 96

https://developer.arm.com/documentation/dui0803/l/Accessing-and-Managing-Symbols-with-armlink/Use-of--Super---and--Sub---to-patch-symbol-definitions

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

10. Building Secure and Non-secure Images
Using Armv8-M Security Extensions

Describes how to use the Arm®v8-M Security Extensions to build a Secure image, and how to
allow a Non-secure image to call a Secure image.

10.1 Overview of building Secure and Non-secure images
Arm® Compiler 6 tools allow you to build images that run in the Secure state of the Armv8-M
Security Extension. You can also create an import library package that developers of Non-secure
images must have for those images to call the Secure image.

The Armv8-M Security Extension is not supported when building Read-Only Position
Independent (ROPI) and Read-Write Position Independent (RWPI) images.

To build an image that runs in the Secure state you must include the <arm_cmse.h> header in your
code, and compile using the armclang command-line option -mcmse. Compiling in this way makes
the following features available:

• The Test Target, TT, instruction.

• TT instruction intrinsics.

• Non-secure function pointer intrinsics.

• The __attribute__((cmse_nonsecure_call)) and __attribute__((cmse_nonsecure_entry))
function attributes.

On startup, your Secure code must set up the Security Attribution Unit (SAU) and call the Non-
secure startup code.

Important considerations when compiling Secure and Non-secure code
Be aware of the following when compiling Secure and Non-secure code:

• Mixing objects compiled for Armv8-M.Baseline and Armv8-M.Mainline, could potentially leak
sensitive data, because Armv8-M.baseline does not support the Floating-Point Extension.
Therefore, the compiler cannot generate code to clear the Secure floating-point registers when
performing a Non-secure call. If any object is compiled for the Armv8-M.Mainline architecture,
all files containing Armv8-M Security Extension attributes must be compiled for the Armv8-
M.Mainline architecture.

• You can compile your Secure and Non-secure code in C or C++, but the boundary between the
two must have C function call linkage.

• You cannot pass C++ objects, such as classes and references, across the security boundary.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

• You must not throw C++ exceptions across the security boundary.

• The value of the __ARM_FEATURE_CMSE predefined macro indicates what Armv8-M Security
Extension features are supported.

• Compile Secure code with the maximum capabilities for the target. For example, if you compile
with no FPU then the Secure functions do not clear floating-point registers when returning
from functions declared as __attribute__((cmse_nonsecure_entry)). Therefore, the functions
could potentially leak sensitive data.

• Structs with undefined bits caused by padding and half-precision floating-point members are
currently unsupported as arguments and return values for Secure functions. Using such structs
might leak sensitive information. Structs that are large enough to be passed by reference are
also unsupported and produce an error.

• The following cases are not supported when compiling with -mcmse and produce an error:

◦ Variadic entry functions.

◦ Entry functions with arguments that do not fit in registers, because there are either many
arguments or the arguments have large values.

◦ Non-secure function calls with arguments that do not fit in registers, because there are
either many arguments or the arguments have large values.

How a Non-secure image calls a Secure image using veneers
Calling a Secure image from a Non-secure image requires a transition from Non-secure to Secure
state. A transition is initiated through Secure gateway veneers. Secure gateway veneers decouple
the addresses from the rest of the Secure code.

An entry point in the Secure image, entryname, is identified with:

__acle_se_entryname:
entryname:

The calling sequence is as follows:

1. The Non-secure image uses the branch BL instruction to call the Secure gateway veneer for the
required entry function in the Secure image:

bl entryname

2. The Secure gateway veneer consists of the SG instruction and a call to the entry function in the
Secure image using the B instruction:

entryname
 SG
 B.W __acle_se_entryname

3. The Secure image returns from the entry function using the BXNS instruction:

bxns lr

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

The following figure is a graphical representation of the calling sequence, but for clarity, the return
from the entry function is not shown:

Non-secure Region

Non-secure code

...
 bl entry1

…
 bl entry2

…
 bl entry3
...
 bl entry4

NSC Region

Vector of secure gateway
veneers

entry4
 SG
 B.W __acle_se_entry4

entry3
 SG
 B.W __acle_se_entry3

entry2
 SG
 B.W __acle_se_entry2

entry1
 SG
 B.W __acle_se_entry1

Secure Region

Secure
code

entry1 function

entry2 function

entry3 function

entry4 function

Internal
functions

Secure data

Stack Heap Global data

Import library package
An import library package identifies the entry functions available in a Secure image. The import
library package contains:

• An interface header file, for example myinterface.h. You manually create this file using any text
editor.

• An import library, for example importlib.o. armlink generates this library during the link stage
for a Secure image.

You must do separate compile and link stages:

◦ To create an import library when building a Secure image.

◦ To use an import library when building a Non-secure image.

Related information
Building a Secure image using the Armv8-M Security Extensions on page 86
Building a Secure image using a previously generated import library on page 91
Building a Non-secure image that can call a Secure image on page 90
Whitepaper - Armv8-M Architecture Technical Overview
-mcmse
__attribute__((cmse_nonsecure_call)) function attribute
__attribute__((cmse_nonsecure_entry)) function attribute
Predefined macros
TT instruction intrinsics
Non-secure function pointer intrinsics

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 96

https://community.arm.com/processors/b/blog/posts/whitepaper---armv8-m-architecture-technical-overview
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-mcmse
https://developer.arm.com/documentation/dui0774/l/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----cmse-nonsecure-call---function-attribute
https://developer.arm.com/documentation/dui0774/l/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----cmse-nonsecure-entry---function-attribute
https://developer.arm.com/documentation/dui0774/l/Other-Compiler-specific-Features/Predefined-macros
https://developer.arm.com/documentation/dui0774/l/Other-Compiler-specific-Features/TT-instruction-intrinsics
https://developer.arm.com/documentation/dui0774/l/Other-Compiler-specific-Features/Non-secure-function-pointer-intrinsics

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

B instruction
BL instruction
BXNS instruction
SG instruction
TT, TTT, TTA, TTAT instruction
Placement of CMSE veneer sections for a Secure image

10.2 Building a Secure image using the Armv8-M Security
Extensions

When building a Secure image you must also generate an import library that specifies the entry
points to the Secure image. The import library is used when building a Non-secure image that
needs to call the Secure image.

Before you begin
The following procedure is not a complete example, and assumes that your code sets up the
Security Attribution Unit (SAU) and calls the Non-secure startup code.

Procedure
1. Create an interface header file, myinterface_v1.h, to specify the C linkage for use by Non-

secure code:
#ifdef __cplusplus
extern "C" {
#endif

int entry1(int x);
int entry2(int x);

#ifdef __cplusplus
}
#endif

2. In the C program for your Secure code, secure.c, include the following:
#include <arm_cmse.h>
#include "myinterface_v1.h"

int func1(int x) { return x; }
int __attribute__((cmse_nonsecure_entry)) entry1(int x) { return func1(x); }
int __attribute__((cmse_nonsecure_entry)) entry2(int x) { return entry1(x); }

int main(void) { return 0; }

In addition to the implementation of the two entry functions, the code defines the function
func1() that is called only by Secure code.

If you are compiling the Secure code as C++, then you must add extern "C" to
the functions declared as __attribute__((cmse_nonsecure_entry)).

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 96

https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/B
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/BL
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/BX--BXNS
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/SG
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/TT--TTT--TTA--TTAT
https://developer.arm.com/documentation/dui0803/l/Scatter-loading-Features/Placement-of-CMSE-veneer-sections-for-a-Secure-image

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

3. Create an object file using the armclang command-line option -mcmse:
$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main -mcmse secure.c -o
 secure.o

4. Enter the following command to see the disassembly of the machine code that armclang
generates:
$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main -mcmse -S secure.c

The disassembly is stored in the file secure.s, for example:

 .text
 ...
 .code 16
 .thumb_func
 ...
func1:
 .fnstart
 ...
 bx lr
 ...
__acle_se_entry1:
entry1:
 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl func1
 ...
 pop.w {r7, lr}
 ...
 bxns lr
 ...
__acle_se_entry2:
entry2:
 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl entry1
 ...
 pop.w {r7, lr}
 bxns lr
 ...
main:
 .fnstart
@ BB#0:
 ...
 movs r0, #0
 ...
 bx lr
 ...

An entry function does not start with a Secure Gateway (SG) instruction. The two symbols
__acle_se_entry_name and entry_name indicate the start of an entry function to the linker.

5. Create a scatter file containing the Veneer$$CMSE selector to place the entry function veneers in
a Non-Secure Callable (NSC) memory region.
LOAD_REGION 0x0 0x3000
{
 EXEC_R 0x0
 {

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

 *(+RO,+RW,+ZI)
 }
 EXEC_NSCR 0x4000 0x1000
 {
 *(Veneer$$CMSE)
 }
 ARM_LIB_STACK 0x700000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}
...

6. Link the object file using the armlink command-line option --import-cmse-lib-out and the
scatter file to create the Secure image:
$ armlink secure.o -o secure.axf --cpu 8-M.Main --import-cmse-lib-out
 importlib_v1.o --scatter secure.scf

In addition to the final image, the link in this example also produces the import library,
importlib_v1.o, for use when building a Non-secure image. Assuming that the section with
veneers is placed at address 0x4000, the import library consists of a relocatable file containing
only a symbol table with the following entries:

Symbol type Name Address

STB_GLOBAL, SHN_ABS, STT_FUNC entry1 0x4001

STB_GLOBAL, SHN_ABS, STT_FUNC entry2 0x4009

When you link the relocatable file corresponding to this assembly code into an image, the linker
creates veneers in a section containing only entry veneers.

If you have an import library from a previous build of the Secure image, you
can ensure that the addresses in the output import library do not change when
producing a new version of the Secure image. To ensure that the addresses do
not change, specify the --import-cmse-lib-in command-line option together
with the --import-cmse-lib-out option. However, make sure the input and
output libraries have different names.

7. Enter the following command to see the entry veneers that the linker generates:
$ fromelf --text -s -c secure.axf

The following entry veneers are generated in the EXEC_NSCR execute-only (XO) region for this
example:

...

** Section #3 'EXEC_NSCR' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR +
 SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

 0x00004000: e97fe97f SG ; [0x3e08]
 0x00004004: f7fcb85e ..^. B __acle_se_entry1 ; 0xc4
 entry2
 0x00004008: e97fe97f SG ; [0x3e10]
 0x0000400c: f7fcb86c ..l. B __acle_se_entry2 ; 0xe8

...

The section with the veneers is aligned on a 32-byte boundary and padded to a 32-byte
boundary.

If you do not use a scatter file, the entry veneers are placed in an ER_XO section as the first
execution region, for example:

...

** Section #1 'ER_XO' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00008000

 $t
 entry1
 0x00008000: e97fe97f SG ; [0x7e08]
 0x00008004: f000b85a ..Z. B.W __acle_se_entry1 ; 0x80bc
 entry2
 0x00008008: e97fe97f SG ; [0x7e10]
 0x0000800c: f000b868 ..h. B.W __acle_se_entry2 ; 0x80e0

...

Next steps
After you have built your Secure image:

1. Pre-load the Secure image onto your device.

2. Deliver your device with the pre-loaded image, together with the import library package, to a
party who develops the Non-secure code for this device. The import library package contains:

• The interface header file, myinterface_v1.h.

• The import library, importlib_v1.o.

Related information
Building a Secure image using a previously generated import library on page 91
Building a Non-secure image that can call a Secure image on page 90
Whitepaper - Armv8-M Architecture Technical Overview
-c armclang option
-march armclang option
-mcmse armclang option
-S armclang option
--target armclang option
__attribute__((cmse_nonsecure_entry)) function attribute
SG instruction
--cpu armlink option
--import_cmse_lib_in armlink option

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 96

https://community.arm.com/processors/b/blog/posts/whitepaper---armv8-m-architecture-technical-overview
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-c
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-march
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-mcmse
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-S
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/--target
https://developer.arm.com/documentation/dui0774/l/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----cmse-nonsecure-entry---function-attribute
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/SG
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--cpu-name
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--import-cmse-lib-in-filename

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

--import_cmse_lib_out armlink option
--scatter armlink option
--text fromelf option

10.3 Building a Non-secure image that can call a Secure
image

If you are building a Non-secure image that is to call a Secure image, the Non-secure code must
be written in C. You must also obtain the import library package that was created for that Secure
image.

Before you begin
The following procedure assumes that you have the import library package that is created in
Building a Secure image using the Armv8-M Security Extensions. The package provides the C
linkage that allows you to compile your Non-secure code as C or C++.

The import library package identifies the entry points for the Secure image.

Procedure
1. Include the interface header file in the C program for your Non-secure code, nonsecure.c, and

use the entry functions as required, for example:
#include <stdio.h>
#include "myinterface_v1.h"

int main(void) {
 int val1, val2, x;

 val1 = entry1(x);
 val2 = entry2(x);

 if (val1 == val2) {
 printf("val2 is equal to val1\n");
 } else {
 printf("val2 is different from val1\n");
 }

 return 0;
}

2. Create an object file, nonsecure.o:
$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main nonsecure.c
-o nonsecure.o

3. Create a scatter file for the Non-secure image, but without the Non-Secure Callable (NSC)
memory region, for example:
LOAD_REGION 0x8000 0x3000
{
 ER 0x8000
 {
 *(+RO,+RW,+ZI)
 }
 ARM_LIB_STACK 0x800000 EMPTY -0x10000
 {
 }

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 96

https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--import-cmse-lib-out-filename
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--scatter-filename
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--text

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}
...

4. Link the object file using the import library, importlib_v1.o, and the scatter file to create the
Non-secure image:
$ armlink nonsecure.o importlib_v1.o -o nonsecure.axf --cpu=8-M.Main --scatter
 nonsecure.scat

Related information
Building a Secure image using the Armv8-M Security Extensions on page 86
Whitepaper - Armv8-M Architecture Technical Overview
-march armclang option
--target armclang option
--cpu armlink option
--scatter armlink option

10.4 Building a Secure image using a previously generated
import library

You can build a new version of a Secure image and use the same addresses for the entry points
that were present in the previous version. You specify the import library that is generated for the
previous version of the Secure image and generate another import library for the new Secure
image.

Before you begin
The following procedure is not a complete example, and assumes that your code sets up the
Security Attribution Unit (SAU) and calls the Non-secure startup code.

The following procedure assumes that you have the import library package that is created in
Building a Secure image using the Armv8-M Security Extensions.

Procedure
1. Create an interface header file, myinterface_v2.h, to specify the C linkage for use by Non-

secure code:
#ifdef __cplusplus
extern "C" {
#endif

int entry1(int x);
int entry2(int x);
int entry3(int x);
int entry4(int x);

#ifdef __cplusplus
}
#endif

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 96

https://community.arm.com/processors/b/blog/posts/whitepaper---armv8-m-architecture-technical-overview
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-march
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/--target
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--cpu-name
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--scatter-filename

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

2. Include the following in the C program for your Secure code, secure.c:
#include <arm_cmse.h>
#include "myinterface_v2.h"

int func1(int x) { return x; }
int __attribute__((cmse_nonsecure_entry)) entry1(int x) { return func1(x); }
int __attribute__((cmse_nonsecure_entry)) entry2(int x) { return entry1(x); }
int __attribute__((cmse_nonsecure_entry)) entry3(int x) { return func1(x) +
 entry1(x); }
int __attribute__((cmse_nonsecure_entry)) entry4(int x) { return entry1(x) *
 entry2(x); }

int main(void) { return 0; }

In addition to the implementation of the two entry functions, the code defines the function
func1() that is called only by Secure code.

If you are compiling the Secure code as C++, then you must add extern "C" to
the functions declared as __attribute__((cmse_nonsecure_entry)).

3. Create an object file using the armclang command-line option -mcmse:
$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main -mcmse secure.c
-o secure.o

4. To see the disassembly of the machine code that armclang generates, enter:
$ armclang -c --target arm-arm-none-eabi -march=armv8-m.main -mcmse -S secure.c

The disassembly is stored in the file secure.s, for example:

 .text
 ...
 .code 16
 .thumb_func
 ...

func1:
 .fnstart
 ...
 bx lr

 ...

__acle_se_entry1:
entry1:
 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl func1
 pop.w {r7, lr}
 ...
 bxns lr

 ...

__acle_se_entry4:
entry4:

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

 .fnstart
@ BB#0:
 .save {r7, lr}
 push {r7, lr}
 ...
 bl entry1
 ...
 pop.w {r7, lr}
 bxns lr

 ...

main:
 .fnstart
@ BB#0:
 ...
 movs r0, #0
 ...
 bx lr

 ...

An entry function does not start with a Secure Gateway (SG) instruction. The two symbols
__acle_se_entry_name and entry_name indicate the start of an entry function to the linker.

5. Create a scatter file containing the Veneer$$CMSE selector to place the entry function veneers in
a Non-Secure Callable (NSC) memory region.
LOAD_REGION 0x0 0x3000
{
 EXEC_R 0x0
 {
 *(+RO,+RW,+ZI)
 }
 EXEC_NSCR 0x4000 0x1000
 {
 *(Veneer$$CMSE)
 }
 ARM_LIB_STACK 0x700000 EMPTY -0x10000
 {
 }
 ARM_LIB_HEAP +0 EMPTY 0x10000
 {
 }
}
...

6. Link the object file using the armlink command-line options --import-cmse-lib-out and --
import-cmse-lib-in, together with the preprocessed scatter file to create the Secure image:
$ armlink secure.o -o secure.axf --cpu 8-M.Main --import-cmse-lib-out
 importlib_v2.o --import-cmse-lib-in importlib_v1.o --scatter secure.scf

In addition to the final image, the link in this example also produces the import library,
importlib_v2.o, for use when building a Non-secure image. Assuming that the section with
veneers is placed at address 0x4000, the import library consists of a relocatable file containing
only a symbol table with the following entries:

Symbol type Name Address

STB_GLOBAL, SHN_ABS, STT_FUNC entry1 0x4001

STB_GLOBAL, SHN_ABS, STT_FUNC entry2 0x4009

STB_GLOBAL, SHN_ABS, STT_FUNC entry3 0x4021

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

Symbol type Name Address
STB_GLOBAL, SHN_ABS, STT_FUNC entry4 0x4029

When you link the relocatable file corresponding to this assembly code into an image, the linker
creates veneers in a section containing only entry veneers.

7. Enter the following command to see the entry veneers that the linker generates:
$ fromelf --text -s -c secure.axf

The following entry veneers are generated in the EXEC_NSCR execute-only (XO) region for this
example:

...

** Section #3 'EXEC_NSCR' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR +
 SHF_ARM_NOREAD]
 Size : 64 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG ; [0x3e08]
 0x00004004: f7fcb85e ..^. B __acle_se_entry1 ; 0xc4
 entry2
 0x00004008: e97fe97f SG ; [0x3e10]
 0x0000400c: f7fcb86c ..l. B __acle_se_entry2 ; 0xe8

...

 entry3
 0x00004020: e97fe97f SG ; [0x3e28]
 0x00004024: f7fcb872 ..r. B __acle_se_entry3 ; 0x10c
 entry4
 0x00004028: e97fe97f SG ; [0x3e30]
 0x0000402c: f7fcb888 B __acle_se_entry4 ; 0x140

...

The section with the veneers is aligned on a 32-byte boundary and padded to a 32-byte
boundary.

If you do not use a scatter file, the entry veneers are placed in an ER_XO section as the first
execution region. The entry veneers for the existing entry points are placed in a CMSE veneer
section. For example:

...

** Section #1 'ER_XO' (SHT_PROGBITS) [SHF_ALLOC + SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00008000

 $t
 entry3
 0x00008000: e97fe97f SG ; [0x7e08]
 0x00008004: f000b87e ..~. B.W __acle_se_entry3 ; 0x8104
 entry4
 0x00008008: e97fe97f SG ; [0x7e10]
 0x0000800c: f000b894 B.W __acle_se_entry4 ; 0x8138

...

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 96

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Building Secure and Non-secure Images Using Armv8-M Security
Extensions

** Section #4 'ER$$Veneer$$CMSE_AT_0x00004000' (SHT_PROGBITS) [SHF_ALLOC +
 SHF_EXECINSTR + SHF_ARM_NOREAD]
 Size : 32 bytes (alignment 32)
 Address: 0x00004000

 $t
 entry1
 0x00004000: e97fe97f SG ; [0x3e08]
 0x00004004: f004b85a ..Z. B.W __acle_se_entry1 ; 0x80bc
 entry2
 0x00004008: e97fe97f SG ; [0x3e10]
 0x0000400c: f004b868 ..h. B.W __acle_se_entry2 ; 0x80e0

...

Next steps
After you have built your updated Secure image:

1. Pre-load the updated Secure image onto your device.

2. Deliver your device with the pre-loaded image, together with the new import library package,
to a party who develops the Non-secure code for this device. The import library package
contains:

• The interface header file, myinterface_v2.h.

• The import library, importlib_v2.o.

Related information
Building a Secure image using the Armv8-M Security Extensions on page 86
Building a Non-secure image that can call a Secure image on page 90
Whitepaper - Armv8-M Architecture Technical Overview
-c armclang option
-march armclang option
-mcmse armclang option
-S armclang option
--target armclang option
__attribute__((cmse_nonsecure_entry)) function attribute
SG instruction
--cpu armlink option
--import_cmse_lib_in armlink option
--import_cmse_lib_out armlink option
--scatter armlink option
--text fromelf option

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 96

https://community.arm.com/processors/b/blog/posts/whitepaper---armv8-m-architecture-technical-overview
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-c
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-march
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-mcmse
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/-S
https://developer.arm.com/documentation/dui0774/l/Compiler-Command-line-Options/--target
https://developer.arm.com/documentation/dui0774/l/Compiler-specific-Function--Variable--and-Type-Attributes/--attribute----cmse-nonsecure-entry---function-attribute
https://developer.arm.com/documentation/dui0801/l/A32-and-T32-Instructions/SG
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--cpu-name
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--import-cmse-lib-in-filename
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--import-cmse-lib-out-filename
https://developer.arm.com/documentation/dui0803/l/armlink-Command-line-Options/--scatter-filename
https://developer.arm.com/documentation/dui0805/l/fromelf-Command-line-Options/--text

Arm® Compiler Software Development Guide Document ID: DUI0773_l_en
Version 6.6

Software Development Guide Changes

11. Software Development Guide Changes
Describes the technical changes that have been made to the Software Development Guide.

11.1 Changes for the Software Development Guide
Changes that have been made to the Software Development Guide are listed with the latest version
first.

Table 11-1: Changes between 6.6.5 (revision L) and 6.6.4 (revision K)

Change Topics affected

[SDCOMP-58428] Added notes about build attribute compatibility
checking being supported only for AArch32.

• Restrictions with Link-Time Optimization.

[SDCOMP-57875] Added topic about floating-point division-by-
zero errors in C and C++ code.

• Floating-point division-by-zero errors in C and C++ code

[SDCOMP-60865] Corrected and clarified parts of the Effect of the
volatile keyword on compiler optimization.

• Effect of the volatile keyword on compiler optimization.

[SDCOMP-57264] Added note on mixing objects compiled with
different C/C++ standards.

• Linking object files to produce an executable.

Added a note that using manual and automatic overlays within the
same program is not supported.

• Overlays.

• Overlay support in Arm® Compiler.

• Automatic overlay support.

• Manual overlay support.

Table 11-2: Changes between 6.6.4 (revision K) and 6.6.3 (revision J)

Change Topics affected

[SDCOMP-54472] The note no longer states that a warning is
emitted when using -mexecute-only with -flto.

• Building applications for execute-only memory.

• Restrictions with Link-Time Optimization.

[SDCOMP-54804] Added a note about using a single-copy atomic
instruction to access a volatile variable.

• Effect of the volatile keyword on compiler optimization.

Copyright © 2014–2017, 2019–2020, 2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 96

	Arm® Compiler Software Development Guide
	Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Conventions
	1.2 Other information

	2. Introducing the Toolchain
	2.1 Toolchain overview
	2.2 Support level definitions
	2.3 LLVM component versions and language compatibility
	2.4 Common Arm Compiler toolchain options
	2.5 "Hello world" example
	2.6 Passing options from the compiler to the linker

	3. Diagnostics
	3.1 Understanding diagnostics
	3.2 Options for controlling diagnostics with armclang
	3.3 Pragmas for controlling diagnostics with armclang
	3.4 Options for controlling diagnostics with the other tools

	4. Compiling C and C++ Code
	4.1 Specifying a target architecture, processor, and instruction set
	4.2 Using inline assembly code
	4.3 Using intrinsics
	4.4 Preventing the use of floating-point instructions and registers
	4.5 Bare-metal Position Independent Executables
	4.6 Execute-only memory
	4.7 Building applications for execute-only memory

	5. Assembling Assembly Code
	5.1 Assembling armasm and GNU syntax assembly code
	5.2 Preprocessing assembly code

	6. Linking Object Files to Produce an Executable
	6.1 Linking object files to produce an executable

	7. Optimization Techniques
	7.1 Optimizing for code size or performance
	7.2 Optimizing across modules with link time optimization
	7.2.1 Enabling link time optimization
	7.2.2 Restrictions with Link-Time Optimization

	7.3 How optimization affects the debug experience

	8. Coding Considerations
	8.1 Optimization of loop termination in C code
	8.2 Loop unrolling in C code
	8.3 Effect of the volatile keyword on compiler optimization
	8.4 Stack use in C and C++
	8.5 Methods of minimizing function parameter passing overhead
	8.6 Inline functions
	8.7 Integer division-by-zero errors in C code
	8.8 Floating-point division-by-zero errors in C and C++ code
	8.9 Infinite Loops
	8.10 C library structure
	8.11 Reimplementing C library functions

	9. Overlays
	9.1 Overlay support in Arm Compiler
	9.2 Automatic overlay support
	9.2.1 Automatically placing code sections in overlay regions
	9.2.2 Overlay veneer
	9.2.3 Overlay data tables
	9.2.4 Limitations of automatic overlay support
	9.2.5 About writing an overlay manager for automatically placed overlays

	9.3 Manual overlay support
	9.3.1 Manually placing code sections in overlay regions
	9.3.2 Writing an overlay manager for manually placed overlays

	10. Building Secure and Non-secure Images Using Armv8-M Security Extensions
	10.1 Overview of building Secure and Non-secure images
	10.2 Building a Secure image using the Armv8-M Security Extensions
	10.3 Building a Non-secure image that can call a Secure image
	10.4 Building a Secure image using a previously generated import library

	11. Software Development Guide Changes
	11.1 Changes for the Software Development Guide

