Arm® System Memory
q r m Management Unit
Architecture Specification

SMMU architecture version 3

Document number ARM IHI 0070
Document version E.a
Document confidentiality Non-confidential

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved.

Arm System Memory Management Unit Architecture

tion

Release information

Specifica-

Date Version

Changes

2023/Jan/31 E.a

2021/Apr/30 D.b

2020/Aug/31 D.a

2019/Jul/18 C.a

2018/Mar/16 C

2017/Jun/15 B

2016/0Oct/15 A

Update with SMMU for RME architecture
Amendments and clarifications

Amendments and clarifications

Update with SMMUv3.3 architecture
Amendments and clarifications

Amendments and clarifications

Update with SMMUv3.2 architecture
Further amendments and clarifications

Amendments and clarifications

First release

ii

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2016-2023 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349 version 21.0

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. iii
E.a Non-confidential

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Contents

Arm® System Memory Management Unit Architecture Specifi-
cation

Arm System Memory Management Unit Architecture Specification ii
Release information L ii
Non-Confidential Proprietary Notice iii

Chapter 1 About this document

1.1 References 12

1.2 Terms and abbreviations 13
1.2.1 Progressive Terminology Commitment 17

1.3 Document Scope 18

Chapter 2 Introduction

2.1 History 21

2.2 SMMUv3.0features 22

2.3 SMMUV3.1 features 24

2.4 SMMUv3.2features 25

25 SMMUvV3.3features 26

2.6 SMMU for RME features 27

2.7 Permitted implementation of subsets of SMMUv3.x and SMMUV3.(x+1) archi-

tecturalfeatures L 28

2.8 Systemplacement 29

Chapter 3 Operation

3.1 Software interface 32

3.2 Streamnumbering 34

3.3 Data structures and translation procedure 36
3.3.1 Streamtablelookup 36
3.3.2 StreamIDs to Context Descriptors 38
3.3.3 Configuration and Translationlookup 43
3.34 Transaction attributes: incoming, two-stage translation and overrides . . 45
3.35 Translation table descriptors L. 46

3.4 Addresssizes 47
3.4.1 Input address size and Virtual Address size 49
342 Address alignmentchecks 50
3.4.3 Address sizes of SMMU-originated accesses 50

3.5 Command and Eventqueues 53
3.5.1 SMMU circularqueues 53
3.5.2 Queue entry visibility semantics oL 56
3.5.3 Eventqueue behavior. 56
3.54 Definition of event record write “Commit” 57
3.55 Eventmerging 57
3.5.6 Enhanced Command queueinterfaces 58

3.6 Structure and queue ownership 61

3.7 Programmingregisters 62

3.8 Virtualization 63

3.9 Support for PCI Express, PASIDs, PRland ATS 64
3.9.1 ATS Interface 64
3.9.2 Changing ATS configuration 71

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. iv

E.a Non-confidential

Contents

3.10

3.11
3.12

3.13

3.14
3.15

3.16

3.17

3.9.3 SMMU interactionswith CXL 72
SupportforSecurestate 73
3.10.1 StreamID Security state (SEC_SID) 74
3.10.2 Secure commands, events and configuration 74
3.10.3 Secure EL2 and support for Secure stage 2 translation 76
Reset, Enable and initialization 78
Fault models, recording and reporting L. 81
3.121 Terminate model 83
3.122 Stallmodel 84
3.12.3 Considerations for client devices using the Stall fault model 87
3.12.4 Virtual Memory paging with SMMU 87
3.12.5 Combinations of fault configuration with two stages 88
Translation table entries and Access/Dirtyflags 90
3.13.1 Software update offlags 90
3.13.2 Accessflaghardwareupdate. 91
3.13.3 Dirty flag hardwareupdate L. 92
3.13.4 HTTUbehaviorsummary 93
3.13.5 HTTU with two stages of translation 93
3.13.6 ATS, PRIl and translation table flagupdate 94
3.13.7 Hardware flag update for Cache Maintenance Operations and Destruc-
tiveReads 96
Speculative accesses 97
Coherency considerations and memory accesstypes 98
3.15.1 Clientdevices 98
Embedded implementations 100

3.16.1 Changes to structure and queue storage behavior when fixed/preset . . 100
TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance . 102
3.17.1 The Global flag in the translation table descriptor 105
3.17.2 Broadcast TLB maintenance from Armv8-A PEs with EL3 in AArch64 . 105
3.17.3 Broadcast TLB maintenance from ARMv7-A PEs or Armv8-A PEs with

EL3using AArch32 106

3.17.4 Broadcast TLB maintenance in mixed AArch32 and AArch64 systems
and with mixed ASIDorVMID sizes 107
3.17.5 EL2 ASIDs and TLB maintenance in EL2 Host (E2H) mode 107
3.176 VMIDWildcards e 109
3.17.7 Broadcast TLB maintenance for GPT information 109
3.18 Interrupts and notifications L 110
3.18.1 MSI synchronization L 111
3.18.2 Interruptsources e 111
3.19 Powercontrol 113
3.19.1 Dormantstate 113
3.20 TLB and configuration cache conflict 114
3.20.1 TLBconflict e 114
3.20.2 Configurationcacheconflicts 114
3.21 Structure access rules and update procedures 116
3.21.1 Translation tables and TLB invalidation completion behavior 116
3212 QUEUES 119
3.21.3 Configuration structures and configuration invalidation completion . . . 120
3.22 Destructive reads and directed cache prefetch transactions 124
3.22.1 Control of transactiondowngrade 125
3.222 Permissionsmodel 126
3.22.3 Memory types and Shareability 127
3.23 Memory Tagging Extension L. 128
3.24 Granule ProtectionChecks, 129
3.241 Client-originatedaccesses 129
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. v

E.a

Non-confidential

Contents

Chapter 4

Chapter 5

ARM IHI 0070
E.a

3.24.2 Interactions with PCIe ATS 130
3.24.3 SMMU-originated accesses 130
3.244 Reportingof GPCfaults 131
3.245 SMMU behavior if a GPC faultisactive 131
3.246 Observabilityof GPCfaults 132
Commands
4.1 Commandsoverview 134
411 Commandopcodes 134
41.2 Submitting commands to the Command queue 136
4.1.3 Command errors 136
4.1.4 Consumption of commands from the Command queue 136
415 Reservedfields 137
41.6 Common commandfields 137
417 Out-of-range parameters 138
4.2 Prefetch 139
4.2.1 CMD_PREFETCH_CONFIG(StreamID, SSec, SubstreamID, SSV) . . . 139
4.2.2 CMD_PREFETCH_ADDR(StreamID, SSec, SubstreamID, SSV, Addr,
NS, Size, Stride) 140
4.3 Configuration structure invalidation 142
4.3.1 CMD_CFGI_STE(StreamID, SSec, Leaf) 142
4.3.2 CMD_CFGI_STE_RANGE(StreamID, SSec,Range) 143
4.3.3 CMD_CFGI_CD(StreamID, SSec, SubstreamID, Leaf) 144
434 CMD_CFGI_CD_ALL(StreamID,SSec) 145
43.5 CMD_CFGI_VMS_PIDM(SSec, VMID) 146
4.3.6 CMD_CFGI_ALL(SS€eC) o i i 147
4.3.7 Action of VM guest OS structure invalidations by hypervisor 147
4.3.8 Configuration structure invalidation semantics/rules 148
4.4 TLBinvalidation 149
441 Common TLB invalidationfields 149
44.2 TLBinvalidationofstage1 152
443 TLBinvalidationofstage2 159
4.4.4 Common TLBinvalidation 161
4.5 ATSand PRI o 163
4.5.1 CMD_ATC_INV(StreamID, SubstreamID, SSV, Global, Address, Size) . 163
45.2 CMD_PRI_RESP(StreamID, SubstreamID, SSV, PRGIndex, Resp) . . . 165
4.6 Fault response and synchronizationcommands 166
4.6.1 CMD_RESUME(StreamID, SSec, STAG, Action, Abort) 166
4.6.2 CMD_STALL_TERM(StreamID, SSec) 168
4.6.3 CMD_SYNC(ComplSignal, MSIAddress, MSIData, MSIWriteAttributes) 170
4.7 Command Consumption summary 175
Data structure formats
5.1 Level 1 Stream Table Descriptor 178
5.2 StreamTable Entry 179
5.21 General properties ofthe STE 204
5.2.2 Validity of STE 205
5.3 Level 1 Context Descriptor 209
5.3.1 General properties of the L1ICD 209
54 Context Descriptor 210
5.4.1 CDnotes e 224
5.4.2 Validity of CD 228
5.5 Fault configuration (A, R,Sbits) 230
5.6 Virtual Machine Structure (VMS) 234
5.6.1 VMS layout 234
Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. Vi

Non-confidential

Contents

5.6.2 VMS presence and fetching 234
5.6.3 VMS caching and invalidation 235
Chapter 6 Memory map and registers

6.1 Memory map 236
6.2 Registeroverview e 238
6.2.1 RegistersinPage 0 239
6.2.2 RegistersinPage1 243
6.2.3 Registersinthe VATOSpage 243
6.2.4 Registers inthe S_VATOSpage 244
6.2.5 Registers in a Command queue controlpage 244
6.2.6 Root ControlPage 245
6.3 Registerformats 246
6.3.1 SMMU_IDRO 247
6.3.2 SMMU_IDRT 256
6.3.3 SMMUL_IDR2 260
6.3.4 SMMUL_IDR3 261
6.3.5 SMMUL_IDR4 266
6.3.6 SMMUL_IDRS 267
6.3.7 SMMUL_IIDR 270
6.3.8 SMMU_AIDR 272
6.3.9 SMMU_CRO 274
6.3.10 SMMU_CROACK e 281
6.3.11 SMMU_CR1 284
6.3.12 SMMU_CR2 289
6.3.13 SMMU_STATUSR 293
6.3.14 SMMU_GBPA 295
6.3.15 SMMU_AGBPA 300
6.3.16 SMMU_IRQ_CTRL 301
6.3.17 SMMU_IRQ_CTRLACK 303
6.3.18 SMMU_GERROR 305
6.3.19 SMMU_GERRORN 309
6.3.20 SMMU_GERROR_IRQ_ CFGO 312
6.3.21 SMMU_GERROR_IRQ_CFG1, 314
6.3.22 SMMU_GERROR_IRQ_CFG2 315
6.3.283 SMMU_STRTAB_BASE 317
6.3.24 SMMU_STRTAB_BASE CFG 319
6.3.25 SMMU_CMDQ_BASE 322
6.3.26 SMMU_CMDQ_PROD 325
6.3.27 SMMU_CMDQ_CONS 327
6.3.28 SMMU_EVENTQ_BASE 329
6.3.29 SMMU_EVENTQ_IRQ_CFGO 331
6.3.30 SMMU_EVENTQ_IRQ_CFG1 333
6.3.31 SMMU_EVENTQ_IRQ_CFG2 334
6.3.32 SMMU_PRIQ_BASE 336
6.3.33° SMMU_PRIQ_IRQ_CFGO 338
6.3.34 SMMU_PRIQ_IRQ_CFG1 340
6.3.35 SMMU_PRIQ_IRQ_CFG2, 341
6.3.360 SMMU_GATOS_CTRL i i 343
6.3.37 SMMU_GATOS_SID e 345
6.3.38 SMMU_GATOS_ADDR 347
6.3.39 SMMU_GATOS PAR 350
6.3.40 SMMU_MPAMIDR 356
6.3.41 SMMU_GMPAM 358
6.3.42 SMMU_GBPMPAM 360
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. vii

E.a Non-confidential

Contents

6.3.43 SMMU_VATOS_SEL 362
6.3.44 SMMU_IDRE 364
6.3.45 SMMU_CMDQ_CONTROL_PAGE_BASE<n>,n=0-255 366
6.3.46 SMMU_CMDQ_CONTROL_PAGE_CFG<n>,n=0-255 368
6.3.47 SMMU_CMDQ_CONTROL_PAGE_STATUS<n>,n=0-255 369
6.3.48 SMMU_S IDRO e 370
6.3.49 SMMU_S_IDRT 372
6.3.50 SMMU_S_IDR2 374
6.3.51 SMMU_S_IDR3 375
6.3.52 SMMU_S_IDR4 377
6.3.53 SMMU_S CRO e 378
6.3.54 SMMU_S_CROACK 383
6.3.55 SMMU_S_CR1 386
6.3.56 SMMU_S_CR2 390
6.3.57 SMMU_S_INIT 393
6.3.58 SMMU_S GBPA 395
6.3.59 SMMU_S _AGBPA 399
6.3.60 SMMU_S IRQ_CTRL 400
6.3.61 SMMU_S_IRQ_CTRLACK 402
6.3.62 SMMU_S_GERROR, 404
6.3.63 SMMU_S GERRORN 407
6.3.64 SMMU_S _GERROR_IRQ_CFGO 410
6.3.65 SMMU_S_GERROR_IRQ_CFG1 412
6.3.66 SMMU_S_GERROR_IRQ_CFG2 413
6.3.67 SMMU_S_STRTAB BASE, 415
6.3.68 SMMU_S_STRTAB_BASE_CFG 417
6.3.69 SMMU_S CMDQ_BASE, 420
6.3.70 SMMU_S CMDQ_PROD. 423
6.3.71 SMMU_S_CMDQ_CONS 425
6.3.72 SMMU_S_EVENTQ_BASE 427
6.3.73 SMMU_S_EVENTQ_PROD 429
6.3.74 SMMU_S_EVENTQ_CONS, 431
6.3.75 SMMU_S_EVENTQ_IRQ_CFGO 433
6.3.76 SMMU_S_EVENTQ_IRQ_CFG1 435
6.3.77 SMMU_S_EVENTQ_IRQ_CFG2 436
6.3.78 SMMU_S_GATOS_CTRL 438
6.3.79 SMMU_S GATOS SID e 440
6.3.80 SMMU_S GATOS_ADDR 442
6.3.81 SMMU_S_GATOS_PAR 446
6.3.82 SMMU_S_MPAMIDR 451
6.3.83 SMMU_S_GMPAM 453
6.3.84 SMMU_S_GBPMPAM 455
6.3.85 SMMU_S VATOS SEL 457
6.3.86 SMMU_S IDR6 459
6.3.87 SMMU_S_CMDQ_CONTROL_PAGE_BASE<n>,n=0-255 461
6.3.88 SMMU_S_CMDQ_CONTROL_PAGE_CFG<n>,n=0-255. 463
6.3.89 SMMU_S_CMDQ_CONTROL_PAGE_STATUS<n>,n=0-255. 464
6.3.90 SMMU_EVENTQ PROD 465
6.3.91 SMMU_EVENTQ_CONS 467
6.3.92 SMMU_PRIQ_PROD i 469
6.3.93 SMMU_PRIQ_CONS 471
6.3.94 SMMU_VATOS_CTRL 473
6.3.95 SMMU_VATOS_SID 475
6.3.96 SMMU_VATOS_ADDR 477
6.3.97 SMMU_VATOS_PAR 480
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. viii
E.a Non-confidential

Contents

Chapter 7

Chapter 8

ARM IHI 0070
E.a

6.398 SMMU_S VATOS CTRL i e
6.399 SMMU_S VATOS SID e
6.3.100 SMMU_S VATOS ADDR
6.3.101 SMMU_S VATOS PAR. e
6.3.102 SMMU_ECMDQ BASE<n>,n=0-255
6.3.103 SMMU_ECMDQ_PROD<n>,n=0-255
6.3.104 SMMU_ECMDQ_CONS<n>,n=0-255
6.3.105 SMMU _ROOT IDRO e
6.3.106 SMMU_ROOT IIDR e
6.3.107 SMMU_ROOT_CRO e
6.3.108 SMMU_ROOT CROACK e e
6.3.109 SMMU_ROOT GPT BASE
6.3.110 SMMU_ROOT GPT BASE CFG
6.3.111 SMMU_ROOT GPF_FAR
6.3.112 SMMU_ROOT GPT_CFG_FAR
6.3.113 SMMU_ROOT TLBI
6.3.114 SMMU_ROOT TLBI. CTRL
6.3.115 ID REGS e
Faults, errors and Event queue
71 Command QUEUE BITOIS v v e e e e e e
7.2 Event queue recorded faultsandevents
7.2.1 Recording of events and conditions for writing to the Event queue
722 Event queue access externalabort
7.2.3 Secure and Non-secure Eventqueues
7.3 Eventrecords
7.3.1 Eventrecordmerging
7.3.2 F UUT . . e
7.3.3 C_BAD STREAMID e
7.3.4 F STE_FETCH
7.35 C BAD STE e
7.3.6 F BAD _ATS TREQ.
7.3.7 F STREAM DISABLED
7.3.8 F TRANSL FORBIDDEN
7.3.9 C_BAD SUBSTREAMID o
7310 F. CD FETCH. e
7.3.11 C BAD CD e
7312 F_WALK EABT e
7313 F_TRANSLATION e e
7314 F_ADDR_SIZE e
7.3.15 F_ACCESS e
7.3.16 F_PERMISSION
7317 F_TLB_CONFLICT e
7318 F_ CFG_CONFLICT e
7319 E PAGE_REQUEST e
7320 F_VMS FETCH
7.3.21 IMPDEF_EVENTNn e
7.3.22 Eventqueuerecord priorities Lo
7.4 Eventqueueoverflow
7.5 Global errorrecording
7.51 GERROR interrupt notification
Page request queue
8.1 PRlIqueueoverflow
8.1.1 Recovery procedure

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

Contents

Chapter 9

Chapter 10

Chapter 11
Chapter 12

Chapter 13

ARM IHI 0070
E.a

8.2 Miscellaneous L 564
8.3 PRG Response Messagecodes 565
Address Translation Operations
9.1 Registerusage 570
9.1.1 ATOS_CTRL e e 570
9.1.2 ATOS_SID 570
9.1.3 ATOS_ADDR 570
9.14 ATOS _PAR 572
9.1.5 ATOS_PAR.FAULTCODE encodings 575
9.1.6 SMMU_(S_)VATOS_SEL 577
Performance Monitors Extension
10.1 Supportanddiscovery e 578
10.2 Overview of countersand groups 579
10.2.1 Overflow, interrupts and capture 580
10.3 Monitorevents 582
10.4 StreamIDs andfiltering 585
10.4.1 Counter Group StreamID size 586
10.4.2 Couting of NoStreamID accesses 586
10.4.3 PARTID- and PMG-based filtering 587
10.5 Registers e 589
10.5.1 SMMU_PMCGnaddressmap, 589
10.5.2 Registerdetails 591
10.6 Supportfor Securestate 639
Debug/Trace
Reliability, Availability and Serviceability (RAS)
12.1 Error propagation, consumption and containment inthe SMMU 643
12.2 Error consumption visible through the SMMU programming interface 644
12.3 Service Failure Mode (SFM)o 645
12.4 RAS fault handling/reporting L 646
12.5 Confidential information in RAS ErrorRecords 647
12.6 Recommendations for reporting of SMMU events in RAS registers 648
12.6.1 SMMU architecturalevents 648
12.6.2 Common SMMU microarchitecturalevents 650

Attribute Transformation

13.1 SMMU handlingof attributes 654
13.1.1 Attribute definitions L Lo 654

13.1.2 Attributesupport. 655

13.1.3 Defaultinput attributes o . 657

13.1.4 Replace 657

13.1.5 Combine 658
13.1.6 Stage 2 control of memory types and cacheability 659

13.1.7 Ensuring consistent output attributes oo 659

13.2 SMMU disabled global bypass attributes 660
13.3 Translation flow, STE bypasses stage 1andstage2 662
13.4 Normal translationflow 663
13.4.1 Stage 1 page permissions 664
13.4.2 Stage 1 memoryattributes 664
1343 Stage2 665

13.4.4 Output 665

13.5 Summary of attribute/permission configuration fields 669
13.6 PCle and ATS attribute/permissions handling 671
Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. X

Non-confidential

Contents

Contents
13.6.1 PCle memory type attributes 671
13.6.2 ATS attribute overview 672
13.6.3 Split-stage (STE.EATS == 0b10) ATS behavior and responses 672
13.6.4 Full ATS skippingstage 1. 673
13.6.5 Split-stage ATS skippingstage 1, 674
13.7 PCle permission attribute interpretation 676
13.7.1 Permission attributes granted in ATS Translation Completions 678
13.8 Attributes for SMMU-originated accesses 680
Chapter 14 External interfaces
141 Data path ingress/egress ports oo 681
14.2 ATS Interface, packets, protocol 683
14.3 SMMU-originated transactions 684
Chapter 15 Translation procedure
15.1 Translation procedurecharts o 687
15.2 Notes on translation procedurecharts 693
Chapter 16 System and Implementation Considerations
16.1 Stages e 694
16.2 Caching 695
16.2.1 Caching combined structures 696
16.2.2 Data dependencies between structures L. 696
16.3 Programming implications of bus address sizing 698
16.4 System integration 699
16.5 Systemsoftware 700
16.6 Implementation-defined features L. 701
16.6.1 Configuration and translation cache locking 701
16.7 Interconnect-specificfeatures L L. 702
16.7.1 Reporting of Unsupported Client Transactions 702
16.7.2 Non-data transfer transactions, 702
16.7.3 Treatment of AMBA Exclusives from clientdevices 704
16.7.4 Treatment of downstreamaborts 705
16.7.5 SMMU and AMBA attribute differences 705
16.7.6 Far Atomicoperations. o 708
16.7.7 AMBA DVM messages with respect to CD.ASET == 1 TLB entries . . . 708
Chapter 17 Memory System Resource Partitioning and Monitoring
171 Discovery and global configuration 710
17.2 Assignment of PARTID and PMG for client transactions 711
17.3 PCle ATS transactions 712
17.4 Assignment of PARTID and PMG for SMMU-originated transactions 713
17.5 Assignment of PARTID and PMG for PMCG-originated MSIs 714
17.6 SMMU support for partitioning and monitoring of internal resources 715
17.7 Determination of PARTID space values 716
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. Xi

E.a Non-confidential

Chapter 1
About this document

1.1 References

ARM IHI 0070
E.a

This document refers to the following documents:
[1] PCI Express® Base Specification Revision 6.0. PCI-SIG.
[2] Arm® Architecture Reference Manual for A-profile architecture. (ARM DDI 0487) Arm Ltd.

[3]1 Arm® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring
(MPAM), for A-profile architecture. (ARM DDI 0598) Arm Ltd.

[4] Arm® System Memory Management Unit, SMMU architecture version 2.0. (ARM IHI 0062) Arm Ltd.

[5]1 Arm® Architecture Reference Manual Supplement, The Realm Management Extension (RME), for Armv9-A.
(ARM DDI 0615) Arm Ltd.

[6] Compute Express Link Specification. (Revision 1.1) CXL Contractual SIG.

[7]1 Arm® Generic Interrupt Controller, GIC architecture version 3.0 and version 4.0. (ARM IHI 0069) Arm Ltd.
[8]1 AMBA® AXI and ACE Protocol Specification. (ARM IHI 0022) Arm Ltd.

[9]1 Arm® CoreSight ™ Architecture Specification 3.0. (ARM THI 0029) Arm Ltd.

[10] Arm® Reliability, Availability, and Serviceability (RAS) Specification. (ARM DDI 0587) Arm Litd.

[11] Arm® Server Base System Architecture. (ARM DEN 0029) Arm Ltd.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 12
Non-confidential

Chapter 1. About this document
1.2. Terms and abbreviations

1.2 Terms and abbreviations

ASID

ATOS

ATS

This document uses the following terms and abbreviations.

Address Space ID, distinguishing TLB entries for separate address spaces. For example, address spaces of PE
processes are distinguished by ASID.

SMMU facility providing VA-to-IPA/PA translations using system-accessible registers. In addition, VATOS
provides a second set of registers for direct use from a virtual machine, with the added constraint that only
VA-to-IPA translations can be returned.

PCI Express [1] term for Address Translation Services provided for remote endpoint TLBs

ATS Translated transaction

Bypass

CD

A memory transaction input to the SMMU, in which the supplied address has been translated. In PCle this is
indicated with the AT TLP field value 0b10. For more information see 3.9 Support for PCI Express, PASIDs, PRI
and ATS.

A configuration that passes through a stage of translation without any addresses transformation is using bypass. If
an SMMU does not implement a translation stage, that stage is considered equivalent to a bypass configuration.

Context Descriptor.

Client device

Completer

A device whose incoming traffic to the system is controlled by an SMMU.

An agent in a computing system that responds to and completes a memory transaction that was initiated by a
Requester.

CONSTRAINED UNPREDICTABLE

DVM

E2H

Where an instruction can result in UNPREDICTABLE behavior, the architecture specifies a narrow range of permitted
behaviors. This range is the range of CONSTRAINED UNPREDICTABLE behavior. All implementations that are
compliant with the architecture must follow the CONSTRAINED UNPREDICTABLE behavior. In body text, the term
CONSTRAINED UNPREDICTABLE is shown in SMALL CAPITALS.

Distributed Virtual Memory, a protocol for interconnect messages to provide broadcast TLB maintenance operations
(among other things).

EL2 Host Mode. The Virtualization Host Extensions in Armv8.1 [2] extend the EL2 translation regime providing
ASID-tagged translations. In this document, EL2-E2H mode is the abbreviation that is used.

Endpoint (EP)

GPC

ARM IHI 0070
E.a

A PCI Express [1] function, used in the context of a device that is a client of the SMMU.

Granule Protection Check

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 13
Non-confidential

Chapter 1. About this document
1.2. Terms and abbreviations

GPC fault

GPF

GPT

HTTU

IGNORED

ILLEGAL

A Granule Protection Check fault, arising either because a Granule Protection Table lookup could not be completed,
or because the lookup was successful and the access being checked failed the check.

Granule Protection Fault. The fault reported when a Granule Protection Table lookup is successful, but the access
being checked fails the Granule Protection Check.

Granule Protection Table. An in-memory structure that describes the association of a Location and a PA space.

Hardware Translation Table Update. The act of updating the Access flag or dirty state of a page in a given descriptor
which is automatically done in hardware, on an access or write to the corresponding page.

Indicates that the architecture guarantees that the bit or field is not interpreted or modified by hardware. In body
text, the term IGNORED is shown in SMALL CAPITALS.

A set of conditions that make an STE or CD structure illegal. These conditions differ for the individual CDs and
STEs, and are described in detail in the relevant CD and STE descriptions. A field in a structure can make the
structure ILLEGAL, for example when it contains an incorrect value, only if the field was not IGNORED for other
reasons. Attempts to use an ILLEGAL structure generate an error that is specific to the type of structure.

IMPLEMENTATION DEFINED

Means that the behavior is not architecturally defined, but must be defined and documented by individual
implementations. For more information, see [2]. In body text, the term IMPLEMENTATION DEFINED is shown in
SMALL CAPITALS.

Implementation specific

IPA

L1CD

L1STD

LPAE

MPAM

Nested

Behavior that is not defined by the SMMU architecture, and might not be documented by individual
implementations. Used where one of a number of implementation options might be chosen and the option
chosen does not affect software compatibility. Software cannot rely on any implementation specific behavior.

Intermediate Physical Address

Level-1 Context Descriptor. Used in a 2-level CD table.

Level-1 Stream Table Descriptor. Used in a 2-level Stream table.

Large Physical Address Extension. The ARMv7 ‘Long’ translation table format, supporting 40-bit output addresses
(and 40-bit IPAs) and having 64-bit descriptors - identical to the Armv8 AArch32 translation table format.

Memory System Resource Partitioning And Monitoring, part of the Armv8.4-A architecture [3].

A configuration that enables both stage 1 and stage 2 translation.

NoStreamlID device

ARM IHI 0070
E.a

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 14
Non-confidential

Chapter 1. About this document
1.2. Terms and abbreviations

An SMMU client device that is not associated with a StreamID.

PA
Physical Address

PARTID, PMG
MPAM partition and performance monitoring group identifiers.

PASID
PCI Express [1] term, a Process Address Space ID. Note: a PASID is an endpoint-local ID so there might be many
distinct uses of a specific PASID value in a system. Despite the similarity in name, a PCle PASID is not the same
as a PE ASID, which is intended to be unique within the scope of an Operating System.

PRI

PCI Express term for Page Request Interface, an extension to ATS allowing an endpoint to request an OS to make
a paged virtual memory mapping present for DMA.

Processing Element (PE)

RC

Requester

RESO

RES1

Reserved

SEC_SID

SMMU

The abstract machine defined in the Arm architecture, as documented in an Arm Architecture Reference Manual
[2]. A PE implementation compliant with the Arm architecture must conform with the behaviors described in the
corresponding Arm Architecture Reference Manual.

PCI Express Root Complex [1]

An agent in a computing system that is capable of initiating memory transactions.

A Reserved bit or field with Should-Be-Zero-or-Preserved (SBZP) behavior, or equivalent read-only or write-only
behavior. Used for fields in register descriptions, and for fields in architecturally-defined data structures that are
held in memory, for example in translation table descriptors. For a full description see [2].

A Reserved bit or field with Should-Be-One-or-Preserved (SBOP) behavior. Used for fields in register descriptions,
and for fields in architecturally-defined data structures that are held in memory, for example in translation table
descriptors. For a full description see [2].

Unless otherwise specified, a Reserved field behaves as RESO. For an identification, or otherwise read-only register
field, a Reserved encoding is never given by the SMMU. For a field that is provided to the SMMU, Reserved
values must not be used and their behavior must not be relied upon.

StreamID Security state. The identifer used to associate the StreamID in transactions from a client device with
a specific Security state, and therefore determining which SMMU programming interface is responsible for
configuration for the stream. See section 3.10.1 StreamID Security state (SEC_SID).

System MMU. Unless otherwise specified, this term is used to mean SMMUv3. Any reference to prior versions of
the SMMU specifications is explicitly suffixed with the architecture version number, for example SMMUVv1.

Split-stage ATS

ARM I[HI 0070

E.a

SMMU facility used with two-stage translation, providing a way to use ATS with stage 1 and use non-ATS
translation for stage 2.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 15
Non-confidential

Chapter 1. About this document
1.2. Terms and abbreviations

Stage 1, Stage 2

One of the two stages of translation whereby the output of one set of translation tables can be fed into a second
set of translation tables. In sequence, stage 1 is the first table indexed, stage 2 is the second. Each stage can be
independently enabled. Stage 1 translates a VA to an IPA. Stage 2 translates an IPA to a PA.

Stage N-only

A translation configuration for a stream of data in which one of two translation stages is configured to translate and
the other is in bypass (whether by configuration or fixed by SMMU implementation).

STE
Stream Table Entry.

Terminate
To complete a transaction with a negative status/abort response; the exact details depend on an implementation’s
interconnect behavior. When a client transaction is said to have been ferminated by the SMMU, it has been
prevented from progressing into the system and an abort response has been issued to the client (if appropriate for
the interconnect in use).

TR
Translation Request, used in the context of a PCIe ATS request to the SMMU, or another distributed implementation
making translation requests to a central unit.

T
Translation table, synonymous with Page Table, as used by Arm architecture.

TTD
Translation table descriptor , synonymous with Page Table Entry, as used by the Arm architecture

TTW
Translation Table Walk. This is the act of performing a translation by traversing the in-memory tables.

UNKNOWN
An UNKNOWN value does not contain valid data, and can vary from moment to moment and implementation to
implementation. An UNKNOWN value must not return information that cannot be accessed at the current or a lower
level of privilege of operating software using accesses that are not UNPREDICTABLE and do not return UNKNOWN
values. An UNKNOWN value must not be documented or promoted as having a defined value or effect. In body
text, the term UNKNOWN is shown in SMALL CAPITALS.

UNPREDICTABLE

Means the behavior cannot be relied upon. UNPREDICTABLE behavior must not perform any function that
cannot be performed at the current or a lower level of privilege using instructions that are not UNPREDICTABLE.
UNPREDICTABLE behavior must not be documented or promoted as having a defined effect. In body text, the term
UNPREDICTABLE is shown in SMALL CAPITALS.

Untranslated transaction.

VA

VM

ARM IHI 0070
E.a

A memory transaction input to the SMMU, in which the supplied address has not been translated. In PCle this is
indicated with the AT TLP field value 0b00. For more information see 3.9 Support for PCI Express, PASIDs, PRI
and ATS.

Virtual Address

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 16
Non-confidential

Chapter 1. About this document
1.2. Terms and abbreviations

Virtual Machine. In this document, VM never means Virtual Memory except when used as part of an existing
acronym.

VMID
Virtual Machine ID, distinguishing TLB entries for addresses from separate virtual machines
VMS

Virtual Machine Structure. Data structure containing per-VM information.

1.2.1 Progressive Terminology Commitment
Arm values inclusive communities. Arm recognizes that we and our industry have used terms that can be offensive.
Arm strives to lead the industry and create change.
Previous issues of this document included terms that can be offensive. We have replaced these terms.

If you find offensive terms in this document, please contact terms @arm.com.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 17
E.a Non-confidential

Chapter 1. About this document
1.3. Document Scope

1.3 Document Scope

This document is the specification for a System Memory Management Unit version 3 following on from the
previous SMMUV2 architecture [4].

This includes all the features from SMMUv3.0 to SMMUv3.3.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 18
E.a Non-confidential

Chapter 2
Introduction

A System Memory Management Unit (SMMU) performs a task that is analogous to that of an MMU in a PE,
translating addresses for DMA requests from system I/O devices before the requests are passed into the system
interconnect. It is active for DMA only. Traffic in the other direction, from the system or PE to the device, is
managed by other means — for example, the PE MMUs.

|
I l— — — _— ___ }
[!_ _______________ B Memory

Figure 2.1: System MMU in DMA traffic

Translation of DMA addresses might be performed for reasons of isolation or convenience.

In order to associate device traffic with translations and to differentiate different devices behind an SMMU, requests
have an extra property, alongside address, read/write, permissions, to identify a stream. Different streams are
logically associated with different devices and the SMMU can perform different translations or checks for each

stream. In systems with exactly one client device served by an SMMU the concept still stands, but might have only
one stream.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 19
E.a Non-confidential

Chapter 2. Introduction

ARM IHI 0070
E.a

A number of SMMUs might exist within a system. An SMMU might translate traffic from just one device or a set
of devices.

The SMMU supports two stages of translation in a similar way to PEs supporting the Virtualization Extensions
[2]. Each stage of translation can be independently enabled. An incoming address is logically translated from VA
to IPA in stage 1, then the IPA is input to stage 2 which translates the IPA to the output PA. Stage 1 is intended
to be used by a software entity to provide isolation or translation to buffers within the entity, for example DMA
isolation within an OS. Stage 2 is intended to be available in systems supporting the Virtualization Extensions and
is intended to virtualize device DMA to guest VM address spaces. When both stage 1 and stage 2 are enabled, the
translation configuration is called nested.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 20
Non-confidential

Chapter 2. Introduction

2.1. History

2.1 History

ARM IHI 0070
E.a

* SMMUVv1 supports a modest number of contexts/streams configured using registers, limiting scalability.
¢ SMMUV?2 extends SMMUvI1 with Armv8-A translation table formats, large addresses, with the same limited
number of contexts and streams.

SMMUv1 and SMMUV2 map an incoming data stream onto one of many register-based context banks which
indicate translation tables and translation configuration to use. The context bank might also indicate a second
context bank for nested translation of a second stage (stage 1 and stage 2). The stream is identified using an
externally-generated ID supplied with each transaction. A second ID might be supplied to determine the Security
state of a stream or group of streams. The use of register-based configuration limits the number of context banks
and support of thousands of concurrent contexts is not possible.

Because live data streams might potentially present transactions at any time, the available number of contexts
limits the number of streams that might be concurrently enabled. For example, a system might have 1000 network
interfaces that might all be idle but whose DMA might be triggered by incoming traffic at any time. The streams
must be constantly available in order to function correctly. It is usually not possible to time-division multiplex a
context between many devices requiring service.

The SMMU programming interface register SMMU_AIDR indicates which SMMU architecture version the
SMMU implements, as follows:

e If SMMU_AIDR[7:0] == 0x00, the SMMU implements SMMUv3.0.
e If SMMU_AIDR][7:0] == 0x01, the SMMU implements SMMUv3.1.
e If SMMU_AIDR[7:0] == 0x02, the SMMU implements SMMUVv3.2.
e If SMMU_AIDR[7:0] == 0x03, the SMMU implements SMMUv3.3.

Unless specified otherwise, all architecture behaviors apply equally to all minor revisions of SMMUV3.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 21
Non-confidential

Chapter 2. Introduction
2.2. SMMUv3.0 features

2.2 SMMUv3.0 features

SMMUv3 provides feature to complement PCI Express [1] Root Complexes and other potentially large I/O systems
by supporting large numbers of concurrent translation contexts.

* Memory-based configuration structures to support large numbers of streams.

* Implementations might support only stage 1, only stage 2 or both stages of translation. This capability, and
other implementation-specific options, can be discovered from the register interface.

* Up to 16-bit ASIDs.

» Up to 16-bit VMIDs [2].

* Address translation and protection according to Armv8.1 [2] Virtual Memory System Architecture. SMMU
translation tables shareable with PEs, allowing software the choice of sharing an existing table or creating an
SMMU-private table.

* 49-bit VA, matching Armv8-A’s 2x48-bit translation table input sizes.

Support for the following is optional in an implementation:

« Either stage 1 or stage 2.

 Stage 1 and 2 support for the AArch32 (LPAE) and AArch64 translation table format.

* Secure stream support.

* Broadcast TLB invalidation.

* Hardware Translation Table Update (HTTU) of Access flag and dirty state of a page. An implementation
might support update of the Access flag only, update of both the Access flag and the dirty state of the page,
or no HTTU.

* PCIe ATS [1] and PRI, when used with compatible Root Complex.

* 16KB and 64KB page granules. However, the presence of 64KB page granules at both stage 1 and stage 2 is
suggested to align with the PE requirements in the Server Base System Architecture.

Because the support of large numbers of streams using in-memory configuration causes the SMMUV3 programming
interface to be significantly different to that of SMMUV2 [4], SMMUV3 is not designed to be backward-compatible

with SMMUV2.

SMMU feature name Description A-profile feature name

SMMUV3.0-ASID16 Support for 16-bit ASIDs, see
SMMU_IDRO0.ASID16.

SMMUVv3.0-ATS Support for PCle ATS, see SMMU_IDRO.ATS
and [1].

SMMUV3.0-BTM Support for broadcast of TLB maintenance, see
SMMU_IDRO.BTM.

SMMUV3.0-HAD Support for disabling hierarchical attributes in FEAT_HPDS
translation tables, see SMMU_IDR3.HAD.

SMMUv3.0-HTTUA Support for hardware translation table Access FEAT_HAFDBS

SMMUv3.0-HTTUD and dirty state, see SMMU_IDRO.HTTU.

SMMUv3.0-Hyp Hypervisor stage 1 contexts supported, see FEAT_VHE EL2
SMMU_IDRO.HYP.

SMMUV3.0-GRAN4K Support for 4KB translation granule, see
SMMU_IDR5.GRAN4K.

SMMUVv3.0-GRANI16K Support for 16KB translation granule, see
SMMU_IDRS5.GRAN16K.

SMMUVvV3.0-GRAN64K Support for 16KB translation granule, see
SMMU_IDRS5.GRAN64K.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 22

E.a Non-confidential

Chapter 2. Introduction

2.2

ARM I[HI 0070

E.a

SMMUV3.0 features

SMMU feature name Description A-profile feature name

SMMUV3.0-PRI Support for PCle Page Request Interface, see
SMMU_IDRO.PRI and [1].

SMMUV3.0-S1P Support for Stage 1 translations, see
SMMU_IDRO.S1P.

SMMUV3.0-S2P Support for Stage 2 translations, see
SMMU_IDRO.S2P.

SMMUV3.0-SECURE_IMPL Support for Secure and Non-secure streams, see
SMMU_S_IDRI1.SECURE_IMPL.

SMMUV3.0-TTFAA32 Support for AArch32 format translation tables.

SMMUV3.0-TTFAA64 Support for AArch64 format translation tables.

SMMUv3.0-VMID16 Support for 16-bit VMID, see FEAT_VMIDI16
SMMU_IDR0.VMID16.

SMMUv3.0-ATOS Support for address translation operation
registers, see SMMU_IDRO.ATOS.

SMMUv3.0-VATOS Support for stage 1-only address translation
operation registers, see SMMU_IDRO.VATOS.

SMMUV3.0 also includes a Performance Monitor Counter Group extension, with the following optional features:
SMMU PMCG feature name Description

SMMU_PMCGv3.0-SID_FILTER_TYPE_ALL Support for filtering of event counts on a global or per-event basis. See
SMMU_PMCG_CFGR.SID_FILTER_TYPE.

Support for software-initiated capture of counter values. See
SMMU_PMCG_CFGR.CAPTURE.

Support for PMCG-originated MSIs. See SMMU_PMCG_CFGR.MSI.

SMMU_PMCGv3.0-CAPTURE

SMMU_PMCGv3.0-MSI

SMMU_PMCGv3.0-RELOC_CTRS

SMMU_PMCGv3.0-SECURE_IMPL

Support for exposing PMCG event counts in independent page of

address space. See SMMU_PMCG_CFGR.RELOC_CTRS.

SMMU_PMCG_SCR bit [31].

Support for counting events from more than one Security state. See

Non-confidential

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 23

Chapter 2. Introduction
2.3. SMMUv3.1 features

2.3 SMMUv3.1 features

SMMUV3.1 extends the base SMMUv3.0 architecture with the following features:

* Support for PEs implementing Armv8.2-A:
— Support for 52-bit VA, IPA and PA.
* Note: An SMMUvV3.1 implementation is not required to support 52-bit addressing, but the
SMMUv3.1 architecture extends fields to allow an implementation the option of doing so.
— Page-Based Hardware Attributes (PBHA).
— ELO vs EL1 execute never controls in stage 2 translation tables.
— Note: Armv8.2 introduces a Common not Private (CnP) concept to the PE which does not apply to the
SMMU architecture, because all SMMU translations are treated as common.
 Support for transactions that perform cache-stash or destructive read side-effects.
* Performance Monitor Counter Group (PMCG) error status.

SMMU feature name Description A-profile feature name

SMMUV3.1-XNX Provides support for translation table stage 2 FEAT_XNX
Unprivileged Execute-never, see
SMMU_IDR3.XNX.

SMMUV3.1-TTPBHA Provides support for translation table page-based FEAT_HPDS?2
hardware attributes, see SMMU_IDR3.PBHA.

SMMUVvV3.1-VAX Support for large Virtual Address space, see FEAT_LVA
SMMU_IDRS5.VAX.

SMMUV3.1-LPA Support for large Physical Address space, see FEAT_LPA

SMMU_IDRS.0AS.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 24
E.a Non-confidential

Chapter 2. Introduction

24.

SMMUV3.2 features

2.4 SMMUv3.2 features

SMMUV3.2 extends the SMMUv3.1 architecture with the following features:

* Support for PEs implementing Armv8.4-A [2]:
— Support for Memory System Resource Partitioning and Monitoring (MPAM) [3].
+ Note: Support for MPAM is optional in SMMUVv3.2.

Secure EL2 and Secure stage 2 translation.

All previous rules about Secure streams being stage-1 only are removed.

Stage-2 control of memory types and Cacheability.
Small translation tables support.
Range-based TLB invalidation and Level Hint.

— Translation table updates without break-before-make.
* Introduction of a Virtual Machine Structure for describing some per-VM configuration.

SMMU feature name

Description

A-profile feature name

SMMUVvV3.2-BBML1

SMMUVv3.2-BBML2

SMMUV3.2-RIL

SMMUv3.2-SecEL2

SMMUV3.2-STT

SMMUV3.2-MPAM

SMMUV3.2-S2FWB

Support for change in size of translation table
mappings, see SMMU_IDR3.BBML.

Support for range-based TLB invalidation and
level hint, see SMMU_IDR3.RIL.

Support for Secure EL2 and Secure stage 2
translations, see SMMU_S_IDR1.SEL2.

Support for small translation tables, see
SMMU_IDR3.STT.

Support for Memory System Resource
Partitioning and Monitoring, see
SMMU_IDR3.MPAM.

Support for Stage 2 forced Write-Back, see
SMMU_IDR3.FWB.

FEAT_BBM

FEAT_TTL, FEAT _TLBIRANGE

FEAT_SEL2

FEAT_TTST

FEAT_MPAM

FEAT_S2FWB

SMMUV3.2 also introduces the following optional features to the PMCG extension:

SMMU PMCG feature name Description

SMMU_PMCGv3.2-MPAM

Support for associating PMCG-originated MSIs with specific MPAM

PARTID and PMG values. See SMMU_PMCG_CFGR.MPAM.

ARM I[HI 0070

E.a

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 25

Non-confidential

Chapter 2. Introduction
2.5. SMMUv3.3 features

2.5 SMMUv3.3 features

SMMUV3.3 extends the SMMUv3.2 architecture with the following features:

* Support for features of PEs implementing Armv8.5 [2]:
— EOPD feature, equivalent to FEAT_EOPD introduced in Armv8.5.
— Protected Table Walk (PTW) behavior alignment with ArmvsS.
— MPAM_NS mechanism, for alignment with FORCE_NS feature [3].
— Requirements for interaction with the Memory Tagging Extension [2].
* Enhanced Command queue interface for reducing contention when submitting Commands to the SMMU.
* Support for recording non-Translation-related events for ATS Translation Requests.
* Guidelines for RAS error recording.

SMMU feature name Description A-profile feature name

SMMUv3.3-EOPD Mandatory Support for preventing ELO access to halves of ~ FEAT_EOPD
address maps. See SMMU_IDR3.EOPD.

SMMUV3.3-PTWNNC Support for treating table walks to Device
Mandatory memory as Normal Non- cacheable. See
SMMU_IDR3.PTWNNC.
SMMUv3.3-MPAM_NS Support for Secure transactions using
Optional Non-secure PARTID space. See
SMMU_S_MPAMIDR.HAS_MPAM_NS.
SMMUv3.3-ECMDQ Support for Enhanced Command queue
Optional interfaces. See SMMU_IDR1.ECMDQ.
SMMUv3.3-SEC_ECMDQ Support for Enhanced Command queue
Optional interfaces for Secure state. See
SMMU_S_IDR0O.ECMDQ.
SMMUV3.3-ATSRECERR Support for recording events on configuration
Optional errors for ATS translation requests. See

SMMU_IDRO.ATSRECERR.

SMMUV3.3 also introduces the following optional features to the PMCG extension:

SMMU PMCG feature name Description

SMMU_PMCGv3.3-FILTER_MPAM Support for filtering event counts by MPAM attributes. See
SMMU_PMCG_CFGR.FILTER_PARTID_PMG.

SMMU_PMCGv3.3-MPAM_NS Support for issuing PMCG MSIs for Secure state, associated with a

Non-secure MPAM PARTID. See
SMMU_PMCG_S_MPAMIDR.HAS_MPAM_NS.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 26
E.a Non-confidential

Chapter 2. Introduction
2.6. SMMU for RME features

2.6 SMMU for RME features

ARM IHI 0070
E.a

SMMU for RME introduces support for Granule Protection Checks, for interoperability with PEs that implement
FEAT_RME [5].

There are two aspects to RME support for SMMU:

* Whether the SMMU has the Root programming interface and can perform Granule Protection Checks. This
is advertised with SMMU_ROOT_IDRO.ROOT_IMPL == 1.

¢ Whether the SMMU has RME-related changes exposed to the Secure and Non-secure programming interfaces.
This is advertised with SMMU_IDRO.RME_IMPL == 1.

Any SMMU behaviors specified as applying to an ‘SMMU with RME’ apply to an SMMU implementation with
SMMU_ROOT_IDR0O.ROOT_IMPL == 1.

An SMMU with RME must have SMMU_ROOT_IDRO.ROOT_IMPL == 1. It is permitted for an SMMU with
RME to have SMMU_IDRO.RME_IMPL == 0.

An SMMU with RME also implements SMMUv3.2 or later.
An SMMU with SMMU_IDRO.RME_IMPL == 1 does not support the EL3 StreamWorld. This means that:

* An STE with STRW configured for EL3 is ILLEGAL and results in C_BAD_STE.
* The commands CMD_TLBI_EL3_ALL, CMD_TLBI_EL3_VA result in CERROR_ILL.
* The SMMU is not required to perform any invalidation on receipt of a broadcast TLBI for EL3.

Note: The value of SMMU_IDRO.RME_IMPL does not affect support for other features associated with Secure
state.

See also 3.24 Granule Protection Checks.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 27
Non-confidential

Chapter 2. Introduction
2.7. Permitted implementation of subsets of SMMUv3.x and SMMUV3.(x+1) architectural features

2.7 Permitted implementation of subsets of SMMUv3.x and SMMUv3.(x+1) ar-
chitectural features

An SMMUv3.x compliant implementation can include any arbitrary subset of the architectural features of
SMMUV3.(x+1), subject only to those constraints that require that certain features be implemented together.

An SMMUV3.x compliant implementation cannot include any features of SMMUv3.(x+2) or later. Arm strongly
recommends that implementations use the latest version available at design time.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 28
E.a Non-confidential

Chapter 2. Introduction
2.8. System placement

2.8 System placement

M PEs &-StreamID-- <-Stream|D--
¢ Incoming
s T — Ee ————— # S [device —E o [sie M pevice
s traffic n] = 1
1S SMMU interconnect| S 4—| rE‘
M —Prog I/F—)E
] ’—b S ‘Ic/)gt’ @ E Device
M ——CQutgoing device traffic interconnect| M }E‘ 2
Sl &-StreamID-- <RequesteriD--
interconnect Incoming
] Elé ————— # S «— PCle — M = EP 1
s traffic PCle §_ ATC
7 SMMU Root |3
— Complex e
M —Prog I/F—}E > s EP 2
L ATS d
— A ATS ATC
M ——Outgoing PCle trafic—p—————
L going ———Addr reqs/responsesJ
M >E Memory

Figure 2.2: SMMU placement in an example system

Two example uses of an SMMU are shown in Figure 2.2. One SMMU interfaces incoming traffic from two client
devices to the system interconnect. The devices can perform DMA using virtual, IPA or other bus address schemes
and the SMMU translates these addresses to PAs. The second example SMMU interfaces one to one to a PCle
Root Complex (which itself hosts a network of endpoints). This illustrates an additional interface specified in this
document, an ATS port to support PCle ATS and PRI (or similar functionality for compatible non-PCle devices).

Outgoing accesses to the system interconnect and Completer devices do not pass through an additional SMMU. In
general, Requesters are behind an SMMU (or, in the case of PEs, have an inbuilt MMU), so outgoing accesses to
the system interconnect and Completer devices are mediated by the MMU of the Requester. If a Requester has no
MMU, it has full-system access. Therefore, its DMA must be mediated by software, and in this case only the most
privileged system software can program it.

In this specification, a Requester associated with an SMMU is referred to as a client device of the SMMU.

The SMMU has a programming interface that receives accesses from system software for setup and maintenance.
The SMMU also makes accesses of its own (as a Requester) to configuration structures, for example to perform
translation table walks. Whether the traffic originating from the SMMU itself shares the same interconnect
resources as traffic passed through from device clients is implementation specific.

Each SMMU is configured separately to any others that might exist in the system.
Note: Arm recommends that SMMUSs bridge I/O device DMA addresses onto system or physical addresses.

Arm recommends that SMMUSs are placed between a device Requester port (or I/O interconnect) and system

ARM IHI 0070
E.a

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 29

Non-confidential

Chapter 2. Introduction
2.8. System placement

interconnect. Generally, Arm recommends that SMMUs are not placed in series and that the path of an SMMU
to memory or other Completer devices does not pass through another SMMU, whether for fetch of SMMU
configuration data or client transactions.

Note: Interconnect-specific channels to support cache coherency are not shown in Figure 2.2.

The SMMU interface to the system interconnect is intended to be IO-coherent, thereby providing IO-coherent
access for the client devices of the SMMU. The SMMU interface for traffic incoming from client devices does not
require any coherency support. In addition, because there is no address translation in the outgoing direction, snoop
traffic cannot be forwarded from the system towards the client devices so fully-coherent device caches cannot be
placed behind an SMMU.

Note: It is feasible to implement an SMMU as part of a complex device containing fully-coherent caches in the
same way that the MMU of a PE is paired to fully-coherent PE caches. Practically, this means the caches must be
tagged with physical addresses.

EP O EP 1

ATC |

ATC |

Device Device Device
0 1 2
Device | | Device | | |
0 1 ¥ PCle
Root
\j—l 1/0 interconnect Complex
Complex device /O interconnect | ____________________ | ________________ L ATS ‘Smart
i |
with embedded ' Distributed SMMU C } device
MMU v \ ‘
} Control & Y ¥ |
Embedded Monolithic D - > TLB TLB I
4—‘ TLB
! |
| 1
v v R 2 2 2 v
System interconnect
\ 4
Memory

Figure 2.3: Example SMMU implementations

Figure 2.3 shows three example implementations of SMMU.

* SMMU A is implemented as part of a complex device, providing translation for accesses from that device only.
Arm expects this implementation to have an SMMU programming interface in addition to device-specific
control. This design can provide dedicated contention-free translation and TLBs.

* SMMU B is a monolithic block that combines translation, programming interface and translation table walk
facilities. Two client devices use this SMMU as their path for DMA into the system.

* SMMU C is distributed and provides multiple paths into the system for higher bandwidth. It comprises:

— A central translation table walker, which has its own Requester interface to fetch translation and

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 30
E.a Non-confidential

Chapter 2. Introduction
2.8. System placement

ARM IHI 0070
E.a

configuration structures and queues and a Completer interface to receive programming accesses. This
unit might contain a macro-TLB and caches of configuration.

— Remote TLB units which, on a miss, make translation requests to the central unit and cache the results
locally. Two units are shown, supporting a set of three devices through one port, and a PCle Root
Complex through another.

The second TLB unit also provides an ATS interface to the Root Complex, so that the PCle Endpoints
can use ATS to make translation requests through to the central unit.

¢ Finally, a smart device is shown, which embeds a TLB and makes translation requests to the central unit of
SMMU C. To software, this looks identical to a simple device connected behind a discrete TLB unit. This
design provides a dedicated TLB for the device, but uses the programming interface and translation facilities
of the central unit, reducing complexity of the device.

In all cases, it appears to software as though a device is connected behind a logically-separate SMMU (similar to
Device 0/1 on SMMU B). All implementations give the illusion of simple read/write transactions arriving from a
client device to a discrete SMMU, even if physically it is the device performing the read/write transactions directly
into the system, using translations provided by an SMMU.

Note: This allows a single SMMU driver to be used for radically different SMMU implementations.

Note: Devices might integrate a TLB, or whole SMMU, for performance reasons, but a closely-coupled TLB
might also be used to provide physical addresses suitable for fully-coherent device caches.

Regardless of the implementation style, this document uses the abstraction of client device transactions arriving at
an SMMU. The boundary of SMMU might contain a single module or several distributed sub-components but
these must all behave consistently.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 31
Non-confidential

Chapter 3
Operation

3.1 Software interface

The SMMU has three interfaces that software uses:

1. Memory-based data structures to map devices to translation tables which are used to translate client device
addresses.

2. Memory-based circular buffer queues. These are a Command queue for commands to the SMMU, an Event
queue for event/fault reports from the SMMU, and a PRI queue for receipt of PCle page requests.

Note: The PRI queue is only present on SMMUSs supporting PRI services. This additional queue allows
processing of PRI requests from devices separate from event or fault reports.

3. A set of registers, for each supported Security state, for discovery and SMMU-global configuration.

The registers indicate the base addresses of the structures and queues, provide feature detection and identification
registers and a global control register to enable queue processing and translation of traffic. When Secure state is
supported, an additional register set exists to allow Secure software to maintain Secure device structures, issue
commands on a second Secure Command queue and read Secure events from a Secure Event queue.

In virtualization scenarios allowing stage 1 translation, a guest OS is presented with exactly the same programming
interface and therefore believes it is in control of a real SMMU (albeit stage 1-only) with the same format of
Command, Event, and optionally PRI, queues, and in-memory data structures.

Certain fields in architected SMMU registers and structures are marked as IMPLEMENTATION DEFINED. The
content of these fields is specific to the SMMU implementation, but implementers must not use these fields in such
a way that a generic SMMUv3 driver becomes unusable. Unless a driver has extended knowledge of particular
IMPLEMENTATION DEFINED fields or features, the driver must treat all such fields as Reserved and set them to O.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 32
E.a Non-confidential

Chapter 3. Operation
3.1. Software interface

An implementation only uses IMPLEMENTATION DEFINED fields to enable extended functionality or features, and
remains compatible with generic driver software by maintaining architected behavior when these fields are set to 0.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 33
E.a Non-confidential

Chapter 3. Operation
3.2. Stream numbering

3.2 Stream numbering

An incoming transaction has an address, size, and attributes such as read/write, Secure/Non-secure, Shareability,
Cacheability. If more than one client device uses the SMMU traffic must also have a sideband StreamID so the
sources can be differentiated. How a StreamlID is constructed and carried through the system is IMPLEMENTATION
DEFINED. Logically, a StreamID corresponds to a device that initiated a transaction.

Note: The mapping of a physical device to StreamID must be described to system software.

Arm recommends that StreamID be a dense namespace starting at 0. The StreamID namespace is per-SMMU.
Devices assigned the same StreamID but behind different SMMU s are seen to be different sources. A device might
emit traffic with more than one StreamlID, representing data streams differentiated by device-specific state.

StreamlID is of IMPLEMENTATION DEFINED size, between O and 32 bits.

The StreamlID is used to select a Stream Table Entry (STE) in a Stream table, which contains per-device
configuration. The maximum size of in-memory configuration structures relates to the maximum StreamID
span (see 3.3 Data structures and translation procedure below), with a maximum of 25amIDSize enries in the
Stream table.

Another property, SubstreamID, might optionally be provided to an SMMU implementing stage 1 translation. The
SubstreamlID is of IMPLEMENTATION DEFINED size, between 0 and 20 bits, and differentiates streams of traffic
originating from the same logical block in order to associate different application address translations to each.

Note: An example would be a compute accelerator with 8 contexts that might each map to a different user process,
but where the single device has common configuration meaning it must be assigned to a VM whole.

Note: The SubstreamlID is equivalent to a PCle PASID. Because the concept can be applied to non-PCle systems,
it has been given a more generic name in the SMMU. The maximum size of SubstreamID, 20 bits, matches the
maximum size of a PCle PASID.

The incoming transaction flags whether or not a SubstreamID is supplied and this might differ on a per-transaction
basis.

Both of these properties and sizes are discoverable through the SMMU_IDRI register. See section 16.4 System
integration for recommendations on StreamID and SubstreamID sizing.

The StreamlD is the key that identifies all configuration for a transaction. A StreamlID is configured to bypass
or be subject to translation and such configuration determines which stage 1 or stage 2 translation to apply. The
SubstreamID provides a modifier that selects between a set of stage 1 translations indicated by the StreamID but
has no effect on the stage 2 translation which is selected by the StreamID only.

A stage 2-only implementation does not take a SubstreamID input. An implementation with stage 1 is not required
to support substreams, therefore is not required to take a SubstreamID input.

The SMMU optionally supports Secure state and, if supported, the StreamID input to the SMMU is qualified by a
SEC_SID flag that determines whether the input StreamID value refers to the Secure or Non-secure StreamID
namespace. A Non-secure StreamID identifies an STE within the Non-secure Stream table and a Secure StreamID
identifies an STE within the Secure Stream table. In this document, the term StreamID implicitly refers to the
StreamID disambiguated by SEC_SID (if present) and does not refer solely to a literal StreamID input value
(which would be associated with two STEs when Secure state is supported) unless explicitly stated otherwise. See
section 3.10 Support for Secure state.

Arm expects that, for PCI, StreamID is generated from the PCI RequesterID so that StreamID[15:0] ==
RequesterID[15:0]. When more than one Root Complex is hosted by one SMMU, Arm recommends that the
16-bit RequesterID namespaces are arranged into a larger StreamID namespace by using upper bits of StreamID
to differentiate the contiguous RequesterID namespaces, so that StreamID[N:16] indicates which Root Complex
(PCle domain/segment) is the source of the stream source. In PCle systems, the SubstreamlID is intended to be
directly provided from the PASID [1] in a one to one fashion.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 34
E.a Non-confidential

Chapter 3. Operation
3.2. Stream numbering

Therefore, for SMMU implementations intended for use with PCI clients, supported StreamID size must be at least
16 bits.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 35
E.a Non-confidential

Chapter 3. Operation
3.3. Data structures and translation procedure

3.3 Data structures and translation procedure

The SMMU uses a set of data structures in memory to locate translation data. Registers hold the base addresses
of the initial root structure, the Stream table. A Stream Table Entry (STE) contains stage 2 translation table base
pointers, and also locates stage 1 configuration structures, which contain translation table base pointers. A Context
Descriptor (CD) represents stage 1 translation, and a Stream Table Entry represents stage 2 translation.

Therefore, there are two distinct groups of structures used by the SMMU:

 Configuration structures, which map from the StreamID of a transaction (a device originator identifier) to the
translation table base pointers, configuration, and context under which the translation tables are accessed.

* Translation table structures that are used to perform the VA to IPA and IPA to PA translation of addresses for
stage 1 and stage 2, respectively.

The procedure for translation of an incoming transaction is to first locate configuration appropriate for that
transaction, identified by its StreamID and, optionally, SubstreamID, and then to use that configuration to locate
translations for the address used.

The first step in dealing with an incoming transaction is to locate the STE, which tells the SMMU what other
configuration it requires.

Conceptually, an STE describes configuration for a client device in terms of whether it is subject to stage 1 or stage
2 translation or both. Multiple devices can be associated with a single Virtual Machine, so multiple STEs can share
common stage 2 translation tables. Similarly, multiple devices (strictly, streams) might share common stage 1
configuration, therefore multiple STEs could share common CDs.

3.3.1 Stream table lookup

ARM IHI 0070
E.a

The StreamID of an incoming transaction locates an STE. Two formats of Stream table are supported. The format
is set by the Stream table base registers. The incoming StreamlID is range-checked against the programmed table
size, and a transaction is terminated if its StreamID would otherwise select an entry outside the configured Stream
table extent (or outside a level 2 span). See SMMU_STRTAB_BASE_CFG and C_BAD_STREAMID.

The StreamID of an incoming transaction might be qualified by SEC_SID, and this determines which Stream table,
or cached copies of that Stream table, is used for lookup. See section 3.10.1 StreamID Security state (SEC_SID).

3.3.1.1 Linear Stream table

STRTAB_BASE

<) STEO
L

) STE 1
€

© STE 2
2

) STE3

Figure 3.1: Linear Stream table

A linear Stream table is a contiguous array of STEs, indexed from 0 by StreamlID. The size is configurable as a 2"
multiple of STE size up to the maximum number of StreamID bits supported in hardware by the SMMU. The

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 36
Non-confidential

Chapter 3. Operation
3.3. Data structures and translation procedure

ARM IHI 0070
E.a

linear Stream table format is supported by all SMMU implementations.

3.3.1.2 2-level Stream table

STRTAB_BASE
_ Addr 0x1000
" Desco - <) STE 0x000
o) Addr 0x2f20 N~
> Desc 1 > a STE 0x001
E‘ o STE 0x100 E
= e STE 0x002
% Desc 3 a STE 0x101 g
(O] = b |
e ——
5 % STE 0x102 n
= STE 0x0fd
() STE 0x103
Addr 0x4000
> STE 0xOff
STE 0x300

Figure 3.2: Example Two level Stream table with SPLIT ==

A 2-level Stream table is a structure consisting of one top-level table that contains descriptors that point to multiple
second-level tables that contain linear arrays of STEs. The span of StreamIDs covered by the entire structure is
configurable up to the maximum number supported by the SMMU but the second-level tables do not have to be fully
populated and might vary in size. This saves memory and avoids the requirement of large physically-contiguous
allocations for very large StreamID spaces.

The top-level table is indexed by StreamID[n:x], where n is the uppermost StreamID bit covered, and x is a
configurable Split point given by SMMU_(S_)STRTAB_BASE_CFG.SPLIT. The second-level tables are indexed
by up to StreamID[x - 1:0], depending on the span of each table.

Support for the 2-level Stream table format is discoverable using the SMMU_IDRO.ST_LEVEL field. Where
2-level Stream tables are supported, split points of 6, 8 and 10 bits can be used. Implementations support either a
linear Stream table format, or both linear and 2-level formats.

SMMUs supporting more than 64 StreamIDs (6 bits of StreamID) must also support 2-level Stream tables.

Note: Implementations supporting fewer than 64 StreamIDs might support 2-level Stream tables, but doing so is
not generally useful as all streams would fit within a single second-level table.

Note: This rule means that an implementation supports two-level tables when the maximum size of linear Stream
table would be too big to fit in a 4KB page.

The top-level descriptors contain a pointer to the second-level table along with the StreamID span that the table
represents. Each descriptor can also be marked as invalid.

This example top-level table is depicted in Figure 3.2, where the split point is set to 8:

Level 1 index Valid Level 2 pointer Level 2 span
0 Y 0x1000 28
1 Y 0x2F20 22
Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 37

Non-confidential

Chapter 3. Operation
3.3. Data structures and translation procedure

Level 1 index Valid Level 2 pointer Level 2 span
2 N - -
3 Y 0x4000 20

In this example:

» StreamIDs 0-1023 (4 x 8-bit level 2 tables) are represented, though not all are valid.

e StreamIDs 0-255 are configured by the array of STEs at 0x1000 (each of which separately enables the
relevant StreamID).

 StreamIDs 256-259 are configured by the array of STEs at 0x2F20.

e StreamIDs 512-767 are all invalid.

* The STE of StreamID 768 is at 0x4000.

A two-level table with a split point of 8 can reduce the memory usage compared to a large and sparse linear table
used with PCle. If the full 256 PCle bus numbers are supported, the RequesterID or StreamID space is 16-bits.
However, because there is usually one PCle bus for each physical link and potentially one device for each bus, in
the worst case a valid StreamID might only appear once every 256 StreamIDs.

Alternatively, a split point of 6 provides 64 bottom-level STEs, enabling use of a 4KB page for each bottom-level
table.

Note: Depending on the size of the StreamID space, the L1 Stream table might require allocation of a region of
physically-contiguous memory greater than a single granule. This table shows some example sizes for the amount
of memory occupied by L1 and L2 Stream tables:

SIDSIZE SPLIT L1 table size L2 table size

16 6 8KB 4KB
16 8 2KB 16KB
16 10 512B 64KB
24 6 2MB 4KB
24 8 512KB 16KB
24 10 128KB 64KB

3.3.2 StreamiDs to Context Descriptors

The STE contains the configuration for each stream indicating:

* Whether traffic from the device is enabled.

* Whether it is subject to stage 1 translation.

* Whether it is subject to stage 2 translation, and the relevant translation tables.
* Which data structures locate translation tables for stage 1.

If stage 1 is used, the STE indicates the address of one or more CDs in memory using the STE.S1ContextPtr field.

The CD associates the StreamID with stage 1 translation table base pointers (to translate VA into IPA), per-stream
configuration, and ASID. If substreams are in use, multiple CDs indicate multiple stage 1 translations, one for each
substream. Transactions provided with a SubstreamID are terminated when stage 1 translation is not enabled.

If stage 2 is used, the STE contains the stage 2 translation table base pointer (to translate IPA to PA) and VMID. If
multiple devices are associated with a particular virtual machine, meaning they share stage 2 translation tables,

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 38
E.a Non-confidential

Chapter 3. Operation
3.3. Data structures and translation procedure

ARM IHI 0070
E.a

then multiple STEs might map to one stage 2 translation table.

Note: Arm expects that, where hypervisor software is present, the Stream table and stage 2 translation table are
managed by the hypervisor and the CDs and stage 1 translation tables associated with devices under guest control
are managed by the guest OS. Additionally, the hypervisor can make use of separate hypervisor stage 1 translations
for its own internal purposes. Where a hypervisor is not used, a bare-metal OS manages the Stream table and CDs.
For more information, see section 3.6 Structure and queue ownership.

When a SubstreamID is supplied with a transaction and the configuration enables substreams, the SubstreamID
indexes the CDs to select a stage 1 translation context. In this configuration, if a SubstreamID is not supplied,
behavior depends on the STE.S1DSS flag:

e When STE.S1DSS == 0b00, all traffic is expected to have a SubstreamID and the lack of SubstreamID is an
error. A transaction without a SubstreamlID is aborted and an event recorded.

e When STE.SIDSS == 0b01, a transaction without a SubstreamID is accepted but is treated exactly as
if its configuration were stage 1-bypass. The stage 1 translations are enabled only for transactions with
SubstreamIDs.

e When STE.S1DSS == 0b10, a transaction without a SubstreamID is accepted and uses the CD of Substream
0. Under this configuration, transactions that arrive with SubstreamID 0 are aborted and an event recorded.

When stage 1 is used, the STE.S1ContextPtr field gives the address of one of the following, configured by
STE.S1Fmt and STE.S1CDMax:

* A single CD.
* The start address of a single-level table of CDs.
— The table is a contiguous array of CDs indexed by the SubstreamlID.
¢ The start address of a first-level, L1, table of L1CDs.
— Each L1CD.L2Ptr in the L1 table can be configured with the address of a linear level two, L2, table of
CDs.
— The L1 table is a contiguous array of L1CDs indexed by upper bits of SubstreamID. The L2 table is a
contiguous array of CDs indexed by lower bits of SubstreamID. The ranges of SubstreamID bits that are
used for the L1 and L2 indices are configured by STE.S1Fmt.

The S1ContextPtr and L2Ptr addresses are [PAs when both stage 1 and stage 2 are used and PAs when only stage 1
is used. S1ContextPtr is not used when stage 1 is not used.

The ASID and VMID values provided by the CD and STE structures tag TLB entries created from translation
lookups performed through configuration from the CD and STEs. These tags are used on lookup to differentiate
translation address spaces between different streams, or to match entries for invalidation on receipt of broadcast
TLB maintenance operations. Implementations might also use these tags to efficiently allow sharing of identical
translation tables between different streams.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 39
Non-confidential

Chapter 3. Operation
3.3. Data structures and translation procedure

StreamID SMMU_(S_)STRTAB_BASE)
Context Descriptor (CD)
v Configuration TTBO
. ASID TTB1 N Hxg
e »
e MAIR
L o
Stream Table Entry (STE) —L
—>
Config S1ContextPtr
VMID S2TT8 Stage 1 translation tables
Other attributes, configuration
e — > iy
L o

1,

Stage 2 translation tables

Figure 3.3: Configuration structure example

Figure 3.3 shows an example configuration in which a StreamID selects an STE from a linear Stream table, the
STE points to a translation table for stage 2 and points to a single CD for stage 1 configuration, and then the CD
points to translation tables for stage 1.

SubstreamID

».

l CD —
Stage 1
cD —” Translation
‘ ! tables
e — >
Stream Table Entry (STE)
Config S1ContextPtr
VMID S2TTB
Other attributes, configuration Stage 2

» Translation
tables

Figure 3.4: Multiple Context Descriptors for Substreams

Figure 3.4 shows a configuration in which an STE points to an array of several CDs. An incoming SubstreamID
selects one of the CDs and therefore the SubstreamID determines which stage 1 translations are used by a
transaction.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 40
E.a Non-confidential

Chapter 3. Operation
3.3. Data structures and translation procedure

SMMU_(S_)STRTAB_BASE

> > > Stage 1
STE (S CD —» Translation
STE tables
L1 ST ptr cD Ly
L1 ST ptr » b
> | cD >
L1 CD ptr
STE L1 CDptr ‘
CD >

Figure 3.5: Multi-level Stream and CD tables

Figure 3.5 shows a more complex layout in which a multi-level Stream table is used. Two of the STEs point to a
single CD, or a flat array of CDs, whereas the third STE points to a multi-level CD table. With multiple levels,
many streams and many substreams might be supported without large physically-contiguous tables.

E VA (BA)

Stage 1 translation
VA > IPA

\
IPA

Stage 2 translation
IPA > PA

v
PA

Figure 3.6: Translation stages and addresses

ssedAg

ssedAg

An incoming transaction is dealt with in a number of logical steps:

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 41
E.a Non-confidential

Chapter 3. Operation
3.3. Data structures and translation procedure

ARM IHI 0070
E.a

1. If the SMMU is globally disabled (for example when it has just come out of reset with
SMMU_CRO.SMMUEN == 0), the transaction passes through the SMMU without any address modification.
Global attributes, such as memory type or Shareability, might be applied from the SMMU_GBPA register of
the SMMU. Or, the SMMU_GBPA register might be configured to abort all transactions.

2. If the global bypass described in (1) does not apply, the configuration is determined:

a) An STE is located.

b) If the STE enables stage 2 translation, the STE contains the stage 2 translation table base.

c) If the STE enables stage 1 translation, a CD is located. If stage 2 translation is also enabled by the STE,
the CD is fetched from IPA space which uses the stage 2 translations. Otherwise, the CD is fetched from
PA space.

3. Translations are performed, if the configuration is valid.

a) If stage 1 is configured to translate, the CD contains a translation table base which is walked. This might
require stage 2 translations, if stage 2 is enabled for the STE. Otherwise, stage 1 bypasses translation
and the input address is provided directly to stage 2.

b) If stage 2 is configured to translate, the STE contains a translation table base that performs a nested
walk of a stage 1 translation table if enabled, or a normal walk of an incoming IPA. Otherwise, stage 2
bypasses translation and the stage 2 input address is provided as the output address.

4. A transaction with a valid configuration that does not experience a fault on translation has the output address
(and memory attributes, as appropriate) applied and is forwarded.

Note: This sequence illustrates the path of a transaction on a Non-secure stream. If Secure state is supported,
the path of a transaction on a Secure stream is similar, except SMMU_S_CR0.SMMUEN and SMMU_S_GBPA
control bypass.

An implementation might cache data as required for any of these steps. Section 16.2 Caching describes caching of
configuration and translation structures.

Furthermore, events might occur at several stages in the process that prevent the transaction from progressing any
further. If a transaction fails to locate valid configuration or is of an unsupported type, it is terminated with an
abort, and an event might be recorded. If the transaction progresses as far as translation, faults can arise at either
stage of translation. The configuration that is specific to the CD and STEs that are used determines whether the
transaction is terminated or whether it is stalled, pending software fault resolution, see section 3.12 Fault models,
recording and reporting.

The two translation stages are described using the VA to IPA and IPA to PA stages of the Armv8-A Virtualization
terminology.

Note: Some systems refer to the SMMU input as a Bus Address (BA). The term VA emphasizes that the input
address to the SMMU can potentially be from the same virtual address space as a PE process (using VAs).

Unless otherwise specified, translation tables and their configuration fields act exactly the same way as their
equivalents specified in the Armv8-A Translation System for PEs [2].

If an SMMU does not implement one of the two stages of translation, it behaves as though that stage is configured
to permanently bypass translation. Other restrictions are also relevant, for example it is not valid to configure a
non-present stage to translate. An SMMU must support at least one stage of translation.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 42
Non-confidential

Chapter 3. Operation
3.3. Data structures and translation procedure

3.3.3 Configuration and Translation lookup

N \
\ L \

|

|

| |
StreamID \

‘ SubstreamID Get Co_ntext ASID, translation table
Descriptor

Walk
translation
tables

TLB

{Security,
StreamWorld,
VMID,
ASID,
Address}

StreamWorld (translation regime)

Get Stream
Table Entry

‘ VMID, Stage 2 translation table ->

\
!

{PA,
Permissions}

— Input transaction

Input address \ Output address (PA)

ARM I[HI 0070

E.a

T
|
|
|

Translation lookup

|

| .) }

} Configuration lookup
|

< Data
\ /J

Output transaction

!
|
\

Figure 3.7: Configuration and translation lookup sequence

Figure 3.7 illustrates the concepts that are used in this document when referring to a configuration lookup and
translation lookup.

As described in 3.3.2 StreamlIDs to Context Descriptors above, an incoming transaction is first subject to a
configuration lookup, and the SMMU determines how to begin to translate the transaction. This involves locating
the appropriate STE then, if required, a CD.

The configuration lookup stage does not depend on the input address and is a function of the:

* SMMU global register configuration.
¢ Incoming transaction StreamID.
* Incoming transaction SubstreamID (if supplied).

The result of the configuration lookup is the stream or substream-specific configuration that locates the translation,
including:

» Stage 1 translation table base pointers, ASID, and properties modifying the interpretation or walk of the
translation tables (such as translation granule).

» Stage 2 translation table base pointer, VMID and properties modifying the interpretation or walk of the
translation table.

* Stream-specific properties, such as the StreamWorld (the Exception Level, or translation regime, in PE terms)
to which the stream is assigned.

The translation lookup stage logically works the same way as a PE memory address translation system. The output
is the final physical address provided to the system, which is a function of the:

* Input address
» StreamWorld (Stream Security state and Exception level), ASID and VMID (which are provided from the
previous step).

Figure 3.7 shows a PE-style TLB used in the translation lookup step. Arm expects the SMMU to use a TLB to
cache translations instead of performing translation table walks for each transaction, but this is not mandatory.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

Chapter 3. Operation
3.3. Data structures and translation procedure

Note: For clarity, Figure 3.7 does not show error reporting paths or CD fetch through stage 2 translation (which
would also access the TLB or translation table walk facilities). An implementation might choose to flatten or
combine some of the steps shown, while maintaining the same behavior.

A cached translation is associated with a StreamWorld that denotes its translation regime. StreamWorld is directly
equivalent to an Exception level on a PE.

The StreamWorld of a translation is determined by the configuration that inserts that translation. The StreamWorld
of a cached translation is determined from the combination of the Security state of an STE, its STE.Config field, its
STE.STRW field and the corresponding SMMU_(S_)CR2.E2H configuration. See the STE.STRW field in section
5.2 Stream Table Entry.

In addition to insertion into a TLB, the StreamWorld affects TLB lookups, and the scope of different types of TLB
invalidations. An SMMU implementation is not required to distinguish between cached translations inserted for
EL2 versus EL2-E2H.

For the behavior of TLB invalidations, see section 3.17 TLB tagging, VMIDs, ASIDs and participation in broadcast
TLB maintenance.

A translation is associated with one of the following StreamWorlds:

StreamWorld Properties
NS-EL1 On a PE, equivalent to Non-secure EL1
NS-EL2 Equivalent to Non-secure EL2 when E2H is not used (has no ASID)
NS-EL2-E2H Equivalent to Non-secure EL2 when E2H is used (has ASID tag)
S-EL2 Equivalent to Secure EL2 when E2H is not used (has no ASID)
S-EL2-E2H Equivalent to Secure EL2 when E2H is used (has ASID tag)
Secure Equivalent to either:
* The single translation regime that is used by Secure EL1 and Secure EL3 when EL3 is
running in AArch32 state.
* Secure EL1 when EL3 is running in AArch64 state (EL3 has a separate translation
regime).
This regime has an ASID and, if Secure stage 2 is supported, a VMID.
EL3 Equivalent to EL3 when EL3 is running in AArch64 state.
Note: StreamWorld can differentiate multiple translation regimes in the SMMU that are associated with different
bodies of software at different Exception levels. For example, a Secure Monitor EL3 translation for address
0x1000 is different to (and unaffected by) a Non-secure hypervisor EL2 translation for address 0x1000, as are
NS-EL1 translations for address0x1000. In general, Arm expects that the StreamWorld configured for a stream in
the SMMU will match the Exception level of the software that controls the stream or device.
The term ‘any-EL?2’ is used to describe behaviors common to NS-EL2 and S-EL2. The term ‘any-EL2-E2H’ is
used to describe behaviors common to NS-EL2-E2H and S-EL2-E2H StreamWorlds.
In the same way as in an Armv8-A MMU, a translation is architecturally unique if it is identified by a unique set of
{StreamWorld, VMID, ASID, Address} input parameters.
For example, the following are unique and can all co-exist in a translation cache:
¢ Entries with the same address, but different ASIDs.
¢ Entries with the same address and ASID, but different VMIDs.
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 44

E.a

Non-confidential

Chapter 3. Operation
3.3. Data structures and translation procedure

¢ Entries with the same address and ASID but a different StreamWorld.

Architecturally, a translation is not uniquely identified by a StreamID and SubstreamID. This results in two
properties:

* A translation is not required to be unique for a set of transaction input parameters (StreamID, SubstreamID).
— Two streams can be configured to use the same translation configuration and the resulting ASID/VMID
from their configuration lookup will identify a single set of shared translation cache entries.
e Multiple StreamID/SubstreamID configurations that result in identical ASID/VMID/StreamWorld
configuration must maintain exactly the same configuration where configuration can affect TLB lookup.
— For example, two streams configured for a stage 1, NS-EL1 with ASID == 3 must both use the same
translation table base addresses and translation granule.

When translating an address, NS-EL2, S-EL2 and EL3 regimes use only one translation table. CD.TTB1 is unused
in these configurations. All other StreamWorlds use both translation tables, and therefore CD.TTBO and CD.TTB1
are both required.

Only some stage 1 translation table formats are valid in each StreamWorld, consistent with the PE. Valid
combinations are described in the CD.AA64 description. Selecting an inconsistent combination of StreamWorld
and CD.AA64 (for example, using AArch32 translation tables to represent an AArch64 EL3 translation regime)
causes the CD to be ILLEGAL.

Secure stage 1 permits AArch32 and AArch64 translation tables. Secure stage 2 is only permitted to use AArch64
translation tables.

In this document, the term 7LB is used to mean the concept of a translation cache, indexed by
StreamWorld/VMID/ASID and VA.

SMMU cache maintenance commands therefore fall into two groups:

* Configuration cache maintenance, acting upon StreamIDs and SubstreamIDs.
¢ Translation cache maintenance (or TLB maintenance), acting on addresses, ASIDs, VMIDs and StreamWorld.

The second set of commands directly matches broadcast TLB maintenance operations that might be available
from PEs in some systems. The StreamWorld tag determines how TLB entries respond to incoming broadcast
TLB invalidations and TLB invalidation SMMU commands, see section 3.17 TLB tagging, VMIDs, ASIDs and
participation in broadcast TLB maintenance for details.

3.3.4 Transaction attributes: incoming, two-stage translation and overrides

In addition to an address, size and read/write attributes, an incoming transaction might be presented to the SMMU
with other attributes, such as an access type (for example Device, WB-cached Normal memory), Shareability
(for example Outer Shareable), cache allocation hints, and permissions-related attributes, instruction/data,
privileged/unprivileged, Secure/Non-secure. Some of these attributes are used to check the access against the
page permissions that are determined from the translation tables. After passing through the SMMU, a transaction
presented to the system might also have a set of attributes, which might have been affected by the SMMU.

Depending on the StreamWorld configuration, these attributes can be configured differently. For example,
the format of access permissions in a stage 1 translation table descriptor is affected when located from a
configuration with StreamWorld == any-EL2 or StreamWorld == EL3, consistent with the Armv8 Translation
System [2]. Specifically, the AP[1] bit (of the AP[2:1] field) is ignored and treated as if it were 1 because privilege
checks are ignored for EL2 and EL3 (AArch64) translations. However, any-EL2-E2H translations maintain
privileged/non-privileged checks in the same manner as EL1.

The details of how input attributes affect the attributes output into the system, in combination with translation table
attributes and other configuration, is described in detail in Chapter 13 Attribute Transformation.

The input attributes are conceptually provided from the system, either conveyed from a client device that defines
the transaction attributes in a device-specific way, or set in a system-specific way by the interconnect before the
transaction is input to the SMMU.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 45
E.a Non-confidential

Chapter 3. Operation
3.3. Data structures and translation procedure

As an overview:

» Permission-related attributes (instruction/data, privileged/unprivileged) and read/write properties are used
for checking against translation table permissions, which might deny the access. The permission-related
attributes input into the SMMU might be overridden on a per-device basis before the permission checks
are performed, using the INSTCFG, PRIVCFG and NSCFG STE fields. The SMMU might output these
attributes.

Note: The overrides might be useful if a device is not able to express a particular kind of traffic.

 Other attributes (memory type, Shareability, cache hints) are intended to have an effect on the memory system
rather than the SMMU, for example, control cache lookup for the transaction. The attributes output into
the memory system are a function of the attributes specified by the translation table descriptors (at stage 1,
stage 2, or stage 1 and stage 2) used to translate the input address. The SMMU might convey attributes input
from a device through this process, so that the device might influence the final transaction access, and input
attributes might be overridden on a per-device basis using the MTCFG/MemAttr, SHCFG, ALLOCCFG STE
fields. The input attribute, modified by these fields, is primarily useful for setting the resulting output access
attribute when both stage 1 and stage 2 translation is bypassed (no translation table descriptors to determine
attribute) but can also be useful for stage 2-only configurations in which a device stream might have finer
knowledge about the required access behavior than the general virtual machine-global stage 2 translation
tables.

The STE attribute and permission override fields, MTCFG/MemAttr, SHCFG, ALLOCCFG, INSTCFG, PRIVCFG
and NSCFG, allow an incoming value to be used or, for each field, a specific override value to be selected. For
example, INSTCFG can configure a stream as Always Data, replacing an incoming INST property that might be
in either state. However, in SMMU implementations that are closely-coupled to, or embedded in, a device, the
incoming attribute can always be considered to be the most appropriate. When an SMMU and device guarantee
that the incoming attributes are correct, it is permissible for an SMMU to always use the incoming value for
each attribute value. See SMMU_IDR1.ATTR_TYPES_OVR and SMMU_IDR1.ATTR_PERMS_OVR for more
information. For an SMMU that cannot guarantee that these attributes are always provided correctly from the
client device, for example a discrete SMMU design, Arm strongly recommends supporting overrides of incoming
attributes.

3.3.5 Translation table descriptors

ARM IHI 0070
E.a

The Armv8-A VMSA defines bits [63:60] of stage 2 Block and Page descriptors as being Reserved for use by a
System MMU. In SMMUv3.1 and later, these bits are Reserved, RESO.

Note: When PBHA is enabled for a bit in this range, bits [62:60] are affected by the PBHA mechanism. When
PBHA is not enabled, the previous definition applies.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 46
Non-confidential

Chapter 3. Operation
3.4. Address sizes

3.4 Address sizes

ARM IHI 0070
E.a

There are three address size concepts to consider in the SMMU, the input address size from the system, the
Intermediate Address Size (IAS), and the Output Address Size (OAS):

e The SMMU input address size is 64 bits.

— Note: See section 3.4.1 Input address size and Virtual Address size for recommendations on how a
smaller interconnect or device address capability is presented to the SMMU.

¢ IAS reflects the maximum usable IPA of an implementation that is generated by stage 1 and input to stage 2:

— This term is defined to illustrate the handling of intermediate addresses in this section and is not a
configurable parameter.

— The maximum usable IPA size of an SMMU is defined in terms of other SMMU implementation choices,
as:

IAS = MAX(SMMU_IDRO.TTF[O]==1 ? 40 : 0), SMMU_IDRO.TTF[l]==1 2 OAS : 0));

— An IPA of 40 bits is required to support of AArch32 LPAE translations, and AArch64 limits the
maximum [PA size to the maximum PA size. Otherwise, when AArch32 LPAE is not implemented, the
IPA size equals OAS, the PA size, and might be smaller than 40 bits.

— The purpose of definition of the IAS term is to abstract away from these implementation variables.

¢ OAS reflects the maximum usable PA output from the last stage of AArch64 translations, and must match
the system physical address size. The OAS is discoverable from SMMU_IDRS.0OAS. Final-stage AArch32
translations always output 40 bits which are zero-extended into a larger OAS, or truncated to a smaller OAS.

Note: Except where explicitly noted, all address translation and fault checking behavior is consistent with Armv8-A

[2].

If the SMMU is disabled (with SMMU_(S_)CR0O.SMMUEN == 0, and SMMU_(S_)GBPA.ABORT == 0 allows
traffic bypass), the input address is presented directly to the output PA. If the input address of a transaction exceeds
the size of the OAS, the transaction is terminated with an abort and no event is recorded. Otherwise, when
SMMU_(S_)CRO.SMMUEN == 1, transactions are treated as described in the rest of this section.

When a stream selects an STE with STE.Config[2:0] == 0b100, transactions bypass all stages of translation. If the
input address of a transaction exceeds the size of the OAS, the transaction is terminated with an abort and a stage 1
Address Size fault (F_ADDR_SIZE) is recorded.

Note: In Armv8-A PEs, when both stages of translation bypass, a (stage 1) Address Size fault might be generated
where an (input) address is greater than the PA size, depending on whether a PE is in AArch32 or AArch64 state.
This behavior does not directly translate to the SMMU because no configuration is available to select translation
system when in bypass or disabled, therefore the address size is always tested.

When a stream selects an STE with one or more stages of translation present:

For input to stage 1, the input address is treated as a VA (see section 3.4.1 Input address size and Virtual Address
size) and if stage 1 is not bypassed the following stage 1 address checks are performed:

1. On input, a stage 1 Translation fault (F_TRANSLATION) occurs if the VA is outside the range specified by
the relevant CD:

a. For a CD configured as AArch32 LPAE, the maximum input range is fixed at 32 bits, and the range of
the address input into a given TTBO or TTB1 translation table is determined by the TOSZ and T1SZ
fields.

Note: The arrangement of the TTBO/TTB1 translation table input spans might be such that there is a
range of 32-bit addresses that is outside both of the TTBO and TTB1 spans and will always cause a
Translation fault.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 47
Non-confidential

Chapter 3. Operation
3.4. Address sizes

ARM IHI 0070
E.a

b. For a CD configured as AArch64, the range is determined by the TOSZ and T1SZ fields.

i. For SMMUV3.0, up to a maximum of 49 bits (two 48-bit TTBO/TTB1).

ii. For SMMUV3.1 and later, when SMMU_IDRS.VAX == 1, each TTBx that is configured for a 64KB
granule using CD.TGx has a maximum input size of 52 bits. When SMMU_IDR5.VAX == 0 or a
TTBx is configured for a 4KB or 16KB granule, the maximum input size of the TTBx is 48 bits.

A VA is inside the range only if it is correctly sign-extended from the top bit of the range size upwards,
although an exception is made for Top Byte Ignore (TBI) configurations.

Note: For example, with a 49-bit VA range and TBI disabled, addresses 0x0000FFFFFFFFFFFF and
OxXFFFF000000000000 are within the range but 0x0001000000000000 and OxFFFE000000000000 are
not. See 3.4.1 Input address size and Virtual Address size below for details.

2. The address output from the translation causes a stage 1 Address Size fault if it exceeds the range of the
effective IPA size for the given CD:

a. For AArch32 LPAE CDs, the IPA size is fixed at 40 bits (the IPS field of the CD is IGNORED).
b. For AArch64 CDs, the IPA size is given by the effective value of the IPS field of the CD, which is
capped to the OAS.

If bypassing stage 1 (because STE.Config[0] == 0, STE.SIDSS == 0b01 or if unimplemented), the input address
is passed directly to stage 2 as the IPA. If the input address of a transaction exceeds the size of the IAS, a stage 1
Address Size fault occurs, the transaction is terminated with an abort and F_ADDR_SIZE is recorded. Otherwise,
the address might still lie outside the range that stage 2 will accept. In this case, the stage 2 check 1 described in
this section causes a stage 2 Translation fault.

Note: The TBI configuration can only be enabled when a CD is used (that is when stage 1 translates) and is always
disabled when stage 1 is bypassed or disabled.

Note: The SMMU stage 1 bypass behavior is analogous to a PE with stage 1 disabled but stage 2 translating. The
SMMU checks stage 1 bypassed addresses against the IAS, which (when AArch32 LPAE support is implemented)
might be greater than the PA. This supports stage 2-only assignment of devices to guest VMs expecting to program
40-bit DMA addresses, which are input to stage 2 translation.

Note: This also means that an SMMU implementing only stage 2, or implementing both stages but translating
through stage 2 only, can still produce a fault marked as coming from stage 1.

Stage 2 receives an IPA, and if not bypassing, the following stage 2 address size checks are performed:

1. On input, a stage 2 Translation fault occurs if the IPA is outside the range configured by the relevant S2T0SZ
field of the STE.

a. For an STE configured as AArch32 LPAE (see STE.S2AA64), the input range is capped at 40 bits (and
cannot exceed 40 bits) regardless of the IAS size.

b. For a STE configured as AArch64, the input range is capped by the IAS.

c¢. For SMMUv3.1 and later, when OAS == IAS == 52, the stage 2 input range is further limited to 48 bits
unless STE.S2TG indicates a 64KB granule.

Note: This ensures, for a system having OAS < 40, that an AArch64 stage 2 can accept a 40-bit IPA from an
AArch32 stage 1, if the SMMU supports AArch32.

2. The address output from the translation causes a stage 2 Address Size fault if it exceeds the effective PA

output range:
a. For an AArch64 STE, this is the effective value configured in the S2PS field of the STE (which is capped
to the OAS).
Note: For SMMUv3.1 and later, the effective size can be 52 only if OAS == 52 and 64KB granules are
used.
Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 48

Non-confidential

Chapter 3. Operation
3.4. Address sizes

b. For an AArch32 STE, this output range is fixed at 40 bits and the STE.S2PS field is IGNORED. If the
OAS is less than 40, and if the output address is outside the range of the OAS, the address is silently
truncated to fit the OAS.

After this check, if the output address of stage 2 is smaller than the OAS, the address is zero-extended to
match the OAS.

If bypassing stage 2 (because STE.Config[1] == 0 or if unimplemented), the IPA is presented directly as the PA
output address. If the IPA is outside the range of the OAS, the address is silently truncated to fit the OAS. If the
IPA is smaller than the OAS, it is zero-extended.

Note: Because the SMMU contains configuration structures that are checked for validity before beginning
translation table walks, certain configuration errors are detected as an invalid structure configuration. This includes
STE.S2TTB being out of range of the effective stage 2 output address size, or CD.TTBx being out of range of the
effective stage 1 output address size. These invoke C_BAD_STE or C_BAD_CD configuration faults, respectively,
instead of an Address Size fault.

3.4.1 Input address size and Virtual Address size

The architectural input address size of the SMMU is 64 bits. If a client device outputs an address smaller than 64
bits, or if the interconnect between a client device and the SMMU input supports fewer than 64 bits of address,
the smaller address is converted to a 64-bit SMMU input address in a system-specific manner. This conversion is
outside of the scope of this specification, but must comply with the rules in this section.

Armv8.0 and Armv8.1 [2] support a maximum of a 49-bit VA in AArch64, meaning there are up to 49 significant
lower bits sign-extended to a 64-bit address. Armv8.2 supports a maximum of a 53-bit VA or 49-bit VA in AArch64,
meaning there are up to 53 or 49 significant lower bits sign-extended to a 64-bit address. Stage 1 translation
contexts configured as AArch64 have input VA ranges configurable up to the maximum (arranged as two halves
and translated through TTBO and TTB1).

The term VAS represents the VA size chosen for a given SMMU implementation. When SMMU_IDRS.VAX == 0,
this is 49 bits (2 x 48 bits). When SMMU_IDRS5.VAX == 1, this is 53 bits (2 x 52 bits).

Note: In SMMUv3.0, SMMU_IDRS5.VAX is RESO and therefore VAS is always 49 bits.

Stage 1’s high translation table, TTB1, can only be selected if VAS significant bits of address are presented to the
SMMU sign-extended. If applications require use of both TTB0O and TTB1 then the system design must transmit
addresses of at least VAS bits end-to-end, from device address registers through the interconnect to the SMMU,
and that sign-extension occurs from the input MSB upwards as described in this section.

Stage 1 translation contexts configured as AArch32 have a 32-bit VA. In this case, bits [31:0] of the input address
are used directly as the VA. A Translation fault is raised if the upper 32 bits of the input address are not all zero.
The TxSZ fields are used to select TTBO or TTB1 from the upper bits [31:n] in the input range.

Input range checks made for a stage 1 AArch64 translation table configured (with TxSZ) for an input range of N
significant bits fail unless bits VA[AddrTop:N - 1] are identical.

* When Top Byte Ignore (TBI) is not used, AddrTop == 63.
* When Top Byte Ignore is enabled, AddrTop == 55, which means that VA[63:56] are ignored.

When TBI is enabled, only VA[55:N-1] must be identical and the effective VA[63:56] bits are taken to be a
sign-extension of VA[55] for translation purposes.

Note: TBI configuration is part of the CD, so it can only be enabled when stage 1 translates. When stage 1 is
bypassed or disabled, no CD is used and TBI is always disabled.

The term Upstream Address Size (UAS) represents the number of effective bits of address presented to the SMMU
from a client device:

1. If 57 <= UAS < 64, TBI has meaning as there are bits supplied in VA[63:56] that might differ from
VA[55:(VAS-1)]. TBI determines whether a Translation fault is invoked if they differ.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 49
E.a Non-confidential

Chapter 3. Operation
3.4. Address sizes

2. If VAS <= UAS < 57, TBI is meaningless as the input sign-extension means VA[63:56] cannot differ from
VA[55].

3. If UAS <= VAS, the range checks can only fail if translation table range is configured with a TOSZ, or T1SZ,
if UAS == 49, smaller than the presented address. That is, the maximum configuration of stage 1 translation
tables covers any presented input address.

For AArch64, the stage 1 translation table, TTBO or TTB1, is selected based on VA[55]. Therefore, because an
address size from the client device that is less than the VAS bits is zero-extended to 64, this means VA[55] == 0
and TTBI1 is never selected.

If any upper address bits of a 64-bit address programmed into a peripheral are not available to the SMMU
sign-checking logic, whether by truncation in the interconnect or peripheral, software must not rely on
mis-programmed upper bits to cause a Translation fault in the SMMU. If such checking is required within
such a system, software must check the validity of upper bits of DMA addresses programmed into such a device.

All input address bits are recorded unmodified in SMMU fault event records.

3.4.2 Address alignment checks

The SMMU architecture does not check the alignment of incoming transaction addresses.

Note: For a PE, the alignment check is based on the size of an access. This semantic is not directly applicable to
client device accesses.

3.4.3 Address sizes of SMMU-originated accesses

Distinct from client device accesses forwarded into the system, the SMMU originates accesses to the system for
the purposes of:

 Configuration structure access (STE, CD).
¢ Queue access (Command, Event, PRI).
e MSI interrupt writes.
* Last-stage translation table walks:
— Note: Addresses output from stage 1 walks in a nested configuration are input to stage 2 and translated
in the expected manner (including causing stage 1 Address Size faults, or stage 2 Translation faults from
IPAs outside the stage 2 translation range), rather than being output into the system directly.

An access address can be out of range if it relates to a base address that is already greater than an allowed address
size, or if an index is applied to a base address so that the result is greater than an allowed address size. If an
access address is calculated to be a PA value greater than the SMMU OAS or physical address size, or an IPA
value greater than the IAS or intermediate address size, behavior is as follows:

Behavior when address too

Access type Configured by Address type large
CD fetch or STE.S1ContextPtr If stage 1-only, PA Truncate to OAS or
L1CD fetch F_CD_FETCH or

C_BAD_STE (1)

If stage 2 present, IPA Truncate to IAS or
C_BAD_STE or Stage 2
Translation fault (2)

CD fetch LICD.L2Ptr If stage 1-only, PA Truncate to OAS or
F_CD_FETCH or
C_BAD_SUBSTREAMID (3)

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 50
E.a Non-confidential

Chapter 3. Operation

3.4. Address sizes

Behavior when address too

Access type Configured by Address type large
If stage 2 present, IPA Truncate to IAS or
C_BAD_SUBSTREAMID or
stage 2 Translation fault (4)
STE fetch SMMU_(S_)STRTAB_BASE or PA Truncate to OAS or
L1STD.L2Ptr F_STE_FETCH (5)
VMS fetch STE.VMSPtr PA C_BAD_STE
Queue access SMMU_(S_)*Q_BASE PA Truncate to OAS (6)
MSI write SMMU_(S_)*_IRQ_CFG {0,1,2} or PA Truncate to OAS (6)
CMD_SYNC arguments
Last-stage Addresses derived from intermediate ~ PA Stage 1/2 Address Size fault

translation table translation table descriptors located

walk using STE.S2TTB or STE.S_S2TTB
or CD.TTB{O0,1}, after the first level
translation table descriptor fetch.
Starting-level translation table PA CD or STE ILLEGAL (see
descriptor address in STE.S2TTB or CD.TTB{0,1} and STE.S2TTB
STE.S_S2TTB or CD.TTB{0,1} description).
In the context of these respective access types:
1. An implementation of SMMUV3.1 or later generates C_BAD_STE and terminates the transaction. It is
CONSTRAINED UNPREDICTABLE whether an SMMUv3.0 implementation:
a. Generates an F_CD_FETCH and terminates the transaction. The event contains the non-truncated fetch
address.
b. Generates a C_BAD_STE and terminates the transaction.
c. Truncates STE.S1ContextPtr to the OAS and initiates a read of a CD/L1CD from this address (translation
continues).
2. Itis CONSTRAINED UNPREDICTABLE whether an implementation:
a. Generates a C_BAD_STE and terminates the transaction.
b. Inputs the IPA to stage 2 without truncation, generating a stage 2 Translation fault that reports a
non-truncated fault address.
¢. SMMUv3.0 only, inputs the IPA to stage 2 with truncation to the IAS. If translation is successful, initiates
aread of a CD/L1CD from the result otherwise generates a stage 2 fault that reports a truncated fault
address.
3. An implementation of SMMUv3.1 or later generates C_BAD_SUBSTREAMID and terminates the
transaction. It is CONSTRAINED UNPREDICTABLE whether an SMMUv3.0 implementation:
a. Generates an F_CD_FETCH and terminates the transaction. The event contains the non-truncated fetch
address.
b. Generates a C_BAD_SUBSTREAMID and terminates the transaction.
c¢. Truncates L1CD.L2Ptr to the OAS and initiates a read of a CD from this address (translation continues).
4. It is CONSTRAINED UNPREDICTABLE whether an implementation:
a. Generates a C_BAD_SUBSTREAMID and terminates the transaction.
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 51

E.a

Non-confidential

Chapter 3. Operation
3.4. Address sizes

ARM IHI 0070
E.a

b. Inputs the IPA to stage 2 without truncation, generating a stage 2 Translation fault that reports a
non-truncated fault address.

¢. SMMUv3.0 only, inputs the IPA to stage 2 with truncation to the IAS. If translation is successful, initiates
aread of a CD from the result otherwise generates a stage 2 fault that reports a truncated fault address.

5. It is CONSTRAINED UNPREDICTABLE whether an implementation truncates an STE fetch address (and
continues translation) or generates an F_STE_FETCH condition which terminates the transaction and might
deliver an error event.

6. Note: When hypervisor software presents an emulated SMMU interface to a guest, Arm recommends that
guest-provided addresses are correctly masked to the IPA size to ensure consistent SMMU behavior from the
perspective of the guest driver.

In all cases where a non-truncated address is reported in a fault (for instance, a stage 2 Translation fault), the
reported address is the calculated address of the structure being accessed, for example an L1CD address calculated
from a base address of STE.S1ContextPtr indexed by the incoming SubstreamID to locate a L1CD structure.

The address of an LICD or CD, given by STE.S1ContextPtr or L1CD.L2Ptr, is not subject to a stage 1 Address
Size fault check.

In summary, configuration registers, command fields and structure fields programmed with out-of-range physical
addresses might truncate the addresses to the OAS or PA size.

Note: This behavior in part arises from the fact that register address fields are not required to provide storage for
high-order physical address bits beyond the OAS. See section 6.3 Register formats for details.

Note: Commands, register and structure fields taking IPA addresses store the entire field width so that a potential
stage 2 fault can be correctly raised (providing a full non-truncated IPA in a fault record).

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 52
Non-confidential

Chapter 3. Operation
3.5. Command and Event queues

3.5 Command and Event queues

All SMMU queues for both input to, and output from the SMMU are arranged as circular buffers in memory. A
programming interface has one Command queue for input and one Event queue (and optionally one PRI queue) for
output. Each queue is used in a producer-consumer fashion so that an output queue contains data produced by the
SMMU and consumed by software. An input queue contains data produced by software, consumed by the SMMU.

3.5.1 SMMU circular queues

A queue is arranged as a 2"-items sized circular FIFO with a base pointer and two index registers, PROD and
CONS indicating the producer and consumer current positions in the queue. In each of the output and input roles,
only one index is maintained by the SMMU, with the other is maintained by software.

For an input queue (Command queue), the PROD index is updated by software after inserting an item into the
queue, and is read by the SMMU to determine new items. The CONS index is updated by the SMMU as items are
consumed, and is read by software to determine that items are consumed and space is free. An output queue is the
exact opposite.

PROD indicates the index of the location that can be written next, if the queue is not full, by the producer. CONS
indicates the index of the location that can be read next, if the queue is not empty. The indexes must always
increment and wrap to the bottom when they pass the top entry of the queue.

The queues use the mirrored circular buffer arrangement that allows all entries to be valid simultaneously (rather
than N-1 valid entries in other circular buffer schemes). Each index has a wrap flag, represented by the next higher
bit adjacent to the index value contained in PROD and CONS. This bit must toggle each time the index wraps off
the high end and back onto the low end of the buffer. It is the responsibility of the owner of each index, producer
or consumer, to toggle this bit when the owner updates the index after wrapping. It is intended that software reads
the register, increments or wraps the index (toggling wrap when required) and writes back both wrap and index
fields at the same time. This single update prevents inconsistency between index and wrap state.

* If the two indexes are equal and their wrap bits are equal, the queue is empty and nothing can be consumed
from it.

* If the two indexes are equal and their wrap bits are different, the queue is full and nothing can be produced to
it.

* If the two indexes differ or the wrap bits differ, the consumer consumes entries, incrementing the CONS
index until the queue is empty (both indices and wrap bits are equal).

Therefore, the wrap bits differentiate the cases of an empty buffer and a full buffer where otherwise both indexes
would indicate the same location in both full and empty cases.

On initialization, the queue indexes are written by the agent controlling the SMMU before enabling the queue. The
queue indexes must be initialized into one of the following consistent states:

¢ PROD.WR == CONS.RD and PROD.WR_WRAP == CONS.RD_WRAP, representing an empty queue.
— Note: Arm expects this to be the state on normal initialization.
* PROD.WR == CONS.RD and PROD.WR_WRAP != CONS.RD_WRAP, representing a full queue.
¢ PROD.WR > CONS.RD and PROD.WR_WRAP == CONS.RD_WRAP, representing a partially-full queue.
* PROD.WR < CONS.RD and PROD.WR_WRAP != CONS.RD_WRAP, representing a partially-full queue.

The agent controlling the SMMU must not write queue indexes to any of the following inconsistent states whether
at initialization or after the queue is enabled:

* PROD.WR > CONS.RD and PROD.WR_WRAP != CONS.RD_WRAP
* PROD.WR < CONS.RD and PROD.WR_WRAP == CONS.RD_WRAP

If the queue indexes are written to an inconsistent state, one of the following CONSTRAINED UNPREDICTABLE
behaviors is permitted:

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 53
E.a Non-confidential

Chapter 3. Operation
3.5. Command and Event queues

* The SMMU consumes, or produces as appropriate to the given queue, queue entries at UNKNOWN locations
in the queue.

¢ The SMMU does not consume, or produce as appropriate, queue entries while the queue indexes are in an
inconsistent state.

* For a queue where the SMMU is the producer, the SMMU treats the queue as though it is full while the queue
indexes are in an inconsistent state.

Each circular buffer is 2"-items in size, where 0 <= n <= 19. An implementation might support fewer than 19 bits
of index. Each PROD and CONS register is 20 bits in size to accommodate the maximum 19-bit index plus the
wrap bit. The actual buffer size is determined by software, up to the discoverable SMMU implementation-defined
limit. The position of the wrap bit depends on the configured index size.

Note: For example, when a queue is configured with 128 entries it means:

* The queue indices are 7-bit.
* PROD.WR and CONS.RD fields are 7 bits large. The queue indexes are bits [6:0] of PROD and CONS.
* The wrap bit [7] of PROD and CONS registers. Bits [19:8] are ignored.

The lifecycle of a circular buffer is shown in Figure 3.8.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 54
E.a Non-confidential

Chapter 3. Operation
3.5. Command and Event queues

y Producer () Prod. wrap =0
Starts empty
? Consumer ") Cons.wrap =0
----------- > 4 O
Newentries | A | B| C | D
3 O
Entries {7 Q
consumed: _
queue Wrap bits same
empty = - —————————_ > T Q
-——_—> Yy e Prod. =1
Producer 47 9. rod. wrap
wraps | E|F G| H
4 O
Enties = —---== > J7 [)
added: | | J| K L E| F G H | Wrapbitsdifer
queue full T Q
Entries
consumed, J7 .
consumer J | K
wraps ___ @) Cons. wrap = 1
Entries
consumed: J7 .
queue Wrap bits same
empty

ARM IHI 0070
E.a

Figure 3.8: Circular buffer/queue operation

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved.

Non-confidential

55

Chapter 3. Operation
3.5. Command and Event queues

When producing or consuming entries, software must only increment an index (except when an increment will
cause a wrap to the start). The index must never otherwise be moved backwards. The SMMU makes the same
guarantee, only incrementing or wrapping its index values.

There is one Command queue per implemented Security state. The SMMU commands are consumed in order from
this queue.

The Event queues receive asynchronous events such as faults recorded from device traffic or configuration
errors (which might be discovered only when device traffic causes the SMMU to traverse the structures). On
the Non-secure side, there is one global Event queue which receives events from all Non-secure streams and
configuration.

When SMMU_S_IDR1.SECURE_IMPL == 1, there is also one Secure Event queue which receives events from
all Secure streams and configuration, see section 3.10.2 Secure commands, events and configuration.

All output queues are appended to sequentially.

3.5.2 Queue entry visibility semantics

Any producer (whether the SMMU or software) must ensure that if an update to the PROD index value is observable
by the consumer, all new queue entries are observable by the consumer. For output queues from the SMMU (Event
and PRI queues), the SMMU writes queue data to memory and, when that data becomes visible with respect to the
rest of the Shareability domain, the SMMU allows the updated PROD index value to be observed. This is the first
point that a new queue entry is visible to the consumer.

A consumer must not assume presence of a new valid entry in a queue through any mechanism other than having
first observed an updated PROD index that covers the entry position. If a consumer reads a queue entry beyond the
point indicated by the last read of the PROD index, the entry contains UNKNOWN data.

Note: Interrupt ordering rules also exist, see section 3.18 Interrupts and notifications. The SMMU makes queue
updates observable through the PROD index no later than at the point where it asserts the queue interrupt.

Note: Software must not assume a new queue item is present when an interrupt arrives, without first reading the
PROD index. If, for example, a prior interrupt handler consumed all events including those of a second batch (with
a second interrupt), the next interrupt handler invocation might find no new queue entries.

3.5.3 Event queue behavior

The SMMU might support configurable behavior on Translation-related faults, which enable a faulting transaction
to be stalled, pending later resolution, or terminated which immediately aborts the transaction. See section 3.12
Fault models, recording and reporting for details on fault behavior.

Events are recorded into the Event queue in response to a configuration error or translation-related fault associated
with an incoming transaction. A sequence of faults or errors caused by incoming transactions could fill the Event
queue and cause it to overflow if the events are not consumed fast enough. Events resulting from stalled faulting
transactions are never discarded if the Event queue is full, but are recorded when entries are consumed from the
Event queue and space next becomes available. Other types of events are discarded if the Event queue is full.

Note: Arm expects that the classes of events that might be discarded are generally used for debug.
Section 7.4 Event queue overflow covers the exact queue behavior upon overflow.

Arm recommends that system software consumes entries from the Event queue in a timely manner to avoid
overflow during normal operation.

In all cases in this document, when it is stated that an event is recorded, the meaning is that the event is recorded if
room is available for a new entry in the Event queue and the queue is writable. A queue is writable if it is enabled,
has no global error flagged and would not otherwise overflow, see section 7.2 Event queue recorded faults and
events. Events that are not reported in response to a stalled transaction (for example where there is no Stall field, or
Stall == 0) are permitted to be discarded if they cannot be recorded. Stall events are generally not discarded and

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 56
E.a Non-confidential

Chapter 3. Operation
3.5. Command and Event queues

are recorded when the Event queue is next writable, see section 7.2 Event queue recorded faults and events for
details of exceptions to this rule. Software must consume events from the queue to free up space, otherwise the
pending stall events will not be recorded. Stall events are otherwise no different to any other event. The queue is
filled in the same circular order and such events do not overwrite existing, unconsumed, events.

Where multiple pending events contend for a write to the Event queue, Arm recommends that an implementation
does not unfairly prioritize non-stall events above events with Stall == 1, if it is possible to do so. This helps avoid
the case of a steady stream of terminated transactions from a misbehaving device holding back the events of stalled
transactions for an indeterminate time.

If an event is generated in response to a transaction that is terminated, there is no requirement for the event to be
made visible in the Event queue before a transaction response is returned to the client. See CMD_SYNC, section
4.6.3 CMD_SYNC(ComplSignal, MSIAddress, MSIData, MSIWriteAttributes), which enforces visibility of events
relating to terminated transactions.

Note: This means that an event generated in response to a terminated transaction might be visible as an SMMU
event before the point that the transaction termination is reported at the client device.

3.5.4 Definition of event record write “Commit”

Generation of an event record can be abstracted into these steps:
1. A situation that triggers an event occurs, for example a translation fault.
2. An event record is assembled internally in the SMMU.
3. Itis determined that it is possible to write a new queue entry.
4. The final event record is committed to be written to the Event queue entry.
5. The event record becomes visible in the Event queue:

a. The update to the record data location is visible to the required Shareability domain.

b. The PROD.WR index is updated to publish the new record to software. In terms of queue semantics, the
record is not visible (even if it has been written to memory) until the write index is updated to cover the
new entry.

The commit point, 4, represents the conceptual point after which the event will definitely be written to the queue
and eventually become visible. Until commit, the event write might not happen (for example, if the queue is full
and software never consumes any entries, the event write will never commit).

An event write that has committed is guaranteed to become visible in the Event queue, if the subsequent write does
not experience an external abort, see section 7.2 Event queue recorded faults and events.

The write of a stall event record must not commit until the queue entry is deemed writable (the queue is enabled
and not full). If it is not writable, the stall record is buffered until the queue is next writable, unless one of the
exceptions in section 7.2 Event queue recorded faults and events causes the record to be discarded.

3.5.5 Event merging

Implementations are permitted to merge some event records together. This might happen where multiple identical
events occurred, and can be used to reduce the volume of events recorded into the Event queue where individual
events do not supply additional useful information.

Events can be merged where all of the following conditions are upheld:

* The event types and all fields are identical, except fields explicitly indicated in section 7.3 Event records.
* If present, the Stall field is 0. Stall fault records are not merged, see section 3.12.2 Stall model.

An implementation is not required to merge any events, but one that does is required to support the STE.MEV flag
to enable or inhibit merging of events relating to a given stream.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 57
E.a Non-confidential

Chapter 3. Operation
3.5. Command and Event queues

Note: For debugging purposes, merging of some events can be disabled on a per-stream basis using the STE.MEV
flag.

Software implementations (for example a virtual emulation of an SMMU) are not required to respect STE.MEV. A
hypervisor might cause events to continue to be merged after a guest requests merging to be disabled, for example
if it determines a misbehaving guest to be causing too many debug events.

See section 7.3.1 Event record merging for details.

3.5.6 Enhanced Command queue interfaces

ARM IHI 0070
E.a

An SMMU can implement multiple Command queues for the Non-secure or Secure SMMU programming
interfaces. This is advertised in SMMU_IDR1.ECMDQ and SMMU_S_IDR0O.ECMDQ.

The components of the Enhanced Command queue feature are:

» Up to 256 Command queue control pages.
¢ Each Command queue control page contains the control interface for up to 256 queues.
e Each Command queue control page is implemented in registers in the SMMU.

The interface for each queue in a control page is similar to the SMMU_CMDQ_{BASE, CONS, PROD} registers.

The presence of Enhanced Command queue interfaces does not imply removal of the SMMU_(S_)CMDQ_*
interfaces.

A Command queue control page contains multiple instances of the base, producer and consumer controls for a
Command queue. Each instance is referred to as an Enhanced Command queue, ECMDQ.

An implementation might have more than one Command queue control page. The number of Command queue
control pages available to Non-secure state is advertised in
SMMU_IDR6.CMDQ_CONTROL_PAGE_LOG2NUMP.

The Secure equivalent is SMMU_S_IDR6.CMDQ_CONTROL_PAGE_LOG2NUMP.
The registers for each Command queue control page are:

* SMMU_CMDQ_CONTROL_PAGE_BASEn
* SMMU_CMDQ_CONTROL_PAGE_CFGn
* SMMU_CMDQ_CONTROL_PAGE_STATUSn

Within each Command queue control page are many ECMDQ controls. The ECMDAQ is similar to the register
interface for the Command queue in SMMUv3. Each ECMDQ occupies 16 bytes of address space.

Offset Field Size Description

0x00 SMMU_ECMDQ_BASEn 64b/8B Pointer to queue base address, queue size
0x08 SMMU_ECMDQ_PRODn 32b/4B Queue producer write index
0x0c SMMU_ECMDQ_CONSn 32b/4B Queue consumer read index, error status

The SMMU reacts to updates of each SMMU_ECMDQ_PRODn in finite time.
For more information on the layout of the Command queue control pages, see:

» Section 6.1 Memory map
» Section 6.2.5 Registers in a Command queue control page

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 58
Non-confidential

Chapter 3. Operation
3.5. Command and Event queues

3.5.6.1 Behavior
The SMMU accesses the Command queues using the attributes configured in SMMU_(S_)CRI1.{QUEUE_SH,
QUEUE_OC, QUEUE_IC}, and the MPAM attributes configured in SMMU_(S_)GMPAM.

If any Enhanced Command queue interface is enabled such that SMMU_(S_)CR1.{QUEUE_SH, QUEUE_OC,
QUEUE_IC} could be used when generating an access, then SMMU_(S_)CRI1.{QUEUE_SH, QUEUE_OC,
QUEUE_IC} are read-only.

The conditions for a queue being empty, full and non-empty are the same as for the SMMU_(S_)CMDQ_CONS
and SMMU_(S_)CMDQ_PROD registers as specified in section 3.5.1 SMMU circular queues.

The SMMU consumes commands from a queue if the queue is non-empty.

A CMD_SYNC consumed from an ECMDQ in a Command queue control page guarantees that the effects
of commands previously-consumed on that queue are complete, including the reporting of events relating to
configuration and translation information invalidated by those commands.

The rules for consumption of commands other than CMD_SYNC are the same as for the Command queue
controlled by SMMU_(S_)CMDQ_{PROD, CONS}.

The rules for consumption a CMD_SYNC issued to the Command queue via SMMU_(S_)CMDQ_PROD are
independent of EMDQ) state. It is not required to synchronize commands and events relating to ECMDQ queues.

The SMMU is permitted to consume from many queues in parallel.
The SMMU does not give a guaranteed serialization or total order of Commands consumed across different queues.

For example, an implementation might consume from many queues in a round-robin or weighted round-robin
schedule.

If SMMU_IDRO.SEV == 1, the SMMU triggers a WFE wake-up event when any ECMDQ becomes non-full.

3.5.6.2 Enabling and disabling an ECMDQ interface

An ECMDQ interface is enabled when SMMU_ECMDQ_PRODn.EN == SMMU_ECMDQ_CONSn.ENACK ==
1.

An ECMDQ interface is disabled when SMMU_ECMDQ_PRODn.EN == SMMU_ECMDQ_CONSn.ENACK ==
0.

The same guarantees around being enabled, disabled and completing transitions between the two states apply as
for SMMU_(S_)CR0O.CMDQEN/SMMU_(S_)CROACK.CMDQEN.

In the transition from enabled to disabled, once the SMMU has updated SMMU_ECMDQ_CONSn.ENACK to
0, it is guaranteed that errors have been reported and consumption of commands has stopped, and therefore that
SMMU_ECMDQ_CONSn.{ERR_REASON, ERR, RD_WRAP, RD} are stable.

The SMMU updates SMMU_ECMDQ_CONSn.ENACK even if SMMU_ECMDQ_PRODn.ERRACK !=
SMMU_ECMDQ_CONSn.ERR.

3.5.6.3 Errors relating to an ECMDQ interface

If the SMMU encounters any error while fetching or processing a command, it toggles the value of
SMMU_ECMDQ_CONSn.ERR and updates the reason in SMMU_ECMDQ_CONSn.ERR_REASON.

The SMMU updates SMMU_ECMDQ_CONSn.RD and SMMU_ECMDQ_CONSn.RD_WRAP to point at the
command that produced ERR_REASON, in the same manner as SMMU_(S_)CMDQ_CONS.RD points at a failed
command.

If SMMU_ECMDQ_PRODn.ERRACK != SMMU_ECMDQ_CONSn.ERR as the result of an error, the SMMU
does not consume commands.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 59
E.a Non-confidential

Chapter 3. Operation
3.5. Command and Event queues

ARM IHI 0070
E.a

If software inappropriately configures =~ SMMU_ECMDQ_PRODn.ERRACK to mismatch
SMMU_ECMDQ_CONSn.ERR , it is CONSTRAINED UNPREDICTABLE whether the SMMU consumes
commands from that ECMDQ and whether a subsequent error is correctly reported. This CONSTRAINED
UNPREDICTABLE behavior additionally applies in the case when software transitions an ECMDQ from disabled to
enabled while SMMU_ECMDQ_PRODn.ERRACK != SMMU_ECMDQ_CONSn.ERR.

Disabling the ECMDQ, making SMMU_ECMDQ_PRODn.ERRACK and SMMU_ECMDQ_CONSn.ERR
consistent, then enabling the ECMDAQ) is sufficient to restore predictable behavior.

If the update of SMMU_ECMDQ_CONSn.ERR is visible then the updates of ERR_REASON, RD and RD_WRAP
are visible, and fetches from the corresponding queue have completed.

The SMMU updates SMMU_ECMDQ_CONSn.ENACK even if SMMU_ECMDQ_PRODn.ERRACK !=
SMMU_ECMDQ_CONSn.ERR.

Errors relating to ECMDQs are additionally reported in SMMU_GERROR.CMDQP_ERR for Non-secure state.
ECMDAQ errors for Secure state are similarly also reported in SMMU_S_GERROR.CMDQP_ERR.

ECMDAQs operate independently of the error status of SMMU_(S_)GERROR.CMDQ_ERR.

If an error to be reported in any Non-secure SMMU_ECMDQ_CONS.ERR field occurs,
and SMMU_GERROR.CMDQP_ERR is currently inactive, the error 1is additionally reported
in SMMU_GERROR.CMDQP_ERR. The equivalent is true for Secure state, reporting in
SMMU_S_GERROR.CMDQP_ERR.

The activation, deactivation and state of SMMU_(S_)GERROR.CMDQP_ERR have no effect on the Command
queue control page or ECMDAQ interfaces reached through it.

If the activation of SMMU_(S_)GERROR.CMDQP_ERR is observable then the SMMU_ECMDQ_CONSn.ERR
field indicating the reason for the activation is observable.

When the SMMU activates SMMU_(S_)GERROR.CMDQP_ERR, the GERROR interrupt is triggered, in the
same manner as other GERROR conditions in SMMUv3.

If the MSI from a CMD_SYNC issued through a Command queue control page experiences an external abort, the
abort is reported in SMMU_(S_)GERROR.MSI_CMDQ_ABT_ERR
in the same manner as for a CMD_SYNC issued through the SMMU_CMDQ_* interface.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 60
Non-confidential

Chapter 3. Operation
3.6. Structure and queue ownership

3.6 Structure and queue ownership

ARM IHI 0070
E.a

Arm expects that the Non-secure Stream table, Command queue, Event queue and PRI queue are controlled by the
most privileged Non-secure system software.

If present, Arm expects that the Secure Stream table, Secure Command queue and Secure Event queue are
controlled by Secure software. For example, these would be controlled by software in EL3 if a separation in
control between Secure EL1 and EL3 is required.

Arm expects that the stage 2 translation tables indicated by all STEs are controlled by a hypervisor.

The ownership of stage 1 CDs and translation tables depends on the configuration in use. If pointed to by a Secure
STE, they are controlled by Secure software (one of EL3, S-EL2 or S-EL1). If pointed to by a Non-secure STE,
they are controlled by Non-secure software (either NS-EL2 or NS-EL1).

Note: For example, the context might be one of the following:

* Used by a bare-metal OS, which controls the descriptor and translation tables and is addressed by PA.

 Used internally by a hypervisor, which controls the descriptor and translation tables and is addressed by PA.

* Used by a guest, in which case Arm expects that the CD and translation tables are controlled by the guest,
and addressed by IPA.

Note: When a hypervisor is used in a given Security state, Arm expects that the Event queue for that Security state
is managed by the hypervisor, which forwards events into guest VMs as appropriate. StreamIDs might be mapped
from physical to virtual equivalents during this process.

In virtualized scenarios, Arm expects a hypervisor to:
* Convert guest STEs into physical SMMU STEs, controlling permissions and features as required.

Note: The physical StreamIDs might be hidden from the guest, which would be given virtual StreamIDs, so a
mapping between virtual and physical StreamIDs must be maintained.

* Read and interpret commands from the guest Command queue. These might result in commands being issued
to the SMMU or invalidation of internal shadowed data structures.

* Consume new entries from the PRI and Event queues, mapping from host StreamIDs to guest, and deliver
appropriate entries to guest Event and PRI queues.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 61
Non-confidential

Chapter 3. Operation
3.7. Programming registers

3.7 Programming registers

ARM IHI 0070
E.a

The SMMU registers occupy a set of contiguous 64K pages of system address space that contain mechanisms for
discovering capabilities and configuring pointers to in-memory structures and queues. After initialization, runtime
access to the registers is generally limited to maintenance of the Command, Event and PRI queue pointers and
interaction with the SMMU is performed using these in-memory queues.

Optional regions of IMPLEMENTATION DEFINED register space are supported in the memory map.

See section 6.1 Memory map for register definitions and layout.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 62
Non-confidential

Chapter 3. Operation
3.8. Virtualization

3.8 Virtualization

Devices can be put under direct guest control with stage 2-only mappings, without requiring guest interaction with
the SMMU. To the guest OS, they appear as though the device is directly connected and might request DMA to
PAs (IPAs) directly.

The SMMU does not provide programming interfaces for use directly by virtual machines. Arm expects that,
where stage 1 facilities are required for use by a guest in virtualization scenarios, this is supported using hypervisor
emulation of a virtual SMMU, or a similar interface for use by a virtual machine.

Implementations might provide an IMPLEMENTATION DEFINED number of extra hardware interfaces that are
located in an IMPLEMENTATION DEFINED manner but are otherwise compatible with the SMMUvV3 programming
interface. Each interface might be mapped through to a guest VM for it to use directly, for example appearing as a
stage 1-only interface to the guest while the hypervisor interface appears as stage 2-only. The management of such
an implementation is beyond the scope of this document.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 63
E.a Non-confidential

Chapter 3. Operation
3.9. Support for PCI Express, PASIDs, PRI and ATS

3.9 Support for PCI Express, PASIDs, PRI and ATS

A PCI RequesterID maps directly to the low-order bits of a StreamID, therefore maps to one STE, see section
3.2 Stream numbering. A PCle Function is then the minimum granularity that can be assigned to a VM. The
PClIe PASID prefix allows a Function to be subdivided into parts, each of which is intended to be assigned to a
different user space process at stage 1. The prefix is optional. Transactions from one StreamID might be supplied
with a SubstreamID or not, on a per-transaction basis. Because the prefix just identifies a portion of a Function,
the Function remains otherwise indivisible and remains the granularity at which assignments to VMs are made.
Therefore, in PCI terms:

 Stage 2 is associated with a RequesterID (identifying a Function). The Function is assigned to a VM.

 Stage 1 is associated with a (RequesterID, PASID) tuple. That is, the PASID differentiates between different
stage 1 translation contexts.

» The PASID identifies which of the parts or contexts of the Function are assigned to which process or driver at
stage 1.

« If transactions from a Function are translated using stage 2 but stage 1 is unused and in bypass, there are
no stage 1 translation contexts to differentiate with a PASID. Supply of a PASID or SubstreamID to a
configuration without stage 1 translation causes the translation to fail. Such transactions are terminated with
an abort and C_BAD_SUBSTREAMID is recorded.

PASIDs can be up to 20 bits in size. PASIDs are optional, configurable, and of a size determined by the minimum
of the endpoint, system software, PCIe Root Complex and the individually-supported substream width of the
SMMU.

The SMMU is not required to report an error in the case where an endpoint and Root Complex emit a PASID with
a value greater than can be expressed in the SubstreamID width supported by the SMMU. In this scenario, the
PASID might be truncated to the SubstreamlID size on arrival at the SMMU.

In order to minimize PCle-specific terms, a RequesterID is referred to using a StreamID (to which the RequesterID
maps in a hardware-specific manner). In the SMMU, a PASID is referred to as a SubstreamID. Even when a client
device supports SubstreamIDs, it is not mandatory to supply a SubstreamID with all transactions from that device.
PCle permits a PASID to be supplied, or not, on a per-transaction basis. Therefore, where a SubstreamlID is input
to the SMMU, a validity flag is also provided and this is asserted when a PASID is present.

The PASID tag provides additional permission attributes on top of the standard PCle read/write attribute. The
tag can express an Execute and Privileged state that correspond to the SMMU INST and PRIV attributes. A
PClIe transaction without a PASID is considered Data, unprivileged. The mapping between PCle and SMMU
permissions is described in section 13.7 PCle permission attribute interpretation.

3.9.1 ATS Interface

An optional extra hardware interface might be provided by an SMMU implementation to support PCle ATS [1]
and PRI. This interface conveys translation and paging requests and responses to and from the PCle Root Complex,
which bridges requests and responses into the PCle domain.

Whether the SMMU implements ATS can be discovered from SMMU_IDRO.ATS. If ATS is implemented, whether
the SMMU also implements PRI can be discovered from SMMU_IDRO.PRI. This support determines the behavior
of SMMU-local configuration and commands but does not guarantee that the rest of the system, and all clients of
an SMMU, also support ATS and PRI. The ATS and PRI capabilities of dependent PCle Root Complexes and
endpoints thereof are discovered through other means.

PCle ATS has the following properties:

* Note: ATS aims to improve the performance of a system using an SMMU, known as a Translation Agent in
PClIe terminology, by caching translations within the endpoint or requester. This can remove contention on a
shared TLB, or reduce latency by helping the device to request translation ahead of time.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 64
E.a Non-confidential

Chapter 3. Operation
3.9. Support for PCI Express, PASIDs, PRI and ATS

* The remote endpoint Address Translation Cache (ATC, which is equivalent to a TLB) is filled on-demand by
making a Translation Request to the Root Complex which forwards it to the SMMU. If the translation exists
and permission checks pass, a Translation Completion response is given with a Physical Address and the
ATC caches this response.

* The return of a translated, physical address to an endpoint grants the endpoint permission to access the
physical address. The endpoint can now make direct access to PAs, which it does by tagging outgoing traffic
as Translated. The Root Complex is expected to provide this tag to the SMMU. The SMMU might then allow
such transactions to bypass translation and progress directly into the system.

* If a Translation Request would result in a fault or error, a negative response is returned and the endpoint is not
able to access the address using ATS. This denial might be fatal to the endpoint, reported in a device-specific
manner, or when PRI is used, initiate a page-in request.

» Page access permission checking is performed at the time of the Translation Request, and takes the form
of a request for permission to read or to read/write (and, optionally, to execute). The response grants the
device access to read or to read/write (and, optionally, to execute) as specified in [1]. The response returns
the permissions that are available, which might consist of a subset of the requested permissions.

Note: For example, a request to read and write a page might succeed, but only permission to read might be
granted. The endpoint does not write pages it has not been granted write access to.

* ATS translation failures are reported to the endpoint, which might make an error software-visible, but the
SMMU does not record fault events for ATS translation failures.

* Invalidation of the ATC translations is required whenever a translation changes in the SMMU. This is done in
software. Broadcast invalidation operations might affect the internal translation caches of the SMMU, but
these operations are not forwarded into the PCle domain.

— Note: An Arm broadcast TLB invalidation provides an address, ASID and VMID. The SMMU does not
map this information back to the RequesterID of an endpoint in hardware.

— Note: When CD.TBIO or CD.TBI1 are used to enable use of tagged pointers with an endpoint that uses
ATS, system software must assume that a given virtual address has been cached by the endpoint’s ATC
with any value of address bits [63:56]. This means that invalidation of a given virtual address VA[55:12]
requires either 256 ATC invalidation operations to invalidate all possible aliases that the ATC might have
cached, or an ATC invalidate-all operation.

* ATC invalidation is performed using SMMU commands which the SMMU forwards to the Root Complex.
The invalidation responses are collected, and the SMMU maintains the ordering semantics upheld by the
Root Complex in which a transaction that might be affected by an ATC invalidate must be visible before the
ATC invalidation completes.

e ATS must be disabled at all endpoints before SMMU translation is disabled by clearing
SMMU_CRO.SMMUEN.

* An ATS Translation Request might be fulfilled using SMMU TLB entries, or cause SMMU TLB entries
to be inserted. Therefore, after a change of translation configuration, an ATC invalidate must be preceded
by SMMU TLB invalidation. Software must ensure that the SMMU TLB invalidation is complete before
initiating the ATC invalidation.

Note: This order ensures that an ATS Translation Request performed after an ATC invalidate cannot observe
stale cached translations.

* ATS and PRI are not supported from Secure streams.

In Secure STEs, the EATS field is RESO.

CMD_ATC_INV and CMD_PRI_RESP are not able to target Secure StreamIDs.

The SMMU terminates any incoming traffic marked Translated on a Secure StreamID, aborting the
transaction and recording F_ TRANSL_FORBIDDEN.

It is IMPLEMENTATION DEFINED whether it is possible for ATS Translation Requests with a Secure
StreamID to reach the SMMU.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 65
E.a Non-confidential

Chapter 3. Operation
3.9. Support for PCI Express, PASIDs, PRI and ATS

— Ifitis possible for an implementation to receive an ATS Translation Request from a Secure StreamlID,
the request is aborted with a UR response and F_BAD_ATS_TREQ is recorded into the Secure Event
queue. The check for a Secure ATS Translation Request takes place prior to checking of StreamID or
configuration lookup.

* Support for CMD_ATC_INV and CMD_PRI_RESP on the Secure Command queue is optional and is
indicated by SMMU_S_IDR3.SAMS.

e The Smallest Translation Unit, (STU, as programmed into the ATS Control Register of the Endpoint) is
defined as the smallest granule that the SMMU implements, as discovered from SMMU_IDRS. Software
must program the same STU size for all devices serviced by an SMMU, and must not assume all SMMUSs in
the system are identical in this respect.

The Page Request Interface (PRI) adds the ability for PCle functions to target DMA at unpinned dynamically-paged
memory. PRI depends on ATS, but ATS does not mandate PRI. Like ATS, PRI can be enabled on a per-function
basis. When enabled:

 If an ATS request fails with a not-present result, the endpoint issues a PRI page request to ask software to
make the requested pages resident.

* Software receives these PRI Page Requests (PPRs) on the PRI queue and issues a positive PRI response
command to the SMMU after making pages present. If a requested address is unavailable, a programming
failure has caused the device to request an illegal address, and software must issue a negative PRI response
command.

* The net effect is that a hypervisor or OS can use unpinned, dynamically-paged memory for DMA.

* The PRI queue is of a fixed size and PPRs must not be lost. To ensure this, page request credits are issued by
the most privileged system software (that which controls the PRI queue) to each PCle endpoint using the PRI
capability in its configuration space.

 If a guest is allowed to use PRI, it enables PRI (through the configuration space) and sets up its own PRI
queue. The hypervisor needs to proxy PPRs from the host PRI queue to the guest PRI queue. However, the
total system number of PRI queue entries is limited by the PRI queue size of the hypervisor.

* The PRI queue size is limited up to a per-SMMU maximum, indicated by SMMU_IDR1.PRIQS. Arm

expects that where PRI is used with virtualization then each guest discovers how many PRI queue entries its

emulated SMMU supports. The host allocates N from its allocation of L, and ensures that the guest gives out

a maximum of N credits (using configuration space) to devices controlled by the guest. L is the total number

of PRI queue entries in the PRI queue of the host and is the maximum number of credits actually given out to

devices.

If the PRI queue becomes full because of erroneous behavior in a client device, the SMMU and Root Complex

will respond to further incoming Page Request messages by returning a successful PRG response. This will

not fatally terminate device traffic and a device will simply try ATS, fail, and try PRI again. Arm expects that

a system employing this technique would remain functional and free-flowing, if requests were consumed

from the PRI queue and space for new requests created, see section 8.1 PRI queue overflow.

Note: ATS operation enables an endpoint to issue Translated requests that bypass the SMMU in some configurations.
In these cases use of ATS could be a security issue, particularly when considering untrusted, subverted or
non-compliant ATS devices. For example, a custom FPGA-based device might mark requests as Translated despite
the ATS protocol and translation tables not having granted access.

SMMU_CRO.ATSCHK controls whether the SMMU allows Translated traffic to bypass with no further checks.
If configured as requiring further checks, Translated requests from an endpoint are controlled by the associated
STE.EATS field, which provides a per-device control of whether ATS traffic is allowed. When allowed, Translated
requests are accepted, otherwise, an abort is reported and a F_TRANSL_FORBIDDEN event recorded.

Note: An implementation might perform this traffic interception and checking in a manner that is much quicker
than performing full translation, thereby retaining a performance advantage of using ATS while achieving greater
safety than permitting all ATS traffic.

STE.EATS also allows a mode in which ATS responses are returned with IPAs, the output from the stage 1
of a stage 1 and stage 2 configuration, so that later Translated requests from the endpoint are considered IPAs
and further translated by the SMMU using the stage 2 configuration of the stream. This allows ATS to be used

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 66
E.a Non-confidential

Chapter 3. Operation
3.9. Support for PCI Express, PASIDs, PRI and ATS

(for example with PRI) while maintaining stage 2 isolation. This mode is optional in an implementation, and
support is discovered through SMMU_IDRO.NS1ATS. When implemented, this mode can only be used when
SMMU_CRO0.ATSCHK forces traffic not to bypass the SMMU, as stage 2 translation needs to be applied.

Note: When ATS is used with nested stage 1 and stage 2 translation, any modification to stage 1 or stage 2 requires
an invalidation of ATC entries, which cache information derived from both stages. This also applies to the EATS
== 0b10 Split-stage ATS case.

When Translated transactions bypass the SMMU, an incoming address greater than the output address size (OAS)
has one of the following CONSTRAINED UNPREDICTABLE behaviors:

* The incoming address is truncated to the OAS. The SMMU does not provide address size error-checking on
Translated transactions.
* The transaction is terminated with an abort. No event is recorded.

Note: This situation would not normally arise outside of incorrect ATC invalidation when transitioning between
Split-stage ATS mode and regular ATS mode.

Arm expects that a typical implementation connects an SMMU to a PCIe Root Complex so that incoming StreamIDs
are generated directly from PCle RequesterIDs. The ATS Interface requires a simple transformation between
RequesterID and StreamID, so that StreamID[15:0] == RequesterID[15:0]. Where multiple Root Complexes
are connected to one SMMU, the upper bits of StreamID, StreamID[N:16], correspond to the Root Complex
supporting a given endpoint.

Arm expects that most highly-integrated non-PCle devices requiring translation and paging facilities will use
implementation-specific distributed SMMU TLB facilities, rather than using ATS and PRI. Using SMMU facilities
allows such devices to participate in broadcast TLB invalidation and use the Stall fault model.

If the translation requested by an ATS request is valid and HTTU is enabled, the SMMU must update Translation
Table Dirty/Access flags on receipt of the ATS Translation Request, see 3.13 Translation table entries and
Access/Dirty flags below An ATS request is either for a read-only translation (in which case the NW flag of the
request is set) so only the Access flag is updated, or for a read-write translation (in which case the NW flag of the
request is clear) for which both the Access flag and the dirty state of the page are updated.

Note: Because the intention is for the actual traffic to bypass the SMMU, the ATS request is the only opportunity
the SMMU will have to note the access in the flags.

A PASID tag can also be applied to an ATS Translation Request to select translation under a specific SubstreamID.
A PASID-tagged ATS TR requests that the endpoint be granted access to a given address, according to the Execute
and Privileged attributes of the PASID in addition to the existing NW write intention.

When the SMMU returns an ATS Translation Completion for a request that had a PASID, the Global bit of the
Translation Completion Data Entry must be zero.

Note: The SMMU differentiates translation contexts intended to be shared with the PE from those not shared,
using the CD.ASET mechanism. Whether a global translation matches is also a function of ASET. However, no
mechanism exists to indicate that all possible global translations (from all contexts used by an endpoint) share
an identical address space layout so that global translations can be used. The ATS Global flag must be cleared
because a non-shared context must not match global translations from a shared context (and vice versa).

Note: Arm expects that general-purpose software will require HTTU for use with PRI. See section 3.13.6 ATS,
PRI and translation table flag update for more information on flag updates with ATS.

Note: PRI requires ATS to be implemented, but ATS does not require PRI to be implemented.

Note: An SMMU that does not support HTTU can support paged DMA mappings for non-PCI devices using the
Stall fault model, see section 3.12 Fault models, recording and reporting. PCle cannot be used with the Stall fault
model, so a requirement for paged DMA with PCle implies a requirement for PRI, which implies a requirement
for HTTU.

Transactions that make use of ATS might differ from ordinary PCle non-ATS transactions in several ways:

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 67
E.a Non-confidential

Chapter 3. Operation
3.9. Support for PCI Express, PASIDs, PRI and ATS

* Translation Requests that do not successfully translate, including those that would ordinarily have CD.A ==
RAZ/WI behavior, cause an error in the endpoint (recorded in an endpoint-defined manner) or a PRI request,
instead of an error or fault being recorded using the SMMU Event queue.

* Changes to translations require use of CMD_ATC_INV in addition to SMMU TLB invalidation.

* ATS Translated transactions might not represent Instruction/Data and/or Privileged/User marking on the
interconnect to memory in the same way as Untranslated transactions.

» Pages with execute-only and no read, writable executable permissions cannot be represented, and are
inaccessible when using ATS, see section 13.7 PCle permission attribute interpretation.

3.9.1.1 Responses to ATS Translation Requests and Translated transactions

A Translation Request made from a StreamID for which ATS is explicitly or implicitly disabled (because of
SMMU_CRO.SMMUEN == 0, or the effective EATS == 0b00 including where this is because of a Secure STE, or
STE.Config == 0b000) results in an ATS Translation Completion with Unsupported Request (UR) status.

Configuration or scenario For an ATS Translation Request, leads to

SMMUEN ==0 Terminated with UR status and F_BAD_ATS_TREQ generated
Using a Secure StreamID Terminated with UR status and F_BAD_ATS_TREQ generated
STE.Config == 00000 Terminated with UR status

STE.Config == 00100 Terminated with UR status and F_BAD_ATS_TREQ generated
Effective STE.EATS == 0b00 (Note: Includes EATS == Terminated with UR status and F_BAD_ATS_TREQ generated

0b10 when ATSCHK == 0)

ARM IHI 0070
E.a

A Translation Request that encounters an Address Size, Access or Translation fault arising from the translation
process for a page, at either stage, results in an ATS Translation Completion with Success status and R == W ==
in the Completion Data Entry for that page and no fault is recorded in the SMMU. If the R == W == 0 Translation
Completion Data Entry is the first or only entry in the Translation Completion, its translation size is equal to the
STU size. A Permission fault can also lead to this response, but other cases that would cause a Permission fault for
an ordinary transaction might result in some, but not all, permissions being granted to the endpoint. See 13.7 PCle
permission attribute interpretation for information on permission calculation for ATS.

Consistent with Armv8-A, in a two-stage translation, the IPA to PA translation of the output address of a stage 1
Table, Block, or Page descriptor is not architecturally performed unless the descriptor is valid and no fault would
arise from the descriptor. This behavior applies to a two-stage translation that is performed for an ATS Translation
Request, which means that translation stops if stage 1 leads to an Address Size, Access, or Translation fault, or
evaluates to a Translation Completion that grants no permissions. If the final IPA for stage 1 is valid, but does
not provide any access permissions for the Translation Request, the IPA is not translated at stage 2, and no faults
from stage 2 are visible. For example, this might happen if the translation tables do not grant any Unprivileged
access permissions at stage 1 and the Translation Request has an effective Priv value of 0. See 13.7.1 Permission
attributes granted in ATS Translation Completions.

Note: The case of Split-stage ATS is included, because permissions are determined from both stages. For more
information, see section 13.6.3 Split-stage (STE.EATS == 0b10) ATS behavior and responses.

A Translation Request that encounters any configuration error (for example ILLEGAL structure contents, or
external abort on structure fetch) results in an ATS Translation Completion with Completer Abort (CA) status:

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 68
Non-confidential

Chapter 3. Operation
3.9. Support for PCI Express, PASIDs, PRI and ATS

If an ordinary transaction were to
trigger a.an ATS Translation Request with the same properties leads to:

C_BAD_STREAMID Terminate with CA status.
If SMMU_CR2.REC_CFG_ATS == 1 and SMMU_CR2.RECINVSID == 1, the
event is recorded. Otherwise, no event is recorded.

F_STE_FETCH Terminate with CA status.
C_BAD_STE If SMMU_CR2.REC_CFG_ATS == 1, the event is recorded. Otherwise, no
F_VMS_FETCH event is recorded.

F_CFG_CONFLICT
F_TLB_CONFLICT
C_BAD_SUBSTREAMID
F_STREAM_DISABLED
F_WALK_EABT

F_CD_FETCH

C_BAD_CD

F_ADDR_SIZE Success: R == W == 0 (access denied)

F_ACCESS This includes stage 2 faults for a CD fetch or stage 1 translation table walk.

F_TRANSLATION

F_PERMISSION Success. R, W and Exe permission is granted, where requested, from available
translation table permissions. In the extreme case, a translation with no access
permission gives R == W == 0.
Where F_PERMISSION arises at stage 2 for a CD fetch or stage 1 translation
table walk, the response of Success and R == W == 0 is given.

GPF on output address Terminate with CA status.
Note: See Interactions with PCle ATS for details of when Granule Protection
Checks are performed on the output address for ATS Translation Requests.

For Event records that are recorded for ATS Translation requests when SMMU_CR2.REC_CFG_ATS == 1, the
RnW field is UNKNOWN.

Note: In an SMMU for RME, F_STE_FETCH, F_CD_FETCH, F_VMS_FETCH and F_WALK_EABT can be
generated as the result of a GPC fault. See 3.24.2 Interactions with PCle ATS.

Translated transactions generally pass through the SMMU unless the Non-secure SMMUEN is disabled, a Secure
stream is used, or if ATSCHK == 1 and therefore additional configuration checks are performed.

Configuration or scenario For a Translated Transaction, leads to:

SMMUEN == F_TRANSL_FORBIDDEN and aborted.

Using a Secure StreamID F_TRANSL_FORBIDDEN and aborted.

STE.Config == 0b000 If ATSCHK == 1, aborted.

STE.Config == 0100 If ATSCHK == 1, F_TRANSL_FORBIDDEN and aborted.

Effective STE.EATS == 0b00 If ATSCHK == 1, F_ TRANSL_FORBIDDEN and aborted.

GPC fault on output address Terminated with CA status. The GPC fault is reported as described in 3.24.4 Reporting
of GPC faults.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 69
E.a Non-confidential

Chapter 3. Operation
3.9. Support for PCI Express, PASIDs, PRI and ATS

If an ordinary transaction were to trigger a.a Translated transaction with the same properties leads to:

F _UUT Aborted. No event is recorded.

C_BAD_STREAMID If ATSCHK == 1, aborted. If ATSCHK == 1 and

F_STE_FETCH SMMU_CR2.REC_CFG_ATS == 1, the event is recorded in the

F VMS_FETCH Event queue. Otherwise, no event is recorded.

C_BAD_STE Note: If ATSCHK == 0, the SMMU does not check configuration for
F_CFG_CONFLICT Translated transactions, so does not detect these conditions.

Note: Reporting of C_BAD_STREAMID is not affected by
SMMU_CR2.RECINVSID.

If a Translated transaction experiences a second stage 2 translation because of an STE.EATS == 0b10 configuration,
and if a fault occurs during that stage 2 translation, then the transaction is terminated with an abort and an event is
recorded in the same way as for an ordinary transaction.

Note: Since a Translated transaction does not have a PASID, it is presented to the SMMU with PnU == 0, InD
== 0 and SSV == 0. A resulting fault is reported as Stage 2, with the input address as given by the Translated
transaction.

If STE.S1DSS causes a stage 1 skip, and STE.Config == 0b101 (stage 1-only), the response is Success, U == 0, R
== W == 1, identity-mapping (see 13.6 PCle and ATS attribute/permissions handling).

3.9.1.2 ATC invalidation timeout

A CMD_ATC_INV causes an ATS Invalidate Request to be sent to an endpoint and, in the case that a response is
not received within the timeout period specified by ATS, Arm strongly recommends the following behavior:

* The Root Complex isolates the endpoint in a PCI-specific manner, if it is possible to do so.

e A CMD_SYNC that waits for completion of one or more prior CMD_ATC_INV operations causes a
CERROR_ATC_INV_SYNC command error if any of the CMD_ATC_INV operations have not successfully
completed. See 7.1 Command queue errors.

— Note: Command processing stops and this situation is differentiated from a normal completion of a
CMD_SYNC, which avoids the potential re-use and corruption of a page that has been unmapped but
whose translation was incorrectly invalidated.

* If it is not possible for an implementation to cause CERROR_ATC_INV_SYNC for a CMD_SYNC that
waits for the completion of failed CMD_ATC_INV operations, Arm recommends that the CMD_SYNC does
not complete.

— Note: This scenario is not recoverable but prevents the invalidation from appearing to have completed,
leading to potential data corruption (the error is contained and propagation is avoided).

* In the event of a failed CMD_ATC_INV, Arm strongly recommends that a related CMD_SYNC does not
complete without raising a command error. An IMPLEMENTATION DEFINED error mechanism asynchronous
to the completion of the CMD_SYNC must record information of the failure.

— Note: A completion of a CMD_SYNC without completing an invalidation might lead to corruption of a
page that is subsequently re-used by different mappings.

3.9.1.3 ATC invalidation errors

A CMD_ATC_INYV that generates an ATS Invalidate Request that causes a UR response from an endpoint completes
without error in the SMMU. An invalidation might not have been performed in response to the command.

Note: A UR response to an invalidation can occur in several circumstances as specified by [1], including where an

invalidation is sent with an out-of-range PASID value.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 70
E.a Non-confidential

Chapter 3. Operation
3.9. Support for PCI Express, PASIDs, PRI and ATS

3.9.2 Changing ATS configuration

ARM IHI 0070
E.a

The ATS behavior of an endpoint is dependent on the STE.EATS field that is associated with the endpoint and on
SMMU_CRO.ATSCHK. In addition to enabling extra checks on Translated transactions, ATSCHK changes the
interpretation of the EATS == 0b10 encoding, and because ATSCHK is permitted to be cached in configuration
caches, this means that a change to ATSCHK must be followed by invalidation of any STEs that are required to
heed the new value.

Note: The EATS encodings of 0b01 and 0b10 will respond to Translation Requests and interpret Translated
transactions using different address spaces. A direct transition between these encodings might cause IPAs to be
interpreted as PAs or vice-versa, which might lead to data corruption.

To enable ATS on an existing valid STE with EATS == 0b00:

1. EATS is set to 0b01 or 0b10 and caches of the STE are invalidated (including CMD_SYNC to ensure
completion of the invalidation)
2. ATS is enabled at the endpoint.

To disable ATS on an existing STE with EATS != 0b00:

1. ATS must be disabled at the endpoint, the ATCs invalidated, and CMD_SYNC used to ensure visibility of
prior transactions using ATS that are in progress.

2. EATS is then set to 0b00.

3. Caches of the STE are then invalidated.

EATS must not be transitioned between 0b01 and 0b10 (in either direction) without first disabling ATS with the
procedure described in this section, transitioning through EATS == 0b00.

EATS == 0b10 is valid only when SMMU_CRO0O.ATSCHK == 1. ATSCHK must not be cleared while STE
configurations (and the possibility of caches thereof) exist with EATS == 0b10. Before clearing ATSCHK, all
STE configurations with EATS == 0b10 must be re-configured to use EATS == 000 or EATS == 0b01, using
the procedures described in this section.

Note: This ensures that Translated traffic using IPA addressing (originating from Translation Requests handled by
a stage 1-only EATS == 0b10 configuration) does not encounter an SMMU with ATSCHK == 0, which would
pass the traffic into the system with a PA.

Although ATSCHK == 0 causes EATS == 0b10 to be interpreted as 0000 (ATS disabled), ATSCHK must not be
used as a global ATS disable.

To set ATSCHK to 1:
1. Set SMMU_CRO.ATSCHK == 1 and wait for Update procedure to complete.
2. STEs (pre)fetched after this point will interpret STE.EATS according to the new ATSCHK value.
3. Unexpected Translated traffic that is associated with an STE with EATS == 0500 will now be terminated.
4. ATS can be enabled on an STE as described here:

a. Note: The STE update procedure invalidates the STE, which will invalidate any old ATSCHK value
cached with it.

To clear ATSCHK to O:

1. Ensure that the ATS is disabled for all STEs that were using EATS == 0b10, flushing ATCs and transitioning
through EATS == 0b00.

a. Note: After this point, there will be no relevant caches of ATSCHK.
2. Set SMMU_CRO0.ATSCHK == 0 and wait for the Update procedure to complete.
3. STEs (pre)fetched after this point will interpret STE.EATS according to the new ATSCHK value.
4. Translated traffic now bypasses the SMMU without additional checks.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 71
Non-confidential

Chapter 3. Operation
3.9. Support for PCI Express, PASIDs, PRI and ATS

5. Split-stage ATS cannot be enabled on an STE, meaning EATS == 0b10 must not be used.

Referring to section 13.6.3 Split-stage (STE.EATS == 0b10) ATS behavior and responses and 13.6.4 Full
ATS skipping stage 1, it is possible to configure ATS for a stream where only requests made from substreams
(PASIDs) return actual translations, and non-substream Translation Requests return an identity-mapped response
that might be cached at the endpoint. Substream configuration (STE.S1DSS and STE.S1CDMax) therefore affects
the contents of ATS Translation Completion responses and any change of this configuration must also invalidate
endpoint ATCs.

3.9.3 SMMU interactions with CXL

ARM IHI 0070
E.a

The Compute Express Link Specification (CXL) [6] introduces some new features to ATS.

An SMMU implementation intended to be used with Type 1 or Type 2 CXL devices (those that issue CXL.cache
transactions) must support ATS (SMMU_IDRO.ATS == 1).

An SMMU implementation is permitted to not check CXL.cache transactions against STE.EATS, even if
SMMU_CRO.ATSCHK = 1.

It is a software error to configure STE.EATS = 0b10 for a StreamID associated with a CXL device that issues
CXL.cache transactions.

If the SMMU receives an ATS Translation Request that has the Source-CXL bit set, for a StreamID that has
STE.EATS = 0b10, the ATS Translation Completion has the CXL.io bit set.

If the translation for an ATS Translation Request with the Source-CXL bit set returns a memory type other than
Inner Write-Back Cacheable, Outer Write-Back Cacheable, Shareable, the CXL.io bit is set in the ATS Translation
Completion.

If the memory attributes for a translation request cannot be determined, for example if both stages of translation are
disabled, by setting STE.S1DSS=0b01 and STE.Config=00101, and STE.SHCFG or STE.MTCFG are configured
to Use incoming, then the SMMU uses default attributes of Inner Write-Back Cacheable, Outer Write-Back
Cacheable, Shareable when issuing an ATS Translation Completion.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 72
Non-confidential

Chapter 3. Operation
3.10. Support for Secure state

3.10 Support for Secure state

The Arm architecture provides support for two Security states, each with an associated physical address space (PA
space):

Security state PA space

Secure state Secure (NS == 0)

Non-secure state Non-secure (NS == 1)

SMMU_S_IDRI1.SECURE_IMPL indicates whether an SMMU implementation supports the Secure state.
The SMMU always supports the Non-secure state and programming interface.
When SMMU_S_IDR1.SECURE_IMPL == 0:

e The SMMU does not support the Secure state.
* SMMU_S_* registers are RAZ/WTI to all accesses.
* Support for stage 1 translation is OPTIONAL.

When SMMU_S_IDR1.SECURE_IMPL == 1:

* The SMMU supports the Secure state.

« SMMU_S_* registers configure Secure state, including a Secure Command queue, Secure Event queue and a
Secure Stream table.

* The SMMU supports stage 1 translation and might support stage 2 translation.

e The SMMU can generate transactions to the memory system, to Secure PA space (NS == 0) and Non-secure
PA space (NS == 1) where permitted by SMMU configuration.

With the exception of SMMU_S_INIT, SMMU_S_* registers are Secure access only, and RAZ/WI to Non-secure
accesses.

Note: Arm does not expect a single software driver to be responsible for programming both the Secure and
Non-secure interface. However, the two programming interfaces are intentionally similar.

When a stream is identified as being under Secure control according to SEC_SID, see 3.10.1 StreamID Security
state (SEC_SID), its configuration is taken from the Secure Stream table or from the global bypass attributes that
are determined by SMMU_S_GBPA.

Otherwise, its configuration is taken from the Non-secure Stream table or from the global bypass attributes that are
determined by SMMU_GBPA.

The Secure programming interface and Non-secure programming interface have separate global SMMUEN
translation-enable controls that determine whether bypass occurs.

A transaction that belongs to a Stream that is under Secure control can generate transactions to the memory system
that target Secure (NS == 0) and Non-secure (NS == 1) PA spaces. A transaction that belongs to a Stream that is
under Non-secure control can only generate transactions to the memory system that target Non-secure (NS == 1)

PA space.
Security state Permitted target PA spaces
Secure Secure, Non-secure
Non-secure Non-secure
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 73

E.a Non-confidential

Chapter 3. Operation
3.10. Support for Secure state

3.10.1 StreamlID Security state (SEC_SID)

StreamID Security state (SEC_SID) determines whether a given transaction stream is under the control of the
Secure or the Non-secure programming interface.

The association between a device and the Secure or Non-secure programming interface is a system-defined
property.
If SMMU_S_IDR1.SECURE_IMPL == 0, then incoming transactions have a StreamID, and either:

e A SEC_SID identifier with a value of 0.
* No SEC_SID identifer, and SEC_SID is implicitly treated as 0.

If SMMU_S_IDR1.SECURE_IMPL == 1, incoming transactions have a StreamID, and a SEC_SID identifier.

SEC_SID Meaning

0 The StreamID is a Non-secure stream, and indexes into the Non-secure Stream table.

1 The StreamID is a Secure stream, and indexes into the Secure Stream table.

The Non-secure StreamID namespace and the Secure StreamID namespace are separate namespaces. The
assignment of a client device to either a Secure StreamID or a Non-secure StreamID, and reassignment between
StreamID namespaces, is system-defined.

In this document, the terms Secure StreamID and Secure stream refer to a stream that is associated with the Secure
programming interface, as determined by SEC_SID.

The terms Non-secure StreamID and Non-secure stream refer to a stream that is associated with the Non-secure
programming interface, which might be determined by SEC_SID or the absence of the SEC_SID identifier.

Note: Whether a stream is under Secure control or not is a different property to the target PA space of a transaction.
If a stream is Secure, it means that it is controlled by Secure software through the Secure Stream table. Whether
a transaction on that stream results in a transaction targeting Secure PA space depends on the translation table
attributes of the configured translation, or, for bypass, the incoming NS attribute.

3.10.2 Secure commands, events and configuration

In this document, the term Event queue and the term Command queue refer to the queue that is appropriate to the
Security state of the relevant stream. Similarly, the term Stream table and Stream Table Entry (STE) refer to the
table or table entry that is appropriate to the Security state of the stream as indicated by SEC_SID.

For instance:

* An event that originates from a Secure StreamlID is written to the Secure Event queue.

* An event that originates from a Non-secure StreamlID is written to the Non-secure Event queue.

¢ Commands that are issued on the Non-secure Command queue only affect streams that are configured as
Non-secure.

¢ Some commands that are issued on the Secure Command queue can affect any stream or data in the system.

+ The stream configuration for a Non-secure StreamID X is taken from the X" entry in the Non-secure Stream
table.

» Stream configuration for a Secure StreamID Y is taken from the Y'" entry in the Secure Stream table.

The Non-secure programming interface of an SMMU with SMMU_S_IDR1.SECURE_IMPL == 1 is identical to
the interface of an SMMU with SMMU_S _IDR1.SECURE_IMPL == 0.

Note: To simplify descriptions of commands and programming, this document refers to the
Non-secure programming interface registers, Stream table, Command queue and Event queue even when
SMMU_S_IDRI1.SECURE_IMPL == 0.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 74
E.a Non-confidential

Chapter 3. Operation
3.10. Support for Secure state

The register names associated with the Non-secure programming interface are of the form SMMU_x. The register
names associated with the Secure programming interface are of the form SMMU_S_x. In this document, where
reference is made to a register but the description applies equally to the Secure or Non-secure version, the register
name is given as SMMU_(S_)x. Where an association exists between multiple Non-secure, or multiple Secure
registers and reference is made using the SMMU_(S_)x syntax, the registers all relate to the same Security state
unless otherwise specified.

The two programming interfaces operate independently as though two logical and separate SMMUSs are present,
with the exception that some commands issued on the Secure Command queue and some Secure registers might
affect Non-secure state, as indicated in this document. This independence means that:

* The Command and Event queues that are associated with a programming interface operate independently of
the Command and Event queues that are associated with the other programming interface. The operation of
one does not affect the other programming interface, for example when:

— The queues are full.

— The queues overflow.

— The queues experience an error condition, for example a Command queue that stops processing because
of a command error, or an abort on queue access.

* Translation through each programming interface can be separately enabled and disabled using the SMMUEN
field that is associated with the particular programming interface. This means that one interface might bypass
transactions in which case the behavior is governed by the respective SMMU_(S_)GBPA and the other
programming interface might translate transactions.

* Error conditions in SMMU_(S_)GERROR apply only to the programming interface with which the register
is associated.

* Each interface has its own ATOS interface, where ATOS is implemented.

¢ Interrupts are configured and enabled separately for the Secure and Non-secure programming interface
interrupt sources.

When SMMU_S_IDRI1.SECURE_IMPL == 1, Arm expects that the SMMU will be controlled by a PE that also
implements Secure state. The host PE might:

* Implement Armv7-A.
e Implement Armv8-A, with EL3 using AArch64 state.
* Implement Armv8-A, with EL3 using AArch32 state.

StreamWorld differentiates the Secure EL1 translation regime from the EL3 translation regime, allowing TLB
entries to be maintained separately for each of these two translation regimes. Secure EL1 TLB entries might be
tagged with an ASID, whereas EL3 TLB entries are not. In this case, Arm expects that the Secure SMMU interface
is either:

* Managed by Secure EL1, with no SMMU usage by EL3.
* Managed by EL3 with any EL1 usage brokered to EL3 using a software interface, which is outside the scope
of this document.

Arm recommends that Secure EL1 and EL3 do not attempt to both access the Secure Command queue. Arm
further recommends that Secure EL1 does not configure streams to cause TLB entries to be marked as EL3.

For a PE that implements Armv8-A and uses AArch32 state in EL3 or a PE that implements Armv7-A, there is
only one privileged Secure translation regime. No separation is made between TLB entries inserted for Secure
OS and Secure monitor software. When a client device is associated with this type of Secure system, Arm
recommends that the StreamWorld is configured as Secure so that resulting TLB entries that are associated with
this Secure translation regime are ASID-tagged. In this case, Arm recommends that StreamWorld is not configured
to insert EL3 TLB entries, because broadcast TLB invalidation from the PE would not be able to affect these TLB
entries. For more information, see section 3.17 TLB tagging, VMIDs, ASIDs and participation in broadcast TLB
maintenance.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 75
E.a Non-confidential

Chapter 3. Operation
3.10. Support for Secure state

A client device with a Secure StreamID provides an input attribute called NS that indicates whether an access is
intended to be to a Secure or Non-secure address. A Secure STE might override the input NS attribute of a Secure
stream.

In bypass configurations of a Secure stream, overriding the input NS attribute allows a client device to issue Secure
accesses even if the device is not able to control the input NS attribute. If the input NS attribute is not overridden,
the client device can control whether it makes accesses to the Secure or Non-secure PA spaces. In the case where
Secure stage 1 is disabled and Secure stage 2 translation is enabled, the input NS attribute distinguishes between
Secure and Non-secure IPA spaces.

When a Secure STE is configured for stage 1 only translation, the stage 1 translation table descriptor (in conjunction
with intermediate NSTable bits) determines the output NS attribute if the translation table descriptor is fetched
from Secure memory, in the same way as in a PE and in the SMMUv?2 architecture [4]. See Chapter 13 Attribute
Transformation. A Secure STE can also be configured for stage 2 translation, if supported. See section 3.10.3
Secure EL2 and support for Secure stage 2 translation,

A Non-secure STE does not override the input NS attribute, which is treated as Non-secure for all transactions
belonging to a Non-secure stream.

Access to the Secure Stream table, the Secure Event queue and the Secure Command queue are always made to the
Secure PA space.

For access to L1CDs and CDs, then the use of Secure IPA or PA space applies at the appropriate stage:

o If Secure stage 2 is not in use, L1CD and CD addresses are treated as Secure physical addresses.
o If Secure stage 2 is enabled, LICD and CD addresses are translated through the Secure IPA space. See
section 3.10.3 Secure EL2 and support for Secure stage 2 translation.

Some SMMU commands take a StreamID parameter. When issued to the Secure Command queue, an additional
parameter, SSec, indicates whether the SMMU interprets the command as applying to a Secure or a Non-secure
StreamID.

The SMMU_S_CRO.SIF flag provides a mechanism to terminate instruction fetches from Secure streams that
target Non-secure PAs or Non-secure IPAs in some configurations. See section 6.3.53.2 SIF for details.

3.10.3 Secure EL2 and support for Secure stage 2 translation

SMMUV3.2 introduces support for a Secure EL2 translation regime, corresponding with that in an Armv8.4 PE.

A Secure STE can be configured with Config[1] set to 1 to enable stage 2 translation if Secure stage 2 is
implemented.

Support for Secure EL2 and Secure stage 2 is optional for implementations supporting SMMUv3.2 or later. An
implementation might support Secure EL2 and Secure stage 2, if the implementation also supports both stage 1
and stage 2. The following implementation options are supported:

SMMU_S_IDR1.SECURE_IMPL SMMU_S_IDR1.SEL2 Result
0 X Secure programming interface absent.
Secure state is not supported.
1 0 Secure EL2 is not supported. Secure
stage 2 is not supported.
1 1 Secure EL?2 is supported. Secure stage
2 is supported for use by a Secure
STE.
In the same way as described in Armv8.4, the result of a Secure stage 1 translation is an address in one of
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 76

E.a

Non-confidential

Chapter 3. Operation
3.10. Support for Secure state

ARM IHI 0070
E.a

two address spaces, for Secure IPA and a Secure stream Non-secure IPA. The Secure stream Secure IPA space
corresponds to a stage 1 output targeting Secure IPA space. The Secure stream Non-secure IPA space corresponds
to a stage 1 output of a Secure stream targeting Non-secure IPA space. A Secure stream Non-secure IPA space
is translated differently to a Non-secure stream IPA space. A Secure stage 2 supports two translation tables,
corresponding to input from each of the two IPA spaces.

For a Secure stream with stage 2 translation enabled, the final transaction PA space is determined at stage 2 from
the S2SW, S2SA, S2NSW and S2NSA configuration of the selected Secure stream IPA spaces as follows:

* If the input into stage 2 is a Secure IPA, the Secure stream Secure IPA space is used for translation. The
translation table configured in STE.S_S2TTB is used. The translation table accesses are made to the Secure
or Non-secure PA space configured in STE.S2SW. If STE.S2SW == 0, then the final output PA space is
determined by by STE.S2SA, otherwise the final output PA space is Non-secure.

« If the input into stage 2 is a Non-secure IPA, the Secure stream Non-secure IPA space is used for translation.
The translation table configured in STE.S2TTB is used. The translation table accesses are made to the
Secure or Non-secure PA space configured in STE.S2NSW. If STE.S2SW == 0 and STE.S2SA == 0 and
STE.S2NSW == 0, then the final output PA space is determined by STE.S2NSA. Otherwise the final output
PA space is Non-secure.

For a Non-secure stream, translation table accesses and final output PA space is always Non-secure.
A Secure translation regime with stage 1 and stage 2 configured fetches the L1CD and CD using a Secure IPA.

For a Secure stage 2-only translation (resulting from STE.Config == 0b110 or from STE.SIDSS causing stage 1 to
be skipped), the choice of whether the IPA is in Non-secure or Secure IPA space after stage 1 bypass is determined
from the result of the STE.NSCFG field.

For a Secure EL2 translation table walk, the target PA space of the initial level of walk is given by CD.NSCFG{0,1},
depending on the translation table used.

Note: An S-EL2 StreamWorld uses one translation table, CD.TTBO and an S-EL2-E2H StreamWorld might use
two translation tables, CD.TTBO and CD.TTB1.

The S-EL2 and S-EL2-E2H translation regimes are only used in STE.S2AA64 == 1 configuration. A Secure STE
with stage 2 translation enabled is not permitted to have STE.S2AA64 == 0.

When stage 2 translation is disabled, all Secure IPA accesses become Secure PA accesses, and all Secure stream
Non-secure IPA accesses become Non-secure PA accesses.

A Secure translation regime that supports Secure stage 2 configuration uses a VMID tag for TLB entries. This
is a Secure VMID and is a distinct namespace from the Non-secure VMID namespace. When Secure stage 2 is
implemented then TLB entries inserted from StreamWorld == Secure configurations are:

» Tagged with the VMID from STE.S2VMID when stage 2 is enabled.
* Tagged with VMID 0 when stage 2 is not enabled.

— Note: These entries are affected by corresponding TLB invalidation operations that target VMID 0. See
section 3.17 TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance.

— Note: This behavior differs from that of the Non-secure S2VMID field because the STE.S2VMID field
was IGNORED in Secure STEs before SMMUvV3.2.

Consistent with Armv8.4, a translation table entry fetched for a Secure stream is treated as non-global if it is read
from the Non-secure IPA space. That is, these entries are treated as if nG == 1, regardless of the value of the nG
bit in the descriptor. See section 3.17.1 The Global flag in the translation table descriptor.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 77
Non-confidential

Chapter 3. Operation
3.11. Reset, Enable and initialization

3.11 Reset, Enable and initialization

The SMMU can reset to a disabled state in which traffic bypasses the SMMU without translation or checking of
any kind. The SMMU appears transparent to transactions from client devices, which are given attributes according
to the disabled bypass configuration (see Chapter 13 Attribute Transformation). The SMMU can also optionally
reset to a disabled state that aborts all transactions for a Security state. This behavior is controlled by the reset state
of SMMU_GBPA.ABORT or SMMU_S_GBPA.ABORT.

Note: When an SMMU resets to a bypass configuration, it enables client devices that are connected to an SMMU
to be used by legacy system software that lacks awareness of the SMMU.

Translation of Non-secure Streams is enabled using SMMU_CRO.SMMUEN. When
SMMU_S_IDR1.SECURE_IMPL == 1, the Secure programming interface also contains an enable flag,
SMMU_S_CRO.SMMUEN, which controls translation of Secure streams.

When translation is not enabled for a Security state, an SMMU:

¢ When SMMU_(S_)GBPA.ABORT == 1, aborts all transactions:

e When SMMU_(S_)GBPA.ABORT == 0, applies attributes to a transaction as determined by
SMMU_(A)GBPA or SMMU_S_(A)GBPA. See section 13.2 SMMU disabled global bypass attributes.

* Never accesses the Stream table so SMMU_(S_)STRTAB_* register content is ignored.

e Denies PRI Page Requests as though SMMU_CRO.PRIQEN == 0, regardless of the value of
SMMU_CRO.PRIQEN. See Chapter 8 Page request queue.

* Does not perform ATOS operations. See SMMU_GATOS_CTRL.

* Does not perform ATS translations. See section 3.9.1.1 Responses to ATS Translation Requests and
Translated transactions.

* Allows registers to be accessed and updated in the normal manner.

 Can process commands after the relevant queue pointers are initialized and SMMU_(S_)CR0.CMDQEN is
enabled.

¢ Does not record new translation events. However, if SMMU_(S_)CRO.EVENTQEN is enabled and the queue
pointers are set up, the SMMU might continue to write out buffered events that were generated by earlier
translations from when translation was still enabled.

See section 6.3.9.6 SMMUEN for a full description of the operation of, and the effect of changes to, the SMMUEN
flag.

The SMMU_(S_)STRTAB_BASE register and the SMMU_(S_)CRI table attributes must be configured before
enabling an SMMU interface using SMMU_(S_)CR0.SMMUEN.

Note: This avoids the possibility of incoming traffic attempting a lookup through uninitialized configuration
structure pointers.

When translation is disabled for a Security state, transactions on streams that are associated with that Security state
are not translated, and take attributes from the appropriate Global Bypass Attribute registers, SMMU_(A)GBPA or
SMMU_S_(A)GBPA.

When translation is enabled for a Security state, transactions on streams that are associated with that Security state
follow the SMMU translation flow determined by the appropriate Stream Table Entry.

SMMU_CR0.SMMUEN SMMU_S_CR0.SMMUEN Traffic

0

Unimplemented All traffic bypasses SMMU/aborts (as
determined by SMMU_GBPA.ABORT).
Always targets Non-secure PA space.

1 Unimplemented Traffic follows the SMMU translation
flow.
Always targets Non-secure PA space.
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 78

E.a

Non-confidential

Chapter 3. Operation
3.11. Reset, Enable and initialization

SMMU_CR0.SMMUEN SMMU_S_CR0.SMMUEN Traffic

0

0 Secure and Non-secure streams are
controlled by SMMU_(S_)(A)GBPA.
SEC_SID determines the Security state of
a given stream. Bypass/abort
configuration and attributes, including
input NS attribute, are provided by the
Global Bypass Attribute register (GBPA)
appropriate to the Security state.

1 SEC_SID determines the Security state:
* Secure traffic follows SMMU
translation flow.
* Non-secure traffic bypasses the
SMMU (attributes taken
SMMU_GBPA), or aborts.

0 SEC_SID determines Security state:
* Secure traffic bypasses the SMMU
(attributes taken from
SMMU_S_GBPA), or aborts.
* Non-secure traffic follows the
SMMU translation flow.

1 SEC_SID determines the Security state,
follows usual SMMU translation flow.

ARM I[HI 0070

E.a

The state of the caches and TLBs at reset is implementation specific.
To avoid UNPREDICTABLE behavior, software must perform the following steps before enabling translation:

* Invalidate all configuration and TLB caches.

e When SMMU_S_IDRI1.SECURE_IMPL == 1, ensure Secure software fully invalidates any Secure cached
configuration or TLB entries in the SMMU through the Secure programming interface before handover to
Non-secure software.

The SMMU is not required to invalidate cached configuration or TLB entries when a change to
SMMU_(S_)CR0O.SMMUEN occurs.

Arm recommends that software initializing the SMMU performs the following steps:

1. Allocate and initialize Stream table memory and base pointers.

2. Allocate and initialize Command queue and Event queue memory, base pointers and indexes.

3. Enable command processing through SMMU_(S_)CR0.CMDQEN, and if applicable, Event queue through
the relevant EVENTQEN.

4. Issue commands to invalidate all cached configuration and TLB entries (see sections 4.3 Configuration
structure invalidation and 4.4 TLB invalidation).

5. Enable translation by setting SMMU_(S_)CR0.SMMUEN.

Note: These steps are a summary, and do not show the required register update procedure or DSB operations
ensuring correct memory and register access ordering.

SMMU_S_INIT invalidates SMMU caches and TLBs without issuing commands using the Command queue.
Caches and TLBs are invalidated using this register with the following sequence:

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 79
Non-confidential

Chapter 3. Operation
3.11. Reset, Enable and initialization

ARM IHI 0070
E.a

 Perform a write to SMMU_S_INIT, setting INV_ALL.
e Poll SMMU_S_INIT.INV_ALL until it returns to 0, at which point the invalidation is complete.

When SMMU_S_IDR1.SECURE_IMPL == 1, Arm expects Secure software to initialize the SMMU using the
steps above. If Secure software is not guaranteed to initialize the SMMU in accordance with the steps above, Arm
recommends that the system provides an IMPLEMENTATION DEFINED mechanism to allow Non-secure software to
access SMMU_S_INIT. This is an exception to the general rule that only Secure software can access SMMU_S_*
registers.

Note: For example, a system might allow Non-secure access to SMMU_S_INIT from reset, but might provide a
means for Secure software to disable this access.

Note: Arm expects Non-secure initialization to use SMMU commands to perform configuration cache and TLB
invalidation. Non-secure access to SMMU_S_INIT is not guaranteed, so the INV_ALL feature must not be relied
on by the Non-secure state.

Note: Invalidation of all Non-secure TLB information can be achieved by issuing CMD_TLBI_EL2_ ALL and
CMD_TLBI_NSNH_ALL commands.

If an SMMU implementation creates TLB entries when bypass is selected with SMMUEN == 0, these entries are
not visible to software. An implementation does not require TLB entries inserted to support transaction bypass to
be explicitly invalidated by software, such as when SMMUEN is transitioned from O to 1.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 80
Non-confidential

Chapter 3. Operation
3.12. Fault models, recording and reporting

3.12 Fault models, recording and reporting

An incoming transaction goes through several logical stages before continuing into the system. If the transaction is
of a type or has a property that an SMMU cannot support for IMPLEMENTATION DEFINED reasons, an Unsupported
Upstream Transaction fault event is recorded and the transaction is terminated with an abort.

Otherwise, configuration is located for the transaction, given its StreamID (and SubstreamlID, if supplied). If all of
the required STE and CD structures cannot be located or are invalid, a configuration error event is recorded, if
there is a free location in the Event queue, and the transaction is terminated with an abort.

If a valid configuration is located so that the translation tables can be accessed, the translation process begins, other
faults can occur during this phase. See section 7.2 Event queue recorded faults and events for more information
about the individual events that are recorded for configuration errors and faults.

When a transaction progresses as far as translation, or during the process of fetching a CD from IPA space
through stage 2 translation, the behavior on encountering a fault becomes configurable, if this is supported by the
implementation.

There are four fault types that constitute Translation-related faults when they are generated at either stage 1 or
stage 2:

 F_TRANSLATION
« F_ADDR_SIZE

* F_ACCESS

* F_PERMISSION

Behavior for these faults can be switched between the Terminate and Stall model as determined by the CD.{A,R,S}
flags for stage 1 and the STE.{S2R,S2S} flags for stage 2.

All other faults (including F_ WALK_EABT and F_TLB_CONFLICT) and configuration errors terminate the
transaction with an abort.

Note: An F_ADDR_SIZE can also arise from a transaction that bypassed stage 1 but that has an out-of-range IPA,
see section 3.4 Address sizes. In this case the transaction is always terminated with an abort.

Note: An F_PERMISSION can also arise as a result of an instruction fetch transaction on a Secure stream that
bypasses stage 1, is determined to be Non-secure and that is prevented with SMMU_S_CRO.SIF == 1, see section
6.3.53.2 SIF. In this case the transaction is always terminated with an abort.

The fault behavior configuration at stage 1 is at a per-substream granularity when substreams are used, that is
where an STE points to multiple CDs. When substreams are not configured, that is where an STE points to one
CD, the fault behavior configuration at stage 1 is at a per-stream granularity. Use of the Stall model at stage 1 can
be disabled by setting STE.SISTALLD == 1.

The stage 2 fault behavior is configured using STE.{S2R,S2S}; that is, at a per-stream granularity.

When a fault occurs at either stage 1 or stage 2, then when the fault is detected it is known at which stage it
occurred, and the SMMU performs the action configured for that stage. For example:

* A two-stage configuration that encounters a translation fault in the stage 1 translation tables is a stage 1 fault.

* A transaction that progresses through stage 1 to an IPA and then faults when it is translated using the stage 2
translation tables is a stage 2 fault.

* A stage 2 translation fault that occurs during a stage 1 translation table walk counts as a stage 2 fault. The
event that is recorded differentiates this access from a transaction that access a faulting IPA post-stage 1
translation table walk, so that hypervisor software can inform the VM of the correct event type (a simulated
external abort on translation table walk).

* A Stage 2 translation fault that occurs fetching a CD from an IPA address is a stage 2 fault. The event that is
recorded shows that a CD was being fetched.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 81
E.a Non-confidential

Chapter 3. Operation
3.12. Fault models, recording and reporting

Note: The Hypervisor might fix the cause of the fault and retry the stalled transaction, or if the transaction is
terminated, inform the VM of the correct event type (a simulated external abort on CD fetch).

After a transaction progresses through the SMMU into the system, certain system-specific transaction aborts
might occur on the path to the memory system. Whether, and how, these are reported to the client device is
interconnect-specific. The SMMU does not record any faults for these events. The SMMU only records fault
events that are generated by its own accesses or by client device accesses that encounter an internal translation
issue.

When an incoming transaction is immediately terminated, for any reason, an order is not enforced between the
response to the client device and the event that is recorded into the Event queue. However, if an event is to be
recorded, a CMD_SYNC ensures that the event record is visible in the Event before the CMD_SYNC is considered
complete. See section 4.6.3 CMD_SYNC(ComplSignal, MSIAddress, MSIData, MSIWriteAttributes).

The SMMU treats a transaction as being independent of all other transactions (regardless of whether the transaction
originates from the same traffic stream or from different streams) and the fault behavior of one transaction has no
direct effect on any other transaction. Section 3.12.2 Stall model below describes interconnect ordering issues and
recommendations for the presentation of grouped fault information to software. Whether an external agent makes
an association between different transactions is outside the scope of the SMMU architecture.

When a transaction causes a Translation related fault at stage 1, the transaction might be:

¢ Terminated with an abort (CD.S == 0 and CD.A == 1)
¢ Terminated with RAZ/WI behavior (CD.S == 0 and CD.A == 0)
e Stalled (CD.S == 1 and STE.SISTALLD == 0)

When a transaction Translation related fault at stage 2, the transaction might be:

¢ Terminated with an abort (STE.S2S == 0)
e Stalled (STE.S2S == 1)

Support for stalling or terminating a transaction is IMPLEMENTATION DEFINED, indicated by SMMU_(S_)IDRO
.STALL_MODEL.

When SMMU_S_IDRI1.SECURE_IMPL == 1:
* SMMU_S_IDRO.STALL_MODEL indicates the physical capabilities of the SMMU implementation,
« SMMU_IDRO.STALL_MODEL indicates the capabilities that Non-secure software is permitted to use.

— This field is generated from SMMU_S_IDRO.STALL_MODEL and affected by the
SMMU_S_CRO.NSSTALLD flag which, when set on an SMMU implementation supporting
both the Stall model and the Terminate model, prevents Non-secure use of stalling faults.

— Note: This can be used to guarantee Non-secure software cannot stall transactions where doing so might
cause external problems in certain system topologies.

When SMMU_S_IDR1.SECURE_IMPL == 0, SMMU_IDRO.STALL_MODEL reflects the physical capabilities
of the SMMU implementation.

SMMU_S_IDRO SMMU_S_CRO0 SMMU_IDR0

STALL_MODEL NSSTALLD STALL_MODEL Notes:

0b00 (Stall and Terminate 0 (do not filter NS use of 0b00 (Stall and Terminate NS usage reflects

models supported) stall) model supported for NS) physical reality

0b00 (Stall and Terminate 1 (NS cannot use stall) 0b01 (Terminate model NS usage limited to

models supported) supported for NS) terminate-only, even
though physically the
SMMU supports stall
too.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 82

E.a

Non-confidential

Chapter 3. Operation
3.12. Fault models, recording and reporting

SMMU_S_IDRO SMMU_S_CRO SMMU_IDRO

STALL_MODEL NSSTALLD STALL_MODEL Notes:

0b01 (Terminate model X (No stall to filter) 0b01 (Terminate model NSSTALLD

supported) supported) irrelevant, no stall to
prevent.

0b10 (Stall model supported) X (No alternative to stall) 0b10 (Stall model supported) NSSTALLD

irrelevant, no
alternative to stall so
cannot disable.

The SMMU_IDRO.TERM_MODEL field indicates the termination models provided by an implementation, globally.
An implementation might, for a stage 1 fault, offer the choice of terminate with abort or RAZ/WI behavior, or an
implementation might only allow termination by abort, in which case the CD.A bit must be set.

Note: A transaction faulting at stage 2 is, when terminated, always aborted.

It is optional whether an SMMU implementation supports the Stall model, the Terminate model, or both. Where
system usage cannot be anticipated, Arm recommends that both fault models (SMMU_IDRO.STALL_MODEL ==
0) and both termination models (SMMU_IDRO.TERM_MODEL == 0) are implemented.

If there is a risk that the stability of the system is compromised when the stall configuration is used for a set of
client devices you can consider the following countermeasures:

* An implementation that supports both the Stall and Terminate models is permitted, but not required, to treat a
stalling configuration for these devices as a terminating configuration.

— When stalling is configured for these devices, faulting transactions are terminated instead of stalled.
— The faults are reported with Stall == 0.
— The transaction is terminated with Abort.

* These devices are not required to be defined by the SMMU implementation, but are an IMPLEMENTATION
DEFINED system property.

Note: For faulting transactions that are associated with client devices that have been configured to stall, but where
the system has not explicitly advertised the client devices to be usable with the stall model, Arm recommends for
software to expect that events might be recorded with Stall == 0.

3.12.1 Terminate model

ARM IHI 0070
E.a

When stage 1 is configured to terminate faults, a transaction that faults at stage 1 is either terminated
with an abort reported to the client device that is making the access, or the transaction completing
successfully with reads returning 0 and writes being ignored (RAZ/WI), depending on the setting of CD.A
and SMMU_IDRO.TERM_MODEL. See section 5.5 Fault configuration (A, R, S bits).

When stage 2 is configured to terminate faults, a transaction that faults at stage 2 is terminated with an abort.
The behavior of the client device after termination is specific to the device.

If a stage that is configured to terminate faults is also configured with CD.R == 1 or STE.S2R == 1, as appropriate
to the stage of the fault, the SMMU records the details of the access into one Event record in the Event queue,
supplying information including:

* Address

e Syndrome

* Attributes (Read/Write, Inst/Data, Privileged/Unprivileged, NS)

* Type (S1/S2 Translation, Permission, Address Size, Access flag fault)

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 83
Non-confidential

Chapter 3. Operation
3.12. Fault models, recording and reporting

If the Event queue is full, the event record is lost.

Note: In some interconnects, stalling the transaction until its fault can be recorded might trigger interconnect
timeouts or deadlocks from which it might be more difficult to recover than from a lost fault record. Arm expects
that such fault records arise from programming errors and that software will not implement any mechanism that
depends on the delivery of terminate fault records.

Streams that originate from PCle subsystems must not stall and must be configured to use the Terminate model at
all enabled stages of translation. This is enforced at stage 1 through the STE.SISTALLD flag, see section 16.4
System integration.

3.12.2 Stall model

When a stage is configured to stall transactions on a fault, and a transaction experiences a Translation-related fault
as described in 3.12 Fault models, recording and reporting, the faulting transaction does not progress and no
response is reported to the client device. The transaction is buffered in a stalled state until subsequent resolution.
The SMMU always records the details of the access into the Event queue. A stalled transaction is retried or
terminated by issuing a CMD_RESUME or CMD_STALL_TERM command.

If retry is chosen, the transaction is handled as though it had just arrived at the SMMU. This means that the
transaction will be affected by any configuration or translation changes that occurred since it originally stalled.

Note: This means a transaction can stall and later when it is retried, use a configuration that causes it to immediately
terminate, for example, a change to stall configuration in the meantime. This property can safely clean up stalled
transactions on a stream by ensuring that a new configuration for transactions that are retried causes them to be
terminated.

If a stalled transaction is terminated by a CMD_RESUME command, a command parameter determines whether
an abort is reported, or if SMMU_IDRO.TERM_MODEL == 0, whether the transactions completes with RAZ/WI
behavior.

To ensure that no transaction is stalled indefinitely, software must ensure that every stall event has a corresponding
CMD_RESUME command, is subject to a CMD_STALL_TERM command, or that stalled transactions are
terminated because translation is disabled by clearing SMMU_(S_)CRO.SMMUEN to 0.

When an event record is generated for a stalled transaction, a Stall Tag (STAG) is supplied by the SMMU as
part of the record to uniquely identify the transaction. The SMMU uses the combination of StreamID and STAG
parameters to CMD_RESUME to identify the stalled transaction. A CMD_RESUME command has no effect on
any stalled transaction other than on the transaction that is uniquely identified by the combination of STAG and
StreamlID.

Note: This identification is required for virtualization correctness, where a CMD_RESUME from a guest VM is
trapped and reinterpreted by a hypervisor and generates a CMD_RESUME to the SMMU. The hypervisor validates
the correctness of the StreamID parameter, but the STAG parameter is passed directly from the guest, and cannot
be trusted to be correct and cannot be the sole selector of a stalled transaction.

The format of the STAG field is implementation specific, with the restriction that a value cannot be re-used
until the transaction it was last associated with has been acknowledged through a CMD_RESUME or a
CMD_STALL_TERM command, or translation is disabled by clearing SMMU_(S_)CR0O.SMMUEN to O.

If the Event queue is not writable at the time when the fault record of a stall is to be written, the stalled transaction
is retried as though it had just arrived when the queue is next writeable and a new fault record is generated. For
more information about recording faults and events, see section 7.2 Event queue recorded faults and events.

Note: For software to be notified of stalled transactions, it must enable the Event queue using
SMMU_(S_)CRO.EVENTQEN.

Software can depend on the delivery of fault records from stalled transactions, see section 3.12.4 Virtual Memory
paging with SMMU.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 84
E.a Non-confidential

Chapter 3. Operation
3.12. Fault models, recording and reporting

Note: Retrying the stalled transaction when the queue becomes writable might lead to the transaction succeeding
or experiencing a different type of fault, if the configuration or translations were changed before the queue became
writable. Therefore, an event can be written that is different to the originally-attempted event.

If the client device and interconnect rules allow it, a later transaction might pass through the SMMU and complete
before an earlier stalled transaction that is associated with the same stream. The SMMU does not require any
additional ordering between transactions from different streams beyond that required by the interconnect rules.

Note: The following cases are all considered to be from different streams:

e Transactions with different StreamIDs,
e Transactions with the same StreamID but different SubstreamIDs,
* Two transactions with the same StreamID but where only one transaction has a SubstreamID.

3.12.2.1 Suppression of duplicate Stall event records

If a transaction faults and then stalls, and a subsequent transaction belonging to the same stream also faults and
then stalls, the SMMU is permitted but not required to suppress the generation of a new stall fault record for the
new transaction if all of the following apply:

» The transactions require access to the same page.

* The transactions have the same privilege.

* The transactions have the same data/instruction attribute.

* The transactions have the same type, that is they are both reads or both writes.
* The transactions are associated with the same SubstreamlID, if present.

* The first stalled transaction is still stalled when a subsequent transaction stalls.

Arm recommends that an implementation suppresses additional fault records where possible.

Note: It is not guaranteed that event records are suppressed in all possible scenarios. Software must ensure
correctness where a transaction records a fault that duplicates a previous fault that was recorded for an earlier
transaction.

When a stall fault record is acknowledged by a CMD_RESUME command, any related suppressed stalled
transaction are retried by the SMMU as though they had just arrived.

Note: A series of faults for one page might result in a single stall fault record, with a single CMD_RESUME
command enabling all stalled transactions for that page to progress. If the CMD_RESUME command terminates
the stalled transaction that is specified by the stall fault record, the re-trying of the other stalled transactions might
cause new fault records to be recorded.

Note: For example, transactions A, B, C, D from the same stream that fault for the same reason might cause a
single stall record for A to be recorded, and those for B, C, D to be suppressed. If software decides that the address
was an error and terminates A, transactions B, C, D retry and fault again. A stall for B is recorded (and C, D might
be suppressed). Software terminates B and the process repeats. Ultimately, A, B, C, D are all visible to software
(rather than some being silently terminated), which can aid debug.

Stall fault records are not merged, see section 7.3.1 Event record merging.

Note: The suppression of identical stall fault records as described in this section is not the same as non-stall
events being merged. When a stall record is suppressed, a stalled transaction still might exist and can affect future
behavior, whereas the act of merging non-stall events completes the delivery of those events.

If a new transaction stalls for a reason that is unrelated to that of an existing stalled transaction, a new fault is
recorded, — that is, it is not suppressed by dissimilar prior stalls even for the same StreamID and SubstreamID. Arm
recommends that the new fault is recorded without being delayed by prior unrelated faults or CMD_RESUME
activities where possible.

The SMMU does not record more than one fault for each incoming transaction, with the exception of the scenario
in which a transaction stalls, and is explicitly retried with CMD_RESUME(Retry). After this command it is
considered to be a new transaction and might again encounter a fault.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 85
E.a Non-confidential

Chapter 3. Operation
3.12. Fault models, recording and reporting

3.12.2.2 Early retry of Stalled transactions

The SMMU is permitted to speculatively retry a stalled transaction without first receiving a CMD_RESUME(Retry)
command that matches the stalled transaction, this is referred to as early retry. If this occurs:

¢ An early retry is similar in function to the retry caused by an explicit CMD_RESUME(Retry). The transaction
undergoes the full translation procedure and does not use any stale cached configuration or translation data
that was invalidated since the time of the stall.

* A recorded stalled transaction causes a single fault record. An early retry of the stalled transaction does not
cause additional faults to be recorded. When a retry is directly caused by a matching CMD_RESUME that
indicates a retry, it is not considered to be an early retry, and this rule does not apply. This rule is in keeping
with the behavior that an explicit retry command causes the transaction to be retried as though it had just
arrived at the SMMU.

Note: This rule includes the case where configuration has been changed to terminate faults after the transaction
stalls then, under the new configuration, the transaction retries successfully by termination. Alternatively, if a
retry occurs under stall fault configuration, the transaction remains stalled. Neither of these cases result in the
reporting of a new event record.

* The progress of a transaction and the device-specific behavior are the only indications that an early retry has
occurred that is visible to software.

A successful early retry does not remove the requirement for software to acknowledge the stall fault record,
see section 3.12.2 Stall model. A successful early retry does not remove the restriction on re-using STAG
values, see section 3.12.2 Stall model. If targeted by CMD_RESUME(Terminate) or CMD_STALL_TERM,
a stalled transaction is eventually terminated, if the transaction does not early-retry and successfully progress
into the system before the termination can take place. If the transaction early-retries and fails to successfully
translate, it remains stalled until the termination action takes effect, or a successive early-retry enables the
transaction to progress successfully.

A CMD_RESUME(Retry) guarantees that the stalled transaction will be retried at a future point, unless it is
terminated by CMD_STALL_TERM command or an SMMUEN transition before the retry. A stalled transaction
is only guaranteed to be retried by the use of a CMD_RESUME(Retry) command.

A CMD_RESUME(Terminate) does not prevent a stalled transaction from being retried after the CMD_RESUME
is consumed by the SMMU, but guarantees that the transaction will be terminated if the transaction cannot
successfully early-retry. Note: For example, if translations have not changed from the time that a fault was
generated, a transaction cannot successfully early-retry.

Note: Arm does not expect software to modify a translation table descriptor from a faulting or invalid state into a
valid state, and then terminate a transaction that has previously stalled because of the initial state of the descriptor.
The transaction could early-retry, observe the valid state and then progress into the system.

If the SMMU is able to successfully early-retry a stalled faulting transaction before the original stall event is
committed to be written to the Event queue, the SMMU is permitted to discard the fault event or to continue on
and commit to the event write.

Note: To software, this race condition is indistinguishable from a temporally-later transaction that translates
successfully the first time so a stall event record is not required. If an implementation records the event, the
behavior described in this section applies.

If a stalled faulting transaction is retried before the original stall event is committed to be written to the event
queue and experiences a fault that is different to the previous fault, the most recent fault is recorded, provided that
it is possible to do so and that the previous fault is invisible.

Note: This scenario is permitted to occur when the Event queue is writable.

See section 7.2.1 Recording of events and conditions for writing to the Event queue for retry behavior requirements
when the Event queue is not writable.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 86
E.a Non-confidential

Chapter 3. Operation
3.12. Fault models, recording and reporting

3.12.2.3 Miscellaneous Stall considerations

The number of transactions that can be stalled before the ingress port cannot accept any more transactions, from
the same stream or from other streams, is implementation specific. Stalling traffic can therefore cause backpressure
that affects the flow of traffic for other devices behind the SMMU.

If a stall blocks other traffic and resolving the fault condition that caused the stall involves transferring data using
another device, the system architecture must ensure that the act of fetching the data will not itself stall behind the
original transaction.

Note: STE.SISTALLD == 1 prevents a guest VM from using the Stall model. This guarantees that stalled
transactions cannot affect other parts of the system, such as a different guest VM, where stalls could cause
deadlocks. Arm expects that hypervisor software uses the virtualization of SMMU_IDRO.STALL_MODEL to
report to the guest VM that the Stall model was not supported.

If a transaction experiences a fault during an IPA to PA translation of a stage 1 translation table walk or CD fetch, it
is not required to be terminated and might stall, depending on the stage 2 fault configuration provided by STE.S2S.
Software might address the cause of the stage 2 fault and retry the transaction, which will re-fetch the configuration
and translation structures as necessary.

3.12.3 Considerations for client devices using the Stall fault model

If a transaction from a client device experiences a fault that stalls and is terminated by software issuing
CMD_RESUME(Terminate), the transaction is marked and guaranteed to terminate at some point in the future if
translations do not change so as to allow an early-retry to succeed in the meantime. The SMMU does not guarantee
when a stalled transaction is terminated.

Note: A situation might arise in which software is required to reconfigure translations so that a previously-marked
stalled transaction might now succeed if it were to retry. For example, a transaction that is made to an unmapped
address causes an initial fault, and then a terminate operation is performed. Later software creates a legitimate
mapping at that address and, if the original transaction was a write that retries and now succeeds, data corruption
might result. Software might need a mechanism to ensure that previous transactions have all completed, both
terminated stalls and transactions that are progress that the SMMU is not yet aware of.

The system, or client devices, must provide a mechanism to enable software to wait for these previous transactions
to complete before changing configuration to a state that might let them proceed. This might be an explicit
indication from the client device that its outstanding transactions have all been terminated or completed, an
interconnect ordering guarantee that prior transactions are all visible, or another mechanism.

3.12.4 Virtual Memory paging with SMMU

ARM IHI 0070
E.a

The SMMU architecture supports three models of usage with respect to translation-related faults that occur during
translation of client device accesses:

1. A fault that occurs due to a device access might always be considered to be an error by the system and is
terminated.

Note: This might be the result of a programming error.

2. A fault that occurs due to a device access might be considered permanent due to a programming error, or
temporary due to particular page state resulting from use of virtual memory with the address space, and one
of the following is configured to occur:

a. The device transaction is stalled, the fault is reported to software and then the transaction is resumed after
the virtual memory system resolves the cause of the fault. Or, if the virtual memory system determines
that the access was invalid, the transaction is terminated. This model can only be used with a device and
interconnect that can support stalls.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 87
Non-confidential

Chapter 3. Operation
3.12. Fault models, recording and reporting

b. For PCle devices, for which transactions cannot safely be stalled, the PCle specification provides ATS
and PRI. ATS enables an endpoint to ascertain whether a page can be accessed without causing a fault in
the SMMU before accessing it. PRI provides a mechanism for a page fault to be resolved if the prior
ATS step indicates a fault would otherwise occur.

3.12.4.1 Page-in request event

When non-PCle devices are used with the Stall fault model to access paged virtual memory spaces, the Stall fault
record itself is the notification to software that a page miss occurred and that software intervention is required.

Note: Devices used with, or integrating, an SMMU will generally emit transactions when the access is required.
Although read speculation is permitted, writes cannot be emitted speculatively to trigger a page fault early, see
section 3.14 Speculative accesses. In particular, stall fault records do not arise from accesses marked speculative.

An optional hint event record, E_PAGE_REQUEST, can be provided by an implementation to request that software
initiates any costly page-in operations early. An implementation might provide an IMPLEMENTATION DEFINED
mechanism to convey this message from client devices. This message:

* Is a hint, and can be ignored or dropped by the SMMU or software.
* Can be issued speculatively.
* Requires no response.

Note: A stall fault record is generated in response to a non-speculative transaction. A speculative transaction
generates no software-visible record. E_PAGE_REQUEST allows a software-visible record to make an early start
on fetch of pages from secondary storage and can be used to hide latency.

3.12.5 Combinations of fault configuration with two stages

When the Stall model and the Terminate model are used differently at different stages of translation, the resulting
behavior of depends on the stage at which the transaction faulted and the type of fault. For Translation-related
faults that can stall the following scenarios arise:

Stage 1 Stage 2 Transaction Event
config config Fault at result parameters Hypervisor behavior
Terminate =~ Terminate Stage 1 Terminated VA Event passed to guest as stage 1-only
event.
Stage 2 Terminated VA, IPA Might log TPA of fault for debug purposes.
(1)Might pass event to guest if terminated.
Terminate Stall Stage 1 Terminated VA Event passed to guest as S1-only event.
Stage 2 Stalled VA, IPA May terminate with CMD_RESUME
(Terminate) and log IPA of fault for debug
purposes.
Or, correct the translation fo IPA then
CMD_RESUME(Retry).
(1) Might pass event to guest if terminated.
Stall Terminate Stage 1 Stalled VA Event passed to guest as S1-only event
with stall. Guest must
CMD_RESUME(Retry/Terminate).
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 88

E.a

Non-confidential

Chapter 3. Operation
3.12. Fault models, recording and reporting

Stage 1 Stage 2 Transaction Event
config config Fault at result parameters Hypervisor behavior
Stage 2 Terminated VA, IPA Might log IPA of fault for debug purposes.
(1)Might pass event to guest if terminated.
Stall Stall Stage 1 Stalled VA Event passed to guest as S1-only event
with stall. Guest must
CMD_RESUME(Retry/Terminate)
Stage 2 Stalled VA, IPA Might terminate with CMD_RESUME

(Terminate) and log IPA for fault or debug
purposes.

Or, correct translation for IPA then
CMD_RESUME(Retry).

(1) Might pass event to guest if terminated.

ARM IHI 0070
E.a

1. Might pass event to guest: Anything that is terminated at stage 2 is equivalent to a stage 1 external abort. A
successful stage 1 translation that outputs an incorrect IPA that leads to a stage 2 fault would not ordinarily
be reported to the guest through its SMMU interface, because its stage 1 translation succeeded and the error
arises outside of the (stage 1) domain of the SMMU interface. Arm expects that a stage 1 translation table
walk that faults at stage 2 is reported to the guest as F_ WALK_EABT by the hypervisor.

All other fault types cause the transaction to be aborted. For example, a failure to locate a valid STE (F_BAD_STE)
or CD (F_BAD_CD) terminate the transaction with an abort.

Note: When both stage 1 and stage 2 are enabled, a CD or stage 1 translation table descriptor fetch might cause a
stage 2 Translation-related fault, and might therefore stall the transaction. Regardless of the reason for making
the IPA access, the fault can be resolved at stage 2 and restarted. This is the same behavior as with a faulting IPA
access for the transaction address after stage 1 translation.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 89
Non-confidential

Chapter 3. Operation
3.13. Translation table entries and Access/Dirty flags

3.13 Translation table entries and Access/Dirty flags

The SMMU might support Hardware Translation Table Update (HTTU) of the Access flag and the dirty state of
the page for AArch64 translation tables.

Some Armv8-A PEs might support Hardware Update to Access flag and dirty state [2]. SMMU support of HTTU
can coexist with both hardware and software flag update from the PEs. The SMMU update of descriptors behaves
in an identical manner to those described in [2], with the additional SMMU-specific behavior in section 3.13.4
HTTU behavior summary, although its configuration method differs.

HTTU increases the efficiency of maintaining Access flag and dirty state in translation tables. A single translation
table can be shared between any combination of agents that perform software updates of flags, and other agents that
perform HTTU. Agents supporting HTTU update the flags atomically. Software must also use atomic primitives to
perform its own updates on translation tables when they are shared with another agent that performs HTTU.

Note: In general, an update of the Access flag and the dirty state of the page in a system is associated with the use
of dynamic paging and, in the context of the SMMU, associated with DMA targeting paged memory. Arm does
not expect applications that constrain DMA access to static, pinned or non-paged mappings to perform or require
dynamic update to the Access or to the dirty state of the page.

Support for HTTU is indicated by SMMU_IDRO.HTTU, and can be one of the following:

* No flag updates are supported.
* Only Access flag updates are supported.
» Update of both the Access flag and the dirty state of the page is supported.

If HTTU is supported, separate enable bits in the CDs and STEs determine whether a particular stage 1 or stage 2
translation table (referenced from the CD or STE) is updated in this manner, and the scope of the updates.

Note: It is possible for several CDs to reference the same translation table, or for several STEs to reference the
same CD. Where translation tables are shared between CDs that contain the same ASID (within a translation
regime), the CD HA and HD fields must be identical. See section 5.4.1 CD notes.

Note: Accessed means a translation to which an access has been made. Software might attempt to detect a working
set by clearing the Access flags and observing which flags are set again. Dirty state of the page means a writable
translation to which a write access or other modification has been made. When reclaiming or repurposing a
Dirty page, software might preserve the modifications to storage. Clean means a writable translation to which a
modification has not been made. When reclaiming or repurposing a Clean page, software might simply discard the
page contents (as another up-to-date copy might be available in storage elsewhere).

3.13.1 Software update of flags

ARM IHI 0070
E.a

Note: In the context of a PE that does not support HTTU, software is generally expected to maintain the Access
flag and the dirty state of a page, where required, as follows:

* A read or write that fetches a translation table descriptor with AF == 0 causes an Access fault, if AFFD ==
0. An exception handler marks the descriptor as AF == 1 and retries the instruction that caused the access.
Agents are not permitted to cache such entries in TLBs. No TLB invalidation is required when setting AF to
1.

* A Dirty flag is usually implemented in software by write-protecting a translation. A write access to such a
translation generates a Permission fault, at which point the exception handler might rewrite the descriptor
to mark it writable. The exception handler might use additional software structures or a software-defined
descriptor flag to differentiate a genuinely non-writable page from a page that is only temporarily non-writable
in order to generate the Permission fault. In this arrangement, a descriptor that has write permission is
considered to be Writable, Dirty and a descriptor that has no write permission but is marked as temporarily
unwritable is considered to be Writable, Clean.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 90
Non-confidential

Chapter 3. Operation
3.13. Translation table entries and Access/Dirty flags

* A write to a genuinely non-writable page is an error. A write to a Writable Clean (temporarily non-writable)
page causes the page to become Writable Dirty. A write to a Writable Dirty page causes no additional state
change.

* An Access fault takes priority over a Permission fault. That is, a write to a Writable Clean page with AF ==
0 and AFFD == 0 causes an Access fault, and only after AF == 1 does a Permission fault occur.

When pinned DMA translations are used with an SMMU, software can update the translation flags as appropriate
to the expected access. Arm does not expect faults to be generated when pinned translations are used, and such
faults represent a programming error. Arm expects software to use the Terminate model for such scenarios, so that
faulting transactions are terminated.

An SMMU can operate in a similar manner to the PE example when using unpinned DMA translations, so that
transactions that are translated by the SMMU cause faults to be recorded and the SMMU driver software sets
descriptor state in response to these records. For more information about faults, see section 3.12 Fault models,
recording and reporting.

Where this is the case, Arm recommends that this is implemented using the Stall model. Arm expects that the
SMMU driver maintains software Access or dirty state by doing one of the following:

» Responding to an F_ACCESS fault by setting AF to 1 in the relevant translation table descriptor.

* Responding to an F_PERMISSION fault for write to a Writable Clean page by marking the page as Writable
Dirty.

* Finally, issuing a CMD_RESUME to the SMMU to retry the transactions held up due to the fault

Note: The AFFD field in a stage 1 and stage 2 configuration modifies the behavior of the AF flag of a descriptor. A
descriptor, at a translation stage with AFFD == 1, and AF == 0 does not cause an F_ACCESS to be generated.
Instead, the translation is used as though AF == 1. This configuration is only relevant where HTTU is not used.

A translation table can be shared between multiple agents, if all agents that update the Access flag and the dirty
state of the page use the same semantics to differentiate a descriptor marked non-writable from one marked
temporarily non-writable. Usually, this is a software-defined bit that flags a page as potentially writable as opposed
to a page that is intended to always be non-writable.

HTTU removes the fault record and software handling from the path of updating translation table flags. An agent is
permitted to perform HTTU on a translation table that might be shared with an agent performing software update.
The Dirty Bit Modifier field has been added in Armv8.1-A to differentiate non-writable and Writable Clean states.
For more information about the Dirty Bit Modifier, see section 3.13.3 Dirty flag hardware update. Software
intending to provide software-updated translation table descriptor flags from one agent (for example a PE without
HTTU) while sharing translations with another agent that uses HTTU must use the DBM flag convention, and
perform atomic updates.

3.13.2 Access flag hardware update

When HTTU is supported and enabled for a stream, a translation that causes an SMMU fetch of a descriptor with
AF == 0 that would, without HTTU and with AFFD == 0, have caused an Access fault performs an atomic update
to set AF == 1 in the descriptor. Note: This includes stage 2 translation for the fetch of an L1CD or CD.

The SMMU never clears AF.

If access to a descriptor causes a permission fault, it is UNKNOWN whether the AF flag of the descriptor is updated
to 1.

When HTTU is disabled, or not supported by the SMMU, a transaction that leads to access of translations with AF
== 0 and AFFD == 0 causes F_ACCESS.

If the update of the dirty state of the page takes place, the final translation table descriptor will also have AF ==

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 91
E.a Non-confidential

Chapter 3. Operation
3.13. Translation table entries and Access/Dirty flags

3.13.3 Dirty flag hardware update

ARM IHI 0070
E.a

In order to coexist with an agent that is not using hardware update, HTTU defines a new flag, at bit[51] of Block
and Page descriptors, called the Dirty Bit Modifier (DBM). The DBM bit marks the overall intention of a translation
as ultimately writable, to differentiate a non-writable page from a Writable Clean page in the same way as a
software-maintained mechanism would.

Note: The Armv8-A stage 1 descriptor field AP[2:1] has no bit[0]. The stage 2 equivalent is named S2AP[1:0].

When HTTU of the dirty state of a page is supported and enabled for the stream, a non-writable descriptor is
automatically marked as writable by the SMMU when a translation for a write occurs, if it is a descriptor with
DBM == 1. A Permission Fault is not generated, and the translation continues.

Specifically, if a descriptor is read-only only as a result of AP[2:1] == 0b1x at stage 1, or non-writable using
S2AP[1:0] == 0b0x at stage 2, then if DBM == 1 and a translation for write occurs, the SMMU atomically sets
AP[2] to 0 in the descriptor held in memory, in a coherent manner if appropriate. If DBM == 0, the page has no
write permission and a write translation results in a Permission fault.

Note: HTTU of the dirty state of a page is not applicable to a descriptor that is made effectively read-only because
of the hierarchical control of access permissions using APTable. All references to page or block permissions in this
section are made on the assumption that the page or block is otherwise accessible, will not generate a Permission
fault for other reasons, such as PAN or the APTable having removed access, and that a page is only read-only (or
otherwise non-writable) because of the page or block AP/S2AP permissions.

When the APTable does not remove write access:

* A read-only stage 1 descriptor has DBM == 0 and AP[2:1] == 0b1x. A non-writable stage 2 descriptor has
DBM == 0 and S2AP[1:0] == 0b0x.

A write causes a Permission fault as the page has no write permission.

The software fault handler invokes an error-handling routine. Because DBM == 0, the software handler can
determine that the page is not allowed to be written. In the case of an SMMU stalled fault, software can use
CMD_RESUME to terminate an erroneous transaction.

A Writable Clean translation table descriptor has DBM == 1 and AP[2:1] == 0b1x/S2AP[1:0] == 0b0x.

Without HTTU, this descriptor is non-writable and a write causes a Permission fault. Because DBM == 1,
the page is intended to be writable and the software fault handler can mark the page as dirty by setting AP[2]
== 0/S2AP[1] == 1 and performing the appropriate TLB invalidation. The page is now marked Writable
Dirty. In the case of an SMMU stalled fault, software can use CMD_RESUME to retry the transaction, which
might then continue without fault.

When HTTU is enabled, a write transaction causes the SMMU to atomically set AP[2] == 0 or S2AP[1] ==
as appropriate, and then allows the write to proceed.

¢ A Writable Dirty descriptor has AP[2] == 0/S2AP[1:0] == 0b1x.
With or without HTTU, this page is writable and will not generate a Permission fault on a write.

Note: Although DBM is ignored by hardware in this state, it might be useful for software to use the convention
of leaving DBM == 1 when a page AP[2] transitions from non-writable to writable. This allows the DBM bit
to be used as a one-bit flag to indicate that, overall, a page is intended to be written regardless of its current
Clean or Dirty state.

e The SMMU never sets or clears DBM.

¢ The SMMU never clears S2AP[1].

* The SMMU never sets AP[2]. A descriptor is never made writable by the SMMU unless DBM == 1.
The SMMU never sets S2AP[1] == 1 for the stage 2 translation for the fetch of an L1CD or CD.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 92
Non-confidential

Chapter 3. Operation
3.13. Translation table entries and Access/Dirty flags

3.13.4 HTTU behavior summary

SMMU HTTU operation has the same behavior as described in Hardware Updates to Access Flag and dirty state
in the Armv8.1-A architecture [2].

The following HTTU behavior is specific to the SMMU:

* A descriptor update that occurred because of a completed ATOS translation is made visible to the required
Shareability domain, as specified by the translation table walk attributes, by completion of a CMD_SYNC
that was submitted after the ATOS translation began.

* A descriptor update that occurred because of a completed incoming transaction is made visible to the required
Shareability domain (as specified by the translation table walk attributes) by completion of a CMD_SYNC
that was submitted after the completion of the incoming transaction.

— In addition, the completion of a TLB invalidation operation makes descriptor updates that were caused
by transactions that are themselves completed by the completion of the TLB invalidation visible. Both
broadcast and explicit CMD_TLBI_* invalidations have this property.

Note: The SMMU HTTU behavior follows the same rules as Armv8.1-A [2], including all TLB
invalidation completion requirements on HTTU visibility from VMSA.

3.13.5 HTTU with two stages of translation

When two stages of translation exist, multiple translation table descriptors determine the translation, that is the
stage 1 descriptor, the stage 2 descriptors mapping all steps of the stage 1 walk, and finally the stage 2 descriptor
mapping the IPA output of stage 1. Therefore one access might result in several descriptor updates. Figure 3.9
shows an example:

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 93
E.a Non-confidential

Chapter 3. Operation
3.13. Translation table entries and Access/Dirty flags

Read
L1 TTD

from }
PA
S1L2
TTD addr

Stage 1 TTD has updated
AF/D based on incoming
request (R/W)

(Pemitted even if Stage 2
fault on IPA.)

S1L1
TTD addr

Read
L2 TTD

from | 7
PA

S1 final
TTD addr

RmW final
TTD from
PA: update
AF/D

Have IPA,
translate to

PA for final
result

Translate IPA>PA

Translate IPA>PA

Translate IPA>PA Translate IPA>PA

Read S2L1 TTD

Read S2L1 TTD

ReadS2L1 TTD

v

v

v

Read S2L1 TTD

v

ReadS2L2 TTD Read S2L2 TTD ReadS2L2 TTD Read S2L2 TTD
‘ ‘ ‘ ‘ Stage 2 TTD has
updated AF/D
v v based on incoming
- - request (R/W)
RmW S2 final | | RmW S2final | RmWY fﬁdfa"::' 7777777 RmW fsdgrt‘:'
TTD: update AF TTD: update AF AF/D AF/D

PA for
access/
translation
response

Read-modify-Write: Fetch data, atomically
updating flag(s).

(Pemitted to update D, as well as AF, even
if S1 TTD is not updated.)

Stage 2 TTD AF updated as S1TTD will be accessed.
Permitted to also update D before accessing S1TTD
(predict updated)

Figure 3.9: Example Hardware flag update with nested translation

Note: Figure 3.9 is an example procedure and does not depict all permitted ways of performing a nested translation
walk with HTTU enabled.

Because a stage 1 descriptor hardware update is a write, the stage 2 mapping for its [PA must allow writes for the
update to succeed.

3.13.6 ATS, PRI and translation table flag update

When ATS and PRI are used to support device access to dynamically paged memory, the Access state and the dirty
state of the page need to be maintained. This section describes the SMMU page flag maintenance behavior in a
system using ATS with PRI targeting dynamically paged memory.

Note: Maintenance of the Access flag and the dirty state of the page is primarily of importance to DMA to unpinned
or paged memory, because use-cases with DMA to pinned memory would normally statically initialize page state.

3.13.6.1 Hardware flag update for ATS & PRI

Because the purpose of ATS is to cache translations outside the SMMU and to avoid subsequent translation
interaction with the SMMU, if HTTU is enabled it is performed at the time of the ATS Translation Request (TR).

When an ATS TR is made, it must be assumed that a device will subsequently access the page. If the page is
otherwise valid and an ATS response will be returned, AF is set to 1 in the descriptor in the same way as a direct
transaction access through the SMMU.

ARM IHI 0070
E.a

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 94
Non-confidential

Chapter 3. Operation
3.13. Translation table entries and Access/Dirty flags

In addition to the behavior that is described earlier in this section, if hardware-management of dirty state is enabled
and an ATS request for write access (with NW == 0) is made to a page that is marked Writable Clean, the SMMU
assumes a write will be made to that page and marks the page as Writable Dirty before returning the ATS response
that grants write access. When this happens, the modification to the page data by a device is not visible before
the page state is visible as Writable Dirty. If HTTU is only enabled for Access, an ATS request for a write to a
Writable Clean or Read Only page results in an ATS Translation Completion with W == 0, and write access is
denied.

If an ATS Translation Request is made for a write (NW == 0) to a nested translation configuration and the
associated stage 1 translation is read-only (not Writeable), the dirty state is not updated in either of the stage 1
descriptor, or the stage 2 descriptor that is used to translate the output address from the stage 1 descriptor.

Note: This also applies if the stage 2 translation of the stage 1 output address is Writable-Clean.

When HTTU is enabled for stage 1 and stage 2 and Split-stage ATS is used (STE.EATS == 0b10), the ATS TR
performs HTTU at stage 1, and updates for the stage 2 descriptors that are used to fetch and update the stage 1
descriptors are made. The following applies to the stage 2 descriptor for the final IPA:

* The AF in the stage 2 descriptor for the final IPA is permitted to be speculatively set to 1 by the ATS TR.

o If write permission is granted in the ATS Translation Completion, a Writable Clean stage 2 descriptor for the
final IPA is permitted to be marked as Writable Dirty by the ATS TR.

— When a subsequent Translated access to the IPA is translated, this choice does not affect the HTTU
behavior of stage 2.

— This choice does not affect the permissions that are returned in the Translation Completion, which reflect
whether a write transaction is permitted by the combined permissions of both stages and treat a Writable
Clean stage 2 descriptor as writable. See section 13.6.3 Split-stage (STE.EATS == 0b10) ATS behavior
and responses.

 The stage 2 translation of a subsequent Translated access marks the stage 2 descriptor as Accessed and might
mark the descriptor as Writable Dirty, provided that the ATS TR has not already performed this action.

3.13.6.2 Behavior with respect to flag maintenance for ATS & PRI without HTTU

If HTTU is not enabled for the Access flag, an ATS request to a page with AF == 0 and AFFD == 0 is denied. For
this address a response granting R == W == (), that is no access, is returned. The client device might then raise
an error in a device-specific manner, or might issue a PRI page request, if supported and configured, to request
that software makes the page available. Software can manually set AF == 1 on receipt of the PRI page request in
anticipation of the device access.

An ATS request to any read-only page does not grant write access, that is it returns W == 0, if hardware update
of dirty state of the page is not enabled. Read access might be granted in the response, if the conditions for the
Access flag set out in this section are satisfied. The client device might raise an error in a device-specific manner,
or might issue a PRI page request to request write access to the address. On receipt of a PRI request, software
could assume that a request issued for write was initiated because data will shortly be written and mark the page
Writable Dirty before responding to the PRI request.

An ATS request for write to a page marked writable might grant write access, that is it returns W == 1 in the
response. Software must consider writable pages as potentially dirty.

Note: PClIe PRI requests can be issued speculatively by an Endpoint. This implies speculatively marking the
page as Dirty. This is not permitted by the Armv8-A architecture [4] and might be problematic for some software
systems.

Because pages cannot speculatively be marked as Dirty, Arm recommends that a system designed for
general-purpose software supports HTTU when PRI is used, so that the state of the page is marked Dirty
only when a request for write access is made using ATS.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 95
E.a Non-confidential

Chapter 3. Operation
3.13. Translation table entries and Access/Dirty flags

3.13.7 Hardware flag update for Cache Maintenance Operations and Destructive Reads

ARM IHI 0070
E.a

HTTU for Dirty bit update is not performed for the following operations:

¢ Invalidate Cache Maintenance Operations. See section 16.7.2.2 Permissions model for Cache Maintenance
Operations for more information.
¢ Destructive Reads. See section 3.22.2 Permissions model for more information.

When these operations are performed to a Writable Clean translation table descriptor, the descriptor is not updated
to be Writable Dirty. If the required Read or Execute permissions are available, but the descriptor is not Writable
Dirty, the operations are downgraded as described in the corresponding section.

This rule does not affect HTTU of the Access flag, which occurs if required.

Note: For the purposes of determining execute permission, a Writable Clean descriptor is considered to be writable
when HTTU is enabled, which is consistent with the Armv8-A architecture. As described in this section, this
principle applies even when the descriptor is not updated to Writable Dirty for an Invalidate or DR.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 96
Non-confidential

Chapter 3. Operation
3.14. Speculative accesses

3.14 Speculative accesses

ARM IHI 0070
E.a

An implementation might allow incoming transactions to be marked as speculative in an IMPLEMENTATION
DEFINED manner. Only read transactions are allowed to be marked as speculative. The behavior of a write
transaction that is marked as speculative is always to terminate the transaction with an abort, and no event is
recorded to software.

The behavior of a read transaction that is marked as speculative depends on two things:

1. If the translation occurs successfully without faulting, the read transaction continues into the system and
returns data. Otherwise if any kind of fault or configuration error occurs, the transaction is terminated with
an abort; no event is recorded to software for any speculative transaction. The determination of a fault is no
different to non-speculative read transactions, including Access flag faults.

2. If HTTU is enabled and translation succeeds without fault, the read transaction updates the Access flags of
relevant translation table descriptors.

The SMMU HTTU rules match those set out for Armv8.1-A [2], with respect to hardware update of Access flag
and dirty state, including update of stage 2 translation table flags for both speculative accesses made at stage 1 and
writes of stage 1 descriptors due to the setting of Access flags.

An implementation might provide translation services to a client device, and might support speculatively-issued
Translation Requests. An IMPLEMENTATION DEFINED mechanism must be used to differentiate speculative
Translation Requests from non-speculative Translation Requests.

Note: This mechanism might arise as an implementation-specific service provided to another device. PCle ATS
Translation Requests are always non-speculative.

If a received Translation Request is marked as speculative, behavior is dependent on the read/write property of the
request:

 Translation Requests for an address to be written grant write in the response only if the translation table
descriptors that translate the address are all marked Writable Dirty. If hardware management of the Access
flag is enabled, such a request updates AF. If hardware management of dirty state is enabled, speculative
Write Translation Requests do not mark any Writable Clean descriptor in the first or only stage of translation
as Writable Dirty. If the descriptor is marked Writable Clean, the response does not grant write access.
Translation Requests for an address to be read return a successful response, if appropriate, and if hardware
management of the Access flag is enabled updates AF.
* In both cases, if hardware management of Access flag and dirty state is enabled in a nested translation then
an update of a stage 1 descriptor to set AF or the Dirty state of the page might cause the stage 2 descriptors
related to the updated stage 1 descriptor to be marked as Dirty as required.

The response to a Translation Request indicates whether a translation request was denied because of a page fault or
otherwise missing translation, or whether a valid translation existed but the request failed because the translation
was Writable Clean.

Note: A device might use this information to determine whether to stop making requests or whether to subsequently
try again with a non-speculative write.

For speculative accesses of SMMU structures and translations, see section 3.21.1 Translation tables and TLB
invalidation completion behavior and 3.21.3 Configuration structures and configuration invalidation completion.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 97
Non-confidential

Chapter 3. Operation
3.15. Coherency considerations and memory access types

3.15 Coherency considerations and memory access types

Arm anticipates that the SMMU will access all in-memory structures and queues in a manner that does not require
software cache maintenance of the PE caches. Arm expects that this be IO-coherent access to normal shared
memory, but in implementations that cannot support cache coherency, this might be non-cached access. Some
embedded implementations might require use of memory mapped as non-cached by the PEs, see section 3.16
Embedded implementations below. The degree to which the different memory access types and attributes are
supported is IMPLEMENTATION DEFINED.

All in-memory structures and queues are accessed using Normal memory types. Configuration fields exist for
Stream table, Context Descriptor and translation table fetches to govern Cacheability and Shareability of such
accesses. MSI writes can be configured to make Device-type accesses.

If hardware update of the Access flag or the dirty state of a page is supported, atomic access is required to update
translation tables that are shared between the PE and SMMU. Support for atomic access using local monitors
requires a fully-coherent interconnect port.

If the memory system supports Armv8.1 [2] atomic operations, the SMMU might support atomic updates without
local monitors, and not require a fully-coherent port. Because different SMMU implementations might use different
mechanisms for atomic update of the flags, and because local monitors require coherent cacheable access, behavior
is IMPLEMENTATION DEFINED if hardware flag updates are enabled on translation tables configured to be accessed
as Non-cacheable.

To limit complexity, the SMMU might respond to snoops from the system only as much as required for atomic
updates to translation tables with local monitors, if required. This means that all other memory access by the
SMMU might be IO-coherent. That is, SMMU configuration caches are not required to be snooped by PE accesses.
When configuration data structures are changed, software is required to issue invalidation commands to the SMMU.

The SMMU respects the same single-copy atomicity rules as PEs regarding 64-bit translation table descriptor
accesses.

When configured by software, that is when not fixed in embedded implementations, Arm recommends that
the in-memory data structures and queues are treated as Normal memory cached by the PE when the SMMU
implementation is able to access them IO0-coherently.

Note: This might be useful to avoid explicit cache maintenance on the PE side. When an SMMU is not able to
make [O-coherent access, a similar programming model might be achieved using normal non-cached mappings
from the PE.

Note: The configuration structure invalidation commands might be used by a hypervisor to maintain coherency
between guest and shadow structures that it might use.

When a system supports IO-coherent accesses from the SMMU for access to configuration structures, translation
tables, queues and CMD_SYNC, GERROR, Event queue and PRI queue MSIs, this is presented to software
using SMMU_IDR0O.COHACC == 1. If a system does not support IO-coherent access from the SMMU,
SMMU_IDR0O.COHACC must be 0.

3.15.1 Client devices

SMMU translation of coherency traffic for client devices is not supported. Cache and TLB-maintenance operations
sent from client devices into the system are not supported. These operations terminate in the SMMU.

Devices connected behind an SMMU cannot contain caches that are fully-coherent with the rest of the system
because snoops relate to physical cache lines. Devices might contain caches that do not support hardware coherency
and which might be filled using non-physical addresses through an SMMU.

However, a client device that contains a TLB filled from the SMMU might maintain a fully-coherent
physically-addressed cache, using the TLBs to translate internal addresses to physical addresses before performing
cache accesses. Such a case might arise where an SMMU is implemented as part of a complex device.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 98
E.a Non-confidential

Chapter 3. Operation
3.15. Coherency considerations and memory access types

ARM IHI 0070
E.a

In distributed systems, different client devices might have different paths through the SMMU into the system, and
these can differ in their ability to perform IO-coherent access. These paths might also differ from those used by the
SMMU for its own configuration access, hence SMMU_IDR0.COHACC does not indicate whether client devices
can also make IO-coherent accesses. Arm recommends that whether a given client device is capable of performing
IO-coherent access is described to system software in a system-specific manner.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 99
Non-confidential

Chapter 3. Operation
3.16. Embedded implementations

3.16 Embedded implementations

Some implementations might support the use of on-chip or internal storage for one or more of the Stream table
structures, the Command queue, or the Event queue. This manifests itself as register base pointers and properties
that are hard-wired to point to the on-chip storage. Such queues and structures are of a fixed size and configuration
and in all cases are discoverable by system software. Software must not assume that it is necessary to allocate tables
in RAM and set up pointers. It must initially probe for an existing configuration. SMMU_IDR1.TABLES_PRESET
and SMMU_IDR1.QUEUES_PRESET indicate that the Stream table base address and queue base addresses are
hardwired to indicate pre-existing storage for the tables or queues, or both. When SMMU_IDR1.REL is set, the
base addresses are given relative to the start of the SMMU register memory map, rather than as absolute addresses.

An implementation using internal storage for configuration and queues is not required to access this storage
through the coherency domain of the PEs. Data accesses from the PE require manual cache maintenance or use of
a non-cached memory type for these addresses.

For an implementation using internal storage for configuration and queues, it is required that all address regions for
those configuration structures and queues do not overlap. This requirement applies both within the same physical
address space, and across Non-secure and Secure PA spaces.

3.16.1 Changes to structure and queue storage behavior when fixed/preset

ARM IHI 0070
E.a

Non-preset tables/queues are stored in normal memory. When an embedded implementation contains a preset
structure or queue in internal storage it is not required that all bits of all structures/queue entries are accessible
exactly as they would be in normal memory. For example, an implementation might not provide storage for fields
in structures and queues that would not be used by architected behavior.

3.16.1.1 Event Queue and PRI Queue

All entries in an embedded Event queue or PRI queue, that is where SMMU_IDR1.QUEUES_PRESET == 1, are
permitted to have read-only/write-ignored behavior with respect to software accesses.

3.16.1.2 Command Queue

Entries in an embedded Command queue, that is where SMMU_IDR1.QUEUES_PRESET == 1, are readable
and writable, but are not required to provide storage outside of the union of all defined fields for all implemented
commands. In addition, referring to the Command encodings in Chapter 4 Commands, storage is not required to
be provided for:

* Reserved and undefined fields.
* High-order bits of StreamlID fields beyond the implemented range of StreamIDs.

* High-order bits of SubstreamlID fields beyond the implemented range of SubstreamIDs (including the entire
field if SubstreamIDs are not implemented).

» SSV fields, if SubstreamIDs are not implemented.
» STAG bits that are always generated as ‘0’ to software.

Note: An implementation might choose to use fewer than 16 bits of STAG when communicating stalled
faults to software.

* SSec, if only Non-secure state is supported.

e CMD_SYNC MSIData, MSIAddress and MSIWriteAttributes if MSIs are not supported by the Security state
of the Command queue.

* ASID[15:8] if SMMU_IDRO.ASID16 == 0, or VMID[15:8] if SMMU_IDRO.VMID16 == 0.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 100
Non-confidential

Chapter 3. Operation
3.16. Embedded implementations

ARM IHI 0070
E.a

¢ CMD_CFGI_STE Leaf parameter (embedded Stream tables are single-level).
* Fields in any command type that gives rise to CERROR_ILL.
A bit that is not stored due to these rules has RAZ/WI behavior.

Note: An implementation determines the set of required storage bits from implementation-specific configuration
options and values.

Software must not assume that it can write an arbitrary 16-byte sequence to a Command queue entry and read back
the sequence unmodified. However, functional fields that form valid command parameters must be readable by
software for debug and read-modify-write construction of commands (the queue is not considered write-only).

3.16.1.3 Stream Table Entry

Entries in an embedded Stream table are freely read/write accessible, but storage is not required to be provided for:

¢ Undefined fields.
e Reserved/ RESO fields.

* Fields that are IGNORED in all possible configurations that an implementation supports.
* Fields permitted to have RAZ/WI behavior.

As an example, storage is not required for STE.S1ContextPtr on an SMMU that has an embedded Stream table but
does not support stage 1.

Note: Fields Reserved for software use do not alter SMMU function but must be stored in their entirety.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 101
Non-confidential

Chapter 3. Operation
3.17. TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance

3.17 TLB tagging, VMIDs, ASIDs and participation in broadcast TLB mainte-

nance
Cached translations within the SMMU are tagged with:
* A translation regime, given by the STE’s StreamWorld and derived in part from STE.STRW. This applies to
all cached translations.
* An ASID, if the translation regime supports ASIDs.
* A VMID, if stage 2 is implemented by the SMMU and if the translation regime supports VMIDs.
This is summarized in the table below:
StreamWorld Address Type Tags
ASID ASET VMID
NS-EL1 VA Yes, if TTD.nG == 1 Yes® Yesh
NS-EL1 IPA (D No No® Yes®)
any-EL2® VA No No® No
any-EL2-E2H(4) VA Yes, if TTD.nG == Yes® No
Secure VA Yes, if TTD.nG == 1 Yes® Yes®
EL3 VA No No® No
M If SMMU_IDRO.S2P == 1.
@ ASET is required to be included in TLB records when the nG bit in the descriptor is 0. Arm expects, but does
not require, ASET to be included in TLB records when the nG bit in the descriptor is 1 to support the limitation of
broadcast invalidation feature of ASET.
3 Arm permits but does not require the inclusion of ASET in TLB records for EL3 and EL2.
@ Applies to both NS-EL2 and S-EL2, if supported.
 When Secure stage 2 is supported.
This is consistent with TLB tagging in PEs.
Note: In this document, the term cached translations refers to the contents of a PE-style ASID/VMID/Address
TLB. Any cached configuration structures are considered architecturally separate from the translations that are
located from the configuration. Configuration caches are not required to be tagged as described in this section.
Use of these tags ensures that no aliasing occurs between different translations for the same address within different
ASIDs, or between the same ASID under different VMIDs, or between the same ASID within different translation
regimes, or between different translation regimes without ASIDs (for example any-EL2 and EL3). For both lookup
and invalidation purposes, ASID values can be considered to be separate namespaces within each VMID and
translation regime.
Note: For example, TLB entries tagged as ASID 3 in a Secure stage 1 cannot be matched by lookups for ASID 3
in an NS-EL1 stage 1 configuration. Similarly, a TLB entry that is tagged as either of S-EL2 or NS-EL2 can never
be matched by a lookup from an EL3 context, even if the address matches.
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 102

E.a

Non-confidential

Chapter 3. Operation
3.17. TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance

In a regime that lacks ASIDs to differentiate address spaces, all CDs are considered equivalent (similar to two
CDs with the same ASID value) even if referenced using different STEs. This implies that SubstreamIDs cannot
differentiate address spaces in any-EL2/EL3 StreamWorlds. See section 5.4.1 CD notes for restrictions on
permitted differences between CDs in such StreamWorlds.

EL3 tags TLB entries as EL3 without an ASID and Arm expects this StreamWorld to be selected for Secure
streams used by EL3 software on an Armv8-A host PE whose EL3 runs in AArch64. There are no ASIDs in an
AArch64 EL3 translation regime.

When SMMU_IDRO.S1P == 1, the SMMU supports 16-bit ASIDs if SMMU_IDRO.ASID16 == 1.
When SMMU_IDRO.S2P == 1, the SMMU supports 16-bit VMIDs if SMMU_IDR0.VMID16 == 1.

Consistent with PEs, all TLB entries inserted using NS-EL1 configurations are tagged with VMIDs when stage 2
is implemented, regardless of whether configuration is stage 1-only, stage 2-only or stage 1+stage 2 translation.
When stage 2 is configured, with or without stage 1, or if stage 1-only translation is configured, the VMID is taken
from the STE.S2VMID field. When stage 2 is not implemented, no VMID tag is required on TLB entries.

Note: Some implementations and interconnects might support the transmission of VMID value onwards into the
system, so that Completer devices might further arbitrate access on a per-transaction basis. Where SMMU bypass
is enabled (SMMU_(S_)CRO.SMMUEN == 0) so that STE structures are unused, the SMMU_(S_)GBPA.IMPDEF
field might be used. Otherwise, the STE.S2VMID field might be used. Details of these use cases are outside of the
scope of this specification.

SMMU support for TLB maintenance messages that are broadcast from the PE is optional, but Arm recommends
that support is implemented. These messages convey TLB invalidations from certain TLBI instructions on PEs.
The Armv8.0 architecture [2] requires invalidation broadcasts to affect other PEs or agents in the same Inner
Shareable domain. Armv8.4 [2] adds support for a PE to issue broadcast TLB invalidation operations to the Outer
Shareable domain as well as the existing behavior of issuing to the existing Inner Shareable domain. Broadcast
TLB invalidate messages convey one or more of an address, an ASID or a VMID as required for a given invalidation
operation, the scope defined by a translation stage to be affected and the translation regime in which the TLB
entries are tagged. Support for broadcast invalidation is indicated by SMMU_IDR0O.BTM.

Note: The Shareability domain of the SMMU is a property of the system. When broadcast TLB invalidation
is implemented then an implementation of any SMMUVv3 version responds to the broadcast invalidation scope
corresponding to its assigned Shareability domain.

Where SMMU_IDRO.BTM == 1, setting SMMU_(S_)CR2.PTM == 1 causes the SMMU to ignore broadcast
TLB invalidation operations for the corresponding Security state. Broadcast TLB invalidation messages that
would invoke an illegal operation, such as an invalidation that applies to a stage or Security state that is not
implemented in the SMMU, are silently ignored, with the exception that messages that have a combined effect
must affect the implemented stages and ignore any unimplemented stage. When SMMU_IDRO.S2P == 0, the
SMMU matches VMID 0 for incoming broadcast TLB invalidation messages for a regime that uses VMIDs. When
SMMU_IDRO.S2P == 1, a broadcast TLB invalidation message for a regime that uses VMIDs is treated as having
VMID 0 if it is sent from a PE that does not implement EL2.

Note: On PEs that implement EL2 but have stage 2 disabled, Arm expects software to configure
VTTBR_EL2.VMID to 0. This ensures that for broadcast TLBI operations that include a VMID the VMID
is set to 0.

Note: If, in a translation regime that uses VMIDs, stage 1-only translations coexist with stage 1 and stage 2
translations, then different VMID values must be used in each configuration to avoid the stage 1-only translations
matching lookups that use stage 1 and stage 2 configurations.

Note: Arm expects broadcast invalidation from PEs to be used where address spaces are shared with the SMMU
and common translations are maintained, such as Shared Virtual Memory applications, or stage 2 translations that
share a common stage 2 translation table between VMs and the SMMU. When an address space is not shared
with PE processes, broadcast TLB invalidations from the PEs to the SMMU have no useful effects and might
over-invalidate unrelated TLB entries. Non-shared address spaces arise when a custom address space is set up for

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 103
E.a Non-confidential

Chapter 3. Operation
3.17. TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance

ARM IHI 0070
E.a

a particular device — for example, scatter-gather or DMA isolation use cases. Arm expects that both shared and
non-shared stage 1 translations might be in use simultaneously.

Stage 1 CDs contain an ASET flag, that represents the shared or non-shared nature of the ASID and address space.
The set of ASIDs for non-shared address spaces might opt out of broadcast invalidation.

Note: Arm expects that SMMU stage 2 address spaces are generally shared with their respective PE virtual
machine stage 2 configuration. If broadcast invalidation is required to be avoided for a particular SMMU stage 2
address space, Arm recommends that a hypervisor configures the STE with a VMID that is not allocated for virtual
machine use on the PEs.

For a stage 1 configuration with a StreamWorld that has ASIDs, when CD.ASET == 1, the address space and
ASID are non-shared. TLB entries that belong to that StreamWorld are not required to be invalidated by the
broadcast invalidation operations that match with an ASID. These operations are VA{L}ExIS and ASIDEXIS
in the appropriate translation regime. All other matching broadcast invalidations are required to affect these
entries. Where CD.ASET == 0, the ASID is considered shared with PE processes. TLB entries that belong to
that StreamWorld are required to be affected by all matching broadcast invalidates. The definition of matching
is identical to that of Armv8-A PE TLBs [2]. CD.ASET does not affect the invalidation of stage 2 translation
information.

For translation lookup of non-global TLB entries and command-based invalidation purposes, ASID values with
CD.ASET == 0 are considered equivalent to ASID values with CD.ASET == 1. CMD_TLBI_* commands
invalidate all matching TLB entries regardless of their ASET value. CD.ASET affects translation lookup of
global TLB entries. For information about global TLB entry matching, see section 3.17.1 The Global flag in the
translation table descriptor.

A stage 1 configuration in a translation regime that does not have ASIDs, that is where StreamWorld == any-EL2
or StreamWorld == EL3, ignores the ASID field and is permitted but not required to tag TLB entries using ASETs.
An equivalent semantic applies, in that ASET == 0 entries are affected by broadcast invalidation and ASET ==
entries are not required to be invalidated by certain operations. EL2 TLB entries with ASET == 1 are not required
to be invalidated by VA{L}ExIS or VAA{L}EXIS but must be invalidated by ALLE2IS. EL3 TLB entries with
ASET == 1 are not required to be invalidated by VA{L}E3IS but must be invalidated by ALLE3IS.

Note: Arm does not anticipate that ASET == 1 has an effect on EL2 and EL3 contexts, however the behavior
described here is consistent with other StreamWorld configurations.

In a regime that lacks ASIDs to differentiate address spaces, all CDs are considered equivalent (similar to two
CDs with the same ASID value) even if referenced using different STEs. This implies that SubstreamIDs cannot
differentiate address spaces in any-EL2/EL3 StreamWorlds. See section 5.4.1 CD notes for restrictions on
permitted differences between CDs in such StreamWorlds.

Note: A broadcast invalidation operation that originates from a PE in any-EL2-E2H mode is not required to
invalidate SMMU TLB entries that were inserted with StreamWorld == any-EL2, see section 3.17.5 EL2 ASIDs
and TLB maintenance in EL2 Host (E2H) mode.

Note: See section 16.7.7 AMBA DVM messages with respect to CD.ASET == I TLB entries for AMBA interconnect
DVM behavior with respect to ASET == 1.

Note: The ASID namespace might be affected by ASID rollover on the PE. These situations might be handled by:

* Refreshing the ASID namespace on the PE side and reallocating free ASIDs to new processes, but leaving
ASIDs that are shared with SMMU contexts untouched.

Swapping the ASID that is used in a CD, so that the old ASID is removed from the SMMU, and future traffic
uses a freshly-allocated ASID. This can be achieved with an overlap in which both the old ASID and new
ASID are active as the old ASID is updated in the CDs. This is followed by invalidation commands to the
affected CDs (causing the SMMU to use the new ASID), and a CMD_SYNC. These steps are followed
by TLB invalidation commands and a CMD_SYNC to remove all usage of the old ASID. When the final
CMD_SYNC has ensured that these commands are complete, the old ASID can be considered free and the
system can re-use it for a different address space.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 104
Non-confidential

Chapter 3. Operation
3.17. TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance

3.17.1 The Global flag in the translation table descriptor

For translation regimes that have an ASID, Armv8-A [2], defines an nG bit in the the Block and Page descriptors
that allows them to be marked as either global or non-global. A translation that is performed for a Secure stream
is treated as non-global, regardless of the value of the nG bit in the descriptor, if the descriptor is fetched from
Non-secure memory. The any-EL2 and EL3 StreamWorlds do not support ASIDs, and the nG bit in the descriptor
has no effect on these regimes.

Note: A translation table descriptor fetch from Non-secure memory might happen for several different reasons, for
example because of the effective NS bit at that level of the translation table walk, or because the fetch uses the
Non-secure IPA space which is implicitly Non-secure. See section 3.10.3 Secure EL2 and support for Secure
stage 2 translation.

When entries are global, an ASID is not required to be recorded in any resulting TLB entry. During lookup, a
TLB entry marked as global can match regardless of the ASID that is provided with the lookup. The nG bit in the
descriptor does not allow a TLB entry to match a lookup from a StreamWorld that is not the same as the one from
which the TLB entry was created.

Note: Global translations are used across address spaces with identical layout conventions, OS kernel addresses
might be common across all process address spaces, and so they might be marked global. However, an SMMU
might be used with many custom address spaces that are laid out in a manner convenient to the client device they
serve, without common mappings.

The SMMU only matches global TLB entries, that is where the nG bit in the descriptor is zero, against lookups
from the same StreamWorld and ASID set (ASET). Global TLB entries with ASET == 0 do not match lookups
through configurations with ASET == 1. Global TLB entries with ASET == 1 do not match lookups through
configurations with ASET == 0.

Invalidation rules for non-locked global mappings are identical to those in Armv8-A, where the ASIDE1 and
ASIDE?2 scopes are not required to invalidate global mappings.

3.17.2 Broadcast TLB maintenance from Armv8-A PEs with EL3 in AArch64

When the Secure Stream table is controlled by an Armv8-A PE where EL3 is using AArch64 state, software has
the option of marking an STE as Secure, S-EL2, S-EL2-E2H or EL3 using the StreamWorld field, STE.STRW.

When the StreamWorld is Secure, the stream is configured on behalf of Secure-EL1 software and the resultant
TLB entries are tagged as Secure, including an ASID if non-global. Such entries must be invalidated by:

* PE broadcast TLB invalidations (where supported and if CD.ASET allows) from Secure EL1 instructions
with the following scope:

VA{L}El

VAA{L}El

ASIDEI, for non-global entries
ALLEI1

* SMMU invalidation commands on the Secure Command queue. These commands are:

CMD_TLBI_NH_ALL
CMD_TLBI_NH_ASID, for non-global entries
CMD_TLBI_NH_VAA

- CMD_TLBI_NH_VA

When StreamWorld is EL3, the stream is configured on behalf of EL3 software and resultant TLB entries are
tagged as EL3, without ASID, which differentiates them from the Secure case above. Such entries are invalidated
by:

* PE broadcast TLB invalidations (where supported and if CD.ASET allows) from EL3 instructions with scope
of VA{L}E3, ALLE3.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 105
E.a Non-confidential

Chapter 3. Operation
3.17. TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance

e SMMU invalidation commands on the Secure Command queue:

- CMD_TLBI_EL3_VA
- CMD_TLBI_EL3_ALL

An SMMU with SMMU_IDRO.RME_IMPL == 1 is not required to perform any invalidation on receipt of a
broadcast TLBI for EL3 as EL3 StreamWorld is not supported.

3.17.2.1 Broadcast TLB maintenance when Secure EL2 is implemented

The Secure EL2 and Secure stage 2 facilities introduced in SMMUV3.2 interoperate with the corresponding
facilities on a PE. Broadcast TLB maintenance from a PE affects SMMU TLB entries of the same scope where
supported and if CD.ASET allows.

For broadcast TLB maintenance with Secure EL1 scope from a PE that does not implement Secure EL2, or a PE
that implements Secure EL2 and has SCR_EL3.EEL2 == 0, the following rules apply:

* When SMMU_S_IDR1.SEL2 == 0, invalidation scope is not determined by VMID and invalidation occurs
as described in 3.17.2 Broadcast TLB maintenance from Armv8-A PEs with EL3 in AArch64 and in [2].

* When SMMU_S_IDR1.SEL2 == 1, the invalidation operations are interpreted as though they have VMID 0.

— Note: When Secure EL2 is implemented, StreamWorld=Secure TLB entries that are inserted from
configuration with stage 2 disabled are tagged with VMID 0. See section 3.10.3 Secure EL2 and support
for Secure stage 2 translation.

Note: When a PE that does not implement Secure EL2 executes VMALLS12, it is only guaranteed to emit a
broadcast TLBI with scope of stage 1 and VMID==0.

For broadcast TLB maintenance with Secure EL1 scope from a PE that has SCR_EL3.EEL2 == 1, the following
rules apply:

e When SMMU_S_IDR1.SEL2 == 0, SMMU TLB entries are not required to be affected.
e When SMMU_S_IDRI1.SEL2 == 1, TLB entries that are in scope of both the invalidation operation and the
supplied VMID are invalidated.

Note: Arm recommends that care is taken when integrating an SMMU implementation of SMMUv3.1 or earlier
into a system that supports broadcast TLB maintenance from PEs implementing Secure EL2. Arm recommends
that broadcast TLB maintenance from a PE that has SCR_EL3.EEL2 == 1 does not affect Secure SMMU TLB
entries, and that steps are taken to ensure that malfunction is avoided if the SMMU receives new Secure broadcast
TLB maintenance operations that contain a VMID.

3.17.3 Broadcast TLB maintenance from ARMv7-A PEs or Armv8-A PEs with EL3 using

AArch32

ARM IHI 0070
E.a

When the Secure Stream table is controlled by an ARMv7-A PE or an Armv8-A PE where EL3 is using AArch32
state, Arm expects software to mark the StreamWorld of an STE as Secure. The resultant TLB entries are tagged
as Secure, including an ASID if non-global. Such entries are invalidated by:

* PE broadcast TLB invalidations (where supported and if CD.ASET allows) from Secure instructions with the
following scope:

MVA({L}

MVAA({L}

ASID, for non-global entries

- ALL

Note: VA{L}E3 and ALLE3 are AArch64-only and unavailable in this scenario.

* SMMU invalidation commands on the Secure Command queue. These commands are:

— CMD_TLBI_NH_ALL

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 106
Non-confidential

Chapter 3. Operation
3.17. TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance

— CMD_TLBI_NH_ASID, for non-global entries
— CMD_TLBI_NH_VAA
- CMD_TLBI_NH_VA

Note: Broadcast invalidations from ARMv7-A PEs or Armv8 PEs where EL3 is using AArch32 might fail to
invalidate SMMU TLB entries that are tagged with StreamWorld == EL3.

3.17.4 Broadcast TLB maintenance in mixed AArch32 and AArch64 systems and with mixed
ASID or VMID sizes

Broadcast TLB maintenance instructions that are executed from Armv7-A and Armv8-A PEs using AArch32 and
AArch64 Exception levels affect SMMU TLB entries (if broadcast TLB invalidation is supported and participation
enabled), when the addresses, ASIDs, VMIDs and StreamWorlds match as appropriate.

The exceptions are:

¢ If a PE where EL3 uses AArch32 state issues an AArch32 TLBI that affects Secure entries, the TLBI is not
required to affect SMMU TLB entries that were created with StreamWorld == EL3.

¢ If a PE where EL3 uses AArch64 state issues an AArch64 or AArch32 TLBI that affects Secure EL1 entries,
the TLBI is not required to affect SMMU TLB entries created with StreamWorld == EL3.

e If a PE where EL3 uses AArch64 state issues an AArch64 TLBI that affects EL3 entries, the TLBI is not
required to affect SMMU TLB entries created with StreamWorld == Secure.

ARMv7-A PEs have 8-bit ASIDs and VMIDs. Armv8-A PEs might have 16-bit ASIDs or VMIDs
or both. An SMMU implementation supports 8-bit or 16-bit ASIDs and VMIDs, as indicated by
SMMU_IDRO.{ASID16,VMID16}.

A difference in ASID or VMID size between the originator of the broadcast TLB maintenance instruction and the
SMMU is resolved as follows. For each of ASID and VMID:

¢ An SMMU that supports a 16-bit ASID or VMID compares the incoming 16-bit broadcast value to its TLB
tags directly and matches if the values are equal.

— The incoming 16-bit value is constructed by the system from an originator with an 8-bit ASID or VMID
by zero-extending the value to 16 bits.

* An SMMU that supports an 8-bit ASID or VMID compares the bottom 8 bits of the incoming broadcast
values to its TLB tags:

— The comparison is required to match if the bottom 8 bits are equal and the top 8 bits are zero.
— The comparison is not required to, but might, match if the bottom 8 bits are equal but the top 8 bits are
non-zero.

When the SMMU supports 16-bit ASIDs, that is when SMMU_IDR0.ASID16 == 1, it does so for all StreamWorlds
that use ASIDs (NS-EL1, Secure, any-EL2-E2H). The SMMU does not differentiate ASID size by AArch32 state
contexts, as does an Armv8-A PE and, if supported by an implementation, 16-bit ASIDs can be used in CDs where
CD.AA64 == 0. Arm expects that legacy software will continue to write zero-extended 8-bit values in the ASID
field in this case. The same behavior applies for 16-bit VMIDs, when SMMU_IDR0.VMID16 == 1, the behavior
of which is not modified by STE.S2AA64 == 0.

3.17.5 EL2 ASIDs and TLB maintenance in EL2 Host (E2H) mode

The Non-secure programming interface supports StreamWorlds NS-EL2 and NS-EL2-E2H that correspond to PE
Exception level EL2 in Non-secure state with and without E2H mode. When Secure EL2 is supported, the Secure
programming interface supports StreamWorld S-EL2 and S-EL2-E2H that correspond to PE Exception level EL2
in Secure state with and without E2ZH mode.

The EL2 translation regime consists of:

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 107
E.a Non-confidential

Chapter 3. Operation
3.17. TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance

ARM IHI 0070
E.a

* A stage 1 translation with one translation table without user permission checking.
* TLB entries that are not tagged with an ASID.

In E2H mode, the EL2 translation regime remains stage 1-only, but consists of two stage 1 translation tables that
function the same way as those for an EL1 stage 1 translation. The resulting TLB entries are tagged as EL2, and
might include an ASID. Non-secure EL2-E2H mode can be configured for Non-secure STEs using STE.STRW
when SMMU_IDRO.Hyp == 1 and SMMU_CR2.E2H == 1. Secure EL2-E2H mode can be configured for Secure
STEs using STE.STRW when SMMU_S_IDRI1.SEL2 == 1 and SMMU_S_CR2.E2H == 1.

Note: In the Armv8.1-A architecture [2], EL2-E2H mode is referred to as the Virtualization Host Extensions.

Broadcast TLB maintenance from a PE affects SMMU TLB entries when the whole system uses EL2 or EL2-E2H
mode. Broadcast messages from a PE running in EL2-E2H supply an EL2 scope, and also supply an ASID to
match. In addition, EL2-E2H mode extends the set of EL2 broadcast invalidations to the following operations:

* Invalidate all, for EL2-tagged entries.

¢ Invalidate by VA and ASID, for EL2.

* Invalidate by VA in all ASIDs, for EL2.
* Invalidate all by ASID, for EL2.

If a PE running at EL2 uses E2H mode, but an SMMU contains TLB entries that were inserted with StreamWorld
== any-EL2 configuration, the EL2-E2H broadcast invalidations from the PE are not required to invalidate these
TLB entries.

If a PE running at EL2 does not use E2H mode, but an SMMU contains TLB entries that were inserted with
StreamWorld == any-EL2-E2H configurations, EL2 broadcast invalidations from the PE are not required to
invalidate these TLB entries.

Note: For each Security state, if broadcast invalidation is required for translations controlled by EL2 software,
Arm recommends that StreamWorld == any-EL?2 is used when the corresponding Security state in host PEs does
not use E2H mode, and that StreamWorld == any-EL2-E2H is used when the corresponding Security state in host
PEs use the E2H mode.

An implementation is not required to differentiate TLB entries with StreamWorld == any-EL2 from those with
StreamWorld == any-EL2-E2H. Arm expects that, for a given Security state, the SMMU is programmed in a way
that ensures that TLB entries of both of these StreamWorlds never coexist in translation caches. Therefore:

¢ A change to SMMU_CR2.E2H must be accompanied by an invalidation of all TLB entries that could have
been created from a Non-secure STE with StreamWorld == NS-EL2 or StreamWorld == NS-EL2-E2H. See
6.3.12.3 E2H for details.

* A change to SMMU_S_CR2.E2H must be accompanied by an invalidation of all TLB entries that could have
been created from a Secure STE with StreamWorld == S-EL2 or StreamWorld == S-EL2-E2H.

* The behavior of TLB invalidation commands CMD_TLBI_EL2_VAA and CMD_TLBI_EL2_VA might
change depending on SMMU_CR2.E2H, see the individual commands for details.

¢ The behavior of TLB invalidation commands CMD_TLBI_S_EL2_VAA and CMD_TLBI_S_EL2_VA might
change depending on SMMU_S_CR2.E2H, see the individual commands for details.

Note: A TLB lookup through a configuration with StreamWorld == any-EL2-E2H matches the ASID of the
configuration with the ASID tag of the EL2 TLB entry, unless the entry is marked Global. A TLB insertion through
the same configuration inserts a TLB entry tagged with the ASID of the configuration unless the translation is
Global. When StreamWorld == any-EL2 a TLB lookup does not match the ASID tag of EL2 TLB entries, nor does
a TLB insertion tag the entry with a known ASID value. A change to SMMU_CR2.E2H or SMMU_S_CR2.E2H
can cause unexpected TLB entries to match.

Note: SMMU_CR2.E2H and SMMU_S_CR2.E2H may also be cached in a Configuration Cache.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 108
Non-confidential

Chapter 3. Operation
3.17. TLB tagging, VMIDs, ASIDs and participation in broadcast TLB maintenance

3.17.6 VMID Wildcards

Some virtualization use cases involve the presentation of different views of page permissions in the same address
space to different device streams. The mechanism by which one address space is split into more than one view is
outside the scope of this document.

Note: STEs in the same Security state and with different translation table pointers must have different VMIDs.
TTBs in the same VMID are considered equivalent within a Security state.

In the SMMU, SMMU_CRO0.VMW controls a VMID wildcard function that enables groups of Non-secure VMIDs
to be associated with each other for the purposes of invalidation. An invalidation operation that matches on
Non-secure VMID matches one exact VMID or ignores a configured number of VMID LSBs, as configured by
SMMU_CR0.VMW.

Note: For example, SMMU_CR0.VMW might configure 1 LSB of VMID to be ignored so an incoming broadcast
invalidate for VMID 0x0020 matches TLB entries tagged with VMID 0x0020 or 0x0021. This configuration
allows VMIDs to be allocated in groups of adjacent or contiguous values, using one VMID in the PEs for the VM
and one or more of the others to support different IPA address space views in different device stage 2 configurations.

Both broadcast TLB invalidation and explicit SMMU TLB invalidation commands, whether for stage 1 within the
guest or at stage 2, affect all Non-secure VMIDs that match the group wildcard when SMMU_CRO.VMW != 0.

Note: The broadcast TLB invalidation mechanisms that might exist on a PE and interconnect are not modified
by this feature. The VMW field modifies the internal behavior of the SMMU on receipt of such a broadcast
invalidation.

The VMID wildcard controlled by SMMU_CRO0.VMW only affects a VMID that matches on invalidation. The
SMMU continues to store all bits of VMID in the TLB entries that require them, and does not allow dissimilar
VMID values to alias on lookup.

The SMMU_S_CRO.VMW field provides a second Secure VMID wildcard feature that works in a similar way as
described in this section, except affects Secure VMIDs only.

3.17.7 Broadcast TLB maintenance for GPT information

ARM IHI 0070
E.a

An SMMU with RME and SMMU_ROOT_IDR0O.BGPTM == 1 participates in broadcast TLBI *PAx* instructions
from PEs that are executing in EL3.

Consistent with the definition in the RME specification [5], a TLBI *PAx to the Outer Shareable shareability
domain affects the SMMU.

This applies to all SMMUs with RME and SMMU_ROOT_IDR0O.BGPTM == 1, regardless of the values of
SMMU_IDRO.BTM and SMMU_(S_)CR2.PTM.

Note: The behavior of SMMU_IDRO.BTM and SMMU_(S_)CR2.PTM applies only to broadcast invalidations
relating to stage 1 and stage 2 translation.

Note: An SMMU with RME does not have to receive the other broadcast TLBI operations. Support for broadcast
operations is indicated in SMMU_IDRO.BTM and configured in SMMU_(S_)CR2.PTM.

Note: The SMMU guarantees the same rules around observability and completion of TLBI +PAx and DSB
instructions as defined in the RME specification.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 109
Non-confidential

Chapter 3. Operation
3.18. Interrupts and notifications

3.18 Interrupts and notifications

Events that are recorded to the Event queues, PRI requests and Global errors have associated interrupts to allow
asynchronous notification to a PE.

An implementation might support Message Signaled Interrupts (MSIs) which take the form of a 32-bit data write
of a configurable value to a configurable location, typically, in GICv3 systems, the GITS_TRANSLATER or
GICD_SETSPI_NSR registers. For more information, see [7]. When SMMU_S_IDR1.SECURE_IMPL == 1,
Arm expects notifications that were generated by Secure events to set Secure SPIs using the GICD_SETSPI_SR
register in systems that implement the GICv3 architecture.

An implementation must support one of, or optionally both of, wired interrupts and MSIs. Whether
an implementation supports MSIs is discoverable from SMMU_IDR0.MSI and SMMU_S_IDRO.MSI. An
implementation might support wired interrupt outputs that are edge-triggered. The discovery of support for
wired interrupts is IMPLEMENTATION DEFINED.

Support for MSIs is independent for Non-secure and Secure states. Arm recommends that an implementation does
not support Secure MSIs without also supporting Non-secure MSIs.

It is not permitted for an interrupt notification of the presence of new information to be observable before the new
information is also observable. This applies to MSI and wired interrupts, when:

* A Global error condition arises. The change to the Global error register, GERROR, must be observable if the
interrupt is observable.

* New entries are written to an output queue. The presence of the new entries must be observable to reads of
the queue index registers if the interrupt is observable. See section 3.5.2 Queue entry visibility semantics.

* A CMD_SYNC completes. The consumption of the CMD_SYNC must be observable to reads of the queue
index registers if the interrupt is observable.

Each MSI can be independently configured with a memory type and Shareability. This makes it possible to target
a Device MSI target register or a location in Normal memory (that might be cached and shareable). See the
SMMU_IDRO.COHACC field, which indicates whether the SMMU and the system support coherent accesses,
including MST writes.

Note: A PE might poll this location or might, for example in Armv8-A PEs, wait for loss of an exclusive reservation
that covers an address targeted by the notification. In this example, an Armv8-A PE with an SMMU that is capable
of making shared cacheable accesses can achieve the same behavior as a WFE wake-up event notification (see
CMD_SYNC) without wired event signals, using MSIs that are directed at a shared memory location.

Note: If the destination of an MSI write is a register in another device, Arm recommends that it is configured with
Device-nGnRnE or Device-nGnRE attributes.

The SMMU does not output inconsistent attributes as a result of misconfiguration. Outer Shareable is used as the
effective Shareability when Device or Normal Inner Non-cacheable Outer Non-cacheable types are configured.

MSIs that are generated by Secure sources are performed with Secure accesses and target the Secure PA space.
MSIs from Non-secure sources are performed with Non-secure accesses and they target the Non-secure PA space.
Apart from the memory type, Shareability and NS attributes of MSIs, all other attributes of the MSI write are
IMPLEMENTATION DEFINED.

A GICv3 Interrupt Translation Service (ITS) differentiates interrupt sources using a DevicelD. To support this, the
SMMU does the following:

a) Passes StreamIDs of incoming client device transactions. These generate DevicelDs in a system-specific
manner.

b) Produces a unique DevicelD of its own, one that does not overlap with those produced for client devices,
for outgoing MSIs that originate from the SMMU. As with any other MSI-producing Requester, this is set
statically in a system-defined manner.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 110
E.a Non-confidential

Chapter 3. Operation
3.18. Interrupts and notifications

SMMU MSIs are configured with several separate pieces of register state. The MSI destination address, data
payload, Shareability, memory type and enables in combination construct the MSI write, onto which the unique
DevicelD of the SMMU is attached.

Edge-triggered interrupts can be coalesced within the system interrupt controller. The SMMU can internally
coalesce events and identical interrupts so that only the latest interrupt is sent, but any coalescence must not
significantly delay the notification. This applies to both MSIs and edge-triggered wired interrupts.

When MSIs are not supported, the interrupt configuration register fields that would configure MSI address and data
are unused. Only the interrupt Enable field is used.

3.18.1 MSI synchronization

The SMMU ensures that previously-issued MSI writes are completed at the following synchronization points:

* For register-based MSI configuration, the act of disabling an MSI through SMMU_(S_)IRQ_CTRL, see
Chapter 6 Memory map and registers.

* A CMD_SYNC ensures completion of MSIs that originate from the completion of prior CMD_SYNC
commands that were consumed from the same Command queue.

Completion of an MSI guarantees that the MSI write is visible to its Shareability domain or, if
an abort response was returned, ensures that the abort is visible in GERROR with the appropriate
SMMU_(S_)GERROR.MSI_*_ABT_ERR flag.

Note: Completion of an MSI terminated with abort sets a GERROR flag but does not guarantee completion of a
subsequent GERROR interrupt that might be raised to signal the setting of the flag.

The two synchronization points define a point in time, ¢, for the respective interrupt sources. If MSIs are related to
occurrences before this point ¢, they do not become visible after point z.

In the case of register-based MSI configurations, the additional guarantee is made that MSIs triggered after the
MSI is re-enabled will use the new configuration.

For more information on interrupt enable and synchronization, see SMMU_IRQ_CTRL.

Interrupt sources

ARM I[HI 0070

The SMMU has the following interrupt sources. Depending on the implementation, each interrupt source asserts a
wired interrupt output that is unique to the source, or sends an MSI, or both.

Source Trigger reason Notes
Event queue Event queue transitions from empty -
Secure Event queue to non-empty -
PRI queue PRI queue interrupt condition, see -

SMMU_PRIQ_IRQ_CFG2

Command queue CMD_SYNC Sync complete, with option of MSI configuration (desitination,
Secure Command queue generated interrupt data) present in command
CMD_SYNC

GERROR Global error activated in -

SMMU_GERROR registers

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 111
Non-confidential

Chapter 3. Operation
3.18. Interrupts and notifications

ARM IHI 0070
E.a

S_GERROR Secure Global Error activated -
in SMMU_S_GERROR registers

Each interrupt source can be enabled individually through SMMU_IRQ_CTRL and SMMU_S_IRQ_CTRL if
present. If enabled, a pulse is asserted on a unique wired interrupt output, if this is implemented. If enabled, an
MSTI is sent if MSIs are supported and if the MSI configuration of the source enables the sending of an MSI by
using an ADDR value that is not zero.

This allows an implementation that supports both MSIs and wired interrupts to use both types concurrently. For
example, the Secure programming interface might use wired interrupts (whose source would be enabled, but with
the MSI ADDR == 0 to disable MSIs) and the Non-secure programming interface might use MSIs (whose source
would be enabled and have MSI address and data configured).

The conditions that cause an interrupt to be triggered are all transient events and interrupt outputs are effectively
edge-triggered. There is no facility to reset the pending state of the interrupt sources.

Where an implementation supports RAS features, additional interrupts might be present. The operation,
configuration and assertion of these interrupts has no effect on any of the interrupts listed in this section for
normal SMMU usage. See Chapter 12 Reliability, Availability and Serviceability (RAS) for more information on
RAS features.

An SMMU with RME has two additional wired interrupts. See section 3.24.5 SMMU behavior if a GPC fault is
active for details.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 112
Non-confidential

Chapter 3. Operation
3.19. Power control

3.19 Power control

An implementation might support implementation specific automatic power saving techniques, for example, power
and clock gating, retention states during idle periods of normal operation. All use of these techniques is functionally
invisible to devices and software. If implemented, these automatic powerdown or retention states:

* Might retain all valid cache contents or might cause loss of cached information.

* Do not allow undefined cache contents to become valid, valid cache contents to change, or otherwise corrupt
any SMMU state.

» Seamlessly operate with wake on demand behavior in the event of incoming device transactions.

Alternatively, a system might allow an SMMU to be powered off at the request of system software, in an
IMPLEMENTATION DEFINED manner. This state is requested when no further SMMU operation is required by the
system. Software must not make accesses to the SMMU programming interface in this state. If more than one
Security state is supported, this power off state is not entered unless privileged software from all Security states
which either configure or use the SMMU request for or agree to a powerdown.

Because such a power off represents a complete loss of state and functionality, this state must only be used when
all client devices and interconnect are quiescent. Software must disable client device DMA and ensure any SMMU
commands, invalidations and transactions from client devices that are in progress are complete before requesting
powerdown. If any existing transactions are in a stalled state at the time of the powerdown, they must be terminated
with an abort. The behavior when a transaction arrives at the SMMU after the powerdown state is entered is
UNPREDICTABLE.

On an IMPLEMENTATION DEFINED wakeup event, the SMMU must be reset and the return of the SMMU to
software control is signaled through an IMPLEMENTATION DEFINED mechanism. The SMMU is then in a state
consistent with a full reset and the SMMU registers are required to be re-initialized before client devices can be
enabled.

3.19.1 Dormant state

ARM IHI 0070
E.a

Implementations might provide automatic powerdown modes during idle periods in which SMMU registers
are accessible but internal structures might be powered down. An implementation might provide a hint to
software, through the SMMU_STATUSR.DORMANT flag, that it contains no cached configuration or translation
information, possibly because of cache powerdown. Software can use this flag to determine that no structure or
TLB invalidation is required and avoid issuing maintenance commands.

When SMMU_STATUSR.DORMANT == 1, the SMMU guarantees that:

* No caches of any structures or translations are present.

* Any required configuration or translation information will access the information in the configuration
structures or translation tables in memory.

* No pre-fetch of any configuration or translation data is in progress.

* If any structures or translations were altered in memory, no stale version will be used by the SMMU.

Software can make use of this flag by:

1. Altering translations or configuration structure data.
2. Testing the flag
o If the flag is O, issuing invalidation commands or broadcast invalidation messages to invalidate any
potentially-cached copies.
* If the flag is 1, avoiding invalidation of the altered structure.

An implementation is not required to support this hint, and software is not required to take note of this hint.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 113
Non-confidential

Chapter 3. Operation
3.20. TLB and configuration cache conflict

3.20 TLB and configuration cache conflict

3.20.1 TLB conflict

A programming error might cause overlapping or otherwise conflicting TLB entries to be generated in the SMMU.
When an incoming transaction matches more than one TLB entry, this is an error. An implementation is not
required to detect any or all TLB conflict conditions, but Arm recommends that an implementation detects TLB
conflict conditions wherever possible.

If an implementation detects a TLB conflict, all of the following apply:

* It aborts the transaction that caused the lookup that resulted in conflict.

* It attempts to record a F_TLB_CONFLICT event. The F_TLB_CONFLICT event contains IMPLEMENTA-
TION DEFINED fields that might include diagnostic information that exposes implementation specific TLB
layout.

If an implementation does not detect a TLB conflict experienced by a transaction, behavior is UNPREDICTABLE,
with the restriction that a transaction cannot access a physical address to which the configuration of a stream does
not explicitly grant access.

A TLB conflict never enables transactions to do any of the following:

* Match a TLB entry tagged with a different VMID to that under which the lookup is performed.

* Match a TLB entry tagged with a different Security state to that under which the lookup is performed.

* Match a TLB entry tagged with a different StreamWorld to that under which the lookup is performed.

* When stage 2 is enabled, access any physical address outside of the set of PAs configured in the stage 2
translation tables that a given transaction is configured to use.

Any failure to invalidate the TLB by code running at a particular level of privilege does not give rise to the
possibility of a device under control of that level of privilege accessing regions of memory with permissions or
attributes that could not be achieved at that same level of privilege.

Note: For example, a stream configured with StreamWorld == NS-EL1 must never be able to access addresses
using TLB entries tagged with a different VMID, or tagged as Non-secure EL2, Secure EL2, EL3, or Secure.

A TLB conflict caused by a transaction from one stream must not cause traffic for different streams with other
VMID, StreamWorld, or Security configurations to be terminated. Arm recommends that an implementation does
not cause a TLB conflict to affect traffic for other ASIDs within the same VMID configuration.

3.20.2 Configuration cache conflicts
All configuration structures match a fixed-size lookup span of one entry with the exception of the STE, which
contains a CONT field allowing a contiguous span of STEs to be represented by one cache entry.

A programming error might cause an STE to be cached with a span that covers an existing cached STE, which
results in an STE lookup matching more than one STE.

An implementation is not required to detect any or all configuration cache conflict conditions but Arm recommends
that an implementation detects conflict conditions wherever possible.

If an implementation detects a configuration cache conflict, all of the following apply:

 The transaction that caused the lookup that resulted in conflict is aborted.

e The SMMU attempts to record a F_CFG_CONFLICT event. The F_CFG_CONFLICT event contains IMPLE-
MENTATION DEFINED fields that might include diagnostic information that exposes implementation-specific
cache layout.

If an implementation does not detect a conflict experienced by a transaction, behavior is UNPREDICTABLE.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 114
E.a Non-confidential

Chapter 3. Operation
3.20. TLB and configuration cache conflict

A configuration cache conflict cannot cause an STE to be treated as though it is associated with a different Security
state.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 115
E.a Non-confidential

Chapter 3. Operation
3.21. Structure access rules and update procedures

3.21 Structure access rules and update procedures

3.21.1 Translation tables and TLB invalidation completion behavior

Translation table walks, caching, TLB invalidation, and invalidation completion semantics match those of Armv8-A
[2], including rules on prefetch and caching of valid translations only. If intermediate translation table data is
cached in the SMMU (a walk cache) this is invalidated during appropriate TLB maintenance operations in the
same way as it would be on a PE.

Explicit TLB invalidation maintains TLB entries when the translation configuration has changed, to ensure visibility
of the new configuration. Translation configuration is the collective term for translation table descriptors and the
set of SMMU configuration information that is permitted to be cached in the TLB. This maintenance is performed
from a PE using TLBI broadcast invalidation or using explicit CMD_TLBI_* commands.

A broadcast TLB invalidation operation becomes visible to the SMMU after a Shareable TLBI instruction is
executed by a PE in a common Shareability domain. A command TLB invalidation operation becomes visible to
the SMMU after it is consumed from the Command queue.

A TLB invalidation operation is complete after all of the following become true:
* All TLB entries targeted by the scope of the invalidation have been invalidated.

* Any relevant HTTUs are globally visible to their Shareability domain as set out in section 3.13.4 HTTU
behavior summary.

* No accesses can become visible to their Shareability domain using addresses or attributes that are not
described by the translation configuration, as observed after the invalidation operation became visible. This
means that invalidation completes after:

— All translation table walks that could, prior to the start of the invalidation, have formed TLB entries that
were targeted by the invalidation are complete, so that all accesses to any fetched levels of the translation
table are globally visible to their Shareability domain. This applies to a translation table walk performed
for any reason, including:

* A translation table walk that makes use of walk caches that are targeted by the invalidation.

* A stage 2 translation table walk that are performed because of a stage 1 descriptor fetch, CD fetch
or L1CD fetch.

Note: To achieve this, a translation table walk might be stopped early and the partial result discarded.

— SMMU-originated accesses that were translated using TLB entries that were targeted by the invalidation
are globally visible to their Shareability domain. These accesses are stage 1 descriptor accesses, CD
fetches or L1CD fetches.

— Where a stage 2 invalidation targets TLB entries that might have translated a stage 1 descriptor access,
the stage 1 descriptor access is required to be globally visible by the time of the invalidation completion,
but neither the overall stage 1 translation table walk or the operation that caused the stage 1 translation
table walk are required to be globally visible. Otherwise, for stage 1 and stage land stage 2 scopes of
invalidation, all client device transactions that were translated using any of the TLB entries that were
targeted by the invalidation are globally visible to their Shareability domain.

— The result of an ATOS operation cannot be based on addresses or attributes that are not described by
translation configuration that could have been observed after the invalidation operation became visible.

Note: An in-progress translation table walk (performed for any reason, including prefetch) can be affected by
a TLB invalidation, if the TLB invalidation could have invalidated a cached intermediate descriptor that was
previously referenced as part of the walk. The completion of a TLB invalidation ensures that a translation table
walk that could have been affected by the TLB invalidate is either:

* Fully complete by the time the TLB invalidation completes.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 116
E.a Non-confidential

Chapter 3. Operation
3.21. Structure access rules and update procedures

 Stopped and restarted from the beginning.

Note: This ensures that old or invalid pointers to translation sub-tables are never followed after a TLB invalidation
(whether broadcast or CMD_TLBI_*) is complete. Completion of a TLB invalidation means the point at which a
broadcast invalidation sync completion is returned to the system (for example, on AMBA interconnect, completion
of a DVM Synch), or, for CMD_TLBI_* invalidations, the completion of a later CMD_SYNC command.

Note: The architecture states that where a translation table walk is affected by a TLB invalidation, one option
is that the walk is stopped by the completion of the invalidation. An implementation must give this appearance,
which means no observable side-effects of doing otherwise could ever be observed. However, after an invalidation
completion that affects prior translation table reads made before the invalidation, an implementation is permitted
to make further fetches of a translation table walk if, and only if, it is guaranteed that these reads have no effect
on the SMMU or the rest of the system, are not made to addresses with read side-effects and will not affect the
architectural behavior of the system.

Translation cache entries (pertinent to a Security state) are not inserted when SMMU_(S_)CRO.SMMUEN == 0.

3.21.1.1 Translation tables update procedure

When altering a translation table descriptor, the Armv8-A VMSA [2] before v8.4-A, and SMMUv3 architectures
before SMMUV3.2, require a break-before-make procedure for:

* Changes to memory type.

* Changes to Cacheability attributes.

* Changes to output address.

* Changes to block or page size.

* Creating a global entry where there might be non-global entries in a TLB that overlap the global entry.

Note: For example, to split a block into constituent granules (or to merge a span of granules into an equivalent
block), VMSA requires the region to be made invalid, a TLB invalidate performed, then to make the region take
the new configuration.

Note: The requirement for a break-before-make sequence can cause problems for unrelated I/O streams that might
use addresses overlapping a region of interest, because the I/O streams cannot always be conveniently stopped and
might not tolerate translation faults. It is advantageous to perform live update of a block into smaller translations,
or a set of translations into a larger block size.

The Armv8.4 [2] architecture offers 3 levels of support when changing block size without changing any other
parameters that are listed as requiring use of break-before-make. These are described as Level 0, 1 and 2, where
Level 0 is equivalent to the pre-Armv8.4 requirements.

Implementations of SMMUv3.2 or later are required to support Level 1 or Level 2 behavior, as indicated by
SMMU_IDR3.BBML.

Note: Arm recommends that an implementation supports Level 2 behavior for performance reasons.

Note: Armv8.4 permits the PE to report a TLB conflict abort in a wider range of scenarios than are permitted by
SMMUv3.2.

Note: The requirement for support of Level 1 or 2 and the stricter requirements regarding TLB conflict abort
means that an implementation of SMMUv3.2 or later guarantees that a mechanism is available to change block or
page size without interrupting I/O streams with a fault.

The Armv8.4 VMSA adds a new bit, ‘nT’, at bit [16] in Block translation descriptors, which is supported by an
implementation of SMMUv3.2 or later in the same way as for the PE, depending on the BBML level as described
below. The nT bit allows a valid Block descriptor to be used for translation but prevents it from being cached in a
way that can cause a TLB conflict with existing TLB entries.

The SMMUV3 architecture requirements in a TLB conflict scenario are not affected by BBML level.

Note: When multiple system components, whether SMMU, PE or other, are sharing one translation table then
behavior according to the lowest common break-before-make Level must be used when updating the table.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 117
E.a Non-confidential

Chapter 3. Operation
3.21. Structure access rules and update procedures

3.21.1.2 When SMMU_IDR3.BBML == 1 (Level 1)

The implementation requires software to use the nT bit when changing translation size without using a
break-before-make procedure. An F_TLB_CONFLICT fault might occur if a translation table update is made
without using break-before-make or the nT bit.

Setting nT == 1 does not cause a fault.

Note: A Translation Fault is a permitted behavior for a level 1 Armv8.4 PE with nT == 1, but this is prohibited in a
level 1 SMMU.

A Block descriptor having nT == 1 is not cached in a way that will cause a TLB conflict.

Note: One interpretation of the nT bit is to prevent the caching of a translation when nT == 1. This might
significantly impact translation performance for the lifetime of the translation table entry.

In a Level 1 SMMU a change to only the Contiguous bit, bit 52 in the descriptor, at either block or page level
and with other properties unchanged, does not lead to a TLB conflict fault. When the Armv8-A requirements
for use of the Contiguous bit are followed, a change to the Contiguous bit can be performed without using a
break-before-make procedure and without using the nT bit in the case of a Block descriptor.

Note: Example implementation styles include ignoring the Contiguous bit at all levels, or reconciling the output of
any overlapping TLB entries that might result.

Note: A change from a block translation to an equivalent span of page translations can be performed by changing
the nT bit of the Block descriptor from O to 1, followed by TLB invalidation of the block, followed by replacement
of the Block descriptor with a Table descriptor to a next-level table containing equivalent page translations,
followed by TLB invalidation of the affected range.

Note: A change from a span of page translations to an equivalent block translation can be performed by changing a
mid-level Table descriptor to a Block descriptor having nT == 1, followed by TLB invalidation of the affected
range, followed by an update of the nT bit of the Block descriptor from 1 to 0, followed by TLB invalidation of the
block.

Note: The use of the nT bit in these procedures ensures that a TLB multi-match scenario cannot arise.

3.21.1.3 When SMMU_IDR3.BBML == 2 (Level 2)

The implementation ignores the nT bit in the Block descriptor and a change to a translation size can be performed
without using break-before-make and without using the nT bit. The implementation automatically resolves any
TLB multi-hit scenarios and an F_TLB_CONFLICT fault does not occur.

If a change is made to the size of a valid translation without first making the translation invalid, then:
* A TLB conflict does not occur and F_TLB_CONFLICT is never reported.
 All of the following apply for translations that might discover multiple matching TLB entries for an address:

— They are translated using information from at most one of the matching entries.
— They do not experience a fault that would not otherwise be possible using the translation table descriptor
state from either before or after the update.

¢ The result of a translation:

— Does not combine information from multiple matching TLB entries.
— Does not combine information from the state of a descriptor both before and after the update.
— Does not contain information that was not present in a valid tdescriptor.

Note: An implementation might achieve this behavior by resolving a TLB lookup that has multiple matches by
choosing zero or one of the results, or by causing an invalidation of all of the matching entries followed by a
re-fetch of the translation.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 118
E.a Non-confidential

Chapter 3. Operation
3.21. Structure access rules and update procedures

A TLB invalidation operation removes all matching TLB entries even if overlapping entries exist for a given
address.

The rules on TLB invalidation or the atomicity of a descriptor are not affected by BBML level.

The behavior and usage requirements of the Contiguous bit in a Level 2 implementation is the same as in a Level 1
implementation. A change to the Contiguous bit can be performed without using break-before-make and without
using the nT bit, and does not lead to a TLB conflict fault.

Note: Arm expects that a Level 2 implementation will also automatically resolve TLB multi-hit scenarios that
might arise from a change to a Contiguous bit and recommends that the Contiguous bit is not ignored.

Note: Arm expects that the only change that is made to a valid translation table descriptor is that of changing the
page or block size of a range of addresses. A change to memory type, Cacheability, nG or output address might
impair coherency or ordering semantics of accesses using the translation.

Note: A change from one set of translations to another equivalent set by changing the translation size can be
performed by replacing a block or range of pages with equivalent translations of a different size, followed by TLB
invalidation of the affected range.

3.21.2 Queues

The SMMU does not write to the Command queue. The SMMU writes to the PRI and Event queues. Arm expects
the PRI queue and Event queue to be read but not modified by the agent controlling the SMMU. Writes to the
Command queue do not require any SMMU action to ensure that the SMMU observes the values written, other than
a write of the PROD register of the Command that causes the written command entries to be considered valid for
SMMU consumption. If the SMMU internally caches Command queue entries, no other explicit maintenance of
this cache is required. Arm expects that the SMMU is configured to read the queue from the required Shareability
domain in at least an IO-coherent manner, or that both the SMMU and other entities make non-cached accesses to
the queue so that Cache Maintenance Operations are not required.

To issue commands to the SMMU, the agent submitting the commands:

1. Determines (using PROD/CONS indexes) that there is space to insert commands.

2. Writes one or more commands to the appropriate location in the queue.

3. Performs a DSB operation to ensure observability of data written in step (2) before the update in step (4).
4. Updates the Command queue’s PROD index register to publish the new commands to the SMMU.

Software is permitted to write any entry of the Command queue that is in an empty location between CONS and
PROD indexes.

The SMMU might read and internally cache any command that is in a full location between PROD and CONS
indexes If a command is cached, the cache is not required to be coherent with PE caches but if it is not coherent
the following rules apply:

* When the SMMU stops processing commands because of a Command queue error, or when the queue is
disabled, the SMMU invalidates all commands that it might have cached.

¢ A cached command must only be consumed one time and no stale cached value can be used instead of a new
value when the queue location is later reused for a new command.

Note: The first rule means software can fix up or replace commands in the queue after an error, or while the queue
is disabled, without performing any other synchronization other than re-starting command processing.

Software must not alter memory locations representing commands previously submitted to the queue until those
commands have been consumed, as indicated by the CONS index, and must not assume that any alteration to a
command in a full location will be observed by the SMMU.

Software must only write the CONS index of an output queue (Event queue or PRI queue) in a consistent manner,
with the appropriate incrementing and wrapping, unless the queue is disabled. If this rule is broken, for example
by writing the CONS index with a smaller value, or incorrectly-wrapped index, the queue contents are UNKNOWN.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 119
E.a Non-confidential

Chapter 3. Operation
3.21. Structure access rules and update procedures

Software must only write the PROD index of the Command queue in a consistent manner, with the appropriate
incrementing and wrapping, unless the queue is disabled or a command error is active, see section 7.1 Command
queue errors. If this rule is broken, one of the following CONSTRAINED UNPREDICTABLE behaviors occurs:

* The SMMU executes one or more UNPREDICTABLE commands.
* The SMMU stops consuming commands from the Command queue until the queue is disabled and re-enabled.

3.21.3 Configuration structures and configuration invalidation completion

The entries of the configuration structures, the Stream table and Context Descriptors, all contain fields that
determine their validity. An SMMU might read any entry at any time, for any reason.

STEs and CDs contain a valid flag, V. A structure is considered valid only when the SMMU observes it contains V
== 1 and no configuration inconsistency in its fields causes it to be considered ILLEGAL.

Some structures contain pointers to subsequent tables of structures (STE.S1ContextPtr, (L1STD.L2Ptr) and
LICD.L2Ptr). If a structure is invalid, the pointers within it are invalid. The SMMU does not follow invalid
pointers, whether speculatively or in response to an incoming transaction.

STEs in a linear Stream table and L1ST descriptors in a multi-level Stream table are located through the
SMMU_(S_)STRTAB_BASE address. Entries in these tables are not fetched if SMMU_(S_)CR0.SMMUEN == 0,
because the base pointer is not guaranteed to be valid. These base pointers must be valid when the corresponding
SMMUEN == 1. Configuration cache entries associated with a Security state are not inserted when, for that
Security state, SMMU_(S_)CRO.SMMUEN == 0.

Similarly, CDs or L1CDs are located through the STE.S1ContextPtr and L1CD.L2Ptr pointers. A CD must never
be fetched or prefetched unless indicated from a valid STE, meaning that the STE S1ContextPtr is valid and
therefore the STE enables stage 1.

Note: A particular area of memory is only considered to be an STE or CD because a valid pointer of a certain
type points to it (the SMMU_(S_)STRTAB_BASE or L1STD.L2Ptr or STE.S1ContextPtr or L1CD.L2Ptr pointers
respectively). A CD cannot be prefetched from an address that is not derived directly from the CD table
configuration in a valid STE, as an area of memory is not a CD unless a valid STE or L1CD.L2Ptr points to it.
Similarly, an L1CD is not actually an L1CD structure unless a valid STE points to it.

A structure is said to be reachable if a valid pointer is available to locate the structure. Depending on the structure
type, the pointer might be a register base address or a pointer within a precursor structure (either in memory or
cached). When SMMUEN == 0, no configuration structures are reachable. Otherwise:

* An STE is reachable if it is within the table given by the base and size indicated in the
SMMU_(S_)STRTAB_BASE_* registers for a linear Stream table, or if it is within the 2"4-level table
indicated by a valid L1STD base and span for a two-level Stream table.

* A LIST descriptor in a two-level Stream table is reachable if it is within the first-level table indicated by the
base and size set in the SMMU_(S_)STRTAB_BASE_* registers.

* A CD is reachable if it is within the table given by the base and size indicated by a valid stage 1 S1ContextPtr
and SICDMax of a valid STE for a linear CD table, or if it is within the 2nd-level table indicated by a valid
L1CD base and span for a two-level CD table.

* A VMS is reachable if the VMS is enabled for an STE.

An implementation does not fetch an unreachable structure. Walk of the tree of configuration tables does not
progress beyond any invalid structure.

An implementation is permitted to fetch or prefetch any reachable structure at any time, as long as the generated
address lies within the bounds of the table containing the structure. An implementation is permitted to cache
any successfully fetched or prefetched configuration structure, whether marked as valid or not, in its entirety or
partially. That is:

* Any STE or L1STD within the STE table (given by the base, size and intermediate table spans if appropriate)
can be fetched and cached.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 120
E.a Non-confidential

Chapter 3. Operation
3.21. Structure access rules and update procedures

* Any CD or L1CD within a CD table can be fetched and cached.

When fetching a structure in response to a transaction, an implementation might read and cache more data than the
required structures, as long as the limits of the tables are respected.

Note: Any change to a structure must be followed by the appropriate structure invalidation command to the SMMU,
even if the structure was initially marked invalid.

Note: An unreachable structure cannot be fetched, because there is no valid pointer to it. However, a structure
might be cached if it was fetched while the structure was reachable, even if it is subsequently made unreachable.
For example, a valid STE could remain cached and later used after the SMMU_(S_)STRTAB_BASE* registers are
altered. Software must perform configuration cache maintenance upon changing configuration that might make
structures unreachable.

A structure that is not actually fetched, such as a CD/L1CD, STE/L1STD or VMS that experiences an external
abort (F_CD_FETCH, F_STE_FETCH or F_VMS_FETCH) or a CD/L1CD that fails stage 2 translation, does
not cause knowledge of the failure to be cached. A future access of the structure must attempt to re-fetch the
structure without requiring an explicit configuration structure invalidation command before retrying the operation
that caused the initial structure fetch.

Note: For example, where stage 2 is configured to stall, to progress a transaction that causes a CD fetch that in turn
causes a stage 2 Translation-related fault (an event with Stall == 1), it is sufficient to:

1. Resolve the cause of the translation fault, for example by writing a Translation table entry.
2. Issue a TLB invalidation operation, if required by the translation table alteration.
3. Issue a CMD_RESUME, giving the StreamID and STAG appropriate to the event record.

An implementation must not:
* Read any address outside of the configured range of any table.

— Speculative access of reachable structures is permitted, but address speculation outside of configured
structures is not permitted.

¢ Cache any structure under a different type to the table from which it was read. For example, it must not
follow the pointer of an STE to a CD and cache that CD (or any adjacent CD in the CD table) as anything
non-CD, for example a translation table entry.

Software must ensure it only configures tables that are wholly contained in Normal memory.
A configuration invalidation operation completes after all of the following become true:
* All configuration cache entries targeted by the invalidation have been invalidated.

* No accesses can become visible to their Shareability domain using addresses or attributes that could not
result from the configuration structures as observed after the invalidation operation became visible. This
means that invalidation completes after:

— Any client device transactions that used configuration cache entries that were targeted by the invalidation
are globally visible to their Shareability domain.

— Any configuration structure walks that used configuration cache entries that were targeted by the
invalidation are complete so that all accesses to any fetched levels of the structures are globally
visible to their Shareability domain. This applies to a configuration structure walk performed for any
reason, including a configuration structure walk performed because of a prefetch, command, incoming
transaction, ATOS or Translation Request.

An in-progress configuration structure walk (performed for any reason, including prefetch) can be affected by
a configuration invalidation command (CMD_CFGI_*) if a cached intermediate structure that was previously
referenced as part of the walk could have been invalidated. The completion of a configuration invalidation
command (as determined by the completion of a subsequent CMD_SYNC) ensures that any configuration structure
walk that could be affected by the invalidate is either:

¢ Fully completed by the time the CMD_SYNC completes.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 121
E.a Non-confidential

Chapter 3. Operation
3.21. Structure access rules and update procedures

 Stopped and restarted from the beginning after the CMD_SYNC completes.

Note: This ensures that old or invalid pointers to subsequent configuration structures are never followed after
an invalidation is complete. For example, when an SMMU has an STE pointing to a two-stage CD table and is
prefetching a CD, then on reading the L1CD pointer, a CMD_CFGI_STE is processed that invalidates the STE
that located the L1CD table. If the STE is made invalid, the pointer to the CD table is no longer valid and the
SMMU must not continue to fetch the second-level CD after acknowledging to software that it considers the STE
invalid. Software is free to re-use the memory used for the CD tables after receiving this acknowledgment, so
continuing the prefetch after this point risks loading now-unrelated data. The SMMU must abort the fetch and not
read the second-level CD, or must read the second-level CD before signaling the CMD_CFGI_STE/CMD_SYNC
as complete to software.

Note: Refer to the note in section 3.21.1 Translation tables and TLB invalidation completion behavior regarding
observability of whether a translation table walk is stopped. For a configuration table walk that is stopped by an
affected invalidation completion, an implementation is permitted to perform further fetches of a configuration
structure walk after the completion, based on affected prior configuration structure reads that were made before the
invalidation if, and only if, it is guaranteed that these reads have no effect on the SMMU or the rest of the system,
are not made to addresses with read side-effects, and will thus not affect the architectural behavior of the system.

The size of single-copy atomic reads made by the SMMU is IMPLEMENTATION DEFINED but must be at least
64 bits. Any single field within an aligned 64-bit span of a structure can be altered without first making the
structure invalid. For example, to change the ASID in a CD, the ASID field can be written directly, followed by
CMD_CFGI_CD and CMD_SYNC. However, if there are two fields separated so that one single 64-bit write
cannot atomically alter both at the same time, the structure cannot be modified in this way. Non-single copy atomic
writes might be visible to the SMMU separately and an inconsistent state might be cached (in which one field
update has been read but another missed). The structure must, in this case, be made invalid, modified, then made
valid, using the procedures described in section 3.21.3.1 Configuration structure update procedure.

Note: In some systems, 64-bit single-copy atomicity is only guaranteed to addresses backed by certain memories.
If software requires such atomicity, it must locate SMMU configuration structures in these memories. For example,
in LPAE ARMvV7 systems, main memory is expected to be used to contain translation tables, and is therefore
required to support 64-bit single-copy atomicity.

When a structure is fetched, the constituent 64-bit double-words of a structure are permitted to be accessed by the
SMMU non-atomically with respect to the structure as a whole and in any temporal sequence (maintaining the
relative address sequence of the read portions).

3.21.3.1 Configuration structure update procedure

Note: The SMMU is not required to observe the structure word that contains the V flag in a particular order with
respect to the other data in the structure. This gives rise to a requirement for an additional invalidation when
transitioning a structure from V==0to V == 1.

Because the SMMU can read any reachable structure at any time, and is not required to read the double-words of
the structure in order, Arm recommends that the following procedure is used to initialize structures:

1. Structure starts invalid, having V == 0.

2. Fill in all fields, leaving V == 0, then perform a DSB operation to ensure written data is observable from the
SMMU.

Issue a CMD_CFGI_<STRUCT>, as appropriate.

Issue a CMD_SYNC, and wait for completion.

Set V to 1, then perform a DSB operation to ensure write is observable by the SMMU.

Issue CMD_CFGI_<STRUCT>, as appropriate.

Optionally issue a CMD_SYNC, and wait for completion. This must be done if a subsequent software
operation, such as enabling device DMA, depends on the SMMU using the new structure.

NownsEw

To make a structure invalid, Arm recommends that this procedure is used:

1. Structure starts valid, having V == 1.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 122
E.a Non-confidential

Chapter 3. Operation
3.21. Structure access rules and update procedures

ARM IHI 0070
E.a

2.
3.
4.

Set V == 0, then perform a DSB operation to ensure write is observable from the SMMU.
Issue a CMD_CFGI_<STRUCT>, as appropriate.
Issue a CMD_SYNC, and wait for completion.

If software modifies the structure while it is valid, it must not allow the structure to enter an invalid intermediate

state.

Note: Because the rules in section 3.21.3 Configuration structures and configuration invalidation completion
disallow prefetch of a structure that is not directly reachable using a valid pointer, structures might be fully
initialized (including with V == 1) prior to a pointer to the structure becoming observable by the SMMU. For
example, a stage 1 translation can be set up with this procedure:

M

6.

Allocate memory for a CD, initialize all fields including setting CD.V to 1.

Select an STE, initialize all fields and point to the CD, but leave STE.V == 0.

Perform a DSB operation to ensure writes are observable from the SMMU.

Issue a CMD_CFGI_STE and a CMD_SYNC and wait for completion.

Set STE.V to 1, then perform a DSB operation to ensure write is observable from the SMMU.
Issue a CMD_CFGI_STE and CMD_SYNC and wait for completion.

Note: No CMD_CFGI_CD is required because it is impossible for the CD to have been prefetched in an invalid
state. However, a CMD_CFGI_CD must be issued as part of a procedure that subsequently makes the CD invalid.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 123
Non-confidential

Chapter 3. Operation
3.22. Destructive reads and directed cache prefetch transactions

3.22 Destructive reads and directed cache prefetch transactions

Some interconnect architectures might support the following types of transaction input to the SMMU:
1. RCI: Read with clean and invalidate:

* A read transaction containing a hint side effect of clean and invalidate.
* Note: The AMBA AXIS interface [8] ReadOnceCleanInvalidate transaction is an example of this class
of transaction.

2. DR: Destructive read:

A read transaction with a data-destructive side-effect that intentionally causes addressed cache lines to
be invalidated, without writeback, even if they are dirty.

* Note: The AMBA AXIS interface [8] ReadOnceMakelnvalid transaction is an example of this class of
transaction.

3. W-DCP: Write with directed cache prefetch:

* A write transaction containing a hint that changes the cache allocation in a part of the cache hierarchy that
is not on the direct path to memory. This class of operation does not include those with data-destructive
side-effects.

* Note: The following AMBA AXIS interface [8] transactions are examples of this class of transaction:
WriteUniquePtlStash, WriteUniqueFullStash.

4. NW-DCP: A directed cache prefetch without write data:

* A transaction that is neither a read nor a write, but performs a cache prefetch in a similar way to a write
with directed cache prefetch, without the written data.

* Note: The following AMBA AXIS interface [8] transactions are examples of this class of transaction:
StashOnceShared, StashOnceUnique.

5. DH: Destructive Hint:

¢ A transaction that is neither a read nor a write, but has a hint side effect of invalidate.
* Note: The AMBA AXIS interface [8] InvalidateHint transaction is an example of this class of transaction.

The side-effects of these transactions are hints and are therefore distinct from, and treated differently to, Cache
Maintenance Operations. See section 16.7.2 Non-data transfer transactions.

In SMMUV3.0, the architecture does not support these transactions, which are unconditionally converted on output
as specified by the interconnect architecture.

In SMMUv3.1 and later, these transactions are permitted to pass into the system unmodified when the transaction
bypasses all implemented stages of translation, see section 3.22.3 Memory types and Shareability for permitted
memory types. This happens when:

e SMMU_(S_)CRO.SMMUEN == 0 for the Security state of the stream:

— These transactions are affected by SMMU_(S_)GBPA overrides in the same way as the implementation
treats ordinary transactions.

* SMMU_(S_)CRO.SMMUEN == 1 for the Security state of the stream, but the valid STE of the stream has
STE.Config == 0b100.

* The valid STE for the transaction has STE.S1DSS == 0b01 and STE.Config == 0101, and the transaction
is supplied without a SubstreamID.

When the output interconnect does not support these types of transaction, or when the conditions described in
sections 3.22.1 Control of transaction downgrade, 3.22.2 Permissions model and 3.22.3 Memory types and
Shareability apply, these classes of transaction are downgraded with the following transformations:

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 124
E.a Non-confidential

Chapter 3. Operation
3.22. Destructive reads and directed cache prefetch transactions

Input Transaction Class Output/downgraded transaction class
Read with clean and invalidate (RCI) No downgrade, or downgrade to ordinary read transaction. (V
Destructive read (DR) Non-destructive read: An ordinary transaction, or a read with a clean and

invalidate side-effect. @

Write with directed cache prefetch (W-DCP) Ordinary write transaction.

Directed cache prefetch without write data No-op: Transaction completes successfully with no effect on the memory

(NW-DCP) system.

Destructive hint (DH) No-op: Transaction completes successfully with no effect on the memory
system.

(1) Itis IMPLEMENTATION DEFINED whether an implementation downgrades a RCI into a read, or whether this
transaction remains unchanged. An implementation might only downgrade the RCI into a read if the output
interconnect supports read but not RCI transactions.

(2) Itis IMPLEMENTATION DEFINED whether a downgrade of a destructive read to a non-destructive read chooses
to downgrade to an ordinary read or a RCI.

The RCI and DR transactions are read transactions with an additional hint. The W-DCP transaction is a write
transaction with an additional hint. The NW-DCP and DH transactions are hints without data transfer. An
implementation is permitted to downgrade the transaction as described in this section, for any reason. The data
transfer portion of these transactions, if present, is not a hint, and is treated in the same way as an ordinary read or
write.

Note: Unless the SMMU has been explicitly configured to do so, Arm recommends that the common behavior of
an implementation is to avoid downgrading these transactions.

3.22.1 Control of transaction downgrade

An implementation of SMMUV3.1 or later supporting these classes of transactions provides STE.{ DRE,DCP}
controls to permit these classes of transaction to pass into the system without transformation when one or more
stages of translation are applied. This does not include the case where the only stage of translation is skipped
because of the value of STE.S1DSS.

When these controls are disabled, the respective class of transactions is downgraded as described in the previous
section:

Input transaction class Requirement to be eligible to pass into the system without class downgrade
Read with clean and invalidate No additional requirements
Destructive read STE.DRE == 1.

If STE.DRE == 0, downgraded into non-destructive read (read, or read
with clean and invalidate).

Write with directed cache prefetch STE.DCP == 1.

If STE.DCP == 0, downgraded into ordinary write.

Directed cache prefetch without write data STE.DCP == 1.

If STE.DCP == 0, downgraded into no-op.

Destructive hint STE.DRE == 1.

If STE.DRE == 0, downgraded into no-op.

ARM IHI 0070
E.a

A read with clean and invalidate is non-destructive and is not required to be transformed into a different class of

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 125
Non-confidential

Chapter 3. Operation
3.22. Destructive reads and directed cache prefetch transactions

transaction by the SMMU. The SMMU evaluates permissions for this type of transaction the same way it does for
an ordinary read, see section 3.22.3 Memory types and Shareability. A read with clean and invalidate might be
transformed as required by the final memory type or Shareability.

If a transaction is enabled to progress without downgrade, it can only progress if the required translation table
permissions are present, as described in the next section. If the required permissions are not present, the transaction
might still be downgraded or cause a fault.

3.22.2 Permissions model

When one or more stages of translation are applied to these transactions, the interaction with the permissions
determined from translations is shown below. The behaviors listed here assume that translation for the given
address has progressed up to permission checking, and that no higher-priority fault, for example a Translation fault
or an Access flag fault, has occurred.

Transaction type

Required permissions

Behavior if permissions not met

Read with clean and

Identical to ordinary read:

Identical to ordinary read.

invalidate (V Requires Read or Execute permission,

(depending on input InD and STE.INSTCFG) at
at a privilege appropriate to PnU input and

STE.PRIVCFG.

Destructive read Requires Read or Execute permission If no Write permission, downgraded as
(depending on input InD and STE.INSTCFG), above into a read or read with clean and
and Write, at a privilege appropriate to PnU invalidate. ®
input and STE.PRIVCFG. If no Read/Execute permission (as

appropriate), identical to ordinary read.

Write with directed Identical to ordinary write: Identical to ordinary write.

cache prefetch Requires Write permission at privilege

appropriate to PnU input and STE.PRIVCFG.
Always Data.(3)

Directed cache prefetch Read or Write or Execute at privilege appropriate ~ Prefetch does not occur.
without write data to PnU input and STE.PRIVCFG, at each

enabled stage of translation. It is implementation
specific whether this permission is evaluated as
the effective combination of permissions at all
stages, or evaluated at each stage separately ©.

Destructive hint Requires Read or Execute permission Invalidate does not occur. ©

(depending on input InD and STE.INSTCFG),
and Write, at a privilege appropriate to PnU
input and STE.PRIVCFG.

ARM I[HI 0070

(D This includes the case where a destructive read is downgraded to a read with clean and invalidate because
STE.DRE == 0.

) Though a DR requires write permission to progress into the system as a DR, it does not cause a Permission fault
for write.

® The SMMU treats all writes as Data regardless of InD input and STE.INSTCFG.

“ An NW-DCP is not a write and, if HTTU of dirty state is enabled, does not mark a page Dirty. If an NW-DCP
has the required permissions at a given stage of translation and HTTU of Access flag is enabled for that stage, AF
is updated. If required permissions are not met for an NW-DCP at a given stage of translation, the transaction does

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 126
Non-confidential

Chapter 3. Operation
3.22. Destructive reads and directed cache prefetch transactions

not progress into the system. However, if the translation conditions permit an AF update, a coincidental speculative
update of AF might occur.

(3 This applies to the case where a non-overlapping set of permissions is available at stage 1 versus stage 2. For
example, a stage 1 read-only translation with a stage 2 write-only translation.

© A DH operation is a hint. If HTTU of dirty state is enabled, a DH operation does not mark a page Dirty. If
the translation for a DH operation is writeable-clean, the SMMU does not perform the hardware update of dirty
state and instead the DH operation is treated as a no-op and does not progress into the system. However, if the
translation conditions permit an AF update, a coincidental speculative update of AF might occur.

See section 3.13.7 Hardware flag update for Cache Maintenance Operations and Destructive Reads for information
on the behavior of HTTU for Destructive Reads. HTTU for RCI and W-DCP behaves the same as for an ordinary
read or write, respectively.

A directed cache prefetch without write data (NW-DCP), or a destructive hint (DH) does not cause faults in the
SMMU. Where the interconnect architecture requires a response to an NW-DCP or DH, and where the SMMU
terminates an NW-DCP or DH, the SMMU does not cause abort responses to be returned.

If RCI or DR ultimately lead to a fault, they are recorded as reads (data or instruction, as appropriate to input
InD/INSTCFG).

If W-DCP ultimately leads to a fault, it is recorded as a write.

If the RCI, DR and W-DCP transactions lead to a fault, they stall in the same way as an ordinary read or write
transaction if the SMMU is configured for stalling fault behavior. Retry and termination behave the same as for
an ordinary read or write transaction. If these transactions are stalled and retried, they are retried as the same
transaction type.

3.22.3 Memory types and Shareability

ARM IHI 0070
E.a

The interconnect architecture of an implementation might impose constraints on the memory type or Shareability
that output DR, RCI, W-DCP, NW-DCP and DH operations can take.

At the point of final output the SMMU downgrades these operations, as described in 3.22 Destructive reads and
directed cache prefetch transactions, if the operations are not valid for output with the determined output attribute.

This rule applies to all such operations in all translation and bypass configurations, including:

* Global bypass (attribute set from GBPA).

» STE bypass (the only stage of translation is skipped because of STE.Config == 00100 or STE.S1DSS ==
0b01 and STE.Config == 0b101).

* Translation.

Note: On AMBA AXIS interfaces [8], the W-DCP operations (WriteUniquePtlStash, WriteUniqueFullStash)
are not permitted to be emitted with a Non-shareable or Sys Shareability. The NW-DCP operations
(StashOnceShared, StashOnceUnique) are not permitted to be emitted with Sys Shareability. RCI and DR
operations (ReadOnceCleanInvalid and ReadOnceMakelnvalid) are not permitted to be emitted with NSH or Sys
Shareability.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 127
Non-confidential

Chapter 3. Operation
3.23. Memory Tagging Extension

3.23 Memory Tagging Extension

SMMUV3 does not have any features relating to the Armv8 Memory Tagging Extension [2].

MTE introduces a new MAIR field encoding, 0x£0. This encoding is Reserved in SMMUv3, in the CD.MAIRO
and CD.MAIRI1 fields.

All SMMU-originated accesses are Tag Unchecked accesses. The SMMU does not write Allocation Tags.
The terms Tag Unchecked and Allocation Tag are defined in [2].

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 128
E.a Non-confidential

Chapter 3. Operation
3.24. Granule Protection Checks

3.24 Granule Protection Checks

The Realm Management Extension, FEAT RME, [5] specifies the behavior of granule protection checks. An
SMMU with RME performs the same checks for non-PE Requesters.

The format and meaning of the GPT is the same in an SMMU with RME as it is in FEAT_RME.

The invalidation and synchronization mechanisms for updates to the GPT are the same as for FEAT_RME.

The SMMU configuration registers for the GPT base address and format are equivalent to those in FEAT_RME.
See also 17.4 Assignment of PARTID and PMG for SMMU-originated transactions.

Granule protection checks are enabled only when SMMU_ROOT_CRO.GPCEN is 1. All statements in this section
that describe how granule protection checks are performed only apply when granule protection checks are enabled.

3.24.1 Client-originated accesses

Accesses to all physical addresses, except for fetches of GPT information, are subject to granule protection checks.

A client-originated access that experiences a GPC fault is signaled to the client device in the same manner as an
External abort.

A client-originated access that experiences a GPC fault on the output address of the access is not reported in the
Event queue.

3.24.1.1 GPC for client devices without a StreamID
Granule protection checks also apply to accesses from client devices that are not associated with a StreamID.
These devices are referred to as NoStreamID devices.

NoStreamID devices only access PA space, and are not associated with any stage 1 or stage 2 translation
configuration.

The GPC fault reporting behavior for accesses from NoStreamID devices is the same as for regular client-originated
accesses.

NoStreamID devices are not associated with a SEC_SID value.
Transactions issued by a NoStreamID device include both a physical address and a PA space.

An access from a NoStreamID device with a physical address that exceeds the implemented output address size,
advertised in SMMU_IDRS5.0AS, is terminated with an abort and no Event record or fault is recorded.

The SMMU does not perform any architectural transformations or overrides on NoStreamID accesses, but the
SMMU may apply protocol-specific normalization on transaction attributes.

3.24.1.2 Speculative and hint accesses

Note: The SMMU does not report faults encountered during a speculative translation request, translation of
transactions marked as speculative, or for NW-DCP or DH transactions. See also 3.14 Speculative accesses.

For an SMMU with RME, GPC faults encountered during a speculative translation request, translation of
transactions marked as speculative, or for NW-DCP or DH transactions, are reported as follows:

* No event record is generated.

e If SMMU_IDRO.RME_IMPL = 0, it is CONSTRAINED UNPREDICTABLE whether the GPC fault is reported
or not reported. If it is reported, then it is reported in the appropriate SMMU_ROOT_GPF_FAR or
SMMU_ROOT_GPT_CFG_FAR register, if that register does not already contain an active fault.

e If SMMU_IDRO.RME_IMPL = 1, the granule protection check fault is not reported.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 129
E.a Non-confidential

Chapter 3. Operation
3.24. Granule Protection Checks

3.24.2

For speculative translation requests, then:

e If SMMU_IDRO.RME_IMPL = 0, it is CONSTRAINED UNPREDICTABLE whether the GPC on the output
address of a translation request is applied at the time of the translation or only when a transaction using the
translation is issued.

e If SMMU_IDRO.RME_IMPL = 1, the GPC on the output address of a translation request is applied at the
time of the translation.

Interactions with PCle ATS

Consistent with the rules for all accesses, all PCle client transactions are subject to granule protection checks.
The SMMU_CRO.ATSCHK bit has no effect on granule protection checks.

If an SMMU-originated access experiences a GPC fault while servicing an ATS Translation Request, the SMMU
responds to the ATS Translation Request as Completer Abort.

If an ATS Translation Request is completed with Success and R=W=0, the address in the Translation Completion
is not valid and it is not subject to granule protection checks.

If SMMU_IDRO.RME_IMPL == 1, the SMMU performs the GPC on the output address for the result of an ATS
Translation Request before sending the completion.

If SMMU_IDRO.RME_IMPL == 0, the SMMU is permitted but not required to perform a GPC on the output
address for the result of an ATS Translation Request.

If the output address for an ATS Translation Request fails a GPC, the SMMU responds to the ATS Translation
Request as Completer Abort.

ATS Translated transactions are subject to granule protection checks.

An ATS Translated transaction that fails the GPC is treated as Completer Abort.

3.24.3 SMMU-originated accesses

ARM I[HI 0070

E.a

An SMMU-originated access that experiences a GPC fault is reported as though it had experienced an External
abort.

Consistent with the behavior of F_STE_FETCH, F_CD_FETCH, F_VMS_FETCH and F_WALK_EABT, signaling
and reporting of these failures is not affected by the value of the CD.{A, R, S} bits nor the STE.{S2S, S2R} bits.

For an SMMU with SMMU_IDRO.RME_IMPL == 1:

e For each of the F_ STE_FETCH, F_CD_FETCH, F_VMS_FETCH and F_ WALK_EABT event records, there
is a new field at bit 80 named GPCF.

* An F_STE_FETCH, F_CD_FETCH, F_VMS_FETCH or F_WALK_EABT arising from a GPC fault is
reported with GPCF=1.

* AnF_STE_FETCH, F_CD_FETCH, F_VMS_FETCH or F_WALK_EABT arising for a reason other than a
GPC fault is reported with GPCF=0. This is unchanged from an SMMU without SMMU_IDRO.RME_IMPL
==1.

For example, if the SMMU experiences a GPC fault on an access to an STE, it is reported as F_STE_FETCH, with
GPCF=1. This is signaled to the client as an External abort.

For example, if the SMMU experiences a GPC fault on an access to the Non-secure Event queue, it is reported
through SMMU_GERROR.EVENTQ_ABT_ERR.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 130
Non-confidential

Chapter 3. Operation
3.24. Granule Protection Checks

3.24.4 Reporting of GPC faults

The reasons for a GPC fault are categorized into three groups:

* Faults arising from an access to a Location forbidden by the GPT configuration, referred to as a Granule
Protection Fault (GPF).

* Faults arising from misconfiguration of SMMU_ROOT_GPT_BASE, SMMU_ROOT_GPT_BASE_CFG or
the GPT, referred to as a GPT lookup error.

* Faults arising from RAS errors.

The following error conditions represent a GPF, and are reported in SMMU_ROOT_GPF_FAR:

* An access to a PA space other than Non-secure has a physical address that exceeds the range configured in
SMMU_ROOT_GPT_BASE_CFG.PPS.
* An access was attempted to a location that is forbidden by the configuration in the GPT.

The following error conditions represent a GPT lookup error, and are reported in SMMU_ROOT_GPT_CFG_FAR:

* Fields in SMMU_ROOT_GPT_BASE_CFG are configured to reserved values.

* Configuration of SMMU_ROOT_GPT_BASE_CFG.PPS to exceed SMMU_IDRS5.0AS.

 Configuration of SMMU_ROOT_GPT_BASE_CFG.{SH, IRGN, ORGN} to an invalid combination.

* SMMU_ROOT_GPT_BASE.ADDR is configured to exceed the size configured in
SMMU_ROOT_GPT_BASE_CFG.PPS.

* The output address of a GPT Table Entry exceeds the size configured in
SMMU_ROOT_GPT_BASE_CFG.PPS.

* The SMMU depends on using values in an invalid GPT Entry.

* The SMMU experienced an External abort while fetching a GPT Entry.

* The SMMU experienced a RAS error while fetching a GPT Entry. This is reported in the same manner as if
the SMMU experienced an External abort while fetching a GPT Entry.

3.24.5 SMMU behavior if a GPC fault is active

If a client-originated or SMMU-originated access experiences a GPF reported in SMMU_ROOT_GPF_FAR, then:

e If there is no prior GPF in SMMU_ROOT_GPF_FAR, the appropriate syndrome information is recorded in
SMMU_ROOT_GPF_FAR.

* Other accesses that do not experience a GPF or GPT lookup error continue as specified.

¢ The GPF remains active until software writes 0 to SMMU_ROOT_GPF_FAR.FAULT.

If a client-originated or SMMU-originated access experiences a GPT lookup error reported in
SMMU_ROOT_GPT_CFG_FAR, then:

e If there is no prior GPT lookup error in SMMU_ROOT_GPT_CFG_FAR, the appropriate syndrome
information is recorded in SMMU_ROOT_GPT_CFG_FAR.

* Other accesses that do not experience a GPF or GPT lookup error continue as specified.

* The GPT lookup error remains active until software writes 0 to SMMU_ROOT_GPT_CFG_FAR.FAULT.

An SMMU with RME has two additional edge-triggered wired interrupts:

Source Trigger reason

GPF_FAR An error becomes active in SMMU_ROOT_GPF_FAR.
GPT_CFG_FAR An error becomes active in SMMU_ROOT_GPT_CFG_FAR.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 131
E.a Non-confidential

Chapter 3. Operation
3.24. Granule Protection Checks

3.24.6 Observability of GPC faults

ARM IHI 0070
E.a

If the termination of a client transaction as a result of a GPC fault is observable to the client device, then:

* If the appropriate SMMU_ROOT_GPF_FAR or SMMU_ROOT_GPT_CFG_FAR register already contained
an active fault, then it is not updated in this case.

* If the appropriate SMMU_ROOT_GPF_FAR or SMMU_ROOT_GPT_CFG_FAR register did not already
contain an active fault, then the related syndrome information is observable in the appropriate register.

If an interrupt indicating the presence of a GPC fault is observable, then the syndrome information is observable in
the SMMU_ROOT_GPF_FAR or SMMU_ROOT_GPT_CFG_FAR register as appropriate.

If the termination of a client transaction as a result of a GPC fault has been observable to the client device,
completion of a subsequent CMD_SYNC guarantees observability of any related events in the Event queue or, if
the Event queue is unwriteable, that the Event will not become observable.

For an SMMU with SMMU_ROOT_IDRO.BGPTM == 1, then:

» After completion of a broadcast TLBI +PAx and DSB instruction on the PE, completion of a subsequent
CMD_SYNC guarantees that no Events relating to GPT configuration invalidated by that TLBI and DSB will
later be made observable in the Event queue.

* After a broadcast TLBI xPA« instruction on the PE, completion of a subsequent DSB instruction guarantees
that any errors reported in the SMMU_ROOT_GPF_FAR or SMMU_ROOT_GPT_CFG_FAR registers
relating to GPT configuration invalidated by that TLBI are already observable.

For an SMMU with SMMU_ROOT_IDRO.RGPTM == 1, then:

» After completion of a register-based TLBI by PA, indicated by SMMU_ROOT_TLBI_CTRL.RUN,
completion of a subsequent CMD_SYNC guarantees that no Events relating to GPT configuration invalidated
by that TLBI by PA will later be made observable in the Event queue.

» Completion of a register-based TLBI by PA, indicated by SMMU_ROOT_TLBI_CTRL.RUN, guarantees that
any errors reported in the SMMU_ROOT_GPF_FAR or SMMU_ROOT_GPT_CFG_FAR registers relating
to GPT configuration invalidated by that TLBI by PA are already observable.

Ifan F_STE_FETCH, F_CD_FETCH, F_VMS_FETCH or F_ WALK_EABT with GPCF == 1 is observable in the
Event queue then either:

o If the appropriate SMMU_ROOT_GPF_FAR or SMMU_ROOT_GPT_CFG_FAR register already contained
an active fault, then it is not updated in this case.

o If the appropriate SMMU_ROOT_GPF_FAR or SMMU_ROOT_GPT_CFG_FAR register did not already
contain an active fault, then the related syndrome information is observable in the appropriate register.

If an update to SMMU_(S_)GERROR resulting from a GPC fault is observable, then either:

o If the appropriate SMMU_ROOT_GPF_FAR or SMMU_ROOT_GPT_CFG_FAR register already contained
an active fault, then it is not updated in this case.

* If the appropriate SMMU_ROOT_GPF_FAR or SMMU_ROOT_GPT_CFG_FAR register did not already
contain an active fault, then the related syndrome information is observable in the appropriate register.

If a fault to be reported in SMMU_(S_)GERROR is observable in SMMU_ROOT_GPF_FAR or
SMMU_ROOT_GPT_CFG_FAR, then the fault will also be reported in SMMU_(S_)GERROR in finite time. The
existing mechanisms for ensuring the visibility of errors in SMMU_(S_)GERROR also apply in this case. For
example, completion of an Update of SMMU_CRO.EVENTQEN to 0 guarantees observability of any errors to be
reported in SMMU_GERROR.EVENTQ_ABT_ERR.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 132
Non-confidential

Chapter 4
Commands

This section describes the behavior of commands given to the SMMU through the Command queue.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 133
E.a Non-confidential

Chapter 4. Commands
4.1. Commands overview

4.1 Commands overview

4.1.1 Command opcodes

All entries in the Command queue are 16 bytes long. All Command queue entries are little-endian. Each command
begins with an 8-bit command opcode, defined as follows:

Command opcode Command name
0x00 Reserved
0x01 CMD_PREFETCH_CONFIG
0x02 CMD_PREFETCH_ADDR
0x03 CMD_CFGI_STE
0x04 CMD_CFGI_STE_RANGE
Note: CMD_CFGI_ALL has the same opcode as this command.

0x05 CMD_CFGI_CD
0x06 CMD_CFGI_CD_ALL
0x07 CMD_CFGI_VMS_PIDM
0x08-0x0A Reserved
0x10 CMD_TLBI_NH_ALL
0x11 CMD_TLBI_NH_ASID
0x12 CMD_TLBI_NH_VA
0x13 CMD_TLBI_NH_VAA
0x14-0x17 Reserved
0x18 CMD_TLBI_EL3_ALL
0x19 Reserved
O0x1A CMD_TLBI_EL3_VA
0x1B-0x1F Reserved
0x20 CMD_TLBI_EL2_ALL
0x21 CMD_TLBI_EL2_ASID
0x22 CMD_TLBI_EL2_VA
0x23 CMD_TLBI_EL2_VAA

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 134

E.a Non-confidential

Chapter 4. Commands
4.1. Commands overview

Command opcode

Command name

0x24-0x27 Reserved
0x28 CMD_TLBI_S12_VMALL
0x29 Reserved
0x2A CMD_TLBI_S2_IPA
0x2B-0x2F Reserved
0x30 CMD_TLBI_NSNH_ALL
0x31-0x3F Reserved
0x40 CMD_ATC_INV
0x41 CMD_PRI_RESP
0x42-0x43 Reserved
0x44 CMD_RESUME
0x45 CMD_STALL_TERM
0x46 CMD_SYNC
0x47-0x4F Reserved
0x50 CMD_TLBI_S_EL2_ALL
0x51 CMD_TLBI_S_EL2_ASID
0x52 CMD_TLBI_S_EL2_VA
0x53 CMD_TLBI_S_EL2_VAA
0x54-0x57 Reserved
0x58 CMD_TLBI_S_S12_VMALL
0x59 Reserved
0x5A CMD_TLBI_S_S2_IPA
0x5B-0X5F Reserved
0x60 CMD_TLBI_SNH_ALL
0x61-0x7F Reserved
0x80-0x8F IMPLEMENTATION DEFINED
0x90-0xFF Reserved

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 135

E.a

Non-confidential

Chapter 4. Commands
4.1. Commands overview

4.1.2 Submitting commands to the Command queue

Commands are submitted to the SMMU by writing them to the Command queue then, after ensuring their visibility
to the SMMU, updating the SMMU_(S_)CMDQ_PROD.WR index which notifies the SMMU that there are
commands to process. The SMMU does not execute commands beyond the CMDQ_PROD.WR index and, when
commands are able to be processed as described in this chapter, a write to SMMU_(S_)CMDQ_PROD.WR is all
that is required from software to cause the SMMU to consider newly-produced commands. See section 3.21.2
Queues.

Commands are able to be processed from the Command queue when all of the following conditions are met:

* The Command queue CONS and PROD indexes indicate that the queue is not empty.
¢ The Command queue is enabled through SMMU_(S_)CR0.CMDQEN.
* No Command queue error is active for the given Command queue.

The SMMU processes commands in a timely manner until all commands are consumed, or a command queue error
occurs, or the queue is disabled.

When SMMU_IDRO.SEV == 1, the SMMU triggers a WFE wake-up event when a Command queue becomes
non-full and an agent external to the SMMU could have observed that the queue was previously full. This applies
to the Non-secure Command queue and, if implemented, the Secure Command queue.

Note: Arm expects that an attempt to insert a command into the queue will first observe from
SMMU_(S_)CMDQ_CONS whether the queue has space, and if it is full might then poll the
SMMU_(S_)CMDQ_CONS index in a loop until the queue becomes non-full. Such a loop can be throttled
using the WFE instruction when the SMMU and system supports sending of WFE wake-up events.

The behaviors of some commands are dependent on SMMU register state. Register state must not be altered
between such a command having been submitted to the Command queue and the command completion. If a
register field is changed while a dependent command could be being processed, it is UNPREDICTABLE whether the
command is interpreted under the new or old register field value.

4.1.3 Command errors

A Command queue CERROR_ILL error occurs when:

* A Reserved command opcode is encountered.

* A valid command opcode is used with invalid parameters, see the individual command descriptions.

* A valid command opcode is used and a Reserved or undefined field is optionally detected as non-zero, which
results in the command being treated as malformed.

Some commands, where specified, are IGNORED in certain circumstances. If a command causes a CERROR_ILL
this takes precedence over whether the command is IGNORED or not.

A command queue CERROR_ABT error occurs when:
* An external abort is encountered upon accessing memory.

The SMMU stops command consumption immediately upon the first occurrence of an error, so that the
SMMU_(S_)CMDQ_CONS.RD index indicates the command that could not be correctly consumed, and the error
code is reported. See section 7.1 Command queue errors for details on Command queue error reporting and
recovery.

4.1.4 Consumption of commands from the Command queue

A command is Consumed when the value observed in the SMMU_(S_)CMDQ_CONS.RD index register passes
beyond the location of the command in the queue. This means that:

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 136
E.a Non-confidential

Chapter 4. Commands
4.1. Commands overview

* As defined by the normal circular queue semantics, the location has been read by the SMMU and the producer
might later re-use the location for a different command.

* Where explicitly noted in a command description, certain side-effects or guarantees have occurred.
— Where not noted, no conclusions can be drawn from the Consumption of a command.

The SMMU_(S_)CMDQ_CONS index can be polled to determine whether a specific command has been Consumed.
See section 4.7 Command Consumption summary for a summary of Consumption behavior.

A CMD_SYNC command is provided as a mechanism to ensure completion of commands submitted to the same
queue at a location before the CMD_SYNC, including side-effects. A CMD_SYNC is not required to be issued in
order to start the processing of earlier commands.

Note: A CMD_SYNC is used where it is necessary to determine completion of prior commands, such as a TLB
invalidation, but commands are able to complete without depending on a CMD_SYNC.

4.1.5 Reserved fields

All non-specified fields in the commands are RESO. An implementation is permitted to check whether these fields
are zero. An implementation does one of the following:

* Detects non-zero use of a Reserved field as a malformed command, resulting in CERROR_ILL.
* Ignores the entirety of any Reserved fields.

Some combinations or ranges of parameter values are defined in this section to be ILLEGAL and use of these
values results in a CERROR_ILL command error.

4.1.6 Common command fields

These fields are common to more than one command and have the following behavior:
¢ SubstreamID and Substream Valid (SSV)
— SSV indicates whether a SubstreamlID is provided.
0: SubstreamID not supplied.
1: SubstreamID supplied.

e When SMMU_S_IDR1.SECURE_IMPL == 1, SSec is used by commands on the Secure Command queue to
indicate whether the given StreamID parameter is Secure or Non-secure, in a similar way to SEC_SID for an
input transaction (see section 3.10.1 StreamlID Security state (SEC_SID)):

SSec Meaning

0 StreamID is Non-secure

1 StreamlID is Secure

— Commands on the Non-secure Command queue must set SSec == 0, where present, and cannot affect
Secure streams. A command on the Non-secure Command queue with SSec == 1 is ILLEGAL, regardless
of whether Secure state is supported, and raises CERROR_ILL.

¢ Virtual address fields are Address[63:12], with [11:0] taken as zero.

 Physical, or IPA address fields are Address[51:12], or [51:2] for the case of MSIAddr, with other bits taken
as zero.

— Note: Bits[51:48] of these fields are RESO in SMMUv3.0.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 137
E.a Non-confidential

Chapter 4. Commands
4.1. Commands overview

4.1.7 Out-of-range parameters

ARM IHI 0070
E.a

Providing an out-of-range parameter to a command has one of the following CONSTRAINED UNPREDICTABLE
behaviors:

* The command has no effect
e The command has an effect, taking an UNPREDICTABLE value for the parameter that is out-of-range.

— Note: For example, an implementation might truncate an out-of-range StreamID parameter to another
in-range StreamID which might then be affected by the command.

See section 3.16.1.2 Command Queue. Some implementations might not provide the ability to express out-of-range
values in certain fields.

A StreamID parameter for a command on the Non-secure Command queue is out of range if the
value exceeds the implemented Non-secure StreamID size, as reported by SMMU_IDRI1.SIDSIZE. For a
command on the Secure Command queue, a Non-secure StreamID is out of range if the value exceeds the
Non-secure SMMU_IDR1.SIDSIZE and a Secure StreamID is out of range if the value exceeds the Secure
SMMU_S_IDR1.S_SIDSIZE.

A SubstreamID parameter is out of range if the value exceeds the implemented SubstreamlID size, as reported by
SMMU_IDRI1.SSIDSIZE.

Address parameter ranges are described for each command type that takes an address parameter.

The allowed range of ASID and VMID parameters is covered in section 4.4 TLB invalidation.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 138
Non-confidential

Chapter 4. Commands

4.2. Prefetch

4.2 Prefetch

Two forms of prefetch command are available which can prefetch the configuration or translation data associated
with a stream.

Valid prefetch commands with out of range parameters do not generate command errors. A request to prefetch an
address that is out of range with respect to the translation table configuration for the StreamID or SubstreamlID is
IGNORED and does not record any kind of fault or error.

An implementation is not required to check the range of an Address parameter, but if it does then the parameter is
considered out of range if:

* When the stream configuration enables stage 1 translation, the parameter has bits at Address[VAS-1] and
upwards that are not all equal in value. TBI is permitted but not required to apply to the parameter.

* When the stream configuration enables stage 2 translation, the parameter has bits at Address[IAS] and
upwards that are not zero.

If either SMMU_IDR1.SSIDSIZE == 0 or STE.SICDMax == 0, then:

* Prefetch commands must be submitted with SSV == 0 and the SubstreamID parameter is IGNORED.
* Setting SSV == 1 is CONSTRAINED UNPREDICTABLE and has one of the following behaviors:

— The command behaves as though SSV == 0.

— The command has no effect.

Prefetch commands directed to invalid configuration, for example, an STE or CD with V == 0 or out of range of
the Stream table (or level-2 sub-table), fail silently and do not record error events. Similarly, prefetch commands
directed to addresses that cause translation-related faults for any reason do not record error events.

When SMMU_(S_)CRO.SMMUEN == 0, valid prefetch commands are consumed but do not trigger a prefetch.

4.21 CMD_PREFETCH_CONFIG(StreamID, SSec, SubstreamiD, SSV)

ARM IHI 0070
E.a

127 9%,
RESO

195 o4,
RESO

I StreamID I

131 12,11,10,9 8,7 0
| SubstreamID | | |REse| 0x01 |

ssvd Lssec

Prefetch any STE and CD configuration structures that are required to process traffic from the given StreamID, and
SubstreamID if SSV == 1. An implementation is not required to prefetch any, or all, of the configuration requested.

If the STE of a StreamID configures both stage 1 and stage 2 translation, stage 2 HTTU is enabled, and if a CD or
LI1CD is fetched, then this command sets AF == 1 in the stage 2 translation table descriptor that is used to fetch
the CD or L1CD.

Note: The CD might not be fetched if it is already cached.

The common behaviors for SSec apply. See 4.1.6 Common command fields.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 139
Non-confidential

Chapter 4. Commands
4.2. Prefetch

422 CMD_PREFETCH_ADDR(StreamID, SSec, SubstreamID, SSV, Addr, NS, Size, Stride)

127 9%,
‘ Address[63:12] I

95 76,75,74,73 69 | 68 64

Address[63:12] NS Stride Size
LRESO
163 32,
‘ StreamID I
D! 12,11,10,9 8,7 0
‘ SubstreamID | | |RESG| 0x02 |
ssvd Lssec

Prefetch any STE and CD configuration structures and TLB entries for the given span of addresses as though
accessed by transactions associated with StreamID, and SubstreamID if SSV == 1. An implementation is not
required to prefetch any, or all, entries requested.

This command performs a prefetch of one or more TLB entries associated with a sequence of addresses given by:
Addr + (n * 212+Stidey where 0 <= n < 257,

The Stride parameter expresses the expected size of each resulting TLB entry, for the intended span. It controls
the gap between successive addresses for which translations are prefetched. This parameter is encoded so that
prefetches occur at a stride of 2'2*St1d hytes. For SMMUv3.0 implementations, Stride is RES0, must be set

to 0, and the effective prefetch stride is 4KB. Use of a non-zero value either ignores the value or results in a
CERROR_ILL.

The Size parameter expresses the desired number of prefetched translations, made for addresses at the effective
Stride size, encoded as a 257 multiple of the stride size.

The NS parameter is used in the scenario where the command targets a Secure stream and one of the following
applies:

¢ The stream is configured for stage 2 translation only.
* The stream is configured for stage 1 and stage 2 translation, but stage 1 translation is bypassed.

In these scenarios, the NS parameter is used as the NS attribute required to be input to Secure stage 2 translation.
The NS parameter is ignored when stage 2 translation is not performed or when stage 1 translation is performed.
Note: When stage 1 translation is performed, the NS attribute provided to stage 2 comes from stage 1 translation
tables.

When SMMU_S_IDR1.SEL2 == 0, the NS parameter is RESO.

For CMD_PREFETCH_ADDR commands issued to the Non-secure Command queue, the NS parameter is RES0.
For CMD_PREFETCH_ADDR commands issued to the Secure Command queue with SSec == 0, the NS parameter
is RESO.

An implementation internally limits the number of translation operations performed so that the overall prefetch
operation completes in a reasonable time.

Note: An implementation might achieve this by ceasing prefetch at a point after which further prefetch would
overwrite TLB entries prefetched earlier in the same operation.

Note: If translation table entries have been created for a range of addresses with a consistent page or block size, a
prefetch operation can be optimized by setting Stride to align with the page or block size of the range.

Note: In some configurations, particularly those with smaller page sizes, it might negatively impact performance
to request a prefetch of a span that results in insertion of a large number of TLB entries.

When HTTU is enabled, this command:

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 140
E.a Non-confidential

Chapter 4. Commands
4.2. Prefetch

» Marks a stage 2 translation table descriptor as accessed for a CD fetch through stage 2 as described in
4.2.1 CMD_PREFETCH_CONFIG(StreamID, SSec, SubstreamID, SSV) above.

¢ Performs HTTU in a manner consistent with that of a speculative read. See sections 3.14 Speculative
accesses and 3.13 Translation table entries and Access/Dirty flags.

The common behaviors for SSec apply. See 4.1.6 Common command fields.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 141
E.a Non-confidential

Chapter 4. Commands
4.3. Configuration structure invalidation

4.3 Configuration structure invalidation

After an SMMU configuration structure is altered in any way, an invalidation command must be issued to ensure
that any cached copies of stale configuration are discarded. The following commands allow invalidation of L1STDs,
Stream table entries, L1CDs and CDs by StreamID and by StreamID and SubstreamID. All configuration structures
must be considered to be individually cached and the agent controlling the SMMU cannot assume that invalidation
of one type of structure affects those of another type unless explicitly specified, regardless of the implementation
properties of a particular SMMU. See section 16.2 Caching.

Modifications of translation tables require separate invalidation of SMMU TLBs, using broadcast TLB invalidation
or explicit TLB invalidation commands. See section 4.4 TLB invalidation.

Where a StreamID parameter is provided, it corresponds directly with an STE or LISTD. The StreamID parameter
indicates that an STE is to be invalidated, or a CD that has been located directly via the indicated STE. The SSec
parameter indicates whether the invalidation applies to configuration related to the Secure or Non-secure Stream
table.

A structure invalidation command, at a minimum, invalidates all cached copies of structures directly indicated by
the command parameters. The commands are permitted to over-invalidate by invalidating other entries.

Note: Arm recommends that implementations limit over-invalidation to avoid a negative performance impact.

When issued from the Secure Command queue, a command might indicate a Secure or Non-secure Stream table
entry and associated CD, using SSec. If over-invalidation occurs, it is permitted to affect either Security state.

Over-invalidation is permitted for non-locked configuration cache entries, but when issued from the Non-secure
Command queue, Arm strongly recommends that a command only causes invalidation of cached copies of
structures associated with Non-secure streams. Where IMPLEMENTATION DEFINED configuration cache locking
is used, the IMPLEMENTATION DEFINED configuration cache invalidation semantics might restrict the effects of
over-invalidation on locked configuration cache entries.

Note: Arm recommends that implementations choosing to allow over-invalidation consider the impact of
Non-secure software being able to invalidate structures for Secure streams.

4.3.1 CMD_CFGI_STE(StreamlID, SSec, Leaf)

ARM IHI 0070
E.a

127 9% |

| RESO |
. 95 65| 64 .
RESO :
LLeaf
163 32,
g‘ StreamID
D! 11,10, 9 8,7 0
| RESO | [reso] 0x03 |
LSSec
Invalidate the STE indicated by StreamID and SSec.
This might be used for:
 Stream became invalid or valid.
* Enabling ATS.
* Enabling PASIDs.
» Changing stage 1 between bypass and translate.
Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 142

Non-confidential

Chapter 4. Commands
4.3. Configuration structure invalidation

Note: This command is not required to affect TLB contents. Separate TLB invalidation must be performed to clean
up TLB entries resulting from a prior configuration.

When Leaf == 0, this command invalidates the STE for the specified StreamID, and all caching of the intermediate
LIST descriptor structures walked to locate the specified STE (as might be cached when multi-level Stream tables
are used). When Leaf == 1, only the STE is invalidated and the intermediate L1ST descriptors are not required
to be invalidated. An implementation is permitted to always invalidate the intermediate L1ST descriptors. STEs
cached from linear Stream tables are invalidated with any value of Leaf.

This command invalidates all Context Descriptors (including L1CD) that were cached using the given StreamID.

This command invalidates all information cached from the VMS structure referenced using the given StreamID,
for all configuration caches that are indexed by StreamlID.

Arm recommends the use of the Leaf == 1 form of this command unless Leaf == 0 behavior is explicitly required.
When a linear (single-level) Stream table is in use, the extra scope of the Leaf == 0 form is not required to be used.

Note: By avoiding Leaf == 0 invalidations unless cached intermediate pointers might exist from multi-level walks,
invalidations might be faster and more power-efficient, depending on the implementation of STE caching.

4.3.2 CMD_CFGI_STE_RANGE(StreamID, SSec, Range)

127 9%,
RESO :

195 69 | 68 64,
RESO Range

‘ StreamID I

131 11,10,9 8,7 0,
| RESO | |REse| 0x04 |

|_SSec

Invalidate more than one STE, falling into the range of StreamIDs given by (inclusive):
Start = (StreamID & ~(2Ranee+! _ 1),
End = Start + 2Range+D) _ .

Invalidation is performed for an aligned range of 2Ra&*D StreamIDs. The Range parameter encodes a value
0-31 corresponding to a range of 2! - 23 StreamIDs. The bottom Range+1 bits of the StreamID parameter are
IGNORED, aligning the range to its size.

Note: Arm expects this command to be used for mass-invalidation when large sections of the Stream table are
updated at the same time.

This command invalidates all caching of intermediate L1ST descriptors walked to locate the STEs in the given range
(as might be cached when multi-level Stream tables are used). An implementation is permitted to over-invalidate
these L1ST descriptors if required.

This command invalidates any Context Descriptors (including L1CD) that were cached using all StreamIDs in the
given range.

This command invalidates all information cached from the VMS structure referenced using the given StreamID,
for all configuration caches that are indexed by StreamlID.

Note: CMD_CFGI_STE_RANGE(n, SSec, 31) invalidates all 232 STEs, L1ST descriptors, CDs and L1CDs
associated with the Security state given by SSec. This encoding is used for CMD_CFGI_ALL. The value of n is
unimportant, as when Range == 31, all bits of StreamID are IGNORED. The common behaviors for SSec apply.
See 4.1.6 Common command fields.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 143
E.a Non-confidential

Chapter 4. Commands
4.3. Configuration structure invalidation

4.3.3 CMD_CFGI_CD(StreamlD, SSec, SubstreamlID, Leaf)

127 %

| RESO “
95 65| 64
: RESO ;
LLeaf
163 32,'ea
‘ StreamID I
FE 12,11,10,9 8,7 0,
g‘ SubstreamID [47| |RESG| 0x05 |

Reso) Lssec

Invalidate one CD.
This might be used when:

* Changing TTBRx/ASID (software must also invalidate TLBs using the old ASID).
* Enabling TBI.

The SubstreamID parameter indicates the Context Descriptor to be invalidated. When a cached Context Descriptor
was fetched from index x of the CD table indicated by StreamlID, then it is invalidated by this command when
issued with SubstreamID == x. This includes the case where the STE indicates one CD which is equivalent to a
CD table with one entry at index 0.

Note:

¢ Where substreams have been used with StreamID, that is when the STE located a CD table with multiple
entries, the SubstreamID parameter indicates the CD to be invalidated as an index into the CD table.

— STE.S1DSS might alter the translation behavior of the CD at index 0 (which might be used with
SubstreamID 0, or transactions without a SubstreamID) but when issued with SubstreamID == 0, this
command invalidates caching of the CD read from index 0 independent of its role in translation through
SIDSS.

* Where substreams are not used with the given StreamID, this command invalidates the CD when it is issued
with SubstreamID == 0.

When the SubstreamID parameter is outside of the range of implemented SubstreamIDs, including the case where
SMMU_IDR1.SSIDSIZE == 0 and the SubstreamID parameter is greater than 0, the behavior is consistent with
the out-of-range parameter CONSTRAINED UNPREDICTABLE behavior described in section 4.1.7 Out-of-range
parameters.

Note: An out-of-range SubstreamID parameter might cause this command to have no effect, or to operate on a
different SubstreamID. In the case that SMMU_IDR1.SSIDSIZE == 0, a non-zero SubstreamID parameter might
invalidate the single cached CD or have no effect.

Note: In the case where STE.S1DSS == 0b10, non-SubstreamID traffic uses CD table entry 0, which would be
invalidated using this command with the SubstreamID parameter equal to 0, although SubstreamID == 0 traffic is
terminated (therefore is not associated with CD table entry 0), see STE.S1DSS for more information.

Note: The SubstreamID parameter is interpreted as a CD table index to invalidate. As such, a configuration
with one CD can be thought of as a one-entry table. To invalidate the CD cached from this configuration, the
SubstreamID parameter to this command would be 0.

When Leaf == 0, this command invalidates all caching of an intermediate L1CD descriptor that locates the CD
in a 2-level CD table (see STE.S1Fmt). When Leaf == 1, intermediate L1CD descriptors are not required to be
invalidated. An implementation is permitted to always invalidate the intermediate descriptors.

This command raises CERROR_ILL when stage 1 is not implemented.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 144
E.a Non-confidential

Chapter 4. Commands
4.3. Configuration structure invalidation

A cached copy of CD data is treated as being local to the StreamID that locates the CD, because the CDs are
indexed using SubstreamIDs whose scope is local to the StreamID. If multiple StreamIDs use a shared CD or table
of CDs, the CD might be cached multiple times, having been fetched through any of the STEs. An invalidation
command must be performed that affects all StreamIDs whose STEs point to the CD to be invalidated.

Note: This means that, when cached, CDs do not have to be located by address and might be indexed by StreamID
and SubstreamID.

Note: For example, multiple CMD_CFGI_CD or CMD_CFGI_STE commands for each StreamID can be
performed, or a wider-scope CMD_CFGI_STE_RANGE or CMD_CFGI_ALL covering all StreamIDs.

Arm recommends the use of the Leaf == 1 form of this command unless Leaf == 0 behavior is explicitly required.
When a linear (single-level) CD table is in use, the extra scope of the Leaf == 0 form is not required to be used.

Note: Avoiding Leaf == 0 invalidations unless cached intermediate pointers might exist from multi-level walks
might have power and performance benefits.

4.3.4 CMD_CFGI_CD_ALL(StreamlD, SSec)

ARM IHI 0070
E.a

127 9%,
RESO

195 64,
RESO

‘ StreamID ‘

3L 11,10, 9 8,7 0,
| RESO RESO 0x06 \

|_SSec

Invalidate all CDs referenced by StreamID, for example when decommissioning a device. A separate command
must also be issued to invalidate TLB entries for any ASIDs used, either by ASID or all.

Note: When STE configuration has enabled substreams, this command affects all CDs cached for the StreamID
substreams. When STE configuration has disabled substreams and used a single CD for stage 1, this command
affects that single CD.

This command must also invalidate caches of all intermediate L1CD descriptors that locate CDs using the given
StreamlID.

This command raises CERROR_ILL when stage 1 is not implemented.

See 4.3.3 CMD_CFGI_CD(StreamlID, SSec, SubstreamID, Leaf), when a CD table is shared by multiple STEs this
can give rise to multiple caches of each CD table entry. This command, or similar for STE or ALL scope, must be
performed for all StreamIDs that could have cached the CD table contents.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 145
Non-confidential

Chapter 4. Commands
4.3. Configuration structure invalidation

4.3.5 CMD_CFGI_VMS_PIDM(SSec, VMID)

ARM IHI 0070
E.a

127 96 .
RESO

. 95 64 .
RESO

163 48,47 32,

§| RESO VMID ﬁ

NE 11,10,9 8,7 0

§| RESO | |RESG| 0x07 |

|_SSec

This command invalidates cached VMS.PARTID_MAP information that is stored in a cache that is not affected by
CMD_CFGI_STE*.

The SSec parameter is encoded the same as for other CMD_CFGI_* commands and indicates the Security state
associated with the VMID parameter.

The validity and usage of the VMID parameter is consistent with the behavior of VMID in the CMD_TLBI_*
commands. See section 4.4.2 TLB invalidation of stage 1.

A CERRORL_ILL is raised in any of the following conditions:

* SMMU_IDR3.MPAM == 0.

* MPAM is not supported by the programming interface indicated by SSec or the VMS is not supported by the
programming interface indicated by SSec.

* SSec is used improperly, consistent with the common definition of SSec.

4.3.5.1 Usage

The PARTID_MAP might be cached in either of a configuration cache or a separate PARTID_MAP cache. This
means that a change to the PARTID_MAP requires invalidation of both configuration that could have used that
PARTID_MAP and of a separate PARTID_MAP cache. The following invalidation procedure can be used:

1. CMD_CFGI_VMS_PIDM(s, VMID)

2. CMD_SYNC

3. STE configuration cache invalidations for all StreamIDs associated with the VMS holding the PARTID_MAP
(for example, CMD_CFGI_STE_RANGE).

4. CMD_SYNC

Note: The VMID required for invalidation is the STE.S2VMID value that is used by the STEs that reference the
VMS.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 146
Non-confidential

Chapter 4. Commands
4.3. Configuration structure invalidation

4.3.6 CMD_CFGI_ALL(SSec)

127 9%,
RESO

195 69 68 64,
RESO 31

‘ IGNORED |

NE 11,10,9 8,7 0,
| RESO | |RESG| 0x04 |

|_SSec

For configuration caches indexed by StreamlID, this command is an alias for CMD_CFGI_STE_RANGE with
Range == 31 (a range of 2%, or all, StreamIDs). This command invalidates the cached configuration for all
possible StreamIDs that are associated with the Security state given by SSec. Because Range == 31, the StreamID
parameter is IGNORED.

This command additionally invalidates all information cached from all VMS structures associated with the Security
state given by SSec, including from caches that are indexed by VMID.

The common behaviors for SSec apply. See 4.1.6 Common command fields.

Note: Behavior for caches indexed by StreamlID is as described in CMD_CFGI_STE_RANGE and invalidates
caches of all configuration structures relevant to the Security state indicated by SSec. This includes caches of:

 Stream Table Entries.

* Intermediate or L1ST descriptor multi-level Stream Table Entries.
» Context Descriptors.

¢ Intermediate or L1CD multi-level Context Descriptor table entries.

Note: Arm recommends that an implementation explicitly detects this case and performs an invalidate-all operation
instead of using an invalidate-range, if invalidate-all would be faster or more efficient.

Note: If it is required that TLB entries are also invalidated (such as reset-time initialization of the SMMU), Arm
recommends that this command is followed by a command sequence to invalidate all TLB entries. A sequence in
which TLB invalidations precede a CMD_CFGI_ALL might lead to a race in which TLB entries are pre-loaded
using prefetch with possibly-stale cached configuration structures.

4.3.7 Action of VM guest OS structure invalidations by hypervisor

Note: When a guest issues structure invalidation commands on its Command queue, the hypervisor must perform
maintenance on its behalf. In particular, StreamIDs might need to be mapped from the guest view into real system
StreamIDs. Arm recommends the following behavior:

Guest S1 command Hypervisor action Notes

CMD_CFGI_STE Re-shadow STE, CMD_CFGI_STE Map guest StreamID to host

StreamID. Note: SubstreamID
is the same in guest and host.

CMD_CFGI_STE_RANGE Re-shadow STEs, CMD_CFGI_STE or
CMD_CFGI_STE_RANGE as appropriate.
CMD_CFGI_CD CMD_CFGI_CD
CMD_CFGI_CD_ALL CMD_CFGI_CD_ALL
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 147

E.a

Non-confidential

Chapter 4. Commands
4.3. Configuration structure invalidation

Guest S1 command Hypervisor action Notes

CMD_CFGI_ALL CMD_CFGI_ALL, or, CMD_CFGI_ALL might
For each S in (GUEST_STREAMS) { over-invalidate and affect
CMD_CFGI_STE(S); performance of other guests.
} An alternative is to explicitly

invalidate structures for each
StreamID assigned to the guest
in question.

4.3.8 Configuration structure invalidation semantics/rules

ARM IHI 0070
E.a

Stalled transactions are unaffected by structure or TLB invalidation commands and must be dealt with either by
using CMD_RESUME to retry or terminate them individually, or flushed using CMD_STALL_TERM for affected
StreamIDs.

Note: When a stalled transaction is retried, it is re-translated as though it had just arrived, using newly-updated
structures that might have been made visible to the SMMU with prior structure or TLB invalidation operations.

Translation of a transaction through the SMMU might not be a single atomic step and an invalidation command
might be received while the transaction is in progress inside the SMMU. An invalidation of a structure that is used
by a transaction that is in progress is not required to affect the transaction, if the transaction looked up the structure
before it was invalidated. However, invalidation of any given structure must be seen as atomic so that a transaction
must never see a partially-valid structure. A subsequent CMD_SYNC ensures that the transaction, having used a
structure that was affected by an invalidation command, is visible to the system before the CMD_SYNC completes.

The consumption of structure and TLB invalidation commands does not guarantee invalidation completion. A
subsequent CMD_SYNC is consumed when all prior invalidations of both structure and TLB have completed.

Refer to section 3.21 Structure access rules and update procedures for structure update procedure and information
about invalidation completion.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 148
Non-confidential

Chapter 4. Commands
4.4. TLB invalidation

4.4 TLB invalidation

The TLB invalidation commands are similar to the Armv8-A broadcast TLB invalidation messages originating
from PE TLB invalidation operations. These commands only affect the SMMU TLB and do not generate any
broadcast operations to other agents in the system.

Note: SMMU TLB invalidate commands might be required because:

* The SMMU or interconnect does not support broadcast TLB invalidation messages.

* The ASET flag in a Context Descriptor might cause a TLB entry to be marked as not participating in certain
types of broadcast TLB invalidation, see section 3.17 TLB tagging, VMIDs, ASIDs and participation in
broadcast TLB maintenance.

The Armv8-A Last Level (leaf) scope is supported, to only invalidate an indicated TLB entry and last level cache.

Entries in this section show the PE TLB invalidation instructions that have the same scope as the SMMU command
being described. Broadcast TLB invalidation messages from these PE operations trigger the equivalent operation
on the SMMU. The scope of broadcast TLB invalidation and SMMU TLB invalidation commands are affected by
VMID Wildcards, if enabled, see section 3.17.6 VMID Wildcards, SMMU_CR0O.VMW and SMMU_S_CR0.VMW.

ASID and VMID parameters to TLB invalidation commands are either 8-bit or 16-bit values, as
appropriate, depending on whether the SMMU implementation supports 8-bit or 16-bit ASIDs and VMIDs
(SMMU_IDRO.{ASID16,VMID16}). When support for either ASIDs or VMIDs is 8 bits, the upper 8 bits of the
corresponding 16-bit parameter field are RESO. In this case, if the upper 8 bits are non-zero, the command is not
required to affect TLB entries.

Note: There are some configurations where VMID is RESO. See Section 4.4.2 TLB invalidation of stage 1.
Commands matching TLB entries on ASID disregard the ASET value with which TLB entries were inserted.

Each command specifies the minimum required scope of TLB invalidation that must be performed. An
implementation is permitted to invalidate more non-locked entries than this required scope (over-invalidation) but
doing so can adversely affect performance and is not recommended by Arm. Where IMPLEMENTATION DEFINED
TLB locking is used, invalidation semantics set out in section 16.6.1 Configuration and translation cache locking
must be observed.

Note: As described in section 4.3.8 Configuration structure invalidation semantics/rules above, a CMD_SYNC
completes when prior TLB invalidations have completed. A sequence of CMD_TLBI_* commands followed by
a CMD_SYNC is analogous to a sequence of TLBI instructions followed by a DSB on the PE, where the DSB
ensures TLB invalidation completion.

Note: Consistent with the the Armv8-A VMSA, for an entry to be eligible for invalidation, addresses that are
provided for TLB invalidation are not required to be aligned to the start of a TLB entry address range. To match a
TLB entry, the least significant bits of the address are ignored as needed, given the size of the entry.

4.41 Common TLB invalidation fields

4.4.1.1 Range-based invalidation and level hint
Armv8.4 [2] introduces range-based TLB invalidation operations and adds a level hint to both existing and
range-based invalidation operations.

The SMMU_IDR3.RIL bit indicates support for both range-based invalidation and the level hint. This feature is
mandatory in SMMUv3.2 or later.

The following fields are common across all address-based invalidation operation commands, for VA and IPA, as
described in sections 4.4.2 TLB invalidation of stage 1 and 4.4.3 TLB invalidation of stage 2.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 149
E.a Non-confidential

Chapter 4. Commands
4.4. TLB invalidation

Bits Name Meaning

[24:20] SCALE Range invalidation scale.
* See below for use of this field in range invalidation.
* When TG == 0b00 this field is RESO.
e If SMMU_IDR3.RIL == 0, this field is RESO.

[16:12] NUM Range invalidation granule multiplier
* See below for use of this field in range invalidation.
e When TG = 0b00, this field is RESO.
» If SMMU_IDR3.RIL == 0, this field is RESO.

[75:74] TG Translation Granule
* This field indicates the Translation Granule size of the TLB entries that are intended
to be invalidated and is used with both the range TLB invalidation and the TTL hint,
as described in Armv8.4D, It applies to TLB entries that cache information from
Table descriptors or information from last level descriptors.
* TG is encoded as follows:
— 0b00: Entries to be invalidated were inserted using any Translation Granule
size, and:
* Range invalidation is not performed.
* The TTL hint is not used.
— 0bO01: Entries to be invalidated were inserted using a 4KB Translation
Granule.
— 0b10: Entries to be invalidated were inserted using a 16KB Translation
Granule.
— 0b11: Entries to be invalidated were inserted using a 64KB Translation
Granule.
» If SMMU_IDR3.RIL == 0, this field is RESO.
* If a non-zero value is specified then the SMMU is only required to invalidate TLB
entries that were inserted using a Translation Granule that matches TG.

[73:72] TTL Translation Table Level

* When TG != 0b00, this field provides a hint that indicates the level of the
translation table walk holding the leaf entry for the address that is being invalidated,
as described in Armv8.4).

* When TG == 0b00, this field is RESO. The TTL field does not affect the scope of
the invalidation.

* If a non-zero value is specified, then the SMMU is only required to invalidate TLB
entries that were inserted from a translation table walk level matching TTL.

* If SMMU_IDR3.RIL == 0, this field is RESO.

D]

The encodings of TTL reduce the required scope of the invalidation as follows:

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 150
E.a Non-confidential

Chapter 4. Commands
4.4. TLB invalidation

TTL When TG == 0b00 When TG == 0b01 When TG == 0b10 When TG == 0b11
0b00 TTL is RESO, not used. Leaf entries at any level Leaf entries at any level ~ Leaf entries at any level
Leaf entries at any level of of a 4KB Granule table. of a 16KB Granule table. of a 64KB Granule table.
walk of a table with any
Translation Granule size.
0b01 Leaf entries at Level 1 Reserved, hardware Leaf entries at Level 1
of a 4KB Granule table. treats as TTL == 00 of a 64KB Granule table.
0b10 Leaf entries at Level 2 Leaf entries at Level 2 Leaf entries at Level 2
of a 4KB Granule table. of a 16KB Granule table. of a 64KB Granule table.
0bl1l Leaf entries at Level 3 Leaf entries at Level 3 Leaf entries at Level 3
of a 4KB Granule table. of a 16KB Granule table. of a 64KB Granule table.
When TG = 0b00, the TTL hint is not used and range invalidation is not performed.
Note: The TTL hint gives the level of translation table walk of the page or block last level descriptor entries for the
addresses being invalidated. For operations with Leaf=0, invalidation of cached Table descriptors for the address
and scope additionally occurs at levels between the start of the walk and the level before the last level given by
TTL.
When TG != 0b00:
* The TTL field might indicate a level hint.
* A range invalidation is performed. The range, in bytes, of virtual or intermediate physical addresses are given
by:

- Range = (NUM+1)*25CALE)*Translation_Granule_Size

— The range begins at the address given by the Address field in the command, meaning that the set of
invalidated addresses, A, is given by:

Address <= A < Address + Range

— Note: This differs from the range expressible using an Armv8.4 [2] PE ‘TLBI R’ instruction, because
the SCALE field is larger in an SMMU command. The SMMU encoding can express a superset of all
possible ranges expressible in a PE ‘TLBI R’ instruction.

— Note: The span is a single granule when NUM == 0 and SCALE == 0. In this case, the command has
similar behavior to a non-range SMMU invalidation operation, except it uses the TTL hint.

— Note: A CMD_TLBI_ can be issued with an Address in the TTB1 half of the Virtual Address space,
with SCALE and NUM values such that the Range exceeds the top of the address space. The Address is
not considered to “wrap” on overflow and the SMMU is not required to invalidate any entries inserted
for the TTBO half of the Virtual Address space in this scenario.

* The range of addresses that is invalidated is UNPREDICTABLE in the following conditions:
— For the 4K translation granule (TG == 0b01):
+ If TTL == 0b01 and bits Address[29:12] are not all zero.
If TTL == 0b10 and bits Address[20:12] are not all zero.
— For the 16K translation granule (TG == 0b10):
If TTL == 0b10 and bits Address[24:12] are not all zero.
ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 151

E.a Non-confidential

Chapter 4. Commands
4.4. TLB invalidation

If TTL == 0b11 or 0b00 and bits Address[13:12] are not all zero.

% Note: TTL == 0b01 is Reserved when TG == 0b10 and this value should not be programmed.
Hardware treats TTL == 0b01 as though TTL == 0b00. This means that, to avoid an unpredictable
range of invalidation, Address[13:12] are also required to be zero when TTL == 0b01.

— For the 64K translation granule (TG == 0b11):

If TTL == 0b01 and bits Address[41:12] are not all zero.
If TTL == 0b10 and bits Address[28:12] are not all zero.
If TTL == 0b11 or 0b00 and bits Address[15:12] are not all zero.

* If TG != 0000, the parameter combination of NUM == 0, SCALE == 0 and TTL = 0b00 is Reserved. Use of
this Reserved combination of parameters causes CERROR_ILL.

— Note: Providing granule information without using TTL or a range invalidate has no purpose and this
command encoding is Reserved.

An implementation of SMMUVv3.2 or later in a system that supports broadcast invalidation, that is when
SMMU_IDRO.BTM == 1, also supports broadcast range invalidation operations.

Note: For example, for a TLBI issued with TTL=0b10 and Leaf=0:

e The SMMU will invalidate cached entries for matching:
— Level 2 block entries.
— Level 0 and level 1 table entries.
* The SMMU is not required to invalidate:
— Level 3 entries.
— Level 2 table entries.
— Level 1 block entries.

4.4.2 TLB invalidation of stage 1

The following commands are available on a stage 1-only and a stage 1 and stage 2 SMMU. On a stage 2-only
SMMU, they result in CERROR_ILL.

Stage 1 command Stage 1 From Non-secure From Secure Command queue,

not supported | Command queue if present

CMD_TLBI_NH_ALL CERROR_ILL | Invalidate NS EL1 mappings Invalidate Secure stage 1

CMD_TLBI_NH_ASID mappings (inserted with
CMD_TLBI NH_VAA StreamWorld == Secure).
CMD_TLBI_NH_VA Note: EL3 entries are not

required to be affected.

CMD_TLBI EL3 ALL CERROR_ILL Invalidate EL3 stage 1 mappings
CMD_TLBI_EL3 VA (insered with StreamWorld ==
EL3).

CMD_TLBI_EL2_ALL If SMMU_IDRO.Hyp == 1, invalidate EL2 or El12-E2H stage
CMD_TLBI_EL2 VA 1 mappings as indicated by SMMU_CR2.E2H, in the
CMD_TLBI_EL2_VAA corresponding Security state (see text).
CMD_TLBI_EL2_ASID If SMMU_IDRO.Hyp == 0, CERROR_ILL.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 152

E.a Non-confidential

Chapter 4. Commands
4.4. TLB invalidation

Note: Arm expects that software controlling a stage 1-only SMMU will use the first four commands. This includes
driver software operating in a virtual machine controlling a stage 1-only SMMU interface.

In the following CMD_TLBI_NH_* commands, VMID is only matched when stage 2 is supported for the Security
state corresponding to the command queue that the command was issued in. Otherwise, the VMID parameter is
RESO and, if it has a non-zero value, the SMMU is permitted to perform the invalidation on an UNKNOWN VMID
value, or to not perform an invalidation.

Note: A stage 1-only implementation is not required to check that the VMID parameter of CMD_TLBI_NH_* is
Zero.

The Address parameters of these commands are VAs. An implementation is permitted but not required to treat the
parameter as out of range if bits at Address[VAS-1] and upwards are not all equal in value. TBI is permitted but
not required to apply to the parameter.

4.421 CMD_TLBI_NH_ALL(VMID)

(127 96

| RESO I
195 64,
| RESO I
163 48 | 47 32,
| RESO VMID |
NE! 8,7 0

| RESO ox10 \

When issued from the Non-secure Command queue, the invalidation scope is equivalent to that of VMALLEI,
invalidates all stage 1 NS-EL1 (not NS-EL2 or NS-EL2-E2H) entries for VMID, including global entries.

When issued from the Secure Command queue and Secure stage 2 is not supported, the invalidation scope is
equivalent to that of Secure ALLEI, invalidates all Secure entries, including global entries.

When issued from the Secure Command queue and Secure stage 2 is supported, the invalidation scope is equivalent
to that of Secure VMALLELI, invalidates all Secure stage 1 EL1 (not S-EL2 or S-EL2-E2H) entries for VMID,
including global entries.

For an equivalent to Non-secure ALLE1, see CMD_TLBI_NSNH_ALL.

4.4.2.2 CMD_TLBI_NH_ASID(VMID, ASID)

(127 9% |

| RESO “
195 64,
ﬂ RESO “
183 48,47 32,
g‘ ASID VMID ﬁ
NED 8,7 0

| RESO ox11 |

The invalidation scope is equivalent to that of ASIDE1:

When issued from the Non-secure Command queue, invalidates stage 1 NS-EL1 non-global entries by ASID and
VMID.

ARM IHI 0070 Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 153
E.a Non-confidential

Chapter 4. Commands
4.4. TLB invalidation

ARM I[HI 0070

When issued from the Secure Command queue and Secure stage 2 is not supported, invalidates stage 1 Secure
non-global entries by ASID.

When issued from the Secure Command queue and Secure stage 2 is supported, invalidates Secure stage 1
non-global entries by ASID and VMID.

4.4.2.3 CMD_TLBI_NH_VAA(VMID, Addr, Leaf)

127 96 .
Address[63:12]

. 95 76,75 74,73 72,71 65 | 64 .

' Address[63:12] TG | TTL RESO ;
|_Leaf

163 48,47 32,

| RESO | VMID |

NE:! 25,24 20,19 17,16 12,11 8,7 0,

| RESO SCALE | RESO | NUM RESO 0x13 |

The invalidation scope is equivalent to that of VAA{L}E1:

When issued from the Non-secure Command queue, invalidates stage 1 NS-EL1 entries by VA for all ASIDs in
VMID, including global entries.

When issued from the Secure Command queue and Secure stage 2 is not supported, invalidates stage 1 Secure
entries by VA for all ASIDs, including global entries.

When issued from the Secure Command queue and Secure stage 2 is supported, invalidates stage 1 Secure entries
by VA for all ASIDs in VMID, including global entries.

When Leaf == 1, only cached entries for the last level of translation table walk are required to be invalidated.

4.4.2.4 CMD_TLBI_NH_VA(VMID, ASID, Addr, Leaf)

127 96 .
Address[63:12] :

. 95 76,75 74,73 72,71 65 | 64 .
Address[63:12] TG | TTL RESO :

|_Leaf
163 48,47 32,
‘ ASID | VMID |
N 25,24 20,19 17,16 12,11 8,7 0,
| RESO SCALE | RESO | NUM RESO 0x12 |

The invalidation scope is equivalent to that of VA{L}E1:

When issued from the Non-secure Command queue, invalidates stage 1 NS-EL1 entries by VMID, ASID and VA,
as well as global entries by VMID and VA regardless of the ASID used during allocation.

When issued from the Secure Command queue and Secure stage 2 is not supported, invalidates stage 1 Secure
entries by ASID and VA, as well as global entries by VA regardless of the ASID used during allocation.

When issued from the Secure Command queue and Secure stage 2 is supported, invalidates stage 1 Secure entries
by VMID, ASID and VA, as well as global entries by VMID and VA regardless of the ASID used during allocation.

When Leaf == 1, only cached entries for the last level of translation table walk are required to be invalidated.

Copyright © 2016-2023 Arm Limited or its affiliates. All rights reserved. 154
Non-confidential

Chapter 4. Commands
4.4. TLB invalidation

4.42.5 CMD _TLBI_EL3_ALL

127

|

RESO

RESO

RESO

RESO

0x18 |

The invalidation scope is equivalent to that of ALLE3, invalidates all stage 1 EL3 entries.

This command is valid only on the Secure Command queue, otherwise a CERROR_IL