
Arm® Mali™ GPU OpenCL
Version 5.1

Developer Guide

Non-Confidential
Copyright © 2019–2023 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
101574_0501_00_en

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Arm® Mali™ GPU OpenCL
Developer Guide

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue Date Confidentiality Change

0100-00 15 February 2019 Non-Confidential First release of version 1.0

0200-00 12 April 2019 Non-Confidential First release of version 2.0

0300-00 28 June 2019 Non-Confidential First release of version 3.0

0301-00 1 August 2019 Non-Confidential First release of version 3.1

0302-00 27 November 2019 Non-Confidential First release of version 3.2

0400-00 29 January 2020 Non-Confidential First release of version 4.0

0401-00 14 August 2020 Non-Confidential First release of version 4.1

0402-00 30 September 2020 Non-Confidential First release of version 4.2

0403-00 11 November 2020 Non-Confidential First release of version 4.3

0404-00 25 February 2021 Non-Confidential First release of version 4.4

0405-00 2 July 2021 Non-Confidential First release of version 4.5

0406-00 25 August 2021 Non-Confidential First release of version 4.6

0407-00 15 October 2021 Non-Confidential First release of version 4.7

0408-00 10 February 2022 Non-Confidential First release of version 4.8

0409-00 20 May 2022 Non-Confidential First release of version 4.9

0410-00 8 July 2022 Non-Confidential First release of version 4.10

0411-00 23 September 2022 Non-Confidential First release of version 4.11

0500-00 2 November 2022 Non-Confidential First release of version 5.0

0501-00 13 January 2023 Non-Confidential First release of version 5.1

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 113

https://www.arm.com/company/policies/trademarks

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

Previous issues of this document included language that can be offensive. We have replaced this
language. See I. Revisions on page 110.

To report offensive language in this document, email terms@arm.com.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 113

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00
Contents

Contents

1. Introduction..10
1.1 Product revision status..10
1.2 Intended audience..10
1.3 Conventions... 10
1.4 Useful resources... 12

2. Overview...14
2.1 About Arm® Mali™ GPUs... 14
2.2 About OpenCL.. 14

2.3 About the Mali™ GPU OpenCL driver and support... 14

3. Parallel processing concepts..15
3.1 Types of parallelism... 15
3.1.1 Data parallelism... 15
3.1.2 Task parallelism.. 15
3.1.3 Pipelines...16
3.2 Mixing different types of parallelism... 17
3.3 Embarrassingly parallel applications... 17
3.4 Limitations of parallel processing and Amdahl's law..18
3.5 Concurrency...19

4. OpenCL concepts... 21
4.1 Using OpenCL... 21
4.2 OpenCL applications..21
4.3 OpenCL execution model...22
4.4 OpenCL data processing...22
4.5 OpenCL work-groups.. 24
4.6 OpenCL identifiers... 24
4.7 OpenCL memory model... 25
4.7.1 OpenCL memory model overview..25
4.7.2 Memory types in OpenCL.. 25

4.8 Mali™ GPU OpenCL memory model..26
4.9 OpenCL concepts summary...27

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00
Contents

5. Developing an OpenCL application... 28
5.1 Software and hardware requirements for Mali™ GPU OpenCL development................................ 28
5.2 Development stages for OpenCL...28

6. Execution stages of an OpenCL application..30
6.1 Platform setup...30
6.2 Runtime setup... 30
6.3 Finding the available compute devices... 31
6.4 Initializing and creating OpenCL contexts.. 32
6.5 Creating a command queue...32
6.6 Creating OpenCL program objects...33
6.7 Building a program executable..34
6.8 Creating kernel and memory objects...34
6.8.1 Creating kernel objects..35
6.8.2 Creating memory objects..35
6.9 Executing the kernel.. 35
6.9.1 Determining the data dimensions...36
6.9.2 Determining the optimal global work size.. 36
6.9.3 Determining the local work-group size..36
6.9.4 Enqueuing kernel execution... 37
6.9.5 Executing kernels.. 37
6.10 Reading the results.. 38
6.11 Cleaning up unused objects..38

7. Converting existing code to OpenCL.. 39
7.1 Profiling your application.. 39
7.2 Analyzing code for parallelization...39
7.2.1 About analyzing code for parallelization... 39
7.2.2 Finding data parallel operations.. 40
7.2.3 Finding operations with few dependencies..40
7.2.4 Analyze loops...40
7.3 Parallel processing techniques in OpenCL... 42
7.3.1 Use the global ID instead of the loop counter..42
7.3.2 Compute values in a loop with a formula instead of using counters..43
7.3.3 Compute values per frame...43
7.3.4 Perform computations with dependencies in multiple-passes... 44
7.3.5 Pre-compute values to remove dependencies...45

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00
Contents

7.3.6 Use software pipelining... 46
7.3.7 Use task parallelism.. 46
7.4 Using parallel processing with non-parallelizable code..47
7.5 Dividing data for OpenCL.. 48
7.5.1 About dividing data for OpenCL...48
7.5.2 Use concurrent data structures...48
7.5.3 Data division examples..49

8. Retuning existing OpenCL code for Mali™ GPUs... 51
8.1 Differences between desktop-based architectures and Mali™ GPUs... 51
8.1.1 About desktop-based GPU architectures..51

8.1.2 About Mali™ GPU architectures.. 52

8.1.3 Programming OpenCL for Mali™ GPUs..52

8.2 Retuning existing OpenCL code for Mali™ GPUs..52
8.2.1 Analyze code..52
8.2.2 Locate and remove device optimizations.. 53

8.2.3 Optimize your OpenCL code for Mali™ GPUs... 54

9. Optimizing OpenCL for Mali™ GPUs... 55
9.1 The optimization process for OpenCL applications... 55
9.2 Load balancing between control threads and OpenCL threads...56
9.2.1 Do not use clFinish() for synchronization... 56
9.2.2 Do not use any of the clEnqueueMap() operations with a blocking call......................................57
9.3 Optimizing memory allocation...57
9.3.1 About memory allocation..57
9.3.2 Use CL_MEM_ALLOC_HOST_PTR to avoid copying memory...58
9.3.3 Do not create buffers with CL_MEM_USE_HOST_PTR if possible...59
9.3.4 Sharing memory between I/O devices and OpenCL..59
9.3.5 Sharing memory in a fully coherent system... 60
9.3.6 Sharing memory in an I/O coherent system.. 60

10. OpenCL optimizations list..61
10.1 General optimizations... 61
10.2 Kernel optimizations..63
10.3 Code optimizations..65
10.4 Execution optimizations..68
10.5 Reducing the effect of serial computations...68

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00
Contents

10.6 Mali™ Bifrost, Valhall, and Avalon GPU-specific optimizations..69

11. Kernel auto-vectorizer and unroller.. 72
11.1 Kernel auto-vectorizer options... 73
11.1.1 Kernel auto-vectorizer command and parameters... 73
11.1.2 Kernel auto-vectorizer command examples... 73
11.2 Kernel unroller options... 74
11.2.1 Kernel unroller command and parameters... 74
11.2.2 Kernel unroller command examples...74
11.3 The dimension interchange transformation... 74

A. OpenCL data types..76
A.1 OpenCL data type lists...76
A.1.1 Built-in scalar data types.. 76
A.1.2 Built-in vector data types...77
A.1.3 Other built-in data types.. 77
A.1.4 Reserved data types...78

B. OpenCL built-in functions... 79
B.1 half_ and native_ math functions...79
B.2 Synchronization functions.. 80

C. OpenCL extensions..81

D. Using OpenCL extensions... 83
D.1 Inter-operation with EGL... 83
D.1.1 EGL images.. 83
D.1.2 ANDROID_image_native_buffer..86
D.1.3 EGL_EXT_image_dma_buf_import.. 87
D.2 The cl_arm_printf extension..88
D.2.1 About the cl_arm_printf extension...88
D.2.2 cl_arm_printf example... 88
D.3 The cl_arm_import_memory extensions... 89
D.4 The cl_arm_job_slot_selection extension..90
D.5 The cl_ext_cxx_for_opencl extension..91
D.5.1 Limitation of the current implementation of cl_ext_cxx_for_opencl...91
D.6 The cl_arm_controlled_kernel_termination extension..92
D.7 The cl_khr_suggested_local_work_size extension...93

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00
Contents

D.8 The cl_arm_scheduling_controls extension..93

E. OpenCL 1.2.. 95
E.1 OpenCL 1.2 compiler options... 95
E.2 OpenCL 1.2 compiler parameters.. 95
E.3 OpenCL 1.2 functions...96
E.4 Functions deprecated in OpenCL 1.2... 97

F. OpenCL 2.0.. 98
F.1 OpenCL 2.0 functions... 98
F.1.1 OpenCL 2.0 API functions..98
F.1.2 OpenCL 2.0 built-in functions..99
F.2 OpenCL 2.0 compiler options... 100
F.3 Program scope variables... 101
F.4 Functions deprecated in OpenCL 2.0... 101
F.5 OpenCL 2.0 extensions.. 102
F.6 OpenCL 2.0 optimizations..102
F.7 Shared virtual memory.. 103
F.8 OpenCL 2.0 pipes and device execution..105

G. OpenCL 2.1...106
G.1 OpenCL 2.1 functions..106
G.1.1 OpenCL 2.1 API functions.. 106
G.1.2 OpenCL 2.1 built-in functions..106
G.2 Intermediate language programs... 107
G.3 Device and host timer functions...108
G.4 Queue priority hints... 108

H. OpenCL 3.0...109
H.1 OpenCL 3.0 functions..109

I. Revisions..110

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Introduction

1. Introduction

1.1 Product revision status

The rxpy identifier indicates the revision status of the product described in this manual, for
example, r1p2, where:

rx Identifies the major revision of the product, for example, r1.
py Identifies the minor revision or modification status of the product, for

example, p2.

1.2 Intended audience

This guide is written for software developers with experience in C or C-like languages who want to
develop OpenCL on Mali™ Bifrost, Valhall, or Avalon GPUs.

1.3 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Convention Use

italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 113

https://developer.arm.com/glossary

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Introduction

Convention Use
SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system
failure or damage.

Requirements for the system. Not following these requirements might result in
system failure or damage.

Requirements for the system. Not following these requirements will result in system
failure or damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Timing diagrams
The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Introduction

Figure 1-1: Key to timing diagram conventions

Signals
The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n
At the start or end of a signal name, n denotes an active-LOW signal.

1.4 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm product resources Document ID Confidentiality

Arm® Mali™ Midgard OpenCL Developer Guide 100614 Non-Confidential

Arm® Mali™ RenderScript Best Practices Developer Guide 101144 Non-Confidential

Non-Arm resources Document ID Organization

OpenCL 2.0 Specification - http://www.khronos.org

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 113

http://developer.arm.com/documentation
https://developer.arm.com/documentation/100614/latest
https://developer.arm.com/documentation/101144/latest
http://www.khronos.org

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Introduction

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 113

http://www.adobe.com

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Overview

2. Overview
This chapter introduces Mali™ GPUs, OpenCL, and the Mali™ GPU OpenCL driver.

2.1 About Arm® Mali™ GPUs
Arm® produces families of Mali™ GPUs. Bifrost, Valhall, and Avalon are three of the Mali™ GPU
architectures.

Mali™ GPUs run data processing tasks in parallel that contain relatively little control code. Mali™
GPUs typically contain many more processing units than application processors. This enables Mali™
GPUs to compute at a higher rate than application processors without using more power.

Mali™ GPUs can have one or more shader cores.

Scalar instructions are executed in parallel so the GPU operates on multiple data elements
simultaneously. You are not required to vectorize your code to do this.

2.2 About OpenCL
Open Computing Language (OpenCL) is an open standard that enables you to use the parallel
processing capabilities of multiple types of processors including application processors, Graphics
Processing Units (GPUs), and other computing devices.

OpenCL makes parallel applications easier to write, because it enables the execution of your
application across multiple application processors and GPUs.

OpenCL is an open standard developed by the Khronos Group.

Related information
http://www.khronos.org

2.3 About the Mali™ GPU OpenCL driver and support
The Mali™ GPU OpenCL driver is an implementation of OpenCL for Mali™ GPUs. The Mali™ GPU
OpenCL driver supports different versions of OpenCL.

The Mali™ Bifrost, Valhall, and Avalon drivers support the OpenCL version 3.0 full profile.

The driver is binary-compatible with OpenCL 1.0, OpenCL 1.1, OpenCL 1.2, OpenCL 2.0, and
OpenCL 2.1 applications. The driver is also compatible with the APIs deprecated in OpenCL 2.0.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 113

http://www.khronos.org

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Parallel processing concepts

3. Parallel processing concepts
This chapter describes the main concepts of parallel processing. Parallel processing is the
simultaneous processing of multiple computations.

Application processors are typically designed to execute a single thread as quickly as possible. This
type of processing typically includes scalar operations and control code.

GPUs are designed to execute a large number of threads at the same time. Graphics applications
typically require many operations that can be computed in parallel across many processors.

OpenCL enables you to use the parallel processing capabilities of GPUs or multi-core application
processors.

OpenCL is an open standard language that enables developers to run general purpose computing
tasks on GPUs, application processors, and other types of processors.

3.1 Types of parallelism
Data parallelism, task parallelism, and pipelines are the main types of parallelism.

3.1.1 Data parallelism

In data parallelism, data is divided into data elements that a processor can process in parallel.
Several different processors simultaneously read and process different data elements.

The data must be in data structures that processors can read and write in parallel.

An example of a data parallel application is rendering three-dimensional graphics. The generated
pixels are independent so the computations required to generate them can be performed in
parallel. This type of parallelism is very fine-grained and can involve hundreds of thousands of
active threads simultaneously.

OpenCL is primarily used for data parallel processing.

3.1.2 Task parallelism

In task parallelism, the application is broken down into smaller tasks that execute in parallel. Task
parallelism is also known as functional parallelism.

An example of an application that can use task parallelism is playing a video in a web page. To
display a video in a web page, your device must do several tasks:

• Run a network stack that performs communication.

• Request data from an external server.

• Read data from an external server.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Parallel processing concepts

• Parse data.

• Decode video data.

• Decode audio data.

• Draw video frames.

• Play audio data.

The following figure shows parts of an application and operating system that operate
simultaneously when playing an on-line video.

Figure 3-1: Task parallel processing

Parse data

Decode
video

Playback
sound

Operating
system

Request data from
external server

Read data from
external server

Decode
sound

Draw video
frame

Network stack

3.1.3 Pipelines

Pipelines process data in a series of stages. In a pipeline, the stages can operate simultaneously but
they do not process the same data. A pipeline typically has a relatively small number of stages.

An example of a pipeline is a video recorder application that must execute these stages:

1. Capture image data from an image sensor and measure light levels.

2. Modify the image data to correct for lens effects.

3. Modify the contrast, color balance, and exposure of the image data.

4. Compress the image.

5. Add the data to the video file.

6. Write the video file to storage.

These stages must be executed in order, but they can all execute on data from different video
frames at the same time.

The figure shows parts of a video capture application that can operate simultaneously as a pipeline.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Parallel processing concepts

Figure 3-2: Pipeline processing

Correct
image for

lens effects

Modify:
Contrast

Color balance
Exposure

Compress
image

Write video
file to

storage

Capture
data

 from image
sensor

Add data to
video file

3.2 Mixing different types of parallelism
You can mix different types of parallelism in your applications.

For example, an audio synthesizer might use a combination of all three types of parallelism, in these
ways:

• Task parallelism is used to compute the notes independently.

• A pipeline of audio generation and processing modules creates the sound of an individual note.

• Within the pipeline, some stages can use data parallelism to accelerate the computation of
processing.

3.3 Embarrassingly parallel applications
If an application can be parallelized across a large number of processors easily, it is said to be
embarrassingly parallel.

OpenCL is ideally suited for developing and executing embarrassingly parallel applications.

The following figure shows an image that is divided into many small parts. If, for example, you want
to brighten the image, you can process all of these parts simultaneously.

Figure 3-3: Embarrassingly parallel processing

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Parallel processing concepts

Another example of an embarrassingly parallel application is rendering three-dimensional graphics.
For example, pixels are independent so they can be computed and drawn in parallel.

3.4 Limitations of parallel processing and Amdahl's law
There are limitations of parallel processing that you must consider when developing parallel
applications.

For example, if your application parallelizes perfectly, executing the application on ten processors
makes it run ten times faster. However, applications rarely parallelize perfectly because part of
the application is serial. This serial component imposes a limit on the amount of parallelization the
application can use.

Amdahl’s law describes the maximum speedup that parallel processing can achieve.

The formula for Amdahl’s law is shown in the following figure where the terms in the equation are:

S Fraction of the application that is serial.
P Fraction of the application that is parallelizable.
N Number of processors.

Figure 3-4: Formula for Amdahl’s law

1
Speedup =

S +
P

N

The following figure shows the speedup that different numbers of processors provide for
applications with different serial components.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Parallel processing concepts

Figure 3-5: Speedup for an application with different serial components

Processors
2 4 10

10 X

6 X

4 X

2 X

1 X

6 8

Speedup

1

8 X

0

10% serial

5% serial

20% serial

Perfect scaling

The biggest speedups are achieved with relatively small numbers of processors. However, as the
number of processors rises, the per-processor gains are reduced.

You cannot avoid Amdahl’s law in your application but you can reduce the impact.

For high performance with a large number of processors, the application must have a very small
serial component. These sorts of applications are said to be embarrassingly parallel.

Related information
Embarrassingly parallel applications on page 17
Reducing the effect of serial computations on page 68

3.5 Concurrency
Concurrent applications have multiple operations in progress at the same time. These can operate
in parallel or in serial through the use of a time sharing system.

In a concurrent application, multiple tasks attempt to share the same data. Access to this data must
be managed to prevent complex problems such as race conditions, deadlocks, and livelocks.

Race conditions
A race condition occurs when two or more threads try to modify the value of one variable at
the same time. In general, the final value of the computation will always produce the same
value, but when a race condition occurs, the variable can get a different value that depends
on the order of the writes.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Parallel processing concepts

Deadlocks
A deadlock occurs when two threads become blocked by each other and neither thread
can make progress. This can happen when each thread obtains a lock that the other thread
requires.

Livelocks
A livelock is similar to deadlock, but the threads keep running. Because of the lock, the
threads can never complete their tasks.

Concurrent applications require concurrent data structures. A concurrent data structure is a data
structure that enables multiple tasks to gain access to the data with no concurrency problems.

Data parallel applications use concurrent data structures. These are the sorts of data structures that
you typically use in OpenCL.

OpenCL includes atomic operations to help manage interactions between threads. Atomic
operations provide one thread exclusive access to a data item while it modifies it. The atomic
operation enables one thread to read, modify, and write the data item with the guarantee that no
other thread can modify the data item at the same time.

OpenCL does not guarantee the order of operation of threads. Threads can start
and finish in any order.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL concepts

4. OpenCL concepts
This chapter describes the OpenCL concepts.

4.1 Using OpenCL
Open Computing Language (OpenCL) is an open standard that enables you to use the parallel
processing capabilities of multiple types of processors including application processors, Graphics
Processing Units (GPUs), and other computing devices.

OpenCL specifies an API for parallel programming that is designed for portability:

• It uses an abstracted memory and execution model.

• There is no requirement to know the application processor instruction set.

Functions executing on OpenCL devices are called kernels. These are written in a language called
OpenCL C that is based on C99.

The OpenCL language includes vector types and built-in functions that enable you to use the
features of accelerators. There is also scope for targeting specific architectures with optimizations.

4.2 OpenCL applications
OpenCL applications consist of two parts: application or host-side code, and OpenCL kernels.

Application, or host-side code
• Calls the OpenCL APIs.

• Compiles the OpenCL kernels.

• Allocates memory buffers to pass data into and out of the OpenCL kernels.

• Sets up command queues.

• Sets up dependencies between the tasks.

• Sets up the N-Dimensional Range (NDRanges) that the kernels execute over.

OpenCL kernels
• Written in OpenCL C language.

• Perform the parallel processing.

• Run on compute devices such as application processors or GPU shader cores.

You must write both of these parts correctly to get the best performance.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL concepts

4.3 OpenCL execution model
The OpenCL execution model includes the host application, the context, and the operation of
OpenCL kernels.

The host application
The host application runs on the application processor. The host application manages the
execution of the kernels by setting up command queues for:

• Memory commands.

• Kernel execution commands.

• Synchronization.

The context
The host application defines the context for the kernels. The context includes:

• The kernels.

• Compute devices.

• Program objects.

• Memory objects.

Operation of OpenCL kernels
Kernels run on compute devices. A kernel is a block of code that is executed on a compute
device in parallel with other kernels. Kernels operate in the following sequence:

1. The kernel is defined in a host application.

2. The host application submits the kernel for execution on a compute device. A compute
device can be an application processor, GPU, or another type of processor.

3. When the application issues a command to submit a kernel, OpenCL creates the
NDRange of work-items.

4. An instance of the kernel is created for each element in the NDRange. This enables each
element to be processed independently in parallel.

4.4 OpenCL data processing
The data processed by OpenCL is in an index space of work-items.

The work-items are organized in an NDRange where:

• N is the number of dimensions.

• N can be one, two, or three.

One kernel instance is executed for each work-item in the index space.

The following figure shows NDRanges with one, two, and three dimensions.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL concepts

Figure 4-1: NDRanges and work-items

One dimensional
NDRange

N=1

Two dimensional
NDRange

N=2

Three dimensional
NDRange

N=3

Work-items

Work-items

Work-items

You group work-items into work-groups for processing. The following figure shows a three-
dimensional NDRange that is split into 16 work-groups, each with 16 work-items.

Figure 4-2: Work-items and work-groups.

Work-items

Work-groups

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL concepts

4.5 OpenCL work-groups
Work-groups have several properties, limitations and work-items:

Properties of work-groups
• Work-groups are independent of each other.

• The OpenCL driver can issue multiple work-groups for execution in parallel.

• The work-items in a work-group can communicate with each other using shared data
buffers. You must synchronize access to these buffers.

Limitations between work-groups
Work-groups typically do not directly share data. They can share data using global memory.

The following are not supported across different work-groups:

• Barriers.

• Dependencies.

• Ordering.

• Coherency.

Global atomics are available but these can be slower than local atomics.

Work-items in a work-group
The work-items in a work-group can:

• Access shared memory.

• Use local atomic operations.

• Perform barrier operations to synchronize execution points.

For example:

barrier(CLK_LOCAL_MEM_FENCE); // Wait for all work-items in
 // this work-group to catch up

After the synchronization is complete, all writes to shared buffers are guaranteed to have
been completed. It is then safe for work-items to read data written by different work-
items within the same work-group.

4.6 OpenCL identifiers
There are several identifiers in OpenCL. These identifiers are the global ID, the local ID, and the
work-group ID.

global ID
Every work-item has a unique global ID that identifies it within the index space.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL concepts

work-group ID
Each work-group has a unique work-group ID.

local ID
Within each work-group, each work-item has a unique local ID.

4.7 OpenCL memory model
The OpenCL memory model contains several components and supports a number of memory
types.

4.7.1 OpenCL memory model overview

The following figure shows the OpenCL memory model.

Figure 4-3: OpenCL memory model

Global memory

Local memory

Private
memory

Private
memory

Work-group

Constant memory

Work-item Work-item

Local memory

Private
memory

Private
memory

Work-group

Work-item Work-item

4.7.2 Memory types in OpenCL

OpenCL supports these memory types: Private memory, local memory, constant memory, and
global memory.

Private memory
• Private memory is specific to a work-item.

• It is not visible to other work-items.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL concepts

Local memory
• Local memory is local to a work-group.

• It is accessible by the work-items in the work-group.

• It is accessed with the __local keyword.

• It is consistent to all work-items in the work-group.

Work-items execute in an undefined order. This means you cannot
guarantee the order that work-items write data in. If you want a work-
item to read data that are written by another work-item, you must use a
barrier to ensure that they execute in the correct order.

Constant memory
• Constant memory is a memory region used for objects allocated and initialized by the

host.

• It is accessible as read-only by all work-items.

Global memory
• Global memory is accessible to all work-items executing in a context.

• It is accessible to the host using read, write, and map commands.

• It is consistent across work-items in a single work-group.

Work-items execute in an undefined order. This means you cannot
guarantee the order that work-items write data in.

If you want a work-item to read data that are written by another work-
item, you must use a barrier to ensure that they execute in the correct
order.

• It implements a relaxed consistency, shared memory model.

• It is accessed with the __global keyword.

• There is no guarantee of memory consistency between different work-groups.

4.8 Mali™ GPU OpenCL memory model
Mali™ GPUs use a different memory model compared to desktop workstation GPUs.

The main differences between desktop workstation GPUs and Mali™ GPUs are:

Desktop workstation GPUs
Traditional desktop workstation processors have their own dedicated memory.

Desktop workstation GPUs have physically separate global, local, and private memories.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL concepts

Typically, a graphics card has its own memory.

Data must be copied from the application processor memory to the GPU memory and back
again.

Mali™ GPUs
Mali™ GPUs have a unified memory system with the application processor.

Mali™ GPUs use global memory backed with caches in place of local or private memories.

If you allocate local or private memory, it is allocated in global memory. Moving data from
global to local memory typically does not improve performance. If the data fits into the
registers, moving data from global to private memory can result in improved performance.

Copying data is not required, provided it is allocated by OpenCL in the correct manner.

Each compute device, that is, shader core, has its own data caches.

Related information
Optimizing memory allocation on page 57

4.9 OpenCL concepts summary
Summary of the concepts used in OpenCL.

• OpenCL primarily uses data parallel processing.

• Computations in OpenCL are performed by pieces of code called kernels that execute on
compute devices. Compute devices can be application processors or GPUs.

• The data processed by OpenCL is in an index space of work-items. The work-items are
organized in an NDRange.

• One kernel instance is executed for each work-item in the index space.

• Kernel instances can execute in parallel.

• You group work-items together to form work-groups. The work-items in a work-group can
communicate with each other using shared data buffers, but access to the buffers must be
synchronized with barrier operations.

• Work-groups typically do not directly share data with each other. They can share data using
global memory and atomic operations.

• You can issue multiple work-groups for execution in parallel.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Developing an OpenCL application

5. Developing an OpenCL application
This chapter describes the development stages of an OpenCL application.

5.1 Software and hardware requirements for Mali™ GPU
OpenCL development

You can develop an OpenCL application with any implementation so long as the implementation
has the wanted features and extensions.

If you want to tune for high performance though, you require:

• A compatible OS.

• The Mali™ GPU OpenCL driver.

• A platform with a Mali™ GPU.

Estimating Mali™ GPU performance with results from a different system will produce inaccurate
data.

Related information
About Arm® Mali™ GPUs on page 14

5.2 Development stages for OpenCL
There are several stages to develop an OpenCL application. First, you must determine what you
want to parallelize. Then, you must write the kernels. Finally, write infrastructure for the kernels
and execute them.

You must perform the following stages to develop and OpenCL application:

Determine what you want to parallelize
The first step when deciding to use OpenCL is to look at what your application does, and
identify the parts of the application that can run in parallel. This is often the hardest part of
developing an OpenCL application.

It is only necessary to convert the parts of an application to OpenCL where
there is likely to be a benefit. Profile your application to find the most active
parts and consider these parts for conversion.

Write kernels
OpenCL applications consist of a set of kernel functions. You must write the kernels that
perform the computations.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Developing an OpenCL application

If possible, partition your kernels so that the least amount of data is transferred between
them. Loading large amounts of data is often the most expensive part of an operation.

Write infrastructure for kernels
OpenCL applications require infrastructure code that sets up the data and prepares the
kernels for execution.

Execute the kernels
Enqueue the kernels for execution and read back the results.

Related information
Analyzing code for parallelization on page 39

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Execution stages of an OpenCL application

6. Execution stages of an OpenCL
application

This chapter describes the execution stages of an OpenCL application.

This chapter is not intended as a comprehensive guide to using OpenCL.

Platform setup and runtime setup are the two main parts of the OpenCL execution stages. Your
OpenCL application must obtain information about your hardware, then set up the runtime
environment.

6.1 Platform setup
Use the platform API to obtain information about your hardware, then set up the OpenCL context.

The platform API helps you to:

• Determine what OpenCL devices are available. Query to find out what OpenCL devices are
available on the system using OpenCL platform layer functions.

• Set up the OpenCL context. Create and set up an OpenCL context and at least one command
queues to schedule execution of your kernels.

Related information
Finding the available compute devices on page 31
Initializing and creating OpenCL contexts on page 32

6.2 Runtime setup
You can use the runtime API for many different operations.

The runtime API helps you to:

• Create a command queue.

• Compile and build your program objects. Issue commands to compile and build your source
code and extract kernel objects from the compiled code.
You must follow this sequence of commands:

1. Create the program object by calling either:
clCreateProgramWithSource()

Creates the program object from the kernel source code.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Execution stages of an OpenCL application

clCreateProgramWithBinary()
Creates the program with a pre-compiled binary file.

2. Call the clBuildProgram() function to compile the program object for the specific devices
on the system.

• Build a program executable.

• Create the kernel and memory objects:

1. Call the clCreateKernel() function for each kernel, or call the
clCreateKernelsInProgram() function to create kernel objects for all the kernels in the
OpenCL application.

2. Use the OpenCL API to allocate memory buffers. You can use the map and unmap
operations to enable the application processor to access the data.

• Enqueue and execute the kernels.

Enqueue to the command queues the commands that control the sequence and
synchronization of kernel execution, mapping and unmapping of memory, and manipulation of
memory objects.

To execute a kernel function, you must do the following steps:

1. Call clSetKernelArg() for each parameter in the kernel function definition to set the kernel
parameter values.

2. Determine the work-group size and the index space to use to execute the kernel.

3. Enqueue the kernel for execution in the command queue.

• Enqueue commands that make the results from the work-items available to the host.

• Clean up the unused objects.

Related information
Creating a command queue on page 32
Creating OpenCL program objects on page 33
Building a program executable on page 34
Creating kernel and memory objects on page 34
Executing the kernel on page 35
Reading the results on page 37
Cleaning up unused objects on page 38

6.3 Finding the available compute devices
To set up OpenCL, you must choose compute devices. Call clGetDeviceIDs() to query the
OpenCL driver for a list of devices on the machine that support OpenCL.

You can restrict your search to a particular type of device or to any combination of device types.
You must also specify the maximum number of device IDs that you want returned.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Execution stages of an OpenCL application

If you have two or more devices, you can schedule different NDranges for processing on the
devices.

6.4 Initializing and creating OpenCL contexts
When you know the available OpenCL devices on the machine and have at least one valid device
ID, you can create an OpenCL context. The context groups the devices together to enable memory
objects to be shared across different compute devices.

To share work between devices, or to have interdependencies between operations submitted to
more than one command queue, create a context containing all the devices you want to use in this
way.

Pass the device information to the clCreateContext() function. For example:

// Create an OpenCL context

context = clCreateContext(NULL, 1, &device_id, notify_function, NULL, &err);
if (err != CL_SUCCESS)
{
 Cleanup();
 return 1;
}

You can optionally specify an error notification callback function when you create an OpenCL
context. When you leave this parameter as a NULL value, the system does not register an error
notification function.

To receive runtime errors for the particular OpenCL context, provide the callback function. For
example:

// Optionally user_data can contain contextual information
// Implementation specific data of size cb, can be returned in private_info

void context_notify(const char *notify_message, const void *private_info,
 size_t cb, void *user_data)
{
 printf("Notification:\n\t%s\n", notify_message);
}

6.5 Creating a command queue
After creating your OpenCL context, use clCreateCommandQueue() to create a command queue.

OpenCL does not support the automatic distribution of work to devices. If you want to share work
between devices, or have dependencies between operations enqueued on devices, then you must
create the command queues in the same OpenCL context.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Execution stages of an OpenCL application

Example command queue:

// Create a command-queue on the first device available
// on the created context

commandQueue = clCreateCommandQueue(context, device, properties, errcode_ref);
if (commandQueue == NULL)
{
 Cleanup();
 return 1;
}

If you have multiple OpenCL devices, you must:

1. Create a command queue for each device.

2. Divide up the work.

3. Submit commands separately to each device.

6.6 Creating OpenCL program objects
Create an OpenCL program object.

The OpenCL program object encapsulates the following components:

• Your OpenCL program source.

• The latest successfully built program executable.

• The build options.

• The build log.

• A list of devices the program is built for.

The program object is loaded with the kernel source code, then the code is compiled for the
devices attached to the context. All kernel functions must be identified in the application source
with the __kernel qualifier. OpenCL applications can also include functions that you can call from
your kernel functions.

Load the OpenCL C kernel source and create an OpenCL program object from it.

To create a program object, use the clCreateProgramWithSource() function. For example:

// Create OpenCL program

program = clCreateProgramWithSource(context, device, “<kernel source>”);
if (program == NULL)
{
 Cleanup();
 return 1;
}

There are different options for building OpenCL programs:

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Execution stages of an OpenCL application

• You can create a program object directly from the source code of an OpenCL application and
compile it at runtime. Do this at application start-up to save compute resources while the
application is running.

If you can cache the binary between application invocations, compile the program object at
platform start-up.

• To avoid compilation overhead at runtime, you can build a program object with a previously
built binary.

Applications with pre-built program objects are not portable across platforms
and driver versions.

Creating a program object from a binary is a similar process to creating a program object from
source code, except that you must supply the binary for each device that you want to execute the
kernel on. Use the clCreateProgramWithBinary() function to do this.

Use the clGetProgramInfo() function to obtain the binary after you have generated it.

So that the binary contains the final machine code, calls to clCreateKernel() or
clCreateKernelsInProgram() must be performed before calling clGetProgramInfo(). Building
programs created using clCreateProgramWithBinary() on binaries obtained in this way do not
require compilation.

6.7 Building a program executable
When you have created a program object, you must build a program executable from the contents
of the program object. Use the clBuildProgram() function to build your executable.

Compile all kernels in the program object:

err = clBuildProgram(program, 1, &device_id, "", NULL, NULL);
if (err != CL_SUCCESS)
{
 Cleanup();
 return 1;
}

6.8 Creating kernel and memory objects
There are separate processes for creating kernel objects and memory objects. You must create the
kernel objects and memory objects.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Execution stages of an OpenCL application

6.8.1 Creating kernel objects

Call the clCreateKernel() function to create a single kernel object, or call the
clCreateKernelsInProgram() function to create kernel objects for all the kernels in the OpenCL
application.

For example:

// Create OpenCL kernel

kernel = clCreateKernel(program, “<kernel_name>", NULL);
if (kernel == NULL)
{
 Cleanup();
 return 1;
}

6.8.2 Creating memory objects

When you have created and registered your kernels, send the program data to the kernels.

Procedure
1. Package the data in a memory object.
2. Associate the memory object with the kernel.

These are the types of memory objects:

Buffer objects
Simple blocks of memory.

Image objects
These are structures specifically for representing images. These are opaque structures.
This means that you cannot see the implementation details of these structures.

To create buffer objects, use the clCreateBuffer() function.

To create image objects, use the clCreateImage() function.

6.9 Executing the kernel
There are several stages in the kernel execution. The initial stages are related to determining
work-group and work-item sizes, and data dimensions. After completing the initial stages, you can
enqueue and execute your kernel.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Execution stages of an OpenCL application

6.9.1 Determining the data dimensions

If your data is an image x pixels wide by y pixels high, it is a two-dimensional data set. If you are
dealing with spatial data that involves the x, y, and z position of nodes, it is a three-dimensional
data set.

The number of dimensions in the original data set does not have to be the same in OpenCL. For
example, you can process a three-dimensional data set as a single dimensional data set in OpenCL.

6.9.2 Determining the optimal global work size

The global work size is the total number of work-items required for all dimensions combined.

You can change the global work size by processing multiple data items in a single work-item. The
new global work size is then the original global work size divided by the number of data items
processed by each work-item.

The global work size must be greater than the maximum number of threads that can run on a
core, multiplied by the number of cores available to fully load the GPU. This global work size is not
always achievable though, and sometimes running fewer threads may result in better performance,
for example, when there is contention on the memory subsystem.

6.9.3 Determining the local work-group size

You can specify the size of the work-group that OpenCL uses when you enqueue a kernel
to execute on a device. To do this, you must know the maximum work-group size permitted
by the OpenCL device your work-items execute on. To find the maximum work-group
size for a specific kernel, use the clGetKernelWorkGroupInfo() function and request the
CL_KERNEL_WORK_GROUP_SIZE property.

If your application is not required to share data among work-items, set the local_work_size
parameter to NULL when enqueuing your kernel. This enables the OpenCL driver to determine an
efficient work-group size for your kernel, but this might not be the optimal work-group size.

To get the maximum work-group size in each dimension, call clGetDeviceInfo() with
CL_DEVICE_MAX_WORK_ITEM_SIZES. This provides maximum sizes for the simplest kernel, and
dimensions might be lower for more complex kernels. The product of the dimensions of your work-
group might limit the size of the work-group.

To get the maximum work-group size for a specific kernel, call
clGetKernelWorkGroupInfo() with CL_KERNEL_WORK_GROUP_SIZE.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Execution stages of an OpenCL application

6.9.4 Enqueuing kernel execution

When you have identified the dimensions necessary to represent your data, the necessary work-
items for each dimension, and an appropriate work-group size, enqueue the kernel for execution
using clEnqueueNDRangeKernel().

For example:

size_t globalWorkSize[1] = { ARRAY_SIZE };
size_t localWorkSize[1] = { 4 };

// Queue the kernel up for execution across the array

errNum = clEnqueueNDRangeKernel(commandQueue, kernel, 1, NULL, globalWorkSize,
 localWorkSize, 0, NULL, NULL);

if (errNum != CL_SUCCESS)
{
 printf("Error queuing kernel for execution.\n");
 Cleanup();
 return 1;
}

6.9.5 Executing kernels

Queuing the kernel for execution does not mean that it executes immediately. The kernel execution
is put into the command queue so the device can process it later.

The call to clEnqueueNDRangeKernel() is not a blocking call and returns before the kernel has
executed. It can sometimes return before the kernel has started executing.

It is possible to make a kernel wait for execution until previous events are finished. You can specify
certain kernels wait until other specific kernels are completed before executing.

Kernels are executed in the order they are enqueued unless the property
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE is set when the command queue is created.

Kernels that are enqueued to an in-order queue automatically wait for kernels that were previously
enqueued on the same queue. You are not required to write any code to synchronize them.

Any execution failure may invalidate the queue and the context. The status of the
associated event will have an error code and any further enqueue to a queue that
may become invalid will return an error.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Execution stages of an OpenCL application

6.10 Reading the results
After your kernels have finished execution, you must make the result accessible to the host. To
access the results from the kernel, use clEnqueueMapBuffer() to map the buffer into host memory.

For example:

local_buffer = clEnqueueMapBuffer(queue, buffer, CL_NON_BLOCKING, CL_MAP_READ, 0,
 (data_size, num_deps, &deps[0], NULL, &err);

ASSERT(CL_SUCCESS == err);

• clFinish() must be called to make the buffer available.

• The third parameter of clEnqueueMapBuffer() is CL_NON_BLOCKING in the
previous example. If you change this parameter in clEnqueueMapBuffer() or
clFinish() to CL_BLOCKING, the call becomes a blocking call and the read must
be completed before clEnqueueMapBuffer() returns.

6.11 Cleaning up unused objects
When the application no longer requires the objects associated with the OpenCL runtime and
context, you must release these resources. You can use several functions to release your OpenCL
objects.

These functions decrement the reference count for the associated object:

• clReleaseMemObject().

• clReleaseKernel().

• clReleaseProgram().

• clReleaseCommandQueue().

• clReleaseContext().

Ensure the reference counts owned by the application reach zero when your application no longer
requires them.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

7. Converting existing code to OpenCL
This chapter describes converting existing code to OpenCL.

7.1 Profiling your application
Profile your application to find the most compute intensive parts. These are the parts that might be
worth porting to OpenCL.

The proportion of an application that requires high performance is often a relatively small part of
the code. This is the part of the code that can make best use of OpenCL. Porting any more of the
application to OpenCL is unlikely to provide a benefit.

You can use profilers, such as DS-5 Streamline, to analyze the performance of your application.

Related information
http://malideveloper.arm.com

7.2 Analyzing code for parallelization
Analyze compute-intensive code and determine the difficulty of parallelization, by checking for
parallel operations, operations with few dependencies, and by analyzing different types of loops.
These factors affect the difficulty of the parallelization.

7.2.1 About analyzing code for parallelization

When you have identified the most compute intensive parts of your application, analyze the code
to see if you can run it in parallel.

Parallelizing code can present the following degrees of difficulty:

Straightforward
Parallelizing the code requires small modifications.

Difficult
Parallelizing the code requires complex modifications. If you are using work-items in place
of loop iterations, compute variables based on the value of the global ID rather than using a
loop counter.

Difficult and includes dependencies
Parallelizing the code requires complex modifications and the use of techniques to avoid
dependencies. You can compute values per frame, perform computations in multiple stages,
or pre-compute values to remove dependencies.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 113

http://malideveloper.arm.com

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

Appears to be impossible
If parallelizing the code appears to be impossible, this only means that a particular code
implementation cannot be parallelized.

The purpose of code is to perform a function. There might be different algorithms that
perform the same function but work in different ways. Some of these might be parallelizable.

Investigate different alternatives to the algorithms and data structures that the code uses.
These might make parallelization possible.

Related information
Use the global ID instead of the loop counter on page 42
Compute values in a loop with a formula instead of using counters on page 42
Compute values per frame on page 43
Perform computations with dependencies in multiple-passes on page 44
Pre-compute values to remove dependencies on page 45
Using parallel processing with non-parallelizable code on page 47

7.2.2 Finding data parallel operations

Try to find tasks that do large numbers of operations that complete without sharing data or do not
depend on the results from each other. These types of operations are data parallel, so they are
ideal for OpenCL.

7.2.3 Finding operations with few dependencies

If tasks have few dependencies, it might be possible to run them in parallel. Dependencies between
tasks prevent parallelization because they force tasks to be performed sequentially.

If the code has dependencies, consider:

• If there is a way to remove the dependencies.

• If it is possible to delay the dependencies so that they occur later in execution.

7.2.4 Analyze loops

Loops are good targets for parallelization because they repeat computations many times, often
independently.

Consider the following types of loops:

Loops that process few elements
If the loop only processes a relatively small number of elements, it might not be appropriate
for data parallel processing.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

It might be better to parallelize these sorts of loops with task parallelism on one or more
application processors.

Nested loops
If the loop is part of a series of nested loops and the total number of iterations is large, this
loop is probably appropriate for parallel processing.

Perfect loops
Look for loops that:

• Process thousands of items.

• Have no dependencies on previous iterations.

• Access data independently in each iteration.

These types of loops are data parallel, so are ideal for OpenCL.

Simple loop parallelization
If the loop includes a variable that is incremented based on a value from the previous
iteration, this is a dependency between iterations that prevents parallelization.

See if you can work out a formula that enables you to compute the value of the variable
based on the main loop counter.

In OpenCL work-items are processed in parallel, not in a sequential loop. However, work-item
processing acts in a similar way to a loop.

Every work-item has a unique global id that identifies it and you can use this value in place of
a loop counter.

It is also possible to have loops within work-items, but these are independent of other work-
items.

Loops that require data from previous iterations
If your loop involves dependencies based on data processed by a previous iteration, this is a
more complex problem.

Can the loop be restructured to remove the dependency? If not, it might not be possible to
parallelize the loop.

There are several techniques that help you deal with dependencies. See if you can use these
techniques to parallelize the loop.

Non-parallelizable loops
If the loop contains dependencies that you cannot remove, investigate alternative methods of
performing the computation. These might be parallelizable.

Related information
Parallel processing techniques in OpenCL on page 42
Use the global ID instead of the loop counter on page 42
Using parallel processing with non-parallelizable code on page 47

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

7.3 Parallel processing techniques in OpenCL
You can use different parallel processing techniques in OpenCL. These techniques include, for
example, different ways of computing values, removing dependencies, software pipelining, and task
parallelism.

7.3.1 Use the global ID instead of the loop counter

In OpenCL, you use kernels to perform the equivalent of loop iterations. This means that there is
no loop counter to use in computations. The global ID of the work-item provides the equivalent of
the loop counter. Use the global ID to perform any computations based on the loop counter.

You can include loops in OpenCL kernels, but they can only iterate over the data for
that work-item, not the entire NDRange.

7.3.1.1 Simplified loop example

The example shows a simple loop in C that assigns the value of the loop counter to each array
element.

Loop example in C:
The following loop fills an array with numbers.

void SetElements(void)
{
 int loop_count;
 int my_array[4096];
 for (loop_count = 0; loop_count < 4096; loop_count++)
 {
 my_array[loop_count] = loop_count;
 }
 printf("Final count %d\n", loop_count);
}

This loop is parallelizable because the loop elements are all independent. There is no main loop
counter loop_count in the OpenCL kernel, so it is replaced by the global ID.

The equivalent code in an OpenCL kernel:
__kernel void example(__global int * restrict my_array)
{
 int id;
 id = get_global_id(0);
 my_array[id] = id;
}

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

7.3.2 Compute values in a loop with a formula instead of using counters

If you are using work-items in place of loop iterations, compute variables based on the value of the
global ID rather than using a loop counter. The global ID of the work-item provides the equivalent
of the loop counter.

7.3.3 Compute values per frame

If your application requires continuous updates of data elements and there are dependencies
between them, try breaking the computations into discrete units and perform one iteration per
image frame displayed.

For example, the following figure shows an application that runs a continuous physics simulation of
a flag.

Figure 7-1: Flag simulation

The flag is made up of a grid of nodes that are connected to the neighboring nodes. These nodes
are shown in the following figure.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

Figure 7-2: Flag simulation grid

The simulation runs as a series of iterations. In one iteration, all the nodes are updated and the
image is redrawn.

The following operations are performed in each iteration:

1. The node values are read from a buffer A.

2. A physics simulation computes the forces between the nodes.

3. The position and forces on the nodes are updated and stored into buffer B.

4. The flag image is drawn.

5. Buffer A and buffer B are switched.

In this case, splitting the computations into iterations also splits the dependencies. The data
required for one frame is computed in the previous frame.

Some types of simulation require many iterations for relatively small movements. If this is the case,
try computing multiple iterations before drawing frames.

7.3.4 Perform computations with dependencies in multiple-passes

If your application requires continuous updates of data elements and there are dependencies
between them, try breaking the computations into discrete units and perform the computations in
multiple stages.

This technique extends the technique that computes values per frame by splitting computations
even more.

Divide the data elements into odd and even fields. This divides the dependencies so the entire
computation can be performed in stages. The processing alternates between computing the odd
then the even fields.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

For example, this technique can be used in neural network simulation.

The individual neurons are arranged in a three-dimensional grid. Computing the state for a
neuron involves reading inputs from the surrounding neurons. This means that each neuron has
dependencies on the state of the surrounding neurons.

To execute the simulation, the three-dimensional grid is divided into layers and executed in the
following manner:

1. The even node values are read.

2. The odd layers are computed and the results stored.

3. The odd node values are read.

4. The even layers are computed and the results stored.

Related information
Compute values per frame on page 43

7.3.5 Pre-compute values to remove dependencies

If part of your computation is serial, see if it can be removed and performed separately.

For example, the audio synthesis technique Frequency Modulation (FM) works by reading an audio
waveform called the carrier. The rate the waveform is read at depends on another waveform called
the modulator.

In one type of algorithm, the carrier values are read by a pointer to generate the output waveform.
The position of the pointer is computed by taking the previous value and moving it by an amount
determined by the value of the modulator waveform.

The position of the pointer has a dependency on the previous value and that value has a
dependency on the value before it. This series of dependencies makes the algorithm difficult or
impossible to parallelize.

Another approach is to consider that the pointer is moving through the carrier waveform at a
fixed speed and the modulator is adding or subtracting an offset. This can be computed in parallel,
but the offsets are incorrect because they do not take account of the dependencies on previous
offsets.

The computation of the correct offsets is a serial process. If you pre-compute these values, the
remaining computation can be parallelized. The parallel component reads from the generated offset
table and uses this to read the correct value from the carrier waveform.

There is a potential problem with this example. The offset table must be recomputed every time
the modulating waveform changes. This is an example of Amdahl’s law. The amount of parallel
computation possible is limited by the speed of the serial computation.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

7.3.6 Use software pipelining

Software pipelines are a parallel processing technique that enable multiple data elements to be
processed simultaneously by breaking the computation into a series of sequential stages.

Pipelines are common in both hardware and software. For example, application processors and
GPUs use hardware pipelines. The graphics standard OpenGL ES is based on a virtual pipeline.

In a pipeline, a complete process is divided into a series of stages. A data element is processed in
one stage and the results are then passed to the next stage.

Because of the sequential nature of a pipeline, only one stage is used at a time by a particular data
element. This means that the other stages can process other data elements.

You can use software pipelines in your application to process different data elements.

For example, a game requires many different operations to happen. A game might use a similar
pipeline to this:

1. The input is read from the player.

2. The game logic computes the progress of the game.

3. The scene objects are moved based on the results of the game logic.

4. The physics engine computes positions of all objects in the scene.

5. The game uses OpenGL ES to draw objects on the screen.

7.3.7 Use task parallelism

Task or functional parallelism involves dividing an application by function into different tasks.

For example, an online game can take advantage of task parallelism. To run an online game, your
device performs several functions:

• Communicates with an external server.

• Reads player input.

• Updates the game state.

• Generates sound effects.

• Plays music.

• Updates the display.

These tasks require synchronization but are otherwise largely independent operations. This means
you can execute the tasks in parallel on separate processors.

Another example of task parallelism is Digital Television (DTV). At any time the television might be
performing several of the following operations:

• Downloading a program.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

• Recording a program.

• Updating the program guide.

• Displaying options.

• Reading data from media storage device.

• Playing a program.

• Decoding a video stream.

• Playing audio.

• Scaling an image to the correct size.

7.4 Using parallel processing with non-parallelizable code
If you cannot parallelize your code, it might still be possible to use parallel processing. The fact that
the code cannot be parallelized only means that a specific implementation cannot be parallelized. It
does not mean that the problem cannot be solved in a parallel way.

Most code is written to run on application processors that run sequentially. The code uses serial
algorithms and non-concurrent data structures. Parallelizing this sort of code can be difficult or
impossible.

Investigate the following approaches:

Use parallel versions of your data structures and algorithms
Many common data structures and algorithms that use them are non-concurrent. This
prevents you from parallelizing the code.

There are parallel versions of many common data structures and algorithms. You might be
able to use these in place of the originals to parallelize the code.

Solve the problem in a different way
Analyze what problem the code solves.

Look at the problem and investigate alternative ways of solving it. There might be alternative
solutions that use algorithms and data structures that are parallelizable.

To do this, think in terms of the purpose of the code and data structures.

Typically, the aim of code is to process or transform data. It takes a certain input and
produces a certain output.

Consider if the following possibilities are true:

• The data you want to process can be divided into small data elements.

• The data elements can be placed into a concurrent data structure.

• The data elements can be processed independently.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

If all three possibilities are true, then you can probably solve your problem with OpenCL.

Related information
Use concurrent data structures on page 48

7.5 Dividing data for OpenCL
You must split data and use concurrent data structures where possible for processing by OpenCL.
This section shows examples for one-, two-, and three-dimensional data.

7.5.1 About dividing data for OpenCL

Data is divided up so it can be computed in parallel with OpenCL.

The data is divided into three levels of hierarchy:

NDRange
The total number of elements in the NDRange is known as the global work size.

Work-groups
The NDRange is divided into work-groups.

Sub-groups
On devices that support OpenCL 2.1, work-groups are divided into sub-groups.

Work-items
Each work-group is divided into work-items.

Related information
OpenCL concepts on page 21

7.5.2 Use concurrent data structures

OpenCL executes hundreds or thousands of individual kernel instances, so the processing and
data structures must be parallelizable to that degree. This means you must use data structures that
permit multiple data elements to be read and written simultaneously and independently. These are
known as concurrent data structures.

Many common data structures are non-concurrent. This makes parallelizing the code difficult. For
example, the following data structures are typically non-concurrent for writing data:

• Linked list.

• Hash table.

• Btree.

• Map.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

This does not mean you cannot use these data structures. For example, these data structures can
all be read in parallel without any issues.

Work-items can also write to these data structures, but you must be aware of the following
restrictions:

• Work-items can access any data structure that is read-only.

• Work-items can write to any data structure if the work-items write to different elements.

• Work-items can write to the same element in any data structure if it is guaranteed that both
work-items write the same value to the element.

Alternatively, work-items can write different values to the same element in any data structure
if it does not matter in the final output which of the values is correct. This is because either of
the values might be the last to be written.

• Work-items cannot change the links in the data structure if they might impact other elements.

• Work-items can change the links in the data structure with atomic instructions if multiple
atomic instructions do not access the same data.

There are parallel versions of many commonly used data structures.

7.5.3 Data division examples

You can process one-, two-, or three-dimensional data with OpenCL.

The examples map the problems into the NDRanges that have the same number of
dimensions. OpenCL does not require that you do this. You can for example, map a
one-dimensional problem onto a two-, or three-dimensional NDRange.

7.5.3.1 One-dimensional data

An example of one-dimensional data is audio. Audio is represented as a series of samples. Changing
the volume of the audio is a parallel task, because the operation is performed independently per
sample.

In this case, the NDRange is the total number of samples in the audio. Each work-item can be one
sample and a work-group is a collection of samples.

Audio can also be processed with vectors. If your audio samples are 16-bit, you can make a work-
item represent eight samples and process eight of them at a time with vector instructions.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Converting existing code to OpenCL

7.5.3.2 Two-dimensional data

An image is a natural fit for OpenCL, because you can process a 1,600 by 1,200 pixel image by
mapping it onto a two-dimensional NDRange of 1,600 by 1,200. The total number of work-items is
the total number of pixels in the image, that is, 1,920,000.

The NDRange is divided into work-groups where each work-group is also a two-dimensional array.
The number of work-groups must divide into the NDRange exactly.

If each work-item processes a single pixel, a work-group size of 8 by 16 has the size of 128. This
work-group size fits exactly into the NDRange on both the x and y axis. To process the image, you
require 15,000 work-groups of 128 work-items each.

You can vectorize this example by processing all the color channels in a single vector. If the
channels are 8-bit values, you can process multiple pixels in a single vector. If each vector
processes four pixels, this means each work-item processes four pixels and you require four times
fewer work-items to process the entire image. This means that your NDRange can be reduced to
400 by 1,200 and you only require 3,750 work-groups to process the image.

7.5.3.3 Three-dimensional data

You can use three-dimensional data to model the behavior of materials in the real world. For
example, you can model the behavior of concrete for building by simulating the stresses in a three-
dimensional data set.

You can use the data produced to determine the size and design of the structure you require to
hold a specific load.

You can use this technique in games to model the physics of objects. When an object is broken, the
physics simulation makes the process of breaking more realistic.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Retuning existing OpenCL code for Mali™ GPUs

8. Retuning existing OpenCL code for Mali™
GPUs

This chapter describes how to retune existing OpenCL code so you can run it on Mali™ GPUs.

OpenCL is a portable language but it is not always performance portable. This means that
OpenCL applications can work on many different types of compute device but performance is not
preserved. Existing OpenCL is typically tuned for specific architectures, such as desktop GPUs.

To achieve better performance with OpenCL code for Mali™ GPUs, you must retune the code:

1. Analyze the code.

2. Locate and remove optimizations for alternative compute devices.

3. Optimize the OpenCL code for Mali™ GPUs.

For the best performance, write kernels optimized for the specific target device.

You are not required to vectorize code for Mali™ Mali™ Bifrost, Valhall, or Avalon
GPUs. Vectorizing the code can improve performance though, depending on factors
such as the content and the device. But, if the register pressure causes spilling to
occur, performance is likely to reduce.

8.1 Differences between desktop-based architectures and
Mali™ GPUs

There are some differences between desktop-based GPUs and Mali™ GPUs. Because of these
differences, you must program the OpenCL in a different way for Mali™ GPUs.

8.1.1 About desktop-based GPU architectures

The power availability and large chip area of desktop GPUs enable them to have characteristics
different to mobile GPUs.

Desktop GPUs have:

• A large chip area

• A large number of shader cores

• High-bandwidth memories.

The large power budget of desktop GPUs enables them to have these features.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Retuning existing OpenCL code for Mali™ GPUs

Memory on desktop GPUs is organized in a hierarchy. Data is loaded from main memory into local
memories. The local memories are organized in banks that are split, so there is one per thread in
the thread group. Threads can access banks reserved for other threads, but when this happens
accesses are serialized, reducing performance.

8.1.2 About Mali™ GPU architectures

Mali™ GPUs use an architecture in which instructions operate on multiple data elements
simultaneously.

The peak throughput depends on the hardware implementation of the Mali™ GPU type and
configuration.

Mali™ GPUs can contain many identical shader cores. Each shader core supports hundreds of
concurrently executing threads.

OpenCL typically only uses the arithmetic unit or execution engines and the load-store unit. The
texture unit is only used for reading image data types.

In the execution engines in Mali™ Bifrost, Valhall, and Avalon GPUs, scalar instructions are executed
in parallel so the GPU operates on multiple data elements simultaneously. You are not required to
vectorize your code to do this.

8.1.3 Programming OpenCL for Mali™ GPUs

There are differences between programming OpenCL on a Mali™ GPU and a desktop GPU.

If you are targeting Mali™ GPUs, the global and local OpenCL address spaces are mapped to the
same physical memory and are accelerated by L1 and L2 caches.

Related information
Kernel auto-vectorizer and unroller on page 72

8.2 Retuning existing OpenCL code for Mali™ GPUs
You can optimize existing OpenCL code for Mali™ GPUs if you analyze existing code and remove
the device-specific optimizations.

8.2.1 Analyze code

If you did not write the code yourself, you must analyze it to see what it does.

Try to understand the following:

• The purpose of the code.

• The way the algorithm works.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Retuning existing OpenCL code for Mali™ GPUs

• The way the code would look like if there were no optimizations.

This analysis can act as a guide to help you remove the device-specific optimizations.

This analysis can be difficult because highly optimized code can be very complex.

8.2.2 Locate and remove device optimizations

There are optimizations for alternative compute devices that have no effect on Mali™ GPUs, or can
reduce performance. To retune the OpenCL code for Mali™ GPUs, you must first remove all types
of optimizations to create a non device-specific reference implementation.

8.2.2.1 Optimizations to remove for Mali™ Bifrost, Valhall, or Avalon GPUs

Remove the following types of optimizations if you are targeting Mali™ Bifrost, Valhall, or Avalon
GPUs:

Use of local or private memory
Mali™ GPUs use caches instead of local memories. The OpenCL local and private memories
are mapped into main memory. There is therefore no performance advantage using local or
private memories in OpenCL code for Mali™ GPUs.

You can use local or private memories as temporary storage, but memory copies to or from
the memories are an expensive operation. Using local or private memories can reduce
performance in OpenCL on Mali™ GPUs.

Do not use local or private memories as a cache because this can reduce performance. The
processors already contain hardware caches that perform the same job without the overhead
of expensive copy operations.

Some code copies data into a local or private memory, processes it, then writes it out again.
This code wastes both performance and power by performing these copies.

Barriers
Data transfers to or from local or private memories are typically synchronized with barriers. If
you remove copy operations to or from these memories, also remove the associated barriers.

Cache size optimizations
Some code optimizes reads and writes to ensure data fits into cache lines. This is a useful
optimization for both increasing performance and reducing power consumption. However,
the code is likely to be optimized for cache line sizes that are different than those used by
Mali™ GPUs.

If the code is optimized for the wrong cache line size, there might be unnecessary cache
flushes and this can decrease performance.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Retuning existing OpenCL code for Mali™ GPUs

Mali™ GPUs have a cache line size of 64-bytes.

8.2.3 Optimize your OpenCL code for Mali™ GPUs

When you have retuned the code, performance improves. To improve performance more, you must
optimize it.

Related information
Optimizing OpenCL for Mali™ GPUs on page 55

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Optimizing OpenCL for Mali™ GPUs

9. Optimizing OpenCL for Mali™ GPUs
This chapter describes the procedure to optimize OpenCL applications for Mali™ GPUs.

9.1 The optimization process for OpenCL applications
To optimize your application, you must first identify the most computationally intensive parts of
your application. In an OpenCL application that means identifying the kernels that take the most
time.

To identify the most computationally intensive kernels, you must individually measure the time
taken by each kernel:

Measure individual kernels
Go through your kernels one at a time and:

1. Measure the time it takes for several runs.

2. Average the results.

It is important that you measure the runtime of the individual kernels to get
accurate measurements.

Do a dummy run of the kernel the first time to ensure that the memory is allocated. Ensure
this is outside of your timing loop.

The allocation of some buffers in certain cases is delayed until the first time they are used.
This can cause the first kernel run to be slower than subsequent runs.

Select the kernels that take the most time
Select the kernels that have the longest runtime and optimize these. Optimizing any other
kernels has little impact on overall performance.

Analyze the kernels
Analyze the kernels to see if they contain computationally expensive operations:

• Measure how many reads and writes there are in the kernel. For high performance, do as
many computations per memory access as possible.

• For Mali™ GPUs, you can use the Offline Shader Compiler to check the balancing
between the different units.

Measure individual parts of the kernel
If you cannot determine the compute intensive part of the kernel by analysis, you can isolate
it by measuring different parts of the kernel individually.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Optimizing OpenCL for Mali™ GPUs

You can do this by removing different code blocks and measuring the performance difference
each time.

The section of code that takes the most time is the most intensive.

Apply optimizations
Consider how the most intensive section of code can be rewritten and what optimizations
apply.
Apply a relevant optimization.

Check your results
Whenever you make changes to optimize your code, ensure that you measure the results so
you can determine the optimization was successful. Many changes that are beneficial in one
situation, might not provide any benefit, or even reduce performance under a different set of
conditions.

Reiterate the process
When you have increased the performance of your code with an optimization, measure it
again to find out if there are other areas you can improve performance. There are typically
several areas where you can improve performance so you might need to iterate the process
many times to achieve optimal performance.

9.2 Load balancing between control threads and OpenCL
threads

If you can, ensure that both control threads and OpenCL threads run in parallel.

9.2.1 Do not use clFinish() for synchronization

Sometimes the application processor must access data written by OpenCL. This process must be
synchronized.

You can perform the synchronization with clFinish() but Arm recommends you avoid this if
possible because it serializes execution. Calls to clFinish() introduce delays because the control
thread must wait until all of the jobs in the queue to complete execution. The control thread is idle
while it is waiting for this process to complete.

Instead, where possible, use clWaitForEvents() or callbacks to ensure that the control thread and
OpenCL can work in parallel.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Optimizing OpenCL for Mali™ GPUs

9.2.2 Do not use any of the clEnqueueMap() operations with a blocking call

Use clWaitForEvents() or callbacks to ensure that the control thread and OpenCL can work in
parallel.

Procedure
1. Split work into many parts.
2. For each part:

a) Prepare the work for part X on the application processor.
b) Submit part X OpenCL work-items to the OpenCL device.

3. For each part:
a) Wait for part X OpenCL work-items to complete on the OpenCL device using

clWaitForEvents.
b) Process the results from the OpenCL device on the application processor.

9.3 Optimizing memory allocation
You can optimize memory allocation by using the correct commands.

9.3.1 About memory allocation

To avoid making the copies, use the OpenCL API to allocate memory buffers and use map and
unmap operations. These operations enable both the application processor and the Mali™ GPU to
access the data without any copies.

OpenCL originated in desktop systems where the application processor and the GPU have separate
memories. To use OpenCL in these systems, you must allocate buffers to copy data to and from the
separate memories.

Systems with Mali™ GPUs typically have a shared memory, so you are not required to copy data.
However, OpenCL assumes that the memories are separate and buffer allocation involves memory
copies. This is wasteful because copies take time and consume power.

The following table shows the different cl_mem_flags parameters in clCreateBuffer().

Table 9-1: Parameters for clCreateBuffer()

Parameter Description

CL_MEM_ALLOC_HOST_PTR This is a hint to the driver indicating that the buffer is accessed on the host side. To use the buffer on the
application processor side, you must map this buffer and write the data into it. This is the only method that
does not involve copying data. If you must fill in an image that is processed by the GPU, this is the best way
to avoid a copy.

CL_MEM_COPY_HOST_PTR Copies the data pointed to by the host_ptr argument into memory allocated by the driver.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Optimizing OpenCL for Mali™ GPUs

Parameter Description

CL_MEM_USE_HOST_PTR Copies the data pointed to by the host memory pointer into the buffer when the first kernel using this
buffer starts running. This flag enforces memory restrictions that can reduce performance. Avoid using this
if possible.

When a map is executed, the memory must be copied back to the provided host pointer. This significantly
increases the cost of map operations.

Arm recommends the following:

• Do not use private or local memory to improve memory read performance.

• If your kernel is memory bandwidth bound, try using a simple formula to compute variables
instead of reading from memory. This saves memory bandwidth and might be faster.

• If your kernel is compute bound, try reading from memory instead of computing variables. This
saves computations and might be faster.

•
If you are using a Mali™ Bifrost, Valhall, or Avalon GPU in a fully coherent
system, use fine-grain shared virtual memory. See F.7 Shared virtual memory on
page 102.

9.3.2 Use CL_MEM_ALLOC_HOST_PTR to avoid copying memory

The Mali™ GPU can access the memory buffers created by
clCreateBuffer(CL_MEM_ALLOC_HOST_PTR). This is the preferred method to allocate buffers because
data copies are not required.

This method of allocating buffers is shown in the following figure.

Figure 9-1: Memory buffer created by clCreateBuffer(CL_MEM_ALLOC_HOST_PTR)

Global
memory

Buffer created by
clCreateBuffer()

Application
processor Mali GPU

CL_MEM_ALLOC_HOST_PTR

Mali GPU and
application

processor can both
access memory

buffer

Arm recommends the following:

• You must make the initial memory allocation through the OpenCL API.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Optimizing OpenCL for Mali™ GPUs

• Always use the latest pointer returned.

If a buffer is repeatedly mapped and unmapped, the address the buffer maps into, is not
guaranteed to be the same.

•
If you are using a Mali™ Bifrost, Valhall, or Avalon GPU in a fully coherent
system, use fine-grain shared virtual memory. See F.7 Shared virtual memory on
page 102.

9.3.3 Do not create buffers with CL_MEM_USE_HOST_PTR if possible

When a memory buffer is created using clCreateBuffer(CL_MEM_USE_HOST_PTR), the driver might
be required to copy the data to a separate buffer. This copy enables a kernel running on the GPU
to access it. If the kernel modifies the buffer and the application maps the buffer so that it can
be read, the driver copies the updated data back to the original location. The driver uses the
application processor to perform these copy operations, that are computationally expensive.

This method of allocating buffers is shown in the following figure.

Figure 9-2: Memory buffer created by clCreateBuffer(CL_MEM_USE_HOST_PTR)

Global
memory

Application
processor Mali GPU

Updated buffer is copied
back when it is mapped

Buffer copy made
before kernel processing

Buffer created by the
application

Buffer copy created by
the driver

If your application can use an alternative allocation type, it can avoid these computationally
expensive copy operations. For example, CL_MEM_ALLOC_HOST_PTR.

9.3.4 Sharing memory between I/O devices and OpenCL

For an I/O device to share memory with OpenCL, you must allocate the memory in OpenCL with
CL_MEM_ALLOC_HOST_PTR.

You must allocate the memory in OpenCL with CL_MEM_ALLOC_HOST_PTR because it ensures that the
memory pages are always mapped into physical memory.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Optimizing OpenCL for Mali™ GPUs

If you allocate the memory on the application processor, the OS might not allocate physical
memory to the pages until they are used for the first time. Errors occur if an I/O device attempts to
use unmapped pages.

9.3.5 Sharing memory in a fully coherent system

Systems with full system coherency enable application processors and GPUs to share data easily,
increasing performance.

With full system coherency, application processors and GPUs can access memory without requiring
cache clean or invalidate operations on memory objects. This provides better performance than an
I/O coherent system when the data is shared between application processor and GPU.

Fully coherent systems with Mali™ Bifrost, Valhall, or Avalon GPUs support fine-grained shared
virtual memory in OpenCL 2.0 or later. See F.7 Shared virtual memory on page 102.

9.3.6 Sharing memory in an I/O coherent system

With I/O coherent allocation, the driver is not required to perform cache clean or invalidate
operations on memory objects, before or after they are used on the Mali™ GPU. If you are
using a memory object on both the application processor and the Mali™ GPU, this can improve
performance.

If your platform is I/O coherent, you can enable I/O coherent memory allocation by passing the
CL_MEM_ALLOC_HOST_PTR flag to clCreateBuffer() or clCreateImage().

If you are using OpenCL 2.0 or later and your platform is I/O coherent, use shared virtual memory.
See F.7 Shared virtual memory on page 102.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL optimizations list

10. OpenCL optimizations list
This chapter lists several optimizations to use when writing OpenCL code for Mali™ GPUs.

10.1 General optimizations
Arm® recommends general optimizations such as processing large amount of data, using the
correct data types, and compiling the kernels once.

Use the best processor for the job
GPUs are designed for parallel processing.

Application processors are designed for high-speed serial computations.

All applications contain sections that perform control functions and others that perform
computation. For optimal performance use the best processor for the task:

• Control and serial functions are best performed on an application processor using a
traditional language.

• Use OpenCL on Mali™ GPUs for the parallelizable compute functions.

Compile the kernel once at the start of your application
Ensure that you compile the kernel once at the start of your application. This can reduce the
fixed overhead significantly.

Enqueue many work-items
To get maximum use of all your processor or shader cores, you must enqueue many work-
items.

Process large amounts of data
You must process a relatively large amount of data to get the benefit of OpenCL. This is
because of the fixed overheads of starting OpenCL tasks. The exact size of a data set where
you start to see benefits depends on the processors you are running your OpenCL code on.

For example, performing simple image processing on a single 640x480 image is unlikely to
be faster on a GPU, whereas processing a 1920x1080 image is more likely to be beneficial.
Trying to benchmark a GPU with small images is only likely to measure the start-up time of
the driver.

Do not extrapolate these results to estimate the performance of processing a larger data set.
Run the benchmark on a representative size of data for your application.

Align data on 128-bit or 16-byte boundaries
Align data on 128-bit or 16-byte boundaries. This can improve the speed of loading and
saving data. If you can, align data on 64-byte boundaries. This ensures data fits evenly into
the cache on Mali™ GPUs.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL optimizations list

Use the correct data types
Check each variable to see what range it requires.

Using smaller data types has several advantages:

• More operations can be performed per cycle with smaller variables.

• You can load or store more in a single cycle.

• If you store your data in smaller containers, it is more cacheable.

If accuracy is not critical, instead of an int, see if a short, ushort, or char works in its place.

For example, if you add two relatively small numbers you probably do not require an int.
However, check in case an overflow might occur.

Only use float values if you require their additional range. For example, if you require very
small or very large numbers.

Use the right data types
You can store image and other data as images or as buffers:

• If your algorithm can be vectorized, use buffers.

• If your algorithm requires interpolation or automatic edge clamping, use images.

Do not merge buffers as an optimization
Merging multiple buffers into a single buffer as an optimization is unlikely to provide a
performance benefit.

For example, if you have two input buffers you can merge them into a single buffer and use
offsets to compute addresses of data. However, this means that every kernel must perform
the offset calculations.

It is better to use two buffers and pass the addresses to the kernel as a pair of kernel
arguments.

Use asynchronous operations
If possible, use asynchronous operations between the control threads and OpenCL threads.
For example:

• Do not make the application processor wait for results.

• Ensure that the application processor has other operations to process before it requires
results from the OpenCL thread.

• Ensure that the application processor does not interact with OpenCL kernels when they
are executing.

Avoid application processor and GPU interactions in the middle of processing
Enqueue all the kernels first, and call clFinish() at the end if possible.
Call clFlush() after one or more clEnqueueNDRange() calls, and call clFinish() before
checking the final result.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL optimizations list

Avoid blocking calls in the submission thread
Avoid clFinish() or clWaitForEvent() or any other blocking calls in the submission thread.
If possible, wait for an asynchronous callback if you want to check the result while
computations are in progress.
Try double buffering, if you are using blocking operations in your submission thread.

Batching kernels submission
From version r17p0 onwards, the OpenCL driver batches kernels that are flushed together
for submission to the hardware. Batching kernels can significantly reduce the runtime
overheads and cache maintenance costs. For example, this reduction is useful when
the application is accessing multiple sub-buffers created from a buffer imported using
clImportMemoryARM in separate kernels.
The application should flush kernels in groups as large as possible. When the GPU is idle
though, reaching optimal performance requires the application to flush an initial batch of
kernels early so that the GPU execution overlaps the queuing of further kernels.

Related information
Converting existing code to OpenCL on page 39

10.2 Kernel optimizations
Arm recommends some kernel optimizations such as experimenting with the work-group size and
shape, minimizing thread convergence.

Query the possible workgroup sizes that can be used to execute a kernel on the device
For example:

clGetKernelWorkgroupInfo(kernel, dev, CL_KERNEL_WORK_GROUP_SIZE,
 sizeof(size_t)...);

In typical applications, the workgroup size should be at least as large as the warp size and ideally
a multiple of the warp size

In certain cases, a kernel might perform better running with fewer warps when you use the
cl_arm_scheduling_controls extension.
If you are using a barrier, a smaller workgroup size is better.
When you are selecting a workgroup size, consider the memory access pattern of the data.
Finding the best workgroup size can be counter-intuitive, so test different options to see
what one is fastest.

If you are not sure what workgroup size is best, define local_work_size as NULL
The driver picks the workgroup size it thinks as best.

The performance might not be optimal.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL optimizations list

If you want to set the local work size, set the reqd_work_group_size qualifier to kernel functions
This provides the driver with information at compile time for register use and sizing jobs to fit
properly on shader cores.

Experiment with work-group size
If you can, experiment with different sizes to see if any give a performance advantage. Sizes
that are a multiple of two are more likely to perform better.

If your kernel has no preference for the work-group size, you can pass NULL to the local work
size argument of the clEnqueueNDRangeKernel().

Experiment with work-group shape
The shape of the work-group can affect the performance of your application. For example, a
32 by 4 work-group might be the optimal size and shape.

Experiment with different shapes and sizes to find the best combination for your application.

Check for synchronization requirements
Some kernels require work-groups for synchronization of the work-items within the work-
group with barriers. These typically require a specific work-group size.

In cases where synchronization between work-items is not required, the choice of the size of
the work-groups depends on the most efficient size for the device.

You can pass in NULL to enable OpenCL to pick an efficient size.

Consider combining multiple kernels
If you have multiple kernels that work in a sequence, consider combining them into a single
kernel. If you combine kernels, be careful of dependencies between them.

However, do not combine the kernels if there are widening data dependencies.

For example:

• If there are two kernels, A and B.

• Kernel B takes an input produced by kernel A.

• If kernel A is merged with kernel B to form kernel C, you can only input to kernel C
constant data, plus data from what was previously input to kernel A.

• Kernel C cannot use the output from kernel A n-1, because it is not guaranteed that
kernel A n-1 has been executed. This is because the order of execution of work-items is
not guaranteed.

Typically this means that the coordinate systems for kernel A and kernel B are the same.

If combining kernels requires a barrier, it is probably better to keep them
separate.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL optimizations list

Avoid splitting kernels
Avoid splitting kernels. If you are required to split a kernel, split it into as few kernels as
possible.

• Splitting a kernel can sometimes be beneficial if it enables you to remove a
barrier.

• Splitting a kernel can be useful if your kernel suffers from register
pressure.

Check if your kernels are small
If your kernels are small, use data with a single dimension and ensure the work-group size is a
power of two.

Use a sufficient number of concurrent threads
Use a sufficient number of concurrent threads to hide the execution latency of instructions.

The number of concurrent threads that the shader core executes depends on the number of
active registers your kernel uses. The higher the number of registers, the smaller the number
of concurrent threads.

The number of registers used is determined by the compiler based on the complexity of the
kernel, and how many live variables the kernel has at one time.

To reduce the number of registers:

• Try reducing the number of live variables in your kernel.

• Use a large NDRange, so there are many work-items.

Experiment with this to find what suits your application. You can use the Offline Complier to
produce statistics for your kernels to assist with this.

Optimize the memory access pattern of your application
Use data structures with linear access and high locality. These improve cacheability and
therefore performance.

10.3 Code optimizations
Arm® recommends some code optimizations such as using built-in functions or experimenting with
your data to increase algorithm performance.

Use vector loads and saves
To load as much data as possible in a single operation, use vector loads. These enable you to
load 128 bits at a time. Do the same for saving data.

For example, if you are loading char values, use the built-in function vload16() to load 16
bytes at a time.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL optimizations list

Do not try to load more than 128 bits in a single load. This can reduce performance.

Perform as many operations per load as possible
Operations that perform multiple computations per element of data loaded are typically good
for programming in OpenCL:

• Try to reuse data already loaded.

• Use as many arithmetic instructions as possible per load.

Avoid conversions to or from float and int
Conversions to or from float and int are relatively expensive so avoid them if possible.

Experiment to see how fast you can get your algorithm to execute
There are many variables that determine how well an application performs. Some of the
interactions between variables can be very complex and it is difficult to predict how they
impact performance.

Experiment with your OpenCL kernels to see how fast they can run:

Data types
Use the smallest data types for your calculation as possible.

For example, if your data does not exceed 16 bits do not use 32-bit types.

Load store types
Try changing the amount of data processed per work-item.

Data arrangement
Change the data arrangement to make maximum use of the processor caches.

Maximize data loaded
Always load as much data in a single operation as possible. Use 128-bit wide vector
loads to load as many data items as possible per load.

Use shift instead of a divide
If you are dividing by a power of two, use a shift instead of a divide.

• This only applies to integers.

• This only works for powers of two.

• Divide and shift use different methods of rounding negative numbers.

Use vector loads and saves for scalar data
Use vector load VLOAD instructions on arrays of data even if you do not process the data as
vectors. This enables you to load multiple data elements with a single instruction. A vector
load of 128-bits takes the same amount of time as loading a single character. Multiple loads
of single characters are likely to cause cache thrashing and this reduces performance. Do the
same for saving data.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL optimizations list

Use _sat() functions instead of min() or max()
_sat() functions automatically take the maximum or minimum values if the values are too
high or too low for representation. You are not required to add additional min() or max()
code.

Avoid writing kernels that use many live variables
Using too many live variables can affect performance and limit the number of concurrently
executing threads per core.

Do not calculate constants in kernels
• Use defines for constants.

• If the values are only known at runtime, calculate them in the host application and pass
them as arguments to the kernel.

For example, height-1.
Use the offline compiler to produce statistics

Use the offline compiler to produce statistics for your kernels and check the ratio between
arithmetic instructions and loads.

For more information about the offline compiler, see https://
developer.arm.com/tools-and-software/graphics-and-gaming/graphics-
development-tools/mali-offline-compiler/docs/101086/latest/usage/opencl.

Use the built-in functions
Many of the built-in functions are implemented as fast hardware instructions, use these for
high performance.

Use the cache carefully
• The amount of cache space available per thread is low so you must use it with care.

• Use the minimum data size possible.

• Use data access patterns to maximize spatial locality.

• Use data access patterns to maximize temporal locality.

Use large sequential reads and writes
General Purpose computations on a GPU can make very heavy use of external memory.
Using large sequential reads and writes significantly improves memory performance.

Related information
Kernel auto-vectorizer and unroller on page 72
OpenCL built-in functions on page 79
half_ and native_ math functions on page 79

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 113

https://developer.arm.com/tools-and-software/graphics-and-gaming/graphics-development-tools/mali-offline-compiler/docs/101086/latest/usage/opencl
https://developer.arm.com/tools-and-software/graphics-and-gaming/graphics-development-tools/mali-offline-compiler/docs/101086/latest/usage/opencl
https://developer.arm.com/tools-and-software/graphics-and-gaming/graphics-development-tools/mali-offline-compiler/docs/101086/latest/usage/opencl

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL optimizations list

10.4 Execution optimizations
Arm recommends some execution optimizations such as optimizing communication code to reduce
latency.

Arm recommends that:

• If you are building from source, cache binaries on the storage device.

• If your application contains excessive kernels that may not be invoked, you can reduce the
compiling time by deferring the actual compiled kernels until the clCreateKernel() function is
called. Use these options to configure OpenCL runtime compiler:
fdeferred-compilation

Defers kernel compilation until clCreateKernel() is called.

fno-deferred-compilation
Executes all kernels compiled at clBuildProgram() or clLinkProgram() functions.
It is the default compiler option. The compiler spawns multiple threads to compile
kernels in parallel. The compiler uses the nproc variable to spawn a thread per processor,
assuming enough kernels need compiling.
Use the following option to control the maximum number of threads spawned.
-j <number>

• If you use callbacks to prompt the processor to continue processing data resulting from a kernel
execution, ensure the callbacks being set before you flush the queue. Otherwise, the callbacks
might occur a larger batch of work, later than the callbacks might have completed the actual
work.

10.5 Reducing the effect of serial computations
You can reduce the impact of serial components in your application by reducing and optimizing the
computations.

Use memory mapping instead of memory copies to transfer data.

Optimize communication code.
To reduce latency, optimize the communication code that sends and receives data.

Keep messages small.
Reduce communication overhead by sending only the data that is required.

Use power of two sized memory blocks for communication.
Ensure the sizes of memory blocks used for communication are a power of two. This makes
the data more cacheable.

Send more data in a smaller number of transfers.

Compute values instead of reading them from memory.
A simple computation is likely to be faster than reading from memory.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL optimizations list

Do serial computations on the application processors.
Application processors are optimized for low latency tasks.

Use clEnqueueFillBuffer() to fill buffers.
The Mali™ OpenCL driver contains an optimized implementation of clEnqueueFillBuffer().
Use in place of manually implementing a buffer fill in your application.

Use clEnqueueFillImage() to fill images.
The Mali™ OpenCL driver contains an optimized implementation of clEnqueueFillImage().
Use this in place of manually implementing an image fill in your application.

10.6 Mali™ Bifrost, Valhall, and Avalon GPU-specific
optimizations

Arm recommends some Mali™ Bifrost, Valhall, and Avalon GPU-specific optimizations.

Only use these optimizations if you are specifically targeting a Mali™ Bifrost, Valhall,
or Avalon GPU.

Ensure that the threads all take the same branch direction in if-statements and loops
In Mali™ Bifrost, Valhall, and Avalon GPUs, groups of adjacent threads are arranged together
in warps. Scalar instructions on a warp are executed in parallel so the GPU operates on
multiple data elements simultaneously. The scalars execute in threads and these must
operate in lock-step. If your shader contains branches, such as if statements or loops, the
branches in adjacent threads can go different ways. The arithmetic unit cannot execute both
sides of the branch at the same time. The two operations are split and the processing speed
is reduced. To avoid this performance reduction, try to ensure that adjacent threads inside a
warp all branch the same way.
The following table shows the warp size for each Mali™ Bifrost, Valhall, and Avalon GPU.

Table 10-1: Warp size

GPU Warp size

Mali™‑G31 4

Mali™‑G51 4

Mali™‑G52 8

Mali™‑G57 16

Mali™‑G71 4

Mali™-G72 4

Mali™-G76 8

Mali™‑G77 16

Mali™‑G78 16

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL optimizations list

GPU Warp size

Mali™‑G310 16

Mali™‑G510 16

Mali™‑G610 16

Mali™‑G615 16

Mali™‑G710 16

Mali™‑G715 16

Avoid excessive register usage
Every thread has 64 32-bit working registers. A 64-bit variable uses two adjacent 32-bit
registers for its 64-bit data.
If a thread requires more than 64 registers, the compiler might start storing register data in
memory. This reduces performance and the available bandwidth. This is especially bad if your
shader is already load-store bound.

Vectorize 8-bit and 16-bit operations
For 16-bit operations, use 2-component vectors to get full performance. For basic arithmetic
operations, fp16 version is twice as fast as fp32 version.
For 8-bit types, such as char, use four-component vectors for best performance.

Do not vectorize 32-bit operations
Mali™ Bifrost, Valhall, and Avalon GPUs use scalars so you are not required to vectorize 32-
bit operations. 32-bit scalar and vector arithmetic operations have same performance.

Use 128-bit load or store operations
128-bit load or store operations make the more efficient use of the internal buses.

Load and store operations are faster if all threads in a quad load from the same cache-line
If all threads in a quad load from the same cache-line, the arithmetic unit only sends one
request to the load-store unit to load the 512-bit data.
For example, this example is fast because consecutive threads load consecutive 128-bit
vectors from memory:

global float4 * input_array;
float4 v = input_array[get_global_id(0)];

This second version is slower, because the four threads with adjacent global ids load data
from different cache lines.

global float4 * input_array;
float4 v = input_array[4*get_global_id(0)];

One cache line is 512-bits.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL optimizations list

Use 32-bit arithmetic in place of 64-bit if possible
64-bit arithmetic operates at half the speed of 32-bit arithmetic.

Use fine-grained shared virtual memory
If your system supports it, using the shared virtual memory feature in OpenCL 2.0 provides
cache-coherent memory. This reduces the requirement for manually synchronizing memories
and increases performance. See F.7 Shared virtual memory on page 102.

Try to get a good balance of usage of the execution engines and load-store units
If one unit is overused, this can limit the overall performance of the application the GPU is
executing. For example, the load-store unit is overused, try computing values rather than
loading them. If the execution engine is overused, try loading values instead of computing
them.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Kernel auto-vectorizer and unroller

11. Kernel auto-vectorizer and unroller
This chapter describes the kernel auto-vectorizer and kernel unroller. You must manually enable
these features.

The kernel auto-vectorizer takes existing code and transforms it into vector code.

The unroller merges work-items by unrolling the bodies of the kernels.

If these operations are possible, they can provide substantial performance gains.

For Bifrost, Valhall, and Avalon GPUs, you manually enable these features by passing the kernel
transformations command-line options to the compiler, see:

• 11.1.1 Kernel auto-vectorizer command and parameters on page 73.

• 11.2.1 Kernel unroller command and parameters on page 74.

• 11.3 The dimension interchange transformation on page 74.

There are several options to control the auto-vectorizer and unroller. The following table shows the
basic options.

Table 11-1: Kernel auto-vectorizer and unroller options

Option Description

no option Kernel unroller and vectorizer enabled, with conservative heuristics.

-fno-kernel-vectorizer Disable the kernel vectorizer.

-fno-kernel-unroller Disable the kernel unroller.

-fkernel-vectorizer Enable aggressive heuristics for the kernel vectorizer.

-fkernel-unroller Enable aggressive heuristics for the kernel unroller.

The kernel auto-vectorizer performs a code transformation. For the transformation
to be possible, several conditions must be met:

• The enqueued NDRange must be a multiple of the vectorization factor.

• Barriers are not permitted in the kernel.

• Thread-divergent code is not permitted in the kernel.

• Global offsets are not permitted in the enqueued NDRange.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Kernel auto-vectorizer and unroller

11.1 Kernel auto-vectorizer options
You can optionally use the dimension and factor parameters to control the behavior of the auto-
vectorizer.

11.1.1 Kernel auto-vectorizer command and parameters

The format of the kernel auto-vectorizer command is:

-fkernel-vectorizer= <dimension><factor>

The parameters are:

dimension This selects the dimension along which to vectorize.
factor This is the number of neighboring work-items that are merged to vectorize.

This must be one of the values 2, 4, 8, or 16. Other values are invalid.

The vectorizer works by merging consecutive work-items. The number of work-items enqueued is
reduced by the vectorization factor.

For example, in a one-dimensional NDRange, work-items have the local-IDs 0, 1, 2, 3, 4, 5...

Vectorizing by a factor of four merges work-items in groups of four. First work-items 0, 1, 2, and 3,
then work-items 4, 5, 6, and 7 going upwards in groups of four until the end of the NDRange.

In a two-dimensional NDRange, the work-items have local-IDs such as (0,0), (0,1), (0,2)..., (1,0),
(1,1), (1,2)... where (x,y) is showing (global_id(0), global_id(1)).

The vectorizer can vectorize along dimension 0 and merge work-items (0,0), (1,0)...

Alternatively it can vectorize along dimension 1 and merge work-items (0,0), (0,1)...

11.1.2 Kernel auto-vectorizer command examples

Examples of auto-vectorizer commands.

The following table shows examples of auto-vectorizer commands.

Table 11-2: Kernel auto-vectorizer command examples

Example Description

-fkernel-vectorizer Enable the vectorizer, use heuristics for both dimension and factor.

-fkernel-vectorizer=x4 Enable the vectorizer, use dimension 0, use factor 4.

-fkernel-vectorizer=z2 Enable the vectorizer, use dimension 2, use factor 2.

-fkernel-vectorizer=x Enable the vectorizer, use heuristics for the factor, use dimension 0.

-fkernel-vectorizer=2 Enable the vectorizer, use heuristics for the dimension, use factor 2.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Kernel auto-vectorizer and unroller

11.2 Kernel unroller options
You can optionally use additional parameters to control the behavior of the kernel unroller.

11.2.1 Kernel unroller command and parameters

The format of the kernel unroller command is:

-fkernel-unroller= <dimension><factor>

The parameters are:

dimension This selects the dimension along which to unroll.
factor This is the number of neighboring work-items that are merged.

The performance gain from unrolling depends on your kernel and the unrolling factor, so
experiment to see what suits your kernel. It is typically best to keep the unroll factor at eight or
below.

11.2.2 Kernel unroller command examples

Examples of kernel unroller commands.

The following table shows examples of kernel unroller commands.

Table 11-3: Kernel unroller command examples

Example Description

-fkernel-unroller Enable the unroller, use heuristics for both dimension and factor.

-fkernel-unroller=x4 Enable the unroller, use dimension 0, use factor 4.

-fkernel-unroller=z2 Enable the unroller, use dimension 2, use factor 2.

-fkernel-unroller=x Enable the unroller, use heuristics for the factor, use dimension 0.

-fkernel-unroller=2 Enable the unroller, use heuristics for the dimension, use factor 2.

11.3 The dimension interchange transformation
The dimension interchange transformation swaps the dimensions of a work-group. This
transformation can improve cache locality and improve performance.

Dimension interchange is applied to kernels with the following annotation:

• __attribute__ ((annotate("interchange")))

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Kernel auto-vectorizer and unroller

This interchanges dimensions 0 and 1.

• __attribute__ ((annotate("interchange<dim0><dim1>")))

This interchanges dimensions dim0 and dim1, where <dim0> and <dim1> can be 0, 1 or 2.

You can disable dimension interchange with the following option:

-fno-dim-interchange

There are no parameters.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL data types

Appendix A OpenCL data types
This appendix lists the data types available in OpenCL. Most of these types are all natively
supported by the Mali™ GPU hardware.

The OpenCL types are used in OpenCL C. The API types are equivalents for use in your
application. Use these to ensure that the correct data is used, and it is aligned on 128-bit or 16-
byte boundaries.

Up to 32-bits per chunk can work as vectors on Mali™ Bifrost, Valhall, and Avalon GPUs. This
means you can use char, short, and half in vectors.

Converting between vector types has a low performance cost on Mali™ GPUs. For example,
converting a vector of 8-bit values to 16-bit values:

ushort8 a; uchar8 b;
a = convert_ushort8(b);

A.1 OpenCL data type lists
List of OpenCL data types organized by type.

A.1.1 Built-in scalar data types

List of built-in scalar data types.

Table A-1: Built-in scalar data types

Types for OpenCL kernels Types for application Description

bool - true (1) or false (0)

char cl_char 8-bit signed

unsigned char, uchar cl_uchar 8-bit unsigned

short cl_short 16-bit signed

unsigned short, ushort cl_ushort 16-bit unsigned

int cl_int 32-bit signed

unsigned int, uint cl_uint 32-bit unsigned

long cl_long 64-bit signed

unsigned long, ulong cl_ulong 64-bit unsigned

float cl_float 32-bit float

half cl_half 16-bit float

size_t - unsigned integer, with size matching CL_DEVICE_ADDRESS_BITS

ptrdiff_t - unsigned integer, with size matching CL_DEVICE_ADDRESS_BITS

intptr_t - signed integer, with size matching CL_DEVICE_ADDRESS_BITS

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL data types

Types for OpenCL kernels Types for application Description

uintptr_t - unsigned integer, with size matching CL_DEVICE_ADDRESS_BITS

void void void

You can query CL_DEVICE_ADDRESS_BITS with clGetDeviceInfo(). The value
returned might be different for 32-bit and 64-bit host applications, even on the
same Mali™ GPU.

A.1.2 Built-in vector data types

List of built-in vector data types where n = 2, 3, 4, 8, or 16.

Table A-2: Built-in vector data types

OpenCL Type API type for application Description

charn cl_charn 8-bit signed

ucharn cl_ucharn 8-bit unsigned

shortn cl_shortn 16-bit signed

ushortn cl_ushortn 16-bit unsigned

intn cl_intn 32-bit signed

uintn cl_uintn 32-bit unsigned

longn cl_longn 64-bit signed

ulongn cl_ulongn 64-bit unsigned

floatn cl_floatn 32-bit float

A.1.3 Other built-in data types

List of other built-in data types.

Table A-3: Other built-in data types

OpenCL Type Description

image2d_t 2D image handle

image3d_t 3D image handle

image2d_array_t 2D image array

image1d_t 1D image handle

image1d_buffer_t 1D image created from buffer

image1d_array_t 1D image array

sampler_t Sampler handle

event_t Event handle

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL data types

A.1.4 Reserved data types

List of reserved data types. Do not use these in your OpenCL kernel code.

Table A-4: Reserved data types

OpenCL Type Description

booln Boolean vector.

halfn 16-bit float, vector.

quad, quadn 128-bit float, scalar, and vector.

complex half, complex halfn Complex 16-bit float, scalar, and vector.

imaginary half, imaginary halfn Imaginary 16-bit complex, scalar, and vector.

complex float, complex floatn, Complex 32-bit float, scalar, and vector.

imaginary float, imaginary floatn Imaginary 32-bit float, scalar, and vector.

complex double, complex doublen Complex 64-bit float, scalar, and vector.

imaginary double, imaginary doublen Imaginary 64-bit float, scalar, and vector.

complex quad, complex quadn Complex 128-bit float, scalar, and vector.

imaginary quad, imaginary quadn Imaginary 128-bit float, scalar, and vector.

floatnxm n*m matrix of 32-bit floats.

doublenxm n*m matrix of 64-bit floats.

long double, long doublen 64-bit - 128-bit float, scalar, and vector.

long long, long longnb 128-bit signed int, scalar, and vector.

unsigned long long, ulong long, ulonglongn 128-bit unsigned int, scalar, and vector.

The half and half vector data types can be used with the cl_khr_fp16 extension.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL built-in functions

Appendix B OpenCL built-in functions
This appendix lists the OpenCL half_ and native_ math and the synchronization built-in functions.

B.1 half_ and native_ math functions
List of half_ and native_ math functions. The half_ and native_ variants of the math functions
are provided for portability.

Table B-1: half_ and native_ math functions

half_ functions native_ functions

half_cos() native_cos()

half_divide() native_divide()

half_exp() native_exp()

half_exp2() native_exp2()

half_exp10() native_exp10()

half_log() native_log()

half_log2() native_log2()

half_log10() native_log10()

half_powr() native_powr()

half_recip() native_recip()

half_rsqrt() native_rsqrt()

half_sin() native_sin()

half_sqrt() native_sqrt()

half_tan() native_tan()

Mali™ GPUs implement most of the full precision variants of the half_ and native_ math functions
at full speed so you are not required to use the half_ and native_ functions.

On Mali™ GPUs, the following functions are faster than the full precision versions:

• native_sin().

• native_cos().

• native_tan().

• native_divide().

• native_exp().

• native_sqrt().

• half_sqrt().

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL built-in functions

B.2 Synchronization functions
List of synchronization functions.

The barrier() function has no speed rating because it must wait for multiple work-items to
complete. The time determines the length of time the function takes in your application. This also
depends on several factors such as:

• The number of work-items in the work-groups being synchronized.

• How much the work-items diverge.

Synchronization functions
Synchronization functions include:

• barrier()

• mem_fence()

• read_mem_fence()

• write_mem_fence()

Arm® recommends that you avoid using barriers, especially in small kernels.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL extensions

Appendix C OpenCL extensions
This appendix describes the OpenCL extensions that the Mali™ GPU OpenCL driver supports.

The supported extensions are:

• cl_khr_byte_addressable_store

• cl_khr_create_command_queue

• cl_khr_egl_image

• cl_khr_extended_versioning

• cl_khr_fp16

• cl_khr_global_int32_base_atomics

• cl_khr_global_int32_extended_atomics

• cl_khr_icd

• cl_khr_image2d_from_buffer

• cl_khr_int64_base_atomics

• cl_khr_int64_extended_atomics

• cl_khr_local_int32_base_atomics

• cl_khr_local_int32_extended_atomics

• cl_khr_priority_hints

• cl_khr_3d_image_writes

• cl_khr_device_uuid

• cl_khr_semaphore

• cl_khr_external_semaphore

• cl_khr_external_semaphore_sync_fd

• cl_khr_integer_dot_product

• cl_khr_external_memory

• cl_khr_external_memory_dma_buf

• cl_khr_command_buffer_mutable_dispatch

The Mali™ GPU OpenCL driver also supports the following optional Arm® extensions:

• cl_arm_core_id

• cl_arm_controlled_kernel_termination

• cl_arm_import_memory

• cl_arm_import_memory_android_hardware_buffer

• cl_arm_import_memory_host

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL extensions

• cl_arm_import_memory_dma_buf

• cl_arm_import_memory_protected

• cl_arm_job_slot_selection (on devices that support work submission via job slots)

• cl_arm_non_uniform_work_group_size

• cl_arm_printf

• cl_arm_scheduling_controls

• cl_arm_protected_memory_allocation

• cl_ext_cxx_for_opencl

• cl_ext_yuv_images

• cl_ext_image_from_buffer

• cl_ext_image_requirements_info

• cl_ext_image_tiling_control

The following extensions are only supported on Mali™ Bifrost, Valhall, and Avalon GPUs under
OpenCL 2.0 or later:

• cl_khr_depth_images

• cl_khr_il_program

• cl_khr_subgroups (supported on Bifrost GPUs from Mali™-G76, and all Valhall, and Avalon
GPUs.)

• cl_khr_subgroup_extended_types (supported on Bifrost GPUs from Mali™-G76, and all Valhall,
and Avalon GPUs.)

The following extensions are only supported on GPUs that support the underlying ISA instructions:

• cl_arm_integer_int8

• cl_arm_integer_dot_product_accumulate_int8

• cl_arm_integer_dot_product_accumulate_int16

• cl_arm_integer_dot_product_accumulate_saturate_int8 (supported on Valhall GPUs from
Mali™‑G77 and all Avalon GPUs.)

Related information
http://www.khronos.org

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 113

http://www.khronos.org

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

Appendix D Using OpenCL extensions
This appendix provides usage notes on specific OpenCL extensions.

D.1 Inter-operation with EGL
The DDK supports the use of EGL images for sharing data between different Khronos APIs, such as
OpenGL and OpenCL.

D.1.1 EGL images

The EGL_KHR_image_base EGL extension provides the basic mechanism for sharing EGL images.

The EGL_KHR_image_base EGL extension defines two entry points for creating and destroying EGL
images:

EGLImageKHR eglCreateImageKHR(
 EGLDisplay dpy,
 EGLContext ctx,
 EGLenum target,
 EGLClientBuffer buffer,
 const EGLint *attrib_list)

EGLBoolean eglDestroyImageKHR(
 EGLDisplay dpy,
 EGLImageKHR image)

The eglCreateImageKHR call returns an opaque handle that the Khronos APIs use for referencing
EGL images. Nothing in the extension specification precludes an EGL image from being the storage
for the content that is to be shared, but the actual role of EGL images in the DDK is to serve only
as references to memory allocations made by a low level API. There are two low level APIs for
memory allocation that the DDK actively supports:

• Gralloc on Android, which is covered in ANDROID_image_native_buffer subsection.

• dma_buf on Linux, covered in EGL_EXT_image_dma_buf_import subsection.

The availability of the memory allocation methods depends on the platform, the
EGL_KHR_image_base extension relies on additional extensions to define platform-specific values for
the target and buffer parameters on the eglCreateImageKHR call.

The EGL_KHR_image_base extension only states that the target parameter is a unique number
identifying the content source. The buffer parameter is an extension-specific handle that is cast to
EGLClientBuffer, a void pointer on the official Khronos EGL headers.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

D.1.1.1 Preserving EGL images for portability

Applications needing the EGL image contents to be preserved must set EGL_IMAGE_PRESERVED_KHR
to EGL_TRUE rather than relying on the default value.

The only attribute defined by the EGL_KHR_image_base extension is EGL_IMAGE_PRESERVED_KHR,
which is a boolean defining whether the image contents are undefined after the
eglCreateImageKHR call returns. The default value for EGL_IMAGE_PRESERVED_KHR is EGL_FALSE,
meaning that undefined contents are acceptable unless the application explicitly sets the value to
EGL_TRUE.

Failing to set EGL_IMAGE_PRESERVED_KHR to EGL_TRUE can lead to applications relying on undefined
behavior, that is subject to change between Mali™ DDK releases.

D.1.1.2 OpenCL support for EGL images

There are two OpenCL mechanisms for supporting data sharing with other APIs from the Khronos
ecosystem.

The two OpenCL mechanisms for supporting data sharing with other APIs from the Khronos
ecosystem are:

cl_khr_egl_image
Mali™ DDK supports this API for importing EGL images.

cl_khr_gl_sharing
Mali™ DDK does not support this API for importing OpenGL or OpenGL ES objects such
as vertex buffers, index buffers, textures, or render buffer objects. This API does not add
any substantial benefit to the EGL image mechanism and is tightly coupled to the OpenGL
semantics.

Because customers can implement all their relevant use cases with the cl_khr_egl_image path,
cl_khr_gl_sharing extension is unsupported on the Mali™ DDK since the r6p0-01rel0 release.

The supported cl_khr_egl_image OpenCL extension defines an entry point for creating cl_mem
objects out of EGL images:

cl_mem clCreateFromEGLImageKHR (
 cl_context context,
 CLeglDisplayKHR display,
 CLeglImageKHR image,
 cl_mem_flags flags,
 const cl_egl_image_properties_khr * properties,
 cl_int * errcode_ret)

The image parameter is an EGL image handle that is returned by eglCreateImageKHR. The flags
are a subset of the flags that are accepted by clCreateBuffer, where the accepted flags are only
CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE. The list of properties is present
on the extension for allowing future additions, but no such properties currently exist.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

D.1.1.3 Synchronization when using the cl_khr_egl_image extension

Applications are responsible for flushing the work when one Khronos API consumes the output
from another.

For example, if an application produces an OpenGL ES render that OpenCL has to consume, then it
is the responsibility of the application to issue a glFinish before the OpenCL access happens.

The same application responsibility is also required when OpenCL outputs data that OpenGL is
going to use. For example, an OpenGL ES rendering application that consumes some OpenCL
output needs to ensure that it calls clFinish or clWaitForEvents to guarantee that the data is
available for consumption before using OpenGL ES to access it.

In addition to flushing, there are GPU architectures that require the EGL images that are consumed
or produced by OpenCL to be transferred between different device memories. That kind of
architecture is common on discrete graphics cards for desktop PCs. The Mali™ implementations, on
the other hand, uses the same main memory as the application processor, rather than a dedicated
memory. Therefore there is no requirement to transfer data between the application processor and
any dedicated GPU memory.

The OpenCL API delegates to the applications to choose the times at which the transfers happen
by explicitly signaling when the accesses start and end.

The start and end of the EGL image accesses by OpenCL applications must be signaled by
enqueuing clEnqueueAcquireEGLObjectsKHR and clEnqueueReleaseEGLObjectsKHR commands
on an OpenCL command queue before and after a kernel accesses the EGL image data. An
OpenCL kernel that uses an EGL image that it has not previously acquired gets an error at kernel
enqueue time, for ensuring portability and compliance with the OpenCL standard, even on Mali™
implementations.

D.1.1.4 EGL images limitation

It is not possible to query an EGL image for its format or dimensions through the EGL API. The
Mali™ OpenCL driver, on the other hand, allows querying for the format and dimensions of an
OpenCL image created out of an EGL image.

However, the reported OpenCL format is only meaningful for formats that have a mapping
between the EGL image source format and a format defined in the OpenCL specification.

A second limitation is that OpenCL images created out of EGL images cannot be memory mapped
by means of clEnqueueImageMap and clEnqueueUnmapMemObject. The Khronos specifications do not
explicitly say whether the memory mapping must be supported for this kind of OpenCL images.
The DDK does not support memory mapping.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

D.1.2 ANDROID_image_native_buffer

The Android graphics stack builds on top of the Gralloc memory allocation library. Processes can
share the handles that reference the Gralloc allocations. This interprocess shareability is key for
supporting common use cases such as a camera driver sharing data with a rendering application.

SurfaceFlinger, the window composition service, can run on its own process and consume data
from rendering applications because the Gralloc allocations are accessible across processes, making
Android a very modular system.

A Gralloc allocation consists only of a chunk of memory and lacks any internal state describing
what is stored on the buffer or any hint on how the buffer is used.

The next level of abstraction in the Android graphics stack is the user interface (UI) library, where
an ANativeWindowBuffer struct is defined by putting together a Gralloc buffer with a description of
its content and usage.

The ANativeBuffer struct is wrapped around a GraphicBuffer object that adds some convenient
methods to the plain struct.

The application must create a Gralloc buffer by instantiating a GraphicBuffer, as in the following
code example:

GraphicBuffer* graphicBuffer =
 new GraphicBuffer(
 width,
 height,
 (PixelFormat)pixel_format,
 GraphicBuffer::USAGE_HW_TEXTURE |
 GraphicBuffer::USAGE_HW_RENDER |
 GraphicBuffer::USAGE_SW_WRITE_RARELY |
 GraphicBuffer::USAGE_SW_READ_RARELY);

A pointer to a GraphicBuffer, the wrapper for an ANativeWindowBuffer, that is created in that
way, can be used for specifying the image storage that an EGL image references to. In order to
allow the creation of an EGL image out of an ANativeWindowBuffer pointer, Google requires
that all Android vendors support the ANDROID_image_native_buffer extension, sitting on top
of EGL_KHR_image_base. The ANDROID_image_native_buffer extension defines values for the
eglCreateImageKHR parameters that must be supported on Android. When the target parameter
is EGL_NATIVE_BUFFER_ANDROID then the buffer parameter can be an ANativeWindowBuffer pointer
cast to EGLClientBuffer. To create an EGL image for the GraphicBuffer instance from the previous
example, invoke eglCreateImageKHR as:

EGLImageKHR eglImage = eglCreateImageKHR(
 display,
 contenxt,
 EGL_NATIVE_BUFFER_ANDROID,
 graphicBuffer->getNativeBuffer(),
 NULL);

The resulting EGL image can be used in OpenGL and OpenCL.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

D.1.2.1 OpenCL supported formats

Shareable buffer formats that are supported for OpenCL.

The list of ANativeWindowBuffer formats that are supported for sharing data between OpenGL and
OpenCL are as follows:

• HAL_PIXEL_FORMAT_RGBA_8888

• HAL_PIXEL_FORMAT_BGRA_8888

• HAL_PIXEL_FORMAT_RGB_565

• HAL_PIXEL_FORMAT_RGBX_8888

• HAL_PIXEL_FORMAT_YV12

OpenCL image writing is only allowed for:

• HAL_PIXEL_FORMAT_RGBA_8888

• HAL_PIXEL_FORMAT_BGRA_8888

• HAL_PIXEL_FORMAT_RGB_565

• HAL_PIXEL_FORMAT_RGBX_8888

The result of writing to any format not listed here is undefined.

As a courtesy to OpenCL developers, the Mali™ OpenCL driver returns informative error codes on
the clCreateFromEGLImageKHR calls:

CL_IMGE_FORMAT_NOT_SUPPORTED
If the format is not supported by the OpenCL driver.

CL_INVALID_OPERATION
If the format is known but the flags are invalid, because the CL_MEM_WRITE_ONLY or
CL_MEM_READ_WRITE flags are specified for a format for which writing is not supported.

D.1.3 EGL_EXT_image_dma_buf_import

The DDK supports the EGL_EXT_image_dma_buf_import extension on all the Linux variants and also
on Android. This extension allows applications to import images allocated through the dma_buf low
level API.

The extension defines acceptable values for the target and buffer parameters from the
eglCreateImageKHR call:

target
Target must be EGL_LINUX_DMA_BUF_EXT.

buffer
Buffer must be NULL.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

Additional properties also defined by the extension are used for telling the dma_buf file descriptors,
format, width, and height.

D.2 The cl_arm_printf extension
The OpenCL extension cl_arm_printf enables you to use the printf() function in your kernels.

the printf() function is included in OpenCL 1.2.

D.2.1 About the cl_arm_printf extension

The implementation of the cl_arm_printf extension uses a callback function that delivers the
output data to the host from the device. You must write this callback function.

You must register the callback function as a property of the context when the OpenCL context
is created. It is called when an OpenCL kernel completes. If the callback is not registered, the
printf() output is still produced but it is not available.

Messages are stored atomically and complete in the output buffer. The buffer is implemented as a
circular buffer so if the output is longer than the buffer size, the output wraps around on itself. In
this case, only the last part of the output is available.

You can configure the size of the buffer. The default size is 1MB.

Related information
http://www.khronos.org

D.2.2 cl_arm_printf example

The example code shows the cl_arm_printf extension in use. It shows how to use the buffer-size
property and the callback property that is required to get output.

The example code prints Hello, World! on the console:

#include <stdio.h>
#include <CL/cl.h>
#include <CL/cl_ext.h>
const char *opencl =
 "__kernel void hello()\n"
 "{\n"
 " printf(\"Hello, World!\\n\");\n"
 "}\n";

void callback(const char *buffer, size_t length, size_t final, void *user_data)
{
 fwrite(buffer, 1, length, stdout);

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 113

http://www.khronos.org

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

}

int main()
{
 cl_platform_id platform;
 cl_device_id device;
 cl_context context;
 cl_context_properties context_properties[] =
 {
 CL_CONTEXT_PLATFORM, 0,
 CL_PRINTF_CALLBACK_ARM, (cl_context_properties)callback,
 CL_PRINTF_BUFFERSIZE_ARM, 0x1000,
 0
 };
 cl_command_queue queue;
 cl_program program;
 cl_kernel kernel;

 clGetPlatformIDs(1, &platform, NULL);
 context_properties[1] = (cl_context_properties)platform;
 clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);
 context = clCreateContext(context_properties, 1, &device, NULL, NULL, NULL);
 queue = clCreateCommandQueue(context, device, 0, NULL);

 program = clCreateProgramWithSource(context, 1, &opencl, NULL, NULL);
 clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
 kernel = clCreateKernel(program, "hello", NULL);
 clEnqueueTask(queue, kernel, 0, NULL, NULL);

 clFinish(queue);
 clReleaseKernel(kernel);
 clReleaseProgram(program);
 clReleaseCommandQueue(queue);
 clReleaseContext(context);

 return 0;
}

D.3 The cl_arm_import_memory extensions
The cl_arm_import_memory extensions enable you to directly import memory into OpenCL using
the clImportMemoryARM() function.

The following extensions enable OpenCL kernels to access imported memory buffers and process
images created from imported buffers:

• cl_arm_import_memory

• cl_arm_import_memory_android_hardware_buffer

• cl_arm_import_memory_dma_buf

• cl_arm_import_memory_host

• cl_arm_import_memory_protected

The Mali™ Driver Development Kit includes tests that demonstrate how you can use these
features.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

For more information about these extensions, see the Khronos extension
specifications at https://www.khronos.org/.

D.4 The cl_arm_job_slot_selection extension
The cl_arm_job_slot_selection extension enables applications to select the job slot to use for
work submission to the GPU.

The job slot is selected at command queue creation time via the CL_QUEUE_JOB_SLOT_ARM property.
Applications can use the CL_DEVICE_JOB_SLOTS_ARM device info query to get a bitmask of allowed
job slots.

One possible use-case for this extension could be to reduce the latency of submitting work to
the GPU when the GPU is shared between multiple workloads. For example, context switching
between two workloads requires the work scheduled on the GPU to yield to a soft-stop request
before scheduling the new work, which in turn requires all the threads running on the GPU to
complete execution. This can take a long time with threads running compute work and lead to
an unacceptable latency before other workloads begin execution on the GPU. To improve this
behavior, is it possible to partition the GPU into multiple groups of shader cores that can each be
targeted by different job slots. Beginning execution on a given partition does not require the work
on other partitions to complete, therefore reducing the latency of starting the new work.

The Mali kernel module exposes a core_mask sysfs file that allows allocation of shader cores to
specific job slots, effectively creating partitions in the GPU. For example, for a typical GPU that has
12 cores and three job slots, the default masks for all job slots would likely be 0xFFF, meaning that
all cores are allocated to all job slots. This allocation can be changed by writing a space-separated
list of core masks for each of the job slots to the core_mask file. This creates two partitions, one
allocating four cores to job slots 0 and 1, and another allocating eight cores to job slot 2, as follows:

echo ‘0xF00 0xF00 0x0FF’ > /sys/path/to/mali/core_mask

An OpenCL application can then use the extension to send compute work to job slot 2, targeting
the partition with eight cores. Any other work on the GPU that must start execution quickly can
target job slot 0 and or 1 without needing the work resident on the GPU partition linked to job slot
2 to soft-stop.

Power management strategies have to be considered when partitioning the GPU. Attempting to
submit work to a job slot that does not have any online cores will result in a GPU fault.

For more information about this extension, see the Khronos extension specifications
at https://www.khronos.org/.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 113

https://www.khronos.org/
https://www.khronos.org/

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

D.5 The cl_ext_cxx_for_opencl extension
The cl_ext_cxx_for_opencl extension enables the driver to compile kernel code in C++ for
OpenCL mode.

For more details, see https://www.khronos.org/registry/OpenCL/extensions/ext/
cl_ext_cxx_for_opencl.html.

This language mode can be enabled using the -cl-std=CLC++ flag accepted by both the online
compiler and the mali_clcc offline compiler.

The following example shows C++ for OpenCL kernel code:

template<class T>
T add(T x, T y)
{
 return x + y;
}

__kernel void k_int(__global int * a, __global int * b)
{
 auto index = get_global_id(0);
 a[index] = add(b[index], b[index + 1]);
}

__kernel void k_float(__global float * a, __global float * b)
{
 auto index = get_global_id(0);
 a[index] = add(b[index], b[index + 1]);
}

The C++ for OpenCL language is documented in: https://www.khronos.org/opencl/assets/
CXX_for_OpenCL.pdf.

For more information about the extensions, see the Khronos extension
specifications at https://www.khronos.org/.

D.5.1 Limitation of the current implementation of cl_ext_cxx_for_opencl

C++ for OpenCL support is in the experimental phase and there are a few known limitations.

Missing diagnostics
Mali compiler fails to diagnose some invalid types used in kernel arguments and objects that
are created in the local address space.
Therefore, it is not recommended to use non-POD type in kernel arguments or member
references in classes that are created in the local address space.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 113

https://www.khronos.org/registry/OpenCL/extensions/ext/cl_ext_cxx_for_opencl.html
https://www.khronos.org/registry/OpenCL/extensions/ext/cl_ext_cxx_for_opencl.html
https://www.khronos.org/opencl/assets/CXX_for_OpenCL.pdf
https://www.khronos.org/opencl/assets/CXX_for_OpenCL.pdf
https://www.khronos.org/

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

No automatic support for program scope variables with non-trivial constructors or destructors
Program scope variables with non-trivial constructors or destructors, for example
global constructors or global destructors, are not supported automatically with the
cl_ext_cxx_for_opencl extension. A manual workaround for constructors is needed in the
application host side, which is explained in the Clang User Manual, see https://clang.llvm.org/
docs/UsersManual.html#constructing-and-destroying-global-objects.
The following example shows an implementation of the host helper function demonstrating
how to query the constructor stub kernel name from a single translation unit.
// Helper function returns name of ctor stub if found in the program or empty
 string otherwise.
std::string get_ctor_kernel_name_to_enqueue(cl_program program, size_t
 name_size) {
 std::string kernel_names(name_size);
 cl_err err = clGetProgramInfo(program, CL_PROGRAM_KERNEL_NAMES, name_size,
 &kernel_names[0], nullptr);

 // Handling of err code is omitted.

 // Global ctor stub name is as follows _GLOBAL__sub_I_<translation unit
 name>.
 auto ctor_name_pos = kernel_names.find("_GLOBAL__sub_I_");
 auto end_pos = std::string::npos;
 if (ctor_name_pos != std::string::npos)
 {
 end_pos = kernel_names.find(";", ctor_name_pos);
 end_pos = end_pos != std::string::npos ? end_pos - ctor_name_pos :
 std::string::npos;
 }
 return kernel_names.substr(ctor_name_pos, end_pos);
}

When a program consists of multiple translation units, each unit containing a global
constructor is linked to a combined module. The application code has to make sure to
retrieve names of all constructor kernels and enqueue them in a sequence.

There is no automatic support nor manual support of non-trivial constructors
or destructors for static variables inside functions.

D.6 The cl_arm_controlled_kernel_termination extension
The cl_arm_controlled_kernel_termination extension allows an OpenCL kernel to exit or abort
the execution of the kernel code, by using the arm_terminate_kernel function on the GPU, before
the OpenCL kernel naturally comes to the end of the execution.

There are two termination types:

ARM_TERMINATION_SUCCESS
This type means successful termination of an OpenCL kernel. Any subsequent enqueued
work still runs.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 113

https://clang.llvm.org/docs/UsersManual.html#constructing-and-destroying-global-objects
https://clang.llvm.org/docs/UsersManual.html#constructing-and-destroying-global-objects

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

This termination type is intended to reduce the running time of the kernel once a certain
result has been achieved. It does not have to be a success about what the kernel is intended
to do. For example, a face recognition algorithm may exit with success and report a result of
false for face detection.

ARM_TERMINATION_FAILURE
This type means termination failure of an OpenCL kernel. Any subsequent work does not
run.
This termination type is intended for a situation where something is wrong in the kernel
code. For example, validating inputs to a kernel or detecting code that is not expected to
be reached, such as a default in a switch. By detecting these failures, debugging the kernel
code becomes easier, rather than continuing to execute the kernel code. Because it stops the
execution at the point of failure, instead of letting the code behave weird or crash at a later
stage.

D.7 The cl_khr_suggested_local_work_size extension
The cl_khr_suggested_local_work_size extension allows an application to query the local work
size that the OpenCL runtime would choose when enqueuing a kernel without explicitly specifying
the local work size.

This extension can be useful if an application enqueues the same kernel multiple times with same
global work size and global offsets, but wants the runtime to select a local work size. The size that
the runtime chooses as a local work size can be queried once and then specified explicitly when
the application enqueues the kernel each time. It avoids the overhead of the runtime calculating
the local work size for each enqueue operation.

For more information about this extension, see https://www.khronos.org/registry/OpenCL/
specs/3.0-unified/html/OpenCL_Ext.html#cl_khr_suggested_local_work_size.

D.8 The cl_arm_scheduling_controls extension
The cl_arm_scheduling_controls extension gives applications explicit control over some aspects
of work scheduling. You might use this extension to help kernel perform well with limited warps.

Getting the warp limit
The maximum value for the warp count is obtained with clGetKernelInfo by setting
CL_KERNEL_MAX_WARP_COUNT_ARM as the param_name. This maximum value is the default value for the
warp count.

The following example shows how to obtain the maximum value for the kernel warp count limit.

cl_uint getMaxWarps()
{
 auto max_warps = cl_uint();
 auto clerror = clGetKernelInfo(kernel, CL_KERNEL_MAX_WARP_COUNT_ARM,
 sizeof(max_warps), &max_warps, nullptr);

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 113

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#cl_khr_suggested_local_work_size
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_Ext.html#cl_khr_suggested_local_work_size

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

Using OpenCL extensions

 if (clerror == CL_SUCCESS) {
 return max_warps;
 } else {
 // Report the error
 printf("Can't get max_warps: %d", clerror);
 return 0;
 }
}

Setting the warp limit
The warp count can be set with clSetKernelExecInfo function by using
CL_KERNEL_EXEC_INFO_WARP_COUNT_LIMIT_ARM for param_name. The acceptable values are between
1 and the warp count limit, inclusive.

The following example shows how to set the maximum value for the kernel warp count.

void setMaxWarps(cl_uint warps, cl_kernel kernel)
{
 auto clerror = clSetKernelExecInfo(kernel,
 CL_KERNEL_EXEC_INFO_WARP_COUNT_LIMIT_ARM, sizeof(warps), &warps);
 if (clerror != CL_SUCCESS) {
 // Report the error
 printf("Can't set max_warps: %d", clerror);
 }
}

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 1.2

Appendix E OpenCL 1.2
This appendix describes some of the important changes to the Mali™ OpenCL driver in OpenCL
1.2.

E.1 OpenCL 1.2 compiler options
OpenCL 1.2 adds options for offline and online compilation.

The following options are added in OpenCL 1.2:

Online compilation
In OpenCL 1.2, you can compile and link separate OpenCL files during online compilation.
Any compiler flags you specify for compilation are used for frontend and middle-level
optimizations. These flags are discarded during backend compilation and linking. You can also
specify a limited list of compiler flags during the linking phase. These flags are forwarded to
the compiler backend after linking.
You can supply different flags during the compilation of different modules because they only
affect the frontend and mid-level transformation of separate modules. Later in the build
process, the commonly linked module overrides these flags with the flags passed during
the linking phase, to the overall linking program. It is safe to mix modules that are compiled
separately with different various options, because only a limited set of linking flags are
applied to the overall program.
The full set of flags can only affect early compilation steps. For example, if -cl-opt-disable
is passed, it only disables the early optimization phases. During the linking phase, the -cl-
opt-disable option is ignored and the backend optimizes the module. -cl-opt-disable is
ignored because it is not a permitted link-time option.

Offline compilation
For customers with access to the mali_clcc offline compiler, in OpenCL 1.2, the compilation
and linking steps are not available separately on the command line. Compilation and linking
occur in one stage, with the source files you specify on the command line.
You can specify several build options together with the source files. These flags are applied
to all files and all compilation phases from the frontend to the backend, to produce the final
binary.
For example:

mali_clcc -cl-opt-disable file1.cl file2.cl -o prog.bin

E.2 OpenCL 1.2 compiler parameters
OpenCL 1.2 adds a number of compiler parameters.

OpenCL 1.2 includes the following compiler parameters:

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 1.2

-create-library.
The compiler creates a library of compiled binaries.

-enable-link-options.
This enables you to modify the behavior of a library you create with -create-library.

-cl-kernel-arg-info.
This enables the compiler to store information about the arguments of kernels, in the
program executable.

E.3 OpenCL 1.2 functions
The following API functions are added in OpenCL 1.2.

OpenCL includes the following API functions:

clEnqueueFillBuffer()

Arm recommends you use this function in place of writing your own.

clEnqueueFillImage()

Arm recommends you use this function in place of writing your own.

clCreateImage()

This includes support for 1D and 2D image arrays.

This function deprecates all previous image creation functions.

clLinkProgram()

Using this typically does not provide much performance benefit in the Mali™ OpenCL driver.

clCompileProgram()

Using this typically does not provide much performance benefit in the Mali™ OpenCL driver.

clEnqueueMarkerWithWaitList()

clEnqueueBarrierWithWaitList()

clEnqueueMigrateMemObjects()

The Mali™ OpenCL driver supports the memory object migration API
clEnqueueMigrateMemObjects(), but this does not provide any benefit because Mali™ GPUs
use a unified memory architecture.

OpenCL 1.2 includes the following built-in function:

printf()

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 1.2

clUnloadPlatformCompiler()

Using this function releases accumulated resources in the OpenCL compiler, which can free
up some memory at the cost of taking more time in the subsequent compiler operations.

The flag CL_MAP_WRITE_INVALIDATE_REGION has no effect in the Mali™ OpenCL
driver.

E.4 Functions deprecated in OpenCL 1.2
Several functions are deprecated in OpenCL 1.2 but are still available in the Mali™ OpenCL driver.

The deprecated functions are:

• clEnqueueMarker()

• clEnqueueBarrier()

• clEnqueueWaitForEvents()

• clCreateImage2D()

• clCreateImage3D()

• clUnloadCompiler()

• clGetExtensionFunctionAddress()

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 2.0

Appendix F OpenCL 2.0
This appendix describes the important changes to the Mali™ OpenCL driver in OpenCL 2.0.

OpenCL 2.0 is a backwards compatible version of OpenCL that adds several new high-level
features as well as adding smaller changes to some of the existing features. Several of the new
features provide better performance for specific use-cases.

New features include:

• Shared virtual memory.

• Program scope variables.

• C11 atomics.

• Generic address space.

• Pipes.

• Device execution.

F.1 OpenCL 2.0 functions
The following API and built-in functions are added in OpenCL 2.0.

For detailed descriptions of these functions, see the OpenCL 2.0 documentation at the Khronos
Group at https://www.khronos.org/.

F.1.1 OpenCL 2.0 API functions

Several new API functions are added in OpenCL 2.0.

The following functions support CommandQueues and Samplers:

Table F-1: CommandQueue and Sampler functions

Function name Description

clCreateCommandQueueWithProperties() Variant of clCreateCommandQueue() that offers a wider range of properties.

clCreateSamplerWithProperties() Variant of clCreateSampler() that offers a wider range of properties.

The following functions support OpenCL pipes:

• clCreatePipe()

• clGetPipeInfo()

See F.8 OpenCL 2.0 pipes and device execution on page 105.

The following functions support Shared Virtual Memory:

• clSVMAlloc()

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 113

https://www.khronos.org/

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 2.0

• clSVMFree()

• clSetKernelArgSVMPointer()

• clSetKernelExecInfo()

• clEnqueueSVMFree()

• clEnqueueSVMMemcpy()

• clEnqueueSVMMemFill()

• clEnqueueSVMMap()

• clEnqueueSVMUnmap()

See F.7 Shared virtual memory on page 102.

F.1.2 OpenCL 2.0 built-in functions

Several new built-in functions are added in OpenCL 2.0.

OpenCL 2.0 adds many functions for atomic operations, compatible with the C11 standard.

Atomic functions are useful for both when multiple threads on the GPU access the same data, and
when GPU and CPU use shared data via SVM in fine-grained mode.

The following table shows examples of the main types of atomic functions:

Table F-2: Atomic operation functions

Function name Description

atomic_fetch_add() Add a value to an object, return the value of object before the addition.

atomic_fetch_sub() Subtract a value from an object, return the value before the subtraction.

atomic_load() Load, that is, fetch the value of the atomic object.

atomic_store() Store a new value in an atomic object.

atomic_compare_exchange_strong() Compare the value of an atomic object to an expected value, and replace with the desired if
a match. Returns true 1 if the value was replaced, or false 0 when the expected value is not
matching - expected value is updated to match the current value of the atomic object.

atomic_compare_exchange_weak() Same as previously, but can sometimes fail even if the object matches the desired value.

atomic_flag_test_and_set() Atomically fetch the current flag value, set it to true (1) and return the value before it was
set.

Device execution functions support creating new work, creating, setting, and destroying events.
They also support constructing ndrange sets.

The following functions support device execution:

• create_user_event()

• retain_event()

• release_event()

• set_user_event_status()

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 2.0

• is_valid_event()

• enqueue_kernel()

• ndrange_1D(), ndrange_2D(), ndrange_3D()

Functions for pipes enable the CL kernel to read, write individual or multiple packets, and check the
current status of a pipe.

The following functions support pipes:

• read_pipe()

• write_pipe()

• reserve_read_pipe()

• reserve_write_pipe()

• commit_read_pipe()

• commit_write_pipe()

• is_valid_reserve_id()

• work_group_reserve_read_pipe()

• work_group_reserve_write_pipe()

• work_group_commit_write_pipe()

• work_group_commit_read_pipe()

• get_pipe_num_packets()

• get_pipe_max_packets()

F.2 OpenCL 2.0 compiler options
The following compiler options are added in OpenCL 2.0.

OpenCL 2.0 adds support for the following options:

Table F-3: OpenCL 2.0 compiler options

Name Description

-cl-uniform-work-group-size Force the driver to accept only uniform work-group sizes.

-g Provides extra debug information.

OpenCL 2.0 also supports all options from the previous versions of OpenCL.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 2.0

F.3 Program scope variables
In OpenCL 2.0, you can use global variables, known as program scope variables, to store data
shared between different kernels and multiple invocations of the same kernel.

Program scope variables are analogous to global variables in C or C++ programming, with similar
benefits and drawbacks. The lifetime of the global variables corresponds to the lifetime of the
program that defines the variables. The use of global variables in OpenCL is transparent to the
host-side code.

The host code must enable CL2.0 when compiling with -cl-std=CL2.0, when building the OpenCL
program. For example:

cl_program program = clCreateProgramWithSource(context, 1, &source, NULL, &err);
err = clBuildProgram(program, 0, NULL, "-cl-std=CL2.0", NULL, NULL);

The following code sample shows how to use a global variable:

__global int my_global;

__kernel void kernel_one(int x)
{
 my_global = x;
}

__kernel void kernel_two(__global int *the_answer)
{
 *the_answer = my_global;
}

For more information, see the OpenCL C specification V2.0, section 6.5 Address space qualifiers.

F.4 Functions deprecated in OpenCL 2.0
Several functions are deprecated in OpenCL 2.0 but are still available in the Mali™ OpenCL driver.

The deprecated functions are:

• clCreateCommandQueue()

• clCreateSampler()

• clEnqueueTask()

• The clGetDeviceInfo() param_name of CL_DEVICE_HOST_UNIFIED_MEMORY

• The clGetDeviceInfo() param_name of CL_DEVICE_QUEUE_PROPERTIES

• The clGetImageInfo() param_name of CL_IMAGE_BUFFER

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 2.0

F.5 OpenCL 2.0 extensions
One extension is added in OpenCL 2.0.

The following extension is added in OpenCL 2.0:

cl_khr_depth_images

Enables support for depth and depth-stencil images.

F.6 OpenCL 2.0 optimizations
OpenCL 2.0 includes several features that can improve performance over OpenCL 1.2.

OpenCL 2.0 includes the following features that you can use to optimize your code:

Shared virtual memory
On a fully coherent platform, shared virtual memory reduces the requirement to call map and
unmap API functions, when a memory region is used on both the GPU and the application
processor. See F.7 Shared virtual memory on page 102.

Read-Write images
This enables the same kernel to both read from and write to a single image, that when used
correctly, can improve cache efficiency and reduce memory usage.

Generic Address space
This enables code to be written once, and it works in any address space.

sRGB images
If the OpenCL kernel is reading from an sRGB image, it is not required to be translated to
RGB before it can be used, the read_image call converts to standard RGB as part of the read
operation.

Program scope variables
In some circumstances, program scope variables can be useful to avoid passing data from the
host program to multiple kernels. For example, if a kernel is calculating a histogram, storing
that in a buffer, the host program then passes the same buffer to another kernel that does
some other part of the work, using the histogram, and the histogram is never used on the
host, then a plausible solution is to make the histogram into a global variable in the program.
Both kernels must be part of the same program for this to work correctly. As always, using
global variables does have some drawbacks, particularly when it comes to understanding
what variables can be modified by what parts of the code.

Pipes and device execution
Arm recommends that you avoid using the OpenCL pipes and device execution functionality.
See F.8 OpenCL 2.0 pipes and device execution on page 105.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 2.0

F.7 Shared virtual memory
Shared Virtual Memory (SVM) is a feature of OpenCL 2.0 that enables the same virtual memory
address range to be used on both the GPU and the application processor.

There are two types of SVM:

Fine-grained
This is available when your platform supports full coherency.

Coarse-grained
This is for non-coherent or IO-coherent platforms.

SVM has the following advantages:

• It has lower overhead than the traditional cl_buffer interface.

• SVM is easier to use in the host program because it is only a pointer to data. With full
coherency, you can use the memory without the overhead of calls to map and unmap
functions. It is also possible to use atomic operations on both the GPU and application
processor side to update data that is shared between the two architectures.

The map and unmap functions are still required with coarse-grained SVM.

• It is easier to share work-loads between the GPU and application processor, because the
address of the memory is the same in both GPU and application processor.

This enables you to build data structures that naturally use pointers such as linked lists or
binary trees, on the host application processor, and the GPU can traverse these without having
to translate the pointer values.

The following code-fragments are examples that show the difference between using a pointer and
using a CL buffer.

This code only illustrates the difference, between the use of SVM buffer and CL
buffer, it is not a complete example.

The first example shows the traditional approach of sharing data with the cl_buffer interface:

/* Create and prepare buffer content */

size_t buffer_size = 100 * 1024;
cl_buffer *buffer = clCreateBuffer(context, CL_MEM_READ_WRITE, buffer_size, NULL,
 &err);
cl_event buffer_event;
void *buffer_map_ptr = clEnqueueMapBuffer(queue, CL_NON_BLOCKING, CL_MAP_WRITE,
 buffer, 0, buffer_size, 0, NULL, &buffer_event, &err);
... some other code, perhaps ...
clWaitForEvent(1, &buffer_event);
... use buffer_map_ptr to fill the content ...
clEnqueueUnmapBuffer(queue, buffer, 0, NULL, &buffer_event);

/* Now do some actual CL kernel work. */

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 2.0

cl_event kernel_event;
clSetKernelArg(kernel, 0, &buffer);
clEnqueueNDRangeKernel(queue, kernel, NULL, work_dim, global_size, local_size, 1,
 &buffer_event, &kernel_event);
... Ideally do some other work here ...
clWaitForEvent(1, &kernel_event);

/* make use of the new buffer content */
buffer_map_ptr = clEnqueueMapBuffer(queue, CL_NON_BLOCKING, CL_MAP_WRITE, buffer, 0,
 buffer_size, 0, NULL, &buffer_event, &err);
... some other code, perhaps ...
clWaitForEvent(1, &buffer_event);
... use buffer_map_ptr to get data out of the buffer ...
clEnqueueUnmapBuffer(queue, buffer, 0, NULL, &buffer_event);

In a coherent system, you can use SVM to write code like the following:

/* Create and prepare buffer content */
size_t buffer_size = 100 * 1024;
void *buffer = clSvmAlloc(context, CL_MEM_READ_WRITE, buffer_size, 0);
... use buffer to fill the content ...

/* Now do some actual CL kernel work. */
clSetKernelArgSVMPointer(kernel, 0, buffer);
cl_event kernel_event;
clEnqueueNDRangeKernel(queue, kernel, NULL, work_dim, global_size, local_size, 0,
 NULL, &kernel_event);
... Ideally do some other work here ...
clWaitForEvent(1, &kernel_event);

/* make use of the new buffer content */
... use buffer to get the data stored by the kernel ...
clSVMFree(queue, buffer);

In a non-coherent system, it is still possible to use SVM, but you must use map() and unmap() calls
to ensure that the view of the memory content is up to date on the application processor and the
GPU.

/* Create and prepare buffer content */
size_t buffer_size = 100 * 1024;
void *buffer = clSvmAlloc(context, CL_MEM_READ_WRITE, buffer_size, 0);
clEnqueueSVMMap(queue, CL_NON_BLOCKING, CL_MAP_WRITE, buffer, buffer_size, 0, NULL,
 &buffer_event);
clWaitForEvent(1, &buffer_event);

... use buffer to fill the content ...
clEnqueueSVMUnmap(queue, buffer, 0, NULL, &buffer_event)
/* Now do some actual CL kernel work. */
clSetKernelArgSVMPointer(kernel, 0, buffer);
cl_event kernel_event;
clEnqueueNDRangeKernel(queue, kernel, NULL, work_dim, global_size, local_size, 1,
 &buffer_event, &kernel_event);
... Ideally do some other work here ...
clEnqueueSVMMap(queue, CL_NON_BLOCKING, CL_MAP_WRITE, buffer, buffer_size, 0, NULL,
 &buffer_event);
clWaitForEvent(1, &buffer_event);

/* make use of the new buffer content */
... use buffer to get to the data stored by the kernel ...

clEnqueueSVMUnmap(queue, buffer, 0, NULL, &buffer_event)
clWaitForEvent(1, &buffer_event);
clSVMFree(queue, buffer);

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 2.0

You can use map() and unmap() calls in a coherent system, but there is still some
overhead from the API functions.

F.8 OpenCL 2.0 pipes and device execution
OpenCL 2.0 adds pipes and device execution features.

OpenCL 2.0 adds the following features:

• Device execution.

• Pipes.

Arm recommends that you avoid using the OpenCL pipes and device execution
functionality. These are not tested beyond conformance and are not hardware
accelerated.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 2.1

Appendix G OpenCL 2.1
This appendix describes the important changes to the Mali™ OpenCL driver in OpenCL 2.1.

OpenCL 2.1 is backwards compatible with previous versions of OpenCLs. This version of OpenCL
is supported on Bifrost GPUs from Mali™-G76, and all Valhall, and Avalon GPUs. OpenCL 2.1 adds
several new high-level features.

The new features include:

• Support for Intermediate Language (IL) programs.

• Device and host timer.

• Priority hints.

• Subgroup support.

For detailed information about OpenCL 2.1, see the Khronos specification: https://
www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf.

G.1 OpenCL 2.1 functions
The following API and built-in functions are added in OpenCL 2.1.

For detailed descriptions of these functions, see the OpenCL 2.1 documentation at the Khronos
Group at https://www.khronos.org/.

G.1.1 OpenCL 2.1 API functions

Several new API functions are added in OpenCL 2.1.

The new functions are:

• clCloneKernel

• clCreateProgramWithIL

• clEnqueueSVMMigrateMem

• clGetDeviceAndHostTimer

• clGetHostTimer

• clGetKernelSubGroupInfo

• clSetDefaultDeviceCommandQueue

G.1.2 OpenCL 2.1 built-in functions

Several new built-in functions are added in OpenCL 2.1.

The new functions are:

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 113

https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://www.khronos.org/

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 2.1

• get_enqueued_num_sub_groups

• get_kernel_max_sub_group_size_for_ndrange

• get_kernel_sub_group_count_for_ndrange

• get_max_sub_group_size

• get_num_sub_groups

• get_sub_group_size

• get_sub_group_local_id

• get_sub_group_id

• sub_group_all

• sub_group_any

• sub_group_barrier

• sub_group_broadcast

• sub_group_commit_read_pipe

• sub_group_commit_write_pipe

• sub_group_reduce_<op>

• sub_group_reserve_read_pipe

• sub_group_reserve_write_pipe

• sub_group_scan_exclusive_<op>

• sub_group_scan_inclusive_<op>

G.2 Intermediate language programs
The Intermediate Language (IL) is partly compiled code and enables developers to distribute
OpenCL kernel code without distributing the CL source code. IL code is also portable between
different OpenCL platforms.

IL code uses the SPIR-V format to store the intermediate form where the compiler has parsed the
code and produced a form of "virtual machine code". This "virtual machine code" can be further
processed to make real machine code for a specific platform.

To compile the SPIR-V, use a general purpose OpenCL to SPIR-V compiler. The compiled SPIR-
V is stored as a binary file or an array of bytes in the OpenCL application code to pass to the
clCreateProgramWithIL function.

Compiling
Compiling OpenCL to SPIR-V can be done in two ways, either using Clang and llvm-spirv:

clang -Xclang -finclude-default-header -cl-std=CL2.0 --target=spir[64]-unknown-
unknown
-emit-llvm -c -O0 -o <file.bc> <file.cl>

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 2.1

llvm-spirv -o <file.spv> <file.bc>

Or for customers with access to the mali_clcc offline compiler, by using mali_clcc:

mali_clcc -emit=spir-v file.cl

Optionally, use -b32 or -b64 to specify a 32-bit or 64-bit version of the code. Set the -b32 or -b64
option to the same as the OpenCL application code, so a 32-bit application uses 32-bit OpenCL
code.

Clang and llvm-spirv are available from https://github.com/KhronosGroup/SPIRV-
LLVM-Translator.

G.3 Device and host timer functions
The clGetHostTimer and clGetDeviceAndHostTimer functions are recommended for measuring the
time in code that relates to OpenCL.

The Arm® implementation guarantees that both functions match the GPU performance counters in
the underlying time-source which ensures a consistent scale for time measurement.

G.4 Queue priority hints
In OpenCL 2.1, you can assign priority to a command queue.

The CL_KHR_PRIORITY_HINTS extension allows you to assign priority to a command queue.
Use the CL_QUEUE_PRIORITY_KHR property when creating a command queue with the function
clCreateCommandQueueWithProperties.

The supported priorities are:

• CL_QUEUE_PRIORITY_HIGH_KHR

• CL_QUEUE_PRIORITY_MED_KHR

• CL_QUEUE_PRIORITY_LOW_KHR

The priority affects the order work is taken from the queues, with high priority work taken first.
Once enqueued work has been taken from the queue, it continues until completion, even if higher
priority work is enqueued before the lower priority work completes.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 113

https://github.com/KhronosGroup/SPIRV-LLVM-Translator
https://github.com/KhronosGroup/SPIRV-LLVM-Translator

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00

OpenCL 3.0

Appendix H OpenCL 3.0
This appendix describes the important changes to the Mali™ OpenCL driver in OpenCL 3.0.

OpenCL 3.0 adds several new high-level features. OpenCL 3.0 is not guaranteed to be backwards
compatible with previous versions of OpenCL. OpenCL 3.0 is supported on all Bifrost, Valhall, and
Avalon GPUs.

For detailed information about OpenCL 3.0, see the Khronos specification: https://
www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf.

H.1 OpenCL 3.0 functions
Several new functions are added in OpenCL 3.0.

clSetContextDestructorCallback()
Allows you to register a callback to be called when the context is destroyed.

clCreateBufferWithProperties()
Allows the creation of buffers with properties.

clCreateImageWithPropertie()
Allows the creation of images with properties.

Other changes
clSetProgramReleaseCallback()

Deprecated in OpenCL 3.0.

clEnqueueSVMMigrateMem()
Added with the CL_COMMAND_SVM_MIGRATE_MEM event command type.

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 113

https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://www.khronos.org/registry/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00
Revisions

Appendix I Revisions
This appendix contains a list of technical changes made for each release.

The first table is for the first release. Then, each table compares the new issue of the manual
with the last released issue of the manual. Release numbers match the revision history in Release
Information on page 2.

Table I-1: Issue 0100-00

Change Location

First release for version 1.0. -

Table I-2: Differences between issue 0100-00 and 0200-00

Change Location

Added batching kernels submission information. 10.1 General optimizations on page 61

Added Valhall architecture information. Various

Table I-3: Differences between issue 0200-00 and 0300-00

Change Location

Added a table showing the warp size for the different GPUs. 10.6 Mali Bifrost, Valhall, and Avalon GPU-specific optimizations
on page 69

Added support for OpenCL 2.1. Various

Corrected the specified NDRanges. 4.4 OpenCL data processing on page 22

Table I-4: Differences between issue 0300-00 and 0301-00

Change Location

Added the cl_arm_job_slot_selection extension. Various

Table I-5: Differences between issue 0301-00 and 0302-00

Change Location

Added Mali™‑G57 to the warp size table. 10.6 Mali Bifrost, Valhall, and Avalon GPU-specific optimizations
on page 69

Added the cl_arm_import_memory_protected extension. Various

Table I-6: Differences between issue 0302-00 and 0400-00

Change Location

Added subgroup information for devices that support OpenCL 2.1. 7.5.1 About dividing data for OpenCL on page 48

Added the extension:
cl_arm_integer_dot_product_accumulate_saturate_int8.

C. OpenCL extensions on page 81

D.3 The cl_arm_import_memory extensions on page 89Added the cl_arm_import_memory_android_hardware_buffer and
cl_khr_extended_versioning extensions. C. OpenCL extensions on page 81

Added that a call to clCreateKernel is necessary for clGetProgramInfo
to return the machine code.

6.6 Creating OpenCL program objects on page 33

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00
Revisions

Change Location

8.1.2 About Mali GPU architectures on page 52

9.1 The optimization process for OpenCL applications on
page 55

Changed the terms arithmetic pipeline, load-store pipeline, and texture pipeline
to arithmetic unit, load-store unit, and texture unit.

10.6 Mali Bifrost, Valhall, and Avalon GPU-specific
optimizations on page 69

Clarified the reference count information. 6.11 Cleaning up unused objects on page 38

Clarified the requirements for high performance tuning. 5.1 Software and hardware requirements for Mali GPU
OpenCL development on page 28

Clarified the vectorizing code information. 8. Retuning existing OpenCL code for Mali GPUs on
page 51

6.9.3 Determining the local work-group size on page 36Removed redundant information.

B. OpenCL built-in functions on page 79

Removed the section of not allocating memory buffers created with malloc() for
OpenCL applications.

-

Removed the arithmetic pipe information. 2.1 About Arm Mali GPUs on page 14

Removed the explicit mention of OpenCL version 1.2 as a supported version. 2.3 About the Mali GPU OpenCL driver and support on
page 14

Updated the section of enqueue many work-items. 10.1 General optimizations on page 61

Updated the image objects description. 6.8.2 Creating memory objects on page 35

Updated the kernel optimizations section. 10.2 Kernel optimizations on page 63

Updated the private memory information. 4.8 Mali GPU OpenCL memory model on page 26

Table I-7: Differences between issue 0401-00 and 0400-00

Change Location

Added Mali™‑G78 to the warp size table. 10.6 Mali Bifrost, Valhall, and Avalon GPU-specific optimizations
on page 69

Table I-8: Differences between issue 0400-00 and 0402-00

Change Location

Added cl_ext_cxx_for_opencl, cl_khr_device_uuid, and
cl_arm_scheduling_controls.

C. OpenCL extensions on page 81

Newly added. D.5 The cl_ext_cxx_for_opencl extension on page 91

Added clUnloadPlatformCompiler(). E.3 OpenCL 1.2 functions on page 96

Added a note for cl_arm_thread_limit_hint. 10.2 Kernel optimizations on page 63

Table I-9: Differences between issue 0402-00 and 0403-00

Change Location

Added a note. 6.9.5 Executing kernels on page 37

Table I-10: Differences between issue 0403-00 and 0404-00

Change Location

Corrected the description for half build-in scalar data type. A.1.1 Built-in scalar data types on page 76

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00
Revisions

Change Location
Added the cl_arm_controlled_kernel_termination
extension.

D.6 The cl_arm_controlled_kernel_termination extension on page
92

Table I-11: Differences between issue 0404-00 and 0405-00

Change Location

Removal the content about cl_arm_thread_limit_hint. 6.9.2 Determining the optimal global work size on page 36, 10.2
Kernel optimizations on page 63, C. OpenCL extensions on page
81

Added OpenCL 3.0. H. OpenCL 3.0 on page 109

Updated content for OpenCL 3.0. 2.3 About the Mali GPU OpenCL driver and support on page 14

Updated the links for cl_ext_cxx_for_opencl. D.5 The cl_ext_cxx_for_opencl extension on page 91

Added the cl_khr_subgroup_extended_types extension. C. OpenCL extensions on page 81

Table I-12: Differences between issue 0405-00 and 0406-00

Change Location

Added the cl_khr_suggested_local_work_size extension. D.7 The cl_khr_suggested_local_work_size extension on page 93

Updated the content about compilation deferring. 10.4 Execution optimizations on page 67

Table I-13: Differences between issue 0406-00 and 0407-00

Change Location

Added the cl_khr_semaphore,
cl_khr_external_semaphore,
cl_khr_external_semaphore_sync_fd, and
cl_khr_integer_dot_product extensions.

C. OpenCL extensions on page 81

Table I-14: Differences between issue 0407-00 and 0408-00

Change Location

Added the cl_khr_external_memory,
cl_arm_controlled_kernel_termination,
cl_arm_protected_memory_allocation, and
cl_khr_external_memory_dma_buf extensions.

C. OpenCL extensions on page 81

Updated the content of fno-deferred-compilation. 10.4 Execution optimizations on page 67

Table I-15: Differences between issue 0408-00 and 0409-00

Change Location

Added the cl_ext_image_from_buffer,
cl_ext_image_requirements_info, and
cl_ext_image_tiling_control extensions.
Adjusted the sequence of cl_ext_cxx_for_opencl in the list.

C. OpenCL extensions on page 81

Table I-16: Differences between issue 0409-00 and 0410-00

Change Location

Added the cl_ext_yuv_images extension. C. OpenCL extensions on page 81

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 113

Arm® Mali™ GPU OpenCL Developer Guide Document ID: 101574_0501_00_en
Issue: 00
Revisions

Table I-17: Differences between issue 0410-00 and 0411-00

Change Location

10.2 Kernel optimizations on page 63

C. OpenCL extensions on page 81

Added cl_arm_scheduling_controls.

D.8 The cl_arm_scheduling_controls extension on page 93

Updated the procedure. 10.6 Mali Bifrost, Valhall, and Avalon GPU-specific optimizations on
page 69

Table I-18: Differences between issue 0411-00 and 0500-00

Change Location

Added the Avalon architecture information. Various

Added the latest Mali™ GPUs to the warp size table. 10.6 Mali Bifrost, Valhall, and Avalon GPU-specific optimizations on
page 69

Table I-19: Differences between issue 0500-00 and 0501-00

Change Location

Added cl_khr_command_buffer_mutable_dispatch. C. OpenCL extensions on page 81

Copyright © 2019–2023 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 113

	Arm® Mali™ GPU OpenCL Developer Guide
	Contents
	1. Introduction
	1.1 Product revision status
	1.2 Intended audience
	1.3 Conventions
	1.4 Useful resources

	2. Overview
	2.1 About Arm® Mali™ GPUs
	2.2 About OpenCL
	2.3 About the Mali™ GPU OpenCL driver and support

	3. Parallel processing concepts
	3.1 Types of parallelism
	3.1.1 Data parallelism
	3.1.2 Task parallelism
	3.1.3 Pipelines

	3.2 Mixing different types of parallelism
	3.3 Embarrassingly parallel applications
	3.4 Limitations of parallel processing and Amdahl's law
	3.5 Concurrency

	4. OpenCL concepts
	4.1 Using OpenCL
	4.2 OpenCL applications
	4.3 OpenCL execution model
	4.4 OpenCL data processing
	4.5 OpenCL work-groups
	4.6 OpenCL identifiers
	4.7 OpenCL memory model
	4.7.1 OpenCL memory model overview
	4.7.2 Memory types in OpenCL

	4.8 Mali™ GPU OpenCL memory model
	4.9 OpenCL concepts summary

	5. Developing an OpenCL application
	5.1 Software and hardware requirements for Mali™ GPU OpenCL development
	5.2 Development stages for OpenCL

	6. Execution stages of an OpenCL application
	6.1 Platform setup
	6.2 Runtime setup
	6.3 Finding the available compute devices
	6.4 Initializing and creating OpenCL contexts
	6.5 Creating a command queue
	6.6 Creating OpenCL program objects
	6.7 Building a program executable
	6.8 Creating kernel and memory objects
	6.8.1 Creating kernel objects
	6.8.2 Creating memory objects

	6.9 Executing the kernel
	6.9.1 Determining the data dimensions
	6.9.2 Determining the optimal global work size
	6.9.3 Determining the local work-group size
	6.9.4 Enqueuing kernel execution
	6.9.5 Executing kernels

	6.10 Reading the results
	6.11 Cleaning up unused objects

	7. Converting existing code to OpenCL
	7.1 Profiling your application
	7.2 Analyzing code for parallelization
	7.2.1 About analyzing code for parallelization
	7.2.2 Finding data parallel operations
	7.2.3 Finding operations with few dependencies
	7.2.4 Analyze loops

	7.3 Parallel processing techniques in OpenCL
	7.3.1 Use the global ID instead of the loop counter
	7.3.1.1 Simplified loop example

	7.3.2 Compute values in a loop with a formula instead of using counters
	7.3.3 Compute values per frame
	7.3.4 Perform computations with dependencies in multiple-passes
	7.3.5 Pre-compute values to remove dependencies
	7.3.6 Use software pipelining
	7.3.7 Use task parallelism

	7.4 Using parallel processing with non-parallelizable code
	7.5 Dividing data for OpenCL
	7.5.1 About dividing data for OpenCL
	7.5.2 Use concurrent data structures
	7.5.3 Data division examples
	7.5.3.1 One-dimensional data
	7.5.3.2 Two-dimensional data
	7.5.3.3 Three-dimensional data

	8. Retuning existing OpenCL code for Mali™ GPUs
	8.1 Differences between desktop-based architectures and Mali™ GPUs
	8.1.1 About desktop-based GPU architectures
	8.1.2 About Mali™ GPU architectures
	8.1.3 Programming OpenCL for Mali™ GPUs

	8.2 Retuning existing OpenCL code for Mali™ GPUs
	8.2.1 Analyze code
	8.2.2 Locate and remove device optimizations
	8.2.2.1 Optimizations to remove for Mali™ Bifrost, Valhall, or Avalon GPUs

	8.2.3 Optimize your OpenCL code for Mali™ GPUs

	9. Optimizing OpenCL for Mali™ GPUs
	9.1 The optimization process for OpenCL applications
	9.2 Load balancing between control threads and OpenCL threads
	9.2.1 Do not use clFinish() for synchronization
	9.2.2 Do not use any of the clEnqueueMap() operations with a blocking call

	9.3 Optimizing memory allocation
	9.3.1 About memory allocation
	9.3.2 Use CL_MEM_ALLOC_HOST_PTR to avoid copying memory
	9.3.3 Do not create buffers with CL_MEM_USE_HOST_PTR if possible
	9.3.4 Sharing memory between I/O devices and OpenCL
	9.3.5 Sharing memory in a fully coherent system
	9.3.6 Sharing memory in an I/O coherent system

	10. OpenCL optimizations list
	10.1 General optimizations
	10.2 Kernel optimizations
	10.3 Code optimizations
	10.4 Execution optimizations
	10.5 Reducing the effect of serial computations
	10.6 Mali™ Bifrost, Valhall, and Avalon GPU-specific optimizations

	11. Kernel auto-vectorizer and unroller
	11.1 Kernel auto-vectorizer options
	11.1.1 Kernel auto-vectorizer command and parameters
	11.1.2 Kernel auto-vectorizer command examples

	11.2 Kernel unroller options
	11.2.1 Kernel unroller command and parameters
	11.2.2 Kernel unroller command examples

	11.3 The dimension interchange transformation

	A. OpenCL data types
	A.1 OpenCL data type lists
	A.1.1 Built-in scalar data types
	A.1.2 Built-in vector data types
	A.1.3 Other built-in data types
	A.1.4 Reserved data types

	B. OpenCL built-in functions
	B.1 half_ and native_ math functions
	B.2 Synchronization functions

	C. OpenCL extensions
	D. Using OpenCL extensions
	D.1 Inter-operation with EGL
	D.1.1 EGL images
	D.1.1.1 Preserving EGL images for portability
	D.1.1.2 OpenCL support for EGL images
	D.1.1.3 Synchronization when using the cl_khr_egl_image extension
	D.1.1.4 EGL images limitation

	D.1.2 ANDROID_image_native_buffer
	D.1.2.1 OpenCL supported formats

	D.1.3 EGL_EXT_image_dma_buf_import

	D.2 The cl_arm_printf extension
	D.2.1 About the cl_arm_printf extension
	D.2.2 cl_arm_printf example

	D.3 The cl_arm_import_memory extensions
	D.4 The cl_arm_job_slot_selection extension
	D.5 The cl_ext_cxx_for_opencl extension
	D.5.1 Limitation of the current implementation of cl_ext_cxx_for_opencl

	D.6 The cl_arm_controlled_kernel_termination extension
	D.7 The cl_khr_suggested_local_work_size extension
	D.8 The cl_arm_scheduling_controls extension

	E. OpenCL 1.2
	E.1 OpenCL 1.2 compiler options
	E.2 OpenCL 1.2 compiler parameters
	E.3 OpenCL 1.2 functions
	E.4 Functions deprecated in OpenCL 1.2

	F. OpenCL 2.0
	F.1 OpenCL 2.0 functions
	F.1.1 OpenCL 2.0 API functions
	F.1.2 OpenCL 2.0 built-in functions

	F.2 OpenCL 2.0 compiler options
	F.3 Program scope variables
	F.4 Functions deprecated in OpenCL 2.0
	F.5 OpenCL 2.0 extensions
	F.6 OpenCL 2.0 optimizations
	F.7 Shared virtual memory
	F.8 OpenCL 2.0 pipes and device execution

	G. OpenCL 2.1
	G.1 OpenCL 2.1 functions
	G.1.1 OpenCL 2.1 API functions
	G.1.2 OpenCL 2.1 built-in functions

	G.2 Intermediate language programs
	G.3 Device and host timer functions
	G.4 Queue priority hints

	H. OpenCL 3.0
	H.1 OpenCL 3.0 functions

	I. Revisions

