
Learn the architecture - AArch64 memory
attributes and properties
Version 2.0

Non-Confidential
Copyright © 2019, 2022 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
102376_0200_01_en

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Learn the architecture - AArch64 memory attributes and properties

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-
02

1 April 2019 Non-
Confidential

Initial release

0200-
01

14 November
2022

Non-
Confidential

Update to memory attributes and properties. Added permission
indirection and overlays.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 40

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 40

mailto:terms@arm.com

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Contents

Contents

1. Overview...7

2. What are memory attributes and properties, and why are they needed..8

3. Describing memory in AArch64... 10
3.1 Hierarchical attributes... 10
3.2 MMU disabled...11

4. Memory types... 12

5. Normal memory.. 13
5.1 Memory access ordering.. 13

6. Device memory...15
6.1 Sub-types of Device.. 16
6.2 Does the processor really do something different for each type?..18

7. Describing the memory type...20

8. Cacheability and shareability attributes... 21

9. Permissions...22
9.1 Privileged accesses to unprivileged data.. 22
9.2 Execution permissions...25

10. Permission indirection and permission overlay extensions... 27
10.1 Permission indirection... 27
10.2 Permission overlays... 28
10.3 An example of using permission indirection and permission overlay features.............................28

11. Access Flag.. 31
11.1 Updating the AF bit.. 31
11.2 Dirty state..31

12. Alignment and endianness...33

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Contents

12.1 Alignment... 33
12.2 Endianness... 33

13. Memory aliasing and mismatched memory types... 35

14. Check your knowledge...37

15. Related information...38
15.1 Describing memory in Armv8-A...38
15.2 Cacheability and shareability attributes..38
15.3 Combining stage 1 and stage 2 attributes.. 39
15.4 Training modules:... 39

16. Next steps..40

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Overview

1. Overview
This guide introduces the memory attributes and properties in Armv8-A and Armv9-A. It begins by
explaining where attributes that describe memory come from and how they are assigned to regions
of memory. Then it introduces the different attributes that are available and explains the basics of
memory ordering.

This information is useful for anyone developing low-level code, like boot code or drivers. It is
particularly relevant to anyone writing code to setup or manage the Memory Management Unit
(MMU).

At the end of this guide, you can Check your knowledge. You will have learned about the different
memory types and their key differences and you will also be able to list the memory attributes that
can be applied to a given address.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

What are memory attributes and properties, and why are they
needed

2. What are memory attributes and
properties, and why are they needed

Memory attributes and properties are a way of defining how memory behaves. They provide
a structure and a set of rules for you to follow when you configure how memory addresses, or
regions of memory addresses, are accessed and used in your system.

The memory attributes and properties can be applied to an address, and define the rules associated
with memory access.

Consider a simple system with the address space you can see in this diagram:

Figure 2-1: A diagram showing a simple address space.

The arrangement of memory regions in the address space is called an address map. In this example,
the address map contains:

• Memory and peripherals

• In the memories, code and data

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

What are memory attributes and properties, and why are they
needed

• Resources belonging to the OS and resources belonging to user applications

The way that the processor interacts with a peripheral is different to how it should interact
with memory. For example, you usually want to cache memories but you do not want to cache
peripherals. Caching is the act of storing a copy of information from memory into a hardware
structure, which is called a cache. The cache is closer to the core and faster for the core to access.
Similarly, you will usually want the processor to block user access to kernel resources such as
peripherals.

The following diagram shows the address map with some different memory attributes that you
might want to apply to the memory regions:

Figure 2-2: A diagram showing address map for memory regions

You need to be able to describe these different attributes to the processor, so that the processor
accesses each location appropriately.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Describing memory in AArch64

3. Describing memory in AArch64
The mapping between virtual and physical address spaces is defined in a set of translation tables,
also sometimes called page tables. For each block or page of virtual addresses, the translation
tables provide the corresponding physical address and the attributes for accessing that page.

Each translation table entry is called a block or page descriptor. In most cases, the attributes come
from this descriptor.

This diagram shows an example block descriptor, and the attribute fields within it:

Figure 3-1: A diagram showing a block descriptor.

Important attributes discussed in this guide include the following:

• UXN and PXN - Execution permissions

• DBM - The dirty bit modifier

• AF - Access flag

• AP - Access permission

• AttrIndx - Selector for memory type and attributes

We will look at these attributes in more detail later in this guide.

3.1 Hierarchical attributes
Some memory attributes can be specified in the Table descriptors in higher-level tables. These are
hierarchical attributes. This applies to Access Permission, Execution Permissions, and the Physical
Address space.

If these bits are set then they override the lower-level entries, and if the bits are clear the lower-
level entries are used unmodified. An example, using PXNTable (execution permission) is shown
here:

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Describing memory in AArch64

Figure 3-2: A diagram showing a PXNTable with execution permission.

From Armv8.1-A, you can disable support for setting the access and execution permissions
using the hierarchical attributes in a table descriptor. This is controlled by the Hierarchical
Permission Disable (HPD) bits in the relevant TCR_ELx register. When disabled, the bits used for
the hierarchical controls are available to software to use for other purposes.

3.2 MMU disabled
To summarize, the attributes for an address come from the translation tables. Translation tables are
situated in memory and are used to store the mappings between virtual and physical addresses.
The tables also contain the attributes for physical memory locations.

The translation tables are accessed by the Memory Management Unit (MMU).

What happens if the MMU is disabled? This is an important question to address when writing code
that will run immediately after reset.

When the stage 1 MMU is disabled:

• All data accesses are Device-nGnRnE. This is explained in the section Device memory later in
this guide.

• All instruction fetches are treated as either non-cacheable or cacheable, according to the value
of the SCTLR_ELx.I (instruction cacheability control) field.

• All addresses have read/write access and are executable.

For Exception levels covered by virtualization, when stage 2 is disabled the attributes from stage 1
are used unmodified.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Memory types

4. Memory types
All addresses in a system that are not marked as faulting are assigned a memory type. The memory
type is a high-level description of how the processor should interact with the address region. There
are two memory types in Armv8-A, and Armv9-A: Normal memory and Device memory.

Armv6 and Armv7 include a third memory type: Strongly Ordered. In Armv8, this
maps to Device-nGnRnE.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Normal memory

5. Normal memory
The Normal memory type is used for anything that behaves like a memory, including RAM, Flash, or
ROM. Code should only be placed in locations marked as Normal.

Normal is usually the most common memory type in a system, as shown in this diagram:

Figure 5-1: A diagram showing the normal type.

5.1 Memory access ordering
Traditionally, computer processors execute instructions in the order that they were specified in the
program. Things happen the number of times specified in the program and they happen one at
a time. This is called the Simple Sequential Execution (SSE) model. Most modern processors may
appear to follow this model, but in reality a number of optimizations are both applied and made
available to you, to help speed up performance.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Normal memory

A memory location that is marked as Normal is assumed to have no direct side-effects when it is
accessed. This means that reading the location just returns the data, but does not cause the data
to change, or directly trigger another process. Because of this, for memory locations marked as
Normal, a processor may merge accesses, perform accesses speculatively, or re-order accesses.

For more detail about memory access reordering, see the Memory system, ordering, and barriers
guide.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 40

https://developer.arm.com/documentation/102336/latest/Memory-ordering
https://developer.arm.com/documentation/102336/latest/Memory-ordering

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Device memory

6. Device memory
The Device memory type is used for describing peripherals. Peripheral registers are often referred
to as Memory-Mapped I/O (MMIO). Here we can see what would be typically be marked as Device
in our example address map:

Figure 6-1: A diagram showing memory mapped device type.

To review, the Normal memory type means that there are no side-effects to the access. For the
Device type memory, the opposite is true. The Device memory type is used for locations that can
have side-effects.

For example, a read to a FIFO would normally cause it to advance to the next piece of data. This
means that the number of accesses to the FIFO is important, and therefore the processor must
adhere to what is specified by the program.

Device regions are never cacheable. This is because it is very unlikely that you would want to cache
accesses to a peripheral.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Device memory

Speculative data accesses are not permitted to regions marked as Device. The processor can only
access the location if it is architecturally accessed. That means that an instruction that has been
architecturally executed has accessed the location.

Instructions should not be placed in regions marked as Device. We recommend that Device
regions are always marked as not executable. Otherwise, it is possible that the processor might
speculatively fetch instructions from it, which could cause problems for read-sensitive devices like
FIFOs.

There is a subtle distinction here that is easy to miss. Marking a region as Device
prevents speculative data accesses only. Marking a region as non-executable
prevents speculative instruction accesses. This means that, to prevent any
speculative accesses, a region must be marked as both Device and non-executable.

6.1 Sub-types of Device
There are four sub-types of Device, with varying levels of restrictions. These sub-types are the
most permissive:

• Device-GRE

• Device-nGRE

• Device-nGnRE

This sub-type is the most restrictive:

• Device-nGnRnE

The letters after Device represent a combination of attributes:

• Gathering (G, nG). This specifies that accesses can be merged (G) or not (nG). This could be
merging multiple accesses to the same location into one access or merging multiple smaller
accesses into one larger access.

• Re-ordering (R, nR). This specifies that accesses to the same peripheral can be re-ordered (R)
or not (nR). When re-ordering is permitted, the restrictions apply in the same way as for the
Normal type. You can find more detail on normal memory access reordering in the Memory
system, ordering, and barriers guide.

• Early Write Acknowledgement (E, nE). This determines when a write is considered complete. If
Early Acknowledgement is allowed (E), an access can be shown as complete once it is visible to
other observers, but before it reaches its destination. For example, a write might become visible
to other Processing Elements (PEs) once it reaches a write buffer in the interconnect. When
Early Acknowledgement is not allowed (nE), the write must have reached the destination.

Here are two examples:

• Device-GRE. This allows gathering, re-ordering, and early write acknowledgement.

• Device-nGnRnE. This does not allow gathering, re-ordering, and early write acknowledgement.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 40

https://developer.arm.com/documentation/102336/latest/Memory-ordering
https://developer.arm.com/documentation/102336/latest/Memory-ordering

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Device memory

We have already seen how re-ordering works, but we have not introduced gathering or early
write acknowledgement. Gathering allows memory accesses to similar locations to be merged
into a single bus transaction, optimizing the access. Early write acknowledgement indicates to the
memory system whether a buffer can send write acknowledgements at a point on the bus between
the core and the peripheral at the address, such that all PEs can observe the write, even if the
peripheral has not yet received the write.

Normal Non-cacheable and Device-GRE might appear to be the same, but they are
not. Normal Non-cacheable still allows speculative data accesses, but Device-GRE
does not.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Device memory

6.2 Does the processor really do something different for
each type?

The memory type describes the set of allowable behaviors for a location. Looking at just the Device
type, this image represents the allowable behaviors:

Figure 6-2: A diagram showing device type.

You can see that Device-nGnRnE is the most restrictive sub-type, and has the fewest allowed
behaviors. Device-GRE is the least restrictive, and therefore has the most allowed behaviors.

Importantly, all the behaviors allowed for Device-nGnRnE are also permitted for Device-GRE. For
example, it is not a requirement for a Device-GRE memory to use Gathering - it is just allowed.
Therefore, it would be permissible for the processor to treat Device-GRE as Device-nGnRnE.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Device memory

This example is extreme and unlikely to occur with Arm Cortex-A processors. However, it is
common for processors to not differentiate between all the types and sub-types, for example
treating Device-GRE and Device-nGRE in the same way. This is only allowed if the type or sub-
type is always made more restrictive.

Some interconnects cannot fully support the requirements of Device-nGnRnE. For example, a
Device-nGnRnE write to PCIe Base Address Register (BAR) space will become a posted write (a
write that does not expect a write completion response) once it reaches the PCIe topology. In this
case, the write access will only have the properties of Device-nGnRE because the write response
cannot be provided by the target endpoint, and will instead be provided by some intermediate
component like the PCIe Root Port. However, a Device-nGnRnE write to PCIe configuration space
is a non-posted write (a write that expects a completion response), therefore the requirements of
Device-nGnRnE are upheld for those types of accesses.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Describing the memory type

7. Describing the memory type
The memory type is not directly encoded into the translation table entry. Instead, the AttrIndx
field in the translation table entry is used to select an entry from the MAIR_ELx (Memory Attribute
Indirection Register).

Figure 7-1: A diagram showing memory attribute indirection register.

The selected field determines the memory type and cacheability information.

Why is an index to a register used, instead of encoding the memory type directly into the
translation table entries? Because the number of bits in the translation table entries is limited.
It requires eight bits to encode the memory type, but only three bits to encode the index into
MAIR_ELx. This allows the architecture to efficiently use fewer bits in the table entries.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Cacheability and shareability attributes

8. Cacheability and shareability attributes
Locations marked as Normal also have cacheability and shareability attributes. The cacheability
attributes control whether a location can be cached. If a location can be cached, the shareability
attributes control which other agents need to see a coherent copy of the memory. This allows
for some complex configuration, which is beyond the scope of this guide. However, Arm expects
operating systems to mark the majority of DRAM memory as Normal Write-back cacheable, Inner
shareable.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0
Permissions

9. Permissions
Access permissions can be encoded using either the direct permission scheme, or the indirect
permission scheme. This chapter discusses the direct permission scheme. See the Permission
indirection and permission overlay extensions section of this guide for details of the indirect
permission scheme.

In the direct permissions scheme, the Access Permissions (AP) attribute controls whether a location
can be read and written, and what privilege is necessary. The following table shows the AP bit
settings:

AP Unprivileged (EL0) Privileged (EL1/2/3)

00 No access Read/write

01 Read/write Read/write

10 No access Read-only

11 Read-only Read-only

If an access breaks the specified permissions, for example a write to a read-only region, an
exception (labelled as a permission fault) is generated.

9.1 Privileged accesses to unprivileged data
The standard permission model is that a more privileged entity can access anything belonging
to a less privileged entity. For example, an Operating System (OS) can see all the resources that
are allocated to an application, or a hypervisor can see all the resources that are allocated to a
virtual machine (VM). This is because executing at a higher exception level means that the level of
privilege is also higher.

However, this is not always desirable. Malicious applications might try to trick an OS into accessing
data on behalf of the application, which the application should not be able to see. This requires the
OS to check pointers in systems calls.

The Arm architecture provides several controls to make this simpler. First, there is the PSTATE.PAN
(Privileged Access Never) bit. When this bit is set, loads and stores from EL1 (or EL2 when E2H==1)
to unprivileged regions will generate an exception (Permission Fault),like this diagram illustrates:

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0
Permissions

Figure 9-1: A diagram showing privileged access never.

PAN was added in Armv8.1-A.

PAN allows unintended accesses to unprivileged data to be trapped. For example, the OS performs
an access thinking that the destination is privileged. In fact, the destination is unprivileged. This
means that there is a mismatch between the OS expectation (that the destination is privileged) and
reality (the destination is unprivileged). This could occur due to a programming error, or could be
the result of an attack on the system. PAN allows us to trap the access before it occurs, catching
the error or preventing the attack.

Sometimes the OS does need to access unprivileged regions, for example, to write to a buffer
owned by an application. To support this, the instruction set provides the LDTR and STTR
instructions.

LDTR and STTR are unprivileged loads and stores. They are checked against EL0 permission
checking even when executed by the OS at EL1 or EL2. Because these are explicitly unprivileged
accesses, they are not blocked by PAN, like this diagram shows:

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0
Permissions

Figure 9-2: A diagram showing unprivileged access.

This allows the OS to distinguish between accesses that are intended to access privileged data and
those which are expected to access unprivileged data. This also allows the hardware to use that
information to check the accesses.

The T in LDTR stands for translation. This is because the first Arm processors to
support virtual to physical translation only did so for User mode applications, not for
the OS. For the OS to access application data it needed a special load, a load with
translation. Today of course, all software sees virtual addresses, but the name has
remained.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0
Permissions

9.2 Execution permissions
In addition to data access permissions, there are also execution permissions. These attributes let
you specify that instructions cannot be executed from the address:

• UXN. User (EL0) Execute Never (Not used at EL3, or EL2 when HCR_EL2.E2H==0)

• PXN. Privileged Execute Never (Called XN at EL3, and EL2 when HCR_EL2.E2H==0)

These are Execute Never bits. This means that setting the bit makes the location not executable.

There are separate Privileged and Unprivileged bits, because application code needs to be
executable in user space (EL0) but should never be executed with kernel permissions (EL1/EL2),
like this diagram shows:

Figure 9-3: A diagram showing kernel permissions.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0
Permissions

The architecture also provides controls bits in the System Control Register (SCTLR_ELx) to make all
write-able addresses non-executable.

A location with EL0 write permissions is never executable at EL1.

Remember, Arm recommends that Device regions are always marked as Execute
Never (XN).

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Permission indirection and permission overlay extensions

10. Permission indirection and permission
overlay extensions

Access permissions can be encoded using either the direct permission scheme or the indirect
permission scheme. This chapter discusses the indirect permission scheme. See the Permissions
section of this guide for details of the direct permission scheme.

Permission indirection introduces a way to set permissions which allows more efficient use of the
permission bits in Translation Table Descriptors (TTDs) while providing the ability to introduce new
permission types.

Permission overlays allow permissions to be progressively restricted by processes running at EL0
while reducing the number of calls to processes running at more privileged exception levels (such
as the OS), and without requiring costly Translation Lookaside Buffer (TLB) maintenance.

The use of permission indirection and permission overlays allows for a much more flexible approach
to setting permissions on pages of memory and can reduce the performance impact of modifying
access permissions.

Permission indirection and permission overlay extensions were introduced in
Armv8.9-A/Armv9.4-A.

10.1 Permission indirection
When permission indirection is enabled, a Permission Indirection Index (PIIndex) field in the TTD is
available. The PIIndex field indexes into the Permission Indirection Register (PIR) for the appropriate
exception level, so that the OS (EL1), Hypervisor (EL2), or firmware (EL3) can set the stage 1
translation base permissions:

Register Description

PIRE0_EL1 PIR to set unprivileged EL1&0 base permissions

PIRE0_EL2 PIR to set unprivileged EL2&0 base permissions

PIR_EL1 PIR to set privileged EL1 base permissions

PIR_EL2 PIR to set privileged EL2 base permissions

PIR_EL3 PIR to set privileged EL3 base permissions

The PIRE0_ELx, or PIR_ELx register fields indicate the base permissions to be applied to that
page of memory. See the descriptions of the Permission Indirection Registers for details of the
permissions available.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 40

https://developer.arm.com/documentation/ddi0601/2022-09/AArch64-Registers/PIRE0-EL1--Permission-Indirection-Register-0--EL1-?lang=en

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Permission indirection and permission overlay extensions

The PIR field indexed in the PII also specifies whether permission overlay is applied
to that page of memory. If the PIR entry indicates that permission overlay is not
applied, the POI field in the translation table entry is ignored.

10.2 Permission overlays
The base permissions for the page of memory can be further restricted by use of the Permission
Overlay Index (POIndex) field in the translation table entries. The POIndex field indexes into the
Permission Overlay Register (POR) for the execution level:

Register Description

POR_EL0 POR for unprivileged EL0 stage 1 overlay permissions

POR_EL1 POR for privileged EL1 stage 1 overlay permissions

POR_EL2 POR for privileged EL2 stage 1 overlay permissions

POR_EL3 POR for privileged EL3 stage 1 overlay permissions

The POR_ELx register fields specify the permissions overlay that is applied to the memory pages
in addition to the base permissions. See the descriptions of the Permissions Overlay Registers for
details of the additional permission restrictions that can be configured.

The base permissions setting is allowed to be cached in the TLB, but the overlay
setting is not. This means that the overlay setting can be changed without the need
for a costly TLB invalidate (TLBI)

10.3 An example of using permission indirection and
permission overlay features

In this example, the OS running at EL1 wants to set the base and overlay permissions of a range of
memory locations that will be used by an application running at EL0.

To set the base permissions, the OS does the following:

1. Allocates a permissions index in the Permission Indirection Register (PIR_ELx). In this example
the OS selects index 3.

2. Sets the permission that index 3 in the PIR_ELx represents to “Read and Write, Overlay
applied”, by setting the index’s bits to 0b0101.

3. Sets the PIIndex field in the TTDs of the memory locations in that range to 0b0011 (3).

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 40

https://developer.arm.com/documentation/ddi0601/2022-09/AArch64-Registers/POR-EL0--Permission-Overlay-Register-0--EL0-?lang=en

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Permission indirection and permission overlay extensions

This sets the base permissions for the memory pages in that range to “Read and Write, Overlay
applied”. See the descriptions of the Permission Indirection Registers for details of the permissions
available.

The application running at EL0 can request that the OS specify a permissions overlay that the
application can later request be applied to a subset of the memory pages. To specify the overlay
the OS does the following:

1. Allocates a permissions overlay index in the Permission Overlay Register (POR_ELx). In this
example the OS selects index 6.

2. Sets the permission that index 6 in the POR_ELx represents to “Read only”, by setting index 6’s
bits to 0b0001.

This sets the available overlay permission for that memory location to “Read only”. The application
running at EL0 can then request (using a syscall) that the OS apply the overlay to a subset of
the memory range. The OS does this by setting the POIndex field in the TTDs of those memory
pages to 0b110 (6) to have the further “Read only” permission restrictions applied to the base
permissions. This effectively allows the application running at EL0 to subtract the write permission
from those memory pages. See the descriptions of the Permissions Overlay Registers for details of
the additional permission restrictions that can be configured.

This example shows how a greater range of base permissions can be applied to memory pages
using permission indirection. It also shows how processes running at EL0 can restrict permissions
without the maintenance overhead of a TLBI and while minimizing calls to the OS running at
EL1. The permission indirection and overlay extensions allow much more flexibility in applying
permissions to memory pages.

The following diagram shows how permission indirection and permission overlays combine to set
permissions for a page of memory:

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 40

https://developer.arm.com/documentation/ddi0601/2022-09/AArch64-Registers/PIRE0-EL1--Permission-Indirection-Register-0--EL1-?lang=en
https://developer.arm.com/documentation/ddi0601/2022-09/AArch64-Registers/POR-EL0--Permission-Overlay-Register-0--EL0-?lang=en

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Permission indirection and permission overlay extensions

Figure 10-1: A diagram showing how permission indirection and overlays combine.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0
Access Flag

11. Access Flag
You can use the Access Flag (AF) bit to track whether a region covered by the translation table
entry has been accessed. You can set the AF bit to:

• AF=0. Region not accessed.

• AF=1. Region accessed.

The AF bit is useful for operating systems, because you can use it to identify which pages are not
currently being used and could be paged-out (removed from RAM).

The Access Flag is not typically used in a bare-metal environment, and you can
generate your tables with the AF bit pre-set.

11.1 Updating the AF bit
When the AF bit is being used, the translation tables are created with the AF bit initially clear.
When a page is accessed, its AF bit is set. Software can parse the tables to check whether the
AF bits are set or clear. A page with AF==0 cannot have been accessed and is potentially a better
candidate for being paged-out.

There are two ways that the AF bit can be set on access:

• Software Update: Accessing the page causes a synchronous exception (Access Flag fault). In the
exception handler, software is responsible for setting the AF bit in the relevant translation table
entry and returns.

• Hardware Update: Accessing the page causes hardware to automatically set the AF bit without
needing to generate an exception. This behavior needs to be enabled using the hardware
access update bit of the Translation Control Register (TCR_ELx.HA) that was added in Armv8.1-
A.

11.2 Dirty state
Armv8.1-A introduced the ability for the processor to manage the dirty state of a block or page.
Dirty state records whether the block or page has been written to. This is useful, because if the
block or page is paged-out, dirty state tells the managing software whether the contents of RAM
need to be written out to the storage.

For example, let’s consider a text file. The file is initially loaded from disk (Flash or hard drive) into
RAM. When it is later removed from memory, the OS needs to know whether the content in RAM

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0
Access Flag

is more recent than what is on disk. If the content in RAM is more recent, then the copy on disk
needs to be updated. If it is not, then the copy in RAM can be dropped.

When managing dirty state is enabled, software initially creates the translation table entry with the
access permission set to Read-Only and the DBM (Dirty Bit Modifier) bit set. If that page is written
to, the hardware automatically updates the access permissions to Read-Write.

Setting the DBM bit to 1 changes the function of the access permission bits (AP[2] and S2AP[1]),
so that instead of recording write permission, they record dirty state. This means that when the
DBM bit is set to 1 the access permission bits do not cause permission faults.

The same results can be achieved without using the hardware update option. The
page would be marked as Read-Only, resulting in an exception (permission fault) on
the first write. The exception handler would manually mark the page as read-write
and then return. This approach might still be used if software wants to do copy-on-
write.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Alignment and endianness

12. Alignment and endianness
This section explains alignment and endianness.

12.1 Alignment
An access is described as aligned if the address is a multiple of the element size.

For LDR and STR instructions, the element size is the size of the access. For example, a LDRH
instruction loads a 16-bit value and must be from an address which is a multiple of 2 bytes to be
considered aligned.

The LDP and STP instructions load and store a pair of elements, respectively. To be aligned, the
address must be a multiple of the size of the elements, not the combined size of both elements. For
example:

LDP X0, X1, [X2]

This example loads two 64-bit values, so 128 bits in total. The address in X2 needs to be a multiple
of 64 bits to be considered aligned.

The same principle applies to vector loads and stores.

When the address is not a multiple of the element size, the access is unaligned. Unaligned accesses
are allowed to addresses marked as Normal, but not to Device regions. An unaligned access to a
Device region will trigger an exception (alignment fault).

Unaligned accesses to regions marked as Normal can be trapped by setting SCTLR_ELx.A. If this bit
is set, unaligned accesses to Normal regions also generate alignment faults.

12.2 Endianness
In Armv8-A, instruction fetches are always treated as little-endian.

For data accesses, it is IMPLEMENTATION DEFINED whether both little-endian and big-endian are
supported. And if only one is supported, it is IMPLEMENTATION DEFINED which one is supported.

For processors that support both big-endian and little-endian, endianness is configured per
Exception level.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Alignment and endianness

If you cannot remember the definition of IMPLEMENTATION DEFINED, read about it in
Introducing the Arm Architecture.

Arm Cortex-A processors support both big-endian and little-endian.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 40

https://developer.arm.com/architectures/learn-the-architecture/introducing-the-arm-architecture

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Memory aliasing and mismatched memory types

13. Memory aliasing and mismatched
memory types

When a given location in the physical address space has multiple virtual addresses, this is called
aliasing.

Attributes are based on virtual addresses. This is because attributes come from the translation
tables. When a physical location has multiple aliases, it is important that all of the virtual aliases
have compatible attributes. We describe compatible as:

• Same memory type, and for Device the same sub-type

• For Normal locations, the same cacheability and shareability

If the attributes are not compatible, the memory accesses might not behave as expected.

This diagram shows two examples of aliasing. The two aliases of location A have compatible
attributes. This is the recommended approach. The two aliases of location B have incompatible
attributes (Normal and Device), which can negatively affect coherency and performance:

Figure 13-1: A diagram showing virtual address space.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Memory aliasing and mismatched memory types

Arm strongly recommends that software does not assign incompatible attributes to different aliases
of the same location.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Check your knowledge

14. Check your knowledge
The following questions help you test your knowledge.

Where do the attributes for an address location come from?
The translation tables, typically the Block/Page descriptor, although hierarchical attributes
can override this.

What are the two memory Types in Armv8-A?
Normal and Device.

What does -nGnRE mean in Device-nGnRE?
Does not allow gathering and re-ordering, but does allow early write acknowledgement.

Why might a page be marked as PXN=1, UXN=0?
Application code needs to be executable in User space and not executable in Kernel space.

What is the AF bit typically used for?
Tracking which pages have been accessed.

What endianness are instruction fetches?
Little-endian

Before enabling the memory management unit (MMU), some start-up code makes an unaligned
access, which leads to an alignment fault. Why?

When the MMU is disabled, all accesses are treated as Device. Unaligned accesses to regions
marked as Device always fault.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 40

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Related information

15. Related information
Here are some resources related to material in this guide:

• Arm Community

Ask development questions, and find articles and blogs on specific topics from Arm experts.

• Memory ordering and barriers guide

Provides information about memory ordering, and the use of barriers.

• Security - pointer signing and landing pads guide (coming soon)

Armv8.5-A introduced support for Branch Target Instructions (BTI). BTI support is controlled by
the GP bit in the stage 1 translation tables. Branch Target Instructions will be discussed in this
guide.

• Armv8-A Instruction Set Architecture

Includes information about Simple Sequential Execution (SSE).

• Translation process: If are you are interested in the full details of translation process, it is
described fully in pseudo code. The translation pseudo code is included with the XML for the
instruction set. A good place to start is the AArch64.FullTranslate() function.

Here are some resources related to topics in this guide:

15.1 Describing memory in Armv8-A
Cacheability of instruction fetches are a bit more complicated than you might think. This topic is
covered in Caches and Coherency guide (coming soon).

For EL0 and EL1, this behavior can be partly overridden using the virtualization
controls. This topic is covered in the Virtualization guide.

15.2 Cacheability and shareability attributes
Caches and cache coherency guide (coming soon).

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 40

https://community.arm.com/
https://developer.arm.com/documentation/102336/latest/Overview
https://developer.arm.com/architectures/learn-the-architecture/aarch64-instruction-set-architecture
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/products/architecture/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/architectures/learn-the-architecture/aarch64-virtualization

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0

Related information

15.3 Combining stage 1 and stage 2 attributes
Stage 1 and stage 2 translation are discussed in more detail in the Memory Management guide.

For background information, see the Virtualization guide.

15.4 Training modules:
Here are links to some related training modules that may be useful:

• Introduction to Armv8-A

• Memory model overview

• What does architecture consist of?

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 40

https://developer.arm.com/architectures/learn-the-architecture/memory-management
https://developer.arm.com/architectures/learn-the-architecture/aarch64-virtualization
https://training.developer.arm.com/topics/33842
https://training.developer.arm.com/contents/394202
https://training.developer.arm.com/contents/394205

Learn the architecture - AArch64 memory attributes and
properties

Document ID: 102376_0200_01_en
Version 2.0
Next steps

16. Next steps
The Armv8-A memory attributes and properties provide the basis for how a processor core
interacts with memories in a system. You can apply the principles you have learned throughout this
guide when you begin to develop low level code, like boot code or drivers. You can also put this
learning into practice when you write code to set up or manage the Memory Management Unit
(MMU).

The next guide in this series discusses address translation in Memory management.

To keep learning about the Armv8-A architecture, see more in our series of guides.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 40

https://developer.arm.com/architectures/learn-the-architecture/memory-management
https://developer.arm.com/architectures/learn-the-architecture

	Learn the architecture - AArch64 memory attributes and properties
	Contents
	1. Overview
	2. What are memory attributes and properties, and why are they needed
	3. Describing memory in AArch64
	3.1 Hierarchical attributes
	3.2 MMU disabled

	4. Memory types
	5. Normal memory
	5.1 Memory access ordering

	6. Device memory
	6.1 Sub-types of Device
	6.2 Does the processor really do something different for each type?

	7. Describing the memory type
	8. Cacheability and shareability attributes
	9. Permissions
	9.1 Privileged accesses to unprivileged data
	9.2 Execution permissions

	10. Permission indirection and permission overlay extensions
	10.1 Permission indirection
	10.2 Permission overlays
	10.3 An example of using permission indirection and permission overlay features

	11. Access Flag
	11.1 Updating the AF bit
	11.2 Dirty state

	12. Alignment and endianness
	12.1 Alignment
	12.2 Endianness

	13. Memory aliasing and mismatched memory types
	14. Check your knowledge
	15. Related information
	15.1 Describing memory in Armv8-A
	15.2 Cacheability and shareability attributes
	15.3 Combining stage 1 and stage 2 attributes
	15.4 Training modules:

	16. Next steps

