
Arm Functional Safety Run-Time System
Version 1.0

Application Note

Non-Confidential
Copyright © 2022 Arm Limited (or its affiliates).
All rights reserved.

Issue
KAN345_1.0_en

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm Functional Safety Run-Time System
Application Note

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

1.0 21 December 2022 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 26

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 26

mailto:terms@arm.com

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Contents

Contents

1. Introduction.. 6
1.1 Conventions..6
1.2 Useful resources..7
1.3 Other information... 7

2. Functional Safety.. 8

3. Arm FuSa RTS... 10
3.1 FuSa RTX RTOS.. 12
3.2 FuSa Event Recorder... 14
3.3 FuSa CMSIS-Core...15
3.4 FuSa C Library...16
3.5 FuSa RTS Evaluation..16

4. RTOS-aware Debugging..21

A. Further Reading.. 26

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Introduction

1. Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use

italic Citations.

bold Interface elements, such as menu names.

Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,
IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Requirements for the system. Not following these requirements might result in system failure or damage.

Requirements for the system. Not following these requirements will result in system failure or damage.

An important piece of information that needs your attention.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 26

https://developer.arm.com/glossary

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Introduction

Convention Use
A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

1.2 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com

1.3 Other information
See the Arm website for other relevant information.

• Arm® Developer.

• Arm® Documentation.

• Technical Support.

• Arm® Glossary.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 26

http://developer.arm.com/documentation
http://www.adobe.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Functional Safety

2. Functional Safety
Many products for such markets as household appliances, automotive, industrial and healthcare
have regulatory requirements to be certified against functional safety (FuSa) standards. For
example, IEC 61508 for electrical systems, ISO 26262 for the automotive industry, IEC62304 for
medical systems, and EN 50128 for railway applications.

Within the standards, there are multiple safety integrity levels (SIL) that specify formal methods
to be used during development for verifying that the application code, software components and
toolchains are safe for the intended use.

Figure 2-1: The software development V model

To ensure the best outcomes for our technology and customers, Arm plays an active role in the
development of international safety guidelines; for example, ISO 26262 and IEC 61508.

Arm products are designed “out of context” to satisfy the widest range of applications. We believe
that everyone in the integrated circuit (IC) supply chain has an important role to play in safety
certification, and applications must be certified in accordance with market-specific standards. Arm
is capable of supporting customers and manufacturers in their certification processes of Arm-based
devices.

The Arm Safety Ready portfolio is a collection of Arm products that have been through various
and rigorous levels of functional safety systematic flows and development. It combines IP, safety
features, tools, and robust methodologies to help reduce risk while fast-tracking the certification
phase of projects.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 26

https://www.arm.com/technologies/safety#c-92abe052-23c1-4e86-bc54-4d92115b17e1

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Functional Safety

MDK tools for FuSa development
Arm Keil MDK equips software engineers with professional tools that support the V-model
development process and simplify creation, analysis and verification of complex embedded
applications.

MDK Features Description

Arm Compiler for
Embedded FuSa

MDK-Professional provides access to safety-qualified Arm C/C++ compiler and its supporting
documentation.

Static Code analysis and
MISRA checking

MDK provides native integration with third-party code verification tools.

Code coverage MDK with ULINKpro enables non-intrusive code coverage on target hardware visa streaming instruction
trace.

Continuous integration MDK has a command line interface for test automation and can be uses with Continuous Integration (CI)
tools such as Jenkins.

Simulation models MDK-Professional enables robust regression testing at function and module level using Arm Virtual
Hardware (AVH).

RTOS-aware debugging MDK provides full visibility into RTOS operation thus simplifying system debug and optimization.

Timing analysis Event Recorder provides status details of software components and includes time information. Event
Statistics show average, min and max execution times.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 26

https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded%20FuSa
https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded%20FuSa
https://developer.arm.com/documentation/101407/latest/Debugging/Debug-Windows-and-Dialogs/Code-Coverage
https://developer.arm.com/Tools%20and%20Software/ULINKpro
https://developer.arm.com/documentation/101407/latest/Command-Line
https://arm-software.github.io/AVH/main/overview/html/index.html
https://arm-software.github.io/AVH/main/overview/html/index.html

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

3. Arm FuSa RTS
Arm FuSa RTS is a set of embedded software components qualified for use in the most safety-
critical applications in automotive, medical and industrial systems.

With FuSa RTS, developers receive a robust real-time operating system (RTOS), independent
processor abstraction layer and verified C library that are highly optimized for Cortex-M processors
by Arm architecture experts.

While being available as a separately licensable product, FuSa RTS perfectly integrates with Arm
Keil MDK and is using the safety-qualified Arm C/C++ compiler to significantly simplify system
design, development, validation and certification processes for safety applications.

Supported safety standards
Arm FuSa RTS is certified for the following safety standards:

• Automotive: ISO26262, ASIL D

• Industrial: IEC61508, SIL 3

• Railway: EN50128, SIL 4

• Medical: IEC62304, Class C

FuSa RTS safety compliance is confirmed by the TÜV Süd Certificate.

Supported devices
FuSa RTS fully utilizes advanced hardware features that Arm specifies for its processors. It provides
support for devices with the following Arm Cortex-M cores:

• Cortex-M0/M0+

• Cortex-M3

• Cortex-M4

• Cortex-M7

FuSa RTS components
Arm FuSa RTS package contains following components:

• FuSa RTX RTOS: deterministic real-time operating system for Arm Cortex-M processors.

• FuSa Event Recorder: implements functionality to easily record events and collect execution
statistics in the application code.

• FuSa CMSIS-Core: validated vendor-independent software interface to the processor resources.

• FuSa C library: a subset of the C library functions suitable for developing safety-critical
embedded applications.

• Safety Package: documentation set explaining the usage of FuSa RTS in safety context.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

Figure 3-1: FuSa RTS Components

Process Isolation
FuSa RTS contains protection mechanisms that control access to system resources (such as
memory, peripherals, processor execution time). These process isolation capabilities prevent
undesired interference between software elements of different safety integrity levels and allow
building of mixed-criticality systems on a single-core microcontroller.

FuSa RTS Process isolation is achieved with the following features:

Feature Description

Spatial
Isolation

Spatial isolation is enforced by MPU Protected Zones that use processor’s Memory Protection Unit (MPU) to shield access
to memory and peripherals. Access to RTOS objects and Kernel operations is additionally controlled with assigned Safety
Classes.

Temporal
Isolation

Temporal isolation is enabled with Thread Watchdog mechanisms that control the timing constraints in the system.

Controlled
System
Recovery

Controlled system recovery provides control over system operation in case of a failure and enables blocking the execution
of non-safety components or proceeding to a safety state.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

Figure 3-2: FuSa RTX Process Isolation

3.1 FuSa RTX RTOS
The use of a real-time operating system (RTOS) in a safety-critical system demands that the
RTOS component also undergoes rigorous verification. In cases when regulatory certification is
mandatory this also implies specific documentation and testing processes for the targeted safety
standards.

To enable and streamline the product safety certification, Arm provides FuSa RTX RTOS as part
of FuSa RTS package, that is qualified for use in automotive, industrial, railway and medical
applications:

• It is a deterministic real-time operating system (RTOS) that reliably manages multiple application
threads with priority-based, pre-emptive scheduling.

• It offers all services needed in complex real-time applications, such as threads, timers, memory
and object management, message exchange and others.

• The kernel is highly optimized for Cortex-M architecture and has multiple provisions that
naturally improve the reliability of an embedded application.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

Figure 3-3: FuSa RTX RTOS Components

Strictly validated code
• MISRA C rules: RTX is written in C using C99 language extensions with MISRA C:2012

guidelines being applied to it.

• Safety compliance: FuSa RTX code has gone through stringent safety analysis and rigorous
testing. It is approved for use in applications with the most demanding safety integrity levels
(SIL). See FuSa RTS for the list of applicable safety standards.

Designed for engineering efficiency
• Small memory footprint: requires minimum amount of system memory, starting from 5 KB ROM

• Low-power mode: has tick-less operation mode for low power devices

Easy to configure and use
• CMSIS-pack support: FuSa RTX is provided as a CMSIS component and can be easily managed

in a µVision Run-Time Environment dialog.

• Configuration Wizard support: FuSa RTX provides a number of configuration parameters for
the kernel operation as well as for the RTX objects such as threads, mutex and semaphores.
Integrated support of MDK Configuration Wizard makes the parameter settings clear and
intuitive.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

Figure 3-4: RTX RTOS Configuration Wizard Window

Reliable execution
• Time-deterministic interrupt execution: RTX utilizes the LDEX/STEX instruction available on most

Cortex-M processors and therefore user interrupts are never disabled

Safe operation
• Separate stacks for ISR/RTOS and threads: the RTOS kernel executes in handler mode with

stack separated from user threads which avoids unexpected stack loads.

• Stack overflow checking: RTX implements a software stack overflow checking that traps stack
overruns.

• Runtime check of kernel objects: object identifiers are validated at run-time for type-
mismatches and are protected from inadvertently accesses by the user application.

Flexible memory management
• Object-specific memory pools: dedicated fixed-size memory blocks for each object type

avoids memory fragmentation during run-time and makes object creation and destruction time
deterministic.

• Static object memory allocation: the user application may rely on static memory for kernel
objects, which guarantees that the RTOS system can never run out of storage during run-time.

3.2 FuSa Event Recorder
Event Recorder provides an API (function calls) for event annotations in the application code. These
functions record events along with timestamps and additional information. The data is stored in the
event buffer located in the RAM of the target hardware.

The µVision debugger reads the content of the event buffer and displays it in the Event Recorder
window. The graphical display over time is available in the System Analyzer window. Other timing
and power data can be observed in the Event Statistics window.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 26

https://developer.arm.com/documentation/101407/latest/Debugging/Debug-Windows-and-Dialogs/Event-Recorder/Event-Recorder-Window
https://developer.arm.com/documentation/101407/latest/Debugging/Debug-Windows-and-Dialogs/Event-Recorder/Event-Recorder-Window
https://developer.arm.com/documentation/101407/latest/Debugging/Debug-Windows-and-Dialogs/Event-Recorder/Event-Statistics-Window

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

Figure 3-5: Event Recorder Block Diagram

Event Recorder Benefits
• Visibility to the dynamic execution of an application at little (memory) cost.

• Adding RTOS awareness to a development tool does not require complex DLL programming.

• For Arm Cortex-M3/M4/M7/M33 processor based devices, Event Recorder functions will not
disable interrupts.

• Adding printf re-targeting for devices without ITM, such as Arm Cortex-M0/M0+/M23.

• Fast time-deterministic execution of event recorder functions with minimal code and timing
overhead.

• No need for a debug or release build as the event annotations can remain in production code.

• Saving the event data in local memory ensures fast recording.

• Collecting the data from the on-chip memory is done using simple read commands. These
commands work on all Cortex-M processor based devices and require only JTAG or SWD
connectivity to the debug adapter.

• Using the DWT Cycle Count register for creating time stamps reduces code overhead (available
on Arm Cortex-M3/M4/M7/M33M55/M85).

3.3 FuSa CMSIS-Core
CMSIS-Core implements the basic run-time system for a Cortex-M device and gives the user
access to the processor core and the device peripherals.

CMSIS-Core defines:

• A Hardware Abstraction Layer (HAL) for Cortex-M processor registers with standardized
definitions for the SysTick, NVIC, System Control Block registers, MPU registers, FPU registers,
and core access functions.

• System exception names to interface to system exceptions without having compatibility issues.

• Methods to organize header files that makes it easy to learn new Cortex-M microcontroller
products and improve software portability. This includes naming conventions for device-specific
interrupts.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 26

https://arm-software.github.io/CMSIS_5/Core/html/index.html

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

• Methods for system initialization to be used by each MCU vendor. For example, the
standardized SystemInit() function is essential for configuring the clock system of the device.

• Intrinsic functions used to generate CPU instructions that are not supported by standard C
functions.

• A variable to determine the system clock frequency which simplifies the setup the SysTick
timer.

3.4 FuSa C Library
The FuSa C library is a subset of the standard C library that consists of approximately 200
functions that have been specifically implemented and optimized for use in safety development.

The FuSa C library comes with:

• Certificate from TÜV SÜD and supports the same functional safety standards as Arm Compiler
for Embedded FuSa.

• Qualification Kit which contains the Safety Manual and Defect Report.

3.5 FuSa RTS Evaluation
Evaluation version of Arm FuSa RTS allows you to analyze the software components and
documentation provided in the FuSa RTS. The access channel and content packages are organized
in the same manner as for the commercial version.

Deliverables
The evaluation version of Arm FuSa RTS consists of the following deliverables:

• Software pack file

• Safety package

The evaluation content is slightly different from the one delivered with the commercial version. It is
based on the FuSa RTS for Cortex-M3, but the structure and components are very similar for other
cores. Only the low-level processor abstraction files are different. More details about the content
and installation are provided in sections below.

Software pack file
Arm FuSa RTS Evaluation software is provided as components in a CMSIS Software Pack that
has .pack file extension. The CMSIS pack format is supported by multiple IDEs, but the easiest way
is to use it with Arm Keil MDK.

Differences to the commercial version pack file
• FuSa C library and header files are not included

• Example application is slightly modified to compile without FuSa C library

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 26

https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded%20FuSa#Components

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

• Evaluation version of safety manual is provided.

Installation
To install the FuSa RTS software pack in Keil MDK:

1. Verify that Keil MDK is installed on your PC.

2. Extract the .pack file from the downloaded .zip archive.

3. Double-click on the FuSa RTS Evaluation software pack file (.pack extension). Provide the
destination path where the pack will be installed. Click Next ». Alternatively you can open the
Pack Installer (typically available at C:\Keil_v5\UV4\PackInstaller.exe) and there use the
menu item File - Import…

Figure 3-6: Pack Unzip: Welcome

4. Read and accept licensing terms, then press Next %raquo; button.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

Figure 3-7: Pack Unzip: License Agreement

5. The content of the software pack is extracted to the directory <MDK_Root>\ARM
\PACK\ARM\<PackName>\<PackVersion>, for example: C:\Keil_v5\ARM\PACK\ARM
\FuSa_RTS_CM3_noMPU_Evaluation\1.0.1\.

From this folder you can also access user and safety manual by clicking on SafetyManual.html
file. Its section “Using FuSa RTS” provides additional details on how to verify the package
integrity, add FuSa RTS components to a uVision project, add safety-qualified compiler, etc. It
also describes an example included with the FuSa RTS package.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

Figure 3-8: FuSa RTS Documentation

6. The FuSa RTS Evaluation pack can be also seen in the Pack Installer under Generic Packs as for
example shown on the figure below:

Figure 3-9: FuSa RTS Documentation

Example application
The Blinky application provided in the evaluation FuSa RTS pack has been slightly modified to work
without the FuSa C library.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

• By default, the example is configured to use Arm safety-qualified compiler 6.6.2
(same as used for testing and certifying Arm FuSa RTS).

• It is also possible to switch to a default Arm Compiler 6.xx provided with Keil
MDK and compile the example. The warning .\Flash\Blinky.axf: Warning:
L6092W: Section startup_armcm3.o(.gnu.linkonce.common) has deprecated
prefix '.gnu.linkonce'. Support for legacy common sections shall be
removed in a future version of the linker. Please use COMDAT groups as
a replacement. shall be ignored.

Safety Package
FuSa RTS Evaluation Safety Package is provided in form of a .zip file that can be simply extracted. It
contains following documentation:

• FuSa RTS Qualification Package Overview - lists the content of the Safety Package in
commercial version.

• FuSa RTS Evaluation safety manual - corresponds to the manual included in the FuSa RTS
software pack

• License terms for FuSa RTS Safety Package are provided in /license_terms/ directory.

Differences to the commercial version safety package
• TÜV Süd documents are available only with the commercial version. But they are referenced in

the FuSa RTS Qualification Package Overview document and certificates can be verified in TÜV
Süd certificate explorer.

• Safety manual is provided in evaluation version with following differences

◦ Details of some safety requirements are not fully included. However, the brief description
for all safety requirements is present.

◦ List of known issues for FuSa C library is not included

Defect Report
The defect report is an HTML-based document that lists issues discovered for already released
FuSa RTS revisions. It is not included in the evaluation version.

The issues known at the moment of the release can be found in the Release History section of the
Safety Manual.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

RTOS-aware Debugging

4. RTOS-aware Debugging
Using a real-time operating system (RTOS), significantly simplifies development and maintenance of
complex embedded applications with multiple parallel tasks. However, due to increased complexity
and the use of 3rd-party software components, it can become challenging to analyze the operation
of RTOS-based programs using classic code debug techniques.

Keil RTX5 integrates multiple mechanisms that provide full visibility into RTOS operation and thus
speed up debugging of potential problems and assist in program optimization.

RTX RTOS Component Viewer Window
Keil RTX5 supports Component Viewer and provides all key information about current RTOS state.

Detailed status information
RTX5’s system configuration, its operation status and details about all allocated objects are
displayed in the RTX RTOS window in µVision. The data is updated at run-time and is easy to
browse, understand and analyze.

Always available
The RTX RTOS view is available when RTX5 is used in the project and doesn’t require any special
configuration. It works with all Cortex-M targets and with any debug adapter.

Stack usage analysis
Application developers can observe in real-time the actual stack usage for individual threads. The
stack watermarking feature even shows the current maximum stack usage. This allows to optimize
the RAM usage and avoid stack overflows.

Object memory usage counters
The maximum memory usage for each RTX5 object is displayed which enables fine-tuning of
memory resources.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 26

https://developer.arm.com/documentation/101407/0538/Debugging/Debug-Windows-and-Dialogs/Component-Viewer

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

RTOS-aware Debugging

Figure 4-1: RTX RTOS Component Viewer Window

Event Recorder Support
RTX5 is annotated with more than 170 events for use with the Event Recorder.

The System Analyzer view in µVision graphically displays thread operation over time.

Event details which include accurate timestamps are provided in the Event Recorder window. You
can filter the events to capture and display only the target events of interest.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

RTOS-aware Debugging

Figure 4-2: RTX RTOS Event Recorder Window

The logging functionality enables post-execution analysis and test automation.

RTX5 documentation explains how to add Event Recorder visibility in RTX RTOS.

RTOS Thread Statistics
The Event Statistics for RTX5 threads becomes automatically available in µVision when Event
Recorder is enabled.

At run-time, it displays how many times each thread has been put in a particular state as well as
minimum, maximum and average thread execution times in each state.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

RTOS-aware Debugging

Figure 4-3: RTX RTOS Event Statistics Window

RTX5 Event Statistics can be saved in a log file for analysis and post-processing as part of a test
automation framework.

Thread Events in System Analyzer
µVision’s System Analyzer window gives developers a graphical view on the program operation
over time at it displays the status of each thread. Use the cursor and markers to execute in-depth
timing analysis directly in the window.

When trace is used, all interrupts are displayed in the System Analyzer. This provides a time-
synchronized view on the RTOS-related exceptions such as SysTick, SVCall and others, but also any
interrupts used by the application.

Finally, voltage and current consumption values are also available in the view when using a
ULINKplus debug adapter.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

RTOS-aware Debugging

Figure 4-4: RTX RTOS Threads in System Analyzer

3rd-Party Tools Support
Keil RTX5 is supported by Percepio’s Tracealyzer that visualizes the runtime behavior of embedded
software with over 25 graphical views and complements the debugger’s low-level perspective with
the big picture.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Further Reading

Appendix A Further Reading
Here is a list of additional resources regarding Arm FuSa RTS and functional safety in general.

• Blog: Software building blocks for faster functional safety certification

• Blog: Process isolation with Arm FuSa runtime system

• White Paper: Components and Tools for Functional Safety Applications

• Web Page: Safety

• Web Page: Arm FuSa RTS

• Web page: Arm Compiler for Embedded FuSa

• Web Page: Keil MDK

• Web Page: Keil RTX5 RTOS

• Application Note: KAN307 - Test automation with MDK and ULINKplus

• Application Note: KAN326 - Using X-CUBE-STL with Arm FuSa RTS

• Application Note: KAN336 - TrafficLight: Arm FuSa RTS process isolation example

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 26

https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/software-building-blocks-for-functional-safety
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/process-isolation-with-fusa-rts
https://www.arm.com/resources/white-paper/fusa-sw-tools-components
https://www.arm.com/technologies/safety
https://developer.arm.com/Tools%20and%20Software/Keil%20MDK/FuSa%20Run-Time%20System
https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded%20FuSa
https://developer.arm.com/en/dev2/Tools%20and%20Software/Keil%20MDK
https://developer.arm.com/en/dev2/Tools%20and%20Software/Keil%20MDK/RTX5%20RTOS
https://developer.arm.com/documentation/kan307/latest
https://developer.arm.com/documentation/kan326/latest
https://developer.arm.com/documentation/kan336/latest

	Arm Functional Safety Run-Time System Application Note
	Contents
	1. Introduction
	1.1 Conventions
	1.2 Useful resources
	1.3 Other information

	2. Functional Safety
	3. Arm FuSa RTS
	3.1 FuSa RTX RTOS
	3.2 FuSa Event Recorder
	3.3 FuSa CMSIS-Core
	3.4 FuSa C Library
	3.5 FuSa RTS Evaluation

	4. RTOS-aware Debugging
	A. Further Reading

