arm

Arm Functional Safety Run-Time System

Version 1.0

Application Note

Non-Confidential Issue
Copyright © 2022 Arm Limited (or its affiliates). KAN345_1.0_en
All rights reserved.

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm Functional Safety Run-Time System
Application Note

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Confidentiality

1.0 21 December 2022 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR

ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 2 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

and regulations to assure that this document or any portion thereof is not exported, directly

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm'’s trademark usage guidelines at https:/www.arm.com/company/policies/trademarks.
Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NU.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https:/support.developer.arm.com

To provide feedback on the document, fill the following survey: https:/developer.arm.com/
documentation-feedback-survey.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 3 of 26

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 4 of 26

mailto:terms@arm.com

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Contents
bR Y0 Yo [1ot o o FOU R 6
L CONVENEIONS. .. e e ettt ettt ettt ettt ettt ettt 6
L2 USEIUI TESOUITES ..ottt e ettt ettt ettt ettt ettt e et et et e et et et et 7
L3 Ot N O AT ON e ettt ettt 7
2. FUNCLIONAL SAfELY...eeeeeeeeeteeeeeeeteetctcreeeteaeteseste e s ssessessessessesssessessessessessessesessessensessensessasessensens 8
Bo AT FUSA RTSeeeettteercreceercsessresressesssessesssessessesssessessesssessessssssessesssessessssssossesssessessesssossesssessossenss 10
B FUSA RTK RIS .ottt ettt ettt 12
3.2 FUSA BN RO COIUE .ottt ettt ettt 14
3.3 FUSA CM SIS0 e ettt ettt ettt ettt ettt 15
B FUSA € LIDIANY e et 16
3.0 FUSA RIS BV alUA IO ottt ettt et ettt ettt 16
4, RTOS-aWare DEDUZEING......ccveveeereeereieteenteesseestesessssessesessesessesessssessssessssessssessssessssssessesessesessesessesessssensass 21
AL FUINEE REAING....ceiiieeeeeeteeeeteesteete et et eee e saesessesessesesssesessesssesasesassessnsssansesansssessssessesessnsesssesansen 26

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 5 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
Introduction

1. Introduction

1.1 Conventions
The following subsections describe conventions used in Arm documents.

Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm® Glossary for more information: developer.arm.com/glossary.

Typographic conventions
Arm documentation uses typographical conventions to convey specific meaning.

Convention Use
italic Citations.
bold Interface elements, such as menu names.
Terms in descriptive lists, where appropriate.
monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline

A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.
For example:
MRC pl5, 0, <Rd>, <CRn>, <CRm>, <Opcode 2>
SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system failure or damage.

Warning

Requirements for the system. Not following these requirements might result in system failure or damage.

Danger

Requirements for the system. Not following these requirements will result in system failure or damage.

An important piece of information that needs your attention.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 6 of 26

https://developer.arm.com/glossary

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
Introduction

Convention Use

A useful tip that might make it easier, better or faster to perform a task.

% A reminder of something important that relates to the information you are reading.

Remember

1.2 Useful resources

This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

o Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

o Confidential documents are available to licensees only through the product package.

o Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
* guarantee the quality of its documents when used with any other PDF reader.

Hote Adobe PDF reader products can be downloaded at http:/www.adobe.com

1.3 Other information

See the Arm website for other relevant information.

e Arm® Developer.
e Arm® Documentation.
e Technical Support.

e Arm® Glossary.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 7 of 26

http://developer.arm.com/documentation
http://www.adobe.com
https://developer.arm.com/
https://developer.arm.com/documentation
http://www.arm.com/support/technical-support
https://developer.arm.com/glossary

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
Functional Safety

2. Functional Safety

Many products for such markets as household appliances, automotive, industrial and healthcare
have regulatory requirements to be certified against functional safety (FuSa) standards. For
example, IEC 61508 for electrical systems, 1ISO 26262 for the automotive industry, IEC62304 for
medical systems, and EN 50128 for railway applications.

Within the standards, there are multiple safety integrity levels (SIL) that specify formal methods
to be used during development for verifying that the application code, software components and
toolchains are safe for the intended use.

Figure 2-1: The software development V model

Verification &
Validation

System Design System testing Test automation

Access protection

(MPU, TrustZone, Safety requirements Uz;lil:::tmn Fault Injection
stack overflow) X

Static code Software architecture Eteention e tin Analysis of
analysis design s . timing behavior

Coding rules Software module Gt Test completeness
(MISRA) implementation Sl (Code coverage)

To ensure the best outcomes for our technology and customers, Arm plays an active role in the
development of international safety guidelines; for example, ISO 26262 and IEC 61508.

Arm products are designed “out of context” to satisfy the widest range of applications. We believe
that everyone in the integrated circuit (IC) supply chain has an important role to play in safety
certification, and applications must be certified in accordance with market-specific standards. Arm
is capable of supporting customers and manufacturers in their certification processes of Arm-based
devices.

The Arm Safety Ready portfolio is a collection of Arm products that have been through various
and rigorous levels of functional safety systematic flows and development. It combines IP, safety
features, tools, and robust methodologies to help reduce risk while fast-tracking the certification
phase of projects.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 8 of 26

https://www.arm.com/technologies/safety#c-92abe052-23c1-4e86-bc54-4d92115b17e1

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
Functional Safety

MDK tools for FuSa development

Arm Keil MDK equips software engineers with professional tools that support the V-model
development process and simplify creation, analysis and verification of complex embedded

applications.

MDK Features Description

Arm Compiler for MDK-Professional provides access to safety-qualified Arm C/C++ compiler and its supporting

Embedded FuSa documentation.

Static Code analysis and MDK provides native integration with third-party code verification tools.

MISRA checking

Code coverage MDK with ULINKpro enables non-intrusive code coverage on target hardware visa streaming instruction
trace.

Continuous integration MDK has a command line interface for test automation and can be uses with Continuous Integration (Cl)
tools such as Jenkins.

Simulation models MDK-Professional enables robust regression testing at function and module level using Arm Virtual
Hardware (AVH).

RTOS-aware debugging MDK provides full visibility into RTOS operation thus simplifying system debug and optimization.

Timing analysis Event Recorder provides status details of software components and includes time information. Event
Statistics show average, min and max execution times.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 9 of 26

https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded%20FuSa
https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded%20FuSa
https://developer.arm.com/documentation/101407/latest/Debugging/Debug-Windows-and-Dialogs/Code-Coverage
https://developer.arm.com/Tools%20and%20Software/ULINKpro
https://developer.arm.com/documentation/101407/latest/Command-Line
https://arm-software.github.io/AVH/main/overview/html/index.html
https://arm-software.github.io/AVH/main/overview/html/index.html

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
Arm FuSa RTS

3. Arm FuSa RTS

Arm FuSa RTS is a set of embedded software components qualified for use in the most safety-
critical applications in automotive, medical and industrial systems.

With FuSa RTS, developers receive a robust real-time operating system (RTOS), independent
processor abstraction layer and verified C library that are highly optimized for Cortex-M processors
by Arm architecture experts.

While being available as a separately licensable product, FuSa RTS perfectly integrates with Arm
Keil MDK and is using the safety-qualified Arm C/C++ compiler to significantly simplify system
design, development, validation and certification processes for safety applications.

Supported safety standards
Arm FuSa RTS is certified for the following safety standards:

e Automotive: 15026262, ASIL D
e Industrial: IEC61508, SIL 3

e Railway: EN50128, SIL 4

o Medical: IEC62304, Class C

FuSa RTS safety compliance is confirmed by the TUV Stid Certificate.

Supported devices

FuSa RTS fully utilizes advanced hardware features that Arm specifies for its processors. It provides
support for devices with the following Arm Cortex-M cores:

e Cortex-M0O/MO+

e Cortex-M3
e Cortex-M4
o Cortex-M7

FuSa RTS components
Arm FuSa RTS package contains following components:

e FuSa RTX RTOS: deterministic real-time operating system for Arm Cortex-M processors.

e FuSa Event Recorder: implements functionality to easily record events and collect execution
statistics in the application code.

e [FuSa CMSIS-Core: validated vendor-independent software interface to the processor resources.

e FuSa Clibrary: a subset of the C library functions suitable for developing safety-critical
embedded applications.

o Safety Package: documentation set explaining the usage of FuSa RTS in safety context.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 10 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
Arm FuSa RTS

Figure 3-1: FuSa RTS Components

User Application code

FuSa RTX RTOS

FuSa Software test library

Event [} (STL)
| Self-test code for
Recorder B

run-time verification

FuSa CMSIS-Core

(Arm-Core specific)

: (de pecific)

Arm Cortex-M processor

Process Isolation

FuSa RTS contains protection mechanisms that control access to system resources (such as
memory, peripherals, processor execution time). These process isolation capabilities prevent
undesired interference between software elements of different safety integrity levels and allow
building of mixed-criticality systems on a single-core microcontroller.

FuSa RTS Process isolation is achieved with the following features:

Feature Description

Spatial Spatial isolation is enforced by MPU Protected Zones that use processor's Memory Protection Unit (MPU) to shield access

Isolation to memory and peripherals. Access to RTOS objects and Kernel operations is additionally controlled with assigned Safety
Classes.

Temporal Temporal isolation is enabled with Thread Watchdog mechanisms that control the timing constraints in the system.

Isolation

Controlled Controlled system recovery provides control over system operation in case of a failure and enables blocking the execution

System of non-safety components or proceeding to a safety state.

Recovery

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 11 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en

Version 1.0
Arm FuSa RTS

Figure 3-2: FuSa RTX Process Isolation

Safety critical
functionality

Uncritical
functionality

critical actuators, graphics, non-safety SW
brakes components

I
I
I
I
Example: insulin pump, I Example: network,
I
I
I

FuSa RTS
RTOS, Event Recorder, C Run-Time Library

Arm Cortex-M processor

3.1 FuSa RTX RTOS

The use of a real-time operating system (RTOS) in a safety-critical system demands that the
RTOS component also undergoes rigorous verification. In cases when regulatory certification is

mandatory this also implies specific documentation and testing processes for the targeted safety
standards.

To enable and streamline the product safety certification, Arm provides FuSa RTX RTOS as part
of FuSa RTS package, that is qualified for use in automotive, industrial, railway and medical
applications:

e Itis a deterministic real-time operating system (RTOS) that reliably manages multiple application
threads with priority-based, pre-emptive scheduling.

o |t offers all services needed in complex real-time applications, such as threads, timers, memory
and object management, message exchange and others.

e The kernel is highly optimized for Cortex-M architecture and has multiple provisions that
naturally improve the reliability of an embedded application.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
Arm FuSa RTS

Figure 3-3: FuSa RTX RTOS Components

FuSa RTX RTOS

Strictly validated code

e MISRA Crules: RTX is written in C using C99 language extensions with MISRA C:2012
guidelines being applied to it.

e Safety compliance: FuSa RTX code has gone through stringent safety analysis and rigorous
testing. It is approved for use in applications with the most demanding safety integrity levels
(SIL). See FuSa RTS for the list of applicable safety standards.

Designed for engineering efficiency

e Small memory footprint: requires minimum amount of system memory, starting from 5 KB ROM

e Low-power mode: has tick-less operation mode for low power devices

Easy to configure and use

e CMSIS-pack support: FuSa RTX is provided as a CMSIS component and can be easily managed
in a uVision Run-Time Environment dialog.

e Configuration Wizard support: FuSa RTX provides a number of configuration parameters for
the kernel operation as well as for the RTX objects such as threads, mutex and semaphores.
Integrated support of MDK Configuration Wizard makes the parameter settings clear and
intuitive.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 13 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
Arm FuSa RTS

Figure 3-4: RTX RTOS Configuration Wizard Window

_] RTX_Configh

Boandd | Colapss 4 Heb | I FhowGnd

Opticn Value
Systemn Configuration

= Thread Configuration

+ Object specific Memicry allocstion rl
Default Thread Stack size [bytes] 236
Idle Thread Stack size [bytes] 236
Idle Thread TrustZone Module [dentifier 9]
Sfack overrun chqqi'ln:_; F
Stack usage watermark 3
Processor mode for Thread execution Unprivileged mode

w1 Tirner Conds guration
&1 Event Flags Configuration
i Mutex Configuration
& Semaphone Configuration

Reliable execution

e Time-deterministic interrupt execution: RTX utilizes the LpEx/sTEX instruction available on most
Cortex-M processors and therefore user interrupts are never disabled

Safe operation

o Separate stacks for ISR/RTOS and threads: the RTOS kernel executes in handler mode with
stack separated from user threads which avoids unexpected stack loads.

o Stack overflow checking: RTX implements a software stack overflow checking that traps stack
overruns.

e Runtime check of kernel objects: object identifiers are validated at run-time for type-
mismatches and are protected from inadvertently accesses by the user application.

Flexible memory management

e Object-specific memory pools: dedicated fixed-size memory blocks for each object type
avoids memory fragmentation during run-time and makes object creation and destruction time
deterministic.

o Static object memory allocation: the user application may rely on static memory for kernel
objects, which guarantees that the RTOS system can never run out of storage during run-time.

3.2 FuSa Event Recorder

Event Recorder provides an API (function calls) for event annotations in the application code. These
functions record events along with timestamps and additional information. The data is stored in the
event buffer located in the RAM of the target hardware.

The wVision debugger reads the content of the event buffer and displays it in the Event Recorder
window. The graphical display over time is available in the System Analyzer window. Other timing
and power data can be observed in the Event Statistics window.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 14 of 26

https://developer.arm.com/documentation/101407/latest/Debugging/Debug-Windows-and-Dialogs/Event-Recorder/Event-Recorder-Window
https://developer.arm.com/documentation/101407/latest/Debugging/Debug-Windows-and-Dialogs/Event-Recorder/Event-Recorder-Window
https://developer.arm.com/documentation/101407/latest/Debugging/Debug-Windows-and-Dialogs/Event-Recorder/Event-Statistics-Window

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en

Version 1.0
Arm FuSa RTS

Figure 3-5: Event Recorder Block Diagram

Debugger
Appllcatlon code Record Component Events Ern APL Op De—
. My Events Group r r ¥ I
Event AnrlOtatlons My Application : MyApp (0x00) — I v v
Unspecified Events F = F F
Ou01 « CoF F T F F
® 0x10 - Ox1F F r [F
Event Recorder | = oa-oar . . . SaiizeEne
- A " Component Viewer
Event Filter A _ Description
R W 0 anOpetions - [mcomponents Fing: .
Gt [TaneGed [Te | Propety Ve (*.sCvDj file
40 199006520 MyCo ReceveFailed -
Event Buffer 0 memm My TecaeCompiete [sst
42 199020430 MyCo BecerveFumled
43 199106520 MyCo SendComplete sivesd
“ 1991 08520 MyCo SencF aded
5 1m2MN MyCo SendComplete sizesd

Event Recorder Benefits

Visibility to the dynamic execution of an application at little (memory) cost.
Adding RTOS awareness to a development tool does not require complex DLL programming.

For Arm Cortex-M3/M4/M7/M33 processor based devices, Event Recorder functions will not
disable interrupts.

Adding printf re-targeting for devices without ITM, such as Arm Cortex-M0O/M0O+/M23.

Fast time-deterministic execution of event recorder functions with minimal code and timing
overhead.

No need for a debug or release build as the event annotations can remain in production code.
Saving the event data in local memory ensures fast recording.

Collecting the data from the on-chip memory is done using simple read commands. These
commands work on all Cortex-M processor based devices and require only JTAG or SWD
connectivity to the debug adapter.

Using the DWT Cycle Count register for creating time stamps reduces code overhead (available
on Arm Cortex-M3/M4/M7/M33M55/M85).

3.3 FuSa CMSIS-Core

CMSIS-Core implements the basic run-time system for a Cortex-M device and gives the user
access to the processor core and the device peripherals.

CMSIS-Core defines:

A Hardware Abstraction Layer (HAL) for Cortex-M processor registers with standardized
definitions for the SysTick, NVIC, System Control Block registers, MPU registers, FPU registers,
and core access functions.

System exception names to interface to system exceptions without having compatibility issues.

Methods to organize header files that makes it easy to learn new Cortex-M microcontroller
products and improve software portability. This includes naming conventions for device-specific
interrupts.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 15 of 26

https://arm-software.github.io/CMSIS_5/Core/html/index.html

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
Arm FuSa RTS

e Methods for system initialization to be used by each MCU vendor. For example, the
standardized Systemlnit() function is essential for configuring the clock system of the device.

e Intrinsic functions used to generate CPU instructions that are not supported by standard C
functions.

e Avariable to determine the system clock frequency which simplifies the setup the SysTick
timer.

3.4 FuSa C Library

The FuSa C library is a subset of the standard C library that consists of approximately 200
functions that have been specifically implemented and optimized for use in safety development.
The FuSa C library comes with:

« Certificate from TUV SUD and supports the same functional safety standards as Arm Compiler
for Embedded FuSa.

e Qualification Kit which contains the Safety Manual and Defect Report.

3.5 FuSa RTS Evaluation

Evaluation version of Arm FuSa RTS allows you to analyze the software components and
documentation provided in the FuSa RTS. The access channel and content packages are organized
in the same manner as for the commercial version.

Deliverables
The evaluation version of Arm FuSa RTS consists of the following deliverables:

o Software pack file

o Safety package

The evaluation content is slightly different from the one delivered with the commercial version. It is
based on the FuSa RTS for Cortex-M3, but the structure and components are very similar for other
cores. Only the low-level processor abstraction files are different. More details about the content
and installation are provided in sections below.

Software pack file

Arm FuSa RTS Evaluation software is provided as components in a CMSIS Software Pack that

has .pack file extension. The CMSIS pack format is supported by multiple IDEs, but the easiest way
is to use it with Arm Keil MDK.

Differences to the commercial version pack file

e FuSa Clibrary and header files are not included

e Example application is slightly modified to compile without FuSa C library

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 16 of 26

https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded%20FuSa#Components

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0

Arm FuSa RTS

e Evaluation version of safety manual is provided.

Installation
To install the FuSa RTS software pack in Keil MDK:

1. Verify that Keil MDK is installed on your PC.
2. Extract the .pack file from the downloaded .zip archive.

3. Double-click on the FuSa RTS Evaluation software pack file (.pack extension). Provide the
destination path where the pack will be installed. Click Next ». Alternatively you can open the
Pack Installer (typically available at c:\keil v5\Uv4\PackInstaller.exe)and there use the
menu item File - Import...

Figure 3-6: Pack Unzip: Welcome

Welcome to Keil Pack Unzip r m
Release 12420119 q K E | L

Thiz program installz the Software Pack:

ARM Fu5a_RT5_CM3 noMPU_Ewvaluation 1.0.1
Evaluation version of Armn Bun-Time Syztem for functional Safety on Caortes-kd 3 without MPU Support

Destination Falder

C:hkeil_wErNARMAPACKAARMMFUSa_RTS_CM3_noMPL_Evaluation1.0.1

k.eil Pack Unzip

<< Back

Cancel |

4. Read and accept licensing terms, then press Next %raquo; button.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 17 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en

Version 1.0
Arm FuSa RTS

Figure 3-7: Pack Unzip: License Agreement

License Agreement

Pleaze read the following license agreement carefully. CI rl I I KE“—

To continue with SETUP, vau must accept the terms of the Licenze Adreement. Ta accept the
agreement, click the check box below.

EMD USER LICEMSE AGREEMEMNT FOR ARM SOFTWARE DEVELOPMENT TOOLS

Thiz end uzer licenze agreement ['Licenze'] iz a legal agreement bebween vau [a single individual),
ar the company ar organization [a single legal entity] that pou represent and hawve the legal authority

to bind, and Arm relating to use of the Arm Tools. Am iz only willing to icenze the A Tools on
cohdition that you accept all of the termz of this Licensze. By clicking " Agree' or by installing or
atherwize wuzing the A Tools anddor ang Update thereta [az permitted by this License] you

indizate that you agree to be bound by all of the termz and conditions of thiz Licenze. [pou do not
agree to the termns of this License, mmowill MOT license the Arm Tools bo pou, you may not install or o,

[P | PR JESTRVE NP PO U N (S S

P PR | [RPRRpERpUSPRY | FAPRRPREY SRR | PR TSRO R [AP JOSVUVR I P

v | agree to all the terms of the preceding License Agreement

k.eil Pack Unzip

<< Back P et | Cancel I

5. The content of the software pack is extracted to the directory <Mbk Root>\aRM

\PACK\ARM\<PackName>\<PackVersion>, for example: c:\Keil v5\ARM\PACK\ARM
\FuSa RTS CM3 noMPU Evaluation\1.0.1\.

From this folder you can also access user and safety manual by clicking on SafetyManual.html
file. Its section “Using FuSa RTS” provides additional details on how to verify the package
integrity, add FuSa RTS components to a uVision project, add safety-qualified compiler, etc. It
also describes an example included with the FuSa RTS package.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en

Version 1.0
Arm FuSa RTS

Figure 3-8: FuSa RTS Documentation

FuSa RTS

¥ FuSa Run-Time System (RTS)

Pk Product Overnview

P Functional S5a

FuSa CMSIS-Core(M) | Fusa RTX RTOS | FuSa Evi

Usage and Description

Using FuSa RTS
fety

Release History The FuSa RTS is based on well-estat

Using FuSa RTS The table below lists the FuSa RTS s

Installation

Verifying Release Integrity Component Descrip

Project Setup FuSa C Library Subset of
» Arm FuSa Compiler Setup FuSa CMSIS-Core(M]) | Low-level

Application Example FuSa Event Recorder | Allow to
» Support and Maintenance FuSa RTX RTOS Time-det

Please refer to usage of individual R

Installation

Arm FnSa RTS ic dAelivarad ac mrMGTC

6. The FuSa RTS Evaluation pack can be also seen in the Pack Installer under Generic Packs as for

example shown

on the figure below:

Figure 3-9: FuSa RTS Documentation

ﬁ Packs r Examples

]

#-ARM:mbedClient
f-ARMEmbedTLS

L T B,

Example applicati

&% Upto date | ARM mbed Client for Cortex-M devices
& Upto date || ARM mbed Cryptographic and S5L/TLS library for Cortex-M devices

S TT) B T - D S

Pack Action Description
[#-Device Specific 334 Packs All devices selected i
E-Generic 46 Packs
[#-Alibaba:AliOSThings Install ANOS Things software pack
[--Arm-Packs:PKCS11 Install QASIS PKCS #11 Cryptographic Token Interface
[#-Arm-Packs:Unity 4 Install Unit Testing for C (especially Embedded Software)
[+ -ARM:zAMP & Up to date | Software components for inter processor communication (Asymmetric Multi Processing AMP)
[H-ARM:CMSIS & Up to date CIMSIS (Cortex Microcontroller Software Interface Standard)
[ARM: CMSIS-Driver & Up to date CIMSIS Drivers for external devices
[+ ARM:CMSIS-Driver_Validation &% |nstall CMSIS-Driver Validation
[#-ARM:CMSI5-FreeRTOS ! Up to date || Bundle of FreeRTOS for Cortex-M and Cortex-A
[+-ARM: CMSI5-RTOS Validation &¥ Install CIMSIS-RTOS Validation
F—J-- R a_R P alua 4> Offline Evaluation version of Arm Run-Time System for functional Safety on Cortex-M3 without MPU Support
10,1 (2018-11-13) Rermove Evaluation version of Arm Run-Time System for functional 5afety on Cortex-M3 without MPU Support
E
[

on

The Blinky application provided in the evaluation FuSa RTS pack has been slightly modified to work

without the FuSa C

library.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 19 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
Arm FuSa RTS

o By default, the example is configured to use Arm safety-qualified compiler 6.6.2
(same as used for testing and certifying Arm FuSa RTS).

e |tisalso possible to switch to a default Arm Compiler 6.xx provided with Keil
MDK and compile the example. The warning .\Flash\Blinky.axf: Warning:
L6092W: Section startup armcm3.o(.gnu.linkonce.common) has deprecated
prefix '.gnu.linkonce'. Support for legacy common sections shall be
removed in a future version of the linker. Please use COMDAT groups as
a replacement. Shall be ignored.

Safety Package

FuSa RTS Evaluation Safety Package is provided in form of a .zip file that can be simply extracted. It
contains following documentation:

o FuSa RTS Qualification Package Overview - lists the content of the Safety Package in
commercial version.

e [FuSa RTS Evaluation safety manual - corresponds to the manual included in the FuSa RTS
software pack

e License terms for FuSa RTS Safety Package are provided in /license terms/ directory.

Differences to the commercial version safety package

e TUV Siid documents are available only with the commercial version. But they are referenced in
the FuSa RTS Qualification Package Overview document and certificates can be verified in TUV
SUd certificate explorer.

o Safety manual is provided in evaluation version with following differences

o Details of some safety requirements are not fully included. However, the brief description
for all safety requirements is present.

o List of known issues for FuSa C library is not included

Defect Report

The defect report is an HTML-based document that lists issues discovered for already released
FuSa RTS revisions. It is not included in the evaluation version.

The issues known at the moment of the release can be found in the Release History section of the
Safety Manual.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 20 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
RTOS-aware Debugging

4. RTOS-aware Debugging

Using a real-time operating system (RTOS), significantly simplifies development and maintenance of
complex embedded applications with multiple parallel tasks. However, due to increased complexity
and the use of 3rd-party software components, it can become challenging to analyze the operation
of RTOS-based programs using classic code debug techniques.

Keil RTX5 integrates multiple mechanisms that provide full visibility into RTOS operation and thus
speed up debugging of potential problems and assist in program optimization.

RTX RTOS Component Viewer Window
Keil RTX5 supports Component Viewer and provides all key information about current RTOS state.

Detailed status information

RTX5's system configuration, its operation status and details about all allocated objects are
displayed in the RTX RTOS window in uVision. The data is updated at run-time and is easy to
browse, understand and analyze.

Always available

The RTX RTOS view is available when RTX5 is used in the project and doesn't require any special
configuration. It works with all Cortex-M targets and with any debug adapter.

Stack usage analysis

Application developers can observe in real-time the actual stack usage for individual threads. The
stack watermarking feature even shows the current maximum stack usage. This allows to optimize
the RAM usage and avoid stack overflows.

Object memory usage counters

The maximum memory usage for each RTX5 object is displayed which enables fine-tuning of
memory resources.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 21 of 26

https://developer.arm.com/documentation/101407/0538/Debugging/Debug-Windows-and-Dialogs/Component-Viewer

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
RTOS-aware Debugging

Figure 4-1: RTX RTOS Component Viewer Window

RTX RTOS a B
Property Yalue
= % CE 5
¥ Kernel ID RTX ¥5.5.1
¥ Kernel State oskernelRunning
¥ Kernel Tick Count 201385
¥ Kernel Tick Frequency 1000
¥ Round Robin Tick Count 0
¥ Round Robin Timeout 5
¥ Global Dynamic Memoary Base: (oc20000000, Size: 4096, ...
W Stack Owerrun Check Enabled
W Stack Usage Watermark Enabled
W Default Thread Stack Size 256
W |5R FIFO Queue Size: 18, Usec: 0
=% Threads

% id: 0x200012D0 "osRixldleThread" osThreadReady, osPriorityldl...
“t% id: 0x20001314 "osRtxTimerThread” | osThreadBlocked, osPriority...

-9 id: (20000008 "app_tnain" osThreadRunning, osPriority...
¥ State osThreadRunning
¥ Pricrity osPriorityMaormal
¥ Attributes osThreadDetached
= *%3 Stack Used: 9% [118], Mawx: 24% [288]
¥ Lzed e
W Max 232
¥ Top (x200014D2
W Current Cre2000 1864
¥ Limit Ox20001628
¥ Size 1200
¥ Flags CreDDO00000

M Mutexes
4 Meszage Cueues

=l

Event Recorder Support
RTX5 is annotated with more than 170 events for use with the Event Recorder.

The System Analyzer view in uVision graphically displays thread operation over time.

Event details which include accurate timestamps are provided in the Event Recorder window. You
can filter the events to capture and display only the target events of interest.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 22 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
RTOS-aware Debugging

Figure 4-2: RTX RTOS Event Recorder Window

Enable |7 E H W Mark: All Operations Stopped- Missed 10 Recc
Event Tirne (zec) Component Event Property Value
16111 |13.50823700 FT¥ Thread |ThreadPreempted |[Ready] - thread_id=0x2000194C -

16112 |13.5082447 BT Thread | Thread5Switched [Running] - thread_id= 020001902

16113 | 13.5082727 FTx Thread | ThreadBlocked [Blocked] - thread_id=0me2 0001908, timeout=3
16114 | 13.50828200 RT¥ Thread | ThreadSwitched [Funning] - thread_id=0x2000194C

16115 | 13.51022581 FTx Thread | ThreadUnblocked |[Ready] - thread_id=0x20001820, ret_val=o0s0K
16116 [13.51023664 RTX Thread |ThreadPreempted |[Ready] - thread_id=0x2000194C

16117 113.51024381 RT¥ Thread | ThreadSwitched [Running] - thread_id=Cx20001220

16118 [13.51026033 RTX Thread |ThreadUnblocked |[Ready] - thread_id=0x200018C4, ret_val=1 _T
16119 |13.51027052 FTx Thread | ThreadPreempted |[Ready] - thread_id=>0x20001220
16120 [13.51027769 FTX Thread | ThreadSwitched [Running] - thread_id=0:200012C4

16121 [13.51033726 EvStat Stopiwvil) v1=51 v2=50

16122 [13.51034426 EwStat StartAn(0] vi=1w2=11

18123 13.51035919 RT¥ Thread | ThreadBlocked [Blocked] - thread_id=0w200018C4, timeout=-1

16124 [13.51036829 FTX Thread | ThreadSwitched [Running] - thread_id=0:20001280

16125 |13.51038236 RT¥ Thread | ThreadBlocked [Blocked] - thread_id=0e2 0001880, timeout=51 .
T v

The logging functionality enables post-execution analysis and test automation.
RTX5 documentation explains how to add Event Recorder visibility in RTX RTOS.

RTOS Thread Statistics

The Event Statistics for RTX5 threads becomes automatically available in uVision when Event
Recorder is enabled.

At run-time, it displays how many times each thread has been put in a particular state as well as
minimum, maximum and average thread execution times in each state.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 23 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
RTOS-aware Debugging

Figure 4-3: RTX RTOS Event Statistics Window

Event Statistics B
Source Count Filter Enable / Execution Timing
E-RTX5 RTOS =]
= Thread Events
[=--thrBUT
Inactive 0 000%] min=0s, max=0s, avg=0s
Ready 1658 [0.24%] min="18.095 us, max=102.44 ms, avg=061.782 us
Funning 1658 [2.08%] min=13.167 us, max=33.797 ms, awg=20.334 us
Blocked 829 (+1) | [99.68%) min=18.270 ms, max=42.193 5, avg=30.235 ms
Mot-running 0 [0.00%] min=0s, max="0s, avg="0s
thrLED 830 Running: [0.18%] min=24.048 us, max=62.26 ms, avg=22.241 us
thrabDc 3467 Running: [0.57%] min=28.524 us, max=242.26 ms, avg=28.883 us
app_main 3 Running: [0.00%] min=45.286 us, max=418.19 us, avg=23.638 us
osRbddleThread 8770 (+1) |Running: [98.20%] min=243.32 us, max=41.822 5, avg=4.7688 ms —
osRtxTimerThread |1 Running: [0.00%] min=30.762 us, max=30.762 us, awvg=30.762 us
4 | | 3

RTX5 Event Statistics can be saved in a log file for analysis and post-processing as part of a test
automation framework.

Thread Events in System Analyzer

LVision's System Analyzer window gives developers a graphical view on the program operation
over time at it displays the status of each thread. Use the cursor and markers to execute in-depth
timing analysis directly in the window.

When trace is used, all interrupts are displayed in the System Analyzer. This provides a time-
synchronized view on the RTOS-related exceptions such as SysTick, SVCall and others, but also any
interrupts used by the application.

Finally, voltage and current consumption values are also available in the view when using a
ULINKplus debug adapter.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 24 of 26

Arm Functional Safety Run-Time System Application Note

Figure 4-4: RTX RTOS Threads in System Analyzer

Document ID: KAN345 1.0 en

Version 1.0
RTOS-aware Debugging

System Analyzer a
Hoaa| e[rier ks : w[ane
[» System | -
[Consumption |
[» Exceptions Thread Mode [Retum [Thread Mode
Event Recorder Mhred ThiThieads] Thre T ThieadSuiched | m
4 RTX5 RTOS
4 Thread Events osRtxldle Thr thrB_ GhrBU wthr 3 <thrLED ((x200018c4) [Running] e th[Bunning s Rbeldie Threar
app_main ((x2000183c) [0.00% [[Elocked]
osRixldle Thread ((x2000194c) [98.80%] IEEEG_— MRz, [
osRtx Timer Thread ((20001550) [0.00%] l'm‘
thrADC (20001908} [0.57% |[Biocked]
__ [T
. 0000000000] |lml
Grid: 20us 17.361s 173615 17.357s =
Kl l 3]

3rd-Party Tools Support

Keil RTX5 is supported by Percepio’s Tracealyzer that visualizes the runtime behavior of embedded
software with over 25 graphical views and complements the debugger’s low-level perspective with

the big picture.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 26

Arm Functional Safety Run-Time System Application Note Document ID: KAN345_1.0_en
Version 1.0
Further Reading

Appendix A Further Reading

Here is a list of additional resources regarding Arm FuSa RTS and functional safety in general.

e Blog: Software building blocks for faster functional safety certification

e Blog: Process isolation with Arm FuSa runtime system

e White Paper: Components and Tools for Functional Safety Applications
e Web Page: Safety

e Web Page: Arm FuSa RTS

e Web page: Arm Compiler for Embedded FuSa

e Web Page: Keil MDK

e Web Page: Keil RTX5 RTOS

e Application Note: KAN307 - Test automation with MDK and ULINKplus
e Application Note: KAN326 - Using X-CUBE-STL with Arm FuSa RTS

e Application Note: KAN336 - TrafficLight: Arm FuSa RTS process isolation example

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential
Page 26 of 26

https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/software-building-blocks-for-functional-safety
https://community.arm.com/arm-community-blogs/b/tools-software-ides-blog/posts/process-isolation-with-fusa-rts
https://www.arm.com/resources/white-paper/fusa-sw-tools-components
https://www.arm.com/technologies/safety
https://developer.arm.com/Tools%20and%20Software/Keil%20MDK/FuSa%20Run-Time%20System
https://developer.arm.com/Tools%20and%20Software/Arm%20Compiler%20for%20Embedded%20FuSa
https://developer.arm.com/en/dev2/Tools%20and%20Software/Keil%20MDK
https://developer.arm.com/en/dev2/Tools%20and%20Software/Keil%20MDK/RTX5%20RTOS
https://developer.arm.com/documentation/kan307/latest
https://developer.arm.com/documentation/kan326/latest
https://developer.arm.com/documentation/kan336/latest

	Arm Functional Safety Run-Time System Application Note
	Contents
	1. Introduction
	1.1 Conventions
	1.2 Useful resources
	1.3 Other information

	2. Functional Safety
	3. Arm FuSa RTS
	3.1 FuSa RTX RTOS
	3.2 FuSa Event Recorder
	3.3 FuSa CMSIS-Core
	3.4 FuSa C Library
	3.5 FuSa RTS Evaluation

	4. RTOS-aware Debugging
	A. Further Reading

