
Arm® CoreLink™ MMU-600AE System Memory
Management Unit
Revision: r1p0

Technical Reference Manual
Non-Confidential
Copyright © 2018–2020, 2022 Arm Limited (or its
affiliates).
All rights reserved.

Issue 02
101412_0100_02_en

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Arm® CoreLink™ MMU-600AE System Memory Management Unit
Technical Reference Manual

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document history

Issue Date Confidentiality Change

0000-00 14 December 2018 Confidential First release for r0p0 BET.

0000-01 7 March 2019 Non-Confidential First release for r0p0 EAC.

0100-00 31 July 2020 Non-Confidential First release for r1p0 REL.

0100-01 18 August 2020 Non-Confidential Second release for r1p0 REL.

0100-02 15 November 2022 Non-Confidential Third release for r1p0 REL.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 183

https://www.arm.com/company/policies/trademarks

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Feedback

Arm welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com.

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

This document includes language that can be offensive. We will replace this language in a future
issue of this document.

To report offensive language in this document, email terms@arm.com.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 183

https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey
mailto:terms@arm.com

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02
Contents

Contents

1. Introduction..10
1.1 Product revision status..10
1.2 Intended audience..10
1.3 Conventions... 10
1.4 Useful resources... 12

2. Overview of the System Memory Management Unit... 14
2.1 About the MMU-600AE...14
2.2 Compliance...15
2.2.1 Arm architecture..15
2.2.2 SMMU architecture.. 15
2.2.3 AMBA Distributed Translation Interface protocol... 15
2.2.4 AMBA ACE5-Lite and AMBA AXI5 protocol... 15
2.2.5 AMBA APB protocol.. 16
2.2.6 AMBA Interface Parity...16
2.3 Features...16
2.4 Interfaces.. 18
2.5 Configurable options..18
2.6 Product documentation and design flow..19
2.6.1 Documentation.. 19
2.6.2 Design flow.. 20
2.7 Product revisions.. 21
2.8 Functional Safety (FuSa)..22

3. Functional description...23
3.1 About the functions...23
3.1.1 Translation Buffer Unit...24
3.1.2 Translation Control Unit.. 26
3.1.3 DTI interconnect... 29
3.2 Interfaces.. 30
3.2.1 TCU interfaces...30
3.2.2 TBU interfaces...33
3.2.3 DTI interconnect interfaces..36

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02
Contents

3.3 Operation..39
3.3.1 DTI overview..39
3.3.2 Performance Monitoring Unit.. 41
3.3.3 TBU direct indexing and MTLB partitioning...46
3.3.4 Reliability, Availability, and Serviceability...48
3.3.5 Quality of Service... 48
3.3.6 Distributed Virtual Memory messages...49
3.3.7 TCU transaction handling..50
3.3.8 TCU prefetch..50
3.3.9 Error responses..52
3.3.10 Conversion between ACE-Lite and Armv8 attributes... 53
3.3.11 AXI USER bits defined by the MMU-600AE TBU... 56
3.4 Constraints and limitations of use..57
3.4.1 SMMUv3 support... 57
3.4.2 AMBA support...60

4. Programmer's model..64
4.1 About the programmer's model..64
4.2 SMMU architectural registers..65
4.3 MMU-600AE memory map... 69
4.4 Register summary... 70
4.5 TCU component and peripheral ID registers...73
4.6 TCU PMU component and peripheral ID registers.. 74
4.7 TCU microarchitectural registers.. 75
4.7.1 TCU_CTRL.. 75
4.7.2 TCU_QOS..77
4.7.3 TCU_CFG.. 78
4.7.4 TCU_STATUS... 79
4.7.5 TCU_SCR...80
4.7.6 TCU_NODE_CTRLn..81
4.7.7 TCU_NODE_STATUSn...83
4.8 TCU RAS registers..84
4.8.1 TCU_ERRFR..84
4.8.2 TCU_ERRCTLR...85
4.8.3 TCU_ERRSTATUS..86
4.8.4 TCU_ERRGEN.. 87

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02
Contents

4.9 TBU component and peripheral ID registers...89
4.10 TBU PMU component and peripheral ID registers..90
4.11 TBU microarchitectural registers.. 91
4.11.1 TBU_CTRL..91
4.11.2 TBU_SCR.. 92
4.12 TBU RAS registers... 93
4.12.1 TBU_ERRFR... 93
4.12.2 TBU_ERRCTLR.. 94
4.12.3 TBU_ERRSTATUS... 94
4.12.4 TBU_ERRGEN..96

5. Functional Safety..98
5.1 Overview...98
5.1.1 The MMU-600AE Safety Mechanisms..98
5.2 FuSa I/Os... 101
5.2.1 Non-architected FuSa ports...101
5.2.2 Q-Channel FuSa ports...103
5.2.3 AMBA interface FuSa ports... 103
5.3 Clocks and resets...103
5.4 DFT protection... 105
5.4.1 MBIST..105
5.4.2 ATPG Scan... 105
5.4.3 LBIST..106
5.5 Fault Management Unit..106
5.5.1 Error signaling to the FMU..107
5.5.2 Error signaling from the FMU... 108
5.5.3 Error Record table.. 109
5.5.4 Safety Mechanism table..110
5.5.5 Software interaction...114
5.5.6 Lock and key mechanism..116
5.5.7 Ping mechanism.. 117
5.5.8 Correctable Error enable.. 119
5.5.9 Programmer's View.. 120
5.6 Lock-step protection..131
5.6.1 Comparators...132
5.6.2 Non-resettable flops.. 133

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02
Contents

5.6.3 Reset.. 133
5.6.4 Error injection..133
5.7 RAM protection..134
5.7.1 RAM fault correction... 135
5.7.2 RAM fault reporting...135
5.7.3 RAM fault control...136
5.7.4 RAM fault severity... 136
5.7.5 Address protection... 136
5.8 External interface protection...137
5.8.1 ACE-Lite interface parity protection..139
5.8.2 AXI4-Stream interface parity protection...139
5.8.3 APB interface parity protection.. 140
5.8.4 F-Channel... 140
5.8.5 Interrupt output protection..143
5.8.6 Tie-off input protection...143
5.8.7 Interfacing to unsafe interfaces.. 143
5.9 Integrating the TCU, TBU, LPD, PCIe ATS, and DTI AXI4-Stream interconnect..........................144
5.10 Q-Channel protection...145
5.10.1 Q-Channel signaling.. 147
5.10.2 Q-Channel acceptance..148
5.10.3 Q-Channel denial... 148
5.10.4 _chk signal timing...148
5.10.5 Transient faults..149
5.10.6 Stuck-at faults... 151
5.10.7 Disabling Q-Channel Safety Mechanisms.. 152
5.11 Systematic fault watchdog protection..152

A. Signal descriptions...153
A.1 Clock and reset signals...153
A.2 TCU QTW/DVM interface signals...153
A.3 TCU programming interface signals.. 155
A.4 TCU SYSCO interface signals... 156
A.5 TCU PMU snapshot interface signals...156
A.6 TCU LPI_PD interface signals...157
A.7 TCU LPI_CG interface signals...157
A.8 TCU DTI interface signals..157

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02
Contents

A.9 TCU interrupt signals..158
A.10 TCU event interface signal... 159
A.11 TCU tie-off signals.. 161
A.12 TCU and TBU test and debug signals..161
A.13 TBU TBS interface signals.. 162
A.14 TBU TBM interface signals...164
A.15 TBU PMU snapshot interface signals...166
A.16 TBU LPI_PD interface signals...166
A.17 TBU LPI_CG interface signals.. 167
A.18 TBU DTI interface signals... 167
A.19 TBU interrupt signals... 168
A.20 TBU tie-off signals.. 168
A.21 DTI interconnect switch signals...170
A.22 DTI interconnect sizer signals.. 171
A.23 DTI interconnect register slice signals..173

B. Software initialization examples.. 175
B.1 Initializing the SMMU... 175
B.1.1 Allocating the Command queue... 175
B.1.2 Allocating the Event queue... 176
B.1.3 Configuring the Stream table.. 176
B.1.4 Initializing the Command queue... 177
B.1.5 Initializing the Event queue... 177
B.1.6 Invalidating TLBs and configuration caches... 177
B.1.7 Creating a basic Context Descriptor... 178
B.1.8 Creating a Stream Table Entry.. 179
B.2 Enabling the SMMU..180

C. Revisions.. 181
C.1 Revisions.. 181

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Introduction

1. Introduction

1.1 Product revision status

The rxpy identifier indicates the revision status of the product described in this manual, for
example, r1p2, where:

rx Identifies the major revision of the product, for example, r1.
py Identifies the minor revision or modification status of the product, for

example, p2.

1.2 Intended audience

This book is written for system designers, system integrators, and programmers who are designing
or programming a System on Chip (SoC) that uses the MMU-600AE.

1.3 Conventions
The following subsections describe conventions used in Arm documents.

Glossary
The Arm® Glossary is a list of terms used in Arm documentation, together with definitions for
those terms. The Arm Glossary does not contain terms that are industry standard unless the Arm
meaning differs from the generally accepted meaning.

See the Arm Glossary for more information: developer.arm.com/glossary.

Convention Use

italic Citations.

bold Terms in descriptive lists, where appropriate.

monospace Text that you can enter at the keyboard, such as commands, file and program names, and source code.

monospace underline A permitted abbreviation for a command or option. You can enter the underlined text instead of the full
command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code fragments.

For example:

MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 183

https://developer.arm.com/glossary

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Introduction

Convention Use
SMALL CAPITALS Terms that have specific technical meanings as defined in the Arm® Glossary. For example,

IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and UNPREDICTABLE.

Recommendations. Not following these recommendations might lead to system
failure or damage.

Requirements for the system. Not following these requirements might result in
system failure or damage.

Requirements for the system. Not following these requirements will result in system
failure or damage.

An important piece of information that needs your attention.

A useful tip that might make it easier, better or faster to perform a task.

A reminder of something important that relates to the information you are reading.

Timing diagrams
The following figure explains the components used in timing diagrams. Variations, when they occur,
have clear labels. You must not assume any timing information that is not explicit in the diagrams.

Shaded bus and signal areas are undefined, so the bus or signal can assume any value within the
shaded area at that time. The actual level is unimportant and does not affect normal operation.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Introduction

Figure 1-1: Key to timing diagram conventions

Signals
The signal conventions are:

Signal level
The level of an asserted signal depends on whether the signal is active-HIGH or active-LOW.
Asserted means:

• HIGH for active-HIGH signals.

• LOW for active-LOW signals.

Lowercase n
At the start or end of a signal name, n denotes an active-LOW signal.

1.4 Useful resources
This document contains information that is specific to this product. See the following resources for
other useful information.

Access to Arm documents depends on their confidentiality:

• Non-Confidential documents are available at developer.arm.com/documentation. Each
document link in the following tables goes to the online version of the document.

• Confidential documents are available to licensees only through the product package.

Table 1-2: Arm publications

Document name Document ID Licensee
only

Arm® CoreLink™ MMU-600AE System Memory Management Unit Configuration and Integration
Manual

101413 Y

Arm® CoreLink™ MMU-600AE System Memory Management Unit Safety Manual 101414 Y

Arm® CoreLink™ MMU-600AE System Memory Management Unit Development Interface Report 101415 Y

Arm® CoreLink™ MMU-600AE System Memory Management Unit FMEDA Report PJDOC-1779577084-12336 Y

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 183

http://developer.arm.com/documentation

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Introduction

Document name Document ID Licensee
only

Arm® CoreLink™ MMU-600AE System Memory Management Unit Dependent Failure Analysis
Report

PJDOC-1779577084-12315 Y

Arm® CoreLink™ LPD‑500 Low Power Distributor Technical Reference Manual 100361 N

Arm® CoreLink™ ADB‑400 AMBA® Domain Bridge User Guide DUI 0615 Y

Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0, and version 3.1

IHI 0070 N

Arm® Architecture Reference Manual, Armv8, for Armv8‑A architecture profile DDI 0487 N

AMBA® DTI Protocol Specification IHI 0088E N

AMBA® APB Protocol Specification IHI 0024 N

AMBA® AXI and ACE Protocol Specification IHI 0022 N

AMBA® 4 AXI4‑Stream Protocol Specification IHI 0051 N

AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces IHI 0068 N

Arm® Server Base System Architecture 7.0 Platform Design Document DEN 0029 N

Arm® Architecture Reference Manual Supplement Reliability, Availability, and Serviceability (RAS),
for Armv8‑A

DDI 0587C.b N

AMBA® Interface Parity Specification AHB, APB and AXI4‑Stream AES 0010 N

Arm tests its PDFs only in Adobe Acrobat and Acrobat Reader. Arm cannot
guarantee the quality of its documents when used with any other PDF reader.

Adobe PDF reader products can be downloaded at http://www.adobe.com

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 183

https://developer.arm.com/documentation/100361/latest
https://developer.arm.com/documentation/ihi0070/b
https://developer.arm.com/documentation/ihi0070/b
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ihi0088/latest
https://developer.arm.com/documentation/ihi0024/latest
https://developer.arm.com/documentation/ihi0022/fb
https://developer.arm.com/documentation/ihi0051/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/den0029/f/
https://developer.arm.com/documentation/ddi0587/latest
https://developer.arm.com/documentation/ddi0587/latest
http://www.adobe.com

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Overview of the System Memory Management Unit

2. Overview of the System Memory
Management Unit

This chapter provides an overview of the MMU-600AE.

2.1 About the MMU-600AE
The MMU-600AE is a Functional Safety (FuSa) variant of the MMU-600 System-level Memory
Management Unit (SMMU) that translates an input address to an output address. This translation is
based on address mapping and memory attribute information that is available in the MMU-600AE
internal registers and translation tables.

The MMU-600AE implements the Arm® SMMU architecture version 3.1, SMMUv3.1, as the
Arm® System Memory Management Unit Architecture Specification, SMMU architecture version 3.0 and
version 3.1 defines.

An address translation from an input address to an output address is described as a stage of
address translation. The MMU-600AE can perform:

• Stage 1 translations that translate an input virtual address (VA) to an output physical address (PA)
or intermediate physical address (IPA).

• Stage 2 translations that translate an input IPA to an output PA.

• Combined stage 1 and stage 2 translations that translate an input VA to an IPA, and then
translate that IPA to an output PA. The MMU-600AE performs translation table walks for each
stage of the translation.

In addition to translating an input address to an output address, a stage of address translation
also defines the memory attributes of the output address. With a two-stage translation, the stage
2 translation can modify the attributes that the stage 1 translation defines. A stage of address
translation can be disabled or bypassed, and the MMU-600AE can define memory attributes for
disabled and bypassed stages of translation.

The MMU-600AE uses inputs from the requesting master to identify a context. Configuration
tables in memory define how the MMU-600AE is to translate each context, such as which
translation tables to use.

The MMU-600AE can cache the result of a translation table lookup in a Translation Lookaside Buffer
(TLB). It can also cache configuration tables in a configuration cache.

The MMU-600AE contains the following key components:

• Translation Buffer Units (TBUs) that use a TLB to cache translation tables.

• A Translation Control Unit (TCU) that controls and manages address translations.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Overview of the System Memory Management Unit

• Distributed Translation Interface (DTI) interconnect components that connect multiple TBUs to
the TCU.

2.2 Compliance
The MMU-600AE complies with, or implements, the specifications that this section describes.
This Technical Reference Manual (TRM) complements architecture reference manuals, architecture
specifications, protocol specifications, and relevant external standards. It does not duplicate
information from these sources.

2.2.1 Arm architecture

The MMU-600AE implements parts of the Armv8 Virtual Memory System Architecture (VMSA),
as the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile defines. The
SMMUv3 architecture describes the parts of VMSA that apply to the MMU-600AE.

2.2.2 SMMU architecture

The MMU-600AE implements the SMMUv3.1 architecture, as the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture version 3.0 and version 3.1 defines.

Related information
SMMUv3 support on page 57

2.2.3 AMBA Distributed Translation Interface protocol

The MMU-600AE implements the Distributed Translation Interface (DTI) protocol, as the AMBA®

DTI Protocol Specification defines.

The DTI interfaces use an AXI4‑Stream interface, as the AMBA® AXI‑Stream Protocol Specification
defines.

Related information
DTI overview on page 39

2.2.4 AMBA ACE5-Lite and AMBA AXI5 protocol

The MMU-600AE complies with the AMBA® ACE5‑Lite protocol.

For more information, see the Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AXI5,
ACE and ACE5.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 183

https://developer.arm.com/documentation/ihi0088/latest
https://developer.arm.com/documentation/ihi0088/latest
https://developer.arm.com/documentation/ihi0051/latest

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Overview of the System Memory Management Unit

Related information
AMBA support on page 60

2.2.5 AMBA APB protocol

The MMU-600AE complies with the AMBA APB4 protocol, as the AMBA® APB Protocol
Specification defines.

2.2.6 AMBA Interface Parity

The MMU-600AE complies with the AMBA Interface Parity Specification, as the AMBA® APB
Protocol Specification defines.

2.3 Features
The MMU-600AE provides the following features:

• Compliance with the SMMUv3.1 architecture:

◦ Support for stage 1 translation, stage 2 translation, and stage 1 followed by stage 2
translation

◦ Support for Armv8 AArch32 and AArch64 translation table formats

◦ Support for 4KB, 16KB, and 64KB granule sizes in AArch64 format

◦ Support for PCI Express (PCIe) integration, including Address Translation Services (ATS) and
Process Address Space IDs (PASIDs)

◦ Support for Page Request Interface (PRI), as SMMUv3 defines. PRI is an optional PCIe ATS
extension that enables support for unpinned memory in PCIe.

◦ Support for ACE5‑Lite atomic transactions in the TBU

◦ Masters can be stalled while a processor handles translation faults, enabling software
support for demand paging

◦ Configuration tables in memory can support millions of active translation contexts

◦ Queues in memory perform MMU-600AE management. There is no requirement to stall a
processor when it accesses the MMU-600AE.

◦ Support for Generic Interrupt Controller (GIC) integration, with Message Signaled Interrupts
(MSIs) supported for common interrupt types

◦ A Performance Monitoring Unit (PMU) in each TBU and TCU that enables MMU-600AE
performance to be investigated

◦ Reliability, Serviceability, and Availability (RAS) features for cache corruption detection and
correction

• Support for AMBA® interfaces, including:

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 183

https://developer.arm.com/documentation/ihi0024/latest
https://developer.arm.com/documentation/ihi0024/latest

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Overview of the System Memory Management Unit

◦ ACE5‑Lite TBU transaction interfaces that support cache stash transactions, deallocating
transactions, and cache maintenance

◦ Option to disable cache maintenance operations on a TBU, a sideband channel protection
feature

◦ An architected AXI5 extension that communicates per‑transaction translation stream
information

◦ An ACE5‑Lite+Distributed Virtual Memory (DVM) TCU table walk interface that enables
Armv8.2 processors to perform shared TLB invalidate operations without accessing the
MMU-600AE directly

◦ An ACE5 Low-Power extension that enables the TCU to subscribe to DVM TLB invalidate
requests on powerup and powerdown without reprogramming the DTI interconnect

◦ AMBA® DTI communication between the TCU and TBUs, enabling masters to request
translations and implement TBU functionality internally

◦ Support for the AMBA® Low‑Power Interface (LPI) Q‑Channel so that standard controllers
can control power and clock gating

◦ AXI5 WAKEUP signaling on all interfaces, including DTI and APB interfaces

• Support for flexible integration:

◦ You can place a configurable number of TBUs close to the masters being translated

◦ Communication between TBU and TCU over AXI4‑Stream is supported using the supplied
DTI interconnect components, or any other AXI4‑Stream interconnect

◦ DTI interconnect components support hierarchical topologies and control the tradeoff
between the number of wires and the DTI bandwidth

• Support for high‑performance translation:

◦ Scalable configurable micro TLB and Main TLB (MTLB) in the TBU can reduce the number of
translation requests to the TCU

◦ TBU direct indexing and MTLB partitioning enable the use of MTLB entries to be managed
outside the TBU, improving real‑time translation performance

◦ Optimization enables storage of all architecturally‑defined page and block sizes, including
contiguous page and block entries, as a single entry in the TBU and TCU TLBs

◦ Per‑TBU prioritization in the TCU enables high‑priority transaction streams to be translated
before low‑priority streams

◦ TCU prefetch of translation tables, which can be enabled on a per‑context basis, improves
translation performance for real‑time masters that access memory linearly

◦ Hit‑Under‑Miss (HUM) support in the TBU enables transactions with different AXI IDs to be
propagated out of order, when a translation is available

◦ TBU detects multiple transactions that require the same translation so that only one TBU
request to the TCU is required

◦ TCU detects multiple translations that require the same table in memory so that only one
TCU memory request is required

◦ Multi‑level, multi‑stage walk caches in the TCU reduce translation cost by performing only
part of the table walk process on a miss

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Overview of the System Memory Management Unit

◦ A configurable number of concurrent translations in the TBU and TCU promotes high
translation throughput

2.4 Interfaces
Both the TCU and TBU support the following common interfaces:

• DTI

• Tie-offs

• Interrupts

• PMU snapshot

• Test and debug

• LPI clock gating

• LPI powerdown

The TCU also supports the following interfaces:

• Programming

• System coherency

• Queue and Table Walk (QTW)/DVM

The TBU also supports the following interfaces:

• Transaction slave (TBS)

• Transaction master (TBM)

Related information
Interfaces on page 30

2.5 Configurable options
The MMU-600AE is highly configurable and provides configuration options for each of the main
blocks.

For the TCU, you can configure the following:

• Size of each cache

• Data width of the QTW/DVM interface

• Number of translations that can be performed at the same time

• Number of translation requests that can be accepted from all DTI masters

For the TBU, you can configure the following:

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Overview of the System Memory Management Unit

• Write data buffer depth

• Size of each cache

• Number of transactions that can be translated at the same time

• Number of outstanding read and write transactions that the TBM interface supports

• Width of data, ID, user, StreamID, and SubstreamID signals on the TBS and TBM interfaces

Depths are specified as a discrete number of entries.

You can also configure the DTI interconnect components to meet your system requirements.

2.6 Product documentation and design flow
This section describes the MMU-600AE documentation in relation to the design flow.

2.6.1 Documentation

The MMU-600AE documentation is as follows:

Technical Reference Manual
The Technical Reference Manual (TRM) describes the functionality and the effects of functional
options on the behavior of the MMU-600AE. It is required at all stages of the design
flow. The choices that are made in the design flow can mean that some behaviors that are
described in the TRM are not relevant. If you are programming the MMU-600AE, then
contact:

• The implementer to determine:

◦ The build configuration of the implementation

◦ The integration, if any, that was performed before implementing the MMU-600AE

• The integrator to determine the pin configuration of the device that you are using.

Configuration and Integration Manual
The Configuration and Integration Manual (CIM) describes:

• The available build configuration options and related issues in selecting them.

• How to integrate the MMU-600AE into an SoC. This section describes the pins that the
integrator must tie off to configure the macrocells for the required integration.

• The processes to sign off on the configuration, integration, and implementation of the
design.

The CIM is a confidential book that is only available to licensees.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Overview of the System Memory Management Unit

2.6.2 Design flow

The MMU-600AE is delivered as synthesizable RTL. Before it can be used in a product, it must go
through the following processes:

Implementation
The implementer configures and synthesizes the RTL to produce a hard macrocell. This
process might include integrating RAMs into the design.

Integration
The integrator connects the implemented design into an SoC. Integration includes connecting
the design to a memory system and peripherals.

Programming
The system programmer develops the software to configure and initialize the MMU-600AE,
and tests the required application software.

Each process is separate, and can include implementation and integration choices that affect the
behavior and features of the MMU-600AE.

The operation of the final device depends on:

Build configuration
The implementer chooses the options that affect how the RTL source files are pre-processed.
These options usually include or exclude logic that affects one or more of the following:

• Area

• Maximum frequency

• Features of the resulting macrocell

Configuration inputs
The integrator configures some features of the MMU-600AE by tying inputs to specific
values. These configurations affect the start-up behavior before any software configuration is
made.

Software configuration
The programmer configures the MMU-600AE by programming particular values into
registers. This configuration affects the behavior of the MMU-600AE.

Related information
Compliance on page 15
Configurable options on page 18

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Overview of the System Memory Management Unit

2.7 Product revisions
This section describes the differences in functionality between product revisions:

r0p0
First release.

r1p0
Table 2-1: Changes introduced in release r1p0

Affected component or feature New or updated functionality Functionality description

TCU/FMU New The TCU now supports a maximum of
62 TBU which can be configured using
the parameter TCUCFG_NUM_TBU.
r0p0 limited this to 14. The IPXACT
files are also updated to reflect this
change. The actual number of TBUs
connected to the TCU and sending fault
information is provided by the parameter
TCUCFG_FUSA_TBU_FAULT_WIRE_COUNT.
This parameter also now supports a max
value of 62. The register in the FMU
move to a 64KB page size when FMU
TCUCFG_FUSA_TBU_FAULT_WIRE_COUNT
> 54 else they continue to use the 4KB page
size as in previous release.

TCU/FMU New The number of Fault channels
supported is increased to 255. This
is configured using the parameter
TCUCFG_FUSA_FCHAN_COUNT.

TCU/FMU Updated The FMU KEY and LOCK behavior is
extended to allow for reordering of split
32 bit write access to the FMU which
originated as 64 bit writes. For more
information, see 5.5.6 Lock and key
mechanism on page 116.

TCU/FMU Updated The behavior of FMU in sending err
message to TBU has changed. Now the
TCU does not exchange error messages
with the TBU if the TBU is powered down.
Error messages to the TBU are generated by
writing to one of the following registers:

• FMU_SMEN

• FMU_SMINJERR

• FMU_PINGNOW

• ERR<n>STATUS corresponding to a
TBU error record

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Overview of the System Memory Management Unit

Affected component or feature New or updated functionality Functionality description

TCU Updated IPXACT changes:

• Fixed reset value of registers in the
IPXACT file.

• Modified the way how the reset value
from tie-off are represented in IPXACT

2.8 Functional Safety (FuSa)
Functionality includes:

1. Description of the Fault Management Unit (FMU) PV and APB interface used to program Safety
Mechanisms (SMs), inject errors, read fault status information, and clear fault status Error
Recovery Interrupt (ERI) and Fault Handling Interrupt (FHI) interrupts.

2. Additional FuSa configurations options.

3. Safety Mechanism descriptions and configuration.

4. FuSa I/Os, reset, and clocking.

5. Functional Safety on page 98 describes the functionality in detail.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

3. Functional description
This chapter describes the functionality of the MMU-600AE.

3.1 About the functions
The major functional blocks of the MMU-600AE are the TBU, TCU, and DTI interconnect.

The following figure shows an example system that uses the MMU-600AE.

Figure 3-1: Example system with the MMU-600AE

I/O coherent
masters

DTI-TBUDTI-TBU

DTI

DTI-ATS

Fully coherent
masters

Slaves

Processor Processor GPU

Other
master

PCIe master with
ATS

Memory system PeripheralPeripheral

CoreLink Cache Coherent Interconnect

TBU TBU
CoreLink

MMU-600AE

DTI interconnect

TCU

The MMU-600AE contains the following key components:

Translation Buffer Unit (TBU)
The TBU contains Translation Lookaside Buffers (TLBs) that cache translation tables. The
MMU-600AE implements at least one TBU for each connected master, and these TBUs are
local to the corresponding master.

Translation Control Unit (TCU)
The TCU controls and manages the address translations. The MMU-600AE implements a
single TCU. In MMU-600AE-based systems, the AMBA® DTI protocol defines the standard
for communicating with the TCU.

DTI interconnect
The DTI interconnect connects multiple TBUs to the TCU.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

When an MMU-600AE TBU receives a transaction on the TBS interface, it looks for a matching
translation in its TLBs. If it has a matching translation, it uses it to translate the transaction and
outputs the transaction on the TBM interface. If it does not have a matching translation, it requests
a new translation from the TCU using the DTI interface.

When the TCU receives a DTI translation request, it uses the QTW interface to perform:

• Configuration table walks, which return configuration information for the translation context.

• Translation table walks, that return translation information that is specific to the transaction
address.

The TCU contains caches that reduce the number of configuration and translation table walks that
are to be performed. Sometimes no walks are required.

When the TBU receives the translation from the TCU, it stores it in its TLBs. If the translation was
successful, the TBU uses it to translate the transaction, otherwise it terminates it.

A processor controls the TCU by:

• Writing commands to a Command queue in memory.

• Receiving events from an Event queue in memory.

• Writing to its configuration registers using the programming interface.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information about the following:

• Translation.

• How software communicates with the TCU.

Related information
Operation on page 39

3.1.1 Translation Buffer Unit

A typical SMMUv3-based system includes multiple Translation Buffer Units (TBUs). Each TBU is
located close to the component that it provides address translation for.

A TBU intercepts transactions and provides the required translation from a Translation Lookaside
Buffer (TLB) if possible. If a TLB does not contain the required translation, the TBU requests
translations from the TCU and then caches the translation in one of the TLBs.

The following figure shows the TBU.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Figure 3-2: MMU-600AE TBU

Q-Channel

MMU-600AE TBU

ACE-Lite

DTI over AXI4-Stream

ACE-Lite

Slave interface

Write data buffer Micro TLB

PMU
Main TLB

Clock and power
control

Transaction
tracker

Translation
manager

Master interface

DTI
interface

The TBU consists of:

Master and slave interfaces
These interfaces manage the TBS and TBM interfaces.

Micro TLB
The TBU compares incoming transactions with translations that are cached in the micro TLB
before looking in the Main TLB (MTLB). The micro TLB is a fully associative TLB that provides
configuration cache and TLB functionality. You can use a tie‑off signal to configure the cache
replacement policy as either round‑robin or Pseudo Least Recently Used (PLRU).

Main TLB
Each TBU includes an optional Main TLB (MTLB) that caches translation table walk entries
from:

• Stage 1 translations

• Stage 2 translations

• Stage 1 combined with stage 2 translations
The MTLB is a configurable four‑way set associative cache structure that uses a random
cache replacement policy.
If multiple translation sizes are in use, a single transaction might require multiple lookups.
Lookups are pipelined to permit a sustained rate of one lookup per cycle.
TBU direct indexing enables the MMU-600AE to manage MTLB entries externally to the
TBU. Direct indexing improves the predictability of TBU performance, for bus masters that
have real-time performance requirements.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Translation manager
The translation manager manages translation requests that are in progress. Each transaction
occupies a translation slot until it is propagated downstream through the master interface.
All transactions are hazard-checked to reduce the possibility of duplicate translation requests
being sent to the TCU.
There is no restriction on the ordering of transactions with different AXI IDs. Transactions
with different AXI IDs can be propagated downstream out‑of‑order.
All transactions with a given AXI ID value must remain ordered. The translation manager
propagates such transactions when the translation is ready, provided no other transaction
with the same AXI ID is already waiting.
See the Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AXI5, ACE and ACE5 for
more information about AXI transaction identifiers.

Write data buffer
The optional write data buffer enables write transactions with different AXI IDs to progress
through the TBU out‑of‑order. It reorders the data to match the downstream transaction
order.

PMU
The PMU counts TBU performance-related events.

Clock and power control
The TBU has its own clock and power control, that the Q‑Channel provides.

DTI interface
The master DTI interface uses the DTI protocol, typically over AXI4‑Stream, to enable the
TBU to communicate with a slave component. For the MMU-600AE, the slave component
is the TCU. Although you can implement DTI over different transport protocols, the
MMU-600AE interfaces use AXI4‑Stream.

Transaction tracker
The transaction trackers manage outstanding read and write transactions, permitting
invalidation and synchronization to take place without stalling the AXI interfaces.

Related information
TBU direct indexing and MTLB partitioning on page 46
SMMU architectural registers on page 65

3.1.2 Translation Control Unit

A typical SMMUv3‑based system includes a single Translation Control Unit TCU. The (TCU) is usually
the largest block in the system, and performs several roles.

The TCU:

• Manages the memory queues

• Performs translation table walks

• Performs configuration table walks

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

• Implements backup caching structures

• Implements the SMMU programmers model

The following figure shows the TCU.

Figure 3-3: MMU-600AE TCU

Q-Channel

APB

MMU-600AE TCU

ACE-Lite + DVM

DTI over AXI4-Stream

RAM-based logic

Translation
request buffer

Configuration
cache

DTI
interface

Walk caches and TLB

S1L0 S1L1 S1L2 S1L3

S2L0 S2L1 S2L2 S2L3

PMU Translation
manager

Clock and power
control Queue manager

QTW/DVM
interface Register file

The TCU consists of:

Walk caches
The TCU includes separate four-way set-associative walk caches to store results of
translation table walks. During MMU-600AE configuration, the cache line entries are split to
create separate walk caches that are reserved for:

• Stage 1 level 0 table entries

• Stage 1 level 1 table and block entries

• Stage 1 level 2 table and block entries

• Stage 1 level 3 table entries

• Stage 2 level 0 table entries

• Stage 2 level 1 table and block entries

• Stage 2 level 2 table and block entries

• Stage 2 level 3 table entries
To enable and disable the walk cache for a particular stage and level of translation, use the
TCU_CTRL register. If an error occurs for a cache line entry, the TCU_ERRSTATUS register
identifies the affected entry.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

The walk cache is useful in cases where a translation request results in a miss in other TCU
caches. A subsequent hit in the walk cache requires only a single memory access to complete
the translation table walk and fetch the required descriptor.

Configuration cache
The configuration caches are 4-way set-associative cache structures that store configuration
information. Each entry stores the Context Descriptor (CD) and Stream Table Entry (STE)
contents for a translation context.

The configuration cache does not cache the contents of intermediate
configuration tables.

Translation manager
The translation manager manages translation requests that are in progress. All translation
table walks and configuration table walks are hazard-checked to reduce the possibility of
multiple transactions requesting duplicate walks.

Translation request buffer
The translation request buffer stores translation requests from TBUs when all translation
manager slots are full. The translation request buffer supports more slots than the translation
manager. When correctly configured, this buffer has enough space to store all translation
requests that TBUs can issue simultaneously. This buffer therefore prevents the DTI interface
from becoming blocked.

PMU
The PMU counts TCU performance‑related events.

Clock and power control
The TCU has its own clock and power control, that the Q‑Channel provides.

Queue manager
The queue manager manages all SMMUv3 Command queues and Event queues that are
stored in memory.

QTW/DVM interface
The Queue and Table Walk (QTW)/Distributed Virtual Memory (DVM) interface is an ACE-Lite
+DVM master interface.

Register file
The register file implements the SMMUv3 programmers model, as the Arm® System Memory
Management Unit Architecture Specification, SMMU architecture version 3.0 and version 3.1
defines.

DTI interface
The slave DTI interface uses the DTI protocol, typically over AXI4‑Stream, to enable the TCU
to communicate with a master component. For the MMU-600AE, the master component is
either a TBU or a PCIe master.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Related information
Interfaces on page 30
TCU transaction handling on page 50
TCU prefetch on page 50
SMMU architectural registers on page 65

3.1.3 DTI interconnect

The TBU and TCUs use a DTI interface to communicate. The DTI interconnect enables the DTI
interface to use the AXI4‑Stream transport protocol.

The DTI interconnect can connect any components that conform to the AXI4‑Stream protocol, as
the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification defines.

The DTI interconnect contains internal components that are hierarchically composable, that is,
they can be connected in different ways to suit your system requirements. For example, within an
MMU-600AE system, you can use the switch component to combine the DTI interfaces of multiple
TBUs into a single DTI interface. You can then connect the combined DTI interface to another DTI
interconnect that is closer to the TCU.

The DTI interconnect includes switch, sizer, and register slice components.

Switch
The switch connects multiple DTI masters, such as TBUs, to a DTI slave such as a TCU. The
switch implements the following parallel networks:

• For TBU to TCU traffic, a network that connects multiple AXI4‑Stream slave interfaces to
a single AXI4‑Stream master interface

• For TCU to TBU traffic, a network that connects a single AXI4‑Stream slave interface to
multiple AXI4‑Stream master interfaces

The switch does not store any data, and therefore does not require a
Q‑Channel clock‑gating interface.

Sizer
The sizer connects channels that have different data widths, enabling different tradeoffs
of bandwidth to area. The sizer supports conversion between any of the supported
AXI4‑Stream data widths:

• 1 byte

• 4 bytes

• 10 bytes

• 20 bytes
The sizer includes a Q‑Channel interface to provide clock‑gating control.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Register slice
Use the register slice to improve timing. The register slice includes a Q‑Channel interface to
provide clock‑gating control.
The MMU-600AE DTI interconnect components do not include a component to connect
different clock and power domains. You can connect DTI interfaces in different clock and
power domains by using the Bidirectional AXI4-Stream (BAS) configuration of the ADB-400
AMBA® Domain Bridge.

3.2 Interfaces
The MMU-600AE includes interfaces for each of the TCU, TBU, and DTI interconnect components.

The DTI interconnect consists of switch, sizer, and register slice components that you can connect
separately, and these components therefore have their own interfaces.

The PMU snapshot interface is common to both TCU and TBU.

3.2.1 TCU interfaces

The MMU-600AE TCU includes several master and slave interfaces.

The following figure shows the TCU interfaces.

Figure 3-4: TCU interfaces

APB4

PROG

MMU-600AE TCU

Clock and reset

DTI

ACE-Lite+DVM

Q-Channel

Q-ChannelLPI_CG

LPI_PD

QTW/DVMSYSCO

Coherency
connection
signaling

3.2.1.1 TCU Queue and Table Walk/Distributed Virtual Memory interface

The Queue and Table Walk/Distributed Virtual Memory (QTW/DVM) interface is an ACE-Lite+DVM
master interface.

The QTW/DVM interface issues the following transaction types:

• ReadNoSnoop

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

• WriteNoSnoop

• ReadOnce

• WriteUnique

• DVM Complete

The QTW/DVM interface uses the write address transaction ID signal awid_qtw, and the read
address transaction ID signal, arid_qtw. The value of awid_qtw is always 0, and the value of
arid_qtw depends on the transaction type. The following table shows the possible values of
arid_qtw.

Table 3-1: Possible arid_qtw values

Transaction type arid_qtw[n:1] arid_qtw[0]

Translation table walk Indicates the slot that is requesting the translation table walk 1

Command queue read All bits = 0 0

DVM Complete All bits = 1 0

To support 16-bit Virtual Machine IDentifiers (VMIDs), the interface provides DVMv8.1 support.

The interface does not issue cache maintenance operations or exclusive accesses.

Related information
Distributed Virtual Memory messages on page 49
Error responses on page 52
AXI5 support on page 62
TCU QTW/DVM interface signals on page 153

3.2.1.2 TCU PROG interface

The PROG interface is an AMBA APB4 slave interface. It enables software to program the
MMU-600AE internal registers and read the Performance Monitoring Unit (PMU) registers and the
Debug registers.

This interface runs synchronously with the other TCU interfaces.

The applicable address width for this interface depends on the value of TCUCFG_NUM_TBU:

Transactions are Read-As-Zero, Writes Ignored (RAZ/WI) when any of the following apply:

• An unimplemented register is accessed

• PSTRB[3:0] is not 0b1111 for write transfers

• PPROT[1] is not set to 0 for Secure register accesses

For more information, see the AMBA® APB Protocol Specification.

Related information
TCU programming interface signals on page 155

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 183

https://developer.arm.com/documentation/ihi0024/latest

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

3.2.1.3 TCU LPI_PD interface

This Q‑Channel slave interface manages LPI powerdown for the TCU.

For more information, see the AMBA® Low Power Interface Specification, Arm® Q‑Channel and
P‑Channel Interfaces.

Related information
TCU LPI_PD interface signals on page 156

3.2.1.4 TCU LPI_CG interface

This Q‑Channel slave interface enables LPI clock gating for the TCU.

Related information
TCU LPI_CG interface signals on page 157

3.2.1.5 TCU DTI interface

The DTI interface manages communication between the TBUs and the TCU, using the DTI
protocol. The DTI protocol can be conveyed over different transport layer mediums, including
AXI4‑Stream.

The TCU includes a slave DTI interface and each TBU includes a master DTI interface. To permit
bidirectional communication, each DTI interface includes one AXI4‑Stream master interface and
one AXI4‑Stream slave interface.

For more information, see the AMBA® DTI Protocol Specification and the AMBA® AXI‑Stream Protocol
Specification.

Related information
DTI overview on page 39
TCU DTI interface signals on page 157

3.2.1.6 TCU interrupt interfaces

This interface provides global, per-context, and performance interrupts.

Related information
TCU interrupt signals on page 158

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 183

https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0088/latest
https://developer.arm.com/documentation/ihi0051/latest
https://developer.arm.com/documentation/ihi0051/latest

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

3.2.1.7 TCU SYSCO interface

The MMU-600AE provides a hardware system coherency interface. This master interface permits
the TCU to remove itself from a coherency domain in response to an LPI request.

The SYSCO interface uses the syscoreq and syscoack handshake signals to enter or exit a
coherency domain.

If the sup_btm signal is tied LOW, the syscoreq signal is always driven LOW and syscoack is
ignored.

Related information
TCU SYSCO interface signals on page 155

3.2.1.8 TCU tie-off signals

The TCU tie-off signals enable you to initialize various operating parameters on exit from reset
state.

At reset, the value of each tie-off signal controls the respective bits in the SMMU_IDR0 Register.

Related information
TCU tie-off signals on page 161

3.2.2 TBU interfaces

Each MMU-600AE TBU includes several master and slave interfaces.

The following figure shows the TBU interfaces:

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 33 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Figure 3-5: TBU interfaces

MMU-600AE TBU

ACE-Lite

TBM

TBS

Clock and reset

DTI

ACE-Lite

Q-Channel

Q-ChannelLPI_CG

LPI_PD

3.2.2.1 TBU TBS interface

The transaction slave (TBS) interface is an ACE5-Lite interface on which the TBU receives incoming
untranslated memory accesses.

This interface supports a 64‑bit address width.

The interface implements optional signals to support the following AXI5 extensions:

• Wakeup_Signals

• Untranslated_Transactions

• Cache_Stash_Transactions

• DeAllocation_Transactions

The TBS interface supports ACE Exclusive accesses.

If a transaction is terminated in the TBU, the transaction tracker returns the transaction with the
user‑defined AXI RUSER and BUSER bits set to 0.

Related information
Error responses on page 52
TBU TBS interface signals on page 162

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 34 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

3.2.2.2 TBU TBM interface

The TBM transaction master interface is an ACE5‑Lite interface on which the TBU sends outgoing
translated memory accesses.

The AXI ID of a transaction on this interface is the same as the AXI ID of the corresponding
transaction on the TBS interface.

This interface supports a 48‑bit address width, and TBUCFG_DATA_WIDTH defines the data width.

This interface can issue read and write transactions until the outstanding transaction limit is
reached. The MMU-600AE provides parameters that permit you to configure:

• The outstanding read transactions limit

• The outstanding write transactions limit

• The total outstanding read and write transactions limit.

The interface implements optional signals to support the following AXI5 extensions:

• Wakeup_Signals

• Untranslated_Transactions

• Cache_Stash_Transactions

• DeAllocation_Transactions

When receiving an SLVERR or DECERR response to a downstream transaction, the TBM interface
propagates the same response to the TBS interface.

The TBM interface supports ACE Exclusive accesses.

Related information
Error responses on page 52
AMBA support on page 60
TBU TBM interface signals on page 164

3.2.2.3 TBU LPI_PD interface

This Q‑Channel slave interface manages LPI powerdown for the TBU.

For more information, see the AMBA® Low Power Interface Specification, Arm® Q‑Channel and
P‑Channel Interfaces.

Related information
TBU LPI_PD interface signals on page 166

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 35 of 183

https://developer.arm.com/documentation/ihi0068/latest
https://developer.arm.com/documentation/ihi0068/latest

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

3.2.2.4 TBU LPI_CG interface

This Q‑Channel slave interface enables LPI clock gating for the TBU.

Related information
TBU LPI_CG interface signals on page 166

3.2.2.5 TBU DTI interface

The TBU DTI interface enables the TBU to request translations from the TCU. This interface uses
the DTI‑TBU protocol for communication between the TBU and the TCU.

The TCU includes a slave DTI interface and each TBU includes a master DTI interface. To permit
bidirectional communication, each DTI interface includes one AXI4‑Stream master interface and
one AXI4‑Stream slave interface.

For more information, see the AMBA® DTI Protocol Specification and the AMBA® AXI‑Stream Protocol
Specification.

Related information
DTI overview on page 39
TBU DTI interface signals on page 167

3.2.2.6 TBU interrupt interfaces

This interface provides global, per-context, and performance interrupts.

Related information
TBU interrupt signals on page 167

3.2.2.7 TBU tie-off signals

The TBU tie‑off signals enable you to initialize various operating parameters on exit from reset
state.

Related information
TBU tie-off signals on page 168

3.2.3 DTI interconnect interfaces

The DTI interconnect includes interfaces for each of the switch, sizer, and register slice
components.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 36 of 183

https://developer.arm.com/documentation/ihi0088/latest
https://developer.arm.com/documentation/ihi0051/latest
https://developer.arm.com/documentation/ihi0051/latest

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

3.2.3.1 DTI interconnect switch interfaces

The DTI interconnect switch component includes dedicated interfaces.

The following figure shows the DTI interconnect switch interfaces.

Figure 3-6: DTI interconnect switch interfaces

DTI interconnect switch

UP_M

DN_S0

DN_M

UP_S0 DN_S1 UP_S1 DN_Sn UP_Sn

The following table provides more information about the switch interfaces.

Table 3-2: DTI interconnect switch interfaces

Interface Interface type Protocol Description

DN_Sn Slave Slave downstream interface. One DN_Sn interface is present for each slave interface.

UP_Sn Master Slave upstream interface. One UP_Sn interface is present for each slave interface.

DN_M Master Master downstream interface

UP_M Slave

AXI4‑Stream

Master upstream interface

The interconnect switch does not store any data, and therefore does not require a
Q‑Channel clock‑gating interface.

3.2.3.2 DTI interconnect sizer interfaces

The DTI interconnect sizer component includes dedicated interfaces.

The following figure shows the DTI interconnect sizer interfaces.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 37 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Figure 3-7: DTI interconnect sizer interfaces

DTI interconnect sizer

UP_M

DN_S

DN_M

UP_SLPI_CG

The following table provides more information about the sizer interfaces.

Table 3-3: DTI interconnect sizer interfaces

Interface Interface type Protocol Description

LPI_CG Slave Q‑Channel Clock gating interface

DN_S Slave Slave downstream interface

UP_S Master Slave upstream interface

DN_M Master Master downstream interface

UP_M Slave

AXI4‑Stream

Master upstream interface

3.2.3.3 DTI interconnect register slice interfaces

The DTI interconnect register slice component includes dedicated interfaces.

The following figure shows the DTI interconnect register slice interfaces.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 38 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Figure 3-8: DTI interconnect register slice interfaces

DTI interconnect register slice

UP_M

DN_S

DN_M

UP_SLPI_CG

The following table provides more information about the register slice interfaces.

Table 3-4: DTI interconnect register slice interfaces

Interface Interface type Protocol Description

LPI_CG Slave Q‑Channel Clock gating interface

DN_S Slave Slave downstream interface

UP_S Master Slave upstream interface

DN_M Master Master downstream interface

UP_M Slave

AXI4‑Stream

Master upstream interface

3.3 Operation
This section provides information about the operation of the MMU-600AE features.

3.3.1 DTI overview

In an MMU-600AE-based system, the AMBA® DTI protocol defines the standard for
communicating with a TCU.

The AMBA® DTI protocol includes both:

• DTI-TBU protocol, for communication between a TBU and a TCU

• DTI-ATS protocol, for communication between a PCIe Root Complex and a TCU

The DTI protocol is a point-to-point protocol. Each channel consists of a link, a DTI master, and a
DTI slave. The DTI masters in the respective protocols are:

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 39 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

• The TBU, in the DTI-TBU protocol

• The PCIe Root Complex, in the DTI-ATS protocol

The DTI slave in both DTI-TBU and DTI-ATS is the TCU.

DTI masters and slaves communicate using defined DTI messages. The DTI protocol defines the
following message groups:

• Page request

• Register access

• Translation request

• Connection and disconnection

• Invalidation and synchronization

The DTI_TBU_CONDIS_REQ message initiates a TBU connection or disconnection handshake.
The TBU uses this message to connect to the TCU. During connection, the TBU can specify the
number of requested translation tokens.

The TBU uses the TOK_TRANS_REQ field to request translation tokens. The max_tok_trans signal
defines the number of translation tokens that the TBU requests.

The TBU uses the TOK_INV_GNT field to grant invalidation tokens. The TBU grants only one
invalidation token, and the TCU is only capable of issuing one invalidate message at a time.

A DTI master uses a DTI_TBU_CONDIS_REQ or a DTI_ATS_CONDIS_REQ message to initiate
a connection handshake. If the master provides a TID value that is greater than the maximum
supported TID that TCUCFG_NUM_TBU defines, the slave sends a Connect Deny message.

A translation request to the TCU where StreamID ≥ 224 results in a fault and an SMMUv3
C_BAD_STREAMID event. If the TBU receives an invalidation request where StreamID ≥ 224, any
comparisons with a StreamID value fail. No TLB entries are invalidated, but other effects that do
not consider the supplied StreamID occur as normal.

• The TBU never generates translation requests with StreamID ≥ 224

• The TCU never generates invalidation requests with StreamID ≥ 224

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification for more
information.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 40 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

3.3.2 Performance Monitoring Unit

The MMU-600AE includes a PMU for the TCU and a PMU for each TBU. The PMU events and
counters indicate the runtime performance of the MMU-600AE.

The MMU-600AE includes logic to gather various statistics on the operation of the MMU during
runtime, using events and counters. These events, which the SMMUv3 architecture defines,
provide useful information about the behavior of the MMU. You can use this information when
debugging or profiling traffic.

3.3.2.1 SMMUv3 architectural performance events

Both the TCU and the TBU implement performance events that the SMMUv3 Performance
Monitor extension defines.

The SMMU_PMCG_SMR0 register can filter some events so that only events with a particular
StreamID are counted. This event filtering includes:

• Speculative transactions and translations

• Transactions and translations that result in a terminated transaction or a translation fault

The following table shows the architecturally defined MMU-600AE TCU performance events.

Table 3-5: SMMUv3 performance events for the TCU

Event Event
ID

SMMU_PMCG_SMR0
filterable

Description

Clock cycle 0x0 No Counts clock cycles.

Cycles where the clock is gated after a clock Q-Channel
handshake are not counted.

Transaction 0x1 Yes Counts translation requests that originate from a DTI-TBU
or DTI-ATS master

TLB miss caused by incoming transaction or
translation request

0x2 Yes Counts translation requests where the translation walks
new translation table entries

Configuration cache miss caused by
transaction or translation request

0x3 Yes Counts translation requests where the translation walks
new configuration table entries

Translation table walk access 0x4 Yes Counts translation table walk accesses

Configuration structure access 0x5 Yes Counts configuration table walk accesses

PCIe ATS Translation Request received 0x6 Yes Counts translation requests that originate from a DTI-ATS
master

The following table shows the architecturally defined MMU-600AE TBU performance events.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 41 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Table 3-6: SMMUv3 performance events for the TBU

Event Event
ID

SMMU_PMCG_SMR0
filterable

Description

Clock cycle 0x0 No Counts clock cycles.

Cycles where the clock is gated after a clock Q-Channel
handshake are not counted.

Transaction 0x1 Yes Counts transactions that are issued on the TBM interface

TLB miss caused by incoming transaction or
translation request

0x2 Yes Counts non-speculative translation requests that are issued
to the TCU

PCIe ATS Translation Request received 0x7 Yes Counts ATS-translated transactions that are issued on the
TBM interface

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information.

3.3.2.2 MMU-600AE TCU events

The MMU-600AE PMU can be configured to monitor a range of IMPLEMENTATION DEFINED TCU
performance events.

The SMMU_PMCG_SMR0 register can filter some TCU performance events so that only events
with a particular StreamID are counted. This event filtering includes:

• Speculative transactions and translations

• Transactions and translations that result in a terminated transaction or a translation fault

The following table shows the TCU performance events.

Table 3-7: MMU-600AE TCU performance events

Event Event
ID

SMMU_PMCG_SMR0
filterable

Description

S1L0WC lookup 0x80 Yes Counts translation requests that access the S1L0WC walk cache

S1L0WC miss 0x81 Yes Counts translation requests that access the S1L0WC walk cache and do not result in a
hit

S1L1WC lookup 0x82 Yes Counts translation requests that access the S1L1WC walk cache

S1L1WC miss 0x83 Yes Counts translation requests that access the S1L1WC walk cache and do not result in a
hit

S1L2WC lookup 0x84 Yes Counts translation requests that access the S1L2WC walk cache

S1L2WC miss 0x85 Yes Counts translation requests that access the S1L2WC walk cache and do not result in a
hit

S1L3WC lookup 0x86 Yes Counts translation requests that access the S1L3WC walk cache

S1L3WC miss 0x87 Yes Counts translation requests that access the S1L3WC walk cache and do not result in a
hit

S2L0WC lookup 0x88 Yes Counts translation requests that access the S2L0WC walk cache

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 42 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Event Event
ID

SMMU_PMCG_SMR0
filterable

Description

S2L0WC miss 0x89 Yes Counts translation requests that access the S2L0WC walk cache and do not result in a
hit

S2L1WC lookup 0x8A Yes Counts translation requests that access the S2L1WC walk cache

S2L1WC miss 0x8B Yes Counts translation requests that access the S2L1WC walk cache and do not result in a
hit

S2L2WC lookup 0x8C Yes Counts translation requests that access the S2L2WC walk cache

S2L2WC miss 0x8D Yes Counts translation requests that access the S2L2WC walk cache and do not result in a
hit

S2L3WC lookup 0x8E Yes Counts translation requests that access the S2L3WC walk cache

S2L3WC miss 0x8F Yes Counts translation requests that access the S2L3WC walk cache and do not result in a
hit

WC read 0x90 Yes Counts reads from the walk cache RAMs, excluding reads that are caused by
invalidation requests

Note:
A single walk cache lookup might result in multiple RAM reads. This behavior permits
contiguous entries to be located.

Buffered
translation

0x91 Yes Counts translations written to the translation request buffer because all translation
slots are full.

CC lookup 0x92 Yes Counts lookups into the configuration cache

CC read 0x93 Yes Counts reads from the configuration cache RAMs, excluding reads that are caused by
invalidation requests

Note:
A single cache lookup might result in multiple RAM reads. This behavior permits
contiguous entries to be located.

CC miss 0x94 Yes Counts lookups into the configuration cache that result in a miss

Speculative
translation

0xA0 Yes Counts translation requests that are marked as speculative

S1L0WC error 0xC0 No RAS corrected error in S1L0 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

S1L1WC error 0xC1 No RAS corrected error in S1L1 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

S1L2WC error 0xC2 No RAS corrected error in S1L2 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

S1L3WC error 0xC3 No RAS corrected error in S1L3 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

S2L0WC error 0xC4 No RAS corrected error in S2L0 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 43 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Event Event
ID

SMMU_PMCG_SMR0
filterable

Description

S2L1WC error 0xC5 No RAS corrected error in S2L1 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

S2L2WC error 0xC6 No RAS corrected error in S2L2 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

S2L3WC error 0xC7 No RAS corrected error in S2L3 walk cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

Configuration
cache error

0xC8 No RAS corrected error in configuration cache.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

A single DTI translation request might correspond to multiple translation request
events in either of the following circumstances:

• A translation results in a stall fault event and is restarted.

• If a translation results in a stall fault event because of the Event queue being
full, the translation is retried when an Event queue slot becomes available.

3.3.2.3 MMU-600AE TBU events

The MMU-600AE PMU can be configured to monitor a range of IMPLEMENTATION DEFINED TBU
performance events.

The SMMU_PMCG_SMR0 register can filter the TBU performance events so that only events with
a particular StreamID are counted. This event filtering includes:

• Speculative transactions and translations

• Transactions and translations that result in a terminated transaction or a translation fault

The following table shows the TBU performance events.

Table 3-8: MMU-600AE TBU performance events

Event Event
ID

SMMU_PMCG_SMR0
filterable

Description

Main TLB lookup 0x80 Yes Counts Main TLB lookups

Main TLB miss 0x81 Yes Counts translation requests that miss in the Main TLB

Main TLB read 0x82 Yes Counts once per access to the Main TLB RAMs, excluding reads that invalidation
requests cause

Note:
A transaction might access the Main TLB multiple times to look for different page
sizes.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 44 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Event Event
ID

SMMU_PMCG_SMR0
filterable

Description

Micro TLB lookup 0x83 Yes Counts micro TLB lookups

Micro TLB miss 0x84 Yes Counts translation requests that miss in the micro TLB

Slots full 0x85 No Counts once per cycle when all slots are occupied and not ready to issue transactions
downstream.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

Out of translation
tokens

0x86 No Counts once per cycle when a translation request cannot be issued because all
translation tokens are in use.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

Write data buffer
full

0x87 No Counts once per cycle when a transaction is blocked because the write data buffer is
full.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

Translation
request

0x88 Yes Counts translation requests, including both speculative and non-speculative requests

Write data uses
write data buffer

0x89 Yes Counts transactions with write data that is stored in the write data buffer

Write data
bypasses write
data buffer

0x8A Yes Counts transactions with write data that bypasses the write data buffer

MakeInvalid
downgrade

0x8B Yes Counts when either:

• A MakeInvalid transaction on the TBS interface is output as CleanInvalid on the
TBM interface

• A ReadOnceMakeInvalid transaction on the TBS interface is output as
ReadOnceCleanInvalid on the TBM interface

Stash fail 0x8C Yes Counts when either.

• A WriteUniquePtlStash or WriteUniqueFullStash transaction on TBS is output as a
WriteNoSnoop or WriteUnique transaction on the TBM interface

• A StashOnceShared or StashOnceUnique transaction on the TBS interface has a
valid translation, but is terminated in the TBU

Note:
A StashOnceShared or StashOnceUnique transaction that is terminated because of
a StreamDisable or GlobalDisable translation response does not cause this event to
count.

Main TLB error 0xC0 No RAS corrected error in Main TLB.

This Secure event is visible only when the SMMU_PMCG_SCR.SO bit is set to 1.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 45 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

3.3.2.4 SMMUv3 PMU register architectural options

The SMMUv3 architecture defines the Performance Monitor Counter Group (PMCG) configuration
register, SMMU_PMCG_CFGR. An MMU-600AE implementation assumes fixed values for
SMMU_PMCG_CFGR, and these values define behavioral aspects of the implementation.

The following table shows the SMMU_PMCG_CFGR register options that the MMU-600AE TCU
and TBU use.

Table 3-9: MMU-600AE SMMU_PMCG_CFGR register architectural options

Field Default value Description for default value

SID_FILTER_TYPE 1 A single StreamID filter applies to all PMCG counters

CAPTURE 1 Capture of counter values into SVRn registers is supported

MSI 0 The counter group does not support Message Signaled Interrupts (MSIs)

RELOC_CTRS 1 The PMCG registers are relocated to page 1 of the PMU address map

SIZE 0x31 The counter group implements 32-bit counters

NCTR 0x3 The counter group includes 4 counters

Related information
MMU-600AE memory map on page 69

3.3.2.5 PMU snapshot interface

The Performance Monitoring Unit (PMU) snapshot interface is included on the TCU and on each
TBU. You can use this asynchronous interface to initiate a PMU snapshot. A simultaneous snapshot
of each counter register is created and copied to the respective SMMU_PMCG_SVRn register.

The PMU snapshot sequence is a 4-phase handshake. Both pmusnapshot_req and
pmusnapshot_ack are LOW after reset. A snapshot occurs on the rising edge of pmusnapshot_req,
and is equivalent to writing the value 1 to SMMU_PMCG_CAPR.CAPTURE.

The pmusnapshot_req signal is sampled using synchronizing registers. A register drives
pmusnapshot_ack so that the connected component can sample the signal asynchronously.

Related information
Reliability, Availability, and Serviceability on page 47
TCU PMU snapshot interface signals on page 156
TBU PMU snapshot interface signals on page 166

3.3.3 TBU direct indexing and MTLB partitioning

TBU direct indexing can help your system to meet real‑time translation requirements by enabling
the MMU-600AE to manage Main TLB (MTLB) entries externally to the TBU.

Direct indexing enables real‑time translation requirements to be met, as follows:

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 46 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

• It can be guaranteed that different streams do not overwrite prefetched entries

• The MTLB can be partitioned into different sets of entries that different streams use

If you configure your system to not use direct indexing, you can select MTLB partitioning. MTLB
partitioning has similar behavior, but only the most significant TLB index bits are provided, and the
other bits are generated internally.

Direct indexing is enabled for a TBU when TBUCFG_DIRECT_IDX = 1.

When TBUCFG_DIRECT_IDX = 1, or when an MTLB is partitioned, the width of the AxUSER signals
on the TBS interface is extended to convey the indexing information that is required for TBU direct
indexing or MTLB partitioning.

The table lists the extended bits in the order MSB first.

Table 3-10: Extended aruser_s and awuser_s bits for MTLB partitioning

Field name Width Description

mtlbidx When direct indexing is enabled, the width of this field is log2(TBUCFG_MTLB_DEPTH) - 2.

When direct indexing is not enabled, the width of this field is 0.

MTLB index

mtlbway When direct indexing is enabled, the width of this field is 2.

When direct indexing is not enabled, the width of this field is 0.

MTLB way

mtlbpart log2(TBUCFG_MTLB_PARTS) MTLB partition

- TBUCFG_AWUSER_WIDTH for awuser_s.

TBUCFG_ARUSER_WIDTH for aruser_s.

Regular AxUSER signals

If an MTLB is partitioned:

• The MTLB size is multiplied by TBUCFG_MTLB_PARTS

• The mtlbpart field defines the log2(TBUCFG_MTLB_PARTS) most significant index bits

When direct indexing is enabled for a TBU:

• Lookups and updates to the MTLB use the mtlbidx field

• Updates to the MTLB use the way that mtlbway specifies

• Lookups to the MTLB operate on all ways simultaneously

To maintain system performance, Arm® recommends that DVM invalidation is disabled on
TBUs on which direct indexing is enabled. Disable DVM invalidation by setting the appropriate
TCU_NODE_CTRLn.DIS_DVM bit. See 4.7.6 TCU_NODE_CTRLn on page 81.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 47 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

3.3.4 Reliability, Availability, and Serviceability

Reliability, Availability, and Serviceability (RAS) features enable cache corruption to be detected and
corrected, optionally generating interrupts into the system. All MMU-600AE RAM-based caches
support RAS error detection and correction.

The RAS Extension registers permit software to monitor the following caches for errors:

• TBU Main TLB (MTLB)

• TCU configuration cache

• TCU translation table walk cache

Within a coherent system, these caches are always clean, and there is no requirement to correct
data on these caches. Any incorrect data is discarded and refetched. From an RAS standpoint,
discarding and refetching counts as a corrected error.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information.

Related information
TCU_ERRFR on page 84
TCU_ERRCTLR on page 85
TCU_ERRSTATUS on page 85
TBU_ERRFR on page 93
TBU_ERRCTLR on page 93
TBU_ERRSTATUS on page 94

3.3.5 Quality of Service

You can program the TCU with a priority level for each LTI TBU interface. The priority level is
applied to every translation from that TBU interface.

The TCU uses this priority level to:

• Arbitrate between translations that are waiting in the translation request buffer when
translation manager slots become available

• Arbitrate between translation manager slots when they access the caches and perform
configuration table walks and translation table walks

• Determine the AXI AxQOS value for translation table walks and configuration table walks that
the TCU issues on the QTW/DVM interface

The arbiters contain starvation avoidance mechanisms to prevent transactions from being stalled
indefinitely.

The TBU does not implement any prioritization between transactions. We recommend that bus
masters with different QoS requirements use separate TBUs for translation.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 48 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Related information
TCU_QOS on page 77
TCU_NODE_CTRLn on page 81

3.3.6 Distributed Virtual Memory messages

The QTW/DVM interface supports Distributed Virtual Memory (DVM) messages. The MMU-600AE
supports DVMv8.1.

The interface supports DVM transactions of message types TLB Invalidate and Synchronization.
The interface accepts all other DVM transaction message types, and sends a snoop response, but
otherwise ignores such transactions.

Tie the sup_btm input signal HIGH when the system supports Broadcast TLB Maintenance.

When Broadcast TLB Maintenance is supported, you can use SMMU_CR2 and SMMU_S_CR2 to
control how the SMMU handles TLB Invalidate operations as follows:

SMMU_CR2.PTM = 0Non‑secure TLB Invalidate operations are applied to the TLBs.
SMMU_CR2.PTM = 1Non‑secure TLB Invalidate operations have no effect.
SMMU_S_CR2.PTM = 0Secure TLB Invalidate operations are applied to the TLBs.
SMMU_S_CR2.PTM = 1Secure TLB Invalidate operations have no effect.

When sup_btm is tied HIGH, the reset value of SMMU_CR2.PTM and
SMMU_S_CR2.PTM is 1.

Although TLB Invalidate operations have no effect when PTM = 1, the QTW/DVM
interface still returns the appropriate response.

The QTW/DVM interface might receive DVM Sync transactions without receiving a DVM TLB
Invalidate transaction, or when the PTM bits have masked a TLB Invalidate. If no DVM TLB
Invalidate operations have occurred since the most recent DVM Sync transaction, subsequent
DVM Sync transactions result in an immediate DVM Complete transaction. This behavior ensures
that the TCU does not affect system DVM performance unless TLB Invalidate operations are
performed.

The DTI interface allocates the access permissions and shareability of DVM Complete transactions
as follows:

• ARPROT = 0b000, indicating Unprivileged, Secure, Data access

• ARDOMAIN = 0b01, indicating Inner Shareable

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 49 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

For a DVM Operation or DVM Sync request on the AC channel, the snoop response signal
CRRESP[4:0] is always set to 0b00000.

3.3.7 TCU transaction handling

The transaction width, burst length, and transfer size that the TCU supports depend on the
transaction type.

The following table shows the TCU support for read transactions.

Table 3-11: TCU support for read transactions

Transaction type Transaction width, bits ARID[n:1] ARID[0]

Stage 1 Stream table lookup 64 PTW slot number 1

Stream table lookup 256 PTW slot number 1

Translation table lookup 64 PTW slot number 1

Command queue read 128 All 0 0

DVM Complete - All 1 0

DVM Complete transactions are always one beat of full data width.

Command queue reads and DVM Complete transactions are independent of translation slots.
Therefore, the maximum number of read transactions that the TCU can issue at any time is
TCUCFG_PTW_SLOTS + 2.

The following table shows the TCU support for write transactions.

Table 3-12: TCU support for write transactions

Transaction type Transaction width, bits AWID

Event queue write 256 0

PRI queue write 128 0

Message Signaled Interrupt (MSI) 32 0

Only one write transaction can be outstanding at a time.

All read and write transactions are aligned to the transaction size.

3.3.8 TCU prefetch

The TCU can prefetch translations on a per‑context basis to improve translation performance for
real‑time masters that access memory linearly. If TCU prefetch is enabled, a second translation
request occurs after the original request. This second translation request is regarded as the prefetch
because it is an advance request of the next translation that is expected to be requested. This
second request is Speculative and is used to allocate into the caches of the TCU.

Software can enable TCU prefetch for a particular translation context by programming the Stream
Table Entry (STE). Bits [121:120] are IMPLEMENTATION DEFINED in the SMMUv3 architecture. See the

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 50 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Arm® System Memory Management Unit Architecture Specification, SMMU architecture versions 3.0,
3.1 and 3.2.

The MMU-600AE uses these bits for the PF field as follows:

PF, bits [121:120]
This field determines whether prefetch is enabled or disabled for the translation context that
this STE defines as follows:

0b00 Prefetching disabled
0b01 Reserved
0b10 Forward prefetching
0b11 Backward prefetching

Prefetching disabled
TCU prefetch does not occur.

Reserved
Reserved values must not be used.

Forward prefetching
The address to be prefetched is the first address following the end of the translation range,
as DTI_TBU_TRANS_RESP.TRANS_RNG/DTI_ATS_TRANS_RESP.TRANS_RNG indicates.

Backward prefetching
The address to be prefetched is the last address before the beginning of the translation
range, as DTI_TBU_TRANS_RESP.TRANS_RNG/DTI_ATS_TRANS_RESP.TRANS_RNG
indicates.

Whenever a miss occurs in the MicroTLB and Main TLB of the TBU, the TBU sends a translation
request to the TCU. If the STE for the translation is programmed to enable prefetch, a prefetch may
be done after the original request is complete:

1. The TCU completes the original translation request. The STE.PF field indicates whether
prefetch is enabled.

2. If prefetch is enabled, the next translation request is issued to the same TCU translation slot.
This prefetch request is Speculative, and only allocates into the TCU walk caches.

3. A translation response for the prefetch is not returned to the TBU.

When the TCU handles each incoming translation request from the TBU, translation table walks
might or might not occur depending on whether there is a hit in each level of walk cache that
is looked up. Translation table walks also might or might not occur for the subsequent prefetch
request. The number of memory accesses that are performed for this prefetch are unrelated to the
number of memory accesses that are performed for the original translation request.

Consider the following examples:

1. An incoming translation request might hit in the lowest level of walk cache, but the subsequent
prefetch request might still require at least one translation table walk to memory.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 51 of 183

https://developer.arm.com/documentation/ihi0070/latest
https://developer.arm.com/documentation/ihi0070/latest

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

2. The original translation request might require multiple translation table walks, but the
subsequent prefetch request might hit in the lowest level of walk cache and not require any
memory accesses. If the prefetch request hits in the lowest level of walk cache, then the walk
caches are not updated and no memory accesses are performed.

The walk cache uses a round‑robin replacement policy.

The prefetch can only occur when the original request is complete, even if translation table walks
are required. The prefetch must wait for completion because it uses the same translation slot as
the original request. If the TCU receives a non‑speculative request for the next translation, it can
handle this reqest in a separate translation slot before the first prefetch is initiated. Therefore,
TCU prefetch only results in a performance advantage if the prefetch can complete before the
next translation is initiated. This occurs when the number of cycles between sequential translation
requests from the TBU is greater than the number of cycles that is taken for the TCU to handle the
original translation request and to start the subsequent prefetch.

Even if TCU prefetch is enabled, a prefetch does not occur if one of the following caused the
original request:

• A Speculative translation request, that is, DTI_TBU_TRANS_REQ.PERM[1:0] = 2'b11, if a TBU
receives a StashOnceShared, StashOnceUnique, or StashTranslation transaction

• A translation request for an atomic transaction that provides a data response, that is,
DTI_TBU_TRANS_REQ.PERM[1:0] = 2'b10, if a TBU receives an AtomicLoad, AtomicSwap, or
AtomicCompare transaction

If the original translation request returns one the following, prefetch also does not occur:

• Fault response

• Global bypass response

• Stream bypass response

Prefetch applies to both ATS and non‑ATS translation requests.

3.3.9 Error responses

AMBA defines external AXI slave error, SLVERR, and external AXI decode error, DECERR, and
TRANSFAULT. The MMU-600AE error response behavior depends on the interface.

The TCU ACE‑Lite interface treats SLVERR and DECERR identically, as an abort.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 52 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

When terminating a transaction, the TBS interface generates an OKAY, SLVERR, or TRANSFAULT
response depending on the reason for the termination.

If the TBU TBM interface receives a DECERR or SLVERR response to a downstream transaction, it
propagates the same abort type to the TBS interface.

3.3.10 Conversion between ACE-Lite and Armv8 attributes

The SMMUv3 architecture defines attributes in terms of the Arm®v8 architecture. See the Arm®

Architecture Reference Manual, Armv8, for Armv8‑A architecture profile. The MMU-600AE
components are therefore required to perform conversion between ACE‑Lite and Arm®v8
attributes.

The TBU must convert:

• ACE‑Lite attributes to Arm®v8 attributes when it receives transactions on the Transaction Slave
(TBS) interface

• Arm®v8 attributes to ACE‑Lite attributes when it outputs transactions on the Transaction
Master (TBM) interface

The TCU must convert Arm®v8 attributes to ACE‑Lite attributes when it outputs transactions on
the QTW/DVM interface.

3.3.10.1 Attribute handling

This section describes attribute handling in the MMU-600AE.

When translation is enabled and a PCIe Root Complex issues transactions to a TBU, the following
apply, depending on the type of transaction:

Untranslated (non‑ATS) transaction
The SMMU applies attributes that a combination of the input attributes, STE overrides, and
translation table descriptors determine.

Fully‑translated (full ATS) transaction
The MMU-600AE generates fixed attributes.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture
versions 3.0 and version 3.2 for information about the preceding transactions and their attributes.

TBUs that are connected to a PCIe Root Complex must have the pcie_mode input
signal tied HIGH, as the table in A.20 TBU tie-off signals on page 168 describes.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 53 of 183

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://static.docs.arm.com/ihi0070/b/SMMUv3_architecture_specification_IHI0070B.pdf
https://static.docs.arm.com/ihi0070/b/SMMUv3_architecture_specification_IHI0070B.pdf

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

3.3.10.1.1 Slave interface memory type attribute handling

The AxCACHE and AxDOMAIN signals contain the memory attributes that apply to the TBS
interface.

The following table shows the ACE‑Lite to Armv8 attribute conversions that the TBU TBS interface
performs.

Table 3-13: MMU-600AE ACE-Lite to Armv8 memory attribute conversions

AxCACHE attribute AxDOMAIN
attribute

Armv8 memory type Armv8
Shareability

Device Non‑bufferable System Device‑nGnRnE Outer Shareable

Device Bufferable System Device‑nGnRE Outer Shareable

Normal Non‑cacheable Bufferable

Normal Non‑cacheable Non‑bufferable

Write‑Through No Allocate

Write‑Through Read‑Allocate

Write‑Through Write‑Allocate

Write‑Through Read and Write‑Allocate

Any Normal Inner Non‑cacheable Outer
Non‑cacheable

Outer Shareable

Write‑Back No Allocate

Write‑Back Read‑Allocate

Write‑Back Write‑Allocate

Write‑Back Read‑Allocate
Write‑Allocate

Non‑shareable

Inner Shareable

Outer Shareable

Normal Inner Write‑Back Outer Write‑Back Non‑shareable

Non‑shareable

Outer Shareable

• Write-Back transactions are always treated as non-transient

• The Armv8‑A Read‑Allocate and Write‑Allocate hints are the same as the hints
that the AxCACHE Write‑Back type provides

• The TBU TBS interface converts instruction writes into data writes, that is, it
treats awprot_s[2] as 0

3.3.10.1.2 Master interface memory type attribute handling

The memory attributes that apply to the TBM and the QTW/DVM interfaces are contained in the
AxCACHE and AxDOMAIN signals.

In addition, the TBU TBM interface can use the AxLOCK signal to indicate an Exclusive access. The
QTW/DVM interface does not use the AxLOCK signal.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 54 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

On the TBU TBM interface, a bit on AxUSER indicates whether the memory type before the
conversion is Outer Cacheable.

The following table shows the Armv8 to ACE‑Lite attribute conversions that the master interfaces
perform.

Table 3-14: MMU-600AE Armv8 to ACE-Lite memory attribute conversions

Armv8 memory attribute AxCACHE attribute AxDOMAIN attribute AxLOCK attribute AxUSER Outer
Cacheable

Device-nGnRnE Device
Non‑bufferable

System As Transaction Slave
(TBS) AxLOCK value

0

Device-GRE

Device-nGRE

Device-nGnRE

Device Bufferable System As TBS AxLOCK value 0

Normal Inner Non‑cacheable
Outer Non‑cacheable

Normal Inner Write‑Through
Outer Non‑cacheable

Normal Inner Write‑Back
Outer Non‑cacheable

Normal
Non‑cacheable
Bufferable

System As TBS AxLOCK value 0

Normal Inner Non‑cacheable
Outer Write‑Through

Normal Inner Write‑Through
Outer Write‑Through

Normal Inner Write‑Back
Outer Write‑Through

Normal Inner Non‑cacheable
Outer Write‑Back

Normal Inner Write‑Through
Outer Write‑Back

Normal
Non‑cacheable
Bufferable

System As TBS AxLOCK value 1

Normal Inner Write-Back
Outer Write‑Back

Write‑Back No
Allocate

Write‑Back
Read‑Allocate

Write‑Back
Write‑Allocate

Write‑Back Read and
Write‑Allocate

If AxBURST == FIXED, Non‑shareable.

If AxBURST != FIXED, the attribute
reflects the Armv8 Shareability:

• Non‑shareable

• Inner Shareable

• Outer Shareable

0 1

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 55 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

3.3.11 AXI USER bits defined by the MMU-600AE TBU

The TBU TBM interface AxUSER signals, aruser_m and awuser_m, have 13 bits more than
TBUCFG_AxUSER_WIDTH defines. These extra bits are output in higher-order bits of aruser_m and
awuser_m.

The following table shows the MMU-600AE-defined aruser_m and awuser_m bits, where w
represents the AXI USER bus width that TBUCFG_AxUSER_WIDTH defines.

Table 3-15: MMU-600AE defined aruser_m and awuser_m bits

Bit position Value

[w+12] Outer Cacheable

[w+11:w+8] The Stream Table Entry (STE) defines the attributes

[w+7:w+4] The IMPLEMENTATION DEFINED stage 2 hardware attributes

[w+3:w] The IMPLEMENTATION DEFINED stage 1 hardware attributes

Bits[119:116] of the STE are IMPLEMENTATION DEFINED in SMMUv3. When the TCU
sends a DTI translation response message to a TBU, it outputs these bits in the
DTI_TBU_TRANS_RESP.CTXTATTR field. The MMU-600AE TBU outputs these bits as STE‑defined
attributes.

The TCU DTI_TBU_TRANS_RESP response also includes S1HWATTR[3:0] and S2HWATTR[3:0]
fields. These fields provide the IMPLEMENTATION DEFINED hardware attributes for each stage of
translation. The TBU reports these fields using awuser_m and aruser_m.

The S1HWATTR and S2HWATTR fields are calculated as follows:

S1HWATTR
S1HWATTR[n] is equal to bit[n+59] of the stage 1 translation table final-level descriptor
when both of the following conditions apply:

• SMMUv3 permits the bit to have an IMPLEMENTATION DEFINED hardware use

• SMMUv3 does not permit bit[n+59] of the stage 2 translation table final‑level descriptor
to have an IMPLEMENTATION DEFINED hardware use

Otherwise, S1HWATTR[n] = 0.

S2HWATTR
S2HWATTR[n] is equal to bit[n+59] of the stage 2 translation table final-level descriptor
when SMMUv3 permits that bit to have an IMPLEMENTATION DEFINED hardware use.
Otherwise, S2HWATTR[n] = 0.

Arm recommends that systems always use the value of S1HWATTR[n] | S2HWATTR[n], that is:

• The value of the corresponding stage 2 final-level descriptor bit, if it is enabled for hardware
use and stage 2 translation is enabled

• The value of the corresponding stage 1 final-level descriptor bit, if it is enabled for hardware
use and stage 1 translation is enabled

• Otherwise, 0

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 56 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Related information
Master interface memory type attribute handling on page 54

3.4 Constraints and limitations of use
Certain usage constraints and limitations apply to the MMU-600AE.

Unless otherwise specified, an IMPLEMENTATION DEFINED field in a structure that the MMU-600AE:

• Generates is 0

• Reads is ignored

3.4.1 SMMUv3 support

The MMU-600AE does not implement, or require, certain SMMUv3 functionality.

The SMMUv3 architectural registers include a set of ID registers that indicate the SMMUv3
features that the MMU-600AE implements. The following table shows the SMMUv3 ID register
values that the MMU-600AE uses.

Table 3-16: MMU-600AE SMMUv3 ID register architectural options

Register Field Value Configurable Description for value

S2P 1 N Stage 2 translations are supported.

S1P 1 N Stage 1 translations are supported.

TTF 0b11 N Both AArch32 Long-descriptor and AArch64 translation
tables are supported.

COHACC sup_cohacc Y Coherent access to translations, structure, and queues is
supported.

BTM sup_btm Y Broadcast TLB maintenance is supported.

HTTU[1:0] 0b00 N Updates of the Dirty state and Access flag are not
supported.

DORMHINT 0 N Dormant hint is not supported.

HYP 1 N Hypervisor stage 1 context is supported.

ATS 1 N PCIe Root Complex ATS is supported.

NS1ATS 1 N Stage 1-only ATS is not supported.

ASID16 1 N 16-bit ASID is supported.

MSI 1 N Message Signaled Interrupts (MSIs) are supported.

SEV sup_sev Y SMMU and system support for the generation of
events.

ATOS 0 N Address translation operations are not supported.

PRI 1 N PCIe Page Request Interface (PRI) is supported.

VMW 1 N VMID wildcard-matching is supported for TLB
invalidation.

SMMU_IDR0

VMID16 1 N 16-bit VMIDs are supported.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 57 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Register Field Value Configurable Description for value

CD2L 1 N 2-level Context Descriptor (CD) tables are supported.

VATOS 0 N Virtual ATOS page interface is not supported.

TTENDIAN 0b00 N Mixed-endian translation walks are supported.

STALL_MODEL {0,
SMMU_S_CR0.NSSTALLD}

N Stall model and Terminate model are both supported,
unless the Secure world disables Non-secure stalling.

TERM_MODEL 0 N Terminated transactions can terminate with either RAZ/
WI behavior or abort.

ST_LEVEL 0b01 N 2-level Stream tables are supported.

SIDSIZE 0b11000 N 24-bit stream IDs are supported.

SSIDSIZE 0b10100 N 20-bit substream IDs are supported.

PRIQS 0b10011 N 219 PRI queue entries are supported.

EVENTQS 0b10011 N 219 Event queue entries are supported.

CMDQS 0b10011 N 219 Command queue entries are supported.

ATTR_PERMS_OVR 1 N Incoming permission attributes can be overridden.

ATTR_TYPES_OVR 1 N Incoming memory attributes can be overridden.

REL 0 N Base addresses are not fixed.

QUEUES_PRESET 0 N The queue base addresses are not fixed.

SMMU_IDR1

TABLES_PRESET 0 N The table base addresses are not fixed.

SMMU_IDR2 BA_VATOS 0 N No VATOS page is present.

HAD 1 N Hierarchical Attribute Disable is supported.

PBHA 1 N Page‑based hardware attributes are supported.

XNX 1 N EL0/EL1 execute control distinction at stage 2 is
supported for both AArch64 and AArch32 stage 2
translation tables.

SMMU_IDR3

PPS 1 N If the request has a Process Address Space ID (PASID), the
PASID is included in PRI queue overflow auto-generated
responses. The STE.PPAR field is not checked and is
treated as 1.

SMMU_IDR4 IMPDEF 0 N No IMPLEMENTATION DEFINED features apply.

OAS sup_oas Y The size of the physical address that is output from the
SMMU.

GRAN4K 1 N 4KB translation granule is supported.

GRAN16K 1 N 16KB translation granule is supported.

GRAN64K 1 N 64KB translation granule is supported.

VAX 0b00 N Virtual addresses of 48 bits per CD.TTBx are supported.

SMMU_IDR5

STALL_MAX TCUCFG_XLATE_SLOTS N Maximum number of outstanding stalled transactions
that the SMMU supports.

Implementer 0x43B N Arm implementation.

Revision MAX[0x0, ecorevnum] Y
(ecorevnum
is
configurable)

Minor revision is p0.

Note:
ecorevnum is not configurable.

SMMU_IIDR

Variant 1 N Product variant, or major revision is r1.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 58 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Register Field Value Configurable Description for value

ProductID 0x485 N Arm ID.

ArchMinorRev 0b0001 N Architecture minor revision is SMMUv3.1.SMMU_AIDR

ArchMajorRev 0b0000 N Architecture major revision is SMMUv3.

MSI 1 N Secure MSIs are supported.SMMU_S_IDR0

STALL_MODEL 0b00 N Stall model and Terminate model are both supported.

S_SIDSIZE 0b11000 N 24‑bit Secure stream IDs are supported.SMMU_S_IDR1

SECURE_IMPL 1 N Security implemented.

SMMU_S_IDR3 SAMS 1 N Secure Address Translation Services (ATS) maintenance is
not implemented.

In an MMU-600AE-based system, the SFM_ERR global error cannot occur, because Service Failure
Mode (SFM) is not required.

The MMU-600AE accepts but does not act on the following SMMUv3 Prefetch commands:

CMD_PREFETCH_CONFIG
Prefetch configuration. This command prefetches the required configuration for a StreamID.

CMD_PREFETCH_ADDR
Prefetch address. This command prefetches configuration and TLB entries for an address
range.

The MMU-600AE does not generate any of the following SMMUv3 events, because they are not
required:

F_UUT
Unsupported Upstream Transaction.

F_TLB_CONFLICT
TLB conflict.

F_CFG_CONFLICT
Configuration cache conflict.

E_PAGE_REQUEST
Speculative page request hint.

IMPDEF_EVENTn
IMPLEMENTATION DEFINED event allocation.

F_TLB_CONFLICT and F_CFG_CONFLICT are not required because the
MMU-600AE caches include logic to ensure that only one entry can match at a
time. If multiple cache entries match a transaction or translation request, only one
entry is used and the others are ignored.

The MMU-600AE never merges events. The STE.MEV field is ignored.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 59 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

The TBU ignores the STE.ALLOCCFG field that the TCU communicates to the TBU in the
ALLOCCFG field of the DTI_TBU_TRANS_RESP message.

The TCU sup_oas[2:0] signal must not be set to 0b110. If this value is used, the TCU treats it
as 0b101, that is, 48 bits. The TBU supports a 48‑bit PA size. The MMU-600AE TBU and TCU
cannot be used with other components that implement DTI and are configured for a 52‑bit PA size.

Related information
SMMU architectural registers on page 65

3.4.2 AMBA support

Certain behavior applies to how the MMU-600AE implements its ACE-Lite interfaces.

3.4.2.1 TBU support for ACE-Lite transactions

The MMU-600AE TBU supports many ACE-Lite transaction types, and handles these transactions
in certain ways. Typically, when propagating downstream transactions on the TBU TBM interface,
the MMU-600AE uses the same transaction type that the upstream master presents to the TBU
TBS interface.

If the shareability domain of a downstream WriteLineUnique transaction is not Inner Shareable or
Outer Shareable, the MMU-600AE outputs the transaction as WriteNoSnoop. That is, AWSNOOP
= 0b0000. The AWDOMAIN signal indicates the shareability domain of write transactions.

3.4.2.2 Transactions that can result in a translation fault

In an MMU-600AE system, some transactions can result in a translation fault, and certain behavior
is associated with such transactions.

The MMU-600AE treats the following transactions as ordinary reads when calculating translation
faults:

• CleanShared.

• CleanInvalid.

• MakeInvalid.

• CleanSharedPersist.

• ReadOnceMakeInvalid.

• ReadOnceCleanInvalid.

Therefore, these transactions might require either read permission or execute permission at the
appropriate privilege level.

The MMU-600AE treats the following transactions as ordinary writes when calculating translation
faults:

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 60 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

• WriteUniquePtlStash.

• WriteUniqueFullStash.

Therefore, these transactions require write permission at the appropriate privilege level.

CleanShared, CleanInvalid, MakeInvalid, and CleanSharedPersist transactions do not have a memory
type. The input transaction and output transaction memory type and allocation hints are ignored
and replaced by Normal, Inner Write-Back, Outer Write-Back, Read Allocate, Write Allocate. This
behavior means that the ARDOMAIN output on the TBM interface is never System Shareable for
these transactions, because they are never Non-cacheable or Device.

The MMU-600AE treats transactions that pass the translation fault check as follows:

MakeInvalid transactions
The MMU-600AE converts MakeInvalid transactions to CleanInvalid transactions, unless the
translation also grants write permission and Destructive Read Enable (DRE) permission.

ReadOnceMakeInvalid and ReadOnceCleanInvalid transactions
The MMU-600AE outputs ReadOnceMakeInvalid transactions as ReadOnceCleanInvalid
transactions, unless the translation also granted write permission and DRE permission.
If the final transaction attributes on the TBU TBM interface are not Inner Shareable Write-
Back or Outer Shareable Write-Back, the MMU-600AE converts ReadOnceMakeInvalid and
ReadOnceCleanInvalid transactions into ordinary reads.

WriteUniquePtlStash and WriteUniqueFullStash transactions
If they pass the translation fault check, the MMU-600AE converts WriteUniquePtlStash and
WriteUniqueFullStash transactions to ordinary write transactions if either:

• The translation did not grant Directed Cache Prefetch (DCP) permission.

• The final transaction attributes on the TBU TBM interface are not Inner Shareable or
Outer Shareable Write-Back.

If such a conversion occurs, AWSTASH* is driven as 0.

3.4.2.3 Transactions that cannot result in a translation fault

In an MMU-600AE system, certain transactions cannot result in a translation fault, and certain
behavior is associated with such transactions.

The following transactions never result in a translation fault:

• StashOnceShared

• StashOnceUnique

• StashTranslation

If any of these transactions require a translation request to the TCU, the MMU-600AE issues a
Speculative translation request on the DTI interconnect. StashOnceShared and StashOnceUnique
transactions are terminated in the TBU, with a BRESP value of OKAY, when any of the following
cases apply:

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 61 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

• The translation did not grant Directed Cache Prefetch (DCP) permission

• The final transaction attributes on the TBM interface are not Inner Shareable or Outer
Shareable Write‑Back

• The translation did not grant any of read, write, or execute permission at the appropriate
privilege level

Only one of these permissions is required for the stash transaction to be
permitted.

A BRESP value of OKAY indicates transaction success. The MMU-600AE always
generates this value when a StashOnceShared or a StashOnceUnique transaction
is terminated in the TBU. This behavior applies even when a StreamDisable or
GlobalDisable translation response causes the transaction to be terminated.

The MMU-600AE never propagates StashTranslation transactions downstream, and uses
StashTranslation only to prefetch Main TLB contents. MMU-600AE always terminates
StashTranslation transactions with a BRESP value of OKAY, even if no translation could be stored in
the Main TLB.

The TBU ignores AWPROT[0] and AWPROT[2] for StashTranslation transactions, because they do
not affect Speculative translation requests.

A StashTranslation transaction can be used to prefetch translations into the
Main TLB of the MMU-600AE. However, for this prefetching to be useful, any
subsequent transactions that intend to take advantage of the translations that
have been prefetched into the Main TLB must use the same StreamID as the
original prefetch. The StreamID identifies a translation context. Using a different
StreamID for a subsequent transaction means that this subsequent transaction uses
a different translation context to the translation that has been prefetched into the
Main TLB and might lead to a TLB miss.

3.4.2.4 AXI5 support

The AXI5 protocol includes extensions that are not included in previous AXI versions. The
Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AXI5, ACE and ACE5 defines these
extensions.

The following table shows whether individual TCU and TBU interfaces support the AXI5
extensions.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 62 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional description

Table 3-17: TCU and TBU interface support for AXI5 extensions

AXI5 extension QTW/DVM TBU TBS TBU TBM

DVM_v8.1 Yes - -

Wakeup_Signals Yes Yes Yes

Atomic_Transactions - Yes Yes

Coherency_Connection_Signals Yes - -

Cache_Stash_Transactions - Yes Yes

DeAllocation_Transactions - Yes Yes

Untranslated_Transactions - Yes Yes

Poison - - -

Check_Type - - -

QoS_Accept - - -

Trace_Signals - - -

Loopback_Signals - - -

NSAccess_Identifiers - - -

Persist_CMO - Yes Yes

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 63 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

4. Programmer's model
This chapter describes the MMU-600AE programmer's model.

4.1 About the programmer's model
This section provides general information about the MMU-600AE register properties.

The following information applies to the MMU-600AE registers:

• The base address is not fixed, and can be different for any particular system implementation.
The offset of each register from the base address is fixed.

• Access type is described as follows:

RW Read and write.
RO Read‑only.
WO Write‑only.
RAZ Read‑As‑Zero.
WI Writes ignored.

• Do not attempt to access reserved or unused address locations. Reading these locations results
in RAZ and writing to these locations results in WI.

• Unless otherwise stated in the accompanying text:

◦ Do not modify UNDEFINED register bits.

◦ Ignore UNDEFINED register bits on reads.

◦ All register bits are reset to 0 by a system or Cold reset.

• Bit positions that are described as reserved are:

◦ In an RW register, RAZ/WI.

◦ In an RO register, RAZ.

◦ In a WO register, WI.

The MMU-600AE registers are accessed using the PROG APB4 slave interface on the TCU, and
cannot be accessed directly through any other slave interfaces.

Some registers are 64 bits, but the PROG APB4 interface is 32 bits. Because software accesses
64‑bit registers 32 bits at a time, such accesses are not guaranteed to be 64‑bit atomic. This
behavior does not cause problems for software, because the SMMUv3 architecture does not
require 64‑bit atomic access to any registers.

The programmer's model contains separate TBU and TCU regions for internal control, RAS, and
identification registers. Accesses to unmapped or reserved registers are RAZ/WI. Non-secure
accesses to Secure registers are RAZ/WI. The MMU-600AE implements the identification register
scheme that the SMMUv3 architecture defines.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 64 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

The MMU-600AE implements all the Performance Monitor Counter Group (PMCG) registers that the
SMMUv3 architecture defines, except for:

• SMMU_PMCG_IRQ_CFG0

• SMMU_PMCG_IRQ_CFG1

• SMMU_PMCG_IRQ_CFG2

• SMMU_PMCG_IRQ_STATUS

The MMU-600AE does not implement the following SMMUv3 architectural registers, and accesses
to these locations are RAZ/WI:

• SMMU_IDR4

• SMMU_STATUSR

• SMMU_AGBPA

• SMMU_GATOS_*

• SMMU_S_IDR4

• SMMU_S_AGBPA

• SMMU_S_GATOS_*

• SMMU_VATOS_*

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information about the SMMU architectural registers.

4.2 SMMU architectural registers
The MMU-600AE implements many of the SMMU architectural registers, as defined by the Arm®

System Memory Management Unit Architecture Specification, SMMU architecture version 3.0 and
version 3.1.

The following table lists the SMMUv3 architectural registers that the MMU-600AE implements.

All writable register fields reset to 0 unless the SMMU architecture specifies
otherwise.

Table 4-1: SMMUv3 architectural registers

Register Name Description

SMMU_S_IDR0 - SMMU_S_IDR3 SMMU Secure feature
Identification Registers

Provides information about the Secure features that the SMMU
implementation supports.

SMMU_S_CR0 Secure global Control Register 0 Provides global configuration of the Secure SMMU.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 65 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Register Name Description

SMMU_S_CR0ACK Secure global Control Register 0
update Acknowledge

Provides acknowledgment of completion of updates to
SMMU_S_CR0.

SMMU_S_CR1

SMMU_S_CR2

Secure global Control Registers Provides the controls for Secure table and queue access
attributes.

SMMU_S_INIT Secure Initialization control register Provides a control to invalidate all Secure SMMU caching on
system initialization.

SMMU_S_GBPA Secure Global Bypass Attribute
register

Controls the global bypass attributes that are used for
transactions from Secure streams when the MMU is disabled.

SMMU_S_IRQ_CTRL Secure Interrupt Control register Contains enables for SMMU interrupts.

SMMU_S_IRQ_CTRLACK Secure Interrupt Control register
update Acknowledge

Provides acknowledgment of the completion of updates to
SMMU_S_IRQ_CTRL.

SMMU_S_GERROR Secure Global Error status register Provides information on Secure global programming interface
errors.

SMMU_S_GERRORN Secure Global Error
Acknowledgment register

Contains the acknowledgment fields for SMMU_S_GERROR
errors.

SMMU_S_GERROR_IRQ_CFG0 -
SMMU_S_GERROR_IRQ_CFG2

Secure Global Error IRQ
Configuration register

Contains the Secure MSI address configuration for the GERROR
IRQ.

SMMU_S_STRTAB_BASE Secure Stream Table Base address
register

Contains the base address and attributes for the Secure Stream
table.

SMMU_S_STRTAB_BASE_CFG Secure Stream Table Base
Configuration register

Contains configuration fields for the Secure Stream table.

SMMU_S_CMDQ_BASE Secure Command queue Base
address register

Contains the base address and attributes for the Secure
Command queue.

SMMU_S_CMDQ_PROD Secure Command queue Producer
index register

Contains the Secure Command queue index for writes by the
producer.

SMMU_S_CMDQ_CONS Secure Command queue Consumer
index register

Contains the Secure Command queue index for reads by the
consumer.

SMMU_S_EVENTQ_BASE Secure Event queue Base address
register

Contains the base address and attributes for the Secure Event
queue.

SMMU_S_EVENTQ_PROD Secure Event queue Producer index
register

Contains the Secure Event queue index for writes by the
producer.

SMMU_S_EVENTQ_CONS Secure Event queue Consumer
index register

Contains the Secure Event queue index for reads by the
consumer.

SMMU_S_EVENTQ_IRQ_CFG0 -
SMMU_S_EVENTQ_IRQ_CFG2

Secure Event queue IRQ
Configuration registers

Contains the MSI address configuration for the Secure Event
queue IRQ.

SMMU_IDR0 - SMMU_IDR3

SMMU_IDR5

SMMU feature Identification
Registers

Provides information about the features that the SMMU
implementation supports.

SMMU_IIDR Implementation Identification
Register

Provides implementer, part, and revision information for the
SMMU implementation.

SMMU_AIDR Architecture Identification Register Identifies the SMMU architecture version to which the
implementation conforms.

SMMU_CR0 Non‑secure global Control Register
0

Provides the controls for the global configuration of the
Non‑secure SMMU.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 66 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Register Name Description

SMMU_CR0ACK Non‑secure global Control Register
0 update Acknowledge register

Provides acknowledgment of completion of updates to
SMMU_CR0.

SMMU_CR1 Non‑secure global Control Register
1

Provides the controls for Non‑secure table and queue access
attributes.

SMMU_CR2 Non‑secure global Control Register
2

Provides the controls for the configuration of the global
Non‑secure features.

SMMU_GBPA Non‑secure Global Bypass
Attribute register

Controls the global bypass attributes that are used for
transactions from Non‑secure streams when the MMU is
disabled.

SMMU_IRQ_CTRL Non‑secure Interrupt Control
register

Provides IRQ enable flags for edge‑triggered wired outputs, if
implemented, and MSI writes, if implemented.

SMMU_IRQ_CTRLACK Non‑secure Interrupt Control
register update Acknowledge
register

Provides acknowledgment of the completion of updates to
SMMU_IRQ_CTRL.

SMMU_GERROR Non‑secure Global Error status
register

Provides information about Non-secure global programming
interface errors.

SMMU_GERRORN Non‑secure Global Error
acknowledgment register

Contains the acknowledgment fields for SMMU_GERROR errors.

SMMU_GERROR_IRQ_CFG0 Non‑secure Global Error IRQ
Configuration register 0

Contains the MSI address configuration for the GERROR IRQ.

SMMU_GERROR_IRQ_CFG1 Non‑secure Global Error IRQ
Configuration register 1

Contains the MSI payload configuration for the GERROR IRQ.

SMMU_GERROR_IRQ_CFG2 Non‑secure Global Error IRQ
Configuration register 2

Contains the MSI attribute configuration for the GERROR IRQ.

SMMU_STRTAB_BASE Non‑secure Stream Table Base
address register

Contains the base address and attributes for the Non-secure
Stream table.

SMMU_STRTAB_BASE_CFG Non‑secure Stream Table
Configuration register

Contains configuration fields for the Non‑secure Stream table.

SMMU_CMDQ_BASE Non‑secure Command queue Base
address register

Contains the base address and attributes for the Non‑secure
Command queue.

SMMU_CMDQ_PROD Non‑secure Command queue
Producer index register

Contains the Non‑secure Command queue index for writes by
the producer.

SMMU_CMDQ_CONS Non‑secure Command queue
Consumer index register

Contains the Non‑secure Command queue index for reads by
the consumer.

SMMU_EVENTQ_BASE Non‑secure Event queue Base
address register

Contains the base address and attributes for the Non‑secure
Event queue.

SMMU_EVENTQ_PROD Non‑secure Event queue Producer
index register

Contains the Non‑secure Event queue index for writes by the
producer.

SMMU_EVENTQ_CONS Non‑secure Event queue
Consumer index register

Contains the Non‑secure Event queue index for reads by the
consumer.

SMMU_EVENTQ_IRQ_CFG0 Non‑secure Event queue IRQ
Configuration register 0

Contains the MSI address configuration for the Event queue
IRQ.

SMMU_EVENTQ_IRQ_CFG1 Non‑secure Event queue IRQ
Configuration register 1

Contains the MSI payload configuration for the Event queue
IRQ.

SMMU_EVENTQ_IRQ_CFG2 Non‑secure Event queue IRQ
Configuration register 2

Contains the MSI attribute configuration for the Event queue
IRQ.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 67 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Register Name Description

SMMU_PRIQ_BASE Non‑secure PRI queue Base
address register

Contains the base address and attributes for the Non‑secure PRI
queue.

SMMU_PRIQ_PROD Non‑secure PRI queue Producer
index register

Contains the Non‑secure PRI queue index for writes by the
producer.

SMMU_PRIQ_CONS Non‑secure PRI queue Consumer
index register

Contains the Non‑secure PRI queue index for reads by the
consumer.

SMMU_PRIQ_IRQ_CFG0 Non‑secure PRI queue IRQ
Configuration register 0

Contains the MSI address configuration for the PRI queue IRQ.

SMMU_PRIQ_IRQ_CFG1 Non‑secure PRI queue IRQ
Configuration register 1

Contains the MSI payload configuration for the PRI queue IRQ.

SMMU_PRIQ_IRQ_CFG2 Non‑secure PRI queue IRQ
Configuration register 2

Contains the MSI attribute configuration for the PRI queue IRQ.

The MMU-600AE implements an SMMUv3 Performance Monitor Counter Group (PMCG) in the TCU
and in each TBU. The following table lists the registers that the MMU-600AE implements in each
PMCG.

Table 4-2: SMMUv3 PMCG registers

Register Name Description

SMMU_PMCG_EVCNTR0 -
SMMU_PMCG_EVCNTR3

SMMU PMCG Event Counter
registers

Contains the values of the event counters.

SMMU_PMCG_EVTYPER0 -
SMMU_PMCG_EVTYPER3

SMMU PMCG Event Type
configuration registers

Configures the events that the corresponding counter counts.

SMMU_PMCG_SVR0 -
SMMU_PMCG_SVR3

SMMU PMCG Shadow Value
Registers

Contains the shadow value of the corresponding event counter.

SMMU_PMCG_SMR0 SMMU PMCG Stream Match
filter Register

Configures the stream match filter for the corresponding event
counter.

SMMU_PMCG_CNTENSET0 SMMU PMCG Counter Enable
Set register

Provides the set mechanism for the counter enables.

SMMU_PMCG_CNTENCLR0 SMMU PMCG Counter Enable
Clear register

Provides the clear mechanism for the counter enables.

SMMU_PMCG_INTENSET0 SMMU PMCG Interrupt
contribution Enable Set register

Provides the set mechanism for the counter interrupt contribution
enables.

SMMU_PMCG_INTENCLR0 SMMU PMCG Interrupt
contribution Enable Clear
register

Provides the clear mechanism for the counter interrupt enables.

SMMU_PMCG_OVSCLR0 SMMU PMCG Overflow Status
Clear register

Provides the clear mechanism for the overflow status bits and
provides read access to the overflow status bit values.

SMMU_PMCG_OVSSET0 SMMU PMCG Overflow Status
Set register

Provides the set mechanism for the overflow status bits and
provides read access to the overflow status bit values.

SMMU_PMCG_CAPR SMMU PMCG Counter shadow
value Capture Register

Controls the counter shadow value capture mechanism.

SMMU_PMCG_SCR SMMU PMCG Secure Control
Register

Secure Control Register.

SMMU_PMCG_CFGR SMMU PMCG Configuration
information Register

Provides information about the PMCG implementation.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 68 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Register Name Description

SMMU_PMCG_CR SMMU PMCG Control Register Contains the Performance Monitor control flags.

SMMU_PMCG_CEID0 -
SMMU_PMCG_CEID1

SMMU PMCG Common Event
ID registers

Contains the lower and upper 64 bits of the Common Event
identification bitmap.

SMMU_PMCG_IRQ_CTRL SMMU PMCG IRQ enable
register

Contains the Performance Monitors IRQ enable.

SMMU_PMCG_IRQ_CTRLACK SMMU PMCG IRQ enable
Acknowledge register

Provides acknowledgment of the completion of updates to
SMMU_PMCG_IRQ_CTRL.

SMMU_PMCG_AIDR SMMU PMCG Architecture
Identification Register

Provides the Performance Monitor Architecture Identification.

SMMU_PMCG_ID_REGS ID registers IMPLEMENTATION DEFINED.

SMMU_PMCG_PMAUTHSTATUS PMU Authentication Status
register

Performance Monitor authentication status.

SMMU_PMCG_PMDEVARCH PMU Device Architecture
register

Performance Monitor architecture identifier.

SMMU_PMCG_PMDEVTYPE PMU Device Type register Performance Monitor device type.

4.3 MMU-600AE memory map
The MMU-600AE memory map contains all registers.

The following table shows the MMU-600AE memory map with the maximum number of
implemented TBUs.

Table 4-3: MMU-600AE memory map

Address range Description

0x000000 - 0x03FFFC TCU registers.

0x040000 - 0x05FFFC

0x060000 - 0x07FFFC

0x080000 - 0x09FFFC

.

.

.

0x1C00000 - 0x1DFFFC

0x1E00000 - 0x1FFFFC

TBU0 registers.

TBU1 registers

TBU2 registers.

.

.

.

TBU12 registers.

TBU13 registers.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 69 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

All TBU and TCU register addresses in this manual are described relative to the base
address for that component.

The following table shows the MMU-600AE TCU memory map.

Table 4-4: MMU-600AE TCU memory map

Address Description

0x00000 - 0x0FFFC TCU registers, page 0, including:

• SMMUv3 registers, page 0.

• TCU Performance Monitor Counter Group (PMCG) registers, page 0, starting at offset 0x02000.

• TCU microarchitectural registers.

0x10000 - 0x1FFFC TCU registers, page 1.

This address range contains the SMMUv3 registers, page 1.

0x20000 - 0x2FFFC TCU registers, page 2.

This address range contains the TCU PMCG registers, page 1, starting at offset 0x22000.

0x30000 - 0x3FFFC Reserved.

The following table shows the MMU-600AE TBU memory map.

Table 4-5: MMU-600AE TBU memory map

Address Description

0x00000 - 0x0FFFC TBU registers, page 0, including:

• TBU PMCG registers, page 0, starting at offset 0x02000.

• TBU microarchitectural registers.

0x10000 - 0x1FFFC TBU registers, page 1.

This address range contains the TBU PMCG registers, page 1, starting at offset 0x12000.

4.4 Register summary
The register summary lists all MMU-600AE registers and some key characteristics.

TBU identification register summary
The following table shows the TBU identification registers in offset order from the base memory
address.

Table 4-6: TBU identification register summary

Offset Name Type Description

0x00FD0 SMMU_PIDR4 RO 4.9 TBU component and peripheral ID registers on page 88

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 70 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Offset Name Type Description

0x00FD4 SMMU_PIDR5 RO

0x00FD8 SMMU_PIDR6 RO

0x00FDC SMMU_PIDR7 RO

0x00FE0 SMMU_PIDR0 RO

0x00FE4 SMMU_PIDR1 RO

0x00FE8 SMMU_PIDR2 RO

0x00FEC SMMU_PIDR3 RO

0x00FF0 SMMU_CIDR0 RO

0x00FF4 SMMU_CIDR1 RO

0x00FF8 SMMU_CIDR2 RO

0x00FFC SMMU_CIDR3 RO

TBU RAS register summary
The following table shows the TBU Reliability, Availability, and Serviceability (RAS) registers in offset
order from the base memory address.

Table 4-7: TBU RAS register summary

Offset Name Type Description

0x08E80 TBU_ERRFR RO 4.12.1 TBU_ERRFR on page 93

0x08E88 TBU_ERRCTLR RW 4.12.2 TBU_ERRCTLR on page 93

0x08E90 TBU_ERRSTATUS RW 4.12.3 TBU_ERRSTATUS on page 94

0x08EC0 TBU_ERRGEN RW 4.12.4 TBU_ERRGEN on page 96

TBU microarchitectural register summary
The following table shows the TBU microarchitectural registers in offset order from the base
memory address.

Table 4-8: TBU microarchitectural register summary

Offset Name Type Description

0x08E00 TBU_CTRL RW 4.11.1 TBU_CTRL on page 91

0x08E18 TBU_SCR RW 4.11.2 TBU_SCR on page 91

TCU identification register summary
The following table shows the TCU identification registers in offset order from the base memory
address.

Table 4-9: TCU identification register summary

Offset Name Type Description

0x00FD0 SMMU_PIDR4 RO

0x00FD4 SMMU_PIDR5 RO

0x00FD8 SMMU_PIDR6 RO

4.5 TCU component and peripheral ID registers on page 73

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 71 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Offset Name Type Description

0x00FDC SMMU_PIDR7 RO

0x00FE0 SMMU_PIDR0 RO

0x00FE4 SMMU_PIDR1 RO

0x00FE8 SMMU_PIDR2 RO

0x00FEC SMMU_PIDR3 RO

0x00FF0 SMMU_CIDR0 RO

0x00FF4 SMMU_CIDR1 RO

0x00FF8 SMMU_CIDR2 RO

0x00FFC SMMU_CIDR3 RO

TCU and TBU PMU identification register summary
The TCU and the TBU use the same PMU identification registers. The following table shows the
TCU and TBU PMU identification registers in offset order from the base memory address.

Table 4-10: TCU and TBU PMU identification register summary

Offset Name Type Description

0x02FB8 SMMU_PMCG_PMAUTHSTATUS RO

0x02FD0 SMMU_PMCG_PIDR4 RO

0x02FD4 SMMU_PMCG_PIDR5 RO

0x02FD8 SMMU_PMCG_PIDR6 RO

0x02FDC SMMU_PMCG_PIDR7 RO

0x02FE0 SMMU_PMCG_PIDR0 RO

0x02FE4 SMMU_PMCG_PIDR1 RO

0x02FE8 SMMU_PMCG_PIDR2 RO

0x02FEC SMMU_PMCG_PIDR3 RO

0x02FF0 SMMU_PMCG_CIDR0 RO

0x02FF4 SMMU_PMCG_CIDR1 RO

0x02FF8 SMMU_PMCG_CIDR2 RO

0x02FFC SMMU_PMCG_CIDR3 RO

4.6 TCU PMU component and peripheral ID registers on page 74

4.10 TBU PMU component and peripheral ID registers on page 89

TCU RAS register summary
The following table shows the TCU RAS registers in offset order from the base memory address.

Table 4-11: TCU RAS register summary

Offset Name Type Description

0x08E80 TCU_ERRFR RO 4.8.1 TCU_ERRFR on page 84

0x08E88 TCU_ERRCTLR RW 4.8.2 TCU_ERRCTLR on page 85

0x08E90 TCU_ERRSTATUS RW 4.8.3 TCU_ERRSTATUS on page 85

0x08EC0 TCU_ERRGEN RW 4.8.4 TCU_ERRGEN on page 87

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 72 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

TCU microarchitectural register summary
The following table shows the TCU microarchitectural registers in offset order from the base
memory address.

Table 4-12: TCU microarchitectural register summary

Offset Name Type Description

0x08E00 TCU_CTRL RW 4.7.1 TCU_CTRL on page 75

0x08E04 TCU_QOS RW 4.7.2 TCU_QOS on page 77

0x08E08 TCU_CFG RO 4.7.3 TCU_CFG on page 78

0x08E10 TCU_STATUS RO 4.7.4 TCU_STATUS on page 79

0x08E18 TCU_SCR RW 4.7.5 TCU_SCR on page 80

0x09000 - 0x093FC TCU_NODE_CTRLn RW 4.7.6 TCU_NODE_CTRLn on page 81

0x09400 - 0x097FC TCU_NODE_STATUSn RO 4.7.7 TCU_NODE_STATUSn on page 82

4.5 TCU component and peripheral ID registers
The component and peripheral identity registers comply with the format that the Arm CoreLink™

and CoreSight™ components use, and recommended in the SMMUv3 architecture. They provide
key information about the MMU-600AE hardware, including the product and associated revision
number. They also identify Arm as the designer of the SMMU.

These registers are all read‑only. Each field defines a single byte in the least significant 8 bits, and
the most significant 24 bits are reserved. The least significant 8 bits of the four Component ID
registers form a single 32‑bit conceptual ID register. In a similar way, the defined fields of the eight
Peripheral ID registers form a conceptual 64‑bit ID register.

Table 4-13: TCU Component and Peripheral ID registers bit descriptions

Register Offset Bits Value Description

[7:4] 0x0 4KB region count.SMMU_PIDR4 0x00FD0

[3:0] 0x4 JEP106 continuation code for Arm.

SMMU_PIDR5 0x00FD4 [7:0] 0x00 Reserved.

SMMU_PIDR6 0x00FD8 [7:0] 0x00 Reserved.

SMMU_PIDR7 0x00FDC [7:0] 0x00 Reserved.

SMMU_PIDR0 0x00FE0 [7:0] 0x87 Part number[7:0].

[7:4] 0xB JEP106 ID code[3:0] for Arm®.SMMU_PIDR1 0x00FE4

[3:0] 0x4 Part number[11:8].

[7:4] 0x1 MMU-600AE major revision.

The value 0x1 indicates major product
revision r1.

SMMU_PIDR2 0x00FE8

[3] 0b1 The component uses a manufacturer identity
code that JEDEC allocates, according to the
JEP106 specification.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 73 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Register Offset Bits Value Description

[2:0] 0b011 JEP106 ID code[6:4] for Arm®.

[7:4] MAX[0x0,ecorevnum] MMU-600AE minor revision.

The value 0x0 indicates minor product
revision p0.

SMMU_PIDR3 0x00FEC

[3:0] 0x0 CMOD. This field is not used.

SMMU_CIDR0 0x00FF0 [7:0] 0x0D

SMMU_CIDR1 0x00FF4 [7:0] 0xF0

SMMU_CIDR2 0x00FF8 [7:0] 0x05

SMMU_CIDR3 0x00FFC [7:0] 0xB1

Preamble.

4.6 TCU PMU component and peripheral ID registers
The component and peripheral identity registers comply with the format that Arm CoreLink™

and CoreSight™ components use, and that the SMMUv3 architecture recommends. They provide
key information about the MMU-600AE hardware, including the product and associated revision
number. They also identify Arm as the designer of the SMMU.

These registers are all read‑only. Each field defines a single byte in the least significant 8 bits, and
the most significant 24 bits are reserved. The least significant 8 bits of the four Component ID
registers form a single 32‑bit conceptual ID register. In a similar way, the defined fields of the eight
Peripheral ID registers form a conceptual 64‑bit ID register.

Table 4-14: TCU PMU Component and Peripheral ID registers bit descriptions

Register Offset Bits Value Description

SMMU_PMCG_PMAUTHSTATUS 0x02FB8 [7:0] 0x00 No authentication interface is implemented.

[7:4] 0x0 4KB region count.SMMU_PMCG_PIDR4 0x02FD0

[3:0] 0x4 JEP106 continuation code for Arm.

SMMU_PMCG_PIDR5 0x02FD4 [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR6 0x02FD8 [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR7 0x02FDC [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR0 0x02FE0 [7:0] 0x87 Part number[7:0].

[7:4] 0xB JEP106 ID code[3:0] for Arm.SMMU_PMCG_PIDR1 0x02FE4

[3:0] 0x4 Part number[11:8].

[7:4] 0x1 MMU-600AE revision.

The value 0x1 indicates major product
revision r1.

[3] 0b1 The component uses a manufacturer identity
code that JEDEC allocates, according to the
JEP106 specification.

SMMU_PMCG_PIDR2 0x02FE8

[2:0] 0b011 JEP106 ID code[6:4] for Arm.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 74 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Register Offset Bits Value Description

[7:4] MAX[0x0,ecorevnum] MMU-600AE minor revision.

The value 0x0 indicates minor product
revision p0.

SMMU_PMCG_PIDR3 0x02FEC

[3:0] 0x0 CMOD. This field is not used.

SMMU_PMCG_CIDR0 0x02FF0 [7:0] 0x0D

SMMU_PMCG_CIDR1 0x02FF4 [7:0] 0x90

SMMU_PMCG_CIDR2 0x02FF8 [7:0] 0x05

SMMU_PMCG_CIDR3 0x02FFC [7:0] 0xB1

Preamble.

4.7 TCU microarchitectural registers
You can set the TCU microarchitectural registers at boot time to optimize TCU behavior for your
system. Arm recommends the default settings for most systems.

4.7.1 TCU_CTRL

The TCU Control register disables TCU features. If the hit rate of the individual walk cache is too
low, you can disable individual walk caches to improve performance in some systems. Do not
modify the AUX bits unless directed to do so by Arm.

The TCU_CTRL characteristics are:

Usage constraints
When TCU_SCR.NS_UARCH = 0, Non‑secure accesses to this register are RAZ/WI.

Writes to this register are possible only when both SMMU_CR0.SMMUEN = 0 and
SMMU_S_CR0.SMMUEN = 0. Writes at other times are ignored.

After modifying this register, software must issue an INV_ALL operation using the
SMMU_S_INIT register, before it sets SMMUEN to 1. Failure to issue an INV_ALL operation
results in UNPREDICTABLE behavior.

Configurations
This register exists in all TCU configurations.

Attributes

Offset 0x08E00
Type RW
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 75 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Figure 4-1: TCU_CTRL register bit assignments

31 11 1016 15 8 7 0

AUX[31:20] AUX[7:0]

14

WCS2L2_DIS
WCS2L3_DIS

913 1219 1820

WCS1L0_DIS
WCS1L1_DIS
WCS1L2_DIS
WCS1L3_DIS
WCS2L0_DIS
WCS2L1_DIS

DONT_HASH_ASID
AUX[18:16]

The following table shows the bit descriptions.

Table 4-15: TCU_CTRL register bit descriptions

Bits Name Description

[31:20] AUX[31:20] Leave each of these bits as 0.

[19] ASID_VMID_HASH 0 Only the input address is used for walk cache indexing. Transactions with the same input address
use the same walk cache index. Walk cache utilization is poor if such transactions are common.

1 ASID, VMID, and input address are used for walk cache indexing. Transactions with the same
VMID and input address, but different ASID, use different walk cache indexes. This improves walk
cache utilization if different ASIDs are used for the same input address and VMID, but invalidation
performance is worse for invalidations that do not provide an ASID because the whole cache must
be walked instead of invalidating based on a specific index.

[18:16] AUX[18:16] Leave each of these bits as 0.

[15] WCS2L3_DIS Walk cache disable:

0 Stage 2 level 3 walk cache is enabled.
1 Stage 2 level 3 walk cache is disabled.

[14] WCS2L2_DIS Walk cache disable:

0 Stage 2 level 2 walk cache is enabled.
1 Stage 2 level 2 walk cache is disabled.

[13] WCS2L1_DIS Walk cache disable:

0 Stage 2 level 1 walk cache is enabled.
1 Stage 2 level 1 walk cache is disabled.

[12] WCS2L0_DIS Walk cache disable:

0 Stage 2 level 0 walk cache is enabled.
1 Stage 2 level 0 walk cache is disabled.

[11] WCS1L3_DIS Walk cache disable:

0 Stage 1 level 3 walk cache is enabled.
1 Stage 1 level 3 walk cache is disabled.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 76 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Bits Name Description

[10] WCS1L2_DIS Walk cache disable:

0 Stage 1 level 2 walk cache is enabled.
1 Stage 1 level 2 walk cache is disabled.

[9] WCS1L1_DIS Walk cache disable:

0 Stage 1 level 1 walk cache is enabled.
1 Stage 1 level 1 walk cache is disabled.

[8] WCS1L0_DIS Walk cache disable:

0 Stage 1 level 0 walk cache is enabled.
1 Stage 1 level 0 walk cache is disabled.

[7:0] AUX[7:0] Leave each of these bits as 0.

4.7.2 TCU_QOS

The TCU Quality of Service (QoS) register specifies AxQOS values for each transaction type that
is issued on the QTW/DVM interface. The MMU-600AE does not use this value internally, but a
downstream interconnect can use the value to control how it prioritizes transactions.

The AxQOS value that is associated with each transaction does not take account of other
transactions that are blocked behind it. For example, although higher priority translations are
normally progressed before lower priority translations, a low‑priority translation table walk might
prevent the TCU from issuing a translation table walk with a higher priority.

The TCU_QOS characteristics are:

Usage constraints
When TCU_SCR.NS_UARCH = 0, Non-secure accesses to this register are RAZ/WI.

Writes to this register are possible only when both SMMU_CR0.SMMUEN = 0 and
SMMU_S_CR0.SMMUEN = 0. Writes at other times are ignored.

After modifying this register, software must issue an INV_ALL operation using the
SMMU_S_INIT register, before it sets SMMUEN to 1. Failure to issue an INV_ALL operation
results in UNPREDICTABLE behavior.

Configurations
This register exists in all TCU configurations.

Attributes

Offset 0x08E04
Type RW
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 77 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Figure 4-2: TCU_QOS register bit assignments

31 0

QOS_PTW0

347811121516

Reserved

QOS_QUEUE

192023242728

QOS_PTW1
QOS_PTW2
QOS_PTW3

QOS_MSI
QOS_DVMSYNC

The following table shows the bit descriptions.

Table 4-16: TCU_QOS register bit descriptions

Bits Name Description

[31:28] - Reserved.

[27:24] QOS_DVMSYNC The AxQOS value that is used for DVM Sync Completion messages.

[23:20] QOS_MSI The AxQOS value that is used for MSIs.

[19:16] QOS_QUEUE The AxQOS value that is used for queue accesses.

[15:12] QOS_PTW3 The AxQOS value that is used for translation table walks for translations where
TCU_NODE_CTRLn.PRIORITY = 3 for the requesting node.

[11:8] QOS_PTW2 The AxQOS value that is used for translation table walks for translations where
TCU_NODE_CTRLn.PRIORITY = 2 for the requesting node.

[7:4] QOS_PTW1 The AxQOS value that is used for translation table walks for translations where
TCU_NODE_CTRLn.PRIORITY = 1 for the requesting node.

[3:0] QOS_PTW0 The AxQOS value that is used for translation table walks for translations where
TCU_NODE_CTRLn.PRIORITY = 0 for the requesting node.

4.7.3 TCU_CFG

This is the TCU Configuration Information register.

Its characteristics are:

Usage constraints
When TCU_SCR.NS_UARCH = 0, Non‑secure accesses to this register are RAZ.

Configurations
This register exists in all TCU configurations.

Attributes

Offset 0x08E08
Type RO
Reset See register bit assignments.
Width 32

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 78 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

The following figure shows the bit assignments.

Figure 4-3: TCU_CFG register bit assignments

31 0341516

Reserved XLATE_SLOTS Reserved

The following table shows the bit descriptions.

Table 4-17: TCU_CFG register bit descriptions

Bits Name Description

[31:16] - Reserved.

[15:4] XLATE_SLOTS The number of translation slots that are available for sharing between all nodes.

The reset value of this field is TCUCFG_XLATE_SLOTS.

[3:0] - Reserved.

4.7.4 TCU_STATUS

TCU_STATUS is the TCU Status Information register.

Its characteristics are:

Usage constraints
When TCU_SCR.NS_UARCH = 0, Non‑secure accesses to this register are RAZ.

Configurations
This register exists in all TCU configurations.

Attributes

Offset 0x08E10
Type RO
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

Figure 4-4: TCU_STATUS register bit assignments

31 0341516

Reserved GNT_XLATE_SLOTS Reserved

The following table shows the bit descriptions.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 79 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Table 4-18: TCU_STATUS register bit descriptions

Bits Name Description

[31:16] - Reserved.

[15:4] GNT_XLATE_SLOTS GNT_XLATE_SLOTS is the number of translation slots that are currently allocated to connected nodes. You
can use this value for debugging purposes.

[3:0] - Reserved.

4.7.5 TCU_SCR

The TCU Secure Control register controls whether Non‑secure software is permitted to access
each TCU register group.

The TCU_SCR characteristics are:

Usage constraints
Non‑secure accesses to this register are RAZ/WI.

This register does not control Secure access to the MMU-600AE PMU registers. To control
Secure PMU register access, use the SMMU_PMCG_SCR register.

Configurations
This register exists in all TCU configurations.

Attributes

Offset 0x08E18
Type RW
Reset See register bit assignments.
Width 32

The following figure shows the bit assignments.

Figure 4-5: TCU_SCR register bit assignments

31 1 0

NS_INIT

234

Reserved

NS_UARCH
NS_RAS

Reserved

The following table shows the bit descriptions.

Table 4-19: TCU_SCR register bit descriptions

Bits Name Description

[31:4] - Reserved.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 80 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Bits Name Description

[3] NS_INIT Non‑secure register access to SMMU_S_INIT. When this bit is set to 0, Non‑secure accesses to the SMMU_S_INIT
register are RAZ/WI.

The sec_override input signal defines the reset value of this bit.

[2] - Reserved.

[1] NS_RAS Non‑secure register access is permitted for RAS registers. When this bit is set to 0, Non‑secure accesses to register
addresses 0x08E80–0x08EC0 are RAZ/WI.

The sec_override input signal defines the reset value of this bit.

[0] NS_UARCH Non‑secure register access is permitted for MMU-600AE registers. When this bit is set to 0, Non‑secure accesses to
register addresses 0x08E00–0x08E7C and 0x09000–0x093FC are RAZ/WI.

The sec_override input signal defines the reset value of this bit.

If your implementation might use Secure translation, Arm recommends setting this bit to 0.

4.7.6 TCU_NODE_CTRLn

Each TCU Node Control register controls how the TCU communicates with a single node. A node is
a DTI master that is typically either a TBU or a PCIe Root Complex that implements ATS.

The TCU_NODE_CTRLn characteristics are:

Usage constraints
The DIS_DVM bit can be used for TBU nodes, but is ignored for ATS nodes.

When TCU_SCR.NS_UARCH = 0, Non‑secure accesses to this register are RAZ/WI.

Writes to this register are possible only when both SMMU_CR0.SMMUEN = 0 and
SMMU_S_CR0.SMMUEN = 0. Writes at other times are ignored.

After modifying this register, software must issue an INV_ALL operation using the
SMMU_S_INIT register, before it sets SMMUEN to 1. Failure to issue an INV_ALL operation
results in UNPREDICTABLE behavior.

Configurations
The value of the TCUCFG_NUM_TBU configuration parameter defines n, that is, the number of
TCU_NODE_CTRL registers that are implemented. Each register has an address width of 4
bytes, therefore the offset of a register n is:

0x09000 + (4 × n)

Attributes

Offset 0x09000‑0x093FC
Type RW
Reset 0x00000000
Width 32

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 81 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

The following figure shows the bit assignments.

Figure 4-6: TCU_NODE_CTRL register bit assignments

31 1 0234

Reserved

PRI_LEVEL
Reserved
DIS_DVM

5

The following table shows the bit descriptions.

Table 4-20: TCU_NODE_CTRL register bit descriptions

Bits Name Description

[31:5] - Reserved.

[4] DIS_DVM Disable DVM. When this bit is set to 1, the
corresponding node does not participate in
DVM invalidation.

Software should set this bit to 1 if all the
following are true:

• The node is slow to respond to
invalidations that are issued over DTI

• Software has knowledge that the node
does not require to be part of the DVM
domain

• Software has knowledge that
invalidations for the node can be issued
using the Command queue

Note:
This bit is ignored for connected DTI‑ATS
masters, because they never participate in
DVM invalidation.

[3:2] - Reserved.

[1:0] PRI_LEVEL Priority level. This field indicates the priority
level of the corresponding node. Translation
requests from a node with a higher priority
level are normally progressed before
requests from a node with a lower priority
level.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 82 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

4.7.7 TCU_NODE_STATUSn

Each TCU Node Status register provides the status of a DTI master. A node is a DTI master that is
typically either a TBU or a PCIe Root Complex that implements ATS.

The TCU_NODE_STATUSn characteristics are:

Usage constraints
This register indicates the status of the corresponding node only when the node is
connected.

When TCU_SCR.NS_UARCH = 0, Non-secure accesses to this register are RAZ.

Configurations
The value of the TCUCFG_NUM_TBU configuration parameter defines the number of
TCU_NODE_CTRL registers that are implemented. Each register has an address width of 4
bytes, therefore the offset of a register n is:

0x09400 + (4 × n)

Attributes

Offset 0x09400‑0x097FC
Type RO
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

Figure 4-7: TCU_NODE_STATUS register bit assignments

31 1 02

Reserved

CONNECTED
ATS

The following table shows the bit descriptions.

Table 4-21: TCU_NODE_STATUS register bit descriptions

Bits Name Description

[31:2] - Reserved.

[1] ATS ATS implemented:

0 The corresponding node is a TBU that is connected to the TCU using the DTI‑TBU protocol.
1 The corresponding node is a PCIe Root Complex that supports ATS, and is connected to the TCU using

the DTI‑ATS protocol.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 83 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Bits Name Description

[0] CONNECTED DTI link is connected:

0 The DTI link for the corresponding node is not connected.
1 The DTI link for the corresponding node is connected.

If a DTI link is not connected, accesses to TBU registers are RAZ/WI. However, the state might change between
reading this register and attempting to access the TBU.

4.8 TCU RAS registers
The MMU-600AE includes TCU registers that are related to Reliability, Availability, and Serviceability
(RAS).

4.8.1 TCU_ERRFR

Use the TCU Error Feature register to discover how the TCU handles errors.

The TCU_ERRFR characteristics are:

Usage constraints
This register is read-only. When TCU_SCR.NS_RAS = 0, Non‑secure accesses to this register
are RAZ.

Configurations
This register exists in all TCU configurations.

Attributes

Offset 0x08E80
Type RO
Reset 0x00000081
Width 32

The following figure shows the bit assignments.

Figure 4-8: TCU_ERRFR register bit assignments

31 1 02

Reserved

567

EDReservedFI

8

The following table shows the bit descriptions.

Table 4-22: TCU_ERRFR register bit descriptions

Bits Name Description

[31:8] - Reserved

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 84 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Bits Name Description

[7:6] FI The value 0b10 indicates that the fault handling interrupt is controllable

[5:2] - Reserved

[1:0] ED The value 0b01 indicates that TCU error detection is always enabled

4.8.2 TCU_ERRCTLR

Use the TCU Error Control register to enable fault handling interrupts.

The TCU_ERRCTLR characteristics are:

Usage constraints
When TCU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI.

Configurations
This register exists in all TCU configurations.

Attributes

Offset 0x08E88
Type RW
Reset 0x00000008
Width 32

The following figure shows the bit assignments.

Figure 4-9: TCU_ERRCTLR register bit assignments

31 02

Reserved

34

FI
Reserved

The following table shows the bit descriptions.

Table 4-23: TCU_ERRCTLR register bit descriptions

Bits Name Description

[31:4] - Reserved.

[3] FI Enable fault handling interrupts:

0 No interrupt is generated when a fault occurs.
1 An interrupt is generated on ras_irpt when a fault occurs.

[2:0] - Reserved.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 85 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

4.8.3 TCU_ERRSTATUS

Use the TCU Error Record Primary Syndrome register to find out whether different types of error
have occurred on the TCU.

The TCU_ERRSTATUS characteristics are:

Usage constraints
When TCU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI.

To prevent race conditions, under certain circumstances, writes to some bits in this register
are ignored. Typically, these writes are ignored when software has not yet observed a new
error.

Configurations
This register exists in all TCU configurations.

Attributes

Offset 0x08E90
Type RW
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

Figure 4-10: TCU_ERRSTATUS register bit assignments

31 15 016 7

Reserved IERR

Reserved

SERR

82324252627282930

CE

OF
Reserved

V

Reserved

The following table shows the bit descriptions.

Table 4-24: TCU_ERRSTATUS register bit descriptions

Bits Name Description

[31] - Reserved.

[30] V Register valid. This bit is set to 1 to indicate that at least one RAS error was recorded.

Clear this bit by writing a 1 to it. If CE is not 0b00 and is not being cleared, the write is ignored. A write of 0 is ignored.

[29:28] - Reserved.

[27] OF Overflow. This bit is set to 1 to indicate that multiple correctable errors were recorded. That is, at least one correctable
error was recorded when CE != 0b00.

Clear this bit by writing a 1 to it. A write of 0 is ignored.

[26] - Reserved.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 86 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Bits Name Description

[25:24] CE Correctable Error. This field is set to 0b10 to indicate that a corrected error occurred. Clear this field by writing 0b11 to
it. If OF is set to 1 and is not being cleared, the write is ignored. A write of any value other than 0b11 is ignored.

[23:16] - Reserved.

[15:8] IERR IMPLEMENTATION DEFINED error code. When SERR is not set to 0, this field indicates the source of the error, as follows:

0x00 Stage 1, level 0 walk cache.
0x01 Stage 1, level 1 walk cache.
0x02 Stage 1, level 2 walk cache.
0x03 Stage 1, level 3 walk cache.
0x04 Stage 2, level 0 walk cache.
0x05 Stage 2, level 1 walk cache.
0x06 Stage 2, level 2 walk cache.
0x07 Stage 2, level 3 walk cache.
0x08 Configuration cache.

Writes to this field are ignored.

[7:0] SERR Error code. This read‑only field provides information about the earliest unacknowledged correctable error, as follows:

0x00 No error. This code occurs when CE = 0b00.
0x07 Tag corrupted. This code can occur when CE != 0b00.
0x08 Data corrupted. This code can occur when CE != 0b00.

4.8.4 TCU_ERRGEN

Use the TCU Error Generation Register to generate tag parity errors, for example when testing
error‑handling software.

The errors that are injected using this mechanism are correctable errors but are not
reported in the FMU error records. See:

• 5.5.4 Safety Mechanism table on page 110.

• 5.5.4.2 Injecting an error into a Safety Mechanism on page 112.

The TCU_ERRGEN characteristics are:

Usage constraints
When TCU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI.

Configurations
This register exists in all TCU configurations.

Attributes

Offset 0x08EC0
Type RW
Reset 0x00000000
Width 32

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 87 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

The following figure shows the bit assignments.

Figure 4-11: TCU_ERRGEN register bit assignments

31 3 04 1

DWC

Reserved

2

TWC
DCC
TCC

The following table shows the bit descriptions.

Table 4-25: TCU_ERRGEN register bit descriptions

Bits Name Description

[31:4] - Reserved.

[3] TCC Configuration cache tag parity error:

0 No tag parity error is written to the configuration cache.
1 Entries that are written to the configuration cache include a tag parity error. A fault occurs when the entry is used.

[2] DCC Configuration cache data parity error:

0 No data parity error is written to the configuration cache.
1 Entries that are written to the configuration cache include a data parity error. A fault occurs when the entry is

used.

Note:
Tag parity errors mask data parity errors. When testing data parity error functionality, ensure that software does not set
this bit and the TCC bit at the same time.

[1] TWC Walk cache tag parity error:

0 No tag parity error is written to the walk cache.
1 Entries that are written to the walk cache include a tag parity error. A fault occurs when the entry is used.

[0] DWC Walk cache data parity error:

0 No data parity error is written to the walk cache.
1 Entries that are written to the walk cache include a data parity error. A fault occurs when the entry is used.

Note:
Tag parity errors mask data parity errors. When testing data parity error functionality, ensure that software does not set
this bit and the TWC bit at the same time.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 88 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

4.9 TBU component and peripheral ID registers
The component and peripheral identity registers comply with the format that Arm CoreLink™

and CoreSight™ components use, and that the SMMUv3 architecture recommends. They provide
key information about the MMU-600AE hardware, including the product and associated revision
number. They also identify Arm as the designer of the SMMU.

These registers are all read‑only. Each field defines a single byte in the least significant 8 bits, and
the most significant 24 bits are reserved. The least significant 8 bits of the four Component ID
registers form a single 32‑bit conceptual ID register. In a similar way, the defined fields of the eight
Peripheral ID registers form a conceptual 64‑bit ID register.

Table 4-26: TBU Component and Peripheral ID registers bit descriptions

Register Offset Bits Value Description

[7:4] 0x0 4KB region count.SMMU_PIDR4 0x00FD0

[3:0] 0x4 JEP106 continuation code for Arm.

SMMU_PIDR5 0x00FD4 [7:0] 0x00 Reserved.

SMMU_PIDR6 0x00FD8 [7:0] 0x00 Reserved.

SMMU_PIDR7 0x00FDC [7:0] 0x00 Reserved.

SMMU_PIDR0 0x00FE0 [7:0] 0x88 Part number[7:0].

[7:4] 0xB JEP106 ID code[3:0] for Arm.SMMU_PIDR1 0x00FE4

[3:0] 0x4 Part number[11:8].

[7:4] 0x1 MMU-600AE major revision.

The value 0x1 indicates major product
revision r1.

[3] 0b1 The component uses a manufacturer identity
code that JEDEC allocates, according to the
JEP106 specification.

SMMU_PIDR2 0x00FE8

[2:0] 0b011 JEP106 ID code[6:4] for Arm.

[7:4] MAX[0x0,ecorevnum] MMU-600AE minor revision.

The value 0x0 indicates minor product
revision p0.

SMMU_PIDR3 0x00FEC

[3:0] 0x0 CMOD. This field is not used.

SMMU_CIDR0 0x00FF0 [7:0] 0x0D

SMMU_CIDR1 0x00FF4 [7:0] 0xF0

SMMU_CIDR2 0x00FF8 [7:0] 0x05

SMMU_CIDR3 0x00FFC [7:0] 0xB1

Preamble.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 89 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

4.10 TBU PMU component and peripheral ID registers
The component and peripheral identity registers comply with the format that Arm CoreLink™

and CoreSight™ components use, and recommended in the SMMUv3 architecture. They provide
key information about the MMU-600AE hardware, including the product and associated revision
number. They also identify Arm as the designer of the SMMU.

These registers are all read‑only. Each field defines a single byte in the least significant 8 bits, and
the most significant 24 bits are reserved. The least significant 8 bits of the four Component ID
registers form a single 32‑bit conceptual ID register. In a similar way, the defined fields of the eight
Peripheral ID registers form a conceptual 64‑bit ID register.

Table 4-27: TBU PMU Component and Peripheral ID registers bit descriptions

Register Offset Bits Value Description

SMMU_PMCG_PMAUTHSTATUS 0x02FB8 [7:0] 0x00 No authentication interface is implemented.

[7:4] 0x0 4KB region count.SMMU_PMCG_PIDR4 0x02FD0

[3:0] 0x4 JEP106 continuation code for Arm.

SMMU_PMCG_PIDR5 0x02FD4 [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR6 0x02FD8 [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR7 0x02FDC [7:0] 0x00 Reserved.

SMMU_PMCG_PIDR0 0x02FE0 [7:0] 0x88 Part number[7:0].

[7:4] 0xB JEP106 ID code[3:0] for Arm.SMMU_PMCG_PIDR1 0x02FE4

[3:0] 0x4 Part number[11:8].

[7:4] 0x1 MMU-600AE major revision.

The value 0x1 indicates major product
revision r1.

[3] 0b1 The component uses a manufacturer identity
code that JEDEC allocates, according to the
JEP106 specification.

SMMU_PMCG_PIDR2 0x02FE8

[2:0] 0b011 JEP106 ID code[6:4] for Arm.

[7:4] MAX[0x0,ecorevnum] MMU-600AE minor revision.

The value 0x0 indicates minor product
revision p0.

SMMU_PMCG_PIDR3 0x02FEC

[3:0] 0x0 CMOD. This field is not used.

SMMU_PMCG_CIDR0 0x02FF0 [7:0] 0x0D

SMMU_PMCG_CIDR1 0x02FF4 [7:0] 0x90

SMMU_PMCG_CIDR2 0x02FF8 [7:0] 0x05

SMMU_PMCG_CIDR3 0x02FFC [7:0] 0xB1

Preamble.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 90 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

4.11 TBU microarchitectural registers
You can set the TBU microarchitectural registers at boot time to optimize TBU behavior for your
system. Arm recommends the default settings for most systems.

4.11.1 TBU_CTRL

The TBU_CTRL register disables TBU features. Do not modify the bits in this register unless
directed to do so by Arm.

Its characteristics are:

Usage constraints
When TBU_SCR.NS_UARCH = 0, Non‑secure accesses to this register are RAZ/WI. See
4.11.2 TBU_SCR on page 91.

Configurations
This register exists in all TBU configurations.

Attributes

Offset 0x08E00
Type RW
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

Figure 4-12: TBU_CTRL register bit assignments

31 16 15 0

AUX[11:1]Reserved

1

HAZARD_DIS

13

AUX[15:13]

12 11

LTI_PORT_RESOURCE_LIMIT_DISABLE

The following table shows the bit descriptions.

Table 4-28: TBU_CTRL register bit descriptions

Bits Name Description

[31:16] - Reserved

[15:0] AUX[15:0] Leave each of these bits as 0

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 91 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

4.11.2 TBU_SCR

The TBU Secure Control register controls whether Non‑secure software is permitted to access the
TBU registers.

Its characteristics are:

Usage constraints
This register is accessible only by Secure software. Non‑secure accesses to this register are
RAZ/WI. This register does not control Secure access to the MMU-600AE PMU registers.
To control Secure PMU register access, use the SMMU_PMCG_SCR register. See 4.2 SMMU
architectural registers on page 65.

Configurations
This register exists in all TBU configurations.

Attributes

Offset 0x08E18
Type RW
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

Figure 4-13: TBU_SCR register bit assignments

31 01

Reserved

2

NS_UARCH
NS_RAS

The following table shows the bit descriptions.

Table 4-29: TBU_SCR register bit descriptions

Bits Name Description

[31:2] - Reserved.

[1] NS_RAS Non‑secure register access to RAS registers:

0 Non‑secure accesses to register addresses 0x08E80–0x08EC0 are RAZ/WI.
1 Non‑secure access to RAS registers is permitted.

The sec_override input signal defines the reset value of this bit. See A.20 TBU tie-off signals on page 168.

[0] NS_UARCH Non‑secure register access to TBU_CTRL:

0 Non‑secure accesses to TBU_CTRL are RAZ/WI.
1 Non‑secure accesses to TBU_CTRL are permitted.

The sec_override input signal defines the reset value of this bit. See A.20 TBU tie-off signals on page 168.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 92 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

4.12 TBU RAS registers
The MMU-600AE includes TBU registers that are related to Reliability, Availability, and Serviceability
(RAS).

4.12.1 TBU_ERRFR

Use the TBU Error Feature register to discover how the TBU handles errors.

The TBU_ERRFR characteristics are:

Usage constraints
This register is read‑only. When TBU_SCR.NS_RAS = 0, Non‑secure accesses to this register
are RAZ.

Configurations
This register exists in all TBU configurations.

Attributes

Offset 0x08E80
Type RO
Reset 0x00000081
Width 32

The following figure shows the bit assignments.

Figure 4-14: TBU_ERRFR register bit assignments

31 1 02

Reserved

567

EDReservedFI

8

The following table shows the bit descriptions.

Table 4-30: TBU_ERRFR register bit descriptions

Bits Name Description

[31:8] - Reserved

[7:6] FI The value 0b10 indicates that the fault handling interrupt is controllable

[5:2] - Reserved

[1:0] ED The value 0b01 indicates that TBU error detection is always enabled

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 93 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

4.12.2 TBU_ERRCTLR

Use the TBU Error Control register to enable fault handling interrupts.

The TBU_ERRCTLR characteristics are:

Usage constraints
When TBU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI.

Configurations
This register exists in all MMU-600AE configurations. An instance of this register exists for
each implemented TBU.

Attributes

Offset 0x08E88
Type RW
Reset 0x00000008
Width 32

The following figure shows the bit assignments.

Figure 4-15: TBU_ERRCTLR register bit assignments

31 02

Reserved

34

FI
Reserved

The following table shows the bit descriptions.

Table 4-31: TBU_ERRCTLR register bit descriptions

Bits Name Description

[31:4] - Reserved.

[3] FI Enable fault handling interrupts:

0 No interrupt is generated when a fault occurs
1 An interrupt is generated on ras_irpt when a fault occurs

[2:0] - Reserved

4.12.3 TBU_ERRSTATUS

Use the TBU Error Record Primary Syndrome register to find out whether different types of error
have occurred on the TBU.

The TBU_ERRSTATUS characteristics are:

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 94 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Usage constraints
When TBU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI. To prevent
race conditions, under certain circumstances, writes to some bits in this register are ignored.
Typically, these writes are ignored when software has not yet observed a new error.

Configurations
This register exists in all MMU-600AE configurations. An instance of this register exists for
each implemented TBU.

Attributes

Offset 0x08E90
Type RW
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

Figure 4-16: TBU_ERRSTATUS register bit assignments

31 07

Reserved

Reserved

SERR

82324252627282930

CE

OF
Reserved

V

Reserved

The following table shows the bit descriptions.

Table 4-32: TBU_ERRSTATUS register bit descriptions

Bits Name Description

[31] - Reserved.

[30] V Register valid. This bit is set to 1 to indicate that at least one RAS error was recorded.

Clear this bit by writing a 1 to it. If CE is not 0b00 and is not being cleared, the write is ignored. A write of 0 is ignored.

[29:28] - Reserved.

[27] OF Overflow. This bit is set to 1 to indicate that multiple correctable errors were recorded. That is, at least one correctable
error was recorded when CE != 0b00.

Clear this bit by writing a 1 to it. A write of 0 is ignored.

[26] - Reserved.

[25:24] CE Correctable Error. This field is set to 0b10 to indicate that a corrected error occurred. Clear this field by writing 0b11 to
it. If OF is set to 1 and is not being cleared, the write is ignored. A write of any value other than 0b11 is ignored.

[23:8] - Reserved.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 95 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Bits Name Description

[7:0] SERR Error code. This field provides information about the earliest unacknowledged correctable error, as follows:

0x00 No error. This code occurs when CE = 0b00.
0x07 Main TLB tag is corrupted. This code can occur when CE != 0b00.
0x08 Main TLB data is corrupted. This code can occur when CE != 0b00.

Writes to this field are ignored.

4.12.4 TBU_ERRGEN

Use the TBU Error Generation register to generate tag parity errors. You might want to generate
errors in certain cases, such as when testing error‑handling software.

The errors that are injected using this mechanism are correctable errors but are not
reported in the FMU error records. See:

• 5.5.4 Safety Mechanism table on page 110.

• 5.5.4.2 Injecting an error into a Safety Mechanism on page 112.

The TBU_ERRGEN characteristics are:

Usage constraints
When TBU_SCR.NS_RAS = 0, Non‑secure accesses to this register are RAZ/WI.

Configurations
This register exists in all TBU configurations.

Attributes

Offset 0x08EC0
Type RW
Reset 0x00000000
Width 32

The following figure shows the bit assignments.

Figure 4-17: TBU_ERRGEN register bit assignments

31 01

Reserved

2

DMTLB
TMTLB

The following table shows the bit descriptions.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 96 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Programmer's model

Table 4-33: TBU_ERRGEN register bit descriptions

Bits Name Description

[31:2] - Reserved.

[1] TMTLB Main TLB tag parity error:

0 No tag parity error is written to the Main TLB.
1 Entries that are written to the Main TLB include a tag parity error. A fault occurs when the entry is used.

[0] DMTLB Main TLB data parity error:

0 No data parity error is written to the Main TLB.
1 Entries that are written to the Main TLB include a data parity error. A fault occurs when the entry is used.

Note:
Tag parity errors mask data parity errors. When testing data parity error functionality, ensure that software does not set
this bit and the TMTLB bit at the same time.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 97 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5. Functional Safety
This chapter describes the Functional Safety (FuSa) detection features unique to MMU-600AE.

5.1 Overview
The MMU-600AE is a version of the MMU-600, using the same code base, with Functional Safety
(FuSa) detection and correction features added. The original MMU-600 logic and functionality are
unchanged.

The following sections focus only on the added FuSa features and logic unique to the
MMU-600AE.

5.1.1 The MMU-600AE Safety Mechanisms

The MMU-600AE provides built-in SMs.

The following figure shows the distribution of the main SMs in the MMU-600AE.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 98 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Figure 5-1: Safety Mechanism distribution

TBU
RAMsTBU

TBU
RAMsTBU

TBU
RAMsTBU

ACE-Lite

ADB

TCU
RAMsTCUFMU

LPD_PD

Interrupts Interrupts InterruptsACE-Lite ACE-Lite DTI-ATS

ACE-Lite-DVM APB

LPD_CG

P

Q-Channel-cg

P

Q-Channel-pdQ-Channel-pd

P

Q-Channel-pd

Legend:

AXI4-Stream interconnect
protection (full duplication)

Parity protection

Interrupt protection (parity)

Interface protection (AMBA FuSa)

Interrupts

Interface protection (Arm LPI FuSa) P

Logic
(duplication)

RAM (CRC)

P

P

P

P P

P

P

Full duplication / parityFull duplication / parity Full duplication / parity

P

P P P

P P

P

Full duplication / parity

Q-Channel-cg

AXI4-Stream interconnect

FMU APB

Q-Channel-pd

Q-Channel-cg

LPD_PD ADB LPD_CG

ADB

RS RS

SZSZ

SZ SZ

Sizer

Register Slice

Asynchronous Domain Bridge

Low Power Distributor

FHI

ERI

SZ

RS

ADB

LPD

The MMU-600AE contains the following main SMs:

Lock-step logic protection
The logic is protected with duplicated logic running in lock-step. See 5.6 Lock-step protection
on page 131.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 99 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

RAM protection
The RAMs are shared between the duplicated blocks and are protected with 8‑bit CRC,
which covers the address and data. See 5.7 RAM protection on page 133.

AXI4-Stream interconnect protection
The AXI4‑Stream interconnect that connects the MMU-600AE blocks is protected by
end‑to‑end duplication.
The following components, which are part of the DTI interconnect, are protected with full
duplication:

• DTI Switch

• DTI register slice

It is the responsibility of the integrator to instantiate a redundant instance of
these components and stitch the duplicate DTI interconnect, except for the
ADB.

See:

• 5.8.2 AXI4-Stream interface parity protection on page 139.

• The Integrating the TCU, TBU, LPD, PCIe ATS, and DTI AXI4‑Stream interconnect section of
the Arm® CoreLink™ MMU-600AE System Memory Management Unit Technical Reference
Manual.

AMBA® external interface protection
All external interfaces are protected with AMBA® Parity Extension. AMBA® Parity Extension
protects point‑to‑point connections consisting of wires and buffers only, and no gates.
ACE and APB external ports are also included. See:

• 5.8.1 ACE-Lite interface parity protection on page 139

• 5.8.3 APB interface parity protection on page 140

Interrupt outputs parity protection
The interrupt outputs from the MMU-600AE are protected with parity protection and are
compatible with the Arm CoreLink™ GIC-600AE Generic Interrupt Controller IP. There is one
parity bit for each interrupt output. See the Interrupt output protection section of the Arm®

CoreLink™ MMU-600AE System Memory Management Unit Technical Reference Manual.

Q‑Channel protection
The Q‑Channel is protected by asynchronous parity. See 5.10 Q-Channel protection on page
145.

Systematic fault watchdog
The MMU-600AE contains a watchdog‑based PING/ACK mechanism. This mechanism
protects against systematic errors on the interconnect that connects the various
MMU-600AE TBU blocks. It works by engaging a hardware mechanism in the TCU that
pings each TBU in a round‑robin fashion and waits for a response. If the mechanism does
not receive a response within the programmable timeout window, it reports a fault. See 5.11
Systematic fault watchdog protection on page 152.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 100 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Clocks and resets
The clocks and resets are duplicated. The clocks operate with a temporal delay of two cycles.
That is, the primary logic operates two cycles ahead of the redundant logic. See the Clocks
and resets section of the Arm® CoreLink™ MMU-600AE System Memory Management Unit
Configuration and Integration Manual.

Fault Management Unit
The Fault Management Unit (FMU) has the following functions:

• Processes faults that the SMs in the TCU and TBUs detect

• Records the fault syndrome in the Error Records and reports the fault using the Error
Recovery Interrupt (ERI) and Fault Handling Interrupt (FHI)

• Provides fault injection and clearing for each SM

The FMU talks to an external Safety Island, using a second APB port that is dedicated to the
FMU. The APB port is added for FuSa purposes so that faults can be reported even when the
MMU-600 primary logic functionality is either unreliable or inaccessible.

See the Fault Management Unit section of the Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual.

5.2 FuSa I/Os
Ports have been added for Functional Safety Fault Detection and Control.

This section refers to new interfaces, such as the APB interface, and the protection for existing
interfaces. For more information, see 5.8 External interface protection on page 136.

5.2.1 Non-architected FuSa ports

The following FuSa ports have been added for Fault Detection and Control (FDC).

The following table shows the non‑architected FuSa ports.

Table 5-1: Non‑architected FuSa ports

Port Direction Blocks Description

aclk_fdc Input TCU/
TBU

Clock for redundant logic and SMs.

aresetn_fdc Input TCU/
TBU

Reset for redundant logic and SMs.

mbistresetn_fdc Input TCU/
TBU

Redundant nmbistreset. Both resets must assert together.

fmu_resetn_fdc Input TCU Resets FMU Error Records. Main reset does not reset error records.

dftrstdisable_fdc Input TCU/
TBU

Prevents reset from asserting when reset generation FDC flops are
scanned.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 101 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Port Direction Blocks Description
dftcgen_fdc Input TCU/

TBU
Forces FDC clock gate enable to ensure scanned flops obtain a
clock.

dftramhold_fdc Input TCU/
TBU

Redundant port for dftramhold.

fmu_err_out Output TBU Fault indication to the TCU block from a TBU block.

ras_irpt_chk Output TCU/
TBU

chk bit for legacy MMU-600 Programmer's View (PV) RAS Interrupt
from System MMU.

pmu_irpt_chk Output TCU/
TBU

chk bit for legacy MMU-600 Interrupt from System MMU.

event_q_irpt_s_chk Output TCU chk bit for legacy MMU-600 Interrupt from System MMU.

event_q_irpt_ns_chk Output TCU chk bit for legacy MMU-600 Interrupt from System MMU.

pri_q_irpt_ns_chk Output TCU chk bit for legacy MMU-600 Interrupt from System MMU.

cmd_sync_irpt_ns_chk Output TCU chk bit for legacy MMU-600 Interrupt from System MMU.

cmd_sync_irpt_s_chk Output TCU chk bit for legacy MMU-600 Interrupt from System MMU.

global_irpt_ns_chk Output TCU chk bit for legacy MMU-600 Interrupt from System MMU.

global_irpt_s_chk Output TCU chk bit for legacy MMU-600 Interrupt from System MMU.

evento_chk Output TCU chk bit for legacy MMU-600 evento output.

fmu_fault_int Output TCU FHI Interrupt from TCU FMU to Safety Island.

fmu_fault_int_chk Output TCU chk bit for FHI Interrupt from TCU FMU to Safety Island.

fmu_err_int Output TCU ERI Interrupt from TCU FMU to Safety Island.

fmu_err_int_chk Output TCU chk bit for ERI Interrupt from TCU FMU to Safety Island.

freq[TCUCFG_FUSA_FCHAN_COUNT−1:0] Input TCU Fault Indicator Request from ADB/LPD to TCU.

fack[TCUCFG_FUSA_FCHAN_COUNT−1:0] Output TCU Fault Indicator Ack from TCU to ADB/LPD.

freq_chk[TCUCFG_FUSA_FCHAN_COUNT−1:0] Input TBU Redundant Fault Indicator Request from ADB/LPD to TCU.

fack_chk[TCUCFG_FUSA_FCHAN_COUNT−1:0] Output TBU Redundant Fault Indicator Ack from TCU to ADB/LPD.

fmu_err_in[TCUCFG_FUSA_
TBU_FAULT_WIRE_COUNT−1:0]

Input TBU Fault indicator input from individual TBUs.

pcie_mode_chk Input TBU Redundant tie‑offs, opposite polarity of original tie‑offs.

ns_sid_high_chk Input TBU Redundant tie‑offs, opposite polarity of original tie‑offs.

s_sid_high_chk Input TBU Redundant tie‑offs, opposite polarity of original tie‑offs.

cmo_disable_chk Input TBU Redundant tie‑offs, opposite polarity of original tie‑offs.

max_tok_trans_chk Input TBU Redundant tie‑offs, opposite polarity of original tie‑offs.

utlb_roundrobin_chk Input TCU/
TBU

Redundant tie‑offs, opposite polarity of original tie‑offs.

sec_override_chk Input TCU Redundant tie‑offs, opposite polarity of original tie‑offs.

sup_cohacc_chk Input TCU Redundant tie‑offs, opposite polarity of original tie‑offs.

sup_btm_chk Input TCU Redundant tie‑offs, opposite polarity of original tie‑offs.

sup_sev_chk Input TCU Redundant tie‑offs, opposite polarity of original tie‑offs.

sup_oas_chk Input TCU Redundant tie‑offs, opposite polarity of original tie‑offs.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 102 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.2.2 Q-Channel FuSa ports

The following interfaces add _chk bits, as specified in the Arm Q‑Channel Parity Extensions.

For more information, see 5.10 Q-Channel protection on page 145.

Table 5-2: Q-Channel FuSa ports

Port Direction Blocks Description

qreqn_chk_pd Input TCU/TBU Redundant qreqn port for Q‑Channel power controller

qactive_chk_pd Output TCU/TBU Redundant qactive port for Q‑Channel power controller

qaccept_chk_pd Output TCU/TBU Redundant qaccept port for Q‑Channel power controller

qdeny_chk_pd Output TCU/TBU Redundant qdeny port for Q‑Channel power controller

qreqn_chk_cg Input TCU/TBU Redundant qreqn port for Q‑Channel clock controller

qactive_chk_cg Output TCU/TBU Redundant qactive port for Q‑Channel clock controller

qaccept_chk_cg Output TCU/TBU Redundant qaccept port for Q‑Channel clock controller

qdeny_chk_cg Output TCU/TBU Redundant qdeny port for Q‑Channel clock controller

5.2.3 AMBA interface FuSa ports

The following interfaces add _chk bits, as the AMBA® Parity Extensions specify.

For more information, see 5.8 External interface protection on page 136.

The APB port was added for FDC between the FMU block residing in the TCU and the Safety
Island in the SoC.

Table 5-3: AMBA interface FuSa ports

Port Granularity Description

APB interface TCU APB4 interface added for FMU as the 5.8 External interface protection on page 136 section
describes.

AXI4‑Stream
AMBA® parity

TCU/TBU AMBA® Parity added to all external AXI4‑Stream interfaces as the 5.8 External interface protection on
page 136 section describes.

ACE AMBA® parity TCU/TBU AMBA® Parity added to all external ACE‑Lite interfaces as the 5.8 External interface protection on
page 136 section describes.

5.3 Clocks and resets
The MMU-600AE clocks and resets are identical to those of the MMU-600, except for:

• The added redundant clock and reset.

• The added fmu_resetn and fmu_resetn_fdc signals.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 103 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

The following figure shows how the redundant clock and reset is used by the FDC logic. The extra
aresetn_fdc and aclk_fdc signals provide redundancy in the clock and reset trees while guarding
against faults on the tree branches. If a fault occurs on a branch in either the primary or FDC clock
trees, the Dual LockStep (DLS) comparators detect the fault.

Figure 5-2: MMU-600AE block resets

TCU
no_ram

TCU
no_ram

(duplicated)

reset_sync_prot
(main reset)

reset_sync_prot
(fmu reset)

Shared
RAM

dftrstdisable

dftrstdisable_fdc

dftrstdisable

dftrstdisable_fdc

aclk aclk_fdc

+

aresetn_sync
aclk

aclk_fdc

aresetn

aresetn_fdc

aclk

aclk_fdc

fm
u_resetn

fm
u_resetn_fdc

aresetn_fdc_sync

fmu_resetn_sync

fm
u_resetn_fdc_sync

fault

RAM inputs RAM inputs

RAM outputs RAM outputs

The following conditions apply to a TCU block with DLS:

• Internal _sync resets are asynchronous‑assert.

• Internal _sync resets are synchronous‑deassert.

• The aresetn_fdc_sync and fmu_resetn_fdc_sync signals are deasserted two cycles after the
non-FDC signals.

The fmu_resetn and fmu_resetn_fdc signals reset only the FMU registers. Asserting only the
aresetn and aresetn_fdc signals resets all registers except for the FMU PV registers. This enables
software to view the contents of the registers after reset. Both aresetn and fmu_resetn, and their
_fdc counterparts, should be reset during a Cold reset or when debug information from the FMU
PV registers is not required.

For more information on integrating the FuSa clocks and resets, see the FuSa clocks and resets
section of the Arm® CoreLink™ MMU-600AE System Memory Management Unit Configuration and
Integration Manual.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 104 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.4 DFT protection
Functional Safety Mechanisms have been added to protect the MBIST and ATPG Scan logic from
faults during functional mode.

5.4.1 MBIST

The MBIST wrapper logic built into the MMU-600AE is duplicated, which lets the mechanism
detect faults in this logic.

For example, it can detect a fault on a RAM address bit, due to the comparators at the inputs of the
shared RAMs.

The MBIST interface inputs in the following table can cause mission-mode errors, so they are
protected.

Table 5-4: Protected MBIST inputs

Signal Protection Notes

mbistreq Assertion
detection

If mbistreq is asserted when the MMU block is in functional mode, the MMU detects and reports it. If this
happens in MBIST mode, it is assumed the fault is ignored and cleared by software, using a reset or the FMU
clearing mechanism. Alternatively, to prevent the fault from asserting, software can disable the SM before
entering MBIST mode.

nmbistresetn Duplication The reset is duplicated. The duplicated reset is nmbistresetn_fdc. For a reset to occur, both nmbistresetn and
nmbistresetn_fdc must be asserted. For more information, see Resets of the FuSa clocks and resets section of
the Arm® CoreLink™ MMU-600AE System Memory Management Unit Configuration and Integration Manual.

The MBIST interface pins themselves are unchanged from the MMU-600.

The other MBIST inputs, including mbistaddr and mbistindata, are benign and cause no harm if they
experience faults during functional mode.

If faults occur on the MBIST controller or MBIST signals, it is assumed that the MBIST controller
detects them.

5.4.2 ATPG Scan

All DFT and ATPG input ports are duplicated.

These duplicate ports allow the SoC integrator to have separate scan chains for clk and clk_fdc, if
wanted. If the scan chains are shared by clk and clk_fdc flops, drive the duplicate ports in the same
way at the same time.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 105 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

The following table summarizes the duplicate ports.

Table 5-5: Duplicate ATPG input ports

clk scan input clk_fdc scan input Description

dftrstdisable dftrstdisable_fdc Prevents reset from asserting when reset generation flops are scanned.

dftcgen dftcgen_fdc Forces clock gate enable to ensure scanned flops get a clock

dftramhold dftramhold_fdc Asserting prevents RAM access during ATPG. This can reduce coverage for logic in the RAM shadow.

5.4.3 LBIST

Arm has verified that a third-party LBIST controller can be instanced and used to control the scan
chains and obtain additional latent fault coverage or diagnostic information.

5.5 Fault Management Unit
The FMU is located in the TCU. It processes faults that the TCU and TBU SMs detect.

The FMU implements the following functionality:

• Receives errors signaling from all SMs within other MMU blocks.

• Routes all errors to the Safety Island, if enabled.

• Maintains Error Records for each MMU block, which are stored in registers.

• The Error Records and other registers are accessible through a dedicated, safe APB4 interface.

• It allows software to enable or disable an SM within an MMU block.

• Enables software error recovery testing by allowing error injection in an SM within an MMU
block.

• Retains Error Records across functional reset.

The following figure shows the FMU interconnections.

This is a dedicated APB port for the FMU, which is different than the APB port
accessing the programmable registers of MMU-600.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 106 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Figure 5-3: FMU in MMU block

TBU

fmu_err_out

TCU

FMU

Error Records

DTI interconnect
ADB

freq

fack

TBU TBU

fmu_err_out fmu_err_out

fmu_err_in

APB4 interface

fmu_err_int

fmu_fault_int

5.5.1 Error signaling to the FMU

The MMU-600AE deploys numerous SMs in each MMU TCU and TBU block to protect them from
transient or permanent errors.

Each SM outputs an error signal which then sends those errors to the FMU residing in the TCU.

The TBU uses the existing AXI4‑Stream interconnect to report errors that any SM within the block
to the TCU detects.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 107 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

In addition to reporting errors through the AXI4‑Stream interconnect, each TBU has an output,
fmu_err_out, which indicates an actual uncorrected error within its block. Corrected errors never
raise fmu_err_out, even if configured to report as uncorrected. See 5.5.8 Correctable Error enable
on page 119. The fmu_err_out signal must be connected to the fmu_err_in input of the TCU to
provide a redundant path for error signaling from the TBUs to the FMU residing in the TCU. The
fmu_err_in wire stays asserted by the TBU until the error recovery software clears the error.

Smaller components without an AXI4‑Stream interface needing to report errors do so through
the F‑Channel interface. The TCU can be connected to 16 such interfaces. The MMU-600AE has
modified the ADB and LPD components with an F‑Channel interface for this reason. For more
information, see 5.8.4 F-Channel on page 140.

5.5.2 Error signaling from the FMU

When an SM detects an error, it is sent to the FMU.

If enabled, the FMU signals the error to the outside world using the level‑sensitive interrupt error
ports:

• Error Recovery Interrupt (ERI), fmu_err_int.

• Fault Handling Interrupt (FHI), fmu_fault_int.

Error reporting through the ERI or FHI is enabled through the 5.5.9.1.2 FMU_ERR<n>CTLR, Error
Record Control Register on page 122.

These error interrupts are disabled after reset by fmu_aresetn and software must
enable them at startup.

Detected Uncorrectable Errors can be reported as ERI, FHI, or both when enabled. Detected
Correctable Errors can be reported as FHI when enabled. FMU_ERR<n>CTLR.FI and
FMU_ERR<n>CTLR.UI control this reporting. The grouping of the errors into these two categories
can be helpful in redirecting these errors to different error recovery handlers based on the criticality
of the errors or other factors that are known at the system level.

5.5.2.1 Reset

The fmu_aresetn signal resets the FMU Error Records and FMU_ERRGSR. The aresetn signal resets
the main FMU logic and all other registers, including locking the register file.

This enables software to reset the MMU while keeping the Error Records intact for later
interrogation and debug. For more information, see the Resets section of the Arm® CoreLink™

MMU-600AE System Memory Management Unit Configuration and Integration Manual.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 108 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

If the FMU Error Records are not reset, but the rest of the system is reset, then an
error record with FMU_ERR<n>STATUS.V==1 continues to assert an interrupt if
the appropriate control bit, FMU_ERR<n>CTLR.UI or FMU_ERR<n>CTLR.FI enables
the interrupt. The system reset signal does not affect the interrupt, and when the
system comes out of reset, then the interrupt is still asserted.

If the FMU error records are not reset, then when the system comes out of
reset, any new RAS errors that occur from system reset are logged if enabled by
FMU_ERR<n>CTLR.ED.

5.5.3 Error Record table

The MMU-600AE faults are recorded in Error Records.

Each MMU block that the MMU block IDs table in 5.5.3.2 Functional PV and FMU PV on page
109 shows has its own error record where the index of the error record is the block ID. Each
error record contains several registers and the table FMU PV registers in 5.5.9.1 Programmer's View
registers on page 121 describes their offsets.

5.5.3.1 Accessing FMU Error Records using the FMU APB

These FMU Error Records are accessed only by the dedicated FMU APB interface on the TCU.

This interface is separated from the main functional APB interface to minimize the chance of main
logic or interface faults affecting the FDC logic.

5.5.3.2 Functional PV and FMU PV

Non‑FMU registers, such as those used to configure and control the MMU functions, are accessed
through the main APB interface on the TCU.

For any CRC or parity faults in:

• The TBU MTLB Tag and Data RAMs.

• The TCU CCB and WCB Tag and Data RAMs.

The MMU-600 PV detects and reports these faults as Corrected Errors in the MMU-600 PV
RAS registers. These faults are also Safety Mechanisms TBU SMID:7-8 and TCU SMID:7-10
and an attempt is made to report them independently in the FMU as either Corrected Errors or
Uncorrected Errors depending on the corresponding FMU_ERR<n>CTLR.CE_EN field. See:

• 5.5.9.1.2 FMU_ERR<n>CTLR, Error Record Control Register on page 122.

• 5.5.4 Safety Mechanism table on page 110.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 109 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

This method enables the host processor and a dedicated FDC processor to act on faults separately
and perform different tasks. If this functionality is not required, the host software can disable the
interrupts that are associated with the functional Error Records.

Table 5-6: MMU block IDs

Block ID MMU block

0 TCU.

1 Fault Channels. LPD and ADB faults are reported in this Error Record.

2 TBU0.

3 TBU1.

4 TBU2.

... ...

61 TBU59.

62 TBU60.

63 TBU61.

The number of Error Records that are supported depends on the number of TBU blocks that are
connected to the TCU. For unused TBU blocks, the Error Record registers become RAZ.

For more information about these Error Records, see 5.5.9 Programmer's View on page 120.

5.5.4 Safety Mechanism table

If an uncorrectable error occurs, then the system might behave unpredictably.

For faults in RAMs, unpredictable behavior can include, but is not limited to:

• Data corruption.

• System lock‑up in any of the upstream or downstream systems of the TBUs and DTI masters.

• Security violation.

For interface errors, unpredictable behavior can include any of the above behaviors. In addition,
depending on the interface, the unpredictable behavior can also include, but is not limited to:

• Potentially, using and/or reporting bad data and addresses to access the FMU register file.

• No response to ping packets.

• FMU_ERRSTATUS.idle never returning to 1, that is, the idle state. See 5.5.9.1.3
FMU_ERR<n>STATUS, Error Record Primary Status Register on page 123.

The following table shows the Safety Mechanisms (SMs) inside the MMU blocks.

Table 5-7: Safety Mechanisms

Block SM
identifier

SM description

TCU 0 Reserved.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 110 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Block SM
identifier

SM description

1 TCU Dual LockStep error. See 5.6 Lock-step protection on page 131.

2 TCU DTI AXI4‑Stream interface error. See 5.8.2 AXI4-Stream interface parity protection on page 139 and 5.9
Integrating the TCU, TBU, LPD, PCIe ATS, and DTI AXI4-Stream interconnect on page 144.

3 TCU APB interface error. See 5.8.3 APB interface parity protection on page 140.

4 TCU ACE‑Lite DVM master interface error. See 5.8.1 ACE-Lite interface parity protection on page 139.

5 TCU LPI_PD Q‑Channel interface error.

6 TCU LPI_CG Q‑Channel interface error.

7 TCU Configuration Cache Block (CCB) Tag RAM CRC error. See 5.5.8 Correctable Error enable on page 119 and
5.7 RAM protection on page 133.

8 TCU CCB Entry RAM CRC error. See 5.5.8 Correctable Error enable on page 119 and 5.7 RAM protection on
page 133.

9 TCU Walk Cache Block (WCB) Tag RAM CRC error. See 5.5.8 Correctable Error enable on page 119 and 5.7 RAM
protection on page 133.

10 TCU WCB Entry RAM CRC error. See 5.5.8 Correctable Error enable on page 119 and 5.7 RAM protection on
page 133.

11 TCU DTI Buffer (DTIB) RAM CRC error. Stores messages received over DTI.

12 FMU Ping Ack error.

13 FMU APB interface error. See 5.8.3 APB interface parity protection on page 140.

14 MBIST Req error. This is disabled by default.

15 Tie‑off error. See 5.8.6 Tie-off input protection on page 143.

16 FMU clock gating override1. This is disabled by default.

0 Some error in TBU, precise source yet unknown.

1 TBU Dual LockStep error. See 5.6 Lock-step protection on page 131.

2 TBU ACE‑Lite Slave (TBS) interface error. See 5.8.1 ACE-Lite interface parity protection on page 139.

3 TBU ACE‑Lite Master (TBM) interface error. See 5.8.1 ACE-Lite interface parity protection on page 139.

4 TBU DTI AXI4‑Stream interface error. See 5.8.2 AXI4-Stream interface parity protection on page 139 and 5.9
Integrating the TCU, TBU, LPD, PCIe ATS, and DTI AXI4-Stream interconnect on page 144.

5 TBU LPI_PD Q‑Channel interface error. Low‑Power Interface Power‑Down (LPI_PD) represents a request from the
power-controller to alter the power state of the device.

6 TBU LPI_CG Q‑Channel error. Low‑Power Interface Clock Gating (LPI_CG) might be a software‑based or HW‑based
request to go into a lower power state by clock gating.

7 TBU MTLB Tag RAM CRC error. MTLB is a TLB‑like structure for caching translations. See 5.5.8 Correctable Error
enable on page 119 and 5.7 RAM protection on page 133.

8 TBU MTLB Entry RAM CRC error. See 5.5.8 Correctable Error enable on page 119 and 5.7 RAM protection on
page 133.

9 TBU WBB MFIFO RAM CRC error. WBB is the store buffer for client data.

10 MBIST Req error. This is disabled by default.

11 Tie‑off error. See 5.8.6 Tie-off input protection on page 143.

TBU

12 FMU clock gating override1. This is disabled by default.

1 The scope of FMU clock gating override is limited to the FMU and does not apply to the parent module, that is,
the TCU or the TBU. The FMU clock gating override Safety Mechanism TCU_FMU_CLK_GATING does not record
errors. Enabling TCU_FMU_CLK_GATING disables the internal FMU Clock Gating, allowing the FMU Clock to run
continuously.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 111 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Block SM
identifier

SM description

F‑Channel id Index of freq[id].

The SMID value 0 for TBU error record[N] indicates that the FMU has detected
an actual uncorrected error in the TBU[N-2], as indicated by the fmu_err_out of
the TBU that is raising an error on the fmu_err_in of the FMU. Corrected errors
never raise fmu_err_out, even if configured to report as uncorrected. See 5.5.1
Error signaling to the FMU on page 107. The safety mechanism that reported
this error has still not been determined. The safety mechanism that reported the
error is updated after the safety mechanism in the TBU sends this information over
the DTI interface to the FMU in the TCU. This information is then updated in the
FMU_ERR<n>STATUS.IERR field. See 5.5.9.1.3 FMU_ERR<n>STATUS, Error Record
Primary Status Register on page 123.

If a software read of FMU_ERR<n>STATUS.IERR returns SMID:0, then the
software is expected to read this register again. If repeated reads of this register
do not indicate the safety mechanism other than SMID:0, then it might indicate
that the DTI interconnect is broken, possibly because of a permanent fault,
and is unable to receive DTI messages. The error recovery software does not
have the SM information from the TBU that had this fault. The software should
therefore perform error recovery by resetting that TBU and the DTI interconnect
components.

5.5.4.1 Enabling and disabling a Safety Mechanism

All SMs are enabled on reset, except for MBIST Req and FMU clock gating override.

To enable or disable an SM, write to the FMU_SMEN register. FMU_SMEN.BLK specifies the MMU
block. FMU_SMEN.SMID specifies the SM within the MMU block to be enabled or disabled.

When a block is powered‑down and then powered‑up again, then the enabled state of the Safety
Mechanisms in that block return to the reset value and it might be necessary for software to
redisable or reenable them.

5.5.4.2 Injecting an error into a Safety Mechanism

To inject an error into a Safety Mechanism (SM), write to the FMU_SMINJERR register.
FMU_SMINJERR.BLK specifies the MMU block, and FMU_SMINJERR.SMID specifies the SM into
which to inject the error.

FMU_STATUS.idle protects the FMU_SMINJERR register. See:

• 5.5.5.3 FMU idle on page 115.

• 5.5.9.1.9 FMU_SMINJERR, Safety Mechanism Inject Error Register on page 129.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 112 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

• 5.5.9.1.11 FMU_STATUS, FMU Status Register on page 130.

This method injects only one error. No clearing of error injection is required.

Errors that are injected into the following are always corrected:

• TCU CCB and WCB Tag and Data RAMs, TCU SMID: 7-10.

• TBU MTLB Tag and Data RAMs, TBU SMID: 7-8.

Correction occurs irrespective of whether an attempt is made to report the errors as corrected or
uncorrected in the FMU error records, which FMU_ERR<n>CTLR.CE_EN controls. See:

• 5.5.8 Correctable Error enable on page 119.

• 5.5.9.1.2 FMU_ERR<n>CTLR, Error Record Control Register on page 122.

Errors that are injected into these correctable RAMs are injected into only the FMU path and
therefore:

• The corresponding errors are not reported in the 4.8.3 TCU_ERRSTATUS on page 85 and
4.12.3 TBU_ERRSTATUS on page 94 MMU‑600 PV RAS registers. See also 5.7.2 RAM fault
reporting on page 135.

• Do not lead to the corrective action of invalidating and refetching those RAM entries.

You can use this mechanism to test the software that is handling the FMU error records without
disturbing the software that is handling the MMU‑600 PV RAS registers. However, the mechanism
is distinguishable from a true error occurring in these RAMs.

For errors that are injected into these correctable RAMs using 4.8.4 TCU_ERRGEN on page 87 and
4.12.4 TBU_ERRGEN on page 96, no attempt is made to report them in the FMU. These errors
are only reported in the MMU‑600 PV RAS registers. This enables the RAS software to be tested
independently of the FMU, but is distinguishable from a true error occurring in these RAMs.

Errors that are injected into other RAMs are never corrected and the MMU‑600 PV RAS registers
never report them. The MMU‑600 PV RAS registers are also unable to inject errors into these
RAMs. An attempt is made to report these errors as Uncorrected Errors in the FMU error records.
Because the error injection did not corrupt the RAM data, the SMMU continues to function
correctly. However, a real error in these RAMs might lead to the outcomes that the beginning of
5.5.4 Safety Mechanism table on page 110 describes.

Errors that are injected into the Ping Ack mechanism (TCU SMID:12) do not give software the
opportunity to choose the block ID that is reported in FMU_ERR<n>STATUS.BLKID if it was a real
error. This field is unchanged.

Attempting to inject an error into the F‑Channel has no effect. To simulate such
an error, send a ping message to inject errors along the path that has the ADB/
LPD that is connected to the required F‑Channel. See Directed ping in 5.5.7 Ping
mechanism on page 117.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 113 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

There might be multiple components along the ping path that have an F‑channel
interface. If the ping packet is marked as tbu_inject_error, each component attempts
to raise an error. Usually, the ping packet travels sufficiently quickly that the first
component is recorded in ERR1STATUS.IERR, and subsequent components cause
an overflow in ERR1STATUS. Subsequent components can only be observed if
software is fast enough to acknowledge the ERR1STATUS register before the
subsequent components report an error.

Do not inject error into the FMU clock gating override SM.

5.5.5 Software interaction

This section describes software interaction with the FMU.

5.5.5.1 Initialization

The initialization routine can use the FMU_ERRIDR register to understand the number of
implemented Error Records.

It can further iterate over the FMU_ERR<n>FR, Error Record Feature Registers to understand the
capabilities of each Error Record. See 5.5.9.1.1 FMU_ERR<n>FR, Error Record Feature Register on
page 122.

All SMs are enabled on reset which can lead to errors being logged in the Error
Records. If the system does not support or does not want to check a particular
safety feature, then the software should disable that SM. To disable an SM, write to
the 5.5.9.1.8 FMU_SMEN, Safety Mechanism Enable Register on page 128 and
specify the block ID and the SM ID.

Because most of the safety mechanisms are enabled by default on startup, then they might have
already recorded some errors. The initialization routine should analyze the FMU_ERR<n>STATUS
registers to deal with any errors that have been found so far. See 5.5.9.1.3 FMU_ERR<n>STATUS,
Error Record Primary Status Register on page 123.

Clear all logged errors by writing ones to the bits that are asserted in the 5.5.9.1.3
FMU_ERR<n>STATUS, Error Record Primary Status Register on page 123.

To enable reporting of errors through the interrupts FHI and/or ERI, write one to
FMU_ERR<n>CTLR.FI and FMU_ERR<n>CTLR.UI. See 5.5.9.1.2 FMU_ERR<n>CTLR, Error Record
Control Register on page 122.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 114 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.5.5.2 Interrupt handler

When an interrupt, ERI or FHI, is received, the interrupt handling software can identify the Error
Record ID, or the MMU block, that is reporting the error by reading the FMU_ERRGSR register.

See 5.5.9.1.4 FMU_ERRGSR, Error Group Status Register on page 126.

FMU_ERRGSR[N] being one indicates that Error Record N holds a valid error. See 5.5.9.1.3
FMU_ERR<n>STATUS, Error Record Primary Status Register on page 123.

The FMU_ERR<N>STATUS.IERR indicates the Safety Mechanism ID which reported the error.

In the case where this block has reported more than one error of the same type to this Error
Record, FMU_ERR<N>STATUS.OF is set to 1.

In the case where this block attempts to report another error while it is still reporting an
unacknowledged error, then see 5.5.9.1.3.1 Prioritized ERR<n>STATUS registers on page 125.

When the recovery procedure is complete, the errors from this Error Record can be acknowledge
by writing an appropriate value to FMU_ERR<n>STATUS. See 5.5.9.1.3 FMU_ERR<n>STATUS,
Error Record Primary Status Register on page 123 for more information.

5.5.5.3 FMU idle

The APB port to the FMU is designed to not introduce backpressure by deasserting pready. This
measure prevents software lockup and makes the Error Records always accessible.

There are several operations which take multiple clock cycles to complete within the FMU. The
FMU frees up the APB bus by asserting pready to complete the APB transaction. However, it might
still be processing the previous request. When software writes one of the following registers inside
the FMU, it is required to poll for the FMU_STATUS.IDLE == 1 before issuing another write to
these registers. The APB writes, which require a poll of FMU_STATUS.IDLE == 1, are:

• FMU_ERR<n>STATUS.

• FMU_SMEN.

• FMU_SMINJERR.

• FMU_PINGNOW.

5.5.5.3.1 Power management

The TBU LP_PD Q‑Channel interface can power down the TBU.

Writing to the following registers generates messages to the remote TBU block:

• 5.5.9.1.3 FMU_ERR<n>STATUS, Error Record Primary Status Register on page 123.

• 5.5.9.1.7 FMU_PINGNOW, Ping Now Register on page 127.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 115 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

• 5.5.9.1.8 FMU_SMEN, Safety Mechanism Enable Register on page 128.

• 5.5.9.1.9 FMU_SMINJERR, Safety Mechanism Inject Error Register on page 129.

The software should be aware of the power state of the remote TBUs and does not initiate writes
to these registers that are targeting a powered‑down TBU. If writes are initiated to the preceding
registers, that are targeting a powered‑off TBU, the write does not come into effect.

The following apply:

FMU_ERR<n>STATUSThe write is ignored for all purposes. FMU_ERR<n>STATUS is unchanged.
FMU_PINGNOWThe write is ignored for all purposes other than reading back the register. It

does not send a PING packet and does not indicate that the FMU is non‑idle
through FMU_STATUS.

FMU_SMEN The write is ignored for all purposes.
FMU_SMINJERR The write is ignored for all purposes.

5.5.6 Lock and key mechanism

The FMU registers are protected against inadvertent writes by a lock and key mechanism.

The FMU registers are in a locked state after reset. If the register file is locked, then any Write-
Access to any register other than 5.5.9.1.5 FMU_KEY, FMU Key Register on page 126 is ignored.

The register file is unlocked when a write to FMU_KEY occurs that satisfies all of the following:

• Is Secure.

• Is for 32 bits. That is, all write strobes.

• The bottom 8 bits are 0xBE.

The register file is locked again when a write occurs that satisfies all of the following:

• Is a Secure write.

• Is any width and any write strobes.

• Is to any register except for FMU_KEY.

A write to the 5.5.9.1.5 FMU_KEY, FMU Key Register on page 126, when unlocked, leaves the
register file unlocked only if the write satisfies the criteria for unlocking the register file. Otherwise,
it locks the register file.

If the register file is unlocked, the FMU_KEY register reads as 0x00000BE. Otherwise, the
FMU_KEY register reads as 0x00000000.

Non‑secure accesses never succeed and never affect the locked state of the register
file.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 116 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Some of the FMU registers are 64‑bit registers, but the APB interface width is 32 bits. When in
unlocked state, the FMU allows for two consecutive writes to update the same 64‑bit register
without requiring unlocking again before the second write. In this sequence, both the writes are
Secure, with all write strobes to the same register, except that the second write is targeting the
other half of that register.

For example, the following sequence would be successful in updating the register contents:

1. Secure write to FMU_KEY with data 0xBE, all write strobes asserted.

2. 32‑bit Secure write to FMU_ERR0CTLR[63:32] addr 0x0C, all write strobes asserted.

3. 32‑bit Secure write to FMU_ERR0CTLR[31:0] addr 0x08, all write strobes asserted.

This behavior is permitted to allow for the case when the APB interconnect splits a single 64‑bit
register access and presents it to the FMU in any order.

5.5.7 Ping mechanism

This section describes the MMU FMU ping mechanism.

Background ping
The FMU provides a background ping mechanism to detect network issues between the TCU and
the remote TBU blocks. Using the ping mechanism, the TCU sequentially sends a ping message
over the AXI4‑Stream network to a remote TBU block, one at a time. It then starts a timer and
expects a PING_ACK message back from that remote block. If PING_ACK is not received within the
expected interval from the intended remote TBU block, the FMU indicates a PING_ACK timeout
error.

The ping mechanism can help identify the following issues:

• Permanent deadlock that permanent Stuck‑At Faults on valid and ready bits cause.

• Congestion in the network that exceeds the FMU_PINGCTLR.ping_timeout_value.

• Systematic issues in the network that cause misrouting of messages.

• Connectivity issue of remote blocks to the TCU.

The background ping by MMU FMU can be enabled by writing to the 5.5.9.1.6 FMU_PINGCTLR,
Ping Control Register on page 127. FMU_PINGCTLR.ping_timeout_value defines the timeout in
the MMU FMU clock.

(FMU_PINGCTLR.ping_interval_diff + FMU_PINGCTLR.ping_timeout_value) defines the interval at
which the FMU pings the next remote block, ping_interval.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 117 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Figure 5-4: Ping mechanism parameters

Ping sent
to TBU0

Ping sent
to TBU1

Ping sent
to TBU2

ping_timeout_value ping_interval_diff

ping_interval ping_interval

It is expected that the background ping using 5.5.9.1.6 FMU_PINGCTLR, Ping
Control Register on page 127 and directed ping using 5.5.9.1.7 FMU_PINGNOW,
Ping Now Register on page 127 are used mutually exclusively. When background
pings are enabled, do not write FMU_PINGNOW.enable = 1.

Before generating directed pings using the FMU_PINGNOW register, turn off
background ping by setting FMU_PINGCTLR.enable = 0 and waiting long enough
for the last PING_ACK to be returned.

When the FMU indicates a PING_TIMEOUT error, you can obtain the remote TBU block ID by the
reading the 5.5.9.1.3 FMU_ERR<n>STATUS, Error Record Primary Status Register on page 123.

To conserve operational power of the TCU, the TCU accepts the Q‑Channel
handshake to enter low powerdown state, if requested by the clock controller.

When the TCU is in the low‑power clock gated state, it does not send background
ping messages to the TBUs and does not report PING_ACK violations.

When the TCU is not in the low‑power clock gated state, the FMU resumes
background pings.

Directed ping
The software can also send directed ping messages to a specific block using the 5.5.9.1.7
FMU_PINGNOW, Ping Now Register on page 127. This process can help debug PING_ACK
violations that are received from background pings.

Use the following recommended software procedure to initiate a directed software ping:

1. To disable background pings, write FMU_PINGCTLR.enable = 0.

2. To clear all flags, write all zeros into the 5.5.9.1.7 FMU_PINGNOW, Ping Now Register on page
127.

3. To initiate a directed ping, write:

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 118 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

a. FMU_PINGNOW.enable = 1.

b. FMU_PINGNOW.ping_ack_received = 0.

c. FMU_PINGNOW.blk_id of the TBU block to which the ping is to be sent.

4. Poll for FMU_PINGNOW.ping_ack_received == 1.

5. Optionally, set Error Injection bits to test TBU or TCU integration, software, or both.

The PINGNOW feature can be used to send an erroneous packet from the TCU to a targeted TBU
or from a targeted TBU to the TCU. Using this feature enables the TCU or TBU integrator to verify
the AXI4‑Stream and F‑Channel connections between the TBUs and the TCU.

Injecting an error on a TCU ping message and on the subsequent TBU PING_ACK message
causes mismatches along the PING/PING_ACK route through the interconnect. After injecting a
PINGNOW error, you can read the TCU Error Records and verify that the expected SM errors are
reported along the PING or PING_ACK route, for example by the receiving block and by any ADB
components along the path.

When writing to the FMU_PINGNOW register and FMU_PINGNOW.enable is written as 1:

• A single ping is sent for each write to a present block.

• If another ping is sent before a previous PING_ACK has been received, then:

◦ If sent to the same destination, then the first ping back sets
FMU_PINGNOW.ping_ack_received.

◦ If sent to a different destination, then the first PING_ACK is silently discarded if or when
received because it does not match the programmed FMU_PINGNOW.blk_id.

• An attempt to send a ping to a not-present block does not launch a ping and
FMU_PINGNOW.ping_ack_received does not go HIGH.

• If FMU_PINGNOW.tcu_inject_error == 1, an error is injected on the outgoing PING packet
on the TCU->TBU interface. The receiving TBU block and the ADB, if present, detect the
erroneous payload and report it as a fault.

• If FMU_PINGNOW.tbu_inject_error == 1, an error is injected on the outgoing PING_ACK
packet by the TBU on the TBU->TCU interface. The receiving TCU block and the ADB, if
present, detect the erroneous payload and report it as a fault.

5.5.8 Correctable Error enable

By default, the FMU reports all errors as Uncorrectable Errors.

The RAMs are protected using CRC code. Some RAMs that act as caches on a CRC error perform
invalidation and refetch of that cache line. The following RAMs act as caches:

• TCU CCB Tag RAM.

• TCU CCB EntryTag RAM.

• TCU WCB Tag RAM.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 119 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

• TCU WCB Entry RAM.

• TBU MTLB Tag RAM.

• TBU MTLB Entry RAM.

Because this error is always corrected, CRC errors from these RAMs can be considered to be
reported as correctable.

To program the FMU to consider these RAM errors as correctable for reporting purposes, set
FMU_ERR<n>CTLR.CE_EN = 1. These Correctable Errors then update FMU_ERR<n>STATUS.CE.
Whatever the value of FMU_ERR<n>CTLR.CE_EN, the errors are always corrected for these RAMs.

See:

• 5.5.9.1.2 FMU_ERR<n>CTLR, Error Record Control Register on page 122.

• 5.5.9.1.3 FMU_ERR<n>STATUS, Error Record Primary Status Register on page 123.

5.5.9 Programmer's View

The MMU-600 memory map that is used to address the legacy MMU functional logic is unchanged
on the MMU-600AE.

The MMU-600AE uses a separate and independent memory map for the FDC PV. This section
describes theMMU-600AE FDC memory map and PV.

The following information applies to both the FMU and functional MMU-600 registers:

• The base address is not fixed, and can be different for any particular system implementation.
The offset of each register from the base address is fixed.

• Do not attempt to access reserved or unused address locations. Attempting to access these
locations can result in UNPREDICTABLE behavior.

• Unless otherwise stated in the accompanying text:

◦ Do‑Not‑Modify UNDEFINED register bits

◦ Ignore UNDEFINED register bits on reads

◦ All register bits are reset to 0 by a system or Cold reset

• Access type is described as follows:

◦ Read and Write (RW)

◦ Read‑Only (RO)

◦ Write‑Only (WO)

◦ Read-As-Zero (RAZ)

◦ Writes Ignored (WI)

• Bit positions that are described as reserved are:

◦ RAZ/WI in an RW register

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 120 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

◦ RAZ in a RO register

◦ WI in a WO register

The MMU-600 registers are accessed using the PROG APB4 slave interface on the TCU, and
cannot be accessed directly through any other slave interfaces.

The FMU PROG APB4 interface is 32 bits wide. Strobed write is also not supported.

The FMU PROG APB4 port permits only Secure access to the FMU. This is performed by checking
the PPROT[1] signal during an access. If the access fails the security check, then the access
behaves as RAZ/WI.

5.5.9.1 Programmer's View registers

The MMU-600AE includes FMU registers for the Error Records, ping mechanism, and Safety
Mechanisms.

The system attempt to record errors in MMU block index n from the MMU block IDs table in 5.5.3.2
Functional PV and FMU PV on page 109 in error record n.

The following table shows the FMU PV registers.

Table 5-8: FMU PV registers

Offset Access Size Register Description

0x000 + 64 × nRO 64 FMU_ERR<n>FR Error Record Feature Register per MMU block. See 5.5.9.1.1 FMU_ERR<n>FR, Error
Record Feature Register on page 122.

0x008 + 64 × nRW 64 FMU_ERR<n>CTLR Error Record Control Register per MMU block. See 5.5.9.1.2 FMU_ERR<n>CTLR, Error
Record Control Register on page 122.

0x010 + 64 × nRW 64 FMU_ERR<n>STATUS Error Record Primary Status Register per MMU block. See 5.5.9.1.3
FMU_ERR<n>STATUS, Error Record Primary Status Register on page 123.

0xE00 RO 64 FMU_ERRGSR Error Group Status Register. See 5.5.9.1.4 FMU_ERRGSR, Error Group Status Register on
page 126.

0xEA0 RW 32 FMU_KEY FMU Key Register. See 5.5.9.1.5 FMU_KEY, FMU Key Register on page 126.

0xEA4 RW 32 FMU_PINGCTLR Error Ping Control Register. See 5.5.9.1.6 FMU_PINGCTLR, Ping Control Register on
page 127.

0xEA8 RW 32 FMU_PINGNOW Error Ping Now Register. See 5.5.9.1.7 FMU_PINGNOW, Ping Now Register on page
127.

0xEB0 WO 32 FMU_SMEN Safety Mechanism Enable Register. See 5.5.9.1.8 FMU_SMEN, Safety Mechanism Enable
Register on page 128.

0xEB4 WO 32 FMU_SMINJERR Safety Mechanism Inject Error Register. See 5.5.9.1.9 FMU_SMINJERR, Safety
Mechanism Inject Error Register on page 129.

0xEC0 RW 64 FMU_PINGMASK FMU Ping Mask Register. See 5.5.9.1.10 FMU_PINGMASK, Ping Mask Register on page
130.

0xF00 RO 32 FMU_STATUS Fault Management Status Register. See 5.5.9.1.11 FMU_STATUS, FMU Status Register
on page 130.

0xFC8 RO 32 FMU_ERRIDR Error Record ID Register. See 5.5.9.1.12 FMU_ERRIDR, Error Record ID Register on page
131.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 121 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

If the number of connected TBUs, configured by the TCUCFG_FUSA_TBU_FAULT_WIRE_COUNT
parameter, is greater than or equal to 54, then MMU-600AE uses 64KB page sizes instead of the
normal 4KB page sizes.

The following table shows the updated register offsets if the number of TBUs is greater than or
equal to 54.

Table 5-9: Updated register offsets if the number of TBUs is greater than or equal to 54

Register Fewer than 54 TBUs 54 or more TBUs

5.5.9.1.4 FMU_ERRGSR, Error Group Status Register on page 126 0xE00 0xE000

5.5.9.1.5 FMU_KEY, FMU Key Register on page 126 0xEA0 0xE0A0

5.5.9.1.6 FMU_PINGCTLR, Ping Control Register on page 127 0xEA4 0xE0A4

5.5.9.1.7 FMU_PINGNOW, Ping Now Register on page 127 0xEA8 0xE0A8

5.5.9.1.8 FMU_SMEN, Safety Mechanism Enable Register on page 128 0xEB0 0xE0B0

5.5.9.1.9 FMU_SMINJERR, Safety Mechanism Inject Error Register on page 129 0xEB4 0xE0B4

5.5.9.1.10 FMU_PINGMASK, Ping Mask Register on page 130 0xEC0 0xE0C0

5.5.9.1.11 FMU_STATUS, FMU Status Register on page 130 0xF00 0xE100

5.5.9.1.12 FMU_ERRIDR, Error Record ID Register on page 131 0xFC8 0xE1C8

5.5.9.1.1 FMU_ERR<n>FR, Error Record Feature Register

This register defines which of the common architecturally defined features are implemented and, of
the implemented features, which are software programmable.

The following table shows the bit descriptions.

Table 5-10: Error Record Feature Register bit descriptions

Bits Name Reset value Type Function

[63:8] - All zeros Res0 Reserved.

[7:6] FI 2'b10 RO Fault Handling Interrupt. Feature is controllable using ERR<n>CTLR.FI.

[5:4] UI 2'b10 RO Error Recovery Interrupt for Uncorrected Errors. Feature is controllable using ERR<n>CTLR.UI.

[3:2] - 2'b00 Res0 Reserved.

[1:0] ED 2'b10 RO Error reporting and logging. Feature is controllable using ERR<n>CTLR.ED.

5.5.9.1.2 FMU_ERR<n>CTLR, Error Record Control Register

For this error record:

• FMU_ERR<n>CTLR.ED controls whether the record logs an error.

• FMU_ERR<n>CTLR.CE_EN controls whether correctable errors are reported as uncorrectable.

• FMU_ERR<n>CTLR.FI and FMU_ERR<n>CTLR.UI control the interrupts that are sent when the
error record is reporting an error, as indicated by FMU_ERR<n>STATUS.V == 1. A change to
these fields asserts or deasserts the level‑sensitive interrupt as appropriate.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 122 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

This register is only reset by the fmu_aresetn signal. See 5.5.2.1 Reset on page 108 in 5.5.2 Error
signaling from the FMU on page 108.

The following table shows the bit descriptions.

Table 5-11: Error Record Control Register bit descriptions

Bits Name Reset
value

Type Function

[63:4] - All
zeros

Res0 Reserved.

[3] FI 1'b0 RW Fault Handling Interrupt (FHI) enable.

This controls whether an FHI is generated for all detected and logged (FMU_ERR<n>CTLR.ED == 1) errors
that are reported through this error record. That is:

• Correctable errors, whether reported as CEs or UEs. See 5.7.2 RAM fault reporting on page 135.

• Uncorrectable errors.

[2] UI 1'b0 RW Error Recovery Interrupt (ERI) enable.

This controls whether an ERI is generated for all detected, logged (FMU_ERR<n>CTLR.ED == 1), RAS
errors reported through this error record as UEs. That is:

• Correctable errors that are reported as uncorrectable (FMU_ERR<n>CTLR.CE_EN == 0). See 5.7.2
RAM fault reporting on page 135.

• Uncorrectable errors.

Note:
An error that is reported as a UE might generate both an ERI and an FHI.

[1] CE_EN 1'b0 RW Correctable Error enable:

0 Treats Correctable Errors as Uncorrectable Errors (default).
1 Treats Correctable Errors and Uncorrectable Errors differently, and reports them separately.

See 5.5.8 Correctable Error enable on page 119.

[0] ED 1'b1 RW Error reporting and logging enable.

5.5.9.1.3 FMU_ERR<n>STATUS, Error Record Primary Status Register

This register indicates information relating to the recorded errors.

Poll the FMU_STATUS register after a write to this register to ensure that the effect of the write is
complete. FMU_STATUS.idle == 1 indicates that the effect of a write is complete. See 5.5.9.1.11
FMU_STATUS, FMU Status Register on page 130.

Until the write takes effect, that is, FMU_STATUS.idle == 1 then:

• The corresponding bit of FMU_ERRGSR might still report as 1.

• Any interrupts caused by this record might still be asserted.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 123 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

• Any new error that occurs is treated as a second error recording on top of this error and causes
an overflow to be set. See 5.5.9.1.3.1 Prioritized ERR<n>STATUS registers on page 125.

• Any read of this register might return the old value, or if a new error has been recorded, then
the newly recorded value.

This register is only reset by the fmu_aresetn signal. See 5.5.2.1 Reset on page 108 in 5.5.2 Error
signaling from the FMU on page 108. Do not write to an FMU_ERR<n>STATUS corresponding
to a powered‑off block. See 5.5.5.3.1 Power management on page 115.

The following table shows the bit descriptions.

Table 5-12: Error Record Primary Status Register bit descriptions

Bits Name Reset
value

Type Function

[63:40] - All
zeros

Res0 Reserved.

[39:32] BLKID All
zeros

RO If a PING_ACK timeout error occurs, this field indicates the block ID of the remote MMU block that
caused the error.

Only valid for Error Record 0.

Only valid when FMU_ERR<n>STATUS.V == 1 and FMU_ERR<n>STATUS.IERR == 8'd12. See 5.5.9.1.3
FMU_ERR<n>STATUS, Error Record Primary Status Register on page 123.

This field is not updated when a PING_ACK timeout error is reported as a result of a software error
injection using the 5.5.9.1.9 FMU_SMINJERR, Safety Mechanism Inject Error Register on page 129.

[31] - 1'b0 RO Reserved.

[30] V 1'b0 RW Status Register valid.

This bit is set if the record represents that one or more errors have occurred.

If this bit is clear, then all other fields except for FMU_ERR<n>STATUS.SERR are UNKNOWN.

For write behavior, see the Note at the end of this section.

[29] UE 1'b0 RW Uncorrected Error.

If FMU_ERR<n>STATUS.V == 1 and FMU_ERR<n>STATUS.UE == 1 then one or more uncorrected errors
occurred.

For write behavior, see the Note at the end of this section.

[28] - 1'b0 Res0 Reserved.

[27] OF 1'b0 RW Record has overflowed.

Valid if FMU_ERR<n>STATUS.V==1, else UNKNOWN.

For write behavior, see the Note at the end of this section.

See 5.5.9.1.3.1 Prioritized ERR<n>STATUS registers on page 125.

[26] - All
zeros

Res0 Reserved.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 124 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Bits Name Reset
value

Type Function

[25:24] CE 2'b00 RW Corrected Error bit:

2'b00 No errors.
2'b10 One or more errors were corrected.

Valid if FMU_ERR<n>STATUS.V == 1, else UNKNOWN.

For write behavior, see the Note at the end of this section.

[23:22] - 2'b0 RO Reserved.

[21:20] UET 2'b11 RO Uncorrected Error type.

These bits read as:

2'b11 When FMU_ERR<n>STATUS.V == 1 and FMU_ERR<n>STATUS.UE == 1.
UNKNOWN Otherwise.

[19:16] - All
zeros

RO Reserved.

[15:8] IERR 8'd0 RO Safety Mechanism ID code.

See Table 5-7: Safety Mechanisms on page 110 for Safety Mechanism ID encodings.

Valid if FMU_ERR<n>STATUS.V == 1, else UNKNOWN.

[7:0] SERR 8'd0 RO Reads as zero if FMU_ERR<n>STATUS.V == 0.

Otherwise, reads as 1.

The V, UE, CE, and OF fields in this register are write‑one‑to‑clear, but there is an
interaction between the bits.

A write to this register is ignored, unless after the write, the V, UE, OF, and CE fields
are all zero. That is, either the:

• Field was zero to begin with.

• Write‑one‑to‑clear cleared the field to zero.

The CE field is a 2‑bit field but only ever reports 0b00 or 0b10.

The value that is written to CE[0] is IGNORED for all purposes.

All other named fields are read‑only and any value that is written to them is
IGNORED for all purposes.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 125 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.5.9.1.3.1 Prioritized ERR<n>STATUS registers

When a CE (Correctable Error) is followed by a UE (Uncorrectable Error), the following occurs:

1. The status registers are updated to reflect the SM ID of the Uncorrectable Error.

2. The UE is set along with the CE bit.

3. OF (Overflow) is not set in this case. OF is set only when either:

• UE is set and another Uncorrectable Error is received.

• CE is set and another Correctable Error is received.

The MMU-600AE has separate UE and CE pipelines to avoid head of line UE
blocking by a CE.

5.5.9.1.4 FMU_ERRGSR, Error Group Status Register

This register shows the status of the MMU-600AE Error Records.

If an error record is being acknowledge by a write to 5.5.9.1.3 FMU_ERR<n>STATUS, Error Record
Primary Status Register on page 123, then while FMU_STATUS.idle == 1, the corresponding bit
in this register might read as 1.

Bit n in this register corresponds to ERR<n>STATUS.V in error record n.

This register is only reset by the fmu_aresetn signal. See 5.5.2.1 Reset on page 108 in 5.5.2 Error
signaling from the FMU on page 108.

The following table shows the bit descriptions.

Table 5-13: Error Group Status Register bit descriptions

Bits Name Function

[63:0] S Indicates the status of Error Record n:

0 The Error Record is not reporting any errors.
1 The Error Record is reporting one or more errors.

Records corresponding to non‑existent TBUs Read-As-Zero.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 126 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.5.9.1.5 FMU_KEY, FMU Key Register

Writing the correct key to this register enables the next write to any other writable register to
succeed. This register reads as 0 if the register file is locked. This register reads as 0xBE if the
register file is unlocked.

See 5.5.6 Lock and key mechanism on page 116 for more information about the lock‑key
mechanism.

The following table shows the bit descriptions.

Table 5-14: FMU Key Register bit descriptions

Bits Name Reset value Type Function

[31:8] - All zeros Res0 Reserved.

[7:0] KEY 8h'00 RW The required key to write to FMU registers.

5.5.9.1.6 FMU_PINGCTLR, Ping Control Register

This register configures the error ping timing interval.

Do not change FMU_PINGMASK while background ping is enabled, that is,
FMU_PINGCTLR.enable == 1.

The following table shows the bit descriptions.

Table 5-15: Ping Control Register bit descriptions

Bits Name Reset
value

Type Function

[31:16] ping_interval_diff All
zeros

RW Equal to (ping_interval − ping_timeout_value) in SMMU clock cycles.

[15:4] ping_timeout_value All
zeros

RW Timeout threshold value for ping timeouts in SMMU clock cycles. The minimum supported
value is 4.

[3:1] - All
zeros

Res0 Reserved.

[0] enable 1'b0 RW Enables the TCU ping engine. The TCU sends ping messages to each remote component, and
expects a PING_ACK back within the specified timeout. If the PING_ACK is not received within
the specified timeout, then the TCU records this situation as an error. The TCU sequentially
moves to the next block and sends another ping message after ping_interval. If pings
are enabled, then the setting in the 5.5.9.1.10 FMU_PINGMASK, Ping Mask Register on page
130 must unmask at least one TBU block.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 127 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.5.9.1.7 FMU_PINGNOW, Ping Now Register

This register specifies the remote SMMU block to send the ping request to, and monitors whether
that block has acknowledged the ping.

For more information on the use of this register, see Directed ping in 5.5.7 Ping mechanism on
page 117.

Poll the FMU_STATUS register after a write to this register to ensure that the effect of the write is
complete. FMU_STATUS.idle == 1 indicates that the effect of a write is complete. See 5.5.9.1.11
FMU_STATUS, FMU Status Register on page 130.

Do not send a PING to a powered‑off block. See 5.5.5.3.1 Power management on page 115.

The following table shows the bit descriptions.

Table 5-16: Ping Now Register bit descriptions

Bits Name Reset
value

Type Function

[31:12] - All
zeros

Res0 Reserved.

[11] tbu_inject_error 1'b0 RW 1 Inject an error on the PING_ACK response packet that is sent from the remote SMMU
block to the FMU. This action causes errors along the route of the PING_ACK through
the interconnect. The presence of errors helps to confirm that the interconnect path
from the specified remote SMMU block to the FMU has been properly connected.

[10] tcu_inject_error 1'b0 RW 1 Inject an error on the PING data packet that is sent from the FMU to the remote
SMMU block. This action causes errors along the route of the PING route through the
interconnect. The presence of errors helps to confirm that the interconnect path from
the FMU to the specified remote SMMU block has been properly connected.

[9] ping_ack_received 1'b0 RW Indicates whether a PING_ACK has been received:

0 PING_ACK has not been received.
1 PING_ACK has been received from the SMMU block that was pinged.

[8] enable 1'b0 RW Ping enable:

0 Does not initiate a ping. Allows software to clear the status of this register without
initiating another ping.

1 Initiates a ping to the SMMU block specified in FMU_PINGNOW.block_id.

[7:0] block_id 8'd0 RW Block identifier. Sends a ping request to the specified SMMU block. See Table 5-6: MMU block
IDs on page 110 for block ID encodings.

5.5.9.1.8 FMU_SMEN, Safety Mechanism Enable Register

This register enables or disables particular SMs inside a specified SMMU block. All SMs in the
SMMU blocks are enabled at reset.

Poll the FMU_STATUS register after a write to this register to ensure that the effect of the write is
complete. FMU_STATUS.idle == 1 indicates that the effect of a write is complete. See 5.5.9.1.11
FMU_STATUS, FMU Status Register on page 130.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 128 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Do not attempt to enable or disable a powered‑off block. See 5.5.5.3.1 Power management on
page 115.

If a block is powered‑off and then powered‑on again, the enabled state of the
Safety Mechanism returns to the default reset state. See 5.5.4.1 Enabling and
disabling a Safety Mechanism on page 112 in 5.5.4 Safety Mechanism table on
page 110.

The following table shows the bit descriptions.

Table 5-17: Safety Mechanism Enable Register bit descriptions

Bits Name Reset
value

Type Function

[31:24] SMID X WO Safety Mechanism identifier. See Table 5-7: Safety Mechanisms on page 110 for Safety Mechanism
ID encodings.

[23:16] - 0x8'd0 Res0 Reserved.

[15:8] BLK X WO Block identifier. See Error Records.

[7:1] - 7'd0 Res0 Reserved.

[0] EN X WO Safety Mechanism enable.

This feature cannot be used for the following:

• BLK = TCU, SMID = 0.

• BLK = Fault channel block.

• BLK = TBU, SMID = 0.

5.5.9.1.9 FMU_SMINJERR, Safety Mechanism Inject Error Register

This register injects one error into the specified SM inside an SMMU block. Only one error is
injected, and no explicit clearing of this mechanism is required.

Poll the FMU_STATUS register after a write to this register to ensure that the effect of the write is
complete. FMU_STATUS.idle == 1 indicates that the effect of a write is complete. See 5.5.9.1.11
FMU_STATUS, FMU Status Register on page 130.

Do not attempt to inject an error into a powered‑off block. See 5.5.5.3.1 Power management on
page 115.

For more information, see:

• 5.5.4 Safety Mechanism table on page 110.

• 5.5.4.2 Injecting an error into a Safety Mechanism on page 112.

The following table shows the bit descriptions.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 129 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Table 5-18: Safety Mechanism Inject Error Register bit descriptions

Bits Name Reset
value

Type Function

[31:24] SMID X WO Safety Mechanism identifier. See Table 5-7: Safety Mechanisms on page 110 for Safety Mechanism
ID encodings.

[23:16] - 8'd0 Res0 Reserved.

[15:8] BLK X WO Block identifier. See Error Records.

[7:0] - 8'd0 Res0 Reserved.

This feature cannot be used for the following:

• BLK = TCU, SMID = 0.

• BLK = Fault channel block.

• BLK = TBU, SMID = 0.

5.5.9.1.10 FMU_PINGMASK, Ping Mask Register

This register configures the ping mask.

Do not change FMU_PINGMASK while background ping is enabled, that is,
FMU_PINGCTLR.enable == 1.

It is not necessary to mask off a powered‑off block in FMU_PINGMASK before powering it off. The
SMMU automatically stops sending background pings to a powered‑off block as the block performs
the powerdown handshake.

The following table shows the bit descriptions.

Table 5-19: Ping Mask Register bit descriptions

Bits Name Reset
value

Type Function

[63:0] ping_mask All
zeros

RW Ping mask. Bit position corresponds to MMU block ID.

To make the FMU skip specific TBU blocks while generating background ping messages, write a 1 to the
corresponding bit:

Bit [0] TCU
Bit [1] Fault Channel
Bit [2] TBU0
Bit [2+n] TBUn

For unpopulated MMU blocks, the corresponding bits have no effect. The same applies to bit[0] and
bit[1] because the FMU does not ping the TCU or the Fault Channel components.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 130 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.5.9.1.11 FMU_STATUS, FMU Status Register

This register monitors whether the FMU is idle.

The following table shows the bit descriptions.

Table 5-20: FMU Status Register bit descriptions

Bits Name Reset value Type Function

[31:1] - All zeros Res0 Reserved.

[0] idle 1'b1 RO Indicates whether the FMU is idle:

0 FMU is busy processing the previous command.
1 FMU is idle.

5.5.9.1.12 FMU_ERRIDR, Error Record ID Register

This register defines the highest numbered index of the Error Records in this group.

The following table shows the bit descriptions.

Table 5-21: Error Record ID Register bit descriptions

Bits Name Reset value Type Function

[31:16] - All zeros Res0 Reserved.

[15:0] NUM 2 + number of connected TBUs RO 1 + highest numbered index of the Error Records in this group.

5.6 Lock-step protection
The MMU-600AE logic is protected by redundant lock-step checking.

The exceptions to this are:

• The RAMs, which are shared

• The internal AXI4-Stream interconnect, which uses full duplication

The following figure shows the lock-step for the TCU.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 131 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Figure 5-5: TCU lock-step

TCU / TCU no_ram
PrimaryClkGate rcg_clken

aclk

aclk_gated

aclk

aclk_gated

aclk

RAM

we

addr

wdata

rdata

F F

F F

TCU / TCU no_ram
Redundant

we_fdc

addr_fdc

wdata_fdc

rdata_fdc

ClkGate

aclk_fdc

aclk_gated_fdc

aclk_fdc

rcg_clken_fdc

F F

F F

Fault

Fault

CRC

CRC CRC

CRC

inputs

outputs

The lock-step has a standard temporal delay of two cycles, with RAM sharing and comparators. A
circle with an X in the middle indicates a comparator. To save power, CRC is used to compress the
outputs.

The entire noram hierarchy is duplicated, with the comparators instanced in the block top level. The
clock gate and reset synchronizers must also be duplicated in the top level.

The clocking is also duplicated. To provide redundancy in the reset and clock trees, the primary
(main) and checker (shadow) logic are clocked by a separate clock and separate reset. In the clock
tree, if a branch of the reset fails in the primary domain, then the checker domain detects the
failure. Similarly, if a branch of the reset fails in the checker domain, then the primary domain
detects the failure.

5.6.1 Comparators

The lockstep comparators consist of an XOR tree. The same parameterized comparator component
is instanced throughout the design to promote uniformity and allow the implementation to be
changed.

The comparators are known to be power hungry. Therefore, qualification is used wherever possible
so they only check the outputs when necessary. For example, an AXI bus comparator checks the
data only when the valid bits are asserted. This methodology is necessary to:

• Prevent flagging on benign glitches when nothing is reading the bus.

• Prevent false error from being asserted due to UNKNOWN values on the bus, from RAMs or
from uninitialized datapath flops.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 132 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.6.1.1 Comparator duplication option

The comparators can be duplicated by setting a parameter to aid in latent fault diagnostic coverage
goals.

Duplicating the comparators provides passive latent fault coverage, preventing the need to achieve
coverage through LBIST or software STL library means. The main trade-off is power and area,
but partners should check timing results as well. The option adds one additional gate into the
comparator paths.

To duplicate the comparators, set FUSA_COMP_DUP=1 in instantiation.

All comparators in MMU-600AE can be duplicated, including lockstep and CRC
comparators.

5.6.2 Non-resettable flops

Non-resettable flops from MMU-600 were made resettable in cases where false output
comparator errors can occur due to non-deterministic states of those flops.

5.6.3 Reset

Logic has been added to the MMU-600AE to guarantee a proper reset for lockstep logic.

For more information on reset assumptions and requirements related to lockstep logic and
FuSa, see the FuSa clocks and resets section in the Arm® CoreLink™ MMU-600AE System Memory
Management Unit Configuration and Integration Manual.

5.6.4 Error injection

The FMU can be used to inject a fault into a fixed input of the lockstep comparators.

The main purpose is to test connectivity and software. This is not meant to be an exhaustive test
of the comparator XOR tree. For this purpose, the comparators can be duplicated by setting the
FUSA_COMP_DUP parameter, as described in 5.6.1.1 Comparator duplication option on page 132.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 133 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.7 RAM protection
For RAM errors that can be corrected, independent of the FMU_ERR<n>STATUS.CE_EN bit, the
legacy MMU-600 PV reports some extra information about the RAM fault.

See 4.8.3 TCU_ERRSTATUS on page 85 and 4.12.3 TBU_ERRSTATUS on page 94.

For correctable and uncorrectable RAM faults, the FMU PV is limited to reporting the RAM in
which the fault occurred.

Errors are corrected by invalidating the cache lines that are associated with the error.

The address is not protected on the MMU-600. The MMU-600AE adds 8‑bit CRC protection on
both RAM data and RAM address bits. The CRC code is created from the combination of the data
and the address being written to. When a memory location is read, the hardware calculates the
CRC code, based on the data that is read from the RAM and the address that is used to read the
data. If this calculated CRC code does not match the CRC code that was stored with the data, a
CRC fault is flagged and correction is initiated, if applicable.

The CRC protection scheme can detect the following errors:

• All Single-Bit data Errors (SBEs).

• All Double-Bit data Errors (DBEs) on data widths of 128 bits or less.

• 99.6% of all DBEs on data widths greater than 128 bits.

• 99.6% of all Multi-Bit data Errors (MBEs).

• 99.6% of incorrect address errors.

Figure 5-6: RAM CRC read path

RAM Wrapper
Way[N]

Way[...]

NORAM

Way[0]

RAM

Chip Enable

Write Enable

Address

Data In (with CRC)

… levels of hierarchy ...

ramarb

Address

DataCRC Data Out (with CRC)

CRC
Generation

CRC
Compare

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 134 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Figure 5-7: RAM CRC write path

RAM Wrapper
Way[N]

Way[...]

NORAM

Way[0]

RAM

Chip Enable

Write Enable

Address

Data In (with CRC)

… levels of hierarchy ...

ramarb

Address

Data

DataCRC

Data Out (with CRC)

CRC
Generation

5.7.1 RAM fault correction

On the MMU-600, faulty Tag and Entry RAM caches are invalidated based on a parity error. On the
MMU-600AE, these faulty caches are invalidated based on a CRC or parity error.

If the faulty RAM is acting as a buffer and not a cache, TCU Translation Request Buffer and TBU
Write Buffer, the fault is not corrected. The uncorrected faulty data is used and can lead to some of
the unpredictable effects that 5.5.4 Safety Mechanism table on page 110 describes.

5.7.2 RAM fault reporting

For the correctable RAMs, CRC or parity faults are always corrected by invalidating the cache entry
and refetching:

• TCU CCB and WCB Tag and Data RAMs, TCU SMID: 7-10.

• TBU MTLB Tag and Data RAMs, TBU SMID: 7-8.

An attempt is made to report a CRC or a parity fault as a correctable error in the MMU‑600
PV RAS registers. The PV RAS registers supply extra syndrome information for these errors in
TCU_ERRSTATUS.IERR and TBU_ERRSTATUS.IERR. See 4.8.3 TCU_ERRSTATUS on page 85 and
4.12.3 TBU_ERRSTATUS on page 94.

An attempt is made to report a CRC failure as a correctable or uncorrectable error in the FMU error
records. See 5.5.8 Correctable Error enable on page 119.

Parity failure, but not CRC failure, might detect rare Multi‑Bit Errors (MBEs). In which
case, the error is only reported in the MMU‑600 PV RAS registers. However, the
CRC catches 99.6% of all MBEs and therefore this situation is extremely rare.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 135 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Errors in all other RAMs are uncorrectable, and an attempt is made only to report them in the FMU
error records. No extra syndrome information is available other than the SMID that identifies the
RAM.

The MMU‑600 uses faulty data from uncorrectable RAMs and this can lead to some of the
unpredictable effects that 5.5.4 Safety Mechanism table on page 110 describes.

For both correctable and uncorrectable faults, both real faults and faults that software injects differ
slightly. See 5.5.4.2 Injecting an error into a Safety Mechanism on page 112.

5.7.3 RAM fault control

RAM CRC fault reporting can be enabled or disabled using the FMU_SMEN register.

This register only affects reporting of a CRC error. It does not affect the reporting of the legacy
parity error in the MMU-600 PV.

5.7.4 RAM fault severity

You can select whether a RAM fault is reported to the Safety Island through either an ERI or FHI
interrupt.

See 5.5 Fault Management Unit on page 106 for more information.

5.7.5 Address protection

Because the RAM is shared, address protection must consider the protection of address decoders
within the RAM decoder macro itself. Otherwise, faults within the RAM macro address decoder can
cause Common Mode failure (CMF).

The CRC code is created from the combination of the data and the address that is being written to.

When a memory location is read, the hardware calculates the CRC code based on the data that is
read from the RAM and the address that is used to read the data. If this calculated CRC code does
not match the CRC code that was stored with the data, a CRC fault is flagged.

The RAM type determines whether the fault is corrected.

• If the faulty RAM is a cache, correction is initiated by invalidating the failed cache location.

• If the faulty RAM is a buffer, for example the TCU Translation Request Buffer or TBU Write
Buffer, the fault is not corrected.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 136 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.8 External interface protection
All external bus interfaces are protected as defined by the AMBA® Parity Extensions for point-to-
point protection. These interfaces include the ACE-Lite, AXI4-Stream, and APB external interfaces.

The following figure shows the distribution of interface protection within the MMU-600AE. The
ACE-Lite, AXI4-Stream, and APB external interfaces are shown as bidirectional orange arrows.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 137 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Figure 5-8: Interface protection distribution

TBU
RAMsTBU

TBU
RAMsTBU

TBU
RAMsTBU

ACE-Lite

ADB

TCU
RAMsTCUFMU

LPD_PD

Interrupts Interrupts InterruptsACE-Lite ACE-Lite DTI-ATS

ACE-Lite-DVM APB

LPD_CG

P

Q-Channel-cg

P

Q-Channel-pdQ-Channel-pd

P

Q-Channel-pd

Legend:

AXI4-Stream interconnect
protection (full duplication)

Parity protection

Interrupt protection (parity)

Interface protection (AMBA FuSa)

Interrupts

Interface protection (Arm LPI FuSa) P

Logic
(duplication)

RAM (CRC)

P

P

P

P P

P

P

Full duplication / parityFull duplication / parity Full duplication / parity

P

P P P

P P

P

Full duplication / parity

Q-Channel-cg

AXI4-Stream interconnect

FMU APB

Q-Channel-pd

Q-Channel-cg

LPD_PD ADB LPD_CG

ADB

RS RS

SZSZ

SZ SZ

Sizer

Register Slice

Asynchronous Domain Bridge

Low Power Distributor

FHI

ERI

SZ

RS

ADB

LPD

The ADB and Register Slice do not support parity on the AXI4-Stream interface.
Therefore, only full duplication on AXI4-Stream is supported in the example
topology.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 138 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Point-to-point protection
Point-to-point protection is sufficient for wires and buffers that cannot cause multiple-bit faults.
An example of an interconnect component that could cause multiple-bit faults is a switch. A single
fault on a switch mux input can switch the wrong data, causing multiple bits to fail.

5.8.1 ACE-Lite interface parity protection

MMU-600AE supports ACE‑Lite interface parity protection for point‑to‑point connections from
MMU-600AE to another functionally safe IP or FuSa interconnect. If a parity fault is detected, and
the safety mechanism is enabled, the FMU attempts to report an error in the FMU error records,
potentially issuing an FHI and/or an ERI interrupt. The FMU attempts to report an error in a TBU or
TCU error record. The MMU uses the faulty data.

If this protection is not required, it can be disabled through the MMU-600AE FMU
PV.

Assumptions of use for FuSa purposes
Arm expects that:

• MMU-600AE is directly connected to the far‑end IP with only wires and repeater buffers.

• No complex logic gates, such as ADBs or cross bar switches, exist in the path because they
could be a source of Multiple Bit Errors (MBEs).

• The far‑end IP checks the parity bits that MMU-600AE generates.

• The far‑end IP generates the incoming parity bits, as ACE-Lite interface parity protection in the
Arm® CoreLink™ MMU-600AE System Memory Management Unit Configuration and Integration
Manual describes.

5.8.2 AXI4-Stream interface parity protection

MMU-600AE AXI4‑Stream interfaces support AMBA® Parity Extension protection for
point‑to‑point connections from MMU-600AE to another FuSa IP or FuSa interconnect. If a parity
fault is detected, and the safety mechanism is enabled, the FMU attempts to report an error in the
FMU error records, potentially issuing an FHI and/or an ERI interrupt. The FMU attempts to report
an error in a TBU or TCU error record. The MMU uses the faulty data.

If this protection is not required, it can be disabled through the MMU-600AE FMU
PV.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 139 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Assumptions of use for FuSa purposes
Arm expects that:

• MMU-600AE is directly connected to the far‑end IP with only wires and repeater buffers.

• No complex logic gates, such as ADBs or cross bar switches, exist in the path because they
could be a source of MBEs.

• The far‑end IP checks the parity bits that MMU-600AE generates.

• Far‑end IP generates the incoming parity bits, as AXI4-Stream interface parity protection in the
Arm® CoreLink™ MMU-600AE System Memory Management Unit Configuration and Integration
Manual describes.

5.8.3 APB interface parity protection

The MMU-600AE has two APB interfaces, one for the MMU‑600 PV register file, and the other
to the FMU register file. The MMU-600AE supports APB interface parity protection on both APB
point‑to‑point connections from MMU-600AE to another FuSa IP or FuSa interconnect. If a parity
fault is detected, and the safety mechanism is enabled, the FMU attempts to report an error in the
FMU error records, potentially issuing an FHI and/or an ERI interrupt. The FMU attempts to report
an error in a TBU or TCU error record. The MMU uses the faulty data.

If this protection is not required, it can be disabled through the MMU-600AE FMU
PV. Disable this protection when using an interconnect that does not generate
AMBA® parity.

Assumptions of use for FuSa purposes
Arm expects that:

• MMU-600AE is directly connected to the far‑end IP with only wires and repeater buffers.

• No complex logic gates, such as ADBs or cross bar switches, exist in the path because they
could be a source of MBEs.

• The far‑end IP checks the parity bits that MMU-600AE generates.

• Far‑end IP generates the incoming parity bits, as APB interface parity protection in the Arm®

CoreLink™ MMU-600AE System Memory Management Unit Configuration and Integration Manual
describes.

5.8.4 F-Channel

The Fault Channel (F-Channel) communicates faults from FuSa blocks and components to the FMU
using a Fault Channel interface.

This interface consists of a REQ/ACK four-phase handshake protocol, similar to that of the Q-
Channel interface, that is designed to work across asynchronous domains. The phases of this
protocol are:

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 140 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

1. The freq signal originating from the APD or LPD (in the case of the MMU-600AE) is asserted.

2. The freq signal is held until the fack response is received from the FMU.

3. When the fack response is received, the FuSa block deasserts its freq signal.

4. When the freq signal is deasserted by the FuSa block, the FMU deasserts its fack signal.

Table 5-22: F-Channel signals

Signal Origin Destination Description

freq ADB/LPD FMU Request to report a fault to the FMU.

fack FMU ADB/LPD Acknowledgment that the FMU received the fault.

freq_chk ADB/LPD FMU Asynchronous redundancy.

fack_chk FMU ADB/LPD Asynchronous redundancy.

The following figure shows the F-Channel and FMU fault wire connections.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 141 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Figure 5-9: F-Channel and FMU fault wire connections

TBU-A

TCU

fmu_err_in[0]

freq[0]
fack[0]

freq[2]
fack[2]

Domain-A

LPD-A

TBU-B0

A
D

B
A

D
B

fmu_err_in[1]

freq[3]
fack[3]

freq[5]
fack[5]

Domain-B

LPD-B

TBU-B1

fmu_err_in[2]

freq[1]
fack[1]

freq[4]
fack[4]

A
D

B
A

D
B

The related parameter settings for these connections are:

• TCUCFG_FUSA_FCHAN_COUNT=6.

• TCUCFG_FUSA_TBU_FAULT_WIRE_COUNT=3.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 142 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

For clarity, the freq_chk and fack_chk connections are not shown.

5.8.5 Interrupt output protection

Each single interrupt output is protected with an inverted chk parity bit. The chk bit is launched on
the same clock cycle as the interrupt bit that it is protecting.

This format is compatible with the Arm CoreLink™ GIC-600AE Generic Interrupt Controller
interrupt input protection. If you do not require this protection, you can leave the output
unconnected.

5.8.6 Tie-off input protection

The TBU and TCU employ “tie‑off” or strap bits, which affect the out‑of‑reset behavior of the
MMU.

These bits are protected by inverted duplication, which means that port_chk[x:0] = ~port[x:0].
These tie‑off inputs are expected to be static during and after reset. These inputs can be:

• Tied off.

• Connected to fuses or straps.

• Driven by other logic as required by the SoC.

Example 5-1: TCU tie-off input

For the TCU tie-off input ecorevnum[3:0], the chk bits are ecorevnum_chk[3:0].
If ecorevnum[3:0] == 0b0010, ecorevnum_chk[3:0] must be 0b1101.

For multi‑bit ports, this protection is different from parity.

5.8.7 Interfacing to unsafe interfaces

If a TBU or TCU is connected to an interface that is not safe, that is, the interface does not provide
the *chk* or *fdc* signals, then you must comply with some guidelines.

The guidelines that you must comply with for unsafe interfaces are as follows:

• No input signal must be floating, that is, X or Z

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 143 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

• Tie unused *validchk and *wakeupchk input signals to 1

• Tie all other unused *chk* input signals to 0

• Tie all other unused *fdc* input signals to their original counterpart, for example, tie aclk_fdc to
aclk

• Tie unused Freq and fmu_err_in to 0

• Set the TCUCFG_FUSA_FCHAN_COUNT and TCUCFG_FUSA_TBU_FAULT_WIRE_COUNT parameter to 1, if
you are not using F‑Channel error reporting

• Set the TBUCFG_FUSA_DTI_FULL_DUP_PROT and TCUCFG_FUSA_DTI_FULL_DUP_PROT parameters to 0
for point‑to‑point protection if the DTI interface is unsafe

• Set the TCUCFG_FUSA_DISABLE_PQCHAN_PROT parameter to 1, if you do not have redundant
P‑Channel or Q‑Channel protection

• Set the TCUCFG_FUSA_DISABLE_SYSCO_PROT parameter to 1, if you do not have redundant
SYSCO interface protection, ACE interface

5.9 Integrating the TCU, TBU, LPD, PCIe ATS, and DTI
AXI4-Stream interconnect

The MMU-600AE supports the following options for protecting the DTI AXI4‑Stream interfaces on
the TCU and TBU:

Duplicated DTI AXI4‑Stream interfaces
The TCU and TBU have duplicated DTI AXI4‑Stream ports which can be used to protect the
interconnect by duplication. Like the MMU-600, the MMU-600AE provides AXI4‑Stream
components that the SoC integrator can use to build their own interconnect. A modified
ADB that supports AXI4‑Stream duplication is provided with the MMU-600AE, which is used
when the duplicated interconnect crosses asynchronous boundaries.

Single DTI AXI4‑Stream interface with protection
The single DTI AXI4‑Stream interface is protected by AMBA® parity point‑to‑point interface.
The TCU and TBU blocks can be connected to an interconnect or other IP that supports
AMBA® Parity Extensions for protecting point‑to‑point connections. When in this mode, the
MMU-600AE generates the parity for the interface outputs, checks the parity for interface
inputs, and flags a fault if there is mismatch.

If the DTI AXI4‑Stream interconnect IP does not support protection, then the safety
mechanism inside the TBU (SMID: 4) and TCU (SMID:2) should be disabled during
system initialization to prevent errors from being reported for these interfaces.

When a TBU comes out of reset, it exchanges messages with the TCU. If the parity
protection has not been disabled by that time, then it attempts to report an error:

• For the TBU, in FMU error record (tbu_index + 2) with UE = 1, IERR = SMID:4

• For the TCU, in FMU error record 0 with UE = 1, IERR = SMID:2.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 144 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

However, because the TCU and TBU continue to use the messages (despite the
parity error) then the TBU connects correctly. Software can then later disable
the SM (TBU SMID:4, TCU SMID:2) and discard any of the parity errors that the
connection messages generated.

For more information, see the FuSa integration section of the Arm® CoreLink™ MMU-600AE System
Memory Management Unit Configuration and Integration Manual.

5.10 Q-Channel protection
This section describes the Q-Channel logic and connections.

The following figure shows a top-level example of an MMU topology with AXI4-Stream
interconnect connections.

Figure 5-10: MMU topology with AXI4-Stream interconnect connections

APB

TCU

Switch 4x1

ADB

ADB

Switch 2x1

TBU0 TBU1

Register Slice

TBU2

ADB

ADB

TBU3

DTI ATS

ACEL5-DVM-M

AXI4-S

AXI4-S

Domain C

Domain A Domain B

top_4x1_fmeda

ACEL5-M ACEL5-S ACEL5-M ACEL5-S ACEL5-M ACEL5-S

ACEL5-M

ACEL5-S

Switch 2x1

Switch 4x1

Register Slice

The following figure shows a top-level example of an MMU topology with corresponding Q-
Channel connections.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 145 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Figure 5-11: MMU topology with corresponding Q-Channel connections

TCU

LPD_CG

ADB

ADB

LPD_CG

TBU0 TBU1

Register Slice

TBU2

ADB

ADB

TBU3

CG_QCH

Domain C

Domain A Domain B
top_4x1_fmeda

LPD_PDPD_QCH

PD_QCH

PD_QCH

CG_QCH

PD_QCH PD_QCHPD_QCH

LPD_CGCG_QCH

Register Slicedevreqn[0]
devreqn_chk[0]

devreqn_chk[1]
devreqn[1]

devreqn[2]
devreqn_chk[2]

devreqn[2]
devreqn_chk[2]

devqreqn[0]
devqreqn_chk[0]

devreqn[1]
devreqn_chk[1]

devreqn_chk[2]

devreqn[0]
devreqn_chk[0]

devreqn[2]

devqreqn_chk[1]
devqreqn[1]

The Q-Channels are protected with additional AMBA® LPI specified redundant chk bits with
reverse polarity. Due to the four-phase asynchronous nature of the Q-Channel, signals are checked
individually. With four-phase handshaking, all assertions must be held until handshaking feedback
is received. Therefore, transient assertions are treated as faults which are filtered for reliability by
the MMU-600AE protection logic. The protection logic prevents these faults from reaching mission
mode logic and causing errors. Permanent or Stuck-At Faults (SAF) are detected and flagged.

The following figure is a high-level block diagram of a Q-Channel example employed by the MMU
blocks. The figure shows that qreqn and qreqn_chk are synchronized separately and then passed
through redundant sig_prot blocks where the transient filtering and the stuck-at checker counters
live. The Q-Channel outputs are passed to the external power controller (or internal MMU LPD)
with a temporal delay of no more than two cycles. This variation is allowed by the Q-Channel
AMBA® LPI extensions.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 146 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Figure 5-12: Q-Channel protection connections

Asynchronous
Q-Channel
controller

Lockstep
device

 qacceptn

 qdeny

 qactive

 qacceptn_chk

 qdeny_chk

 qactive_chk

sig_prot qreqn

 qreqn_fdc

SYNC qreqn

 qreqn_chk

sig_prot

SYNC

5.10.1 Q-Channel signaling

The following figure shows the Q-Channel device and controller signal mappings, including the
extra _chk signals.

Figure 5-13: Q-Channel device and controller signal mappings

Clock or power controllerDevice

qactive_chk
qactive

qdeny_chk
qdeny

qacceptn_chk
qacceptn

qreqn_chk
qreqn

qreqn_chk
qreqn

qacceptn_chk
qacceptn

qdeny_chk
qdeny

qactive_chk
qactive

Each Q-Channel signal bit has a corresponding _chk signal with inverted polarity.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 147 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.10.2 Q-Channel acceptance

The following figure shows the opposite polarity of the _chk signals during the Q-Channel entry,
acceptance, and exit sequence.

Figure 5-14: Q-Channel acceptance

t1 t2 t3 t4

clk

qreqn

qreqn_chk

qacceptn

t5

qacceptn_chk

qdeny

qdeny_chk
Q_RUN Q_REQUEST Q_STOPPED Q_EXIT Q_RUN

5.10.3 Q-Channel denial

The following figure shows the opposite polarity of the _chk signals during the Q-Channel denial
sequence.

Figure 5-15: Q-Channel denial

t1 t2 t3 t4

clk

qreqn

qreqn_chk

qacceptn

t5

qacceptn_chk

qdeny

qdeny_chk
Q_RUN Q_REQUEST Q_DENIED Q_CONTINUE Q_RUN

5.10.4 _chk signal timing

There is a hard timing requirement that the Stuck-At Fault (SAF) detection logic imposes.

The skew of the qreqn and qreqn_chk signals must be less than the maximum skew that the SAF
detection logic allows.

Clock Ratio (CR)
Equal to (MMU clock frequency) / (channel controller clock frequency).

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 148 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Implementation skew
Silicon skew due to asynchronous clock domain crossings or other factors.

Temporal delay skew
Skew between lock-step primary and redundant logic blocks.

Since the MMU-600AE SAF detector counts to 64 before flagging an SAF, the permitted skew is
calculated as follows:

• Maximum skew allowed = 64 / CR

Example 5-2: Q-Channel skew calculation

• MMU clock frequency = 1000MHz

• Q-Channel frequency = 125MHz

Based on these frequencies, then:

• CR = (MMU clock frequency)/(channel controller clock frequency) = 1000MHz / 125MHz = 8.

• Maximum skew allowed = 64 / CR = 64 / 8 = 8 cycles.

Therefore, the system integrator is allowed eight cycles for implementation skew and temporal
delay skew that originate from the SoC Q-Channel controller.

5.10.5 Transient faults

The following figure shows the normal situation with no fault.

Figure 5-16: Normal assertion of qreqn and qreqn_chk signals

63 62 61 63

Error

Count

QREQn_chk

QREQn

clk

QREQn_int

The following figure shows how a transient fault on the qreqn signal is filtered.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 149 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

Figure 5-17: Transient fault on the qreqn signal

63 62 61 63

Error

Count

QREQn_chk

QREQn

clk

60 59

QREQn_int

The following figure shows how a transient fault on the qreqn_chk signal is filtered.

Figure 5-18: Transient fault on qreqn_chk signal

63 62 63

Error

Count

QREQn_chk

QREQn

clk

QREQn_int

The output of the filtering logic, the qreqn_int signal, does not assert. The figures depict a version
of the qreqn and qreqn_chk signals after they pass synchronizer cells. The counter depicts the
operation of the SAF detector. In this example, the SAF detector is set to a value of 63 whenever
the qreqn and qreqn_chk signals are the same polarity. If it detects a polarity difference between
the qreqn and qreqn_chk signals, it starts counting down. If the counter reaches zero, it flags an
error.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 150 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.10.6 Stuck-at faults

The following figure shows how the SAF detector detects a stuck-at-one error on the qreqn signal.

Figure 5-19: Stuck-at-one error on qreqn signal

63 62 63

Error

Count

QREQn_chk

QREQn

clk

QREQn_int

62 61 60 59 2 1 0

The following figure shows how the SAF detector detects a stuck-at-one error on the qreqn_chk
signal.

Figure 5-20: Stuck-at-one error on qreqn_chk signal

63

Error

Count

QREQn_chk

QREQn

clk

QREQn_int

62 61 60 59 2 1 0

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 151 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Functional Safety

5.10.7 Disabling Q-Channel Safety Mechanisms

The FMU_SMEN register cannot disable the Q-Channel SMs. They can be disabled during design
time using one of the following methods:

• To disable specific Q-Channel SMs, tie the qreqn_chk bit to the value of !qreqn on the Q-
Channel interface that you want to disable protection for.

• To disable all Q-Channel SMs in the MMU-600AE, set FUSA_DISABLE_PQCHAN_PROT=1. Setting
this parameter disables the following Q-Channel SMs:

◦ TCU SM 5.

◦ TCU SM 6.

◦ TBU SM 5.

◦ TBU SM 6.

5.11 Systematic fault watchdog protection
MMU-600AE contains a watchdog-based PING/ACK mechanism that guards against systematic
errors on the interconnect.

It engages a hardware mechanism in the MMU TCU, which pings each MMU block in a round-
robin fashion and waits for a response. If a response is not received within a programmable timeout
window, a fault is reported. This mechanism can guard against:

• Lockup on the interconnect that connects the MMU blocks.

• Possible lockup on external buses that causes the MMU blocks and internal interconnect to
stall.

The source of the lockup might be software issues, DoS issues, or systematic faults in the silicon.

For more information on this feature see 5.5.7 Ping mechanism on page 117.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 152 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Appendix A Signal descriptions
This appendix describes the MMU-600AE external signals.

Secure and Non-secure signals
MMU-600AE external signal names use the following convention:

_s or _s_ is a Secure signal, for example event_q_irpt_s or event_q_irpt_s_chk.
_ns or _ns_ is a Non-secure signal, for example event_q_irpt_ns or event_q_irpt_ns_chk.

For more information on Secure and Non-secure signals, see the Arm® System Memory Management
Unit Architecture Specification, SMMU architecture version 3.0 and version 3.1.

A.1 Clock and reset signals
The MMU-600AE uses a single set of standard clock and reset signals.

The following table shows the clock and reset signals.

Table A-1: Clock and reset signals

Signal Direction Description

aclk Input Global clock.

aresetn Input Global reset.

A.2 TCU QTW/DVM interface signals
The TCU QTW/DVM interface signals are based on the AMBA ACE5-Lite signals. See the Arm®

AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AXI5, ACE and ACE5 for more information
about these signals.

The following table shows the TCU QTW/DVM interface signals.

Table A-2: TCU QTW/DVM interface signals

Signal Direction Description

acaddr_qtw Input Snoop address.

acprot_qtw Input Snoop protection type.

acready_qtw Output Snoop address ready.

acsnoop_qtw Input Snoop transaction type.

acvalid_qtw Input Snoop address valid.

arid_qtw Output Read address ID.

araddr_qtw Output Read address.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 153 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

arburst_qtw Output Burst type.

arcache_qtw Output Memory type.

ardomain_qtw Output Shareability domain.

arlen_qtw Output Burst length.

arlock_qtw Output Lock type.

arprot_qtw Output Protection type.

arqos_qtw Output QoS identifier.

arready_qtw Input Read address ready.

arregion_qtw Output Region identifier.

arsize_qtw Output Burst size.

arsnoop_qtw Output Transaction type.

arvalid_qtw Output Read address valid.

awid_qtw Output Write address ID.

awaddr_qtw Output Write address.

awburst_qtw Output Burst type.

awcache_qtw Output Memory type.

awdomain_qtw Output Shareability domain.

awlen_qtw Output Burst length.

awlock_qtw Output Lock type.

awprot_qtw Output Protection type.

awqos_qtw Output QoS identifier.

awready_qtw Input Write address ready.

awregion_qtw Output Region identifier.

awsize_qtw Output Burst size.

awsnoop_qtw Output Transaction type.

awvalid_qtw Output Write address valid.

crready_qtw Input Snoop response ready.

crresp_qtw Output Snoop response.

crvalid_qtw Output Snoop response valid.

rid_qtw Input Read data ID.

rdata_qtw Input Read data.

rlast_qtw Input Read last.

rready_qtw Output Read ready.

rresp_qtw Input Read response.

rvalid_qtw Input Read valid.

wdata_qtw Output Write data.

wlast_qtw Output Write last.

wready_qtw Input Write ready.

wstrb_qtw Output Write strobe.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 154 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

wvalid_qtw Output Write valid.

bid_qtw Input Response ID.

bready_qtw Output Response ready.

bresp_qtw Input Write response.

bvalid_qtw Input Write response valid.

awakeup_qtw Output Wakeup.

acwakeup_qtw Input Snoop wakeup.

acvmidext_qtw Input Snoop Extended Virtual Machine IDentifier (VMID).

A.3 TCU programming interface signals
The TCU programming interface signals are based on the AMBA APB4 signals. See the Arm®

AMBA® APB Protocol Specification for more information about these signals.

The following table shows the TCU programming interface signals.

Table A-3: TCU programming interface signals

Signal Direction Description

paddr_prog Input Peripheral address.

psel_prog Input Peripheral select.

penable_prog Input Enable for transfer.

pwrite_prog Input Write transaction indicator.

pprot_prog Input Protection type.

pwdata_prog Input Write data.

pstrb_prog Input Write data strobe.

pslverr_prog Output Error response.

prdata_prog Output Read data.

pready_prog Output Transfer ready.

pwakeup_prog Input Interface wakeup.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 155 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

A.4 TCU SYSCO interface signals
The following table shows the TCU SYSCO interface signals.

Table A-4: TCU SYSCO interface signals

Signal Direction Description

syscoreq Output System coherency request.

This output transitions:

HIGH To indicate that the master is requesting to enter the coherency domain.
LOW To indicate that the master is requesting to exit the coherency domain.

syscoack Input System coherency acknowledge.

This input transitions to the same level as syscoreq when the request to enter or exit the coherency domain is
complete.

See the Arm® AMBA® AXI and ACE Protocol Specification, AXI3, AXI4, AXI5, ACE and ACE5 for more
information about these signals.

A.5 TCU PMU snapshot interface signals
The following table shows the TCU PMU snapshot interface signals.

Table A-5: TCU PMU snapshot interface signals

Signal Direction Description

pmusnapshot_req Input PMU snapshot request. The PMU snapshot occurs on the rising edge of pmusnapshot_req.

Note:
Connect to the debug infrastructure of your SoC.

pmusnapshot_ack Output PMU snapshot acknowledge. The TCU uses this signal to acknowledge that the PMU snapshot has
occurred.

This signal is LOW after reset.

Note:
Connect to the debug infrastructure of your SoC.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 156 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

A.6 TCU LPI_PD interface signals
The following table shows the TCU LPI_PD interface signals.

Table A-6: TCU LPI_PD interface signals

Signal Direction Description

qactive_pd Output Component active.

qreqn_pd Input Quiescence request.

qacceptn_pd Output Quiescence accept.

qdeny_pd Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for more
information about these signals.

A.7 TCU LPI_CG interface signals
The following table shows the TCU LPI_CG interface signals.

Table A-7: TCU LPI_CG interface signals

Signal Direction Description

qactive_cg Output Component active.

qreqn_cg Input Quiescence request.

qacceptn_cg Output Quiescence accept.

qdeny_cg Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for more
information about these signals.

A.8 TCU DTI interface signals
The following table shows the TCU DTI interface signals.

Table A-8: TCU DTI interface signals

Signal Direction Description

tvalid_dti_dn Master to slave. Flow control signal.

tready_dti_dn Slave to master. Flow control signal.

tdata_dti_dn Master to slave. Message data signal.

tid_dti_dn Master to slave. Identifies the master that initiated the message.

tlast_dti_dn Master to slave. Indicates the last cycle of a message.

tkeep_dti_dn Master to slave. This signal indicates valid bytes.

tvalid_dti_up Slave to master. Flow control signal.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 157 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

tready_dti_up Master to slave. Flow control signal.

tdata_dti_up Slave to master. Message data signal.

tdest_dti_up Slave to master. Identifies the master that is receiving the message.

tlast_dti_up Slave to master. Indicates the last cycle of a message.

tkeep_dti_up Slave to master. Indicates valid bytes.

twakeup_dti_up Slave to master. Wakeup signal.

twakeup_dti_dn Master to slave. Wakeup signal.

See the Arm® AMBA® 4 AXI4‑Stream Protocol Specification for more information about the DTI
signals.

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification for more
information about DTI protocol messages.

A.9 TCU interrupt signals
The TCU interrupt signals are edge‑triggered. The interrupt controller must detect the rising edge
of these signals.

The TCU can also output the Secure and Non-secure Event queue, SYNC complete commands, and
global interrupts as Message Signaled Interrupts (MSIs) on the QTW/DVM interface. If the system
supports capturing MSIs from the TCU, there is no requirement to connect the corresponding
interrupt signals in this interface.

The following table shows the TCU interrupt signals.

Table A-9: TCU interrupt interface signals

Signal Direction Description

event_q_irpt_s Output Event queue, Secure interrupt. Asserts a Secure interrupt to indicate that the Event queue is not empty or
has overflowed.

event_q_irpt_ns Output Event queue, Non‑secure interrupt. Asserts a Non‑secure interrupt to indicate that the Event queue is not
empty or has overflowed.

cmd_sync_irpt_ns Output SYNC complete, Non‑secure interrupt. Asserts a Non‑secure interrupt to indicate that the CMD_SYNC
command is complete.

cmd_sync_irpt_s Output SYNC complete, Secure interrupt. Asserts a Secure interrupt to indicate that the CMD_SYNC command is
complete.

global_irpt_ns Output Asserts a global Non‑secure interrupt.

global_irpt_s Output Asserts a global Secure interrupt.

ras_irpt Output Asserts a Reliability, Availability, and Serviceability (RAS) interrupt.

Note:
The MMU-600AE cannot output RAS interrupts as MSIs. You must connect this output to an interrupt
controller.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 158 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

pmu_irpt Output Asserts a PMU interrupt.

Note:
The MMU-600AE cannot output PMU interrupts as MSIs. You must connect this output to an interrupt
controller.

pri_q_irpt_ns Output Asserts a Page Request Interface (PRI) queue interrupt.

A.10 TCU event interface signal
The TCU event interface signal is an event output for connection to processors.

The following table shows the TCU event interface signal.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 159 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Table A-10: TCU event interface signal

Signal Direction Description

evento Output The evento signal is asserted for one cycle to indicate an event that enables processors to wake up from the Wait For
Event (WFE) low‑power state.

Connect the evento signal of the TCU to the event interface of Arm® processors. Processors that use the DynamIQ
Shared Unit (DSU) have a different event handshake mechanism.

The mechanism that the DSU uses is the successor to the mechanism that some MMUs use.

Arm® processors can use the following event mechanisms:

• Some processors have an eventi input to connect directly to the evento output from the MMU.

• Some processors, including DSU‑based systems, have a req/ack handshake mechanism that requires the evento
signal from the MMU to be converted and uses the eventiack, eventireq, eventoack, and eventoreq signals.

Note:
You can also route the evento signal through other interconnects such as the Arm® CoreLink™ CMN‑600 Coherent
Mesh Network instead of connecting evento directly to the processor. These interconnects, like the DSU, only
support the newer event mechanism.

If the rest of your system uses the newer event mechanism, you must add logic to convert events that the
MMU-600AE generates, which uses the older event mechanism.

In both mechanisms, in the signal names:

i Represents events that are inputs to a particular component.
o Represents events that are outputs from a particular component.

Note:
For the signals, the handshake mechanism uses one input and one output in each direction. This is because the
acknowledgment of the request operates in the opposite direction to the original request.

The MMU-600AE has an event output and therefore only has the evento signal. The processor has an input interface
to receive the event from the MMU-600AE, and other devices. This input interface uses the eventiack and eventireq
signals, if the processor uses the newer mechanism.

The required conversion is from the older mechanism, eventi and evento signals, to the newer mechanism, eventiack,
eventireq, eventoack, and eventoreq signals.

When connecting the MMU-600AE to a DSU, the only signals to consider are the following:

• evento signal of the MMU-600AE.

• eventiack and eventireq signals of the DSU.

Some processors have an eventi input instead.

You can use the Channel Pulse to Channel adapter that is provided in the CoreSight™ System‑on‑Chip SoC-600. See
Chapter 6.11 in the Arm® CoreSight™ System‑on‑Chip SoC‑600 Technical Reference Manual for more information about
this component.

Note:
To use the Channel Pulse to Channel adapter from CoreSight™ System‑on‑Chip SoC‑600, you must be a licensee of the
SoC‑600 product. If you are not a licensee of SoC‑600, you must add your own logic.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 160 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

For more information, see the documentation for your processor or DSU.

A.11 TCU tie-off signals
The TCU tie-off signals are sampled between exiting reset and the LPI_PD interface first entering
the Q_RUN state. Ensure that the value of these signals does not change when the LPI_PD
interface is in the Q_STOPPED or Q_EXIT state for the first time after exiting reset.

The following table shows the TCU tie-off signals.

Table A-11: TCU tie-off signals

Signal Direction Description

sup_cohacc Input This signal indicates whether the QTW interface is I/O-coherent. Tie HIGH when the TCU is connected to a
coherent interconnect.

sup_btm Input This signal indicates whether the Broadcast TLB Maintenance is supported. Tie HIGH when the TCU is
connected to an interconnect that supports DVM.

sup_sev Input This signal indicates whether the Send Event mechanism is supported. Tie HIGH when evento is connected.

sup_oas[2:0] Input Output address size supported.

The encodings for this input are:

0b000 32 bits.
0b001 36 bits.
0b010 40 bits.
0b011 42 bits.
0b100 44 bits.
0b101 48 bits.

You must not use other encodings, including 0b110 that SMMUv3.1 defines to indicate 52-bit addresses.
They are treated as 0b101.

sec_override Input When HIGH, certain registers are accessible to Non-secure accesses from reset, as the TCU_SCR register
settings describe.

ecorevnum[3:0] Input Tie this signal to 0 unless directed otherwise by Arm.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 for more information about the SMMUv3 ID signals.

A.12 TCU and TBU test and debug signals
The test and debug signals are common to the TCU and TBU.

The following table shows the test and debug signals.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 161 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Table A-12: Test and debug signals

Signal Direction Description

dftcgen Input Clock gate enable.

To enable architectural clock gates for the aclk clock, set this signal HIGH during scan shift.

dftrstdisable Input Reset disable.

To disable reset, set this signal HIGH during scan shift.

dftramhold Input Preserve RAM state.

To preserve the state of the RAMs and their connected registers, set this signal HIGH during scan shift.

mbistresetn Input MBIST mode reset. This active-LOW signal is encoded as follows:

0 Reset MBIST functional logic.
1 Normal operation.

mbistreq Input MBIST test request. This signal is encoded as follows:

0 Normal operation.
1 Enable MBIST testing.

A.13 TBU TBS interface signals
The TBU TBS interface signals are based on the AMBA ACE5-Lite signals.

The following table shows the TBU TBS interface signals.

Table A-13: TBU TBS interface signals

Signal Direction Description

aclk Input Clock input.

araddr_s Input Read address.

arburst_s Input Burst type.

arcache_s Input Memory type.

ardomain_s Input Shareability domain.

aresetn Input Active-LOW reset signal.

arid_s Input Read address ID.

arlen_s Input Burst length.

arlock_s Input Lock type.

arprot_s Input Protection type.

arqos_s Input Quality of Service (QoS).

arready_s Output Read address ready.

arregion_s Input Region identifier.

arsize_s Input Burst size.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 162 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

armmussid_s Input

armmusid_s Input

armmussidv_s Input

armmusecsid_s Input

armmuatst_s Input

These signals indicate the StreamID, SubstreamID, and ATS translated status of the originating transaction.

These signals are defined by the AXI5 Untranslated_Transactions extension.

arvalid_s Input Read address valid.

awaddr_s Input Write address.

awatop_s Input Atomic operation.

awburst_s Input Burst type.

awcache_s Input Memory type.

awdomain_s Input Shareability domain.

awid_s Input Write address ID.

awlen_s Input Burst length.

awlock_s Input Lock type.

awprot_s Input Protection type.

awqos_s Input QoS.

awready_s Output Write address ready.

awregion_s Input Region identifier.

awsize_s Input Burst size.

awmmussid_s

awmmusid_s

awmmussidv_s

awmmusecsid_s

awmmuatst_s

Input These signals indicate the StreamID, SubstreamID, and ATS translated status of the originating transaction.

These signals are defined by the AXI5 Untranslated_Transactions extension.

awvalid_s Input Write address valid.

bid_s Output Response ID.

bready_s Input Response ready.

bresp_s Output Write response.

bvalid_s Output Write response valid.

rdata_s Output Read data.

rid_s Output Read ID.

rlast_s Output Read last.

rready_s Input Read ready.

rresp_s Output Read response.

rvalid_s Output Read valid.

wdata_s Input Write data.

wlast_s Input Write last.

wready_s Output Write ready.

wstrb_s Input Write strobes.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 163 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

wvalid_s Input Write valid.

aruser_s Input Read address (AR) channel user signal.

awuser_s Input Write address (AW) channel user signal.

wuser_s Input Write data (W) channel user signal.

ruser_s Output Read data (R) channel user signal.

buser_s Output Write response (B) channel user signal.

awakeup_s Input Wakeup signal.

arsnoop_s Input Transaction type of read transaction.

awsnoop_s[3] Input Transaction type of write transaction.

awstashnid_s[10:0] Input

awstashniden_s Input

awstashlpid_s[4:0] Input

awstashlpiden_s Input

These signals are defined by the AXI5 Cache_Stash_Transactions extension.

If TBUCFG_STASH = 0, these signals are ignored.

A.14 TBU TBM interface signals
The TBU TBM interface signals are based on the AMBA ACE5-Lite signals.

The following table shows the TBU TBM interface signals.

Table A-14: TBU TBM interface signals

Signal Direction Description

aclk Input Clock input.

araddr_m Output Read address.

arburst_m Output Burst type.

arcache_m Output Memory type.

ardomain_m Output Shareability domain.

aresetn Input Active-LOW reset signal.

arid_m Output Read address ID.

arlen_m Output Burst length.

arlock_m Output Lock type.

arprot_m Output Protection type.

arqos_m Output Quality of Service (QoS).

arready_m Input Read address ready.

arregion_m Output Region identifier.

arsize_m Output Burst size.

armmusid_m Output

armmusecsid_m Output

These signals indicate the StreamID of the originating transaction.

arvalid_m Output Read address valid.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 164 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

awaddr_m Output Write address.

awatop_m Output Atomic operation.

awburst_m Output Burst type.

awcache_m Output Memory type.

awdomain_m Output Shareability domain.

awid_m Output Write address ID.

awlen_m Output Burst length.

awlock_m Output Lock type.

awprot_m Output Protection type.

awqos_m Output QoS.

awready_m Input Write address ready.

awregion_m Output Region identifier.

awsize_m Output Burst size.

awmmusid_m Output

awmmusecsid_m Output

These signals indicate the StreamID of the originating transaction.

The Generic Interrupt Controller (GIC) uses these signals to determine the DeviceID of MSIs that originate
from upstream masters.

awvalid_m Output Write address valid.

bid_m Input Response ID.

bready_m Output Response ready.

bresp_m Input Write response.

bvalid_m Input Write response valid.

rdata_m Input Read data.

rid_m Input Read ID.

rlast_m Input Read last.

rready_m Output Read ready.

rresp_m Input Read response.

rvalid_m Input Read valid.

wdata_m Output Write data.

wlast_m Output Write last.

wready_m Input Write ready.

wstrb_m Output Write strobes.

wvalid_m Output Write valid.

aruser_m Output Read address (AR) channel user signal.

awuser_m Output Write address (AW) channel user signal.

wuser_m Output Write data (W) channel user signal.

ruser_m Input Read data (R) channel user signal.

buser_m Input Write response (B) channel user signal.

awakeup_m Output Wakeup signal.

arsnoop_m Output Transaction type of read transaction.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 165 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

awsnoop_m[3] Output Transaction type of write transaction.

awstashnid_m[10:0] Output

awstashniden_m Output

awstashlpid_m[4:0] Output

awstashlpiden_m Output

These signals are defined by the AXI5 Cache_Stash_Transactions extension.

If TBUCFG_STASH = 0, these signals are ignored.

A.15 TBU PMU snapshot interface signals
The following table shows the TBU PMU snapshot interface signals.

Table A-15: TBU PMU snapshot interface signals

Signal Direction Description

pmusnapshot_req Input PMU snapshot request. The PMU snapshot occurs on the rising edge of pmusnapshot_req.

Note:
Connect to the debug infrastructure of your SoC.

pmusnapshot_ack Output PMU snapshot acknowledge. The TBU uses this signal to acknowledge that the PMU snapshot has
occurred.

This signal is LOW after reset.

Note:
Connect to the debug infrastructure of your SoC.

A.16 TBU LPI_PD interface signals
The following table shows the TBU LPI_PD interface signals.

Table A-16: TBU LPI_PD interface signals

Signal Direction Description

qactive_pd Output Component active.

qreqn_pd Input Quiescence request.

qacceptn_pd Output Quiescence accept.

qdeny_pd Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for more
information about these signals.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 166 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

A.17 TBU LPI_CG interface signals
The following table shows the TBU LPI_CG interface signals.

Table A-17: TBU LPI_CG interface signals

Signal Direction Description

qactive_cg Output Component active.

qreqn_cg Input Quiescence request.

qacceptn_cg Output Quiescence accept.

qdeny_cg Output Quiescence deny.

See the AMBA® Low Power Interface Specification, Arm® Q‑Channel and P‑Channel Interfaces for more
information about these signals.

A.18 TBU DTI interface signals
The following table shows the TBU DTI interface signals.

Table A-18: TBU DTI interface signals

Signal Direction Description

tvalid_dti_dn Master to slave. Flow control signal.

tready_dti_dn Slave to master. Flow control signal.

tdata_dti_dn Master to slave. Message data signal.

tlast_dti_dn Master to slave. Indicates the last cycle of a message.

tkeep_dti_dn Master to slave. Indicates valid bytes.

tvalid_dti_up Slave to master. Flow control signal.

tready_dti_up Master to slave. Flow control signal.

tdata_dti_up Slave to master. Message data signal.

tlast_dti_up Slave to master. Indicates the last cycle of a message.

tkeep_dti_up Slave to master. Indicates valid bytes.

twakeup_dti_up Slave to master. Wakeup signal.

twakeup_dti_dn Master to slave. Wakeup signal.

See the Arm® AMBA® 4 AXI4‑Stream Protocol Specification for more information about the DTI
signals.

See the Arm® AMBA® Distributed Translation Interface (DTI) Protocol Specification for more
information about DTI protocol messages.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 167 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

A.19 TBU interrupt signals
The TBU interrupt signals are edge‑triggered. The interrupt controller must detect the rising edge
of these signals.

The MMU-600AE TBU cannot output these interrupts as Message Signaled Interrupts (MSIs). These
signals must be connected to an interrupt controller.

The following table shows the TBU interrupt signals.

Table A-19: TBU interrupt signals

Signal Direction Description

ras_irpt Output RAS interrupt

pmu_irpt Output PMU interrupt

A.20 TBU tie-off signals
The TBU tie‑off signals are sampled between exiting reset and the LPI_PD interface first entering
the Q_RUN state. Ensure that the value of these signals does not change when the LPI_PD
interface is in the Q_STOPPED or Q_EXIT state for the first time after exiting reset.

The following table shows the TBU tie‑off signals.

Table A-20: TBU tie‑off signals

Signal Direction Description

ns_sid_high[23:TBUCFG_SID_WIDTH] Input Provides the high‑order StreamID bits for all transactions with a
Non‑secure StreamID that pass through the TBU.

s_sid_high[23:TBUCFG_SID_WIDTH] Input Provides the high‑order StreamID bits for all transactions with a
Secure StreamID that pass through the TBU.

max_tok_trans[log2(TBUCFG_XLATE_SLOTS)-1:0] Input Indicates the number of DTI translation tokens to request when
connecting to the TCU, minus 1.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 168 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

pcie_mode Input You must tie this signal HIGH when the TBU is connected to a
PCIe interface.

When this signal is HIGH, the TBU interprets the input AXI
memory types as encoding PCI 'No Snoop' information.

In order for the TBU to provide correct operation, transactions
from the PCIe interface must be delivered to the TBU with the
following AXI memory types:

Normal Non‑Cacheable Bufferable
When 'No Snoop' is set for the transaction

Write‑Back
When 'No Snoop' is not set for the transaction

This TBU behavior is a requirement of the Arm® Server Base
System Architecture 7.0 Platform Design Document.

If this signal is HIGH, the attributes of TBS interface
transactions are always combined with the translation
attributes, even if stage 1 translation is enabled. That is,
the transaction attributes are always calculated as if the
DTI_TBU_TRANS_RESP.STRW field is EL1‑S2, regardless of the
actual STRW value.

If this signal is HIGH, the input attribute and shareability
override information in the ATTR_OVR field of the
DTI_TBU_TRANS_RESP message is ignored. For SMMUv3, PCIe
masters do not support this feature.

sec_override Input When HIGH, certain registers are accessible to Non‑secure
accesses from reset, as the TBU_SCR register settings describe.
See 4.11.2 TBU_SCR on page 91.

ecorevnum[3:0] Input Tie this signal to 0 unless directed otherwise by Arm.

utlb_roundrobin Input Defines the Micro TLB entry replacement policy.

When LOW, the Micro TLB uses a Pseudo Least Recently Used
(PLRU) replacement policy. This policy typically provides the
best average performance.

When HIGH, the Micro TLB uses a round-robin replacement
policy. With this policy, the oldest entry is evicted when the
Micro TLB is full.

Tie this signal HIGH if you want to prevent newer translations
from being evicted, even if older translations have been used
more recently. Otherwise, tie this signal LOW.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 169 of 183

https://developer.arm.com/documentation/den0029/latest
https://developer.arm.com/documentation/den0029/latest

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

cmo_disable Input To disable cache maintenance operations, tie this signal HIGH.
When this signal is HIGH, the following transactions are always
aborted with an SLVERR response:

• CleanInvalid

• CleanShared

• CleanSharedPersist

• MakeInvalid

Cache maintenance operations can sometimes break the
requirements of limited sideband channel communication, such
as when a master component accesses protected content. You
can disable cache maintenance operations in such cases.

Related information
TCU_SCR on page 80

A.21 DTI interconnect switch signals
The DTI interconnect switch provides signals for each of its interfaces.

The switch provides one DN_Sn slave downstream interface per slave interface. The following table
shows the DN_Sn signals.

Table A-21: DTI interconnect switch DN_Sn interface signals

Signal Direction Description

tvalid_dti_dn_sn Slave to master. Flow control signal.

tready_dti_dn_sn Master to slave. Flow control signal.

tdata_dti_dn_sn Slave to master. Message data signal.

tid_dti_dn_sn Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_sn Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_sn Slave to master. Indicates valid bytes.

twakeup_dti_dn_sn Slave to master. Wakeup signal.

The switch provides one UP_Sn slave upstream interface per slave interface. The following table
shows the UP_Sn signals.

Table A-22: DTI interconnect switch UP_Sn interface signals

Signal Direction Description

tvalid_dti_up_sn Master to slave. Flow control signal.

tready_dti_up_sn Slave to master. Flow control signal.

tdata_dti_up_sn Master to slave. Message data signal.

tdest_dti_up_sn Master to slave. Indicates the master that initiated the message.

tlast_dti_up_sn Master to slave. Indicates the last cycle of a message.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 170 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

tkeep_dti_up_sn Master to slave. Indicates valid bytes.

twakeup_dti_up_sn Master to slave. Wakeup signal.

The switch provides a DN_M master downstream interface. The following table shows the DN_M
signals.

Table A-23: DTI interconnect switch DN_M interface signals

Signal Direction Description

tvalid_dti_dn_m Slave to master. Flow control signal.

tready_dti_dn_m Master to slave. Flow control signal.

tdata_dti_dn_m Slave to master. Message data signal.

tid_dti_dn_m Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_m Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_m Slave to master. Indicates valid bytes.

twakeup_dti_dn_m Slave to master. Wakeup signal.

The switch provides an UP_M master upstream interface. The following table shows the UP_M
signals.

Table A-24: DTI interconnect switch UP_M interface signals

Signal Direction Description

tvalid_dti_up_m Master to slave. Flow control signal.

tready_dti_up_m Slave to master. Flow control signal.

tdata_dti_up_m Master to slave. Message data signal.

tdest_dti_up_m Master to slave. Indicates the master that initiated the message.

tlast_dti_up_m Master to slave. Indicates the last cycle of a message.

tkeep_dti_up_m Master to slave. Indicates valid bytes.

twakeup_dti_up_m Slave to master. Wakeup signal.

A.22 DTI interconnect sizer signals
The DTI interconnect sizer provides signals for each of its interfaces.

The sizer provides an LPI_CG clock gating interface. The following table shows the LPI_CG signals.

Table A-25: DTI interconnect sizer LPI_CG interface signals

Signal Direction Description

qactive_cg Output. Component active.

qreqn_cg Input. Quiescence request.

qacceptn_cg Output. Quiescence accept.

qdeny_cg Output. Quiescence deny.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 171 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

The sizer provides a DN_S slave downstream interface. The following table shows the DN_S
signals.

Table A-26: DTI interconnect sizer DN_S interface signals

Signal Direction Description

tvalid_dti_dn_s Slave to master. Flow control signal.

tready_dti_dn_s Master to slave. Flow control signal.

tdata_dti_dn_s Slave to master. Message data signal.

tid_dti_dn_s Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_s Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_s Slave to master. Indicates valid bytes.

twakeup_dti_dn_s Slave to master. Wakeup signal.

The sizer provides an UP_S slave upstream interface. The following table shows the UP_S signals.

Table A-27: DTI interconnect sizer UP_S interface signals

Signal Direction Description

tvalid_dti_up_s Master to slave. Flow control signal.

tready_dti_up_s Slave to master. Flow control signal.

tdata_dti_up_s Master to slave. Message data signal.

tdest_dti_up_s Master to slave. Indicates the master that initiated the message.

tlast_dti_up_s Master to slave. Indicates the last cycle of a message.

tkeep_dti_up_s Master to slave. Indicates valid bytes.

twakeup_dti_up_s Master to slave. Wakeup signal.

The sizer provides a DN_M master downstream interface. The following table shows the DN_M
signals.

Table A-28: DTI interconnect sizer DN_M interface signals

Signal Direction Description

tvalid_dti_dn_m Slave to master. Flow control signal.

tready_dti_dn_m Master to slave. Flow control signal.

tdata_dti_dn_m Slave to master. Message data signal.

tid_dti_dn_m Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_m Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_m Slave to master. Indicates valid bytes.

twakeup_dti_dn_m Slave to master. Wakeup signal.

The sizer provides an UP_M master upstream interface. The following table shows the UP_M
signals.

Table A-29: DTI interconnect sizer UP_M interface signals

Signal Direction Description

tvalid_dti_up_m Master to slave. Flow control signal.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 172 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

tready_dti_up_m Slave to master. Flow control signal.

tdata_dti_up_m Master to slave. Message data signal.

tdest_dti_up_m Master to slave. Indicates the master that initiated the message.

tlast_dti_up_m Master to slave. Indicates the last cycle of a message.

tkeep_dti_up_m Master to slave. Indicates valid bytes.

twakeup_dti_up_m Slave to master. Wakeup signal.

A.23 DTI interconnect register slice signals
The DTI interconnect register slice provides signals for each of its interfaces.

The register slice provides an LPI_CG clock gating interface. The following table shows the LPI_CG
signals.

Table A-30: DTI interconnect register slice LPI_CG interface signals

Signal Direction Description

qactive_cg Output. Component active.

qreqn_cg Input. Quiescence request.

qacceptn_cg Output. Quiescence accept.

qdeny_cg Output. Quiescence deny.

The register slice provides a DN_S slave downstream interface. The following table shows the
DN_S signals.

Table A-31: DTI interconnect register slice DN_S interface signals

Signal Direction Description

tvalid_dti_dn_s Slave to master. Flow control signal.

tready_dti_dn_s Master to slave. Flow control signal.

tdata_dti_dn_s Slave to master. Message data signal.

tid_dti_dn_s Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_s Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_s Slave to master. Indicates valid bytes.

The register slice provides an UP_S slave upstream interface. The following table shows the UP_S
signals.

Table A-32: DTI interconnect register slice UP_S interface signals

Signal Direction Description

tvalid_dti_up_s Master to slave. Flow control signal.

tready_dti_up_s Slave to master. Flow control signal.

tdata_dti_up_s Master to slave. Message data signal.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 173 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Signal descriptions

Signal Direction Description

tdest_dti_up_s Master to slave. Indicates the master that initiated the message.

tlast_dti_up_s Master to slave. Indicates the last cycle of a message.

tkeep_dti_up_s Master to slave. Indicates valid bytes.

The register slice provides a DN_M master downstream interface. The following table shows the
DN_M signals.

Table A-33: DTI interconnect register slice DN_M interface signals

Signal Direction Description

tvalid_dti_dn_m Slave to master. Flow control signal.

tready_dti_dn_m Master to slave. Flow control signal.

tdata_dti_dn_m Slave to master. Message data signal.

tid_dti_dn_m Slave to master. Indicates the master that initiated the message.

tlast_dti_dn_m Slave to master. Indicates the last cycle of a message.

tkeep_dti_dn_m Slave to master. Indicates valid bytes.

The register slice provides an UP_M master upstream interface. The following table shows the
UP_M signals.

Table A-34: DTI interconnect register slice UP_M interface signals

Signal Direction Description

tvalid_dti_up_m Master to slave. Flow control signal.

tready_dti_up_m Slave to master. Flow control signal.

tdata_dti_up_m Master to slave. Message data signal.

tdest_dti_up_m Master to slave. Indicates the master that initiated the message.

tlast_dti_up_m Master to slave. Indicates the last cycle of a message.

tkeep_dti_up_m Master to slave. Indicates valid bytes.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 174 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Software initialization examples

Appendix B Software initialization
examples

This appendix provides examples of how software can initialize and enable the MMU-600AE.

B.1 Initializing the SMMU
Software must initialize the MMU-600AE before you can use it.

The MMU-600AE supports Secure and Non-secure translation worlds. This section defines how to
initialize Non-secure translation. The procedures for initializing Secure translation are similar, and
require you to access the corresponding MMU-600AE Secure registers.

This section does not describe how to create translation tables. See the Arm®

Architecture Reference Manual, Armv8, for Armv8‑A architecture profile for more
information.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 and version 3.1 for more information about MMU-600AE initialization.

B.1.1 Allocating the Command queue

The MMU-600AE uses the Command queue to receive commands. Software must allocate
memory for the Command queue and configure the appropriate registers in the SMMU.

About this task
To allocate the Command queue, ensure that your software performs the following steps:

Procedure
1. Allocate memory for the Command queue.
2. Configure the Command queue size and base address by writing to the SMMU_CMDQ_BASE

register.

The queue size can affect how many bits of the SMMU_CMDQ_CONS
and SMMU_CMDQ_PROD indices are writeable. It is therefore important
that you perform this step before writing to SMMU_CMDQ_CONS and
SMMU_CMDQ_PROD.

3. Set the queue read index in SMMU_CMDQ_CONS and the queue write index in
SMMU_CMDQ_PROD to 0.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 175 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Software initialization examples

Setting the queue read index and the queue write index to the same value
indicates that the queue is empty.

B.1.2 Allocating the Event queue

The MMU-600AE uses the Event queue to signal events. Software must allocate memory for the
Event queue and configure the appropriate registers in the MMU.

About this task
To allocate the Event queue, ensure that your software performs the following steps:

Procedure
1. Allocate memory for the Event queue.
2. Configure the Event queue size and base address by writing to the SMMU_EVENTQ_BASE

register.

The queue size can affect how many bits of the SMMU_EVENTQ_CONS
and SMMU_EVENTQ_PROD indices are writeable. It is therefore important
that you perform this step before writing to SMMU_EVENTQ_CONS and
SMMU_EVENTQ_PROD.

3. Set the queue read index in SMMU_EVENTQ_CONS and the queue write index in
SMMU_EVENTQ_PROD to 0.

Setting the queue read index and the queue write index to the same value
indicates that the queue is empty.

B.1.3 Configuring the Stream table

The Stream table is a configuration structure in memory that uses a Context Descriptor (CD) to
locate translation data for a transaction. Software must allocate memory for the Stream table,
configure the table format, and populate the table with Stream Table Entries (STEs).

About this task
To configure the Stream table, ensure that your software performs the following steps:

Procedure
1. Allocate memory for the Stream table.
2. Configure the format and size of the Stream table by writing to SMMU_STRTAB_BASE_CFG.
3. Configure the base address for the Stream table by writing to SMMU_STRTAB_BASE.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 176 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Software initialization examples

4. Prevent uninitialized memory being interpreted as a valid configuration by setting STE.V = 0 for
each STE to mark it as invalid.

5. Ensure that written data is observable to the SMMU by performing a Data Synchronization
Barrier (DSB) operation.
If SMMU_IDR0.COHACC = 0, the system does not support coherent access to memory for the
TCU. In such cases, you might require extra steps to ensure that the SMMU can observe the
written data.

B.1.4 Initializing the Command queue

Software must initialize the Command queue by enabling it and checking that the enable operation
is complete.

About this task
To initialize the Command queue, ensure that your software performs the following steps:

Procedure
1. Enable the Command queue by setting the SMMU_CR0.CMDQEN bit to 1.
2. Check that the enable operation is complete by polling SMMU_CR0ACK until CMDQEN reads

as 1.

B.1.5 Initializing the Event queue

Software must initialize the Event queue by enabling it and checking that the enable operation is
complete.

About this task
To initialize the Event queue, ensure that your software performs the following steps:

Procedure
1. Enable the Event queue by setting the SMMU_CR0.EVENTQEN bit to 1.
2. Check that the enable operation is complete by polling SMMU_CR0ACK until EVENTQEN

reads as 1.

B.1.6 Invalidating TLBs and configuration caches

Before use, the MMU-600AE TLBs and configuration cache structures must be invalidated by
issuing commands to the Command queue. Alternatively, Secure software can invalidate all TLBs
and caches with a single write.

To invalidate TLB entries, ensure that your software issues the appropriate command for the
translation context. To invalidate TLB entries for:

Non‑secure
EL1 contexts

Issue CMD_TLBI_NSNH_ALL

EL2 contexts Issue CMD_TLBI_EL2_ALL

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 177 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Software initialization examples

EL3 contexts Issue CMD_TLBI_EL3_ALL
Secure EL1
contexts

Issue CMD_TLBI_NH_ALL

Commands to invalidate Secure TLB entries can only be issued through the Secure
Command queue. For a system that implements two security states, Secure
software must issue the appropriate command to the Secure Command queue for
the first TLB invalidation. If your system does not use Secure software, you can
permit Non‑secure software to access SMMU_S_INIT by using sec_override. See
A.11 TCU tie-off signals on page 161 and A.20 TBU tie-off signals on page 168.

To invalidate both the TCU configuration cache and the TBU combined configuration cache and
TLB, issue the CMD_CFGI_ALL command.

To force all previous commands to complete, issue CMD_SYNC.

To invalidate all configuration caches and TLB entries for all translation regimes and security states,
ensure that Secure software:

1. Sets SMMU_S_INIT.INV_ALL to 1. The SMMU sets SMMU_S_INIT.INV_ALL to 0 after the
invalidation completes.

2. Polls SMMU_S_INIT.INV_ALL to check it is set to 0 before continuing the SMMU configuration.

See the Arm® System Memory Management Unit Architecture Specification, SMMU architecture version
3.0 for more information about issuing commands to the Command queue.

B.1.7 Creating a basic Context Descriptor

A Context Descriptor (CD) is a data structure in system memory. A CD defines how Stage 1
translation is performed. The SubstreamID is used to select the CD.

To create a CD, ensure that your software performs the following steps:

1. Allocate 64 bytes of memory for the CD.

2. Configure the CD fields according to the information in the following table.

Table B-1: Configuring the CD

Field Description

AA64 Translation table format:

0 AArch32.
1 AArch64.

EPD0 Enable translations for TTB0 by setting EPD0 to 0.

TTB0 Base address of translation table 0.

TG0 Translation granule size for TTB0 when CD.AA64 = 1.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 178 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Software initialization examples

Field Description

IR0

OR0

Cacheability attribute to use for translation table walks to TTB0:

00 Non-cacheable.
01 Write-Back Cacheable, Read-Allocate Write-Allocate.
10 Write-through Cacheable, Read-Allocate.

SH0 Shareability of translation table walks to TTB0:

00 Non-shareable.
01 Outer Shareable.
10 Inner Shareable.

EPD1 If the StreamWorld supports split address spaces, enable table walks for TTB1.

ENDI The endianness for the translation tables.

IPS The IPA size when CD.AA64 = 1.

ASET Defines whether the ASID values are shared with the ASID values of an Arm processor.

Note:
If you expect this context to receive broadcast TLB invalidation commands from a PE, set ASET to 0.

V Valid CD. This field must be set to 1.

B.1.8 Creating a Stream Table Entry

Each Stream Table Entry (STE) configures how Stage 2 translation is performed, and how the Context
Descriptor (CD) table can be found. The StreamID is used to select an STE.

To create an STE, ensure that your software performs the following steps:

1. Allocate 64 bytes of memory for the STE.

2. Set the STE.Config field as required for Stage 1 translation, Stage 2 translation, or translation
bypass:

0b0b000 No traffic can pass through the MMU. An abort is returned.
0b0b100 Stage 1 and Stage 2 bypass.
0b0b101 Stage 1 translation Stage 2 bypass.
0b0b110 Stage 1 bypass Stage 2 translation.
0b0b111 Stage 1 and Stage 2 translation.

3. If Stage 1 translation is enabled, you can set the following fields:

STE.S1CDMax Controls whether STE.S1ContextPtr points to a single CD or a CD
table.

STE.S1Fmt If STE.S1CDMax > 0, configures the format of the CD table.
STE.
S1ContextPtr

Contains a pointer to either a CD or a CD table. If Stage 2 translation
is enabled, this pointer is an intermediate physical address (IPA),
otherwise it is an untranslated physical address PA.

4. If Stage 2 translation is enabled, you can set the following fields:

STE.S2TTB Points to the Stage 2 translation table base address.
Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 179 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02

Software initialization examples

STE.S2PS Contains the PA size of the stage 2 PA range.
STE.S2AA64 Indicates whether the Stage 2 tables are AArch32 or AArch64 format.
STE.S3ENDI Set this field to the required endianness for the stage 2 translation

tables.
STE.S2AFFD Disable Access Flag faults for Stage 2 translation.
STE.S2TG 0b00: 4KB.
STE.S2IR0
and
STE.S2OR0

0b00: Non-cacheable.

STE.S2SH0
STE.S2VMID Contains the VMID associated with these translations.

B.2 Enabling the SMMU
Software can enable the SMMU by writing to SMMU_CR0 after the Stream table is populated.

About this task
To enable the SMMU, carry out the following procedure.

Procedure
1. Ensure that all Stream table entries are populated in memory.
2. Set the SMMU_CR0.SMMUEN bit to 1.
3. Check that the enable operation is complete by polling SMMU_CR0ACK until SMMUEN reads

as 1.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 180 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02
Revisions

Appendix C Revisions
This appendix describes the technical changes between released issues of this book.

C.1 Revisions
This appendix describes the technical changes between released issues of this book.

Table C-1: Issue 0000‑00 BET

Change Location Affects

First release for r0p0 BET. - -

Table C-2: Differences between Issue 0000‑00 BET and Issue 0000‑01 EAC

Change Location Affects

Removed references to P‑Channel. Throughout the document. All
revisions.

Updated TBU register address ranges. Table 4-3: MMU-600AE memory map on page 69. All
revisions.

Updated TCU registers, page 0 description. Table 4-4: MMU-600AE TCU memory map on page 70. All
revisions.

Updated TBU registers, page 0 description. Table 4-5: MMU-600AE TBU memory map on page 70. All
revisions.

Corrected all port names. Table 5-2: Q-Channel FuSa ports on page 103. All
revisions.

Corrected nmbistresetn signal name. Table 5-4: Protected MBIST inputs on page 105. All
revisions.

Removed dftse signal. Table 5-5: Duplicate ATPG input ports on page 106. All
revisions.

Corrected fmu_fault_int, fack, and freq signal names. Figure 5-3: FMU in MMU block on page 107. All
revisions.

Corrected signal names. 5.5.2.1 Reset on page 108. All
revisions.

Added TBU8 to TBU14. Table 5-6: MMU block IDs on page 110. All
revisions.

Updated IDs for TCU tie‑off or Interrupt error and TBU
tie‑off or Interrupt error.
Added TCU FMU clock gating override and TBU FMU clock
gating override SMs.

Table 5-7: Safety Mechanisms on page 110. All
revisions.

Added specific key value. 5.5.6 Lock and key mechanism on page 116. All
revisions.

Updated register summary table to include new registers. Table 5-8: FMU PV registers on page 121. All
revisions.

Added CE_EN bitfield. 5.5.9.1.2 FMU_ERR<n>CTLR, Error Record Control Register on
page 122.

All
revisions.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 181 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02
Revisions

Change Location Affects

Added BLKID and CE bitfields.
Updated description for V bitfield.

5.5.9.1.3 FMU_ERR<n>STATUS, Error Record Primary Status
Register on page 123.

All
revisions.

Added new register description. 5.5.9.1.4 FMU_ERRGSR, Error Group Status Register on page
126.

All
revisions.

Updated bit range for ping_timeout_value. 5.5.9.1.6 FMU_PINGCTLR, Ping Control Register on page 127. All
revisions.

Added new register description. 5.5.9.1.10 FMU_PINGMASK, Ping Mask Register on page 130. All
revisions.

Updated bit range for idle bitfield. 5.5.9.1.11 FMU_STATUS, FMU Status Register on page 130. All
revisions.

Updated reset value for NUM bitfield. 5.5.9.1.12 FMU_ERRIDR, Error Record ID Register on page
131.

All
revisions.

Added new figure. Figure 5-9: F-Channel and FMU fault wire connections on page
142.

All
revisions.

Added new section. 5.8.5 Interrupt output protection on page 143. All
revisions.

Added new section. 5.8.6 Tie-off input protection on page 143. All
revisions.

Updated figures. 5.10 Q-Channel protection on page 145. All
revisions.

Removed redundant text. 'Configuration and parameters' section that is no longer
contained in this document.

All
revisions.

Added rresp_s signal. Table A-13: TBU TBS interface signals on page 162. All
revisions.

Added rresp_m signal. Table A-14: TBU TBM interface signals on page 164. All
revisions.

Table C-3: Differences between Issue 0000‑01 EAC and Issue 0100‑01 REL

Change Location Affects

Corrections to the minor revision, MAX[0x1, ecorevnum] • 3.4.1 SMMUv3 support on page 57.

• 4.5 TCU component and peripheral ID
registers on page 73.

• 4.6 TCU PMU component and peripheral ID
registers on page 74.

• 4.9 TBU component and peripheral ID
registers on page 88.

• 4.10 TBU PMU component and peripheral
ID registers on page 89.

r1p0.

Updates to the description of TCU prefetching 3.3.8 TCU prefetch on page 50. All
revisions.

Correction to TCU_ERRFR reset value. 4.8.1 TCU_ERRFR on page 84. All
revisions.

Correction to TCU ERRCTRL.FI description. 4.8.2 TCU_ERRCTLR on page 85. All
revisions.

Updated the usage constraints and bit descriptions for the TBU_SCR
register.

4.11.2 TBU_SCR on page 91. All
revisions.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 182 of 183

Arm® CoreLink™ MMU-600AE System Memory
Management Unit Technical Reference Manual

Document ID: 101412_0100_02_en
Issue: 02
Revisions

Change Location Affects

Correction to TBU_ERRFR reset value. 4.12.1 TBU_ERRFR on page 93. All
revisions.

Correction to TBU ERRCTRL.FI description. 4.12.2 TBU_ERRCTLR on page 93. All
revisions.

Updated the description, category, and location of the evento signal. A.10 TCU event interface signal on page 159. All
revisions.

Updated the description of the 'Distributed Virtual Memory (DVM)
messages' section.

3.3.6 Distributed Virtual Memory messages on
page 49.

All
revisions.

Updated the description of the cmo_disable TBU tie‑off signal. A.20 TBU tie-off signals on page 168. All
revisions.

Updated the description of the TCU memory map. 4.3 MMU-600AE memory map on page 69. All
revisions.

Improved content descriptions. Throughout the document. All
revisions.

Added descriptions for the DTI interconnect sizer. Throughout the document. All
revisions.

Multiple updates that are related to FuSa. 5. Functional Safety on page 98. All
revisions.

Table C-4: Differences between Issue 0100‑01 REL and Issue 0100‑02 REL

Change Location Affects

Improved content descriptions. Throughout the document. All
revisions.

Clarification of usage constraint, and additional information on sec_override input
signal.

4.11.2 TBU_SCR on page 91. All
revisions.

Additional information on prefetch and prefetch triggers. 3.3.8 TCU prefetch on page 50. All
revisions.

Information on naming convention for Secure and Non-secure signals. A. Signal descriptions on page 153 All
revisions.

Corrected description of behaviour of FMU PROG APB4 port when access fails
security check.

5.5.9 Programmer's View on page 120 All
revisions.

Updated value for SMMU_IIDR ProductID. 3.4.1 SMMUv3 support on page 57 All
revisions.

Added information about the functionality of Safety Mechanism
TCU_FMU_CLK_GATING

5.5.4 Safety Mechanism table on page
110

All
revisions.

Copyright © 2018–2020, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 183 of 183

	Arm® CoreLink™ MMU-600AE System Memory Management Unit Technical Reference Manual
	Contents
	1. Introduction
	1.1 Product revision status
	1.2 Intended audience
	1.3 Conventions
	1.4 Useful resources

	2. Overview of the System Memory Management Unit
	2.1 About the MMU-600AE
	2.2 Compliance
	2.2.1 Arm architecture
	2.2.2 SMMU architecture
	2.2.3 AMBA Distributed Translation Interface protocol
	2.2.4 AMBA ACE5-Lite and AMBA AXI5 protocol
	2.2.5 AMBA APB protocol
	2.2.6 AMBA Interface Parity

	2.3 Features
	2.4 Interfaces
	2.5 Configurable options
	2.6 Product documentation and design flow
	2.6.1 Documentation
	2.6.2 Design flow

	2.7 Product revisions
	2.8 Functional Safety (FuSa)

	3. Functional description
	3.1 About the functions
	3.1.1 Translation Buffer Unit
	3.1.2 Translation Control Unit
	3.1.3 DTI interconnect

	3.2 Interfaces
	3.2.1 TCU interfaces
	3.2.1.1 TCU Queue and Table Walk/Distributed Virtual Memory interface
	3.2.1.2 TCU PROG interface
	3.2.1.3 TCU LPI_PD interface
	3.2.1.4 TCU LPI_CG interface
	3.2.1.5 TCU DTI interface
	3.2.1.6 TCU interrupt interfaces
	3.2.1.7 TCU SYSCO interface
	3.2.1.8 TCU tie-off signals

	3.2.2 TBU interfaces
	3.2.2.1 TBU TBS interface
	3.2.2.2 TBU TBM interface
	3.2.2.3 TBU LPI_PD interface
	3.2.2.4 TBU LPI_CG interface
	3.2.2.5 TBU DTI interface
	3.2.2.6 TBU interrupt interfaces
	3.2.2.7 TBU tie-off signals

	3.2.3 DTI interconnect interfaces
	3.2.3.1 DTI interconnect switch interfaces
	3.2.3.2 DTI interconnect sizer interfaces
	3.2.3.3 DTI interconnect register slice interfaces

	3.3 Operation
	3.3.1 DTI overview
	3.3.2 Performance Monitoring Unit
	3.3.2.1 SMMUv3 architectural performance events
	3.3.2.2 MMU-600AE TCU events
	3.3.2.3 MMU-600AE TBU events
	3.3.2.4 SMMUv3 PMU register architectural options
	3.3.2.5 PMU snapshot interface

	3.3.3 TBU direct indexing and MTLB partitioning
	3.3.4 Reliability, Availability, and Serviceability
	3.3.5 Quality of Service
	3.3.6 Distributed Virtual Memory messages
	3.3.7 TCU transaction handling
	3.3.8 TCU prefetch
	3.3.9 Error responses
	3.3.10 Conversion between ACE-Lite and Armv8 attributes
	3.3.10.1 Attribute handling
	3.3.10.1.1 Slave interface memory type attribute handling
	3.3.10.1.2 Master interface memory type attribute handling

	3.3.11 AXI USER bits defined by the MMU-600AE TBU

	3.4 Constraints and limitations of use
	3.4.1 SMMUv3 support
	3.4.2 AMBA support
	3.4.2.1 TBU support for ACE-Lite transactions
	3.4.2.2 Transactions that can result in a translation fault
	3.4.2.3 Transactions that cannot result in a translation fault
	3.4.2.4 AXI5 support

	4. Programmer's model
	4.1 About the programmer's model
	4.2 SMMU architectural registers
	4.3 MMU-600AE memory map
	4.4 Register summary
	4.5 TCU component and peripheral ID registers
	4.6 TCU PMU component and peripheral ID registers
	4.7 TCU microarchitectural registers
	4.7.1 TCU_CTRL
	4.7.2 TCU_QOS
	4.7.3 TCU_CFG
	4.7.4 TCU_STATUS
	4.7.5 TCU_SCR
	4.7.6 TCU_NODE_CTRLn
	4.7.7 TCU_NODE_STATUSn

	4.8 TCU RAS registers
	4.8.1 TCU_ERRFR
	4.8.2 TCU_ERRCTLR
	4.8.3 TCU_ERRSTATUS
	4.8.4 TCU_ERRGEN

	4.9 TBU component and peripheral ID registers
	4.10 TBU PMU component and peripheral ID registers
	4.11 TBU microarchitectural registers
	4.11.1 TBU_CTRL
	4.11.2 TBU_SCR

	4.12 TBU RAS registers
	4.12.1 TBU_ERRFR
	4.12.2 TBU_ERRCTLR
	4.12.3 TBU_ERRSTATUS
	4.12.4 TBU_ERRGEN

	5. Functional Safety
	5.1 Overview
	5.1.1 The MMU-600AE Safety Mechanisms

	5.2 FuSa I/Os
	5.2.1 Non-architected FuSa ports
	5.2.2 Q-Channel FuSa ports
	5.2.3 AMBA interface FuSa ports

	5.3 Clocks and resets
	5.4 DFT protection
	5.4.1 MBIST
	5.4.2 ATPG Scan
	5.4.3 LBIST

	5.5 Fault Management Unit
	5.5.1 Error signaling to the FMU
	5.5.2 Error signaling from the FMU
	5.5.2.1 Reset

	5.5.3 Error Record table
	5.5.3.1 Accessing FMU Error Records using the FMU APB
	5.5.3.2 Functional PV and FMU PV

	5.5.4 Safety Mechanism table
	5.5.4.1 Enabling and disabling a Safety Mechanism
	5.5.4.2 Injecting an error into a Safety Mechanism

	5.5.5 Software interaction
	5.5.5.1 Initialization
	5.5.5.2 Interrupt handler
	5.5.5.3 FMU idle
	5.5.5.3.1 Power management

	5.5.6 Lock and key mechanism
	5.5.7 Ping mechanism
	5.5.8 Correctable Error enable
	5.5.9 Programmer's View
	5.5.9.1 Programmer's View registers
	5.5.9.1.1 FMU_ERR<n>FR, Error Record Feature Register
	5.5.9.1.2 FMU_ERR<n>CTLR, Error Record Control Register
	5.5.9.1.3 FMU_ERR<n>STATUS, Error Record Primary Status Register
	5.5.9.1.3.1 Prioritized ERR<n>STATUS registers

	5.5.9.1.4 FMU_ERRGSR, Error Group Status Register
	5.5.9.1.5 FMU_KEY, FMU Key Register
	5.5.9.1.6 FMU_PINGCTLR, Ping Control Register
	5.5.9.1.7 FMU_PINGNOW, Ping Now Register
	5.5.9.1.8 FMU_SMEN, Safety Mechanism Enable Register
	5.5.9.1.9 FMU_SMINJERR, Safety Mechanism Inject Error Register
	5.5.9.1.10 FMU_PINGMASK, Ping Mask Register
	5.5.9.1.11 FMU_STATUS, FMU Status Register
	5.5.9.1.12 FMU_ERRIDR, Error Record ID Register

	5.6 Lock-step protection
	5.6.1 Comparators
	5.6.1.1 Comparator duplication option

	5.6.2 Non-resettable flops
	5.6.3 Reset
	5.6.4 Error injection

	5.7 RAM protection
	5.7.1 RAM fault correction
	5.7.2 RAM fault reporting
	5.7.3 RAM fault control
	5.7.4 RAM fault severity
	5.7.5 Address protection

	5.8 External interface protection
	5.8.1 ACE-Lite interface parity protection
	5.8.2 AXI4-Stream interface parity protection
	5.8.3 APB interface parity protection
	5.8.4 F-Channel
	5.8.5 Interrupt output protection
	5.8.6 Tie-off input protection
	5.8.7 Interfacing to unsafe interfaces

	5.9 Integrating the TCU, TBU, LPD, PCIe ATS, and DTI AXI4-Stream interconnect
	5.10 Q-Channel protection
	5.10.1 Q-Channel signaling
	5.10.2 Q-Channel acceptance
	5.10.3 Q-Channel denial
	5.10.4 _chk signal timing
	5.10.5 Transient faults
	5.10.6 Stuck-at faults
	5.10.7 Disabling Q-Channel Safety Mechanisms

	5.11 Systematic fault watchdog protection

	A. Signal descriptions
	A.1 Clock and reset signals
	A.2 TCU QTW/DVM interface signals
	A.3 TCU programming interface signals
	A.4 TCU SYSCO interface signals
	A.5 TCU PMU snapshot interface signals
	A.6 TCU LPI_PD interface signals
	A.7 TCU LPI_CG interface signals
	A.8 TCU DTI interface signals
	A.9 TCU interrupt signals
	A.10 TCU event interface signal
	A.11 TCU tie-off signals
	A.12 TCU and TBU test and debug signals
	A.13 TBU TBS interface signals
	A.14 TBU TBM interface signals
	A.15 TBU PMU snapshot interface signals
	A.16 TBU LPI_PD interface signals
	A.17 TBU LPI_CG interface signals
	A.18 TBU DTI interface signals
	A.19 TBU interrupt signals
	A.20 TBU tie-off signals
	A.21 DTI interconnect switch signals
	A.22 DTI interconnect sizer signals
	A.23 DTI interconnect register slice signals

	B. Software initialization examples
	B.1 Initializing the SMMU
	B.1.1 Allocating the Command queue
	B.1.2 Allocating the Event queue
	B.1.3 Configuring the Stream table
	B.1.4 Initializing the Command queue
	B.1.5 Initializing the Event queue
	B.1.6 Invalidating TLBs and configuration caches
	B.1.7 Creating a basic Context Descriptor
	B.1.8 Creating a Stream Table Entry

	B.2 Enabling the SMMU

	C. Revisions
	C.1 Revisions

