
Learn the architecture - Compiling for Neon with
auto-vectorization
Version 1.0

Non-Confidential
Copyright © 2019 Arm Limited (or its affiliates).
All rights reserved.

Issue 00
102525_0100_00_en

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Learn the architecture - Compiling for Neon with auto-vectorization

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-00 18 June 2019 Non-Confidential First release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 21

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 21

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 21

mailto:terms@arm.com

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Contents

Contents

1. Overview...6

2. Why rely on the compiler for auto-vectorization?...8

3. Compiling for Neon with Arm Compiler 6... 9

4. Example: vector addition..11

5. Example:function in a loop.. 14

6. Coding best practices for auto-vectorization..19

7. Check your knowledge... 20

8. Related information... 21

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 21

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Overview

1. Overview
As a programmer, there are a number of ways you can make use of Neon technology:

• Neon-enabled open source libraries such as the Arm Compute Library provide one of the
easiest ways to take advantage of Neon.

• Auto-vectorization features in your compiler can automatically optimize your code to take
advantage of Neon.

• Neon intrinsics are function calls that the compiler replaces with appropriate Neon instructions.
This gives you direct, low-level access to the exact Neon instructions you want, all from C/C++
code.

• For very high performance, hand-coded Neon assembler can be an alternative approach for
experienced programmers.

This guide shows how to use the auto-vectorization features in Arm Compiler 6 to automatically
generate code that contains Armv8 Advanced SIMD instructions. It contains a number of examples
to explore Neon code generation and highlights coding best practices that help the compiler
produce the best results.

This guide will be useful to everyone developing for Arm, and will be especially useful for those
who want to use Neon technology without having to program in assembly.

At the end of this guide you will have achieved the following:

• You will know which Arm Compiler command line options enable Advanced SIMD code
generation.

• You will be able to write C/C++ code which exploits various optimization features of Arm
Compiler 6.

• You will know where to find the documentation for different compilers.

If you are not already familiar with Neon, you should read Introducing Neon for Armv8-A before
starting this guide.

The examples in this guide use Arm Compiler 6, designed for embedded application development
running on bare-metal devices. If you do not already have access to Arm Compiler 6, it is included
in the 30-day free trial of Arm Development Studio Gold Edition.

Even though this guide uses Arm Compiler 6, you can easily adapt the examples for other
compilers. You will need to consult your compiler documentation to find out the equivalent
compiler options to use in the examples. Auto-vectorizing compilers that can generate Neon code
include:

• Arm Compiler 6, designed for embedded application development running on bare-metal
devices. This is the compiler used in this guide’s examples.

• Arm C/C++ Compiler, designed for Linux user space application development, originally for
High Performance Computing.

• LLVM-clang, the open source LLVM-based toolchain.
Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Non-Confidential
Page 6 of 21

https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon/intrinsics
https://developer.arm.com/tools-and-software/embedded/arm-compiler
https://developer.arm.com/docs/ddi0596/c/simd-and-floating-point-instructions-alphabetic-order
https://developer.arm.com/documentation/101725/0100/Coding-for-Neon/Introducing-NEON-for-Armv8-A
https://developer.arm.com/tools-and-software/embedded/arm-compiler/documentation
https://developer.arm.com/documentation/101458/2100
https://clang.llvm.org/

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Overview

• GCC, the open source GNU toolchain.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 21

https://gcc.gnu.org/onlinedocs/

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Why rely on the compiler for auto-vectorization?

2. Why rely on the compiler for auto-
vectorization?

Writing hand-optimized assembly kernels or C code containing Neon intrinsics provides a high level
of control over the Neon code in your software. However, these methods can result in significant
portability and engineering complexity costs.

In many cases a high quality compiler can generate code which is just as good, but requires
significantly less design time. The process of allowing the compiler to automatically identify
opportunities in your code to use Advanced SIMD instructions is called auto-vectorization.

In terms of specific compilation techniques, auto-vectorization includes:

• Loop vectorization: unrolling loops to reduce the number of iterations, while performing more
operations in each iteration.

• Superword-Level Parallelism (SLP) vectorization: bundling scalar operations together to make
use of full width Advanced SIMD instructions.

Auto-vectorizing compilers include Arm Compiler 6, Arm C/C++ Compiler, LLVM-clang, and GCC.

The benefits of relying on compiler auto-vectorization include the following:

• Programs implemented in high level languages are portable, so long as there are no architecture
specific code elements such as inline assembly or intrinsics.

• Modern compilers are capable of performing advanced optimizations automatically.

• Targeting a given micro-architecture can be as easy as setting a single compiler option, whereas
optimizing an assembly program requires deep knowledge of the target hardware.

Auto-vectorization might not be the right choice in all situations, however:

• While source code can be architecture agnostic, it may have to be compiler specific to get the
best code-generation.

• Small changes in a high-level language or the compiler options can result in significant and
unpredictable changes in generated code.

Using the compiler to generate Neon code will be appropriate for most projects. Other methods for
exploiting Neon only become necessary when the generated code does not deliver the necessary
performance, or when particular hardware features are not supported by high-level languages. For
example, configuring system registers to control floating-point functionality must be performed in
assembly code.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 21

https://developer.arm.com/tools-and-software/embedded/arm-compiler/documentation
https://developer.arm.com/documentation/101458/2100
https://clang.llvm.org/
https://gcc.gnu.org/onlinedocs/
https://developer.arm.com/documentation/102374/0101/Registers-in-AArch64---system-registers

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Compiling for Neon with Arm Compiler 6

3. Compiling for Neon with Arm Compiler 6
To enable automatic vectorization you must specify appropriate compiler options to do the
following:

• Target a processor that has a Neon capabilities.

• Specify an optimization level that includes auto-vectorization.

In addition, specifying the -Rpass=loop compiler option displays useful diagnostic information from
the compiler about how it optimized particular loops. This information includes vectorization width
and interleave count.

-Rpass=loop is a [COMMUNITY] feature of Arm Compiler.

Specifying a Neon-capable target
Neon is required in all standard Armv8-A implementations, so targeting any Armv8-A architecture
or processor will allow the generation of Neon code.

If you only want to run code on one particular processor, you can target that specific processor.
Performance is optimized for the micro-architectural specifics of that processor. However code is
only guaranteed to run on that processor.

If you want your code to run on a wide range of processors, you can target an architecture.
Generated code runs on any processor implementation of that target architecture, but performance
might be impacted.

To target Armv8-A AArch64 state:

armclang --target=aarch64-arm-none-eabi

To target the Cortex-A53 in AArch32 state:

armclang --target=arm-arm-none-eabi -mcpu=cortex-a53

For the older Armv7 architecture, where Neon was optional, you can use the -mcpu, -march and -
mfpu options to specify that Neon is available.

Specifying an auto-vectorizing optimization level
Arm Compiler 6 provides a wide range of optimization levels, selected with the -O option:

Option Meaning Auto-vectorization

-O0 Minimum optimization Never

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 21

https://developer.arm.com/documentation/102525/0100/Compiling-for-Neon-with-Arm-Compiler-6?lang=en#target
https://developer.arm.com/documentation/102525/0100/Compiling-for-Neon-with-Arm-Compiler-6?lang=en#opt
https://developer.arm.com/docs/100748/0612/supporting-reference-information/support-level-definitions

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Compiling for Neon with Arm Compiler 6

Option Meaning Auto-vectorization
-O1 Restricted optimization Disabled by default.

-O2 High optimization Enabled by default.

-O3 Very high optimization Enabled by default.

-Os Reduce code size, balancing code size against code speed. Enabled by default.

-Oz Smallest possible code size Enabled by default.

-Ofast Optimize for high performance beyond -O3 Enabled by default.

-Omax Optimize for high performance beyond -Ofast Enabled by default.

See Selecting optimization options, in the Arm Compiler User Guide and -O, in the Arm Compiler
armclang Reference Guide for more details about these options.

Auto-vectorization is enabled by default at optimization level -O2 and higher. The -fno-vectorize
option lets you disable auto-vectorization.

At optimization level -O1, auto-vectorization is disabled by default. The -fvectorize option lets you
enable auto-vectorization.

At optimization level -O0, auto-vectorization is always disabled. If you specify the -fvectorize
option, the compiler ignores it.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 21

https://developer.arm.com/docs/100748/0612/using-common-compiler-options/selecting-optimization-options
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-o-1
https://developer.arm.com/docs/100067/0612/armclang-command-line-options/-o-1

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Example: vector addition

4. Example: vector addition
Let’s look at how we can use compiler options to auto-vectorize and optimize a simple C program.

1. Create a new file vec_add.c containing the following function. This function adds two arrays of
32-bit floating-point values.

void vec_add(float *vec_A, float *vec_B, float *vec_C, int len_vec) {
 int i;
 for (i=0; i<len_vec; i++) {
 vec_C[i] = vec_A[i] + vec_B[i];
 }
 }

2. Compile the code, without using auto-vectorization:

armclang --target=aarch64-arm-none-eabi -g -c -O1 vec_add.c

3. Disassemble the resulting object file to see the generated instructions:

fromelf --disassemble vec_add.o -o disassembly_vec_off.txt

The disassembled code looks similar to this:

vec_add ; Alternate entry point
 CMP w3,#1
 B.LT |L3.36|
 MOV w8,w3
 |L3.12|
 LDR s0,[x0],#4
 LDR s1,[x1],#4
 SUBS x8,x8,#1
 FADD s0,s0,s1
 STR s0,[x2],#4
 B.NE |L3.12|
 |L3.36|
 RET

Here we can see the label name vec_add for the function, followed by the generated assembly
instructions that make up the function. The FADD instruction performs the core part of the
operation, but the code is not making use of Neon as only one addition operation is performed
at a time. We can see this because the FADD instruction is operating on the scalar registers S0
and S1.

4. Re-compile the code, this time using auto-vectorization:

armclang --target=aarch64-arm-none-eabi -g -c -O1 vec_add.c -fvectorize

5. Disassemble the resulting object file to see the generated instructions:

fromelf --disassemble vec_add.o -o disassembly_vec_on.txt

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 21

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Example: vector addition

The disassembled code looks similar to this:

vec_add ; Alternate entry point
 CMP w3,#1
 B.LT |L3.184|
 CMP w3,#4
 MOV w8,w3
 MOV x9,xzr
 B.CC |L3.140|
 LSL x10,x8,#2
 ADD x12,x0,x10
 ADD x11,x2,x10
 CMP x12,x2
 ADD x10,x1,x10
 CSET w12,HI
 CMP x11,x0
 CSET w13,HI
 CMP x10,x2
 CSET w10,HI
 CMP x11,x1
 AND w12,w12,w13
 CSET w11,HI
 TBNZ w12,#0,|L3.140|
 AND w10,w10,w11
 TBNZ w10,#0,|L3.140|
 AND x9,x8,#0xfffffffc
 MOV x10,x9
 MOV x11,x2
 MOV x12,x1
 MOV x13,x0
 |L3.108|
 LDR q0,[x13],#0x10
 LDR q1,[x12],#0x10
 SUBS x10,x10,#4
 FADD v0.4S,v0.4S,v1.4S
 STR q0,[x11],#0x10
 B.NE |L3.108|
 CMP x9,x8
 B.EQ |L3.184|
 |L3.140|
 LSL x12,x9,#2
 ADD x10,x2,x12
 ADD x11,x1,x12
 ADD x12,x0,x12
 SUB x8,x8,x9
 |L3.160|
 LDR s0,[x12],#4
 LDR s1,[x11],#4
 SUBS x8,x8,#1
 FADD s0,s0,s1
 STR s0,[x10],#4
 B.NE |L3.160|
 |L3.184|
 RET

SLP auto-vectorization has been successful, as we can see from the instruction FADD
v0.4S,v0.4S,v1.4S which performs an addition on four 32-bit floats packed into a SIMD
register. However this has come at significant cost to code size as it must detect cases where
the SIMD width is not a divisor of the array length. Such increases in code size may or may not
be acceptable depending on the project and target hardware. This may be tolerable for a phone
application where the change in code size is insignificant compared with the available memory,
but could be unacceptable for an embedded application with a small amount of RAM.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 21

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Example: vector addition

A complete code listing is included below. Compile and disassemble at different optimization
levels to see the effect on the generated code.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 21

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Example:function in a loop

5. Example:function in a loop
Sometimes changes to source code are unavoidable if you want to use particular optimization
features of the compiler. This can occur when the code is too complex for the compiler to auto-
vectorize, or when you want to override the compiler’s decisions about how to optimize a particular
piece of code.

1. Create a new file cubed.c containing the following function. This function calculates the cubes
of an array of values.

double cubed(double x) {
 return x*x*x;
 }

 void vec_cubed(double *x_vec, double *y_vec, int len_vec) {
 int i;
 for (i=0; i<len_vec; i++) {
 y_vec[i] = cubed(x_vec[i]);
 }
 }

2. Compile the code, using auto-vectorization:

armclang --target=aarch64-arm-none-eabi -g -c -O1 -fvectorize cubed.c

3. Disassemble the resulting object file to see the generated instructions:

fromelf --disassemble cubed.o -o disassembly.txt

The disassembled code looks similar to this:

cubed ; Alternate entry point
 FMUL d1,d0,d0
 FMUL d0,d1,d0
 RET

 AREA ||.text.vec_cubed||, CODE, READONLY, ALIGN=2

 vec_cubed ; Alternate entry point
 STP x21,x20,[sp,#-0x20]!
 STP x19,x30,[sp,#0x10]
 CMP w2,#1
 B.LT |L4.48|
 MOV x19,x1
 MOV x20,x0
 MOV w21,w2
 |L4.28|
 LDR d0,[x20],#8
 BL cubed
 SUBS x21,x21,#1
 STR d0,[x19],#8
 B.NE |L4.28|
 |L4.48|
 LDP x19,x30,[sp,#0x10]
 LDP x21,x20,[sp],#0x20
 RET

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 21

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Example:function in a loop

There are a number of issues in this code:

• The compiler has not performed loop or SLP vectorization, or inlined our cubed function.

• The code needs to perform checks on the input pointers to verify that the arrays do not
overlap.

These issues can be fixed in a number of ways, such as compiling at a higher optimization level,
but let’s focus on what code changes can be made without altering the compiler options.

4. Add the following macros and qualifiers to the code to can override some of the compiler’s
decisions.

• __attribute__((always_inline)) is an Arm Compiler extension which indicates that the
compiler always attempts to inline the function. In this example, not only is the function
inlined, but the compiler can also perform SLP vectorization.

Before inlining, the cubed function works with scalar doubles only, so there is no need or way
of performing SLP vectorization on this function by itself.

When the cubed function is inlined, the compiler can detect that its operations are performed
on arrays and vectorize the code with the available ASIMD instructions.

• restrict is a standard C/C++ keyword that indicates to the compiler that a given array
corresponds to a unique region of memory. This eliminates the need for run-time checks for
overlapping arrays.

• #pragma clang loop interleave_count(X) is a Clang language extension that lets you
control auto-vectorization by specifying a vector width and interleaving count. This pragma
is a [COMMUNITY] feature of Arm Compiler.

A complete reference to the vectorization macros can be found in the clang documentation.

__always_inline double cubed(double x) {
 return x*x*x;
 }

 void vec_cubed(double *restrict x_vec, double *restrict y_vec, int len_vec) {
 int i;
 #pragma clang loop interleave_count(2)
 for (i=0; i<len_vec; i++) {
 y_vec[i] = cubed(x_vec[i]);
 }
 }

5. Compile and disassemble with the same commands we used earlier. This produces the
following code:

vec_cubed ; Alternate entry point
 CMP w2,#1
 B.LT |L4.132|
 CMP w2,#4
 MOV w8,w2
 B.CS |L4.28|
 MOV x9,xzr
 B |L4.92|
 |L4.28|
 AND x9,x8,#0xfffffffc

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 21

https://developer.arm.com/docs/100748/0612/supporting-reference-information/support-level-definitions

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Example:function in a loop

 ADD x10,x0,#0x10
 ADD x11,x1,#0x10
 MOV x12,x9
 |L4.44|
 LDP q0,q1,[x10,#-0x10]
 ADD x10,x10,#0x20
 SUBS x12,x12,#4
 FMUL v2.2D,v0.2D,v0.2D
 FMUL v3.2D,v1.2D,v1.2D
 FMUL v0.2D,v0.2D,v2.2D
 FMUL v1.2D,v1.2D,v3.2D
 STP q0,q1,[x11,#-0x10]
 ADD x11,x11,#0x20
 B.NE |L4.44|
 CMP x9,x8
 B.EQ |L4.132|
 |L4.92|
 LSL x11,x9,#3
 ADD x10,x1,x11
 ADD x11,x0,x11
 SUB x8,x8,x9
 |L4.108|
 LDR d0,[x11],#8
 SUBS x8,x8,#1
 FMUL d1,d0,d0
 FMUL d0,d0,d1
 STR d0,[x10],#8
 B.NE |L4.108|
 |L4.132|
 RET

This disassembly shows that the inlining, SLP vectorization, and loop vectorization have been
successful. Using the restrict pointers has eliminated run-time overlap checks.

The code size has increased slightly, due to the loop tail which handles any remaining iterations
when the total loop count is not a multiple of four (the effective unroll depth). The loop unroll
depth is two and is the SLP width is two, so the effective unroll depth is four. In the next step
we’ll look at an optimization we can make if we know the loop count will always be a multiple
of four.

6. Let us assume our loop count will always be a multiple of four. We can communicate this to the
compiler by masking off the lower bits of the loop counter:

void vec_cubed(double *restrict x_vec, double *restrict y_vec, int len_vec) {
 int i;
 #pragma clang loop interleave_count(1)
 for (i=0; i<(len_vec & ~3); i++) {
 y_vec[i] = cubed_i(x_vec[i]);
 }
 }

7. Compile and disassemble with the same commands we used earlier. This produces the
following code:

vec_cubed ; Alternate entry point
 AND w8,w2,#0xfffffffc
 CMP w8,#1
 B.LT |L13.40|
 MOV w8,w8
 |L13.16|
 LDR q0,[x0],#0x10
 SUBS x8,x8,#2

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 21

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Example:function in a loop

 FMUL v1.2D,v0.2D,v0.2D
 FMUL v0.2D,v0.2D,v1.2D
 STR q0,[x1],#0x10
 B.NE |L13.16|
 |L13.40|
 RET

The code size is reduced, because the compiler knows it no longer has to test for and deal with
any remaining iterations that were not a multiple of four. Promising to the compiler that the
data we supply will always be a multiple of the vector length has produced optimized code.

This example is simple enough that compiling at -O2 will perform all of these optimizations with no
code changes, but more complex pieces of code might require this type of tuning to get the most
from the compiler.

A full code listing is included below. You can compile and disassemble at a variety of optimization
levels and unroll depths to observe the compiler’s auto-vectorization behavior.

Full source code example: function in a loop
/*
 * Copyright (C) Arm Limited, 2019 All rights reserved.
 *
 * The example code is provided to you as an aid to learning when working
 * with Arm-based technology, including but not limited to programming tutorials.
 * Arm hereby grants to you, subject to the terms and conditions of this Licence,
 * a non-exclusive, non-transferable, non-sub-licensable, free-of-charge licence,
 * to use and copy the Software solely for the purpose of demonstration and
 * evaluation.
 *
 * You accept that the Software has not been tested by Arm therefore the Software
 * is provided "as is", without warranty of any kind, express or implied. In no
 * event shall the authors or copyright holders be liable for any claim, damages
 * or other liability, whether in action or contract, tort or otherwise, arising
 * from, out of or in connection with the Software or the use of Software.
 */

#include <stdio.h>

void vec_init(double *vec, int len_vec, double init_val) {
 int i;
 for (i=0; i<len_vec; i++) {
 vec[i] = init_val*i - len_vec/2;
 }
}

void vec_print(double *vec, int len_vec) {
 int i;
 for (i=0; i<len_vec; i++) {
 printf("%f, ", vec[i]);
 }
 printf("\n");
}

double cubed(double x) {
 return x*x*x;
}

void vec_cubed(double *x_vec, double *y_vec, int len_vec) {
 int i;
 for (i=0; i<len_vec; i++) {
 y_vec[i] = cubed(x_vec[i]);
 }
}

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 21

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Example:function in a loop

__attribute__((always_inline)) double cubed_i(double x) {
 return x*x*x;
}

void vec_cubed_opt(double *restrict x_vec, double *restrict y_vec, int len_vec) {
 int i;
 #pragma clang loop interleave_count(1)
 for (i=0; i<len_vec; i++) {
 y_vec[i] = cubed_i(x_vec[i]);
 }
}

int main() {
 int N = 10;
 double X[N];
 double Y[N];

 vec_init(X, N, 1);
 vec_print(X, N);
 vec_cubed(X, Y, 10);
 vec_print(Y, N);
 vec_cubed_opt(X, Y, 10);
 vec_print(Y, N);
 return 0;
}

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 21

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Coding best practices for auto-vectorization

6. Coding best practices for auto-
vectorization

As an implementation becomes more complicated the likelihood that the compiler can auto-
vectorize the code decreases. For example, loops with the following characteristics are particularly
difficult (or impossible) to vectorize:

• Loops with interdependencies between different loop iterations.

• Loops with break clauses.

• Loops with complex conditions.

Arm recommends modifying your source code implementation to eliminate these situations.

For example, a necessary condition for auto-vectorization is that the number of iterations in the
loop size must be known at the start of the loop. Break conditions mean the loop size may not
be knowable at the start of the loop, which will prevent auto-vectorization. If it is not possible
to completely avoid a break condition, it may be worthwhile breaking up the loops into multiple
vectorizable and non-vectorizable parts.

A full discussion of the compiler directives used to control vectorization of loops for can be found
in the LLVM-Clang documentation, but the two most important are:

• #pragma clang loop vectorize(enable)

• #pragma clang loop interleave(enable)

These pragmas are hints to the compiler to perform SLP and Loop vectorization respectively. They
are [COMMUNITY] features of Arm Compiler.

More detailed guides covering auto-vectorization are available for the Arm C/C++ Compiler Linux
user space compiler, although many of the points will apply across LLVM-Clang variants:

• Arm C/C++ Compiler: Coding best practice for auto-vectorization

• Arm C/C++ Compiler: Using pragmas to control auto-vectorization

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 21

https://llvm.org/docs/Vectorizers.html
https://developer.arm.com/docs/100748/0612/supporting-reference-information/support-level-definitions
https://developer.arm.com/documentation/101458/latest/Optimize/Coding-best-practice-for-auto-vectorization?lang=en
https://developer.arm.com/documentation/101458/latest/Optimize/Control-auto-vectorization-with-pragmas?lang=en

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Check your knowledge

7. Check your knowledge
The following questions help you test your knowledge:

What is Neon?
Neon is the implementation of the Advanced SIMD extension to the Arm architecture.
All processors compliant with the Armv8-A architecture (for example, the Cortex-A76 or
Cortex-A57) include Neon. In the programmer’s view, Neon provides an additional 32 128-bit
registers with instructions that operate on 8, 16, 32, or 64 bit lanes within these registers.

How do you enable Neon code generation with Arm Compiler?
Target AArch64 with --target=aarch64-arm-none-eabi and specify a suitable optimization
level, such as -O1 -fvectorize or -O2 and higher.

Suppose the Arm compiler automatically unrolls a loop to a depth of two. How would you force
the compiler to unroll to a depth of four?

#pragma clang loop interleave_count(4) will achieve this, applying only to that particular
loop.

How can you best write source code to assist the compiler optimizations?
Consider the following function when compiled with the -01 compiler option:

float vec_dot(float *vec_A, float *vec_B, int len_vec) {
 float ret = 0;
 int i;
 for (i=0; i<len_vec; i++) {
 ret += vec_A[i]*vec_B[i];
 }
 return ret;
 }

You could make the following changes to assist the compiler optimizations:

• Compile at -O2 or higher, or with -fvectorize.

• Specify #pragma clang loop vectorize(enable) before the loop as a hint to the compiler.

• Note that we are not modifying the vectors during the procedure so adding the restrict
keyword will do nothing here; it doesn’t matter if the input arrays overlap.

• SLP vectorization comes with an increased code in this case. This may be acceptable depending
on hardware limits and expected input array length.

Here is the optimized source code:

float vec_dot(float *vec_A, float *vec_B, int len_vec) {
 float ret = 0;
 int i;
 #pragma clang loop vectorize(enable)
 for (i=0; i<len_vec; i++) {
 ret += vec_A[i]*vec_B[i];
 }
 return ret;
 }

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 21

https://developer.arm.com/ip-products/processors/cortex-a/cortex-a76
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a57

Learn the architecture - Compiling for Neon with auto-
vectorization

Document ID: 102525_0100_00_en
Version 1.0

Related information

8. Related information
Here are some resources related to material in this guide:

• Arm Compiler 6 documentation provides information about the bare-metal compiler.

• Arm C/C++ Compiler documentation provides information about the Linux user space compiler.

• The LLVM-clang documentation provides information about the open source LLVM-based
toolchain.

• The GCC documentation provides information about the open source GNU toolchain.

• The Architecture Exploration Tools let you investigate and learn more about the Advanced
SIMD instruction set.

• The Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile provides a
complete specification of the Advanced SIMD instruction set.

• The Optimizing C Code with Neon Intrinsics guide shows you how to use Neon intrinsics
in your C, or C++, code to take advantage of the Advanced SIMD technology in the Armv8
architecture.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 21

https://developer.arm.com/tools-and-software/embedded/arm-compiler/documentation
https://developer.arm.com/tools-and-software/server-and-hpc/compile/arm-compiler-for-linux/arm-cpp-compiler
https://clang.llvm.org/
https://gcc.gnu.org/onlinedocs/
https://developer.arm.com/architectures/cpu-architecture/a-profile/exploration-tools
https://developer.arm.com/docs/ddi0487/latest
https://developer.arm.com/documentation/101725/0200/Coding-for-Neon/Optimizing-C-Code-with-Neon-Intrinsics?lang=en

	Learn the architecture - Compiling for Neon with auto-vectorization
	Contents
	1. Overview
	2. Why rely on the compiler for auto-vectorization?
	3. Compiling for Neon with Arm Compiler 6
	4. Example: vector addition
	5. Example:function in a loop
	6. Coding best practices for auto-vectorization
	7. Check your knowledge
	8. Related information

