
Understanding numerical precision
Version 1.1

guide

Non-Confidential
Copyright © 2019, 2022 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
102502_0101_01_en

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

Understanding numerical precision
guide

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-00 10 July 2019 Non-Confidential First release

0101-01 9 December 2022 Non-Confidential Updated OpenGL ES shader table.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly
or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 17

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 17

mailto:terms@arm.com

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

Contents

Contents

1. Overview...6

2. Numerical Precision..7

3. Shader precision..8
3.1 Rounding modes..9

4. The pros and cons of lower precision...10
4.1 Vertex positions.. 10
4.2 Texture coordinates..10
4.3 Depth samplers...11
4.4 -bit per channel texture formats.. 11
4.5 -bit render targets.. 12

5. Debugging.. 13
5.1 Forcing highp in shaders...13
5.2 Increasing depth precision..13

6. Mitigating loss of precision..14
6.1 Avoid large magnitudes...14
6.2 Exploit symmetrical functions..15
6.3 Exploit built-in functions...15
6.4 Minimize memory size...15
6.5 OpenGL ES OES Vertex Half-Float Information... 16

7. Next steps.. 17

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

Overview

1. Overview
This guide explores the different levels of numerical precision available for a GPU. It explains the
advantages of using narrower data types, and when you might consider using the higher precision
types available instead.

This guide is designed for application developers who have an understanding of developing shaders
and want to increase their knowledge and optimize their shader performance further.

When you have finished this guide, you will understand both 16 floating-point values and 32
floating-point values, shader precision, rounding values, the pros and cons of lower precision,
texture coordinates, and how to mitigate the loss of precision.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

Numerical Precision

2. Numerical Precision
Data-plane processing is about processing a large amount of data and computation as efficiently
as possible. Using algorithms in narrow data types through the processing path is one of the main
tricks used improve efficiency.

For most graphics algorithms, the eventual color outputs from a render are likely to be RGBA8
surfaces that only store 8 bits per color channel. Therefore, it is not necessary to use the full FP32
floating-point value.

A FP16 value is a viable alternative for color computation. In many compute problem domains, it is
possible to go even further towards smaller data types.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

Shader precision

3. Shader precision
The OpenGL ES and Vulkan graphics standards have their own definitions of data types. Variables
are declared using a precision qualifier that defines the minimum precision that the implementation
can use.

However, an implementation can substitute a more precise variable if required. As shown in the
table below, the specification for the OpenGL ES shader language for floating-point values states
that:

Floating-point Declaration Range Magnitude Precision

lowp (-2, 2) (2-8, 2) Absolute: 2-8

mediump (-214, 214) 0.0, [2-14, 214) Relative: 2-10

highp (-2128, 2128) 0.0, [2-126, 2128] Relative: 2-23

Integer Declaration Signed Range Unsigned Range

lowp [-28, 28-1] [0, 29-1]

mediump [-215, 215-1] [0, 216-1]

highp [-231, 231-1] [0, 232-1]

[= inclusive range and) = exclusive range. For example: [0, 2] means 0 <= x <=
2, (0, 2) means 0 < x < 2, and [0, 2) means 0 <= x < 2.

lowp float values can be stored using a 10-bit fixed point, mediump float values can be stored using
a 16-bit floating point, and highp float values can be stored using a 32-bit floating point. However,
the resulting output depends on the underlying GPU.

Mali GPUs do not distinguish between lowp and mediump variables. This means that both are
mapped to 16-bit data types, and highp variables are mapped to 32-bit data types.

The older Mali-400 series GPUs, which are based on the Utgard architecture, do not
support highp processing in fragment shaders. Therefore, all variables will be treated
at 16-bit variables when using Mali-400 series GPUs.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

Shader precision

3.1 Rounding modes
In addition to the floating-point precision differences, consider how floating-point values are
rounded if a result cannot be exactly represented. There are broadly three main categories of
floating-point rounding available:

1. Round to nearest.

2. Round toward 0.

3. Round away from 0.

Round to nearest gives the least additional error, up to 0.5 ULP, compared to up to 1ULP for round
toward 0 and round away from 0. However, round to nearest is slightly more expensive to support
in hardware. As with numerical precision, the OpenGL ES graphics specifications does not tightly
define the implementation.

Mali GPUs default to rounding to nearest, although this can be overridden by the application in
some versions of OpenCL.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

The pros and cons of lower precision

4. The pros and cons of lower precision
Lower precision data types provide a variety of efficiency advantages:

• The hardware needed for narrower arithmetic units is smaller, and fewer transistors need to be
toggled. This means that each operation uses less energy.

• Overall performance can be improved by packing vectors of narrower operations together. For
example, it is possible to issue a pair of FP16 operations instead of a single FP32 operation.

• Narrow data in memory requires less storage space and reduces the need for expensive
external DDR memory, allowing more data to fit into both the data caches and register storage
concurrently, improving performance.

However, the trade-off is that narrower data types can only represent a smaller range of numbers.
Such as:

• Both floating-point types and integer types suffer from a reduced dynamic range. For example,
an FP32 float can store a value with a range of up to 2^62. Compare this to an FP16 float that
can only store a value with a range of up to 2^14.

• Floating-point types also suffer from reduced precision inside any given dynamic range. FP32
values provide 24 fractional bits, and an FP16 float provides 11 fractional bits.

Therefore, we recommend that you use narrow types, except when they provide insufficient
precision and would result in a rendering error.

In general, any graphics application should be using a mixture of FP types. There are many cases
where an FP16 is fine, but there are also cases where this is insufficient, and an FP32 should be
used instead.

Because FP16 values offer twice as much energy efficiency and performance as FP32 values, FP16
values should be used in applications when possible. This means that it is easier to consider the
cases in which using mediump is insufficient.

4.1 Vertex positions
To ensure output position accuracy and stability of the vertex position in the vertex shader, we
recommend that you use highp. Always use highp for input positions, transform matrices, and for
any distance-based computation for lighting.

4.2 Texture coordinates
Textures are addressed with a UV coordinate between 0 and 1. Using an FP16 coordinate gives
11 fractional bits, with an accuracy of 1 part in 2048. This means it is unable to accurately address

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

The pros and cons of lower precision

common texture sizes such as 1440p (2560x1440 pixel) renders, even when using GL_NEAREST
filtering.

Many games use smaller textures than this, such as 512x512 pixels or 1024x1024 pixels. But,
many games also use GL_LINEAR for filtering.

For smooth linear interpolation during filtering and stable addressing at a sub-texel accuracy, we
recommend that you use at least 16 sub-texel indices. This means that even for some smaller
textures, FP16 is insufficient.

For both reasons, we recommend using highp varying input variables in the fragment shaders for
texture coordinates, to ensure FP32 interpolation precision. However, if the texture is less than, or
equal to, 2048 texels wide in each dimension, it is not normally required to store texture coordinate
inputs or outputs for the vertex shader at a higher precision.

Storing data in input attribute buffers as GL_HALF_FLOAT and writing mediump outputs from vertex
shaders minimizes the memory bandwidth needed to store coordinates in memory, and loading
them as highp inputs in fragment shaders gives the high precision interpolation.

Note: The Mali-400 series of GPUs do not support highp operations in the fragment shader math
units. However, the 400-series GPUs do include a higher precision path between the varying
interpolator and the texture sampling unit. To avoid losing this additional precision for texture
coordinates, the interpolated varying value must pass directly into the texture2D() call. Any
arithmetic computation on the coordinate before use results in a drop to FP16 precision, and a
subsequent drop in sample position accuracy.

4.3 Depth samplers
Most modern content will use 24-bit unsigned normalized integers or 32-bit float depth buffers. To
sample data from these textures without losing data precision, the texture sampler must be a highp
sampler.

4.4 -bit per channel texture formats
OpenGL ES 3.0 introduces 32-bit per channel textures, for both floating-point and integer data
types. Given their wider data width, using anything other than a highp sampler would result in data
truncation.

While 32-bit texture channels are available, we do not recommend using them due to their high
memory bandwidth and energy efficiency costs.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

The pros and cons of lower precision

4.5 -bit render targets
OpenGL ES 3.0 and OpenGL ES 3.2 introduces 32-bit per channel output framebuffer
attachments, both for integer data, in ES 3.0, and floating-point data, in ES 3.2 data. Given their
wider data width, using anything other than a highp computation and output in the shader program
results in data truncation.

While 32-bit channel output framebuffers are available, we do not recommend using them due to
their high memory bandwidth and energy efficiency costs.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1
Debugging

5. Debugging
Debugging precision issues can be difficult, because it is hard to know precisely which computation
is overflowing. Some trial-and-error debugging techniques are required to identify the culprit.

5.1 Forcing highp in shaders
For draw calls that use highp precision, forcing every variable in the shaders is the quickest way
to confirm their precision and to see if the issues are resolved. If they are resolved, you can
reintroduce lower precision until you find the computations which are at fault. Mitigation strategies
can then be implemented.

5.2 Increasing depth precision
With any geometry Z-fighting problems, it is always worth reviewing the precision of your depth
buffers, to ensure that you have sufficient depth precision to avoid quantization issues with
coplanar geometry.

You can also determine if depth precision is a likely cause of rendering issues, by swapping to a 32-
bit floating-point depth buffer, DEPTH_COMPONENT_32F.

Note: We recommend avoiding 16-bit depth buffers, as they are prone to precision problems.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

Mitigating loss of precision

6. Mitigating loss of precision
The basic idea of floating-point numbers is that the location of the fractional bits which are stored
changes, or floats, is based on the magnitude of the number you are trying to represent. The level
of accuracy that you can store reduces as the magnitude of the stored number increases.

For many types of shader arithmetic, accuracy of small numbers is important. Examples include:
unorm color outputs, UV texture coordinates, and components in unit length vectors in which all
values are between 0.0 and 1.0.

Preserving accuracy of the numbers in this output range is important. Therefore, we will now
discuss how you can use mathematical construction to reduce the errors introduced by precision
limitations.

6.1 Avoid large magnitudes
Avoid creating numbers with a large magnitude that will be turned in to a small number in
mathematical operations. For example, consider the expression:

glsl
float opA = 100.00;
float opB = 0.01;
float tmp = (a + b)
float result = tmp - a;

When executed at FP32 precision, this expression gives the expected answer 100.01. But, when
executed at FP16 precision, this expression gives the answer 99.989.

This happens because of the large difference in magnitudes of the original inputs. This means that
the intermediate value of tmp lacks enough accuracy to store the fractional part of 100.01, and so
only contains the value 100. However, the smaller value tmp - a can be stored, meaning that the
errors do not cancel out.

To avoid losing accuracy, construct equations that preserve intermediate values, so they are as
close as possible to the final magnitude. For example, if passing in a rotation from the application
into sin() or cos(), we know that the useful part of the function can be found between [0, 2(PI)).
Any values that are higher than this are just repeated rotations larger than 360 degrees, and are
visually indistinguishable from a smaller rotation.

So rather than passing in an ever-increasing value from the application, wrap the rotation on the
CPU to the range [0, 2(PI)), in turn, preserving as much precision as possible in the useful range.

For this example, if the rotation is not wrapped to a small range on the CPU, then the object
eventually ceases rotating. The magnitude of the number becomes so large that adding in a small
incremental rotation does not do anything. This is because the small increment is below the
accuracy threshold of the stored number.

This happens quickly with FP16 numbers, but it also happens eventually with FP32 numbers.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

Mitigating loss of precision

6.2 Exploit symmetrical functions
The sign-bit is always stored in a floating-point number. For many types of periodic mathematical
functions, this can be used to improve accuracy because the magnitude of the numbers that need
to be stored can be reduced.

For example, a rotation of +270 degrees is the same as a rotation of -90 degrees. So, for inputs
into sin() and cos(), it is preferable to use values in the range [-(PI), +(PI)) instead of [0, 2(PI)). This
is because the -PI to +PI range halves the maximum magnitude, therefore preserving one bit of
accuracy which the latter values would lose.

6.3 Exploit built-in functions
Built-in functions in the shader libraries are often backed by hardware that preserves more
precision than the equivalent function that is implemented in shader code arithmetic.

An example of this is the Fused Multiply Accumulate operation. This operation is very common in
compute applications:

glsl
float r = (a * b) + c;

If this operation is implemented as separate multiply and add operations, the result of (a * b) is
rounded to fit into a tmp float. The result of tmp + c is rounded again, so that two sets of rounding
errors are introduced.

When using a hardware fused multiply accumulate operation, only the final result needs to be
rounded to the output precision. This removes the intermediate rounding result, and the error that
it introduces.

6.4 Minimize memory size
Double Data Rate (DDR) memory bandwidth requires lots of power, so when reviewing shaders
and narrowing precision, remember also to narrow any associated vertex attributes stored in
memory.

Support for GL_HALF_FLOAT attributes is a core feature in OpenGL ES 3.0. If you are using OpenGL
ES 2.0, remember that all Mali GPUs support the [OES_vertex_half_float][VHF] extension.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1

Mitigating loss of precision

6.5 OpenGL ES OES Vertex Half-Float Information
A caveat of using lower numerical precision is that, In general, lower precision is better. However,
the cost of type conversion may not be free. Therefore, try to minimize the number of casts
needed in shader code by loading data at a suitable precision level.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 17

Understanding numerical precision guide Document ID: 102502_0101_01_en
Version 1.1
Next steps

7. Next steps
When it comes to improving the efficiency of using shaders, knowing when it is best to use either
16fp or 32fp values, shader precision, rounding values, the pros and cons of lower precision,
texture coordinates, and how to mitigate the loss of precision are all key aspects in your efforts to
optimize your shader performance on Mali GPUs.

Copyright © 2019, 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 17

	Understanding numerical precision guide
	Contents
	1. Overview
	2. Numerical Precision
	3. Shader precision
	3.1 Rounding modes

	4. The pros and cons of lower precision
	4.1 Vertex positions
	4.2 Texture coordinates
	4.3 Depth samplers
	4.4 -bit per channel texture formats
	4.5 -bit render targets

	5. Debugging
	5.1 Forcing highp in shaders
	5.2 Increasing depth precision

	6. Mitigating loss of precision
	6.1 Avoid large magnitudes
	6.2 Exploit symmetrical functions
	6.3 Exploit built-in functions
	6.4 Minimize memory size
	6.5 OpenGL ES OES Vertex Half-Float Information

	7. Next steps

