
ACPI for Memory System Resource Partitioning and
Monitoring 2.0

Platform Design Document
Non-confidential

Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Document number: DEN0065

ACPI for Memory System Resource Partitioning and Monitoring

Contents

Release information 3
Arm Non-Confidential Document Licence (“Licence”) 4

About this document 6
Terms and abbreviations 6
References 6
Feedback 7

1 Introduction 8

2 The ACPI MPAM table 9
2.1 MPAM MSC node 9

2.1.1 Interrupt Flags 12
2.1.2 MPAM PCC Interface Type 12

2.2 MPAM resource node 13
2.2.1 Functional dependencies between MSCs 15
2.2.2 Empty MSC node 15

2.3 Locators 16
2.3.1 Location types 16
2.3.2 Locator structure 16
2.3.3 Location descriptors 16

2.4 MSC groups 21
2.5 MSC functional dependencies 21
2.6 Representation of MSCs as ACPI devices 21

2.6.1 ACPI Hardware Identifiers 22
2.6.2 Unique Identifier 22
2.6.3 Example MSC device 22

2.7 MSI support 22
2.8 MSC Power Management 22

2.8.1 MSC power state dependencies and accessibility 23
2.8.2 Describing MSC device linkage 23
2.8.3 MSCs associated with PEs and PE affinity 23

3 Appendix 25
3.1 Example System with MPAM 25

3.1.1 Notations 25
3.1.2 Prerequisites 26
3.1.3 The ACPI description of the PE topology 29
3.1.4 The ACPI MPAM table 29
3.1.5 The L1 caches 30
3.1.6 L2 caches on PE1 and PE2 32
3.1.7 L3 cache on cluster C_1 34
3.1.8 SoC Interconnect 36
3.1.9 Memory-side caches 36
3.1.10 Memory channel controllers 37
3.1.11 SMMU_A 39
3.1.12 SMMU_B 41
3.1.13 Inter-socket interconnects supporting MPAM 42
3.1.14 MPAM-enabled NUMA links on complex systems 45

Page 2 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Copyright © 2021, 2022 Arm Limited. All rights reserved.

Release information

Date Version Changes

2022/Nov/30 2.0 • External release. Note - This version replaces Version 1.0. Version 1.0 is
deprecated and must not be referenced.

• Introduced a new PCC interface type
• Updated Locator information for memory side caches to include cache levels
• Corrected Figure 1, removing references to System Level Cache slices as

memory side caches
• Corrected example of memory side cache to match Figure 1
• Introduced new resource locator type for interconnects
• Added clarifying text on how a logical group is related to controls within MSCs

of that logical group.

2021/Sep/30 1.0 • External release

Page 3 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual
property (including, without limitation, any copyright) embodied in the document accompanying this Licence
(“Document”). Arm licenses its intellectual property in the Document to you on condition that you agree to
the terms of this Licence. By using or copying the Document you indicate that you agree to be bound by the
terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled,
directly or indirectly, by you. A company shall be a Subsidiary only for the period during which such control
exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to
the terms of this Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual
property in the Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable,
royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply
with the Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i)
above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function
of a product that is not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any
intellectual property embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may make changes to the
Document at any time and without notice. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST
EXTENT PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT,
TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING
WITHOUT LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF
THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENCE). THE EXISTENCE
OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE
RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS
LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other
rights, if Licensee is in breach of any of the terms and conditions of this Licence then Arm may terminate this
Licence immediately upon giving written notice to Licensee. Licensee may terminate this Licence at any time.
Upon termination of this Licence by Licensee or by Arm, Licensee shall stop using the Document and destroy
all copies of the Document in its possession. Upon termination of this Licence, all terms shall survive except
for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party
in breach. Any termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted
to any Subsidiary hereunder shall automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

Page 4 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use,
duplication or disclosure of the Document complies fully with any relevant export laws and regulations to
assure that the Document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws.

This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any
conflict between the English version of this Licence and any translation, the terms of the English version of
this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names
mentioned in this document may be the trademarks of their respective owners. No licence, express, implied
or otherwise, is granted to Licensee under this Licence, to use the Arm trade marks in connection with the
Document or any products based thereon. Visit Arm’s website at http://www.arm.com/company/policies/
trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2021, 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-21585 version 4.0

Page 5 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

ACPI for Memory System Resource Partitioning and Monitoring

About this document

Terms and abbreviations

Term Meaning

ACPI Advanced Configuration and Power Interface specification

ASID Address Space Identifier

DSDT Differentiated System Description Table

GAS Generic Address Space

GIC The Arm Generic Interrupt Controller

GSIV Global System Interrupt Vector

HID ACPI Hardware Identifier

HMAT Heterogeneous Memory Attributes Table

IORT I/O Remapping Table

LLC Last-level Cache

MPAM Memory System Resource Partitioning And Monitoring

MSC Memory System Component

MSI Message Signaled Interrupt

NUMA Non-uniform Memory Architecture

OSPM Operating System Power Management

PCC Platform Communication Channel

PMG Performance Monitoring Group

PPI Processor Private Interrupt

PPTT Processor Properties Topology Table

PSCI Power State Coordination Interface

RIS Resource Instance Selection

SMMU Arm System Memory Management Unit

SRAT ACPI System Resource Affinity Table

TLB Translation Look-aside Buffer

UID ACPI Unique Identifier

UUID Universally Unique Identifier

References

This section lists publications by Arm and by third parties.

Page 6 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

[1] Arm® Architecture Reference Manual Supplement Memory System Resource Partitioning and Monitor-
ing(MPAM), for Armv8, DDI 0598A.a, ID103018A. Arm Limited.

[2] Advanced Configuration and Power Interface Specification 6.3. UEFI Forum.

[3] Arm® System Memory Management Unit Architecture Specification SMMU architecture versions 3.0, 3.1
and 3.2, IHI 0070C.a. Arm Limited.

[4] DEN0049E IO Remapping Table. Arm Limited.

[5] DEN0093 ACPI for Arm Components 1.0. Arm Limited.

[6] Arm® Architecture Reference Manual ARMv8, for the ARMv8-A architecture profile, Arm DDI 0487. Arm
Limited.

[7] _DSD Implementation Guide v2.0. UEFI Forum.

Feedback

Arm welcomes feedback on its documentation.

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title (ACPI for Memory System Resource Partitioning and Monitoring).
• The document ID and version (DEN0065 2.0).
• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Page 7 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

1 Introduction
This document describes the specification for the ACPI description of the Arm Memory System-Resource
Partitioning and Monitoring feature, MPAM [1].

Note

Version 1.0 of this specification is deprecated and must not be referenced.

Page 8 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

2 The ACPI MPAM table
The MPAM capabilities in a system are described by the ACPI MPAM table. Memory requests from requesters
are handled by Memory-system Components or MSCs. SMMUs, caches, TLBs and memory channel
controllers are examples of an MSC. An MSC provides partitioning and monitoring controls for managing
system memory resources that provide performance to memory transactions.

The MPAM table describes the properties of MSCs in the system. The table also describes the topological
arrangement of MSCs and resources in the system. The topology is expressed in terms of the location of
resources within the system and the relation between an MSC and the resources that it is manages.

When MPAM is enabled, all MSCs within the MPAM topology must be programmed and enabled to support
partitioning and monitoring of memory requests that are associated with a given range of PARTIDs. Different
MSCs might support different PARTID and PMG ranges, and hence the smallest common value is required to
be programmed into each MSC in the system to allow MPAM to operate correctly at a system level.

All MSCs in the system must be described to allow the OS to discover this common value.

The table format is decribed in Table 3.

Table 3: The MPAM table

Field Byte length Byte offset Description

Header Standard ACPI format for header.

Signature 4 0 ‘MPAM’, Memory Resource Partitioning and Monitoring
table.

Length 4 4 Length of this table in bytes.

Revision 1 8 Must be 1 for this version of the specification.

Checksum 1 9 The entire table must sum to zero.

OEM ID 6 10 OEM ID.

OEM Table ID 8 16 The table ID is the manufacture model ID.

OEM Revision 4 24 OEM revision of the MPAM table for the supplied OEM
Table ID.

Creator ID 4 28 The vendor ID of the utility that created the table.

Creator Revision 4 32 The revision of the utility that created the table.

Body

Array of MPAM MSC
node structures

– 36 An array of MPAM node structures that describes MSCs
in the system.

2.1 MPAM MSC node

The MPAM MSC node describes an MSC. The format of the MSC node is specified below in Table 4.

Page 9 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Table 4: MPAM MSC node body

Field Byte length Byte offset Description

Length 2 0 Length of MPAM node in bytes.
The length equals the size of the entire node, and
includes the resource node list.

Interface type 1 2 The type of interface to this MPAM MSC, based on
the ACPI Generic Address Structure (GAS)
Address Space ID (ASID) [2].

• 0x00: SystemMemory (MMIO)
• 0x0A: PCC

Other values are reserved by this specification for
future use.

Reserved 1 3 Must be zero.

Identifier 4 4 A unique identifier for this node that can be used
to reference the node.

Base address 8 8 If Interface type is set to SystemMemory, this field
specifies the Base address of the
memory-mapped MPAM register space. The
format of these registers is described in [1].
If Interface type is PCC, this field must be set to
the subspace ID of the PCC channel. The
subspace ID is used as index into the ACPI PCCT
table.

MMIO size 4 16 The definition of this field is based on the Interface
type used.
If Interface Type is set to SystemMemory, this field
specifies the size of the memory-mapped memory
region that holds the registers of the MSC.
This field must be set to 0 and ignored if the
Interface type is set to PCC.

Overflow interrupt 4 20 Identifier for the overflow interrupt if the MSC
supports monitoring capabilities as specified in [1].
For wired interrupts, this field represents the GSIV
of the interrupt.
If the MSC supports MSI, as indicated by the
MPAMF_MSMON_IDR.HAS_OFLW_MSI bit, then
this field must be set to 0 and ignored by the OS.
If this MSC does not support overflow interrupts or
monitors, this field must be set to 0.

Overflow interrupt flags 4 24 See Table 5.

Reserved1 4 28 Reserved, must be zero.

Page 10 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Field Byte length Byte offset Description

Overflow interrupt affinity 4 32 This field specifies the ACPI _UID of the processor
or processor container that the overflow interrupt
is routed to.
The affinity type field in the interrupt flags specifies
whether the affinity is with a processor or a
processor container.
This field is valid only if the Affinity valid flag is set
to 1.

Error interrupt 4 36 Identifier for the error interrupt if the MSC supports
error interrupts.
For wired interrupts, this field represents the GSIV
of the interrupt.
If the MSC supports MSI, as indicated by the
MPAMF_IDR.HAS_ERR_MSI bit, then this field
must be set to 0 and ignored by the OS.
If this MSC does not support error interrupts, this
field must be set to 0.

Error interrupt flags 4 40 See Table 5.

Reserved2 4 44 Reserved, must be zero.

Error interrupt affinity 4 48 This field specifies the ACPI _UID of the processor
or processor container that the error interrupt is
routed to.
The affinity type field in the interrupt flags specifies
whether the affinity is with a processor or
processor container.
This field is valid only if the Affinity valid flag is set
to 1.

MAX_NRDY_USEC 4 52 For MSCs that support monitoring capabilities, the
maximum time in microseconds that the Not ready
signal can remain asserted following a
configuration change.

Hardware ID of linked
device

8 56 Describes the linked device for this MSC. This
field is used for power management of the MSC.
Linked devices are described in Section 2.8.1.
This field must match the ACPI _HID of the linked
device.
This field must be set to zero if there is no linked
device for this MSC.

Instance ID of linked
device

4 64 The ACPI _UID of the linked device.
This field must be set to zero if there is no linked
device for this MSC.

Number of resource nodes 4 68 Number of entries in the list of MPAM resource
nodes.

List of resource nodes – 72 List of MPAM resource descriptor nodes.
Resource nodes are described in Section 2.2.

Page 11 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Field Byte length Byte offset Description

Resource-specific data – – Additional optional data related to the resources of
this MPAM MSC node.
The definition, format and size this field is
dependent on the resource nodes of this MPAM
MSC node.
The length of this MPAM MSC node should
include the total size of this region.
This field should be considered to be absent if its
size is 0. The size can be determined by
examining the Length field of this MPAM MSC
node.
This field is only valid from version 2.0 of this
specification.

2.1.1 Interrupt Flags

The interrupt flags are for both overflow and error interrupts, and are described in Table 5.

Table 5: Interrupt flags

Field Bit length Bit offset Description

Interrupt mode 1 0 • 0 if interrupt is level-triggered.
• 1 if interrupt is edge-triggered.

This field is valid only for wired
interrupts.

Interrupt type 2 1 • 00b if this is a wired interrupt.
Other values are reserved.

Affinity type 1 3 • 0 if this interrupt is associated with
a processor.

• 1 if this interrupt is associated with
a processor container.

This field is valid only if the Affinity valid
field is set to 1.

Affinity valid 1 4 • 0 if the affinity field is not valid.
• 1 if the affinity field is valid.

This field must be set to 0 if the interrupt
is not a PPI.

Reserved 27 5 Must be zero.

2.1.2 MPAM PCC Interface Type

If the PCC interface type is used, the MPAM registers for an MPAM MSC node reside in the PCC Generic
Communication Shared Memory region for the specified subspace ID. On UEFI based systems, the memory
attribute of this region must be specified by the EFI memory map. On non-UEFI based systems, this region of
memory must be exposed as Device nGnRnE memory.

The PCC subspace structure must be of Type 1 (HW-reduced communications subspace) as defined in
Chapter 14 of the ACPI specification [2].

Page 12 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

The base address of the PCC region is retrieved from the PCCT. The Base Address field of the MPAM MSC
node points to the sub-space ID of the PCC subspace that describes the PCC-based shared memory region
that holds the registers of the MPAM MSC. The register layout itself follows the MPAM feature page described
in [1].

The shared memory region of the PCC subspace is defined in Table 6.

Table 6: MPAM PCC Generic Communication Shared Memory Region

Field Byte length Byte offset Description

Signature 4 0 The PCC signature. The signature of a subspace is
computed by a bitwise-OR of the value 0x50434300
with the subspace ID.
For example, subspace 3 has the signature
0x50434303.

Command 2 4 PCC command field, described in Chapter 14 of the
ACPI specifiation [2].

Status 2 6 PCC status field, described in Chapter 14 of the
ACPI specifiation [2].

MPAM
communication space

– 8 Memory region for reading/writing data. This maps
to the MPAM feature page described in [1]
NOTE: Register offsets are shifted by 0x08. For
example, MPAMF_IDR is at an offset of 0x00 from
the start of this field, and an offset of 0x08 from the
start of the shared memory region of this subspace.

To amortize the cost of PCC transactions, OSPM should read or write all PCC registers in a single read or
write command. The commands are described in Table 7.

Table 7: MPAM PCC Commands

Command Description

0x0000 READ_MPAM_REGISTERS: Returns the current
values of the MPAM registers.

0x0001 WRITE_MPAM_REGISTERS: Stores the register
values passed in the communication space into
corresponding MPAM registers.

0x0002-0xFFFF Reserved for future use by this specification.

2.2 MPAM resource node

From a software viewpoint, an MSC is a container of resources. The MPAM resource node specifies the
properties of a resource.

An MSC has resource partitioning controls that operate on resources.

The MPAM specification [1] describes the following standard resources:

• Cache storage

Page 13 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

• Memory bandwidth
• Priority
• Implementation-specific

The MPAM specification also describes standard resource partitioning controls, or simply, controls:

• Cache-portion partitioning (CPOR).
• Cache maximum-capacity partitioning (CCAP).
• Memory-bandwidth portion partitioning (MBW).
• Priority partitioning (PRI).
• Implementation-specific partitioning (IMPL).

Controls are associated with specific resource types as follows:

Table 8: Resource and control types

Resource type Control type

Cache storage CPOR, CCAP

Memory bandwidth MBW

Priority PRI

Implementation- specific IMPL

This specification assumes that all controls of a particular control type in an MSC shall operate on one and
only one resource instance of the corresponding type as described in Table 8. If a component has multiple
resource instances of the same type, then it must either implement an MSC that supports the RIS feature
or separate MSCs for each resource instance of the same resource type. For example, if a cache unit
implements multiple caches as distinct resources, then the cache unit must implement one MSC per cache if
the MSCs do not support RIS. Alternatively, the cache unit must implement a single MSC that applies to all
caches and uses the RIS feature to provide independent controls to each cache.

This specification currently only supports discovery of cache storage and memory bandwidth resources.
That is because these resources can be readily identified using existing ACPI constructs that software can
understand and use. Other resource types are declared as unknown resources.

See Appendix (Section 3) for an example system that illustrates these points.

The OS must check the MPAMF_IDR.HAS_RIS field of the MSC to determine whether it supports the RIS
feature.

The location of the resource is useful for the OS to uniquely identify the resource in a system. For example, if
the resource is cache storage, then the location identifies which physical cache contains the cache storage.
This information enables resource management software frameworks to utilize the MPAM capabilities of the
system efficiently.

Table 9: Resource node

Field Byte length Byte offset Description

Identifier 4 0 Identifier for this resource node.
Each resource in the system must be assigned
an identifer that is globally unique among all
resources in the system.

Page 14 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Field Byte length Byte offset Description

RIS Index 1 4 Index of this resource if RIS is supported. This
field must be set to a value that is between 0
and MPAMF_IDR.RIS_MAX.
This field must be set to 0 if the parent MSC
doesn’t support RIS. All resource controls of the
associated control type in Table 8 that the
parent MSC provides are then considered to be
operating on this resource only.

Reserved1 2 5 Reserved, must be zero.

Locator type 1 7 Identifies the location of this resource. Location
types are defined in Section 2.3.1.

Locator 12 8 Locator structure that is used for determining
where this resource is situated.
Locators are described in Section 2.3.

Number of functional
dependencies

4 20 Number of functional dependency descriptors.
Must be zero if this resource has no functional
dependency.

Functional dependency
list

N 24 List of functional dependency descriptors for
this resource.

2.2.1 Functional dependencies between MSCs

If an MSC has a resource partitioning control whose operation is dependent on or is influenced by resource in
another MSC, then that dependency must be described using the functional dependency descriptor. MSC
dependencies are explained in Section 2.5.

Table 10: Functional dependency descriptor

Field Byte length Byte offset Description

Producer 4 0 Describes the producer resource that influences
the operation of this resource.
This field must be set to the Identifier field of the
producer resource node.

Reserved 4 4 Reserved, must be zero.

2.2.2 Empty MSC node

An empty MSC node has no resource nodes, and its number of resource nodes is set to 0.

If an MSC is described using an empty MSC node, its resources are still discoverable, but without a firmware
description the OS is expected to program the controls to be unrestricted (e.g. all 1s for a CPOR bitmap) for
any PARTID that it is using.

MSCs whose resources are not located on known components must be described using the empty MSC
node. This allows the OS to discover the supported range of PARTID and PMG on that MSC and program all
controls to be unrestricted.

Page 15 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

2.3 Locators

Locators are a generic construct that specify where a component is situated in the system.

The Location field of an MPAM resource node specifies its location. The resource node is described in Table 9.

The format of the Location fields is based on the Locator structure, described in Section 2.3.2.

The location is expressed in terms of the ACPI identifier of the component that the resource instance is
associated with.

2.3.1 Location types

Table 11: Location types

Type Description

0x00 Processor cache

0x01 Memory

0x02 SMMU

0x03 Memory-side cache

0x04 ACPI device

0x05 Interconnect

0x06-0xFE Reserved for future use by this
specification.

0xFF Unknown

2.3.2 Locator structure

Table 12: Locator structure

Field Byte length Byte offset Description

Descriptor1 8 0 Primary ACPI description of the location,
detailed in Section 2.3.3.

Descriptor2 4 8 Secondary ACPI description of the location,
also detailed in Section 2.3.3.

2.3.3 Location descriptors

2.3.3.1 Processor cache locator descriptor

The processor cache locator descriptor is associated with a Location type value of 0x00.

For a resource node, this descriptor points to the processor cache that contains the cache storage being used
as the MPAM resource.

The format of this locator is outlined in Table 13.

The cache locator is described in terms of the cache’s topological position within the processor hierarchy.

Page 16 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

The position is derived from the ACPI PPTT table [2] , and is expressed as a reference to the cache (Type 1)
structure within the PPTT table that describes the cache.

This locator works with PPTT tables of revisions 3 and above.

Table 13: Processor cache locator descriptor

Field Byte length Byte offset Description

Cache reference 8 0 This field must match the Identifier field of the
PPTT Type 1 structure that describes this
cache.

Reserved 4 8 Reserved, must be zero.

2.3.3.2 Memory locator descriptor

The memory locator descriptor is associated with a Location type value of 0x01.

Memory bandwidth associated with memory regions can be managed as an MPAM resource. Memory
bandwidth resources are located using the memory locator.

The format of the memory locator is outlined in Table 14.

The locator is expressed in the form of the proximity domain associated with the memory region.

It is assumed that the memory bandwidth applies to all memory locations within the proximity domain.

The SRAT table is a prerequisite and must be present.

Table 14: Memory locator descriptor

Field Byte length Byte offset Description

Proximity domain 8 0 Proximity domain associated with the memory
region.

Reserved 4 8 Reserved, must be zero.

2.3.3.3 SMMU locator descriptor

The SMMU locator descriptor is associated with a Location type value of 0x02.

An SMMU [3] implementation can support MPAM through built-in MSCs that manage MPAM resources within
the SMMU.

Examples of internal units in an SMMU that can be managed as MPAM resources are IO TLBs and translation
caches in the SMMU itself, e.g., in the control unit of the SMMU.

For resource nodes, the SMMU locator describes the location of MPAM resources within the SMMU.

The format of this locator is outlined in Table 15.

The location information is provided in the form of a reference to the IORT[4] node that describes the internal
unit in the SMMU.

Page 17 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Table 15: SMMU locator descriptor

Field Byte length Byte offset Description

SMMU interface 8 0 The identifer field of the ACPI IORT table node
that describes the SMMU or SMMU interface.
This node only supports IORT tables of revisions 3
and above.

Reserved 4 8 Reserved, must be zero.

2.3.3.4 Memory-side cache locator descriptor

The Memory-side cache locator descriptor is associated with a Location type value of 0x03.

Memory-side caches operate as the front-end for memory devices. These caches are distinct from processor
caches. Memory-side caches and their properties are defined in the ACPI HMAT table. The HMAT table is
mandatory for this locator descriptor.

Memory-side caches in a system can function as MPAM resources that are managed by MSCs.

Memory-side caches are located by the memory-side cache locator. There can be multiple levels of memory
side caches associated with a region of far memory. Therefore, the tuple {Proximity Domain, Cache level} is
used to uniquely identify the MSC interface of a particular memory side cache in the system.

The format of the locator is outlined in Table 16.

Table 16: Memory-side cache locator descriptor

Field Byte length Byte offset Description

Reserved 7 0 Reserved, must be zero.

Level 1 7 Cache level of this cache.

Reference 4 8 This field must be set to the proximity domain of the
target memory that this memory side cache is
associated with.
NOTE: This definition requires that the memory
ranges that the memory side cache is associated
with, are represented as a memory-only NUMA
node.

2.3.3.5 ACPI device locator descriptor

The ACPI device locator descriptor is associated with a Location type value of 0x04.

A system might have various other components that lie in the path of memory transactions. Such components
might support MPAM in the form of implementation-defined resources that are managed by MSCs.

Implementation-defined resources must be managed using the implementation-specific controls described in
this section. Implementation-specific resources are managed by specific software drivers. The resources
must be described as an ACPI device to assist these drivers to bind to their respective resources.

The ACPI device locator is used for describing such resources.

The format of the locator is outlined in Table 17.

Page 18 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Table 17: ACPI device locator descriptor

Field Byte length Byte offset Description

ACPI Hardware ID 8 0 ACPI _HID of the device object in ACPI
namespace that describes the component that
is associated with this resource.

ACPI Unique ID 4 8 ACPI _UID of the device object in ACPI
namespace that describes the component that
is associated with this resource.

2.3.3.6 Interconnect locator descriptor

The Interconnect locator descriptor is associated with a Location type value of 0x05.

A system might have various interconnects between components or sub-systems along the path of memory
transactions. These interconnects might support MPAM. MSCs on these interconnects are described using
this locator.

This specification focuses on two types of interconnects:

• NUMA interconnects: interconnects between NUMA nodes.
• PE cluster interconnects: interconnects between groups of processors.

The format of the locator is outlined in Table 18.

Table 18: Interconnect locator descriptor

Field Byte length Byte offset Description

Interconnect
descriptor table offset

8 0 Offset of the interconnect descriptor table.
This table must be located in the
resource-specific data region of the parent
MPAM MSC node. See Table 4.

Reserved 4 8 Reserved, must be zero.

Interconnect descriptor

The term interconnect is used in this specifiation to refer to the path or link between two components in the
system. This path might in turn be composed of multiple intermediate interconnected components. The
interconnect descriptor specifies the source, destination and type of a one-to-one interconnect between two
components.

Many-to-one interconnects are described by multiple interconnect descriptors with the same source ID.
Many-to-one links cannot have a mix of link types.

One-to-one interconnects are described using an interconnect descriptor table with a single interconnect
descriptor entry. One-to-many interconnects are described using an interconnect descriptor table with multiple
descriptors, each specifying one of the links of the interconnect.

Page 19 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Table 19: Interconnect descriptor

Field Byte length Byte offset Description

Source ID 4 0 If Link type is set to NUMA, this field must be
set to the proximity domain value of the source
NUMA node.
If Link type is set to PROC, this field must be
set to the ACPI _UID of the source processor
container.

Destination ID 4 4 If Link type is set to NUMA, this field must be
set to the proximity domain value of the
destination NUMA node.
If Link type is set to PROC, this field must be
set to the ACPI _UID of the destination
processor container.

Link type 1 8 0x00: NUMA
This is an link between NUMA nodes.
0x01: PROC
This is a link between processor containers.
Other values are reserved for future use by
this specification.

Reserved 3 9 Reserved, must be zero.

The interconnect descriptor table format is as specified below:

Table 20: Interconnect descriptor table

Field Byte length Byte offset Description

Signature 16 0 This is a UUID that marks this table within the
resource-specific data region.

Number of
descriptors

4 16 Number of descriptors in the array that follows.

Interconnect
descriptors [N]

• 20 Array of interconnect descriptors, where each
descriptor describes one link of the
interconnect.
Interconnect descriptors are defined in
Table 19.

The UUID used for locating the interconnect descriptor table is fe2bd645-033b-49e6-9479-2e0b8b21d1cd.

2.3.3.7 Unknown locator descriptor

The Unknown locator is associated with a Location type of 0xFF. This locator is useful for describing resources
that are located in components that cannot be described in ACPI. An MPAM-enabled buffer in the SoC
interconnect that contains an MSC, is an example of a component that cannot be described in ACPI. The
buffer must hence be declared as an unknown resource.

Page 20 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

2.4 MSC groups

Some MSCs in a system might be organized as a logical group. MSCs in such a logical group affect the same
underlying resouce of a common component. OS can recognize the presence of a logical group through
examination of the Location field of the resource nodes of the MSC nodes in the group. Each MSC node in
the group must have at least one resource node that has its Location field set to the same common location.

Controls that operate on the common resource of an MSC logical group must be configured identically in all
MSCs belonging to that logical group. Note that this programming requirement only applies to controls that
operate on the common resource, not to controls that operate on other resources. Therefore, if an MSC within
a logical group is managing multiple resources, one of which is common to the logical group, then only the
controls that are managing the common resource must be configured identically with respect to other MSCs
in the logical group.

Note

MSC groups and MSC functional dependencies are different, mutually independent concepts. Functional
dependencies are explicitly specified in the functional dependency list of resource nodes and involve two
differently-located MSCs. Secondly, functional dependencies are directional in nature: from the producer to
the dependent. OSPM is required to understand these aspects and configure the MSCs accordingly.

2.5 MSC functional dependencies

MSCs in a system have implicit dependencies that follow the natural flow of memory transactions in a system.
For example, the control action of an MSC in an L2 cache implicitly affects the monitored data or control action
in a downstream L3 cache. Since these inter-dependencies are implicit, they need not be described in ACPI.

It is possible for MSCs to have explicit functional dependencies on other MSCs that are against the natural
dataflow. Such dependencies might be of the form:

• the control policy applied on a first MSC, called the dependent MSC, might be influenced by the output
of a monitor on a second MSC, called the producer MSC.

• the control policy applied on a dependent MSC might be influenced by the control policy settings of a
producer MSC.

In both cases, the dependent MSC must not be the immediate downstream neighbour of the producer MSC,
or in a position that falls in the natural flow of memory transactions from the producer MSC to the dependent
MSC.

An example of a functional dependency would be a system that has an L3 cache that is an inclusive cache.
Policies applied to the L3 cache, e.g., on eviction rates, could thus influence policies applied on the upstream
L2 cache. The L2 cache is then said to be functionally dependent on the L3 cache.

A functional dependency is expressed as the tuple: {Producer MSC, Producer unit, Dependent MSC,
Dependent unit} where:

• the Producer unit is a resource control in the producer MSC
• the Dependent unit is a resource control in the dependent MSC

MSC dependencies are expressed in resource nodes. See Section 2.2. The ACPI description of explicit
dependencies helps the OS to make judicious decisions while programming the MSCs for MPAM functionality.

2.6 Representation of MSCs as ACPI devices

The MSC is a logic block or unit that has its own memory-mapped register space and interrupts. These
characteristics make the MSC appear as a device to software, even though the MSC hardware might be a

Page 21 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

part of another device.

The MSC can thus be described optionally as a device object in ACPI namespace. The device model is useful
for declaring requirements and operations for an MSC in addition to those that are presented through the
MSC node in the MPAM table. Specifically, the device model is useful for supporting power management
of the MSC, where the power state dependencies of the MSC can be expressed in ACPI, and additional
requirements and programming relevant to power state transitions can be supplied through ACPI _PSx
methods. See [2] for more information on these methods.

Note

MSCs must mandatorily be described in the MPAM table as the MSC node provides the canonical properties
of the MSC. The device object representation should be considered as an optional auxilliary extension to
the MSC node.

2.6.1 ACPI Hardware Identifiers

MSC devices in ACPI are identified using the _HID of “ARMHAA5C”. If present, the _CID object of the device
must also be set to the same value.

Note that the MSC might be implemented as a sub-component within another component. The device view of
the MSC has no relation to the container component which might be modeled as a separate ACPI device with
its own _HID.

2.6.2 Unique Identifier

Each MSC device object must be declared with a distinct _UID value that must be set to the same value as
the Identifier field of the MSC node in the MPAM table that describes the MSC.

2.6.3 Example MSC device

The following ASL code describes the power management requirements for an example MSC.

Device(MSC0) { // MSC device

Name(_HID , "ARMHAA5C")

Name(_CID , "ARMHAA5C")

Name(_UID , 0)

Name(_STR , Unicode("MSC0"))

}

2.7 MSI support

If the MSC supports MSI generation for its overflow or error interrupt, then it must be described as a device
object in the DSDT. This device object can then be presented as being a part of the IO topology of the system.
The OS can then walk the IO topology to determine the target ITS unit or group of units that the MSIs from
the MSC are routed to. The OS can also use this information to program the MSI registers for this MSC. More
information on IO topologies is available in [4].

2.8 MSC Power Management

If an MSC has platform-specific programming requirements for power management, one approach to
describing those requirements would be to represent the MSC in ACPI namespace as a device object.

Page 22 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

The device object description supplements the information in the MSC node that describes the MSC, as
explained in Section 2.6.

The device object allows ACPI methods to be declared for specifying runtime power management properties
of the MSC.

The following ASL code snippet illustrates how power management requirements for an example MSC is
declared in DSDT.

Device(MSC0) { // MSC device

Name(_HID , "ARMHAA5C")

Name(_CID , "ARMHAA5C")

Name(_UID , 0)

Name(_STR , Unicode("MSC0"))

Method (_PS3 , 0, Serialized) { // _PS3: Power State 3

// Turn MSC off

}

Method (_PS0 , 0, Serialized) { // _PS0: Power State 0

// Turn MSC on

}

}

2.8.1 MSC power state dependencies and accessibility

In this specification, the device where the MSC is located, or that the MSC is associated with, is called the
linked device.

The MSC and its linked device might have power state dependencies. For example, the MSC and its
linked device might share power resources. As a result, the MSC might enter low-power state and become
inaccessible if the linked device enters low-power state.

If there is a power state inter-dependency between the MSC and its linked device, then:

• when transitioning to low-power state, the MSC and its linked device must enter low-power state together
• when transitioning into ON state, the MSC must enter running state before the linked device

If the MSC is modeled as an ACPI device, the OSPM can orchestrate power management of the MSC and its
linked device, provided the firmware description includes an ACPI device representation for the MSC with the
following:

• standard ACPI methods, _PSx, for managing power states as specified in Section 2.8.
• the link between the MSC and the linked device. See Section 2.8.2.

This version of the specification focuses only on device linkage between MSCs and processors or processor
clusters. Section 2.8.3 provides more details.

2.8.2 Describing MSC device linkage

The linked device is specified in the MSC node in the form of the ACPI identifiers for the linked device.

2.8.3 MSCs associated with PEs and PE affinity

MSCs that are associated with PEs, such as MSCs on processor caches or in PE clusters can be placed
in low-power state when the associated PE or cluster transitions to low-power state. A PE or a processor
clusters enters low-power state in response to PSCI requests from the OS, notably CPU_SUSPEND. As such,

Page 23 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

low-power state entry of PEs is strictly the responsibility of the PSCI firmware and the OS has no control over
these state transitions.

Hence, Arm strongly recommends that MSCs associated with PEs are power managed entirely by PSCI
firmware.

MSCs on PEs or clusters are accessible only if the associated PE or processor cluster is in the running state.
PE affinity is specified in the MSC node. The OS must use this affinity information to determine the PE or set
of PEs that needs to be woken up before the MSC can be accessed.

Page 24 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

3 Appendix

3.1 Example System with MPAM

Figure 1 is an example system with MPAM support implemented in the form of MSCs distributed across
various system memory components.

Figure 1: An example system with MPAM support

The example system is intended to illustrate how the MPAM description of a system might be provided in ACPI.
It showcases the use of location of MSCs for power management, the association of MSCs to resources, how
resources are defined and located, and special cases that highlight use of features such as RIS.

Note

This example system is intended to provide an illustration of how a reasonably complex SoC with MPAM
support could be represented in ACPI. It must not be considered as a reference design for building MPAM
support in a system.

The ACPI description of the MPAM properties of this example system is outlined in the sections that follow.

3.1.1 Notations

Single alphabetical letters in italics are used to represent numeric values assigned to ACPI identifiers: a to z
and A to Z.

Page 25 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

3.1.2 Prerequisites

3.1.2.1 The ACPI PPTT table

All processor caches in the example system must be described in the ACPI PPTT table.

PPTT Table

Header

. . .

Cache structures

. . .

Cache structure for LI_1

.

Cache ID m

Cache structure for LD_1

.

Cache ID n

Cache structure for LI_2

.

Cache ID p

Cache structure for LD_2

.

Cache ID q

Cache structure for L2_1

.

Cache ID r

Page 26 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Cache structure for L2_2

.

Cache ID s

Cache structure for L3_1 and L3_2

.

Cache ID t

The two slices of the L3 cache appear to software as a single monolithic L3 cache in this particular example.
Hence, they are described using a single, common Type 1 cache structure in the PPTT as above.

3.1.2.2 The ACPI SRAT table

SRAT

.

MC_1 memory range Proximity Domain = P

MC_2 memory range Proximity Domain = Q

3.1.2.3 The ACPI HMAT table

HMAT

MSCache_1 Proximity Domain = P

MSCache_2 Proximity Domain = Q

3.1.2.4 IORT table

The SMMUs, Device 1, and the root complexes are described using the ACPI IORT table.

IORT Table

Header

SMMU node 1

SMMU node 2

Root complex node 1

Root complex node 2

Root complex node 3

Named component node 1

. . .

Page 27 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

SMMU node 1

The SMMU node 1 describes SMMU_A in the example system.

SMMU node

.

Identifier i

.

SMMU node 2

The SMMU node 2 describes SMMU_B in the example system.

SMMU node

.

Identifier j

.

Root complex node 1

RC node

.

Identifier A

.

Root complex node 2

RC node

.

Identifier B

.

Root complex node 3

RC node

.

Identifier C

.

Page 28 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Named component node 1

This named component node describes the properties of Device 1 in the example system.

NC node

.

Identifier D

.

3.1.3 The ACPI description of the PE topology

The PE topology is described in the PPTT. However, to avoid using pointers to nodes in the PPTT, the MPAM
table uses the ACPI description of processors and processor containers in DSDT to cross-reference the latter.

The following DSDT reference code provides the ACPI description of the PE topology for the example system.

Device (SYST) { // (Top -) System -level processor container

Name (_HID , "ACPI0010")

Name (_UID , 0)

Device (CLU0) { // PE Cluster

Name (_HID , "ACPI0010")

Name (_UID , 1)

Device (CPU0) { // PE1

Name (_HID , "ACPI0007")

Name (_UID , 1)

...

} // CPU0 description ends here

Device (CPU1) { // PE2

Name (_HID , "ACPI0007")

Name (_UID , 2)

...

} // CPU1 description ends here

}

}

3.1.4 The ACPI MPAM table

The MPAM table must describe every MSC in the system to aid software discovery of the MSCs.

MPAM Table

Signature “MPAM”

.

MSC node 1 . . .

MSC node 2 . . .

Page 29 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

MPAM Table

.

MSC node 14 . . .

In this table, MSC node i is the descriptor for MSCi.

3.1.5 The L1 caches

The example L1 caches in Figure 1 are intended to illustrate the simplest manner in which MPAM support
might be built in a cache, and how controls in an MSC are associated with resources.

Figure 2 provides details of MSCs MSC1-4.

Figure 2: Internal organization of the L1 caches in the example system

The controls implemented by each MSC are considered to relate directly to the cache storage in the cache.
Since the MSCs do not support RIS, there is a single resource instance only, and the RIS index field is set to
0 accordingly. Note that the MPAMF_IDR.HAS_RIS bit of each MSC must return 0 on read.

Accordingly, the MSC nodes for MSC1-4 have a single resource node each that describes the cache storage
part of the cache as a resource instance.

In this particular case, the control and resource types both pertain to cache storage, which is based on the
association outlined in Table 8.

MSC node 1

Identifier 0

.

Linked device ID
(_HID, _UID)

“ACPI0007”, 0x01 (CPU0)

Number of resource
nodes

1

Page 30 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Resource node 11

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x00 (Processor cache)
Cache reference = m

MSC node 2

Identifier 1

.

Linked device ID “ACPI0007”, 0x01 (CPU0)

Number of resource
nodes

1

Resource node 21

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x00 (Processor cache)
Cache reference = n

MSC node 3

Identifier 2

.

Linked device ID “ACPI0007”, 0x02 (CPU0)

Number of resource
nodes

1

Resource node 31

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x00 (Processor cache)
Cache reference = p

MSC node 4

Identifier 3

.

Linked device ID “ACPI0007”, 0x02 (CPU0)

Page 31 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

MSC node 4

Number of resource
nodes

1

Resource node 41

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x00 (Processor cache)
Cache reference = q

3.1.5.1 Power management

Power management of MSC1-4 must be performed by PSCI firmware as they are associated with PEs. The
Locator fields of the MSC nodes describe the PE affinities of the MSCs.

3.1.6 L2 caches on PE1 and PE2

Figure 3 provides an overview of MSC5, which operates on the L2 caches of both PEs, L2_1 and L2_2,
respectively.

MSC5 is shown to have three partitioning controls: CPOR, CCAP and PRI. The CPOR and CCAP controls
operate on cache storage resources, while the PRI controls operate on incoming DVM messages.

MSC5 is enabled with the RIS feature to enable it to support multiple controls of the same type that operate
on different resource instances of the same resource type.

Page 32 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Figure 3: Organization of the common MSC for the L2 caches in the example system

MSC node 5

Identifier 4

.

Linked device ID “ACPI0010”, 0x01 (CLU0)

Number of resource
nodes

4

Resource node 51

RIS Index I

Locator descriptor Type = 0x00 (Processor cache)
Cache reference = r

Resource node 52

RIS Index J

Page 33 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Resource node 52

Locator descriptor Type = 0xFF (Unknown)
Reference = 0

Resource node 53

RIS Index K

Locator descriptor Type = 0xFF (Unknown)
Reference = 0

Resource node 54

RIS Index L

Locator descriptor Type = 0x00 (Processor cache)
Cache reference = s

3.1.6.1 Power management

Power management of MSC5 must be performed by PSCI firmware as it is associated with processor caches.

The PE affinity of MSC5 is described by its Locator field.

3.1.7 L3 cache on cluster C_1

Figure 4 shows the internal layout of the L3 cache and its MPAM resources.

The example L3 cache is divided into two physical slices, L3_1 and L3_2 that appear as a monolithic single
cache storage to the OS. Each cache slice is managed by a dedicated MSC.

Each slice has an MSC associated with it, as depicted in Figure 4. In accordance with the design rules
assumed, both sets of controls, CCAP and CPOR, of each MSC, apply to the same resource instance - the
cache storage part of the cache slice.

Since MSC6A and MSC6B are both operating on the same monolithic cache, both MSCs must be configured
identically to allow uniform partitioning for all PARTIDs, and are considered as being part of an MSC group.
MSC groups are explained in Section 2.4..

Page 34 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Figure 4: L3 cache in the example system

The combined cache storage of the L3 cache is located using the ACPI PPTT table, as explained in
Section 2.3.3.

MSC node 6A

Identifier 0x6A

.

Linked device ID “ACPI0010”, 0x01 (CLU0)

Number of resource nodes 1

Resource node 6A1

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x00 (Processor cache)
Cache reference = t

Page 35 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

MSC node 6B

Identifier 0x6B

.

Linked device ID “ACPI0010”, 0x01 (CLU0)

Number of resource nodes 1

Resource node 6B1

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x00 (Processor cache)
Cache reference = t

3.1.7.1 Logical Grouping

MSC nodes for MSC6A and MSC6B have resources pointing to the same resource, the common cache
storage that is part of the L3 cache. This is an indication for OSPM that the two MSCs are logically related
and should be configured identically. MSC groups are explained in Section 2.4.

3.1.7.2 Power management considerations

Power management of MSC6A and MSC6B is aligned with that of the L3 cache, which in turn is managed by
PSCI. The Locator fields of both MSC nodes point to cluster 0 to indicate that they are associated with all PEs
that are part of this cluster.

3.1.8 SoC Interconnect

MSC7 in the SoC interconnect provides priority partitioning for requesters that interface with the interconnect.

Since the SoC interconnect is invisible to software, resources in MSC7 cannot be located. As a result, the
MSC is described using an empty MSC node. This helps the OS discover the MSC and configure it with
unrestricted access for all PARTIDs, as required in Section 2.2.2.

MSC node 7

Identifier 6

.

Linked device ID “ACPI0010”, 0x00 (CLU0)

Number of resource
nodes

0

3.1.8.1 MSC Accessibility

MSC7 is present at the system level. Its PE affinity can therefore be optionally described using its Locator
field.

3.1.9 Memory-side caches

Each memory-side cache in Figure 1 has a dedicated MSC that allows it to be configured independently for
MPAM. MSCache_1 acts as the memory-side cache for the proximity domain in which the memory ranges of

Page 36 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

MC_1 lie. Likewise, MSCache_2 functions as the memory-side cache for the proximity domain associated
with MC_2.

MSC node 8

Identifier 7

.

Linked device ID 0, 0 (Not valid)

Number of resource
nodes

1

Resource node 81

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x03 (Memory-side cache)
P, 1

MSC node 9

Identifier 8

.

Linked device ID 0, 0 (not valid)

Number of resource
nodes

1

Resource node 91

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x03 (Memory-side cache)
Q, 1

3.1.10 Memory channel controllers

Figure 5 shows how MSCs MSC10 and MSC11 are designed. In particular, both offer a single set of controls
for partitioning memory bandwidth on the channels.

Page 37 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Figure 5: Memory channel controllers in the example system

The Locator reference for MC_1 and MC_2 is specified in the form of their proximity domains, which requires
that the ACPI SRAT table must include a description of the memory ranges of these memory controllers.
Section 3.1.2.2 provides a snapshot of the SRAT table to be used for the example system.

MSC node 10

Identifier 9

.

Linked device ID 0, 0 (not valid)

Number of resource nodes 1

Resource node 101

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x01 (Memory)
SRAT reference = P

MSC node 11

Identifier 10

.

Linked device ID “PNP0C80”, 17 (MEM2)

Number of resource nodes 1

Page 38 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Resource node 111

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x01 (Memory)
SRAT reference = Q

3.1.10.1 Power management considerations

MSC11 has a power management dependency on memory controller MC_2, its linked device. MC_2 is
capable of being offlined, and indicates support for it in its ACPI device object definition.

The reference ASL code below describes MC_2 as an ACPI device named MEM2, with a _UID of 17.

The MSC device object includes the _PSx methods that OSPM can invoke to perform power management of
the MSC.

Device (MEM2) { // Memory controller 2, MC_2

Name (_HID , "PNP0C80")

Name (_UID , 17)

Method (_PS3 , 0, Serialized) { // _PS3: Power State 3

// Turn MC off

}

Method (_PS0 , 0, Serialized) { // _PS0: Power State 0

// Turn MC on

}

}

Device(MS11) {

Name(_HID , "ARMHAA5C")

Name(_CID , "ARMHAA5C")

Name(_UID , 10) // _UID for MSC11 , must be identical

// to the Identifier field of the MSC

// node.

Name(_STR , Unicode("MSC11"))

Method (_PS3 , 0, Serialized) { // _PS3: Power State 3

// Turn MSC off

}

Method (_PS0 , 0, Serialized) { // _PS0: Power State 0

// Turn MSC on

}

}

3.1.11 SMMU_A

Figure 6 illustrates how SMMU_A is organized internally. shows an illustrative SMMU design that supports
MPAM. The SMMU has two IO TLB units, TLB_11 and TLB_12, that service Device 1 and PCIe root complexes
RC1, respectively.

Each TLB has a dedicated MSC. The TLB is identified using the Identifier field of the component that it
interfaces. TLB_11 is thus identified using the Identifier assigned to the IORT Named component node that

Page 39 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

describes Device 1.

TLB_12 is identified using the Identifier given to the IORT root complex node that describes RC. These nodes
and their identifiers are explained in Section 3.1.2.4.

Figure 6: SMMU_A in the example system

The ACPI description of the MSCs in SMMU_A is as follows:

MSC node 12

Identifier 11

.

Linked device ID 0, 0 (not valid)

Number of resource nodes 1

Resource node 121

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x02 (SMMU)
IORT reference = D

MSC node 13

Identifier 12

.

Page 40 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

MSC node 13

Linked device ID 0, 0 (not valid)

Number of resource nodes 1

Resource node 131

RIS Index 0 (Don’t care)

Locator descriptor Type = 0x02 (SMMU)
IORT reference = A

3.1.12 SMMU_B

Figure 7 illustrates the internal layout of the MSCs in SMMU_B.

SMMU_B differs from SMMU_A in that it has a single MSC, MSC14, that implements the RIS feature to
provide support for the independent translation caches in TLB_21, TLB_22 and the TCU.

Figure 7: SMMU_B in the example system

The ACPI description of the MSC in this SMMU can now be performed as follows.

MSC node 14

Identifier 13

Page 41 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

MSC node 14

.

Linked device ID 0, 0 (not valid)

Number of resource nodes 3

Resource node 141

RIS Index Z

Locator descriptor Type = 0x02 (SMMU)
IORT reference = B

Resource node 142

RIS Index X

Locator descriptor Type = 0x02 (SMMU)
IORT reference = j

Resource node 143

RIS Index Y

Locator descriptor Type = 0x02 (SMMU)
IORT reference = C

3.1.13 Inter-socket interconnects supporting MPAM

MSCs on interconnects are discovered using the Interconnect resource described in Section 2.3.3.6. In this
example, the system has two packages sitting on separate sockets within a system. Each socket must be
described as an ACPI NUMA domain.

This example system and its NUMA treatment is illustrated in Figure 8. The interconnect between the two
sockets implements two distinct MPAM interfaces with associated MPAM controls each, illustrated as MSC2
and MSC3 in Figure 8.

Page 42 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Figure 8: Example system with MSCs on interconnects

MSC2 monitors and regulates bi-directional cross-NUMA traffic from NUMA node 1 (Socket 1) to memory in
NUMA node 2 (i.e., on Socket 2). MSC3 monitors and regulates cross-NUMA uni-directional memory traffic
initiated from NUMA node 2 (Socket 2) and targeting memory in NUMA node 1 (i.e., on Socket 1).

Figure 9: MSC characteristics for the example system

The ACPI description of MSC2 and MSC3 is constructed as follows:

1. The two NUMA domains must be described in ACPI SRAT. For this example system, the proximity
domain numbers are set as X and Y.

2. MSC1-4 are described as MPAM MSC nodes in the ACPI MPAM table.

3.1.13.1 MPAM MSC node for MSC2

This node has a single resource, which points to an interconnect descriptor table that has two entries.

Page 43 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

MSC node

Identifier k (any arbitrary but unique value.

.

Linked device ID 0, 0 (not valid)

Number of resource nodes 1

Resource-specific data Offset to interconnect descriptor table.

The resource-specific data region of the MPAM MSC node is valid and contains the interconnect descriptor
table.

Resource node for MSC2

Resource node

RIS Index 0

Locator descriptor Type = 0x05 (Interconnect)
Interconnect descriptor table offset = < offset of
resource- specific data >

The interconnect descriptor table

UUID fe2bd645-033b-49e6-9479-2e0b8b21d1cd

Size of descriptor table 2

Interconnect descriptor 1

Interconnect descriptor 2

Interconnect descriptor 1

Interconnect Descriptor 1

Source ID X

Destination ID Y

Type NUMA

Interconnect descriptor 2

Interconnect Descriptor 2

Source ID Y

Destination ID X

Type NUMA

Page 44 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

3.1.13.2 MPAM MSC node for MSC3

This node has a single resource, which points to an interconnect descriptor table that has a single entry.

MSC node

Identifier j (any arbitrary but unique value.

.

Linked device ID 0, 0 (not valid)

Number of resource nodes 1

Resource-specific data Offset to interconnect descriptor table.

The resource-specific data region of the MPAM MSC node is valid and contains the interconnect descriptor
table.

Resource node for MSC3

Resource node

RIS Index 0

Locator descriptor Type = 0x05 (Interconnect)
Interconnect descriptor table offset = < offset of
resource- specific data >

The interconnect descriptor table

UUID fe2bd645-033b-49e6-9479-2e0b8b21d1cd

Size of descriptor table 1

Interconnect descriptor 1

Interconnect descriptor 1

Interconnect Descriptor 2

Source ID Y

Destination ID X

Type NUMA

3.1.14 MPAM-enabled NUMA links on complex systems

A complex example system is illustrated in Figure Figure 10.

The NUMA Links are described using the interconnect resource locators described in Section 2.3.3.6. In this
example, the system has two chips with dedicated memory, and a central IO Hub that has additional DDR
memory managed by memory controllers.

Figure Figure 10 also illustrates the NUMA classification of the system. The links between the Chips and the

Page 45 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

IO Hub carry cross-NUMA traffic between multiple NUMA domains.

Figure 10: Example system with MSCs on interconnects

The ACPI MPAM description can now be modeled as follows:

1. There are four NUMA nodes, described in HMAT and SRAT.

2. MSC1-5 are described as MPAM MSC nodes in the ACPI MPAM table.

3. MSC2 is described with a resource node with locator type set as Interconnect.

4. For the sake of simplicity, MSC2 only measures outbound memory traffic from Chip1.

3.1.14.1 SRAT Table

SRAT

PEs on Chip1 M

PEs on Chip2 N

Memory on Chip1 M

Memory on Chip2 N

Memory3 on IO Hub P

HBM on IO Hub Q

3.1.14.2 MPAM MSC node for MSC2

This node has a single resource, which points to an interconnect descriptor table that has three entries.

Page 46 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

MSC node

Identifier k (any arbitrary but unique value.

.

Linked device ID 0, 0 (not valid)

Number of resource nodes 1

Resource-specific data Offset to interconnect descriptor table.

The resource-specific data region of the MPAM MSC node is valid and contains the interconnect descriptor
table.

Resource node for MSC2

Resource node

RIS Index 0

Locator descriptor Type = 0x05 (Interconnect)
Interconnect descriptor table offset =

The interconnect descriptor table

UUID fe2bd645-033b-49e6-9479-2e0b8b21d1cd

Size of descriptor table 3

Interconnect descriptor 1

Interconnect descriptor 2

Interconnect descriptor 3

Interconnect descriptor 1

Interconnect Descriptor 1

Source ID M

Destination ID N

Type NUMA

Interconnect descriptor 2

Interconnect Descriptor 2

Source ID M

Destination ID P

Type NUMA

Page 47 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

ACPI for Memory System Resource Partitioning and Monitoring

Interconnect descriptor 3

Interconnect Descriptor 2

Source ID M

Destination ID Q

Type NUMA

Page 48 of 48 Copyright © 2021, 2022 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0065
2.0

	Release information
	Arm Non-Confidential Document Licence (``Licence'')
	About this document
	Terms and abbreviations
	References
	Feedback

	1 Introduction
	2 The ACPI MPAM table
	2.1 MPAM MSC node
	2.1.1 Interrupt Flags
	2.1.2 MPAM PCC Interface Type

	2.2 MPAM resource node
	2.2.1 Functional dependencies between MSCs
	2.2.2 Empty MSC node

	2.3 Locators
	2.3.1 Location types
	2.3.2 Locator structure
	2.3.3 Location descriptors
	2.3.3.1 Processor cache locator descriptor
	2.3.3.2 Memory locator descriptor
	2.3.3.3 SMMU locator descriptor
	2.3.3.4 Memory-side cache locator descriptor
	2.3.3.5 ACPI device locator descriptor
	2.3.3.6 Interconnect locator descriptor
	Interconnect descriptor

	2.3.3.7 Unknown locator descriptor

	2.4 MSC groups
	2.5 MSC functional dependencies
	2.6 Representation of MSCs as ACPI devices
	2.6.1 ACPI Hardware Identifiers
	2.6.2 Unique Identifier
	2.6.3 Example MSC device

	2.7 MSI support
	2.8 MSC Power Management
	2.8.1 MSC power state dependencies and accessibility
	2.8.2 Describing MSC device linkage
	2.8.3 MSCs associated with PEs and PE affinity

	3 Appendix
	3.1 Example System with MPAM
	3.1.1 Notations
	3.1.2 Prerequisites
	3.1.2.1 The ACPI PPTT table
	3.1.2.2 The ACPI SRAT table
	3.1.2.3 The ACPI HMAT table
	3.1.2.4 IORT table
	SMMU node 1
	SMMU node 2
	Root complex node 1
	Root complex node 2
	Root complex node 3
	Named component node 1

	3.1.3 The ACPI description of the PE topology
	3.1.4 The ACPI MPAM table
	3.1.5 The L1 caches
	3.1.5.1 Power management

	3.1.6 L2 caches on PE1 and PE2
	3.1.6.1 Power management

	3.1.7 L3 cache on cluster C_1
	3.1.7.1 Logical Grouping
	3.1.7.2 Power management considerations

	3.1.8 SoC Interconnect
	3.1.8.1 MSC Accessibility

	3.1.9 Memory-side caches
	3.1.10 Memory channel controllers
	3.1.10.1 Power management considerations

	3.1.11 SMMU_A
	3.1.12 SMMU_B
	3.1.13 Inter-socket interconnects supporting MPAM
	3.1.13.1 MPAM MSC node for MSC2
	Resource node for MSC2
	The interconnect descriptor table
	Interconnect descriptor 1
	Interconnect descriptor 2

	3.1.13.2 MPAM MSC node for MSC3
	Resource node for MSC3
	The interconnect descriptor table
	Interconnect descriptor 1

	3.1.14 MPAM-enabled NUMA links on complex systems
	3.1.14.1 SRAT Table
	3.1.14.2 MPAM MSC node for MSC2
	Resource node for MSC2
	The interconnect descriptor table
	Interconnect descriptor 1
	Interconnect descriptor 2
	Interconnect descriptor 3

