
PSA Firmware Update API 0.7

Document number: IHI 0093
Release Quality: Beta
Issue Number: 0
Confidentiality: Non-confidential
Date of Issue: 04/02/2021

Copyright © 2020-2021, Arm Limited. All rights reserved.

Abstract
This manual defines a standard firmware interface for installing firmware updates.
Note:
This is a Beta quality release. The content is subject to change. Feedback should be sent toarm.psa-feedback@arm.com

mailto:arm.psa-feedback@arm.com


Contents

About this document v
Release information v
Arm Non-Confidential Document Licence (“Licence”) vi
References viii
Terms and abbreviations viii
Conventions xTypographical conventions xNumbers x
Feedback xiFeedback on this book xi

1 Introduction 12
2 Design goals 13
2.1 Suitable for constrained devices 13
2.2 PSA Root of Trust update 13
2.3 Application Root of Trust update 14
2.4 Flexiblility for different trust models 14
2.5 Protocol independence 14
2.6 Transport independence 14
2.7 Hardware flexibility 15
2.8 Composite devices 15
2.9 Room for different implementations 15
3 Terminology 16
3.1 Image 16
3.2 Trust anchor 16
3.3 Installer 17
3.4 Update client 18

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page i



3.5 Secure Processing Environment (SPE) 18
3.6 Staging area 18
4 Trust model and scenarios 19
5 Design overview 20
5.1 Mandatory functions 205.1.1 Querying installed images 205.1.2 Image storing 205.1.3 Metadata storage 215.1.4 Verify image 215.1.5 Triggering a reboot 21
5.2 Optional functions 21
5.3 State transitions for an image 22
5.4 Dependencies 22
6 Image metadata 23
6.1 Format profiles 23
6.2 Usage models 23
6.3 Example metadata 236.3.1 Summary 246.3.2 CBOR 24
7 API reference 26
7.1 Library conventions 26
7.2 Behavior on error 26
7.3 Pointer conventions 26
7.4 Macros 277.4.1 Library versioning 277.4.2 Image transfer 277.4.3 Digest size 277.4.4 Image states 277.4.5 Image flags 28
7.5 Types 287.5.1 psa_image_version_t (struct) 287.5.2 psa_staging_info_t (struct) 297.5.3 psa_image_info_t (struct) 297.5.4 psa_uuid_t (struct) 307.5.5 psa_image_id_t (type) 31

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page ii



7.5.6 psa_fwu_iterator_t (type) 317.5.7 psa_hash_t (struct) 31
7.6 Status codes 317.6.1 psa_status_t (type) 317.6.2 PSA_SUCCESS (macro) 327.6.3 PSA_SUCCESS_REBOOT (macro) 327.6.4 PSA_SUCCESS_RESTART (macro) 327.6.5 PSA_SUCCESS_DEPENDENCY_NEEDED (macro) 32
7.7 Error codes 327.7.1 PSA_ERROR_GENERIC_ERROR (macro) 327.7.2 PSA_ERROR_NOT_SUPPORTED (macro) 327.7.3 PSA_ERROR_NOT_PERMITTED (macro) 337.7.4 PSA_ERROR_DOES_NOT_EXIST (macro) 337.7.5 PSA_ERROR_INVALID_ARGUMENT (macro) 337.7.6 PSA_ERROR_INSUFFICIENT_MEMORY (macro) 337.7.7 PSA_ERROR_INSUFFICIENT_STORAGE (macro) 337.7.8 PSA_ERROR_COMMUNICATION_FAILURE (macro) 347.7.9 PSA_ERROR_STORAGE_FAILURE (macro) 347.7.10 PSA_ERROR_DATA_CORRUPT (macro) 347.7.11 PSA_ERROR_DATA_INVALID (macro) 357.7.12 PSA_ERROR_HARDWARE_FAILURE (macro) 357.7.13 PSA_ERROR_CORRUPTION_DETECTED (macro) 367.7.14 PSA_ERROR_INVALID_SIGNATURE (macro) 367.7.15 PSA_ERROR_INSUFFICIENT_DATA (macro) 367.7.16 PSA_ERROR_WRONG_DEVICE (macro) 367.7.17 PSA_ERROR_DEPENDENCY_NEEDED (macro) 367.7.18 PSA_ERROR_CURRENTLY_INSTALLING (macro) 367.7.19 PSA_ERROR_ALREADY_INSTALLED (macro) 377.7.20 PSA_ERROR_INSTALL_INTERRUPTED (macro) 377.7.21 PSA_ERROR_FLASH_ABUSE (macro) 377.7.22 PSA_ERROR_INSUFFICIENT_POWER (macro) 377.7.23 PSA_ERROR_DECRYPTION_FAILURE (macro) 377.7.24 PSA_ERROR_MISSING_MANIFEST (macro) 37
7.8 Functions 377.8.1 psa_fwu_query (function) 377.8.2 psa_fwu_set_manifest (function) 387.8.3 psa_fwu_write (function) 397.8.4 psa_fwu_install (function) 407.8.5 psa_fwu_abort (function) 417.8.6 psa_fwu_request_reboot (function) 417.8.7 psa_fwu_request_rollback (function) 427.8.8 psa_fwu_accept (function) 427.8.9 psa_fwu_get_image_id_iterator (function) 437.8.10 psa_fwu_get_image_id_next (function) 437.8.11 psa_fwu_get_image_id_valid (function) 437.8.12 psa_fwu_get_image_id (function) 43

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page iii



A Example header file 45
A.1 psa/update.h 45
B Example usage 46
B.1 Retrieve versions of installed images 46
B.2 Individual image update (single part operation) 46
B.3 Invividual image update (multi part operation) 47
B.4 Multiple dependent images (multi part operation) 48
C Future changes 49
C.1 Rename psa_fwu_abort 49
C.2 Init function 49
D Change history 50

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page iv



About this document
Release information
The change history table lists the changes that have been made to this document.
Date Version Confidentiality Change

Jan 2021 0.6 Beta 0 Non-confidential First release at Beta quality.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page v



PSA Firmware Update API
Copyright © 2020-2021, Arm Limited or its affiliates. All rights reserved. The copyright statement reflectsthe fact that some draft issues of this document have been released, to a limited circulation.

Arm Non-Confidential Document Licence (“Licence”)
This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual property (including,without limitation, any copyright) embodied in the document accompanying this Licence (“Document”). Arm licenses itsintellectual property in the Document to you on condition that you agree to the terms of this Licence. By using or copying theDocument you indicate that you agree to be bound by the terms of this Licence.
“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly orindirectly, by you. A company shall be a Subsidiary only for the period during which such control exists.
This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of thisLicence between you and Arm.
Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual property in theDocument owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the Document;
(ii) manufacture and have manufactured products which have been created under the licence granted in (i) above; and
(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function of a product that is not itself
compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any intellectual propertyembodied therein.
THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NOWARRANTIES, EXPRESS, IMPLIEDOR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORYQUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm maymake changes to the Document at any time and without notice. For the avoidance of doubt, Arm makes no representation withrespect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights,trade secrets, or other rights.
NOTWITHSTANDING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENTPERMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE, INCONNECTIONWITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDINGWITHOUT LIMITATION) (I) LICENSEE’S USE OFTHE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDERTHIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT.LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS LIMITATION.
This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other rights, if Licenseeis in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence immediately upon givingwritten notice to Licensee. Licensee may terminate this Licence at any time. Upon termination of this Licence by Licensee or byArm, Licensee shall stop using the Document and destroy all copies of the Document in its possession. Upon termination of thisLicence, all terms shall survive except for the licence grants.
Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party in breach. Anytermination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted to any Subsidiary hereunder shallautomatically terminate upon such Subsidiary ceasing to be a Subsidiary.
The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use, duplication ordisclosure of the Document complies fully with any relevant export laws and regulations to assure that the Document or anyportion thereof is not exported, directly or indirectly, in violation of such export laws.
This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any conflict between theEnglish version of this Licence and any translation, the terms of the English version of this Licence shall prevail.
The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or itssubsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page vi



trademarks of their respective owners. No licence, express, implied or otherwise, is granted to Licensee under this Licence, to usethe Arm trade marks in connection with the Document or any products based thereon. Visit Arm’s website athttps://www.arm.com/company/policies/trademarks for more information about Arm’s trademarks.
The validity, construction and performance of this Licence shall be governed by English Law.
Copyright © 2020-2021, Arm Limited or its affiliates. All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585 version 4.0

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page vii

https://www.arm.com/company/policies/trademarks


References
This document refers to the following documents.
Ref Document Number Title

[PSA-SM] DEN 0079 PSA Security Model. https://pages.arm.com/psa-resources-sm.html
[PSA-TB] DEN 0072 PSA Trusted Boot and Firmware Update.https://pages.arm.com/psa-resources-tbfu.html
[PSA-ATT] IHI 0085 PSA Attestation API. https://pages.arm.com/psa-apis.html
[PSA-DBG] PSA-DBG-AUTH PSA Debug Access Control.
[PSA-CERT] JSA DEN 002 PSA Certified™ Level 2 Lightweight Protection Profile.https://www.psacertified.org/resources/
[SUIT] IETF, A Concise Binary Object Representation (CBOR)-basedSerialization Format for the Software Updates for Internet of Things(SUIT) Manifest.https://tools.ietf.org/html/draft-ietf-suit-manifest-04
[SUIT-ARCH] IETF, A Firmware Update Architecture for Internet of Things. https://tools.ietf.org/html/draft-ietf-suit-architecture-08#page-22
[RFC4122] IETF, A Universally Unique IDentifier (UUID) URN Namespace.https://tools.ietf.org/html/rfc4122
[EBBR] ARM DEN 0064 ARM, Embedded Base Boot Requirements.
[SUIT-CODE] GitHub, Example code to generate and parse SUIT manifests.https://github.com/ARMmbed/suit-manifest-generator

Terms and abbreviations
This document uses the following terms and abbreviations.
Term Meaning

Application firmware The main application firmware for the platform, typically comprising anOperating System (OS) and application tasks. On a platform with isolation,the application firmware runs in the NSPE.
Application Root ofTrust This is the security domain in which additional security services areimplemented. See PSA Security Model [PSA-SM] for details.
CBOR Concise Binary Object Representation (CBOR). A binary data serializationformat loosely based on JSON.
Cloud connector See Update client.
CSP Cloud service provider

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page viii

https://pages.arm.com/psa-resources-sm.html
https://pages.arm.com/psa-resources-tbfu.html
https://pages.arm.com/psa-apis.html
https://www.psacertified.org/resources/
https://tools.ietf.org/html/draft-ietf-suit-manifest-04
https://tools.ietf.org/html/draft-ietf-suit-architecture-08#page-22
https://tools.ietf.org/html/draft-ietf-suit-architecture-08#page-22
https://tools.ietf.org/html/rfc4122
https://github.com/ARMmbed/suit-manifest-generator


Table 2 (continued)
Term Meaning

IMPLEMENTATION DEFINED Behavior that is not defined by the this specification, but is defined anddocumented by individual implementations.
Firmware developers can choose to depend on IMPLEMENTATION DEFINEDbehavior, but must be aware that their code might not be portable to anotherimplementation.

ISV Independent software vendor
Manifest Image metadata that is signed with a cryptographic key.
MPU Memory Protection Unit
Non-secure ProcessingEnvironment (NSPE) This is the security domain outside of the Secure Processing Environment. It isthe Application domain, typically containing the application firmware andhardware.
NSPE See Non-secure Processing Environment.
OEM Original Equipment Manufacturer
OTA See Over-the-Air.
Over-the-Air (OTA) The procedure where a device downloads an update from a remote location(“over the air”).
PROGRAMMER ERROR An error that is caused by the misuse of a programming interface.

A PROGRAMMER ERROR is in the caller of the interface, but it is detected by theimplementer of the interface.
PSA Platform Security Architecture
PSA Immutable Root ofTrust The hardware, code and data that cannot be modified followingmanufacturing. See PSA Security Model [PSA-SM] for details.
PSA Root of Trust This defines the most trusted security domain within a PSA system. See PSASecurity Model [PSA-SM] for details.
PSA Updateable Rootof Trust The Root of Trust firmware that can be updated following manufacturing. SeePSA Security Model [PSA-SM] for details.
Root of Trust (RoT) This is the minimal set of software, hardware and data that is implicitlytrusted in the platform — there is no software or hardware at a deeper levelthat can verify that the Root of Trust is authentic and unmodified. See PSASecurity Model [PSA-SM].
RoT See Root of Trust.
Secure Partition A thread of execution with protected runtime state within the SecureProcessing Environment. Container for the implementation of one or more RoTservices. Multiple Secure Partitions may exist on a platform.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page ix



Table 2 (continued)
Term Meaning

Secure PartitionManager (SPM) Part of the PSA Firmware Framework that is responsible for isolatingsoftware in Partitions, managing the execution of software within Partitions,and providing IPC between Partitions.
Secure ProcessingEnvironment (SPE) This is the security domain that includes the PSA Root of Trust and theApplication Root of Trust domains.
SPE See Secure Processing Environment.
SPM See Secure Partition Manager.
Trusted Boot Trusted Boot is technology to provide a chain of trust for all the componentsduring boot. See PSA Trusted Boot and Firmware Update [PSA-TB].
Update client Software component that is responsible for downloading firmware updatesto the device. The Update client is part of the application firmware.

Conventions
Typographical conventions

The typographical conventions are:
italic Introduces special terminology, and denotes citations.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other itemsappearing in assembler syntax descriptions, pseudocode, and source code examples.
SMALL CAPITALSUsed for some common terms such as IMPLEMENTATION DEFINED.

Used for a few terms that have specific technical meanings, and are included in the Termsand abbreviations.
Red text Indicates an open issue.
Blue text Indicates a link. This can be

∙ A cross-reference to another location within the document
∙ A URL, for example http://infocenter.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbersby 0x.
In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000.To improve readability, long numbers can be written with an underscore separator between every fourcharacters, for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of anumber.
IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page x

http://infocenter.arm.com


Feedback
Arm welcomes feedback on its documentation.
Feedback on this book

If you have comments on the content of this book, send an e-mail to arm.psa-feedback@arm.com. Give:
∙ The title (PSA Firmware Update API).
∙ The number and issue (IHI 0093 0.7 Beta (Issue 0)).
∙ The page numbers to which your comments apply.
∙ The rule identifiers to which your comments apply, if applicable.
∙ A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.
A description of the open issues is described in appendix Future changes.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page xi

mailto:arm.psa-feedback@arm.com


1 Introduction
Firmware update support is an essential property of a PSA device. However, the mechanism to updatefirmware on a device differs significantly across embedded platforms. This is further complicated bydifferent implementations of a Secure Processing Environment (SPE), which have their own set of firmwarethat is separate from application firmware.
Some vendors also support a range of different Update clients that may come from third parties, such asISVs, OEMs or CSPs, in order to support different markets. Likewise, CSPs must integrate their Updateclients to work with different device vendor SDKs. The sum of these aspects create a significant integrationand maintenance challenge, where there are N device SDKs that needs to integrate withM Update clients.
This document describes a standard interface for updating firmware. By providing a consistent interfacefor firmware update, update clients and cloud connectors can be written in a more platform independentmanner. The scope of the interface is primarily SPE firmware, but can be extended by implementers tocover non-SPE firmware.
The document includes:

∙ A rationale for the design
∙ Terminology
∙ The supported trust models
∙ A high level overview of the functionality
∙ A detailed definition of the API
∙ A metadata format

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 12



2 Design goals
This section describes the main goals of the interface and the rationale.

2.1 Suitable for constrained devices
The interface is suitable for a range of embedded devices: from very simple microcontrollers with one ortwo flat images, to richer devices that have images for multiple subsystems and separated applications.
Consequentially, the interface is scalable and modular:

∙ Scalable: devices only need to implement the functionality that they will use.
∙ Modular: larger devices can implement more aspects of the same interface, rather than differentinterfaces.

A device is assumed to have enough storage for downloading updates over-the-air (OTA). The device isalso assumed to have a backup or recovery capability in the event of a failed update. An implementationwithout such a capability may still choose to implement this interface.
This document does not cover manual reprogramming of a device using a debug interface, such as JTAG orSWD. For more information, see PSA Debug Access Control [PSA-DBG].
In general, these constrained devices are expected to run either bare metal programs or a real-time OS. Adevice that is not constrained should implement the Embedded Base Boot Requirements [EBBR]specification, which prescribes the UEFI Capsule Update interface. The EBBR specification definesrequirements for embedded systems to enable inter-operability between SoCs, hardware platforms,firmware implementations, and operating system distributions. The aim is to establish consistent boot ABIsand behaviour so that supporting new hardware platforms does not require custom engineering work.

2.2 PSA Root of Trust update
The PSA Security Model (SM) requires all of the Mutable PSA Root of Trust firmware to be updateable.This may include bootloaders, SPM, Trusted OS, and runtime services. In some implementations, the PSARoT may be built using a trusted subsystem with its own isolated and updateable firmware.
The PSA SM requirements for firmware update are also reflected in certifications like NIST IR 8259, ETSIEN 303 645 and PSA Certified. The PSA Certified Protection Profiles describes the following objectives,where the Target of Evaluation (TOE) refers to the PSA RoT:

∙ The TOE verifies the integrity and authenticity of the TOE update prior to performing the update.
∙ The TOE also rejects attempts of firmware downgrade.
∙ This security function mitigates T.UPDATE_ABUSE by preventing installation of firmware fromunknown sources or installation of obsolete firmware.

T.UPDATE_ABUSE is defined as:

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 13



“An attacker exploits a flaw in the firmware update mechanisms of the TOE, for instance bysending malformed parameters, by altering an authentic firmware update, by installing an oldversion of the firmware or by bypassing security checks, and installs a flawed version of thePSA updateable root of trust.”

2.3 Application Root of Trust update
In addition to the PSA Root of Trust firmware, unprivileged applications that run in the SPE requireupdates. The applications may be bundled as a single image or they may be separate images. This is anOEM and supply chain decision.
In some instances, the authority who signs this firmware might be different from the PSA Root of Trustvendor.

2.4 Flexiblility for different trust models
Supply chains dictate a particular trust model for a product. A device may have to support firmwareupdates from multiple, mutually distrustful firmware vendors.
Some regulations may also require certain implementations to use Certificate Authorities and PKI.
Furthermore, the firmware signer might not be the operator of a device. An operator of a device may havetheir own security policy that is complimentary to the firmware author’s policy.
The interface must be flexible enough to support a trust model needed by a particular productsrequirements, without imposing unnecessary requirements on constrained devices.

2.5 Protocol independence
Different protocols are used to communicate with a device depending on the industry and applicationcontext. This includes open protocols, such as LWM2M, and propietary protocols from cloud serviceproviders. These protocols serve the specific needs of their respective markets.
Some of the protocols have metadata that is separate from the images themselves. This is taken intoaccount.
The interface must be independent of the protocol used to recieve an update.

2.6 Transport independence
Embedded devices may recieve firmware updates OTA over different transport media depending on theindustry and the application. This may include, but not limited, to Wi-Fi, LTE, LoRa, and commerciallow-power wide-area networks (LPWAN).
Some devices might not be directly connected to a network but may recieve updates through a physicalinterface from an adjacent device, such as UART or a CAN bus.
Firmware installation can take a long time for small devices with very low bandwidth. The device mayreboot several times while downloading an update.
The interface must be independent of the transport used to receieve an update.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 14



2.7 Hardware flexibility
The interface is designed to be reasonably efficient to implement on different SoC architectures, whileproviding a consistent interface for Update clients or cloud connectors to target.
For example, the design should be compatible with the following types of system:

∙ Armv8-M based SoCs that use TrustZone, or equivalent security IP, to protect the SPE.
∙ SoCs using multiple CPUs, providing an isolated CPU and flash for the SPE and another for the NSPE.
∙ Armv7-M, Armv7-R and Armv8-R based SoCs, that use an MPU to protect the SPE.
∙ Armv7-A or Armv8-A based SoCs, using TrustZone to protect the SPE.

In addition to the SoC components, board level features provided by OEMs are also considered. Thisincludes peripherals, personalization, and various storage options.
In some system designs, the application firmware may not be able to update itself without interacting withthe SPE.
To enable compile-time and design-time optimization, the interface places no requirement on binarycompatibility. The interface is therefore described as an Application Programming Interface (API) insteadof a binary interface.

2.8 Composite devices
Some platforms have specific subsystems that are isolated from the main application or OS. Thesesubystems have their own firmware that need updating depending on their criticality. For example, thismay include radios, secure elements, secure enclaves, or other kinds of microcontroller.
An implementation should be able to support update of these using the interface if this is desired.

2.9 Room for different implementations
The interface is architectural and does not define a single implementation. For example, someimplementations can:

∙ offer a more robust solution while others optimise for device cost.
∙ optimise for bandwidth efficiency while others optimise for simplicity
∙ provide fine grained update of personalization data while others perform monoloithic updates of allcode and data
∙ provide enhanced security for stricter markets.

An implementation chooses what features to support. The interface may also be ported to systemswithout an SPE for compatibility benefits.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 15



3 Terminology
This section describes important concepts and consistent terms.

3.1 Image
A firmware update consists of one or more images. An image can be:

∙ A complete image or a partial diff.
∙ Compressed.
∙ Encrypted. For example, using a pre-provisioned device key.
∙ Encoded.
∙ Code, data, or both.
∙ A single component or multiple components that are linked or packaged together.

An implementation may only support the properties that it needs.
An image is always associated with some signed metadata. The signed metadata describes:

∙ The intended device, which might be a specific instance or class.
∙ The intended device component. For example, the PSA RoT component.
∙ The digest of the image.
∙ Anti-rollback information.
∙ Any dependencies.

Additional metadata can be included to provide hints or explicit instructions on how to decrypt,decompress or install an image. It may also describe whether the component needs to be restarted.

3.2 Trust anchor
A device contains one or more trust anchors. A trust anchor is used to check if an image and its metadataare signed by a signing authority that the device trusts.
Each trust anchor is pre-provisioned on the device. A trust anchor can be implemented in many ways, buttypically takes the form of a public key or certificate chain, depending on the complexity of the trust model.
The management and provisioning of trust anchors is not within the scope of this document.
An example of a trust anchor is the Root of Trust Public Key (ROTPK), which is defined in the Trusted BaseSystem Architecture.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 16



3.3 Installer
An installer is a part of the device that processes an image. An image can be in different states when it ison a device:

∙ When an image is not installed, the image is referred to as a candidate image.
∙ When an image is ready to run, it is installed, and the image is referred to as an installed image. Theprocess of converting a candidate image to an installed image is as follows:

1) An installer verifies that the image metadata is signed by an appropriate trust anchor.
2) An installer verifies that all installation conditions and dependencies are satisfied.
3) An installer takes the necessary steps to apply the update. A reboot might be needed during theinstallation.

∙ If an image requires a reboot to complete installation, then the image is set to a reboot needed state.
∙ When an image fails installation, it is referred to as a rejected image. If the severity of the failure isrecoverable, the implementation may choose to turn the rejected image into a candidate imageagain. A rejected image might be marked as invalid and should be erased or overwritten.
∙ An implementation can optionally support a state where an image is tested for functionalcorrectness before it is fully installed. This state is referred to as a pending install state. Animplementation can also choose to support this state for selected types of image. This state mustmeet all the same security conditions as an installed image.

The architectural states and the permitted transitions are shown in the following diagram:

CANDIDATE

INSTALLED

REJECTED

PENDING_INSTALL
(optional)

REBOOT_NEEDED

Implementation note:
For example, an installer might be a secure bootloader or runtime software. An installer can also besplit across multiple components.
Some devices require protection against failure of a new image by retention of a known good image,normally the current image. This implies sufficient NVM to store two images. The simplest case iswhen both images might be stored on the device in eFlash, in which case the eFlash has to bedimensioned for two image slots, a primary slot and a secondary slot. The same principle can beapplied for external flash. A system that uses two slots with a hardware banking mechanism mightcontain installed images in both slots.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 17



3.4 Update client
A software component that downloads images. It may initiate the download (pull model) or wait until itrecieves a notification to fetch (push model).
The Update client runs as part of the application firmware.
It may report device identity and installation state to a remote party using the PSA Attestation API[PSA-ATT], which returns an Entity Attestation Token (EAT). For example, the reported installation statecan include the versions of installed images and error information of images that did not install successfully.
When it downloads an image, it transfers it to the installer using the interface described in this document.

3.5 Secure Processing Environment (SPE)
An isolated environment that hosts the PSA Root of Trust and Application Root of Trust. It is isolated fromthe Non-secure Processing Environment (NSPE).
The SPE protects the trust anchors.
The SPE is an installer and installs SPE images. In some constrained implementations, it may also installNSPE images.
The SPE also contains storage that is protected from the NSPE and from physical snooping.
The SPE also contains the secure bootloader needed for Trusted Boot, see PSA Trusted Boot and FirmwareUpdate [PSA-TB].
The SPE has a means of recovery if a newly installed image fails after an update.

3.6 Staging area
A staging area is an area of memory used to verify an image. The staging area might be in NVM or RAMand thus not guaranteed to be non-volatile. The choice of memory depends on resource constraints andthe nature of an update.
The staging area might also be protected by a Secure Processing Environment or resident on anotherprocessor.
The size of a staging area is pre-determined by the implementation. This avoids contention of systemresources.
An implementation might have one staging area per type of image.
The Update client is responsible for deciding when to erase the staging area.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 18



4 Trust model and scenarios
The following actor definitions are taken from the IETF SUIT architecture draft:

∙ Author: The author is the entity that creates the firmware image. There may be multiple authors in asystem either when a device consists of multiple microcontrollers or when the the final firmwareimage consists of software components from multiple companies.
∙ Device Operator: The actor responsible for the day-to-day operation of a fleet of devices.
∙ Network Operator: The actor responsible for the operation of a network to which devices connect.
∙ Status Tracker: The status tracker offers device management functionality to retrieve informationabout the installed firmware on a device and other device characteristics (including free memory andhardware components), to obtain the state of the firmware update cycle the device is currently in,and to trigger the update process. The deployment of status trackers is flexible and they may beused in cloud-based servers, on-premise servers, embedded in edge computing device, etc.

The implementor of the interface described within this document always:
∙ verifies that the image metadata is signed by a trusted author before installation
∙ verifies that the image metadata complies with the platform’s security policy
∙ verifies the image itself using information from the metadata
∙ trusts authors for specific purposes only (e.g. the NSPE author cannot directly overwrite images inthe SPE)

The Update client, the consumer of the interface, is only trusted for the following purposes:
∙ Downloading images from an approved image repository decided by the Device Operator.
∙ Selecting the images that the Status Tracker wants installed.
∙ Obeying the restrictions of the Network Operator.

Depending on the threat model, the following should also be considered:
∙ If an image is tested before it is permanently installed then a component in the system needs toapprove or reject images if they detect a fault during testing. Typically, only a single component canvouch for system wide functional correctness. The update client might be trusted to make decisionsduring a test.
∙ Certain images might contain confidential code or data that must never be exposed to the NSPE.Therefore, some images might be encrypted with a key that is private to the SPE and whendecryption occurs the data is stored in storage that is inaccessible from the NSPE.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 19



5 Design overview
The document A Firmware Update Architecture for Internet of Things [SUIT-ARCH] describes an exampleflow and the expected device side actions:

∙ Query image information
∙ Validate image metadata
∙ Store image
∙ Verify image
∙ Trigger reboot

The design of the interface offers functions for these actions. The interface contains three major classes oferror codes: storage errors, security errors, and dependency errors. The caller must be prepared to handlethese.
The interface is expected to be provided by an implementation that runs in the NSPE. However, it may benecessary to protect certain functions using the SPE on some platforms.

5.1 Mandatory functions
The interface supports these actions using the following calls.
5.1.1 Querying installed images

The caller calls psa_fwu_query to fetch information about firmware images on the device. This includesstate for installed images, rejected images, and candidate images. This information is expected to bepassed to a remote operator or status tracker. A local Update client may also use this information to make alocal decision. For example, the data may be used to avoid fetching images unnecessarily if they arealready on the device.
To satisfy Section 2.1, the query function uses an iterator to minimize memory footprint. The caller mayrelay this information to a remote status tracker. Eventually, new firmware is downloaded to the device bythe caller.
Each image has its own local identifier that represents the type of image. This is known as an image ID.Queries are based on an image ID.
The image ID of each updatable image can be discovered using the provided iterator functions. The queryfunction returns global identification information about the image, such as the associated Vendor ID, ClassID, and the hash of the public signing key.
5.1.2 Image storing

Each image has its own image ID that represents the type of image. Each image has its own staging area.The image ID is used by the implementation to determine the appropriate staging area.
IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 20



The caller uses psa_fwu_write to write a candidate image to its staging area. To satisfy Section 2.1 the callercan use this operation to write an image incrementally in blocks. On a rich device with plenty of memory,the caller uses this as a single-part function. A number of errors can be detected and returned by this call,and can depend on the qualities of the implementation.
A staging area can be erased using psa_fwu_abort.
5.1.3 Metadata storage

If the image does not embed metadata, then a standalone metadata object can be associated with thesame image by calling psa_fwu_set_manifest with the same image ID.
5.1.4 Verify image

The caller finishes the firmware update process with psa_fwu_install.
On success, the implementation checks any necessary preconditions and prepares installation.
On some implementations, this will starts an integrity check on the firmware image based on themetadata. On other implementations, the validation of the metadata is deferred to the bootloader whenthe platform next resets.
The implementation indicates whether a reboot is required to complete installation by using a return value.
The implementation indicates whether a dependency is missing by using a set of output parameters.
If a dependency is missing, the dependency is specified in two output parameters, the image ID of themissing image and the required version. The caller then fetches the required image and repeats theprocess.
5.1.5 Triggering a reboot

If a reboot is required to complete the firmware update process then the caller uses psa_fwu_request_rebootto restart the platform. The caller chooses when is an appropriate time to reboot the platform.

5.2 Optional functions
The following image management functions must be implemented if a PENDING_INSTALL state issupported:

∙ A function, psa_fwu_request_rollback, is provided for application firmware to request the device to rollback the recently applied updates. This is for scenarios where the newly updated firmware detects afatal problem with the update. The implementation may deny this request if this is prevented bysecurity policy (e.g. rollback protection). An implementation can also choose not to support this.
∙ A function, psa_fwu_accept, is provided for application firmware to indicate whether the recentlyapplied updates are working correctly. This is for scenarios where the newly installed firmware mustbe tested before it is permanently installed. An example of a test is a built in self-test.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 21



5.3 State transitions for an image
The permitted state transitions are shown in the following diagram:

CANDIDATE
(initial state)

INSTALLED
(final state)

REJECTED
psa_fwu_install()
returns PSA_SUCCESS
(for firmware that does not
need a restart)psa_fwu_install() returns

PSA_SUCCESS_REBOOT

psa_fwu_install() fails

Boot or install failure

psa_fwu_accept()

psa_fwu_abort()

Corrupted 
image or boot

failure

psa_fwu_set_manifest()
psa_fwu_write()
psa_fwu_abort()

RESTART
NEEDED psa_fwu_request_reboot()

and installation succeeds psa_fwu_request_rollback()
returns PSA_SUCCESS

PENDING 
INSTALL
(optional)

Figure 1 Permitted state transitions for an image using the API.

Every firmware update image begins in the CANDIDATE state. All successful firmware update imagesreach the INSTALLED state.
The state of an image can be queried using psa_fwu_query.

5.4 Dependencies
An image can have a dependency on another image. When an image has a dependency it cannot beinstalled until all of its dependencies are satisfied. This means that all images must be written prior tocalling psa_fwu_install. Dependencies are described within image metadata.
If a dependency is not explicit then the implementation is not guaranteed to detect compatibility issues.For instance, if an installation contains two images, A and B, and A depends on B, then the system will notbe able to detect incompatibilities if B is upgraded in isolation. If mutual dependency is required, then Ashould specify a dependency on B and B should specify a dependency on A.
A dependency consists of an image ID and version.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 22



6 Image metadata
This section describes the format options, usage models, and a metadata example.

6.1 Format profiles
The choice of metadata format depends on the software development practices and interoperabilityrequirements of a particular deployment.
At least one of the following formats must be supported by the interface:

Table 3 Supported formats per segment
Profile ID Profile name Description

0x1 IETF SUIT CBOR The full specification for the format is described in A Concise BinaryObject Representation (CBOR)-based Serialization Format for theSoftware Updates for Internet of Things (SUIT) Manifest [SUIT]. Themanifest contains an authentication header that is signed usingCBOR Object Signing and Encryption (COSE). An example isprovided in the following sections. Arm recommends this profile.
0x2 Implementationspecified A proprietary implementation. A description of the format should bemade publicly available. This option is not preferable because itprovides no interoperability.

It is expected that implementations are built to only support a single profile. However, an implementationcan choose to support multiple profiles if necessary.
All Profile IDs not specified here are reserved for future use.

6.2 Usage models
The metadata can be supplied using one of two methods, depending on the protocol used:

∙ Embedded method: The metadata is prepended to each image.
∙ Standalone method: The metadata is standalone and separate from images. The metadata candescribe metadata for multiple images. In this case, psa_fwu_set_manifest is used.

The decision is made by the caller depending on the firmware update protocol.

6.3 Example metadata
The manifest format described contains many optional and extensible fields covering the goals of thisspecification.
IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 23



The following example shows an example of a single image specified as a SUIT CBOR manifest. Furtherexamples are provided in at this link.
6.3.1 Summary

The example manifest contains two major subparts:
∙ Manifest authentication header. The authentication header authenticates the manifest data. Itincludes the following fields:

— Signature information (alg and payload).
— The raw signature (signature).

∙ Manifest content. It includes the following fields:
— Manifest format version (manifest-version).
— Manifest Sequence number (manifest-sequence-number).
— Class UUID and Vendor UUID (class-id and vendor-id).
— Image digest information (e.g. image-size, algorithm-id, digest-bytes)
— Installation instructions (in this example there is only the condition-image-match and

directive-run directive)
Implementation note:
An example open-source tool for generating SUIT manifests is available at :Example code to generateand parse SUIT manifests [SUIT-CODE]. The project also contains a small parser that can be includedin small microcontrollers.

6.3.2 CBOR

The example manifest below conforms to IETF SUIT and is written in CBOR diagnostic language forillustrative purposes.
{

/ authentication-wrapper / 2:h'81d28443a10126a058248202582064d8094
da3ef71c5971b7b84e7f4be1f56452c32fdde7bc1c70889112f1d5d9958407d637397e
12abdd41bc026a8e8a22f0f902a5b972e7786d570a37ac43c370b64a6946b0311f059c
a01d40f74d88d6fd7193baa36f5cf20aa57c46a0411a6b704' / [

18([
/ protected / h'a10126' / {

/ alg / 1:-7 / ES256 /,
} /,
/ unprotected / {
},
/ payload / h'8202582064d8094da3ef71c5971b7b84e7f4be1f

56452c32fdde7bc1c70889112f1d5d99' / [
/ algorithm-id / 2 / sha256 /,
/ digest-bytes /

h'64d8094da3ef71c5971b7b84e7f4be1f56452c32fdde7bc1c70889112f1d5d99'
] /,

(continues on next page)

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 24

https://tools.ietf.org/html/draft-ietf-suit-manifest-04#page-67


(continued from previous page)
/ signature / h'7d637397e12abdd41bc026a8e8a22f0f902a5b

972e7786d570a37ac43c370b64a6946b0311f059ca01d40f74d88d6fd7193baa36f5cf
20aa57c46a0411a6b704'

])
] /,
/ manifest / 3:h'a50101020103585ea20244818141000458548614a40150fa6

b4a53d5ad5fdfbe9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab4503820
2582000112233445566778899aabbccddeeff0123456789abcdeffedcba98765432100
e1987d001f602f60a438203f60c438217f6' / {

/ manifest-version / 1:1,
/ manifest-sequence-number / 2:1,
/ common / 3:h'a20244818141000458548614a40150fa6b4a53d5ad5fdfb

e9de663e4d41ffe02501492af1425695e48bf429b2d51f2ab450382025820001122334
45566778899aabbccddeeff0123456789abcdeffedcba98765432100e1987d001f602f
6' / {

/ components / 2:h'81814100' / [
[h'00']

] /,
/ common-sequence / 4:h'8614a40150fa6b4a53d5ad5fdfbe9de663

e4d41ffe02501492af1425695e48bf429b2d51f2ab4503820258200011223344556677
8899aabbccddeeff0123456789abcdeffedcba98765432100e1987d001f602f6' / [

/ directive-override-parameters / 20,{
/ vendor-id /

1:h'fa6b4a53d5ad5fdfbe9de663e4d41ffe' / fa6b4a53-d5ad-5fdf-be9d-e663e4d41ffe /,
/ class-id / 2:h'1492af1425695e48bf429b2d51f2ab45'

/ 1492af14-2569-5e48-bf42-9b2d51f2ab45 /,
/ image-digest / 3:[
/ algorithm-id / 2 / sha256 /,
/ digest-bytes /

h'00112233445566778899aabbccddeeff0123456789abcdeffedcba9876543210'
],
/ image-size / 14:34768,

} ,
/ condition-vendor-identifier / 1,F6 / nil / ,
/ condition-class-identifier / 2,F6 / nil /

] /,
} /,
/ validate / 10:h'8203f6' / [

/ condition-image-match / 3,F6 / nil /
] /,
/ run / 12:h'8217f6' / [

/ directive-run / 23,F6 / nil /
] /,

} /,
}

The total size of this example with COSE authentication object is estimated to be 231 bytes.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 25



7 API reference
The API is defined in the C language. The API make use of standard C data types as defined in the ISO C99specification.

7.1 Library conventions
Almost all functions return a status indication of type psa_status_t. This is an enumeration of integervalues, with the value 0 (PSA_SUCCESS) or greater indicating successful operation and other values indicatingerrors.
Unless specified otherwise, if multiple error conditions apply, an implementation is free to return any ofthe applicable error codes. The choice of error code is considered an implementation quality issue.Different implementations can make different choices, for example to favor code size over ease ofdebugging or vice versa.
If the behavior is undefined, for example, if a function receives an invalid pointer as a parameter, thisspecification makes no guarantee that the function will return an error. Implementations are encouragedto return an error or halt the application in a manner that is appropriate for the platform if the undefinedbehavior condition can be detected. However, application developers need to be aware that undefinedbehavior conditions cannot be detected in general.

7.2 Behavior on error
All function calls must be implemented atomically:

∙ When a function returns a type other than psa_status_t, the requested action has been carried out.
∙ When a function returns the status PSA_SUCCESS or PSA_SUCCESS_xxx, the requested action has beencarried out.
∙ When a function returns another status of type psa_status_t, no action has been carried out. Thecontent of the output parameters is undefined, but otherwise the state of the system has notchanged, except as described below.

Unless otherwise documented, the content of output parameters is not defined when a function returns astatus other than PSA_SUCCESS. It is recommended that implementations set output parameters to safedefaults to avoid limit risk, in case the caller does not properly handle all errors.

7.3 Pointer conventions
Unless explicitly stated in the documentation of a function, all pointers must be valid pointers to an objectof the specified type.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 26



7.4 Macros
7.4.1 Library versioning

PSA_FWU_API_VERSION_MAJOR (macro)

The major version of this implementation of the API.
#define PSA_FWU_API_VERSION_MAJOR 0

PSA_FWU_API_VERSION_MINOR (macro)

The minor version of this implementation of the API.
#define PSA_FWU_API_VERSION_MINOR 7

7.4.2 Image transfer

PSA_FWU_MAX_BLOCK_SIZE (macro)

The maximum permitted size for block in psa_fwu_write, in bytes. The specific value is IMPLEMENTATION
DEFINED and must be greater than 0.
#define PSA_FWU_MAX_BLOCK_SIZE IMPDEF

Note:
Implementations that aim to support post quantum security are recommended to provide aminimum of 4096, especially if there is an intention to support stateful hash-based signatures.

7.4.3 Digest size

PSA_FWU_MAX_DIGEST_SIZE (macro)

The maximum size of an image digest, in bytes. This is dependent on the hash algorithm used. The value is
IMPLEMENTATION DEFINED.
#define PSA_FWU_MAX_DIGEST_SIZE IMPDEF

7.4.4 Image states

PSA_IMAGE_UNDEFINED (macro)

#define PSA_IMAGE_UNDEFINED 0

PSA_IMAGE_CANDIDATE (macro)

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 27



#define PSA_IMAGE_CANDIDATE 1

PSA_IMAGE_INSTALLED (macro)

#define PSA_IMAGE_INSTALLED 2

PSA_IMAGE_REJECTED (macro)

#define PSA_IMAGE_REJECTED 3

PSA_IMAGE_PENDING_INSTALL (macro)

#define PSA_IMAGE_PENDING_INSTALL 4

PSA_IMAGE_REBOOT_NEEDED (macro)

#define PSA_IMAGE_REBOOT_NEEDED 5

7.4.5 Image flags

PSA_IMAGE_FLAG_VOLATILE_STAGING (macro)

#define PSA_IMAGE_FLAG_VOLATILE_STAGING (0x00000001)

If set then image data written to the staging area will not maintained across a system reset.
If not set then image data written to the staging area is guaranteed to exist after a system reset.
PSA_IMAGE_FLAG_ENCRYPTION (macro)

#define PSA_IMAGE_FLAG_ENCRYPTION (0x00000002)

This flag describes whether an image is encrypted or not during an update.
If set then this type of image must be provided in encrypted form when installing.
If not set then this type of image must be provided in unencrypted form when installing.

7.5 Types
7.5.1 psa_image_version_t (struct)

Version information about an image

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 28



typedef struct psa_image_version_t {
uint16_t major;
uint16_t minor;
uint16_t patch;

} psa_image_version_t;

Fields

major The major version of an image.
minor The minor version of an image. If the image has no minor versionthen this field is set to 0.
patch The patch version of an image. If the image has no patch version thenthis field is set to 0.

7.5.2 psa_staging_info_t (struct)
A container with information about how to update the image.
typedef struct psa_staging_info_t {

uint8_t flags;
uint8_t metadata_format;
size_t max_size;
psa_hash_t key_id;

} psa_staging_info_t;

Fields

flags A set of flags that describe extra information about the staging area.All unused flag values are reserved for future use by this specificationand must be zero.
See PSA_IMAGE_FLAG_VOLATILE_STAGING (macro) for the flagvalues.

metadata_format The expected format of the image’s signed metadata.
max_size The maximum possible size of the image in bytes.
key_id If PSA_IMAGE_FLAG_ENCRYPTION is set in flags then this field contains thekey identifier. The key identifier is a cryptographic hash of thedecryption key.

If PSA_IMAGE_FLAG_ENCRYPTION is not set in flags then this field must bezero.
7.5.3 psa_image_info_t (struct)
A container containing status information about an image.
typedef struct psa_image_info_t {

struct psa_image_id_t image_id;
psa_uuid_t vendor_id;
psa_uuid_t class_id;

(continues on next page)

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 29



(continued from previous page)
struct psa_image_version_t version;
uint8_t state;
psa_staging_info_t staging;
uint32_t error;
uint8_t digest[PSA_FWU_MAX_DIGEST_SIZE];

} psa_image_info_t;

Fields

image_id The assigned image ID.
vendor_id The expected vendor ID from the image metadata.
class_id The expected class ID from the image metadata.
version The version of the image.
state An integer that describes the current state of an image. Contains oneof the following values:

∙ PSA_IMAGE_UNDEFINED

∙ PSA_IMAGE_CANDIDATE

∙ PSA_IMAGE_INSTALLED

∙ PSA_IMAGE_REJECTED

∙ PSA_IMAGE_PENDING_INSTALL

Note:
I think we want this information to be richer and extensible.For example, we could define a range of values defined by Armand a range of values for implementers. For example. Animplementation can provide extra information for debugreasons.

staging A container with information about how to update the image.
error

An application-specific error that caused the firmware toroll back. If psa_fwu_request_rollback is not supported,then this field must be 0.
Note:
What about error codes from bootloader? Are there use casesfor a bootloader sending a dynamic amount of data?

digest The digest of the image.
7.5.4 psa_uuid_t (struct)
A 128-bit universally unique identifier. UUIDs MUST be created according to A Universally Unique IDentifier(UUID) URN Namespace [RFC4122]. UUIDs should use versions 3, 4, or 5.
IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 30



typedef struct psa_uuid_t {
uint32_t uuid[4];

} psa_uuid_t;

Fields

uuid

7.5.5 psa_image_id_t (type)

A fixed size integer for the type of image that needs installing. This ID can be returned by a dependencyerror from psa_fwu_install. The caller must use the ID to download or locate the appropriate image toinstall.
typedef uint32_t psa_image_id_t;

7.5.6 psa_fwu_iterator_t (type)

An iterator object. Used with psa_fwu_query to iterate through all the image information.
The definition is IMPLEMENTATION DEFINED.
typedef /*...*/ psa_fwu_iterator_t;

7.5.7 psa_hash_t (struct)

A cryptographic hash.
struct psa_hash_t {

uint8_t value[PSA_FWU_MAX_DIGEST_SIZE];
};

Fields

value

7.6 Status codes
7.6.1 psa_status_t (type)

Function return status.
typedef int32_t psa_status_t;

This is either PSA_SUCCESS, which is zero, indicating success; or a small negative value indicating that anerror occurred. Errors are encoded as one of the PSA_ERROR_xxx values defined here.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 31



7.6.2 PSA_SUCCESS (macro)

The action was completed successfully.
#define PSA_SUCCESS ((psa_status_t)0)

7.6.3 PSA_SUCCESS_REBOOT (macro)

The action was completed successfully and requires a system reboot to complete installation.
#define PSA_SUCCESS_REBOOT ((psa_status_t)+1)

7.6.4 PSA_SUCCESS_RESTART (macro)

The action was completed successfully and requires a restart of the component to complete installation.
#define PSA_SUCCESS_RESTART ((psa_status_t)+2)

7.6.5 PSA_SUCCESS_DEPENDENCY_NEEDED (macro)

The action was completed successfully and requires the installation of a dependency to completeinstallation.
#define PSA_SUCCESS_DEPENDENCY_NEEDED ((psa_status_t)+3)

7.7 Error codes
The following are the possible error codes that can be returned to the caller.
7.7.1 PSA_ERROR_GENERIC_ERROR (macro)

An error occurred that does not correspond to any defined failure cause.
#define PSA_ERROR_GENERIC_ERROR ((psa_status_t)-132)

Implementations can use this error code if none of the other standard error codes are applicable.
7.7.2 PSA_ERROR_NOT_SUPPORTED (macro)

The requested operation or a parameter is not supported by this implementation.
#define PSA_ERROR_NOT_SUPPORTED ((psa_status_t)-134)

If a combination of parameters is recognized and identified as not valid, return PSA_ERROR_INVALID_ARGUMENTinstead.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 32



7.7.3 PSA_ERROR_NOT_PERMITTED (macro)

The requested action is denied by a policy.
#define PSA_ERROR_NOT_PERMITTED ((psa_status_t)-133)

It is recommended that implementations return this error code when the parameters are recognized asvalid and supported, and a policy explicitly denies the requested operation.
If a subset of the parameters of a function call identify a forbidden operation, and another subset of theparameters are not valid or not supported, it is unspecified whether the function returns
PSA_ERROR_NOT_PERMITTED, PSA_ERROR_NOT_SUPPORTED or PSA_ERROR_INVALID_ARGUMENT.
7.7.4 PSA_ERROR_DOES_NOT_EXIST (macro)

Asking for an item that doesn’t exist.
#define PSA_ERROR_DOES_NOT_EXIST ((psa_status_t)-140)

7.7.5 PSA_ERROR_INVALID_ARGUMENT (macro)

The parameters passed to the function are invalid.
#define PSA_ERROR_INVALID_ARGUMENT ((psa_status_t)-135)

Implementations can return this error any time a parameter or combination of parameters are recognizedas invalid.
7.7.6 PSA_ERROR_INSUFFICIENT_MEMORY (macro)

There is not enough runtime memory.
#define PSA_ERROR_INSUFFICIENT_MEMORY ((psa_status_t)-141)

If the action is carried out across multiple security realms, this error can refer to available memory in any ofthe security realms.
7.7.7 PSA_ERROR_INSUFFICIENT_STORAGE (macro)

There is not enough persistent storage.
#define PSA_ERROR_INSUFFICIENT_STORAGE ((psa_status_t)-142)

Functions that modify the key storage return this error code if there is insufficient storage space on thehost media. In addition, many functions that do not otherwise access storage might return this error codeif the implementation requires a mandatory log entry for the requested action and the log storage space isfull.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 33



7.7.8 PSA_ERROR_COMMUNICATION_FAILURE (macro)

There was a communication failure inside the implementation.
#define PSA_ERROR_COMMUNICATION_FAILURE ((psa_status_t)-145)

This can indicate a communication failure between the application and an external processor or betweenthe processor and an external volatile or persistent memory. A communication failure can be transient orpermanent depending on the cause.
Warning: If a function returns this error, it is undetermined whether the requested action hascompleted. Returning PSA_SUCCESS is recommended on successful completion whenever possible,however functions can return PSA_ERROR_COMMUNICATION_FAILURE if the requested action was completedsuccessfully in an external processor but there was a breakdown of communication before theprocessor could report the status to the application.

7.7.9 PSA_ERROR_STORAGE_FAILURE (macro)

There was a storage failure that might have led to data loss.
#define PSA_ERROR_STORAGE_FAILURE ((psa_status_t)-146)

This error indicates that some persistent storage could not be read or written by the implementation. Itdoes not indicate the following situations, which have specific error codes:
∙ A corruption of volatile memory - use PSA_ERROR_CORRUPTION_DETECTED.
∙ A communication error between the processor and its external storage - use

PSA_ERROR_COMMUNICATION_FAILURE.
∙ When the storage is in a valid state but is full - use PSA_ERROR_INSUFFICIENT_STORAGE.
∙ When the storage or stored data is corrupted - use PSA_ERROR_DATA_CORRUPT.
∙ When the stored data is not valid - use PSA_ERROR_DATA_INVALID.

A storage failure does not indicate that any data that was previously read is invalid. However thispreviously read data might no longer be readable from storage.
When a storage failure occurs, it is no longer possible to ensure the global integrity of the keystore.Depending on the global integrity guarantees offered by the implementation, access to other data mightfail even if the data is still readable but its integrity cannot be guaranteed.
It is recommended to only use this error code to report a permanent storage corruption. Howeverapplication writers must keep in mind that transient errors while reading the storage might be reportedusing this error code.
7.7.10 PSA_ERROR_DATA_CORRUPT (macro)

Stored data has been corrupted.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 34



#define PSA_ERROR_DATA_CORRUPT ((psa_status_t)-152)

This error indicates that some persistent storage has suffered corruption. It does not indicate the followingsituations, which have specific error codes:
∙ A corruption of volatile memory - use PSA_ERROR_CORRUPTION_DETECTED.
∙ A communication error between the processor and its external storage - use

PSA_ERROR_COMMUNICATION_FAILURE.
∙ When the storage is in a valid state but is full - use PSA_ERROR_INSUFFICIENT_STORAGE.
∙ When the storage fails for other reasons - use PSA_ERROR_STORAGE_FAILURE.
∙ When the stored data is not valid - use PSA_ERROR_DATA_INVALID.

Note that a storage corruption does not indicate that any data that was previously read is invalid. Howeverthis previously read data might no longer be readable from storage.
When a storage failure occurs, it is no longer possible to ensure the global integrity of the keystore.Depending on the global integrity guarantees offered by the implementation, access to other data mightfail even if the data is still readable but its integrity cannot be guaranteed.
It is recommended to only use this error code to report when a storage component indicates that thestored data is corrupt, or fails an integrity check.
7.7.11 PSA_ERROR_DATA_INVALID (macro)

Data read from storage is not valid for the implementation.
#define PSA_ERROR_DATA_INVALID ((psa_status_t)-153)

This error indicates that some data read from storage does not have a valid format. It does not indicate thefollowing situations, which have specific error codes:
∙ When the storage or stored data is corrupted - use PSA_ERROR_DATA_CORRUPT.
∙ When the storage fails for other reasons - use PSA_ERROR_STORAGE_FAILURE.
∙ An invalid argument to the API - use PSA_ERROR_INVALID_ARGUMENT.

This error is typically a result of an integration failure, where the implementation reading the data is notcompatible with the implementation that stored the data.
It is recommended to only use this error code to report when data that is successfully read from storage isinvalid.
7.7.12 PSA_ERROR_HARDWARE_FAILURE (macro)

A hardware failure was detected.
#define PSA_ERROR_HARDWARE_FAILURE ((psa_status_t)-147)

A hardware failure can be transient or permanent depending on the cause.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 35



7.7.13 PSA_ERROR_CORRUPTION_DETECTED (macro)

A tampering attempt was detected.
#define PSA_ERROR_CORRUPTION_DETECTED ((psa_status_t)-151)

If an application receives this error code, there is no guarantee that previously accessed or computed datawas correct and remains confidential. In this situation, it is recommended that applications perform nofurther security functions and enter a safe failure state.
Implementations can return this error code if they detect an invalid state that cannot happen duringnormal operation and that indicates that the implementation’s security guarantees no longer hold.Depending on the implementation architecture and on its security and safety goals, the implementationmight forcibly terminate the application.
This error indicates an attack against the application. Implementations must not return this error code as aconsequence of the behavior of the application itself.
7.7.14 PSA_ERROR_INVALID_SIGNATURE (macro)

The signature, MAC or hash is incorrect.
#define PSA_ERROR_INVALID_SIGNATURE ((psa_status_t)-149)

Verification functions return this error if the verification calculations completed successfully, and the valueto be verified was determined to be incorrect.
If the value to verify has an invalid size, implementations can return either PSA_ERROR_INVALID_ARGUMENT or
PSA_ERROR_INVALID_SIGNATURE.
7.7.15 PSA_ERROR_INSUFFICIENT_DATA (macro)

Return this error when there’s insufficient data when attempting to read from a resource.
#define PSA_ERROR_INSUFFICIENT_DATA ((psa_status_t)-143)

7.7.16 PSA_ERROR_WRONG_DEVICE (macro)

#define PSA_ERROR_WRONG_DEVICE ((psa_status_t)-155)

7.7.17 PSA_ERROR_DEPENDENCY_NEEDED (macro)

#define PSA_ERROR_DEPENDENCY_NEEDED ((psa_status_t)-156)

7.7.18 PSA_ERROR_CURRENTLY_INSTALLING (macro)

#define PSA_ERROR_CURRENTLY_INSTALLING ((psa_status_t)-157)

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 36



7.7.19 PSA_ERROR_ALREADY_INSTALLED (macro)

#define PSA_ERROR_ALREADY_INSTALLED ((psa_status_t)-158)

7.7.20 PSA_ERROR_INSTALL_INTERRUPTED (macro)

#define PSA_ERROR_INSTALL_INTERRUPTED ((psa_status_t)-159)

7.7.21 PSA_ERROR_FLASH_ABUSE (macro)

#define PSA_ERROR_FLASH_ABUSE ((psa_status_t)-160)

7.7.22 PSA_ERROR_INSUFFICIENT_POWER (macro)

#define PSA_ERROR_INSUFFICIENT_POWER ((psa_status_t)-161)

7.7.23 PSA_ERROR_DECRYPTION_FAILURE (macro)

#define PSA_ERROR_DECRYPTION_FAILURE ((psa_status_t)-162)

7.7.24 PSA_ERROR_MISSING_MANIFEST (macro)

#define PSA_ERROR_MISSING_MANIFEST ((psa_status_t)-163)

7.8 Functions
7.8.1 psa_fwu_query (function)

Returns information for an image of a particular image ID.
psa_status_t psa_fwu_query(psa_image_id_t image_id,

psa_image_info_t *info);

Parameters

image_id The image ID of the image to query.
info Output parameter for image information related to the image ID.

Returns: psa_status_t

PSA_SUCCESS Image information has been returned.
PSA_ERROR_NOT_PERMITTED The caller is not authorized to access platform version information.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 37



7.8.2 psa_fwu_set_manifest (function)

Stores a manifest object and associates it with a particular image ID.
This function is optional, and if not implemented shall return PSA_ERROR_NOT_SUPPORTED.
psa_status_t psa_fwu_set_manifest(psa_image_id_t image_id,

const void *manifest,
size_t manifest_size,
psa_hash_t *manifest_dependency);

Parameters

image_id The identifier of the image type.
manifest A pointer to a buffer containing a manifest object.
manifest_size The size of the manifest parameter.
manifest_dependency Output parameter containing the hash of a required manifest when

PSA_ERROR_DEPENDENCY_NEEDED is returned.
Returns: psa_status_t

PSA_SUCCESS The manifest is persisted.
PSA_ERROR_NOT_PERMITTED The manifest is too old to be installed. If the image metadata containsa timestamp, and it has expired, then this error is also returned.
PSA_ERROR_WRONG_DEVICE The manifest is not intended for this device.
PSA_ERROR_INVALID_SIGNATURE The manifest signature is not valid.
PSA_ERROR_DEPENDENCY_NEEDED A different manifest is needed.
PSA_ERROR_INVALID_ARGUMENT Parameter size is 0 or a pointer parameter is NULL.
PSA_ERROR_COMMUNICATION_FAILURE

The system could not communicate with the installer.
PSA_ERROR_NOT_SUPPORTED This function is not implemented.
PSA_ERROR_CURRENTLY_INSTALLING An existing manifest for image ID is currently being installed and islocked from writing. For example, psa_fwu_install is currentlyexecuting.
PSA_ERROR_GENERIC_ERROR A fatal error occured.

Description

Note:
Rationale
It is better to have a separate function for manifest related data rather than overload existingfunctions. Otherwise, we burden non-manifest users with configuring parameters correctly.
Similarly, if a system does not support a manifest, this function can not be supported usingPSA_ERROR_NOT_SUPPORTED.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 38



7.8.3 psa_fwu_write (function)

Writes an image to its staging area.
If the image size is less than or equal to PSA_FWU_MAX_BLOCK_SIZE, the caller can send the entire image in onecall.
If the image size is greater than PSA_FWU_MAX_BLOCK_SIZE, the caller must send parts of the image by calling
psa_fwu_write multiple times with different data blocks.
Once complete, the caller calls psa_fwu_install to install the candidate image.
psa_status_t psa_fwu_write(psa_image_id_t image_id,

size_t image_offset,
const void *block,
size_t block_size);

Parameters

image_id The identifier of the image type.
image_offset The offset of the image being passed into block, in bytes.
block A buffer containing a block of image data. This might be a completeimage or a subset.
block_size Size of block. The size must not be greater than

PSA_FWU_MAX_BLOCK_SIZE.
Returns: psa_status_t

PSA_SUCCESS The data in block has been successfully stored.
PSA_ERROR_INVALID_ARGUMENT One of the following error conditions occured:

∙ The parameter size is greater than PSA_FWU_MAX_BLOCK_SIZE.
∙ The parameter size is 0.
∙ The combination of offset and size is out of bounds.

PSA_ERROR_INSUFFICIENT_MEMORY There is not enough memory to process the update.
PSA_ERROR_INSUFFICIENT_STORAGE There is not enough storage to process the update.
PSA_ERROR_COMMUNICATION_FAILURE The system could not communicate with the installer.
PSA_ERROR_FLASH_ABUSE The system is defending against quick flash exhaustion and is in atime-out period. The time-out period is IMPLEMENTATION DEFINED.
PSA_ERROR_DATA_CORRUPT Data corruption has been detected. For example, an implementationthat uses stream signatures may be able to detect corruption early.
PSA_ERROR_INSUFFICIENT_POWER There is not enough power to complete the operation.
PSA_ERROR_GENERIC_ERROR A fatal error occured.
PSA_ERROR_CURRENTLY_INSTALLING The image is currently locked for writing. For example,

psa_fwu_install is currently executing.
Description

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 39



It is the caller’s responsibility to account for how much data is written at which offset. If no persistentstorage is directly available for the caller to perform accounting, then the caller can use a different storagemechanism, such as the PSA Storage API.
Note:
Open point
Should we provide a mechanism to read firmware? For example psa_fwu_read?

7.8.4 psa_fwu_install (function)

Starts the installation of an image.
The authenticity and integrity of the image is checked during installation. If a reboot is required tocomplete installation then the implementation can choose to defer the authenticity checks to that point.
While this function executes, calls to psa_fwu_write with the image ID or a dependent image ID arerejected.
If an image dependency is missing then an error is returned.
Concurrent calls to this function with the same or dependent image IDs are not permitted and return anerror.
psa_status_t psa_fwu_install(psa_image_id_t image_id,

psa_image_id_t *dependency_image_id,
psa_image_version_t *dependency_version);

Parameters

image_id The identifier of the image to install.
dependency_image_id If PSA_SUCCESS_DEPENDENCY_NEEDED is returned, this parameter is filledwith dependency information.
dependency_version If PSA_SUCCESS_DEPENDENCY_NEEDED is returned, this parameter is filledwith the minimum required version for the dependency.

Returns: psa_status_t

PSA_SUCCESS The image was successfully installed. The platform does not require areboot.
PSA_SUCCESS_REBOOT A system reboot is needed to finish installation. Use

psa_fwu_request_reboot.
PSA_SUCCESS_RESTART A restart of the updated component is required to complete theupdate. The restart mechanism is component specific.
PSA_SUCCESS_DEPENDENCY_NEEDED Another image needs to be installed to finish installation. The callermust begin the firmware update process with the image specified in

dependency.
PSA_ERROR_INVALID_SIGNATURE The signature is incorrect.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 40



PSA_ERROR_NOT_PERMITTED The image is too old to be installed. If the image metadata contains atimestamp, and it has expired, then this error is also returned.
PSA_ERROR_DATA_CORRUPT The image is corrupt.
PSA_ERROR_INSUFFICIENT_DATA The image is smaller than expected.
PSA_ERROR_NOT_SUPPORTED The image ID is either unknown or not supported.
PSA_ERROR_WRONG_DEVICE The image is not intended for this device instance. For example, theimage
PSA_ERROR_DEPENDENCY_NEEDED A different image requires installation first.
PSA_ERROR_STORAGE_FAILURE Some persistent storage could not be read or written by theimplementation.
PSA_ERROR_MISSING_MANIFEST A manifest is needed for this image ID. It must be set using

psa_fwu_set_manifest.
PSA_ERROR_DECRYPTION_FAILURE The key used to decrypt the data is unknown or decryption failed.
PSA_ERROR_INSUFFICIENT_POWER There is not enough power to complete the operation.
PSA_ERROR_CURRENTLY_INSTALLING The implementation is busy installing the requested image ID.
PSA_ERROR_ALREADY_INSTALLED The storage item associated with image ID has already been installed.
PSA_ERROR_INSTALL_INTERRUPTED Installation was interrupted or aborted.
PSA_ERROR_GENERIC_ERROR A fatal error occured. This error is returned if not covered by othererrors.

Description

7.8.5 psa_fwu_abort (function)

Aborts an ongoing installation and erases the staging area of the image.
psa_status_t psa_fwu_abort(psa_image_id_t image_id);

Parameters

image_id The identifier of the image to abort installation.
Returns: psa_status_t

PSA_SUCCESS Installation of the provided image ID has been aborted.
PSA_ERROR_INVALID_ARGUMENT No image with the provided image ID is currently being installed.
PSA_ERROR_NOT_PERMITTED The caller is not authorized to to abort an installation.
PSA_ERROR_STORAGE_FAILURE Some persistent storage could not be erased.

7.8.6 psa_fwu_request_reboot (function)

Requests the platform to reboot. On success, the platform initiates a reboot, and might not return to thecaller.
psa_status_t psa_fwu_request_reboot(void);

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 41



Returns: psa_status_t

PSA_SUCCESS The platform will reboot soon.
PSA_ERROR_NOT_PERMITTED The caller is not authorized to reboot the platform.

7.8.7 psa_fwu_request_rollback (function)
Requests the platform to roll back the firmware belonging to the caller and any other image that isdependent on that firmware. This is only used when the caller detects a fatal error after an update.
The platform may reject the request due to security policy.
psa_status_t psa_fwu_request_rollback(uint32_t error);

Parameters

error An application-specific error code chosen by the application. If aspecific error does not need to be reported, the value should be 0.On success, this error is recorded in the error field of the
psa_image_info_t structure corresponding to this image.

Returns: psa_status_t

PSA_SUCCESS The current firmware, and dependent images, will be rolled back onreboot.
PSA_ERROR_DOES_NOT_EXIST The image ID is not recognized.
PSA_ERROR_NOT_PERMITTED Either the caller is not authorized to roll back the platform or thecurrent image cannot be rolled back due to security policy.
PSA_ERROR_NOT_SUPPORTED This call is not implemented or rollback support is not implemented.

Description

On success, the current image becomes a rejected image, and the client will need to call
psa_fwu_request_reboot to start the rollback process.
7.8.8 psa_fwu_accept (function)
Indicates to the implementation that the upgrade was successful. This changes the image state of afirmware image, and its dependencies, from PSA_IMAGE_PENDING_INSTALL to PSA_IMAGE_INSTALLED. For moreinformation about image states, see the definition.
psa_status_t psa_fwu_accept(void);

Returns: psa_status_t

PSA_SUCCESS The image and its dependencies have transitioned into a
PSA_IMAGE_INSTALLED state.

PSA_ERROR_DOES_NOT_EXIST The image ID is not recognized.
PSA_ERROR_NOT_SUPPORTED The image ID is recognized but is not supported in thisimplementation.
PSA_ERROR_NOT_PERMITTED The caller is not permitted to make this call.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 42



Description

This function is optional and only required if an implementation supports a testing state.
If the image is in a PSA_IMAGE_PENDING_INSTALL state and this function is not called, then the image isreplaced with an older image on reset.
7.8.9 psa_fwu_get_image_id_iterator (function)

Gets an iterator for use with psa_fwu_get_image_id. An iterator always returns at least one image ID.
void psa_fwu_get_image_id_iterator(psa_fwu_iterator_t *iterator);

Parameters

iterator

Returns: void

7.8.10 psa_fwu_get_image_id_next (function)

Advances an initialized iterator object. Used with psa_fwu_get_image_id.
bool psa_fwu_get_image_id_next(psa_fwu_iterator_t *iterator);

Parameters

iterator An initialized iterator object.
Returns: bool

0 Returns 0 if there are no more images to report.
1 Returns 1 if there are more images to report.

Description

7.8.11 psa_fwu_get_image_id_valid (function)

Determines whether an iterator object is valid or not. Used with psa_fwu_get_image_id.
bool psa_fwu_get_image_id_valid(psa_fwu_iterator_t *iterator);

Parameters

iterator An initialized iterator object
Returns: bool

0 Returns 0 if the iterator is invalid
1 Returns 1 if the iterator is valid.

7.8.12 psa_fwu_get_image_id (function)

Returns the image ID.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 43



psa_status_t psa_fwu_get_image_id(psa_fwu_iterator_t *iterator,
psa_image_id_t *image_id);

Parameters

iterator

image_id

Returns: psa_status_t

PSA_SUCCESS Image information has been returned.
PSA_ERROR_INVALID_ARGUMENT A parameter is not valid.
PSA_ERROR_NOT_PERMITTED The caller is not authorized to access platform version information.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 44



Appendix A: Example header file
Each implementation of the PSA Firmware Update API must provide a header file named psa/update.h, inwhich the API elements in this specification are defined.
This appendix provides a example of the psa/update.h header file with all of the API elements. This can beused as a starting point or reference for an implementation.

A.1 psa/update.h
Include file ‘/Users/adrsha01/psa/psa-fwu-api/build/api-h/psa/update.h’ not found or reading it failed

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 45



Appendix B: Example usage

Warning: These examples are for illustrative purposes only and are not guaranteed to compile. Manyerror codes are not handled in order to keep the examples brief. A real implementation will need toinitialize variables appropriately and handle failures as they see fit.

B.1 Retrieve versions of installed images
#include <psa/update.h>
#include <stddef.h> /* not necessarily required */

void example_get_installation_info() {

psa_status_t rc;
psa_fwu_iterator_t iter;
psa_image_id_t id;
psa_image_info_t image_info;

psa_fwu_get_image_id_iterator(&iter);

do {
psa_fwu_get_image_id(&iter, &id);

rc = psa_fwu_query(id, &image_info);

if (image_info.state == PSA_IMAGE_INSTALLED && rc == PSA_SUCCESS) {
specific_protocol_report(image_info.image_id, image_info.version);

}

} while (psa_fwu_get_image_id_next());
}

B.2 Individual image update (single part operation)
A single image with no dependencies.
#include <psa/update.h>
#include <stddef.h> /* not necessarily required */

/* Single image update */
void example_install_single_image(void *image, size_t image_size, psa_image_id_t id) {

psa_status_t rc;
psa_image_id_t needed_image;
psa_image_version_t needed_version;

(continues on next page)

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 46



(continued from previous page)
rc = psa_fwu_write(id, 0, image, image_size, &needed_image, &needed_version);
rc = psa_fwu_install(id, &needed_image, &needed_version);

if (rc == PSA_SUCCESS_REBOOT) {
/* do other things and then eventually... */
psa_fwu_request_reboot();

} else {
/* handle error */

}
}

B.3 Invividual image update (multi part operation)
#include <psa/update.h>
#include <stddef.h> /* not necessarily required */

/* Single image update (multi-part) */
void example_install_single_image_multipart(size_t total_image_size, psa_image_id_t id) {

psa_status_t rc;
psa_image_id_t needed_image;
psa_image_version_t needed_version;
size_t offset = 0;
size_t amount_to_send = PSA_FWU_MAX_BLOCK_SIZE;
void *image;

while (offset < total_image_size)
{

/* Unrealistic example, fetches malloc'd piece of image of size PSA_FWU_MAX_BLOCK_SIZE */
image = fetch_next_part_of_image(id);

if ((total_image_size - offset) <= PSA_FWU_MAX_BLOCK_SIZE) {
amount_to_send = total_image_size - offset;

}

rc = psa_fwu_write(id, offset, image[offset], amount_to_send,
&needed_image, &needed_version);

free(image);
offset += amount_to_send;

}

rc = psa_fwu_install(id, &needed_image, &needed_version);

if (rc == PSA_SUCCESS_REBOOT) {
/* do other things and then eventually... */
psa_fwu_request_reboot();

} else if (rc == PSA_SUCCESS) {
/* Success */

} else { (continues on next page)

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 47



(continued from previous page)
/* Handle error */

}
}

B.4 Multiple dependent images (multi part operation)
#include <psa/update.h>
#include <stddef.h> /* not necessarily required */

void example_install_multiple_images(void *image, size_t image_size, psa_image_id_t id) {

psa_fwu_ctx_t ctx;
psa_status_t rc;
psa_image_id_t needed_image;
psa_image_version_t needed_version;
size_t offset = 0;
size_t amount_to_send = PSA_FWU_MAX_BLOCK_SIZE;
void *image_part;

while (offset < image_size)
{

if (image_size - offset) <= PSA_FWU_MAX_BLOCK_SIZE) {
amount_to_send = (image_size - offset));

rc = psa_fwu_write(id, offset, image[offset], amount_to_send,
&needed_image, &needed_version);

offset += amount_to_send;
}

rc = psa_fwu_install(id, &needed_image, &needed_version);

if (rc == PSA_SUCCESS_DEPENDENCY_NEEDED) {
/* Image might need download or might already been downloaded */
int new_image_size = 0;
void *new_image = retrieve_image_from_wherever(&needed_image, &needed_version,

&new_image_size);
example_install_multiple_images(new_image, new_image_size, &needed_image);

}

if (rc == PSA_SUCCESS_REBOOT) {
/* do other things and then eventually... */
psa_fwu_request_reboot();

} else if (rc == PSA_SUCCESS) {
/* other success */

} else {
/* handle failures /*

}
}

}

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 48



Appendix C: Future changes
We appreciate feedback from the technical community on this document. Feedback can be sent by e-mailto the following address arm.psa-feedback@arm.com.
There are a number of anticipated changes that may affect future versions of this document. Feedback orpreference on the open issues below would be appreciated.

C.1 Rename psa_fwu_abort
The function psa_fwu_abort aborts any ongoing installation for the specified staging area and erases it. Thismay not be descriptive enough to applications that expect erase functions.
It may be more intuitive to either:

∙ Rename psa_fwu_abort to psa_fwu_erase

∙ Split the functionality into two functions: psa_fwu_abort and psa_fwu_erase

C.2 Init function
The current version of the API assumes that RAM has been allocated to the implementation. This may notbe ideal in a simple library implementation, particularly if there is no SPE and the caller expects to manageall RAM usage.
There are at least a couple of potential options:

∙ psa_fwu_init(void) could be introduced to initialize the library, where applications must call beforeusing any other function.
∙ psa_fwu_init(psa_fwu_ctx_t * context) could be introduced to initialize the library, whereapplications must call before using any other function. This option allows the caller to specify wherethe library’s working RAM is allocated. The structure is an opauque one, allowing for differentimplementations. This option is the most intrusive change because the context variable would needto be added to the parameters of all the other API functions.

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 49

mailto:arm.psa-feedback@arm.com


Appendix D: Change history
This section describes detailed changes between past versions.

∙ PSA_FWU_API_VERSION_MINOR has increased from 6 to 7
∙ psa_image_id_t is now defined as a 32-bit integer. Functions no longer have a pointer type for thisparameter.
∙ UUID concept dropped from function names and parameters.
∙ Added Vendor ID and Class ID to psa_image_info_t structure.
∙ Added Future changes section
∙ Added error code and success code definitions
∙ Fixed mistake: psa_fwu_abort return type changed from void to psa_status_t

∙ Clarifications to the text
∙ Replaced PSA_ERROR_ROLLBACK_DETECTED with PSA_ERROR_NOT_PERMITTED

∙ Remove standardized image IDs until we get more feedback
∙ Improvements to the Design Overview text

IHI 00930.7 Beta (Issue 0) Copyright© 2020-2021, Arm Limited or its affiliates. All rights reserved.Non-confidential Page 50


	About this document
	Release information
	Arm Non-Confidential Document Licence (“Licence”)
	References
	Terms and abbreviations
	Conventions
	Typographical conventions
	Numbers

	Feedback
	Feedback on this book


	1 Introduction
	2 Design goals
	2.1 Suitable for constrained devices
	2.2 PSA Root of Trust update
	2.3 Application Root of Trust update
	2.4 Flexiblility for different trust models
	2.5 Protocol independence
	2.6 Transport independence
	2.7 Hardware flexibility
	2.8 Composite devices
	2.9 Room for different implementations

	3 Terminology
	3.1 Image
	3.2 Trust anchor
	3.3 Installer
	3.4 Update client
	3.5 Secure Processing Environment (SPE)
	3.6 Staging area

	4 Trust model and scenarios
	5 Design overview
	5.1 Mandatory functions
	5.1.1 Querying installed images
	5.1.2 Image storing
	5.1.3 Metadata storage
	5.1.4 Verify image
	5.1.5 Triggering a reboot

	5.2 Optional functions
	5.3 State transitions for an image
	5.4 Dependencies

	6 Image metadata
	6.1 Format profiles
	6.2 Usage models
	6.3 Example metadata
	6.3.1 Summary
	6.3.2 CBOR


	7 API reference
	7.1 Library conventions
	7.2 Behavior on error
	7.3 Pointer conventions
	7.4 Macros
	7.4.1 Library versioning
	PSA_FWU_API_VERSION_MAJOR (macro)
	PSA_FWU_API_VERSION_MINOR (macro)

	7.4.2 Image transfer
	PSA_FWU_MAX_BLOCK_SIZE (macro)

	7.4.3 Digest size
	PSA_FWU_MAX_DIGEST_SIZE (macro)

	7.4.4 Image states
	PSA_IMAGE_UNDEFINED (macro)
	PSA_IMAGE_CANDIDATE (macro)
	PSA_IMAGE_INSTALLED (macro)
	PSA_IMAGE_REJECTED (macro)
	PSA_IMAGE_PENDING_INSTALL (macro)
	PSA_IMAGE_REBOOT_NEEDED (macro)

	7.4.5 Image flags
	PSA_IMAGE_FLAG_VOLATILE_STAGING (macro)
	PSA_IMAGE_FLAG_ENCRYPTION (macro)


	7.5 Types
	7.5.1 psa_image_version_t (struct)
	7.5.2 psa_staging_info_t (struct)
	7.5.3 psa_image_info_t (struct)
	7.5.4 psa_uuid_t (struct)
	7.5.5 psa_image_id_t (type)
	7.5.6 psa_fwu_iterator_t (type)
	7.5.7 psa_hash_t (struct)

	7.6 Status codes
	7.6.1 psa_status_t (type)
	7.6.2 PSA_SUCCESS (macro)
	7.6.3 PSA_SUCCESS_REBOOT (macro)
	7.6.4 PSA_SUCCESS_RESTART (macro)
	7.6.5 PSA_SUCCESS_DEPENDENCY_NEEDED (macro)

	7.7 Error codes
	7.7.1 PSA_ERROR_GENERIC_ERROR (macro)
	7.7.2 PSA_ERROR_NOT_SUPPORTED (macro)
	7.7.3 PSA_ERROR_NOT_PERMITTED (macro)
	7.7.4 PSA_ERROR_DOES_NOT_EXIST (macro)
	7.7.5 PSA_ERROR_INVALID_ARGUMENT (macro)
	7.7.6 PSA_ERROR_INSUFFICIENT_MEMORY (macro)
	7.7.7 PSA_ERROR_INSUFFICIENT_STORAGE (macro)
	7.7.8 PSA_ERROR_COMMUNICATION_FAILURE (macro)
	7.7.9 PSA_ERROR_STORAGE_FAILURE (macro)
	7.7.10 PSA_ERROR_DATA_CORRUPT (macro)
	7.7.11 PSA_ERROR_DATA_INVALID (macro)
	7.7.12 PSA_ERROR_HARDWARE_FAILURE (macro)
	7.7.13 PSA_ERROR_CORRUPTION_DETECTED (macro)
	7.7.14 PSA_ERROR_INVALID_SIGNATURE (macro)
	7.7.15 PSA_ERROR_INSUFFICIENT_DATA (macro)
	7.7.16 PSA_ERROR_WRONG_DEVICE (macro)
	7.7.17 PSA_ERROR_DEPENDENCY_NEEDED (macro)
	7.7.18 PSA_ERROR_CURRENTLY_INSTALLING (macro)
	7.7.19 PSA_ERROR_ALREADY_INSTALLED (macro)
	7.7.20 PSA_ERROR_INSTALL_INTERRUPTED (macro)
	7.7.21 PSA_ERROR_FLASH_ABUSE (macro)
	7.7.22 PSA_ERROR_INSUFFICIENT_POWER (macro)
	7.7.23 PSA_ERROR_DECRYPTION_FAILURE (macro)
	7.7.24 PSA_ERROR_MISSING_MANIFEST (macro)

	7.8 Functions
	7.8.1 psa_fwu_query (function)
	7.8.2 psa_fwu_set_manifest (function)
	7.8.3 psa_fwu_write (function)
	7.8.4 psa_fwu_install (function)
	7.8.5 psa_fwu_abort (function)
	7.8.6 psa_fwu_request_reboot (function)
	7.8.7 psa_fwu_request_rollback (function)
	7.8.8 psa_fwu_accept (function)
	7.8.9 psa_fwu_get_image_id_iterator (function)
	7.8.10 psa_fwu_get_image_id_next (function)
	7.8.11 psa_fwu_get_image_id_valid (function)
	7.8.12 psa_fwu_get_image_id (function)


	A Example header file
	A.1 psa/update.h

	B Example usage
	B.1 Retrieve versions of installed images
	B.2 Individual image update (single part operation)
	B.3 Invividual image update (multi part operation)
	B.4 Multiple dependent images (multi part operation)

	C Future changes
	C.1 Rename psa_fwu_abort
	C.2 Init function

	D Change history

