
Learn the architecture - AArch64 external debug
Version 1.0

Non-Confidential
Copyright © 2022 Arm Limited (or its affiliates).
All rights reserved.

Issue 01
102196_0100_01_en

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Learn the architecture - AArch64 external debug

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

0100-01 5 May 2022 Non-Confidential Initial release

Proprietary Notice

This document is protected by copyright and other related rights and the practice or
implementation of the information contained in this document may be protected by one or more
patents or pending patent applications. No part of this document may be reproduced in any form
by any means without the express prior written permission of Arm. No license, express or implied,
by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you
will not use or permit others to use the information for the purposes of determining whether
implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION,
THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-
INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights,
trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR
ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND
REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that
any use, duplication or disclosure of this document complies fully with any relevant export laws
and regulations to assure that this document or any portion thereof is not exported, directly

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there
is any conflict between the English version of this document and any translation, the terms of the
English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks
of Arm Limited (or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and
names mentioned in this document may be the trademarks of their respective owners. Please
follow Arm’s trademark usage guidelines at https://www.arm.com/company/policies/trademarks.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349|version 21.0)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by Arm
and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Feedback

Arm® welcomes feedback on this product and its documentation. To provide feedback on the
product, create a ticket on https://support.developer.arm.com

To provide feedback on the document, fill the following survey: https://developer.arm.com/
documentation-feedback-survey.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 25

https://www.arm.com/company/policies/trademarks
https://support.developer.arm.com
https://developer.arm.com/documentation-feedback-survey
https://developer.arm.com/documentation-feedback-survey

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Inclusive language commitment

Arm values inclusive communities. Arm recognizes that we and our industry have used language
that can be offensive. Arm strives to lead the industry and create change.

We believe that this document contains no offensive language. To report offensive language in this
document, email terms@arm.com.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 25

mailto:terms@arm.com

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Contents

Contents

1. Overview...6

2. External debug...7

3. Debug state..9

4. Debug Access Port...11

5. Enabling external debug... 12

6. External debug events...15

7. Embedded Cross Trigger...22

8. Check your knowledge... 23

9. Related information... 24

10. Next steps..25

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Overview

1. Overview
The Armv8-A architecture supports both self-hosted debug and external debug. This guide
provides an overview of external debug, and describes the external debug features that the
architecture supports. The guide explains external debug features, and steps to enable these
features.

The self-hosted debug model is used when the debugger is hosted on a Processing Element (PE)
that is being debugged. Debug exceptions are the basis of the self-hosted debug model. The
debugger programs the debug logic to generate debug events. These debug events generate debug
exceptions. You can read about this topic in our AArch64 self-hosted debug guide.

The external debug model is used when the debugger is hosted external to the PE that is being
debugged. Debug state is the basis of the external debug model. The debugger programs the
debug logic to generate debug events. These debug events cause the PE to enter Debug state. This
guide describes external debug features in detail.

After you have read this guide, you can Check your knowledge. You will understand:

• How external debug works

• What debug features are supported in external debug

• How to program debug logic to enable each external debug event

Before you begin
You need to be familiar with the basics of the Armv8-A architecture, and the Armv8-A Exception
model, to understand the material that is presented in this guide. If you are not familiar with these
topics, read these guides:

• Introducing the Arm architecture

• AArch64 Exception model

Debugger usage for software development is beyond the scope of this guide. To learn about
debugger usage from a software development perspective, read these guides:

• Before debugging

• Debugger usage

For a general introduction to debugging on Armv8-A, read the Introduction to debug in our
AArch64 self-hosted debug guide.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 25

https://developer.arm.com/documentation/102120/0100
https://developer.arm.com/documentation/102404/latest
https://developer.arm.com/documentation/102412/latest
https://developer.arm.com/documentation/102408/latest/
https://developer.arm.com/documentation/102140/latest/
https://developer.arm.com/documentation/102120/0100/Introduction-to-debug
https://developer.arm.com/documentation/102120/0100

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

External debug

2. External debug
An external debug model is used when a debugger is hosted external to the PE that is being
debugged. The external debugger can control the PE with the following operations:

• Stopping the program execution on the occurrence of debug events

• Checking the status of the architectural registers

• Modifying the status of the architectural registers

• Running instructions on the PE to access memory

The external debugger controls the entry of the core into Debug state, by configuring a debug
event. A debug event is configured by either programming debug logic, or by asserting a debug
halt request through a signal to the core. The following diagram illustrates the setup of an external
debugger:

Figure 2-1: External debugger

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

External debug

External debug interface
In Debug state, the PE executes instructions in the Instruction Transfer Register (ITR). The
external debugger inserts instructions into the ITR using the external debug interface. The Debug
Communication Channel (DCC) allows communication between the PE and the external debugger.
The following diagram illustrates the debug setup of an Arm core using an external debugger
interface:

Figure 2-2: External debug interface

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Debug state

3. Debug state
Debug state is the basis of the external debug model. The external debugger programs the debug
logic to cause Debug state on the occurrence of debug events. External debug is also called halting
debug mode. When the PE enters Debug state, the following things happen, in this order:

• The PE stops executing instructions from the location that the Program Counter indicates.
Instead, the debugger controls the PE through the external debug interface.

• The debugger uses the Instruction Transfer Register (ITR), through the external debug interface,
to pass instructions to the PE to execute in Debug state.

◦ Using the instructions that are executed through the ITR, the debugger can read/write
architectural registers, for example general-purpose registers, System registers, and Floating
Point registers.

◦ Using the instructions that are executed through the ITR, the debugger can read/write to
memory locations.

◦ The Data Transfer Registers of the DCC are accessible by both the external debug interface
and the System register interface. The DCC plays an important role in exchanging data
between the PE and the external debugger.

• The PE cannot service interrupts in Debug state.

Debug state entry and exit
When the PE enters Debug state:

• The PSTATE of the PE, before entering Debug state, is stored in the Debug Saved Program
Status Register (DSPSR).

• The preferred restart address is stored in the Debug Link Register (DLR).

• The PE stops execution of the code that is pointed by the Program Counter.

• Interrupts are not serviced.

• External debugger takes control of the PE.

While the PE is in Debug state, the external debugger can:

• View and modify the contents of memory locations and architectural registers, including DLR
and DSPSR.

• Use the ITR to pass instructions to the PE to execute in Debug state.

• Use the Debug Communications Channel (DCC) to pass data to the PE, and to receive data
from the PE.

• Change Exception levels, by using the DCPS and DRPS instructions.

• Exit Debug state by triggering a Restart request.

On a restart request from the external debugger, the PE exits Debug state. When the PE exits
Debug state, the PE:

• Sets the Program Counter to the address in the DLR.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Debug state

• Restores PSTATE from DSPSR.

• Begins execution of instructions pointed by the Program Counter.

The following diagram illustrates Debug state entry and exit:

Figure 3-1: Debug state entry and exit

External debug is useful for:

• Hardware bring-up: Debugging during development when a system is first powered up and
some software functionality is not available.

• Debugging PEs that are deeply embedded inside systems

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Debug Access Port

4. Debug Access Port
In the external debug model, Debug registers are accessed using the external debug interface. The
means to access external debug interface is IMPLEMENTATION DEFINED. However, most Armv8-A
systems include a Debug Access Port (DAP) to access the external debug interface for off-chip
external debuggers. On-chip external debuggers, for example, using a second PE to debug a PE,
use the memory mapped interface to access the external debug interface.

The following diagram illustrates access to the external debug interface using a DAP:

Figure 4-1: External debug interface using DAP

External Debug registers, also called halt mode debug registers, are usually prefixed with ED, for
example, EDSCR. Two important external Debug registers are:

• EDSCR: External Debug Status and Control Register

• EDECR: External Debug Execution Control Register

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Enabling external debug

5. Enabling external debug
External debug mode does not include any global enable bits. For each external debug event,
corresponding control bits can be programmed to enable halting of the processor for that external
debug event.

Breakpoints and watchpoints are resources that are shared between self-hosted debuggers and
external debuggers. Setting EDSCR.HDE to 1 causes breakpoints and watchpoints to halt the PE.

External debuggers may need to authenticate themselves. If an external debugger does not
authenticate itself, halting of an Arm implementation might be prohibited. Details of the
authentication are IMPLEMENTATION DEFINED. Authentication may exist in hierarchical fashion. This
means that a level of authentication might be required during which halting might be enabled at
Non-secure execution of the PE. Another level of authentication might be required to allow halting
in a Secure execution of the PE.

Handshake between the external debugger and the PE
The external debugger takes control of the PE when the PE enters Debug state. The external
debugger also initiates the PE to exit Debug state, to continue normal execution of the program.
The mechanism that is used to transfer control between the external debugger and the PE is called
a handshake. Let’s look at this in more detail.

A typical handshake between the external debugger and the PE includes the following actions, in
this order:

• The external debugger configures the debug logic of the PE to generate debug events at the
point of interest in the program execution. For example, the external debugger configures a
breakpoint on the start address of a subroutine.

• When the program reaches the point of interest a debug event is generated, causing the PE to
enter Debug state. The external debugger registers of the PE indicate the status of the PE in
Debug state.

• The external debugger polls for the external debug registers of the PE to indicate Debug state.

• The external debugger queries the program state and issues a restart request to the PE.

The following diagram and table illustrate the handshake sequence between the external debugger
and the core:

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Enabling external debug

Figure 5-1: External debugger and core handshake sequence

Step External debugger action Core action

Step
1

The external debugger programs Debug logic for the debug event, either by
programming the Debug logic or by asserting a debug halt request.

Step
2

The external debugger polls its status register until the core enters debug state.

Step
3

During normal code execution, the core enters
debug state on an debug event.

Step
4

The external debugger takes control of the core.

Step
5

The external debugger engages in its activities, for example, it reads status, modifies
status, and runs instructions.

Step
6

Post external debugger activities, the external debugger requests debug exit.

Step
7

The core exits debug state when possible.

Step
8

The core resumes normal execution based on
the Program Counter and PSTATE.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Enabling external debug

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

External debug events

6. External debug events
In this section of the guide, we describe the debug events that can cause the PE to enter Debug
state. Here is a summary of each event:

• External debug request debug event: This event is an input trigger event to the processor.
When this event is asserted, the PE enters Debug state.

• Halt instruction debug event: This event is generated whenever the PE executes an HLT
instruction.

• Halting step debug event: This event is generated immediately after the PE executes an
instruction or an exception, while the PE is not in Debug state.

• Exception catch debug event: This event is generated immediately after the PE executes an
exception or an exception return.

• Reset catch debug event: This event is generated immediately after reset, before the PE begins
execution following the reset.

• Software access debug event: This event is generated when the PE attempts access to Debug
system registers, for example, the breakpoint and watchpoint control registers.

• OS unlock catch debug event: This event is generated when the OS lock state changes from
locked to unlocked.

• Breakpoint event: This event is generated whenever the PE attempts to execute an instruction
from a particular address.

• Watchpoint event: This event is generated whenever the PE accesses data from a particular
address.

Breakpoints and watchpoints are resources that are shared between self-hosted debuggers and
external debuggers. If halt mode debug is enabled, a breakpoint event or watchpoint event causes
the PE to enter Debug state. Otherwise, a debug exception is generated if self-hosted debug is
enabled.

Let’s look at each of these events in more detail.

External debug request event
An external debug request event is an input trigger event to the processor. When this event is
asserted, the PE enters Debug state. The debugger asserts an external debug request to force the
PE to enter Debug state, and then the external debugger controls the PE. Cross Trigger Interface
Registers are used to generate external debug request events.

If an external debug request is asserted when the PE is already in Debug state, the request is
ignored. To exit Debug state, the external debugger asserts a restart request to the processor. A
restart request is an input signal to the processor. When a restart request is asserted, the processor
exits Debug state.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

External debug events

Halt instruction debug event
A halt instruction debug event allows the external debugger to take control of the PE when the
PE attempts to execute the HLT instruction. The HLT instruction is the halting software breakpoint
instruction. When the HLT instruction is committed for execution, the halt instruction debug event
is generated if EDSCR.HDE is 1. On execution of HLT instruction, the PE enters Debug state and
gives control to the external debugger.

The debugger usually replaces the program instruction with an HLT instruction to trigger a halt
instruction debug event. After this event, the external debugger controls the PE.

To exit Debug state, the external debugger asserts a restart request to the processor.

Halting step debug event
A halting step debug event allows the external debugger to take control of the program that is
being debugged. This happens after the PE executes every individual instruction or exception,
while the PE is not in Debug state. When halting step debug event is enabled, the PE enters Debug
state whenever an instruction or exception is retired in the PE.

Programming a halting step debug event:

• When the PE is in Debug state, the external debugger enables halting step by writing the
EDECR.SS to 1 .

• The external debugger signals the PE to exit Debug state.

• After exiting Debug state, the PE executes the instruction that is pointed by the Program
Counter (PC). The PE enters Debug state before executing the next instruction, which gives
control to the external debugger.

To exit Debug state, the external debugger asserts a restart request to the processor.

Exception catch debug event
An exception catch debug event allows the external debugger to take control whenever the PE
executes an exception or exception return. For each Exception level, ED Exception Catch Control
Register (EDECCR) includes independent control bits for exception and exception return. Setting
the bit in EDECCR forces the PE to enter Debug state when the PE executes an exception, or
exception return, with a target Exception level that is indicated in EDECCR.

When an exception catch debug event is generated on exception entry, the PE enters Debug state
as part of the exception entry, before the first instruction of the exception handler is executed.

When an exception catch debug event is generated on exception return, the PE enters Debug
state, before the execution of the first instruction at the exception return address.

To exit Debug state, the external debugger asserts a restart request to the processor.

Reset catch debug event
A reset catch debug event allows the external debugger to take control of the PE immediately after
reset.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

External debug events

To enable a reset catch debug event, set the Reset Catch debug Event (RCE) bit in the External
Debug Execution Control Register (EDECR) or Cross Trigger Interface Device Control register
(CTIDEVCTL).

When the external debugger sets the RCE bit, the reset catch debug event is generated on a
reset of the PE. The PE enters Debug state and gives control to the external debugger, before the
execution of the first instruction after reset. The reset can be either a Warm reset or a Cold reset
of the PE.

To exit Debug state, the external debugger asserts a restart request to the processor.

Software access debug event
A software access debug event allows the external debugger to take control of the PE when the PE
software tries to access the following registers:

• Debug Breakpoint Value Registers (DBGBVRn_EL1), including DBGBXVRn from AArch32 state

• Debug Breakpoint Control Registers (DBGBCRn_EL1)

• Debug Watchpoint Value Registers (DBGWVRn_EL1)

• Debug Watchpoint Control Registers (DBGWCRn_EL1)

The external debugger can enable the software access debug event by setting the TDA-bit in the
External Debug Status and Control Register (EDSCR).

When the external debugger sets the TDA bit, the PE enters Debug state, and provides control to
the external debugger when the PE software tries to access any of the following Debug system
registers:

• AArch64: DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1, DBGWVR<n>_EL1.

• AArch32: DBGBCR<n>, DBGBVR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.

Memory mapped accesses to the above registers do not generate a software access debug event.

To exit Debug state, the external debugger asserts a restart request to the processor.

OS unlock catch debug event
Some Debug register contents are lost during powerdown of the PE. To enable the debugging
ability of the processor after reset, Debug register contents must be saved into a non-volatile
memory before the powerdown, and restored when the system comes out of reset. The Armv8-A
architecture enables saving of Debug register contents with the OS save mechanism and restoring
the Debug register contents with the OS restore mechanism.

The PE software performs the save restore. While saving the Debug register contents, the PE
software locks the OS lock so that external debug accesses to Debug registers are forbidden. After
restoring the Debug register contents, the PE software unlocks the OS lock.

The OS unlock catch debug event allows the external debugger to take control of the PE,
immediately after the OS restore sequence. This event forces the PE to enter Debug state,
immediately after restoring the Debug register contents after reset.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

External debug events

The control bit EDECR.OSUCE enables an OS unlock catch debug event.

Breakpoint event
A breakpoint event is generated whenever the PE tries to execute an instruction from a particular
address. Hardware breakpoint registers can be programmed with the address of a program.
When the PE tries to execute an instruction from the programmed address, a breakpoint event is
generated.

When a breakpoint event is generated, it generates an entry to Debug state if:

• EDSCR.HDE == one. Halting debug is enabled for these events.

• Authentication signals indicate that debugger has sufficiently authenticated itself for the
current Security state of the PE.

Breakpoint setup uses hardware registers, so is commonly referred to as hardware breakpoint.

Steps to program a breakpoint event:

• The external debugger programs the address of the instruction into the Breakpoint Value
Register DBGBVR.

• The external debugger sets the enable bit DBGBCR.E to enable the breakpoint event.

The following diagram illustrates a breakpoint event in which the PE tries to execute a SUB
instruction for which a breakpoint is set up:

Figure 6-1: Breakpoint event

Hardware breakpoints can be programmed to generate a breakpoint event, based on the following
breakpoint matches when the PE executes:

• Unlinked instruction address match: The PE executes from a virtual address with the same
value as the DBGBVR register, and the current state of the PE matches the settings in
DBGBCR.

• Unlinked Context ID match: The PE executes an instruction while CONTEXTIDR_EL1/
CONTEXTIDR_EL2 is the same as the DBGBVR register, and the current state of the PE matches
with the settings in DBGBCR. DBGBCR.BT defines whether CONTEXTIDR_EL1 or CONTEXTIDR_EL2
is used. These breakpoints are useful to route the control to the external debugger when an
application or operating system is scheduled for execution.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

External debug events

• Unlinked VMID match: The PE executes an instruction while VTTBR_EL2.VMID matches the
DBGBVR register contents, and the current state of the PE matches the settings in DBGBCR.
These breakpoints are useful to route the control to the external debugger when an operating
system is scheduled for execution.

• Unlinked Context ID and VMID match: The PE executes an instruction while CONTEXTIDR_EL1
and VTTBR_EL2.VMID matches the contents DBGBVR register, and the current state of the PE
matches the settings in DBGBCR. These breakpoints are useful to route the control to the
external debugger when an application in an operating system is scheduled for execution.

• Linked breakpoints: Address matching breakpoints can be linked to context or VMID
breakpoints. These breakpoints are useful to route the control to the external debugger when
the PE executes from an instruction address in an application or operating system, or an
application within an operating system.

The Breakpoint Control Register, DBGBCR<n>_EL1, contains controls for the breakpoint, for example
an enable control.

The Breakpoint Value Register, DBGBVR<n>_EL1, holds the value that is used for breakpoint
matching. This value is one of the following:

• An instruction virtual address

• One or two Context IDs

• A VMID value

• A concatenation of both a Context ID value and a VMID value

The Armv8-A architecture provides for 2-16 hardware breakpoints to be implemented. How
many hardware breakpoints an implementation supports is an IMPLEMENTATION DEFINED
choice. Depending on the availability of the hardware breakpoint units, that number of
hardware breakpoints can be simultaneously set up on an implementation. The register
ID_AA64DFR0_EL1.BRPs indicates how many breakpoint units are implemented.

Individual breakpoint unit can be enabled or disabled by programming the E-bit of the individual
debug breakpoint control register, DBGBCR<n>_El1.E.

Each breakpoint unit has a corresponding control register. Depending on how many breakpoints are
implemented, the registers are numbered in line with this, so that:

• DBGBCR0_EL1 and DBGBVR0_EL1 are for breakpoint number zero.

• DBGBCR1_EL1 and DBGBVR1_EL1 are for breakpoint number one.

• DBGBCR2_EL1 and DBGBVR2_EL1 are for breakpoint number two.

• DBGBCR<n>_EL1 and DBGBVR<n>_EL1 are for breakpoint number n.

Watchpoint event
A watchpoint event is generated when a PE accesses data memory from a particular address
or address range. Hardware watchpoint registers can be programmed with the address of a
data memory location. When the PE attempts to access data from the programmed address, a
watchpoint event is generated.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

External debug events

When a watchpoint event is generated, the PE enters Debug state if:

• EDSCR.HDE == 1, Halting debug is enabled for these events.

• Authentication signals indicate that the debugger has sufficiently authenticated itself for the
current Security state of the PE.

A watchpoint never generates a watchpoint debug event on an instruction fetch.

These are the steps to program a watchpoint event, in this order:

• The external debugger programs the address of the data into the watchpoint value register,
DBGWVR.

• The external debugger enables the watchpoint in the Watchpoint Control Register, DBGWCR
by setting the enable bit DBGWCR.E.

The following diagram illustrates a watchpoint event when the PE tries to execute an instruction
for which a watchpoint is set up:

Figure 6-2: Watchpoint event

Lower bits of DBGWVR can be masked in the address comparison. This allows the ED to set a
watchpoint event over a range of addresses.

A watchpoint can be:

• Programmed to generate watchpoint debug events on read accesses only, on Write-Accesses
only, or on both types of access

• Linked to a Linked Context breakpoint, so that a watchpoint debug event is only generated if
the PE is in a particular context when the address match occurs

The Armv8-A architecture provides for 2-16 hardware watchpoints to be implemented. How
many hardware watchpoints an implementation supports is an IMPLEMENTATION DEFINED choice .
Depending on the availability of the hardware watchpoint units, that number of watchpoints can be
simultaneously set up on an implementation. The ID_AA64DFR0_EL1.WRPs register indicates how
many watchpoint units are implemented.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

External debug events

An individual watchpoint unit can be enabled or disabled by programming the E-bit of the
individual debug watchpoint control register, DBGWCR<n>_EL1.E.

Each watchpoint unit has a corresponding control register. Depending on how many watchpoints
are implemented, the registers are numbered in line with this, so that:

• DBGWCR0_EL1 and DBGWVR0_EL1 are for watchpoint number zero.

• DBGWCR1_EL1 and DBGWVR1_EL1 are for watchpoint number one.

• DBGWCR2_EL2 and DBGWVR2_EL1 are for watchpoint number two.

• DBGWCR<n>_EL1 and DBGWVR<n>_EL1 are for watchpoint number n.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Embedded Cross Trigger

7. Embedded Cross Trigger
Embedded Cross Trigger (ECT) is the mechanism that is used by an external debugger in an Armv8-
A system to generate debug events. ECT also routes events from one agent to another agent
within the system.

The external debugger uses ECT to generate a debug request trigger or a restart request trigger.
These triggers route events between PEs. For example, these triggers can route a cross halt event
from one PE to other PEs, so that all PEs in a system halt whenever one PE in the system halts.

The ECT in an Armv8-A implementation supports:

• Cross Trigger Interface (CTI)

• Input and output triggers

• Cross Trigger Matrix (CTM)

The CTI provides the ability to route trigger events across various components of the Armv8-A
system. Examples include routing trigger events to the interrupt controller across, for example,
trace units, or across PEs in the system.

If there are multiple CTI blocks in the system, we can use the CTM to pass events between the CTI
blocks. The CTM uses the following IO channels to pass events between CTM blocks:

• Input triggers – Trigger event inputs from the PE to the CTI.

• Output triggers – Trigger event outputs from the CTI to the PE.

• Input channels – Channel event inputs from the CTM to the CTI. These are directly accessible
by the registers CTIAPPPULSE, CTIAPPSET, and CTIAPPCLEAR, which are present in the ECT
programmers model.

• Output channels – Channel event outputs from the CTI to the CTM.

A few of the CTI output triggers that are present in the ECT of an Armv8-A PE have fixed
meanings:

• Output trigger event 0 – Debug request trigger event. This is an output trigger event from the
CTI and an input trigger event to the processor, asserted by the CTI to force the processor into
Debug state. The trigger event is asserted until acknowledged by the debugger. If the processor
is already in Debug state, the processor ignores the trigger event, but the CTI continues to
assert it until it is removed by the debugger.

• Output trigger event 1 – Restart request trigger event. This is an output trigger event from the
CTI to force the PE to exit Debug state.

• Input trigger event 0 – Cross-halt Request trigger event. This is an input trigger from the PE to
the CTI. This event can be routed to other agents in the system. For example, it can be routed
as a debug request event to another PE.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Check your knowledge

8. Check your knowledge
Q: What is the debug model called when the debugger is external to the Processor Element (PE)?

External debug

Q: What is the basis for the external debug model?

Debug state

Q: List four debug events that are supported by external debug.

The possible answers for this question are: External debug request, Halt instruction, Halting
step, Exception catch, Reset catch, Software access debug event, OS unlock catch debug event,
Breakpoint event, and Watchpoint event.

Q: What is the basis for the self-hosted debug model?

Debug exceptions

Q: How do you disable external debug?

There are no global bits to disable external debug.

Q: How many hardware breakpoints and watchpoints are supported in an Arm core?

The number of hardware breakpoints and watchpoints that are supported in an Arm core is
IMPLEMENTATION DEFINED.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 25

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0

Related information

9. Related information
Here are some resources related to material in this guide:

• Arm Architecture Reference Manual: Information on AArch64

• Arm Community: Ask development questions, and find articles and blogs on specific topics from
Arm experts

• AArch64 self-hosted debug guide

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 25

https://developer.arm.com/docs/ddi0487/latest
https://community.arm.com/
https://developer.arm.com/documentation/102120/0100

Learn the architecture - AArch64 external debug Document ID: 102196_0100_01_en
Version 1.0
Next steps

10. Next steps
This guide has introduced the concept of the debug model for the Armv8-A AArch64 with
emphasis on external debugging. Understanding this information helps you to program the debug
logic for external debug.

This guide also mentioned the concept of self-hosted debug. If you want to learn more about self-
hosted debugging, read our AArch64 self-hosted debug guide.

Copyright © 2022 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 25

https://developer.arm.com/documentation/102120/0100

	Learn the architecture - AArch64 external debug
	Contents
	1. Overview
	2. External debug
	3. Debug state
	4. Debug Access Port
	5. Enabling external debug
	6. External debug events
	7. Embedded Cross Trigger
	8. Check your knowledge
	9. Related information
	10. Next steps

